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Preface

It would constitute a stunning progress in medicine if, in a few years, we contribute
to engineering a predictive intelligence able to predict missing clinical data with high
precision. Given the outburst of big and complex medical data with multiple modalities
(e.g., structural magnetic resonance imaging (MRI) and resting function MRI (rsfMRI))
and multiple acquisition timepoints (e.g., longitudinal data), more intelligent predictive
models are needed to improve diagnosis of a wide spectrum of diseases and disorders
while leveraging minimal medical data. Basically, predictive intelligence in medicine
(PRIME) primarily aims to facilitate diagnosis at the earliest stage using minimal
clinically non-invasive data. For instance, PRIME would constitute a breakthrough in
early neurological disorder diagnosis as it would allow accurate early diagnosis using
multimodal MRI data (e.g., diffusion and functional MRIs) and follow-up observations
all predicted from only T1-weighted MRI acquired at baseline timepoint.

Existing computer-aided diagnosis methods can be divided into two main
categories: (1) analytical methods and (2) predictive methods. While analytical
methods aim to efficiently analyze, represent, and interpret data (static or longitudinal),
predictive methods leverage the data currently available to predict observations at later
time-points (i.e., forecasting the future) or predict observations at earlier time-points
(i.e., predicting the past for missing data completion). For instance, a method which
only focuses on classifying patients with mild cognitive impairment (MCI) and patients
with Alzheimer’s disease (AD) is an analytical method, while a method which predicts
if a subject diagnosed with MCI will remain stable or convert to AD over time is a
predictive method. Similar examples can be established for various neurodegenerative
or neuropsychiatric disorders, degenerative arthritis, or in cancer studies, in which the
disease/disorder develops over time.

Following the success of the past editions of PRIME MICCAI, the fifth edition of
the workshop (PRIME MICCAI 2022) aimed to drive the field of ‘high-precision
predictive medicine’, where late medical observations are predicted with high
precision, while providing explanation via machine and deep learning, and statistically,
mathematically- or physically-based models of healthy, disordered development and
aging. Despite the terrific progress that analytical methods have made in the last
twenty years in medical image segmentation, registration, or other related applications,
efficient predictive intelligentmodels andmethods are somewhat laggingbehind.As such
predictive intelligence develops and improves – and this is likely to happen exponentially
in the coming years – it will have far-reaching consequences for the development of new
treatment procedures and novel technologies. These predictive models will begin to
shed light on one of the most complex healthcare and medical challenges we have ever
encountered, and, in doing so, change our basic understanding of who we are.
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What are the Key Challenges We Aim to Address?

The main aim of PRIME MICCAI is to propel the advent of predictive models in a
broad sense, with application to medical data. To this end, the workshop accepts paper
of 8–12 pages in length describing new cutting-edge predictive models and methods that
solve challenging problems in the medical field. We envision that the PRIME MICCAI
workshop will become a nest for high-precision predictive medicine, one that is set to
transform multiple fields of healthcare technologies in unprecedented ways. Topics of
interests for the workshop include but are not limited to predictive methods dedicated to
the following:

– Modeling and predicting disease development or evolution from a limited number of
observations;

– Computer-aided prognostic methods (e.g., for brain diseases, prostate cancer, cervical
cancer, dementia, acute disease, neurodevelopmental disorders);

– Forecasting disease or cancer progression over time;
– Predicting low-dimensional data (e.g., behavioral scores, clinical outcome, age,
gender);

– Predicting the evolution or development of high-dimensional data (e.g., shapes,
graphs, images, patches, abstract features, learned features);

– Predicting high-resolution data from low-resolution data;
– Prediction methods using 2D, 2D+t, 3D, 3D+t, ND, and ND+t data;
– Predicting data of one image modality from a different modality (e.g., data synthesis);
– Predicting lesion evolution;
– Predicting missing data (e.g., data imputation or data completion problems);
– Predicting clinical outcomes from medical data (genomic, imaging data, etc).

Key Highlights

This year’s workshop mediated ideas from both machine learning and
mathematical/statistical/physical modeling research directions in the hope of provid-
ing a deeper understanding of the foundations of predictive intelligence developed for
medicine, as well as to where we currently stand and what we aspire to achieve through
this field. PRIMEMICCAI 2022 featured a single-trackworkshopwith keynote speakers
with deep expertise in high-precision predictive medicine using machine learning and
other modeling approaches – PRIME MICCAI which are believed to stand in opposing
directions. The workshop was organized as a hybrid event (in-person and virtual), and
keynote talks were streamed live due to the COVID-19 pandemic. Pre-recorded videos
of accepted papers and keynote presentations were posted on the PRIME web page1.
Eventually, this will increase the outreach of PRIME publications to a broader audience
while steering a wide spectrum of MICCAI publications from being ‘only analytical’ to
being ‘jointly analytical and predictive.’

We received a total of 20 submissions and accepted 19 papers. All papers underwent
a rigorous double-blind review process, with at least two (and mostly four) members of

1 http://basira-lab.com/prime-miccai-2022/.

http://basira-lab.com/prime-miccai-2022/
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the Program Committee reviewing each paper. The Program Committee was composed
of 21 well-known research experts in the field. The selection of the papers was based on
technical merit, significance of results, and relevance and clarity of presentation. Based
on the reviewing scores and critiques, all but one PRIME submission was scored highly
by reviewers, i.e., had an average score above the acceptance threshold.

Diversity and inclusion have been one of main focuses of PRIME MICCAI, and
the workshop continues to strongly support gender balance and geographic diversity in
the Program Committee. The authors of this year’s accepted papers were affiliated with
institutions in four continents: Africa, Europe, America, and Asia. We also provided a
BASIRAScholarship2 to register the paper of a talentedminority student in a low-middle
income country. The eligibility criteria of the BASIRA Scholarship were included in the
CMT submission system, and the scholarship was ultimately awarded to a student from
Africa. We will strive to continue this initiative in the upcoming years and hope to see
a similar trend in other conferences and workshops.

August 2022 Islem Rekik
Ehsan Adeli

Sang Hyun Park
Celia Cintas

2 https://basira-lab.com/.

https://basira-lab.com/
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Federated Time-Dependent GNN
Learning from Brain Connectivity Data

with Missing Timepoints

Zeynep Gürler and Islem Rekik(B)

BASIRA Lab, Faculty of Computer and Informatics, Istanbul Technical University,
Istanbul, Turkey

irekik@itu.edu.tr

http://basira-lab.com

Abstract. Predicting changes in brain connectivity between anatomi-
cal regions is essential for brain mapping and neural disorder diagnosis
across different age spans from a limited data (e.g., single timepoint).
Such learning tasks become more difficult when handling a single dataset
with missing timepoints, let alone multiple decentralized datasets col-
lected from different hospitals and with varying incomplete acquisitions.
With the new paradigm of federated learning (FL) one can learn from
decentralized datasets without data sharing. However, to the best of our
knowledge, no FL method was designed to predict time-dependent graph
data evolution trajectory using non-iid training longitudinal datasets
with varying acquisition timepoints. In this paper, we aim to signifi-
cantly boost the predictive power of data owners (e.g., local hospitals)
trained with several missing timepoints while benefiting from other hospi-
tals with available timepoints in a fully data-preserving way. Specifically,
we propose a novel 4D GNN federated architecture, namely 4D-FED-
GNN+, which acts as a graph self-encoder when the next timepoint
is locally missing or as a graph generator when the next timepoint is
locally available in the training set. We further design a mixed federa-
tion strategy that alternates (i) GNN layer-wise weight aggregation at
each timepoint and (ii) pairwise GNN weight exchange between hospi-
tals in a random order. Our comprehensive experiments on both real and
simulated longitudinal datasets show that overall 4D-FED-GNN+ sig-
nificantly outperform locally trained models. Our 4D-FED-GNN+ code
available at https://github.com/basiralab/4D-FED-GNN.

Keywords: Longitudinal graphs · Federated learning · Brain graph
evolution trajectory prediction · Missing brain connectivity data

1 Introduction

The non-invasive magnetic resonance imaging (MRI) revealed the brain map-
ping as a highly interconnected system, commonly modeled as a graph (net-
work) where nodes denote anatomical regions of interest (ROIs) and edge weights
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
I. Rekik et al. (Eds.): PRIME 2022, LNCS 13564, pp. 1–12, 2022.
https://doi.org/10.1007/978-3-031-16919-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16919-9_1&domain=pdf
https://orcid.org/0000-0001-5595-6673
https://github.com/basiralab/4D-FED-GNN
https://doi.org/10.1007/978-3-031-16919-9_1
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encode the level of interaction between ROIs (e.g., synchrony in neural activity)
[1,2]. Charting the connectivity landscape of the brain graph in different states
(e.g., health and disease) and across different MRI modalities (e.g., functional,
structural) advanced our understanding of the brain as a system as well as the
genesis and development of neurodegenerative disorders such as Alzheimer’s Dis-
ease (AD) and Mild Cognitive Impairment (MCI) [3,4]. For instance, [5] showed
that AD causes progressive neuronal and synaptic loss alongside diminishing
neuronal connectivities, thereby damaging functional and structural brain net-
works. Still, the temporal nature of the brain development, aging as well as
abnormality unfolding, remains the least explored in the literature due to the
scarcity of longitudinal (4D) MRI datasets. This presents even a bigger hurdle
to deep learning models which are data hungry, limiting their generalizability
potential. Such data scarcity can be remedied by the design of predictive models
that aim to predict the evolution trajectory of brain graphs from limited data
(e.g., a single baseline timepoint). In particular, generative models can probe the
field of temporal brain disorder mapping and early diagnosis, while relying on a
single MRI acquisition [6,7].

In this context, several research papers proposed methods for time-dependent
brain evolution trajectory prediction from a single observation [7]. Landmark
works [8,9] proposed supervised sample selection techniques for brain connec-
tome evolution trajectory prediction in infant and aging populations, respec-
tively. However, such methods resorted to vectorizing the brain graph into a
feature vector, failing to preserve its topology [7]. To address this issue, [10,11]
leveraged graph neural networks (GNNs), which generalized spatial convolutions
to non-Euclidean spaces such as graphs. [10] used a graph convolutional adver-
sarial network to learn the non-linear mapping between timepoints. [11] proposed
Recurrent Brain Graph Mapper (RBGM) composed of a set of recurrent neu-
ral network-inspired mappers at each timepoint, where each mapper evolves the
current brain graph onto its next timepoint.

However, all these methods share a prime challenge. They are not inherently
designed to handle training datasets with missing timepoints –let alone multiple
decentralized datasets collected from different hospitals and with varying incom-
plete acquisitions. We note that [9] exceptionally used tensor completion to lin-
early impute the missing brain connectomes in the training trajectories, however
one needs first to have access to the data for the target imputation task. Second,
such approach fails to preserve the brain topology by (i) linearly approximating
the temporal dependency between brain connectomes and (ii) vectorizing the
connectivity matrices. To remedy the lack of training data while securing data
privacy, federated learning (FL) [12] offers a training paradigm that is compelling
to researchers in medicine. Using FL, multiple clients (i.e., hospitals) train their
local models on their local datasets, independently, while benefiting from the
learning of other hospitals via a central server, in a fully privacy-preserving
manner [13]. Conventionally, FL uses a central server that receives the local
model weights then aggregates them into a global model weights, which are
then broadcasted to the local clients [14]. Since the amount of data each client
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has is insufficient, the global model provides better performance to the clients
[15]. However, FL is challenged by heterogeneous and non-iid datasets across
clients [16]. Such challenge needs to be solved when learning from local datasets
with varying sequences of missing timepoints (e.g., one missing timepoint or two
consecutive ones) in FL.

To the best of our knowledge, there is no FL GNN framework that predicts
the brain graph evolution trajectory from a single timepoint [14] –let alone learn-
ing from local clients with varying temporal patterns in missing observations.
Here we set out to boost the predictive performance of local hospitals with miss-
ing timepoints using local hospitals that have available data at the correspond-
ing timepoints in a federated way and propose 4D-FED-GNN+. Specifically, for
each hospital, 4D-FED-GNN+ has a GNN per timepoint that (i) acts as a brain
graph generator for the next timepoint if the hospital has available training
data at the next timepoint or (ii) as a brain graph self-encoder for the follow-up
timepoint if the hospital lacks the training data at the next timepoint. Besides,
4D-FED-GNN+ adopts a mixed federation strategy that alternates two differ-
ent federation methods. In the first strategy, the central server first performs
a GNN layer-wise weight aggregation then broadcasts the averaged weights to
all local hospitals. For the second strategy, the central server exchanges GNN
layer weights of hospitals in a random order. The contributions of our work are
multifold:

1. We design the first FL framework to predict time-dependent graph evolution
trajectory using non-iid training longitudinal datasets with varying acquisi-
tion training timepoints.

2. Our 4D-FED-GNN+ is the first federated graph neural network that predicts
time-dependent brain graph evolution trajectory from a single timepoint while
mixing different federation rules.

3. A novel time-dependent ordered model exchange is also proposed.
4. Our FL strategy is generic –i.e., not restricted in application to graphs.

2 Proposed Method

In the following sections, we will detail each of the key steps and the rationale
of our proposed 4D-FED-GNN+. Figure 1 displays the two key blocks of our
4D-FED-GNN+: A) GNN-based time-dependent prediction, and B) Mixed fed-
eration strategy. We denote the matrices as boldface capital letters, e.g., X, and
scalars as lowercase letters, e.g., n.

A) GNN-Based Time-Dependent Prediction. Our 4D-FED-GNN+ uses
a GNN per timepoint where each GNN learns a mapping between consecutive
timepoints. Given the local hospitals tend to scan their patients in an ordered
timepoint sequence of varying lengths resulting missing acquisitions in some
timepoints, there are four possible conditions a hospital might encounter when
a GNN learns how to map a brain graph at t onto its next timepoint t + 1:
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Fig. 1. Proposed 4D-FED-GNN+. (A) GNN-based time-dependent prediction. We
design a GNN that takes the adjacency matrix Xtr,h

i,t of the training brain graph of

subject i or its prediction X̂tr,h
i,t based on the temporal order of hospital h at timepoint

t, which defines its state as a generator or a self-encoder at the next timepoint t + 1.
(B) Mixed federation strategy. We alternate two federation strategies where: (i) the
central server receives the GNN layer-wise weights from the hospitals, averages them,
then broadcasts the averaged weights to the hospitals, and (ii) the GNN layer-wise
weights of local hospitals are exchanged with each other randomly.

(1, 1) the data for both current and next timepoints are available (i.e., consec-
utive timepoints being available), (0, 1) the data for the current timepoint is
missing, (1, 0) the data for the next timepoint is missing, or (0, 0) the data for
both current and next timepoints are missing (i.e., consecutive timepoints are
missing). As seen in Fig. 1-A, we display the timepoint-wise data-availability of
the hospitals in a matrix M ∈ R

n×m, where n denotes the number of hospitals
and m the total number of timepoints. Each element Mk,t expresses the avail-
ability information between a row-wise hospital hk and a column-wise timepoint
t where Mk,t is 1 if the connectivity data is available and 0 otherwise. Further,
we assign two different tasks to our GNN based on the temporal availability
of the next timepoint. A GNN acts as a (i) brain graph generator if the brain
connectivity data of the corresponding hospital is present at the next-timepoint
(e.g., (1, 1), (0, 1)) or it acts as a (ii) brain graph self-encoder if the hospital-of-
interest lacks the brain connectivity data at the next timepoint (e.g., (1, 0), (0,
0)). In order to train a GNN on sample i for timepoint t + 1, where its hospital
h lacks the data at timepoint t, the hospital meeting such condition continues
to predict using cascaded self-encoding GNNs until reaching an available time-
point where the GNN switches to a generator and obtains X̂tr,h

i,t to use it as an
input to the GNN. Further, the GNN at timepoint t uses its ground-truth brain
graph Xtr,h

i,t or predicted X̂tr,h
i,t as input based on the availability information of

timepoint t and computes the loss using the ground-truth brain graph Xtr,h
i,t+1

at timepoint t + 1 when the next timepoint is present. If the connectivity data
is missing at the next timepoint t + 1, the GNN self-encodes the data and uses
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Xtr,h
i,t or predicted X̂tr,h

i,t as an input and also as the ground-truth for t + 1.
Basically, the GNN acts as a generator or a self-encoder based on the condition
of the next timepoint.

The GNN Network Architecture
Our 4D-FED-GNN+ uses the RBGM architecture introduced in [11]. RBGM
generates a brain graph at timepoint t + 1 given its observation at timepoint
t as an input. The proposed recurrent graph convolution captures the dynamic
alterations in the brain connectivity patterns between consecutive timepoints.
Our prediction loss consists of an l1 loss and a topological loss term. The l1 loss
preserves the general characteristics of the connectivity data and is robust to
outliers [17]. Therefore, we add the l1 loss to improve the predicted brain graph
quality. For the topological loss, we draw inspiration from [11] and define a node
strength vector for each ROI in the brain graph to preserve topological soundness
of the generated graphs. For each brain graph, we create a node strength vector
N by summing up all edge weights of each node as: N = [N1, N2, . . . , Nnr

],
where Nj is the node strength of node j and nr is the number of ROIs. The
topological loss minimizes the topological dissimilarity between the predicted
and ground-truth brain graphs at each timepoint t + 1 for the training set tr,
and is defined as:

Ltp(N̂tr − Ntr) =
1
nr

nr∑

j=1

(N̂tr
j − Ntr

j )2 (1)

Let X̂tr,h
i,t+1 denote the predicted brain graph for training sample i of hospital

h at timepoint t + 1. Our full loss function is then expressed as follows:

Lfull = λLtp(N̂
tr,h
i,t+1 − Ntr,h

i,t+1) + LL1(X̂
tr,h
i,t+1) (2)

Dynamic Edge Filtered Convolution. Each GNN in our 4D-FED-GNN+
uses graph convolutional layers inspired by the dynamic graph convolution with
edge-conditioned filter proposed by [18]. Let G = (V,E) be a directed or undi-
rected graph where V is a set of nr ROIs and E ⊆ V × V is a set of mr

edges. We represent the layer index as l in the neural network. For each layer
l ∈ {1, 2, . . . , L}, we define the transformation matrix (i.e., function) that gener-
ates edge weights for the message passing between ROIs i and j given features
of eij as Tl : Rds → R

dl×dl−1 where ds and dl are the dimensionality indices. We
define N (i) = {j; (j, i) ∈ E} ∪ {i} as the neighborhood containing all adjacent
ROIs to a node i. We update using the following rule:

nl
i = Θlnl−1

i +
1

N (i)

∑

j∈N (i)

Tl(eij ;Wl)nl−1
j + bl (3)
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where nl
i is the node embedding for the ROI i at layer l. Θl is the dynamically

generated edge weights by Tl. We denote Wl as the weights of Tl, bl ∈ R
dl as

the bias term and note that T can be any type of neural network.

Graph Recurrent Filter. Each GNN in 4D-FED-GNN+ uses an edge-based
recurrent graph neural network firstly introduced in [11]. It redesigns the edge-
conditioned filter [18] in the graph convolution layer as a graph recurrent-filter.
Graph recurrent-filter remembers the earlier information thanks to its hidden
state, which works as a memory by capturing the learned information in the
previous layer, and processes the current data accordingly. Each RNN cell takes
two specific inputs: the input brain graphs at the current timepoint, and the
hidden state values learned from the brain graphs at the previous timepoint.
While training, it updates the hidden state with the knowledge representation
of the current timepoint. Specifically, let et+1 ∈ R

mr×1 be the set of edges for
a given timepoint t + 1 and Ht ∈ R

mr×mr be the hidden state matrix from
the previous timepoint t, the recurrent edge-filtering function Tl(et+1,Ht) is
expressed as follows:

Ht+1 = tanh([et+1,Ht] � [Wph,Whh] + Bh) (4)

where Ht+1 ∈ R
mr×mr is the hidden state at the current timepoint t+1 and Wph

and Whh are learnable parameters for input-to-hidden weights and hidden-to-
hidden weights. Bh ∈ R

mr×mr is the bias term. We use tanh [19] to force the state
values to fall in the range of [−1, 1] for avoiding the vanishing gradient problem
that tends to happen when we use an activation function such as sigmoid, causing
the training to diverge.

B) Mixed Federation Strategy. 4D-FED-GNN+ is trained using a mixed
strategy alternating two federation methods. The first method is GNN layer-
wise weight aggregation (Fig. 1-B-i). After training the GNN for several rounds,
the hospitals send their GNN layer weights to the central server which first
aggregates them then broadcasts the averaged weights to all hospitals. As aggre-
gation function, we use the basic FedAvg proposed by [20]. FedAvg is expressed

as wt = 1
n

n∑
k=0

wt
k while wt

k denotes the GNN layer weights of hospital k at time-

point t with n being the number of hospitals and wt representing the GNN layer
weights of the global model at timepoint t. The second federation method is a
model exchange between pairs of hospitals (Fig. 1-B-ii). One of the challenges
that FL algorithms encounter is local clients with non-iid data. In our case, the
local hospitals (i.e., clients) acquire their time-dependent brain connectivity data
in a ordered temporal sequence of varying lengths and scan a different number of
patients (i.e., samples) causing the data to be non-iid. Hence, simply averaging
the GNN layer weights might degrade the performance of the federation when
dealing with non-iid data. Therefore, since model exchange emerged as a promis-
ing method to handle non-iid data [21–23], we design a dual federation strategy.
Specifically, after training the GNN for a couple of rounds, the hospitals send
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Algorithm 1: 4D-FED-GNN+
Server Input: the GNN layer weights Wt

k of hospital hk at timepoint t,
federation mode f

Hospital k’s Input: initial global model Wt, local data Dk; brain graphs are
missing at timepoint t for hospital hk if X

tr,hk
i,t /∈ Dk; ∀ 1 ≤ i ≤ nk, nk is the

number of samples for hk, number of rounds per averaging na, number of
rounds per model exchange ne, number of rounds R, number of timepoints T ,

Hospitals:
for t ← 1 to T do

for r ← 1 to R do
Sample hospitals H ⊆ {h1, . . . , hn};
f = 1
for each hospital k ∈ H do

Initialize local model Wt
k ← Wt;

Wt
k ← Hospital Training(Dk, Wt

k, ne);
Communicate Wt

k to the server;

f = 0
for each hospital k ∈ H do

Initialize local model Wt
k ← Wt

j ;
Wt

k ← Hospital Training(Dk, Wt
k, na);

Communicate Wt
k to the server;

Server:
if f == 1 then

for each hospital k ∈ H do
Communicate Wt

k to hospital hk+1;

else
Construct Wt = 1

n

∑

k∈H

Wt
k;

Communicate Wt to all hospitals k ∈ H;

Server output: Wt, Wt
k to hospital hk+1

Hospital k’s output: Wt
k

their GNN layer weights to the central server and the central server randomly
exchanges the GNN layer weights of the hospitals with each other. We detail the
steps of 4D-FED-GNN+ in Algorithm 1, where TrainHospital function differs
based on the data availability condition of the hospital at both current and next
timepoints as explained in A). Algorithm 1 first performs the pairwise hospital
exchange then the GNN layer-wise weight aggregation in each round.

3 Results and Discussion

Longitudinal Brain Graph Dataset. We evaluated our 4D-FED-GNN+
using 113 subjects from the OASIS-2 longitudinal dataset [24]. This set con-
sists of a longitudinal collection of 150 subjects aged 60 to 96. Each subject was



8 Z. Gürler and I. Rekik

scanned on two or more visits, separated by at least one year. For each sub-
ject, we use structural T1-w MRI to construct a cortical morphological network
derived from cortical thickness as proposed in [25]. Each cortical hemisphere
is parcellated into 35 ROIs using Desikan-Killiany cortical atlas. We built our
4D-FED-GNN+ with PyTorch Geometric library [26]. We also conducted our
experiments with simulated data with denser timepoints. To do so, we compute
the mean connectivity values and correlation matrices of the OASIS-2 dataset
and calculate the multivariate normal distribution to generate simulated brain
graph data since the mean connectivity values and correlation matrices capture
the patterns of the brain connectivity dataset. We simulate 120 brain graphs at
6 timepoints.

Fig. 2. (1) Prediction accuracy using mean absolute error (MAE) of our 4D-FED-
GNN+ and comparison methods at t1 and t2 timepoints (top row). (2) The node
strength of predicted brain graphs by 4D-FED-GNN+ and its variants (bottom row).
****: p − value < 0.001 using two-tailed paired t-test.

Evaluation and Parameter Setting. To evaluate 4D-FED-GNN+, we con-
ducted each experiment using 5-fold cross-validation where in each run, one fold
is used for testing while each of the remaining folds serves as the local training
data for one hospital resulting in 4 hospitals to federate. To better observe the
effect of the missing timepoint ratio on the performance, we selected 3 different
ratio values of the missing to the total timepoints. We work under the assump-
tion that the baseline timepoint (i.e., first observation) is always available. The
OASIS dataset has 3 timepoints, which implies that, excluding the baseline,
there are totally 8 timepoints for 4 hospitals. We randomly mask different time-
points with size 2, 3, and 4 to vary the ratio of the missing data. We perform
this randomized masking twice for each ratio and carried out 6 experiments for
each method. For the simulated dataset, we set 3 ratio values as 1/20, 8/20, and
5/20 (20 = 6 timepoints × 4 hospitals) to vary the ratio of the missing data
and conducted two experiments with different masking variations for each ratio
value. For the RBGM training, we used ADAM [27] as our default optimizer and
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Table 1. Prediction accuracy using mean absolute error (MAE) of our 4D-FED-GNN+
and comparison methods at t1, t2, t3, t4, and t5 timepoints for the simulated dataset.

10/20 8/20 5/20

Methods h0 h1 h2 h3 h0 h1 h2 h3 h0 h1 h2 h3

t1

4D-GNN 0.0508 0.0503 0.0534 0.0527 0.0512 0.0502 0.0525 0.0533 0.0516 0.0513 0.0537 0.0527

4D-FED-GNN 0.0374 0.0376 0.0374 0.0376 0.0374 0.0378 0.0377 0.0374 0.0377 0.0372 0.0378 0.0377

4D-FED-GNN+ 0.0371 0.0371 0.0370 0.0371 0.0369 0.0372 0.0371 0.0369 0.0371 0.0366 0.0371 0.0372

t2

4D-GNN 0.0964 0.0578 0.0837 0.0612 0.0775 0.0599 0.0627 0.0886 0.0783 0.1020 0.0853 0.0875

4D-FED-GNN 0.0448 0.0447 0.0439 0.0447 0.0451 0.0452 0.0456 0.0453 0.0449 0.0438 0.0445 0.0448

4D-FED-GNN+ 0.0439 0.0434 0.0425 0.0438 0.0444 0.0440 0.0447 0.0446 0.0441 0.0430 0.0433 0.0443

t3

4D-GNN 0.1515 0.1517 0.2574 0.1512 0.1494 0.1125 0.1571 0.2745 0.1488 0.3752 0.2615 0.2659

4D-FED-GNN 0.0531 0.0540 0.0550 0.0544 0.0545 0.0551 0.0559 0.0566 0.0569 0.0580 0.0579 0.0594

4D-FED-GNN+ 0.0515 0.0517 0.0524 0.0515 0.0524 0.0526 0.0532 0.0525 0.0538 0.0532 0.0534 0.0535

t4

4D-GNN 0.4046 0.3251 0.5668 0.4289 0.5719 0.2749 0.3062 0.6997 0.5684 1.2237 0.5970 1.0096

4D-FED-GNN 0.0799 0.0881 0.0932 0.0929 0.0833 0.0858 0.0871 0.0958 0.1122 0.1151 0.1142 0.1277

4D-FED-GNN+ 0.0727 0.0775 0.0797 0.0768 0.0732 0.0778 0.0761 0.0775 0.0945 0.0950 0.0953 0.0974

t5

4D-GNN 1.7104 1.4239 4.0096 1.6694 2.8495 1.1352 1.0630 7.2772 2.8276 14.6458 4.6099 11.2775

4D-FED-GNN 0.1879 0.2012 0.2241 0.2346 0.2064 0.2017 0.2223 0.2405 0.2614 0.2717 0.2959 0.3090

4D-FED-GNN+ 0.1536 0.1718 0.1697 0.1722 0.1738 0.1768 0.1873 0.1880 0.2199 0.2252 0.2503 0.2433

set the learning rate to 0.001. We empirically set the hyperparameter λ to 10
in our loss function, the number of rounds for averaging as 14, and for model
exchange as 7 during FL mixing.

Benchmarks and 4D-FED-GNN+ Variants. Since our 4D-FED-GNN+ is
the first FL method aiming to predict the brain graph evolution trajectory from a
single timepoint using brain connectivity data with varying missing timepoints,
we benchmarked our framework against 2 of its variants: (1) 4D-GNN: the
vanilla method where hospitals train their local data without federation; (2)
4D-FED-GNN: the variant where we use a single federation strategy based on
GNN layer-wise weight aggregation (i.e., no mixed strategy).

Real 4D Data. Figure 2 displays the MAE results between the ground-truth and
predicted brain graphs as well as their MAE in node strength representations
for OASIS dataset at t1 and t2 timepoints, respectively. We also report the p-
values using a two-tailed paired t-test between 4D-FED-GNN+ and each bench-
mark method. As seen in Fig. 2, our proposed technique 4D-FED-GNN+ sig-
nificantly outperformed the comparison methods 4D-GNN and 4D-FED-GNN
(p < 0.001). Considering the prediction performance of 4D-GNN, we can say
that the federation strategy significantly boosts the prediction performance of
the local hospitals. Next, our proposed federation technique outperforming 4D-
FED-GNN shows that GNN layer-wise weight exchange works well together with
GNN layer-wise weight aggregation and increases the federation performance for
non-iid data. Given that preserving the graph topology is a harder task compar-
atively to predicting edge weights, still our 4D-FED-GNN+ achieved the best
performance in 4 out of 6 evaluation scenarios.

Simulated 4D Data. Further, we conducted our experiments on the simulated
dataset to further demonstrate the generalizability of our proposed 4D-FED-
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GNN+. The simulated data allows us to simulate more difficult scenarios where
3 consecutive timepoints can be missing in M. When the number of timepoints
increases, the risk of facing a bad condition such as several consecutive miss-
ing timepoints for a hospital arises. Therefore, predicting for the latter time-
points becomes even more challenging. Table 1 shows that our proposed 4D-
FED-GNN+ significantly outperforms all comparison methods in all experiments
using 5-fold cross-validation.

Although our 4D-FED-GNN+ produced the best results in predicting brain
graph evolution trajectory by learning from brain connectivity data with missing
timepoints, there are a few limitations. First, the proposed framework partic-
ularly works on unimodal brain graphs with only one connectivity type (e.g.,
structural) [28]. Therefore, we aim to extend our proposed frameworks to han-
dling multi-modal brain graphs with varying missing modalities and timepoints.
Second, we used FedAvg [20] as aggregation method in our mixed federation
strategy. FedAvg is the most popular and easiest to implement strategy in clas-
sical FL tasks. However, when it comes to learning from non-iid data, FedAvg
might be slow in convergence in most cases [29]. Thus, we aim to design a better
federation scenario to learn from our temporally varying non-iid graph data.

4 Conclusion

In this paper, we introduced the first federated brain graph evolution trajec-
tory prediction framework that learns from brain connectivity data with miss-
ing timepoints coming in varying patterns. Specifically, we proposed 4D-FED-
GNN+, which learns a federated GNN-based time-dependent prediction where
each hospital has a GNN that acts as a generator or a self-encoder based on
the data availability at both current and next timepoints. To federate, it per-
forms a federation strategy mixing GNN layer averaging and exchange. The
proposed federation technique outperformed benchmark methods on both real
and simulated 4D connectomic datasets. In our future work, we will work on
how to better aggregate received model weights learned from non-iid temporal
data using techniques such as local batch normalization [30].
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Abstract. A fundamental approach in neuroscience research is to test
hypotheses based on neuropsychological and behavioral measures, i.e.,
whether certain factors (e.g., related to life events) are associated with
an outcome (e.g., depression). In recent years, deep learning has become
a potential alternative approach for conducting such analyses by pre-
dicting an outcome from a collection of factors and identifying the most
“informative” ones driving the prediction. However, this approach has
had limited impact as its findings are not linked to statistical signifi-
cance of factors supporting hypotheses. In this article, we proposed a
flexible and scalable approach based on the concept of permutation test-
ing that integrates hypothesis testing into the data-driven deep learning
analysis. We apply our approach to the yearly self-reported assessments
of 621 adolescent participants of the National Consortium of Alcohol
and Neurodevelopment in Adolescence (NCANDA) to predict negative
valence, a symptom of major depressive disorder according to the NIMH
Research Domain Criteria (RDoC). Our method successfully identifies
categories of risk factors that further explain the symptom.

Keywords: Permutation testing · Risk factor identification ·
Classification · Behavioral data · Outcome prediction · Disease
prediction

1 Introduction

Neuropsychological studies often collect a wide range of measurements by ask-
ing participants to fill out self-reports and undergo cognitive assessments [1]
in order to gain insights into the intervention and prevention of mental dis-
eases. To support hypotheses motivating study creation, they then select a few
measurements and test the statistical significance of their associations with the
disease [2]. Alternatively, deep neural networks (DNNs) can be trained on all col-
lected measurements to predict disease outcomes, and the decision process can be
interpreted by identifying critical factors contributing to the prediction [3]. The
identification of such factors is generally based on ‘importance’ scores, i.e., rela-
tive measurements (of arbitrary units) [4]. Failing to provide an absolute metric
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
I. Rekik et al. (Eds.): PRIME 2022, LNCS 13564, pp. 13–23, 2022.
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of significance, findings from deep models generally fail to support hypotheses
and hence have limited impact on advancing neuropsychology. To bridge the
gap between hypothesis-driven analysis and data-driven deep learning, we pro-
pose a procedure for testing whether a category (domain) of factors significantly
drives the prediction of a DNN. We do so by constructing the distribution of
prediction accuracy under the null hypothesis that the tested category does not
contain useful information for prediction.

This null distribution is derived based on a permutation procedure, which
has been used to analyze different characteristics of machine learning models.
Golland et al. [5] relied on permutation analysis to test whether the observed
accuracy of a classifier could be achieved by chance. Other methods [6] com-
puted permutation-based p-values to quantify whether a classifier exploits the
dependency between input features. Permutation testing has also been used for
selecting important attributes over a single or a set of prediction models [7]
in decision trees [8], random forests [9–11], and DNNs [12]. Specifically, Mi et
al. [12] proposed a permutation-based feature importance test that, based on
normal distributions, identified predictors for survival of kidney-cancer patients.

Compared to these prior approaches, our proposed method has several advan-
tages: 1) our method seamlessly connects data-driven learning approach with
traditional hypothesis-driven analysis by quantifying statistical significance of
categories of factors; 2) the approach does not require re-training the model
as our null hypothesis is linked to a specific trained model; 3) thanks to the
non-parametric nature of the permutation test, our method can be adapted to
any machine or deep learning model regardless of the accuracy metric used for
training.

We applied the proposed procedure to test the significance of categories
of neuropsychological and behavioral measurements for predicting the depres-
sive symptom of negative valence of the NIMH Research Domain Criteria
(RDoC) [13]. To illustrate the generality of our test procedure, we apply it
to a cross-sectional and a longitudinal variant of the prediction model, which
is trained on annual acquired records of 621 participants (ages 12 to 17 years)
provided by the National Consortium on Alcohol and Neurodevelopment in Ado-
lescence (NCANDA). In both scenarios, our permutation procedure identified
meaningful categories distinguishing non-symptomatic youth from participants
with symptoms of negative valence.

2 Methodology

Problem Setup. Let X ∈ R
n×m be the data matrix recording m measures (cap-

turing demographic, neurospychological, and behavior factors) from n subjects,
where Xi denotes the i-th row of X, associated with subject i. We also assume
the m measures can be grouped into C categories so that X := [X1, ...,XC ]. Each
category Xj ∈ R

n×mj consists of mj measures assessing one specific domain of
cognition or behavior (e.g., all measures associated with sleep) for the n subjects
(
∑C

j=1 mj = m). Furthermore, each subject is linked to a label yi, where yi = 0
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Fig. 1. Overview of the proposed permutation method, which we use to compute the
significance of a category X2 of factors for driving the prediction of model f . We
first permute the values of X2 across subjects (rows) and then measure the prediction
accuracy based on the permuted input to derive a null distribution of the accuracy
score ψ̂. The percentile of the true accuracy ψ then defines the category’s statistical
significance (or p-value).

refers to non-symptomatic (healthy) subjects and yi = 1 to a subject of the
cohort of interest (e.g., certain disease or negative valence).

To find the association between factors X and outcome y, an emerging app-
roach is to build a deep neural network f(·) so that y′

i = f(Xi). After deriving
the prediction y′ = [y′

1, ..., y
′
n]

� based on proper cross-validation, an accuracy
metric ψ = M(y, y′) is then computed to quantify the predictive power of the
model. Examples for M(·) are the classification accuracy, F1, AUC, mean abso-
lute error, and R2 coefficient. To better understand the complex relationship
between brain and behavior relationships associated with the group of interest,
the last and yet most important step of the deep learning analysis is to identify
which specific categories of factors are significantly associated with the outcome.

Permutation Test. Instead of using typical model interpretation techniques
(such as Gradient-weighted Class Activation Maps (Grad-CAM) [4]) to compute
“importance” of factors (which is a relative score), we formulate the problem as a
hypothesis testing procedure. To test whether a category Xj significantly drives
the prediction of the network f , our null hypothesis is that

H0: The accuracy of the prediction model f is the same as ψ after permutation
of the information in Xj .

Since both the network f and the accuracy metric function M are possibly
highly non-linear functions, we propose to use the permutation test as the test
procedure. A permutation test is a non-parametric statistical test that constructs
the null distribution of any test statistic (ψ in our case) by calculating all possible
values of the test statistic under all possible rearrangements of the observed data
points (see also Fig. 1). Specifically, let π(·) denote a random permutation of n
objects such that π(Xj) denotes the row-permutated matrix for the jth factor
category. A new accuracy score is then computed as

ψ̂ = M(f([X1, ..., π(Xj), ...,XC ]), y). (1)
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In other words, a random permutation across subjects ensures the permutated
category no longer carries information stratifying subjects with respect to y.
As such, repeating the permutation for a large number of trials would result in
a distribution of ψ̂, i.e., the distribution of the accuracy score under the null
hypothesis. Lastly, a p-value can be derived by the percentage of permutations
that result in higher accuracy scores than the actual accuracy ψ. If the p-value
is smaller than a threshold (e.g., 0.05), the null hypothesis is rejected, suggesting
that the tested category is significantly associated with the outcome.

3 Experimental Setup

Depression Symptom Prediction. In this work, we predict the depression
symptom of negative valence among adolescents from their demographics, self-
reports, and neuropsychological and behavioral measures. Negative valence is
a symptom describing feelings of sadness, loss, anxiety, fear, and threat. The
literature has shown that youth with negative valence tend to develop major
depressing disorder (MDD) [13] resulting in increased risk for chronic and recur-
rent depression and suicide attempts.

Dataset. The NCANDA [14] study recruited 831 youths across five sites in
the U.S. (University of California at San Diego (UCSD), SRI International,
Duke University Medical Center, University of Pittsburgh (UPMC), and Oregon
Health & Science University (OHSU)) and followed them annually [15]. As our
goal was to analyze adolescent depressive symptoms, we used data from 621 par-
ticipants who completed at least one assessment before turning 18 years old. The
data were part of the public release NCANDA\_PUBLIC\_6Y\_REDCAP\_V01 [14].
Among the 621 subjects, 81 reported symptoms of negative valence in at least
one of their assessments. These subjects had, on average, 3.20 ± 1.66 assessments
collected every 1.05 ± 0.15 years. 310 subjects were female and 311 male with
an average age of 15.02 ± 1.69 at the baseline assessment.

We used a total of m = 126 measurements at each assessment and grouped
them into the following categories (C = 8) according to their content:

– Personality, which includes traits such as extraversion, agreeableness, accep-
tance, and emotion regulation.

– Life, which describes life events, emotional neglect and trauma.
– Sleep, which includes information regarding a subject’s sleep and wake-up

time and sleep duration.
– Support, which describes the involvement of a subject in social clubs and their

relationship with their family, friends, and teachers.
– Neuropsych, which includes emotion recognition, attention, and working

memory measures.
– Substance Use, which corresponds to alcohol and substance use, marijuana

dependence, and history.
– Demographics, which includes age, sex, ethnicity, and pubertal development

score.
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Table 1. p-value of each category in predicting negative valence and the null distri-
bution of BACC resulting from category-specific permutations. Bold marks p-values
of significant importance (p< 0.05). Cross-Sectional refers to models trained on the
average across each subject’s assessments, and Longitudinal to models trained on all
yearly subject assessments.

Category Cross-sectional Longitudinal
Null distribution p-value Null distribution p-value

Personality 65.72 ± 0.085 <0.002 58.72 ± 0.065 <0.002

Life 69.84 ± 0.092 0.036 70.22 ± 0.068 0.030
BRIEF 69.35 ± 0.094 0.044 72.29 ± 0.079 0.074
Support 69.89 ± 0.071 0.068 71.05 ± 0.096 0.050
Sleep 70.48 ± 0.094 0.108 71.95 ± 0.111 0.094
Neuropsych 70.49 ± 0.083 0.116 74.07 ± 0.090 0.430
Substance use 72.39 ± 0.098 0.534 74.13 ± 0.095 0.362
Demographics 71.84 ± 0.093 0.366 78.04 ± 0.112 0.992

– BRIEF, or the Behavior Rating Inventory of Executive Function [16], which
measures aspects of executive functioning.

Model Training. To showcase our testing approach can be applied to any deep
neural network, we trained a cross-sectional and a longitudinal model. Specif-
ically, for the cross-sectional setting, we computed the average value of each
feature across all assessments of a subject. Afterward, we classified subjects as
having negative valence or being non-symptomatic via a deep learning model
consisting of three Fully Connected (FC) layers, ReLU activation, and dropout
layers with probability of 0.2. The model was trained for 55 epochs with a learn-
ing rate of 0.001.

For the longitudinal setting, a deep learning model consisting of a Gated
Recurrent Unit (GRU) [17] layer, and two FC layers identified negative valence
in the last assessment of a subject, i.e., in a Sequence-to-One fashion. The model
was trained for 30 epochs with learning rate of 0.0001 and Adam Optimizer [18].

The loss function used in both settings was the weighted binary cross
entropy [19]. To combat the severe class imbalance, we calculated the ratio
of non-symptomatic to symptomatic subjects, R = Nnon-symptomatic

Nsymptomatic
as our loss

weight. Additionally, we employed �1 regularization to avoid overfitting. We
implemented our models and our evaluation in PyTorch 1.10.0 [20]. Our code is
publicly available1.

Identifying Important Feature Categories. We trained all models using
stratified 5-fold cross-validation with subject-level splits across folds. The accu-
racy of each model was determined via the F1-Score and the balanced accuracy

1 https://github.com/MaggiePas/Permutations_MICCAIPRIME2022.

https://github.com/MaggiePas/Permutations_MICCAIPRIME2022
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Fig. 2. Null distributions of BACC derived by permutation for the three categories that
were significant for predicting negative valence when using the cross-sectional model.
The red line denotes the observed BACC with the original (un-permutated) data, from
which we infer the p-values of the categories as listed in Table 1 (Color figure online).

(BACC) [21], which account for the severe class imbalance. We used the proposed
approach to test whether each of the 8 categories significantly contributed to the
observed BACC. To do so, we performed 500 permutations within each test fold
(a total of 2500 permutations) to generate the null distribution of BACC.

4 Results and Discussion

We now present and discuss the results of our models for the cross-sectional and
longitudinal training setting. First, we review the significant categories identi-
fied by the permutation analysis. Afterward, we test for the specificity of our
approach by re-training the models once using only significant categories and
once only non-significant categories. Subsequently, we calculate the Shapley val-
ues [22] for each category feature and show their overlap with the significant cat-
egories identified by our permutation analysis. Finally, we perform hierarchical
hypothesis testing by dividing the significant feature categories into meaningful
subcategories and repeating the permutation experiment on each of them.

Cross-Sectional Model. Based on the 5-fold cross-validation, the cross-
sectional model resulted in a BACC of 72.25%. Table 1(left) summarizes the
null distribution of BACC for each category resulting from 500 permutations
and the corresponding p-value. Figure 2 plots the distributions for the signifi-
cant categories. In all three cases, the mean BACC of the null distribution is
clearly lower than the true BACC of 72.25% (shown in red).

Specifically, Personality is the most significant category for predicting nega-
tive valence as permuting personality variables caused the highest drop of 6.5%
(comparing true model BACC with the mean of null distribution). This result
was in line with the depression literature, frequently reporting on the connection
between depression and personality traits, which could impact mood through
altered reactivity to emotional cues and result in depressive symptoms [23–25].

The second category where random permutations caused a significant
decrease in model BACC was Life. It has been consistently documented that
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Table 2. BACC and F1-scores of models trained with all feature categories, trained
only with the categories identified as significant by our approach and only with the
non-significant categories. Bold marks the highest BACC and F1-Score.

Categories Cross-sectional Longitudinal
BACC F1-Score BACC F1-Score

All 0.7225 0.6404 0.7456 0.6482
Only significant 0.7146 0.6322 0.7668 0.6221
Non-significant 0.6200 0.5457 0.6683 0.5255

youth experiencing more adverse life events are more susceptible to develop-
ing depression [26]. Moreover, strong relationships between childhood abuse and
depression have also been previously reported [27]. In the cross-sectional set-
ting, BRIEF was also a significant predictor for negative valence. Cognitive
and behavioral shifts (that are described by BRIEF ) have been associated with
negative valence, while depression is reciprocally linked with executive dysfunc-
tion [28].

Longitudinal Model. Our longitudinal model resulted in a 74.56% BACC. The
2% increase compared to the cross-sectional model could be attributed to the
temporal information provided to our RNN and the higher number of individual
assessments. In line with the cross-sectional setting, Personality and Life were
significant in predicting the outcome. Slightly deviating from the cross-sectional
results, permutating BRIEF variables only resulted in trend-level significance
(p = 0.074; cross-sectional setting: p = 0.044) and Support (which was at a
trend-level p = 0.068 with respect to the cross-sectional setting) reached the
significance threshold. The literature has shown the crucial role of social support
in preventing depression [29]. Moreover, the presence and quality of friendships
in adolescence is a significant factor that influences mental health, while limited
social interactions could lead to depressive symptoms [30]. The general agreement
in the importance of categories (top 4 vs. bottom 4) between cross-sectional and
longitudinal analyses suggests the robustness of our proposed test procedure.

Specificity Testing of Significant Categories. To explore the specificity of
our test procedure, we retrained our models using only the significant categories
as the input (Personality, Life and BRIEF in the cross-sectional setting and
Personality, Life and Support in the longitudinal setting) and also using only the
non-significant categories. Table 2 shows that results from using only significant
categories roughly aligned with the ones using all categories. This indicates that
the significant categories identified by our method contained the majority of the
information for prediction.

Notably, in the longitudinal setting, the model trained only on the signifi-
cant categories led to a 2.2% improvement in BACC, potentially suggesting that
removing irrelevant features reduced the chance of overfitting in the RNN. In
both settings, training the model on the non-significant categories led to a drastic
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Table 3. Results of permutation testing on fine-grained feature categories within Per-
sonality and Life. Bold marks p-values of significant importance (p < 0.05) for each
category sub-scales.

Sub-category Cross-sectional Longitudinal
p-value Difference p-value Difference

Pesonality TIPI 0.006 −0.033± 0.089 <0.002 −0.124± 0.056

RSQ 0.074 −0.017± 0.090 0.084 −0.029± 0.082

UPPS 0.374 −0.005± 0.103 0.964 +0.021± 0.089

Life LEQ 0.098 −0.017± 0.090 0.010 −0.049± 0.070

CTQ 0.452 −0.000± 0.101 0.864 +0.011± 0.105

decrease in BACC by 10% in the cross-sectional model and 8% in the longitudi-
nal one. These results further highlight that the variables of the non-significant
categories did not substantially aid the prediction process.

Comparison with SHAP Values. To relate the significance of categories to
the importance of features, we generated the Deep SHapley Additive exPlana-
tions (SHAP) [31], which assign an importance value (Shapley values [32]) to
each feature for a particular prediction. Shapley values calculate the average
marginal contribution of each feature towards the model prediction. Figure 3
plots the ranked SHAP values for all 126 features of our model in the cross-
sectional setting. Notably, the variables of the categories identified as significant
by our approach (i.e., Personality, Life and BRIEF ) have also been assigned
high SHAP scores.

Hierarchical Hypothesis Testing. We further show our test procedure’s ver-
satility by embedding it into a nested analysis. As Personality and Life were the
two significant categories in both models, we tested the statistical significance
of subcategories within each category. Specifically, we split Personality into the
subcategories of measurements collected by the Ten-Item Personality Inventory
(TIPI) [33], the Responses to Stress Questionnaire (RSQ) [34], and Urgency,
Premeditation (lack of), Perseverance (lack of), Sensation Seeking (UPPS) [35].
TIPI assesses Extraversion, Agreeableness, Conscientiousness, Emotional Stabil-
ity, and Openness to Experience. RSQ measures coping and involuntary stress
responses, and UPPS measures multiple aspects of impulsive personality. Fur-
thermore, we split Life into the measurements associated with Life Events Ques-
tionnaire (LEQ) [36] and Childhood Trauma Questionnaire (CTQ) [37]. LEQ
captures life events mostly associated with work and family, and CTQ records
physical and emotional abuse and neglect.

Table 3 summarizes the outcome when permutating each subcategory, which
revealed that TIPI is the most significant predictor of negative valence among
factors of Personality for both settings. These results highlight our approach’s
ability to scale from more extensive category variables to fine-grained variable
subsets.
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Fig. 3. Feature Importance Scores for all our model features computed by the Deep
SHapley Additive exPlanation (SHAP) [31] derived for our cross-sectional model. The
significant categories identified by our approach (Table 1) have also been assigned high
SHAP values.

5 Conclusion

This paper proposed a flexible and scalable approach that successfully combined
hypothesis testing with data-driven deep learning analysis. Based on permu-
tation testing, the approach relates the importance of a category of factors in
the data-driven prediction process to p-values used in hypothesis testing. We
evaluated our permutation scheme for identifying the major depressive symp-
tom of negative valence from the psycho-social and cognitive factors recorded
in 621 NCANCA youths. In line with the literature, personality traits and life
events were of significant importance for the predictions performed by the cross-
sectional DNN and longitudinal RNN. In summary, our comprehensive analysis
can identify potential predictors of negative valence during adolescence that
might be important for timely intervention, especially given the increased risk
for depression starting with the COVID pandemic [38].
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Abstract. One of the great strengths of positron emission tomography
(PET) is its ability to quantitatively image a wide array of molecu-
lar targets for disease evaluation. However, multi-tracer PET imaging
is hindered because current technology permits only one PET tracer
to be imaged at a time. The aim of this study was to develop a deep
learning system that uses a PET image obtained with one tracer to
predict a synthetic PET image of a different tracer without having to
actually inject the second tracer. Deep neural networks were designed
to generate synthetic 3′-deoxy-3′-[18F]-fluorothymidine (18F-FLT) PET
images from 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine (18F-FDOPA)
PET and magnetic resonance imaging scans of nineteen patients with
glioblastoma. Here, we show that the proposed image synthesis method
closely predicts the ground truth 18F-FLT PET images (MAE = 0.024
± 0.004, SSIM = 0.832 ± 0.035, PSNR = 27.521 ± 1.606). Moreover,
a blinded image evaluation by three nuclear medicine physicians deter-
mined that the synthetic images were rated significantly better on spatial
resolution (p< 0.015), image noise (p< 0.001) and overall image quality
(p< 0.0001) than the true PET images. This study offers a new strat-
egy for multi-tracer PET imaging using machine learning and reduces
radiation dose to the patient by at least 50%.
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1 Introduction

Positron emission tomography (PET) is a quantitative medical imaging tech-
nique that uses radiotracers to examine tissue and organ biochemistry in vivo
[17]. Each radiotracer reveals unique information about different biological pro-
cesses [12,17] (e.g., glucose metabolism, receptor densities, protein synthesis)
which can lead to improved diagnosis and clinical management. Multi-tracer
PET imaging thus offers great potential for image-guided personalized medicine.

Fig. 1. Multi-tracer PET images of a patient with a glioblastoma. Imaging
a patient with multiple radiotracers can characterize and monitor different aspects of
tumor physiology, providing complementary information. Contrast-enhanced MRI is
shown for anatomical reference on the far left. 18F-FDOPA and 18F-FLT overcome
some of the current limitations of [18F]-fluorodeoxyglucose (18F-FDG), such as high
physiologic background uptake of 18F-FDG in normal grey matter, nonspecific uptake
of 18F-FDG by immune cells, and the fact that 18F-FDG uptake in low-grade brain
tumors is usually similar to that in normal white matter.

Two tracers useful for studying glioblastoma (GBM) include the nucleoside
tracer 3′-deoxy-3′-[18F]-fluorothymidine (18F-FLT), which provides information
about a tumor’s DNA replication activity [6,7], and the amino acid analog 3,4-
dihydroxy-6-[18F]-fluoro-L-phenylalanine (18F-FDOPA), which can help measure
the level of amino acid transport into a tumor [6,19]. Clinically, 18F-FDOPA is
useful for detecting low- and high-grade brain tumors and evaluating tumor
extent for surgical resection [6], while 18F-FLT has been shown to correlate with
patient outcome in high-grade brain tumors [22]. Imaging with both radiotracers
can therefore help inform patient care [6,12] (Fig. 1).

PET tracers are typically administered and studied one at a time because
each tracer gives rise to indistinguishable 511 keV annihilation photon pairs
[1]. As a result, multi-tracer PET imaging has posed a formidable technical
and logistical challenge. To obtain PET scans with multiple tracers, several
imaging sessions need to be scheduled, resulting in high costs, image alignment
issues, potential changes in pathophysiology, and an arduous experience for the
patient. Further, administering multiple radiotracers increases radiation dose to
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Table 1. Clinical characteristics of patients with 18F-FLT and 18F-FDOPA PET and
contrast-enhanced MRI scans. *GBM = glioblastoma; †AA = anaplastic astrocytoma.

Patient
no.

Sex Age (y) Pathology at
initial diagnosis

Initial WHO
grade

Pathology at
recurrence

WHO grade at
recurrence

1 M 69 GBM* 4 GBM 4

2 F 65 GBM 4 GBM 4

3 F 59 GBM 4 GBM 4

4 M 64 GBM 4 GBM 4

5 M 37 AA† 3 GBM 4

6 M 68 GBM 4 GBM 4

7 F 35 AA 3 GBM 4

8 F 54 GBM 4 GBM 4

9 M 45 GBM 4 GBM 4

10 M 26 AA 3 GBM 4

11 F 40 GBM 4 GBM 4

12 F 47 GBM 4 GBM 4

13 F 70 GBM 4 GBM 4

14 F 61 GBM 4 GBM 4

15 F 37 GBM 4 GBM 4

16 M 57 GBM 4 GBM 4

17 F 62 GBM 4 GBM 4

18 M 76 GBM 4 GBM 4

19 M 46 GBM 4 GBM 4

the patient. For these reasons, the vast potential of multi-tracer PET imaging
has not yet been fully realized.

In this study, we investigate the utility of machine learning (ML) for multi-
tracer PET imaging. Recent ML advances show tremendous promise for image
analysis, classification, and synthesis tasks [23]. We hypothesized that convolu-
tional neural networks (CNNs) could leverage the information in a PET image
acquired with one tracer to predict the distribution of a second tracer. Here,
we report a general ML framework that transforms an existing PET scan taken
with a specific tracer into a synthetic PET scan of a second tracer without
having to inject the second tracer. We trained these networks to generate syn-
thetic 18F-FLT PET images from 18F-FDOPA PET and contrast-enhanced MRI
(ceMRI) images and present proof-of-principal results. This system sets forth a
new method for multi-tracer PET imaging that delivers additional information
about disease states without increasing patient radiation dose or requiring addi-
tional imaging sessions.

2 Methods

2.1 PET and MR Dataset

We utilized a retrospective dataset of 19 patients with high-grade recurrent brain
tumors, which was collected under an approved IRB and deidentified (Table 1)
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Fig. 2. A. Diagram of image generation method. An MRI is processed by a 3D
CNN to extract a lesion mask. Next, the 18F-FDOPA PET, MRI, and lesion mask are
input into a generator, which produces the synthetic 18F-FLT PET scan. During train-
ing, the scans are analyzed by a discriminator. B. cGAN network architectures.
*3D convolutional layer; † Instance normalization; ‡ Leaky ReLU.

[22]. Each patient received an 18F-FLT PET, 18F-FDOPA PET, and a T1-
weighted ceMRI scan; details on image acquisition and preprocessing are in the
Supplementary. The data was randomly split into 14 training, 2 validation, and
3 test patients. In addition to evaluating model performance on the test split,
we used leave-one-out cross-validation (LOO-CV) on the combined training and
validation sets (n = 16) to perform ablations. Over the 16 training and valida-
tion patients, there were 7,348,382 voxels within the brain region for each of the
MRI and PET scans. Over the three test patients, there were 1,430,060 voxels
within the brain region.
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2.2 Description of Proposed Framework

Overview. Figure 2A shows a diagram summarizing our framework, which pre-
dicts an 18F-FLT PET image given a ceMRI and 18F-FDOPA PET image. First,
the ceMRI is processed by a feature extraction network, which predicts the mask
of the lesion in the ceMRI. Then, the lesion mask, ceMRI, and 18F-FDOPA PET
image are fed into a conditional generative adversarial network (cGAN) [11,16],
which predicts the 18F-FLT PET image.

Feature Extraction Network. We implemented an application-specific fea-
ture extraction network to extract features (e.g., a lesion mask) from the ceM-
RIs. By training a separate feature extraction network that only processes ceM-
RIs, larger training datasets containing only ceMRIs (i.e., not multi-tracer PET
images, which are difficult to collect) could be used for training. The separate
feature extractor offloads some of the learning from the cGAN, which is con-
strained by the limited number of available multi-tracer training images.

The feature extraction network was trained to output a lesion mask given
a T1-weighted ceMRI. We used the BraTS dataset [2,3,15] for training, which
contained 274 patients with GBM and lower grade gliomas from multiple institu-
tions that were segmented by one to four human raters. We used an 80/20% split
of the BraTS dataset for training and validation respectively; no BraTS images
were reserved as test images since they were not used to test the PET synthesis
network. Our feature extraction network architecture was modeled after previ-
ous work [10]. To train the feature extraction network, we used full scan volumes
from the BraTS dataset augmented by random flips as well as random trans-
poses. Training was done with batch size of two due to memory constraints of
the GPU. We trained for 300 epochs with the Adam optimizer [13], which was
initialized with a learning rate of 5e−6 that was scheduled to drop by a factor of
0.5 when the validation loss plateaued for 10 epochs. After training with BraTS,
the feature extraction network’s weights were frozen and the cGAN was trained.

cGAN. The cGAN generator takes as input the ceMRI, 18F-FDOPA PET
image, and lesion mask, and outputs a synthetic 18F-FLT PET image. The cGAN
discriminator is employed only during training to encourage the generator to
output realistic images, as is standard in cGANs (cGAN background provided
in Supplementary). The cGAN generator was inspired by U-Net [18] and the
discriminator was modeled after PatchGAN [11] (Fig. 2B). Detailed architecture
descriptions of the networks depicted in Fig. 2B as well as detailed loss functions
used for training are provided in the Supplementary.

The 19-patient dataset containing the PET scans was used to train the cGAN.
We first initialized the weights of the cGAN generator by again utilizing the
BraTS dataset; specifically, we trained the generator to predict the lesion masks
of contrast-enhanced MRIs in the BraTS dataset. After this pretraining to ini-
tialize the generator’s weights, we trained the cGAN with the PET and MR
dataset for 150 epochs. Data augmentation was performed on every iteration
of training. Specifically, from each 128 × 128 × 63 image volume, a random
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Table 2. Performance metrics on the test set for our network and two common image
synthesis networks. The mean value over all synthetic test images is listed with the
standard error of the mean shown in parentheses.

MAE SSIM PSNR

Proposed method 0.024 (0.004) 0.832 (0.035) 27.521 (1.606)

Image-to-Image 0.026 (0.001) 0.810 (0.023) 24.516 (1.098)

U-Net 0.033 (0.002) 0.785 (0.002) 22.108 (1.030)

64 × 64 × 32 image patch was chosen as a training sample. We used a combina-
tion of random affine transformations, horizontal flips, and elastic transforms to
further augment the dataset. For validation and test images, no data augmen-
tation was performed and full image volumes were processed instead of image
patches. Random hyperparameter search was used to choose the learning rates,
weight decay, and dropout probability. The dropout rate in the generator was
set to 0.2. The generator learning rate was initialized to 5e−4 and scheduled to
drop by a factor of 0.1 after 100 epochs with a weight decay set to 0.08. The
discriminator learning rate was initialized to 1e−5 and scheduled to drop by a
factor of 0.1 after 100 epochs with a weight decay of zero.

2.3 Evaluation Procedure

Quantitative Evaluation. We evaluated the synthetic images using the mean
absolute error (MAE), the structural similarity index (SSIM), and the peak
signal-to-noise ratio (PSNR) (equations in Supplementary). SSIM (range [0, 1])
measures visually perceived image quality while MAE and PSNR measure voxel-
wise differences between two images. Lower MAE and higher PSNR and SSIM
values indicate synthetic images closer to the ground truth. We report the mean
performance metrics with the standard error of the mean.

Nuclear Medicine Physician Analysis. Synthetic and true 18F-FLT PET
images were presented to three nuclear medicine physicians who were blinded to
whether the images were real or synthetic. They evaluated the PET images in 3D
while having the ceMRI for anatomical reference. The physicians rated each 18F-
FLT PET image’s spatial resolution, image noise, and overall image quality on
a 5-point scale (1: poor/non-diagnostic; 2: below average; 3: average/acceptable;
4: good; 5: excellent). The average ratings for the real and synthetic images were
compared with a t-test.

3 Results

3.1 Quantitative Evaluation

We compared our proposed system against two common image synthesis net-
works: Image-to-Image [11] and U-Net [18]. The MAE, SSIM, and PSNR of our
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Fig. 3. Axial slices from three test patients and two validation patients.
All images are normalized to [0, 1]. The last column shows the absolute value of the
difference between the normalized ground truth and synthetic 18F-FLT PET images.

proposed approach on the test set were 0.024 ± 0.004, 0.832 ± 0.035, and 27.521
± 1.606, respectively, representing a 7.69%, 2.72%, and 12.26% improvement
over the next-best baseline (Table 2). In Fig. 3, axial slices of the 18F-FDOPA
PET, ceMRI, ground truth 18F-FLT PET, and synthetic 18F-FLT PET images
are shown. Zoomed-in images of the tumors are shown in Supplementary Figure
S1 and additional patients are shown in Figure S2.

3.2 Nuclear Medicine Physician Analysis

When pooling the ratings from the three nuclear medicine physicians for the 19
patients (Fig. 4; predictions on the training and validation images generated via
LOO-CV), the synthetic 18F-FLT PET images were rated significantly better
than the true 18F-FLT PET images on spatial resolution (4.40 ± 0.10 vs. 4.05 ±
0.08, p < 0.015), image noise (4.63 ± 0.08 vs. 4.21 ± 0.10, p < 0.001) and overall
image quality (4.56±0.08 vs. 4.07±0.09, p < 0.0001). On average, the raters were
unable to distinguish whether the 18F-FLT PET images were real or synthetic.
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Fig. 4. Nuclear medicine physician ratings of the real and synthetic 18F-FLT
PET images. Overall mean ratings by three nuclear medicine physicians of the real
and synthetic 18F-FLT PET images; error bars show the standard deviation of the
mean (n = 57). The synthetic PET images were rated significantly better than the
true PET images on spatial resolution (p < 0.015), image noise (p < 0.001) and overall
image quality (p < 0.0001).

3.3 Ablations

We evaluated the impact of various changes to our system input on the quality
of the synthetic images.

Effect of Multi-modal Input. We assessed the effect of the tumor mask
and multi-modal input on the synthetic 18F-FLT PET images by retraining
the cGAN with fewer input imaging modalities. Using combined training and
validation sets, we ran LOO-CV six times, each time providing the network
with a different set of inputs. We found that multi-modal inputs in the image
synthesis network improved the quality of the synthetic images: the mean PSNR
of the synthetic images generated using the contrast-enhanced MRI, 18F-FDOPA
PET, and lesion mask was 5.39% and 2.02% higher than that of the synthetic
images generated with only the contrast-enhanced MRI and 18F-FDOPA images,
respectively (Supplementary Table S1). The contrast-enhanced MR and PET
scans collectively contain anatomical and molecular information that illuminate
the underlying system, so training with both modalities was expected to produce
better synthetic images than training with a single modality alone. Example
images generated with varying inputs during LOO-CV are shown in Fig. 5.

Effect of Volumetric Processing. Processing volumetric data instead of 2D
axial slices has both pros and cons. Training with volumetric patches allows
for dependencies between axial slices to be analyzed. Conversely, training on
axial slices often requires fewer network parameters and is a simple means of
data augmentation. To evaluate the effect of training on 2D vs. 3D inputs, we
retrained the network using single axial slices, many axial slices, and all axial
slices per training sample. To train with one axial slice, all 3D operations in the
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Fig. 5. 18F-FDOPA PET, contrast-enhanced MRI, ground truth 18F-FLT
PET, and three synthetic 18F-FLT PET images generated with varying
inputs during LOO-CV for three validation patients. Multimodal inputs to
the cGAN improved the quality of the synthetic images. The differences in the three
synthetic images show the effect of varying the input to the cGAN. All images are
normalized to [0, 1].

Table 3. Performance metrics from LOO-CV on the combined training and validation
sets showing the effect of training the network with different numbers of axial slices.
The mean value over all synthetic training and validation images is listed with the
standard error of the mean shown in parentheses.

MAE SSIM PSNR

1 slice 0.041 (0.006) 0.727 (0.029) 21.359 (1.079)

16 slices 0.027 (0.002) 0.814 (0.012) 25.957 (0.634)

32 slices 0.026 (0.002) 0.832 (0.011) 26.620 (0.599)

48 slices 0.026 (0.003) 0.818 (0.013) 26.432 (0.650)

63 slices 0.027 (0.003) 0.818 (0.012) 26.137 (0.695)

network were changed to 2D operations. Image quality metrics from LOO-CV
on the combined training and validation sets are summarized in Table 3.

Training with volumetric data produced synthetic 18F-FLT PET images that
most closely matched the ground truth images. Comparing the network trained
on one axial slice to 32 axial slices (as used in the final network), the MAE
dropped 36.59%, the SSIM rose 14.44%, and the PSNR increased 24.63%. We
observed that processing volumetric data discouraged small erroneous hot spots
in the image from appearing, which occurred when training with only one axial
slice. Even though processing 2D slices increased the effective number of samples
in our training set, the errors resulted in lower overall performance.
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4 Discussion and Conclusion

Image-guided personalized medicine requires a detailed exploration of disease
status. However, acquiring multiple PET scans can increase cost, time, radiation
dose and patient discomfort. To overcome these challenges, we developed a deep
learning system that takes a PET image of one tracer to predict a second PET
image of a different tracer. This work opens up a new way forward in molecular
imaging, allowing multiple targets to be interrogated without having to inject
imaging agents for each and every target.

Previous works have proposed multi-tracer PET imaging strategies, such as
using the difference in half-lives of various radioisotopes [8], detecting a third
prompt gamma ray [1], or co-injecting a tracer cocktail [9]. These techniques,
nevertheless, still increase the patient’s radiation exposure. Staggered tracer
injections have also been proposed for multi-tracer imaging using tracer kinetic
constraints [8,12], though require dynamic imaging (of potentially long dura-
tion) and are sensitive to the tracer combination/imaging protocol used [12].
Past ML research has explored cross-modal image synthesis to generate a PET
image from an anatomical image such as a CT [4] or MRI scan [20]. Other works
have used ML to synthesize a standard-dose PET from an ultra-low-dose PET
image of the same tracer [5].

Limitations of this work include the small number of patients and that images
were acquired at a single center. Since large numbers of patients are rarely imaged
with multiple tracers due to logistical and technical challenges, this work is
intended as a proof-of-principle. A larger dataset would likely improve results and
strengthen the analyses. Additionally, the values in the synthetic PET images
are not in units of percent injected dose per gram of tissue; however, the ratio
of uptake values (e.g., tumor-to-background) can still be used.

To extend this study, we are interested in studying the conditions under
which the mapping between different tracers can be learned, possibly using the
tracer kinetic models. This line of inquiry may also lead to improved results by
incorporating domain knowledge into training. Finally, extensions of this work to
different pathologies, tracers, organs, and imaging modalities are being explored,
with the potential to generalize the system into an N-input→M-output molecular
imaging agent mapping.

In conclusion, we implemented a deep learning framework that can take
18F-FDOPA PET images and ceMRIs and generate synthetic 18F-FLT PET
images that closely match the true 18F-FLT PET images of GBM patients. We
showed superior MAE, SSIM and PSNR with our method. Furthermore, nuclear
medicine physicians found the synthetic images to have excellent image quality.
This study advances a new strategy for multi-tracer PET imaging using ML and
reduces radiation dose to the patient and the number of required imaging scans.
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Abstract. For the first time, we propose using a multiple instance learn-
ing based convolution-free transformer model, called Multiple Instance
Neuroimage Transformer (MINiT), for the classification of T1-weighted
(T1w) MRIs. We first present several variants of transformer mod-
els adopted for neuroimages. These models extract non-overlapping 3D
blocks from the input volume and perform multi-headed self-attention
on a sequence of their linear projections. MINiT, on the other hand,
treats each of the non-overlapping 3D blocks of the input MRI as its
own instance, splitting it further into non-overlapping 3D patches, on
which multi-headed self-attention is computed. As a proof-of-concept, we
evaluate the efficacy of our model by training it to identify sex from T1w-
MRIs of two public datasets: Adolescent Brain Cognitive Development
(ABCD) and the National Consortium on Alcohol and Neurodevelop-
ment in Adolescence (NCANDA). The learned attention maps highlight
voxels contributing to identifying sex differences in brain morphometry.
The code is available at https://github.com/singlaayush/MINIT.

1 Introduction

Transformers, self-attention based architectures widely used in natural language
processing (NLP) [37], have recently been successfully adapted for numerous
computer vision (CV) tasks, including classification [13], detection [8], and seg-
mentation [38] in both images and videos [4]. However, the analysis of MRIs
still relies heavily on convolutional architectures [2,28]. Noting the success of
transformer models in NLP and CV, some contemporary works combine Convo-
lutional Neural Network (CNN) encoders and decoders with transformer blocks
for medical images [10,20,27].

The transformer-based prior work on MRIs relies on CNN-encoded MRI rep-
resentations as the input to the transformer blocks and involves sophisticated
pre-training and fine-tuning paradigms. For instance, they train different blocks
of the model [20] with differing loss objectives [27]. Compared to CNNs, the key
advantage of convolution-free self-attention based architectures, like transform-
ers, is that the attention kernels are dynamically computed for an input region
at inference [37], whereas they are fixed after training for CNNs. This dynamic
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
I. Rekik et al. (Eds.): PRIME 2022, LNCS 13564, pp. 36–48, 2022.
https://doi.org/10.1007/978-3-031-16919-9_4
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kernel computation allows for contextual information in the input regions to be
taken into account, thus greatly improving the generalizability of the model.
Recent developments in NLP and CV have suggested significant improvements
that enable training convolution-free transformers from scratch [11,34] with the
help of data augmentation and regularization. Although some of these techniques
were developed for 3D data, such as point clouds [43] or videos [4], their usage
for neuroimages is yet to be explored.

In this paper, we propose a novel Multiple Instance Neuroimage Transformer
(MINiT) architecture for classification of 3D T1-weighted (T1w) MRIs. We first
adopt the standard vision transformer models [4,13] to use cases involving 3D
neuroimages. We refer to these new architectures as Neuroimage Transformers
(NiT) and create different variants of them by incorporating various attention
factorizations, similar to [4], and positional embedding [35]. We then extend
our models by encapsulating them with multiple instance learning (MIL) frame-
works that have previously been explored for brain disease diagnosis using con-
volutional models [7,24]. Specifically, MINiT extracts non-overlapping 3D blocks
from the input volume and then treats each block as its own instance (3D neu-
roimage). It splits each block further into non-overlapping 3D patches, computes
multi-headed self-attention for each patch, and ultimately combines the results
across all patches. As a result, MINiT aggregates feature embeddings in a hier-
archical fashion, similar to [30].

We compare MINiT with other variants of Neuroimage Transformers, recent
3D CNN models [2], and an MIL implementation of CNNs. Each model is evalu-
ated on identifying sex from T1w MRIs of two large-scale adolescent brain image
datasets: Adolescent Brain Cognitive Development (ABCD) [9] and the National
Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) [6].
We follow the set up from prior work (e.g., in vivo neuroimaging [17,31] and
computational learning-based methods [36,39]) to identify morphological sex
differences in brain development during childhood and adolescence. To ensure
fair analysis in our study, we first preprocess the MRIs to correct for head size
differences by affinely registering all MRIs to a template. All models are then
trained in a supervised fashion (with no excessive pretraining/finetuning of any
components). We finally visualize the attention maps learned by MINiT, high-
lighting voxels contributing to identifying sex differences.

2 Method

In this section, we describe our base transformer model, called Neuroimage
Transformer (NiT). Next, we present Multiple Instance NiT (MINiT).
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Fig. 1. Base NiT model: We split 3D neuroimages into n fixed-size blocks, linearly
embed each of them, add position embeddings and a class token, and feed the sequence
to a standard NiT Transformer encoder.

2.1 Neuroimage Transformer (NiT)

For our base transformer model, we follow the overarching model design of [13].
First, we map the input neuroimage M ∈ R

L×W×H to a sequence of flattened
blocks z̃n×(B3), where L, W , and H are the length, width, and height of the input,
(B,B,B) is the shape of each block and n = LWH/B3 is the resulting num-
ber of blocks. Similar to tubelet embeddings in [4], we extract non-overlapping
cubiform patches from the input volume, which are subsequently flattened. Sec-
ond, we project these patches to D dimensions, i.e., the inner dimension of the
transformer layers using a learned linear projection, generating the sequence of
input patches zn×D. We add learned positional embeddings to retain positional
information [37] in the blocks and prepend a learned classification token [12] to
their sequence serving as the input neuroimage representation.

The input sequence is then forwarded to a the transformer encoder consisting
of L transformer layers. Each layer contains a multi-headed self-attention (MSA)
block [37] and a Multi-Layer Perceptron (MLP) block. The MLP block includes
two linear projections with a Gaussian Error Gated Linear Units (GEGLU) non-
linearity [32] applied between them. Layer norm [5] is applied before and residual
connections are added after every block in a transformer layer [18]. Finally, a
layer norm and an MLP head consisting of a single D × C linear layer projects
the classification token to R

C , where C is the number of classes (Fig. 1).
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Fig. 2. Factorized NiT Encoders overview: (a) Vanilla NiT encoder, which uses stan-
dard MSA [37]. (b) Dot-Product Factorized NiT encoder, which factorizes MSA itself
to split attention computation along all axes. (c) Axile Factorized NiT encoder, which
computes factorized self-attention over all axes separately. Note that we chose the word
‘axile’ to name this factorization to prevent confusion with commonly used ‘axial’ plane
for imaging of the brain.

Factorized and Dot-Product Factorized Encoders. Factorizing attention
over input dimensions has shown effectiveness, e.g., in modeling spatio-temporal
interactions in videos [4,41], than standard self-attention. We take a similar app-
roach and extend factorized self-attention and factorized dot-product attention
by factorizing both attention and MSA over the 3 input dimensions (Fig. 2).

For the factorized dot-product encoder (Fig. 2(b)), we factorize the MSA
operation itself. We compute attention weights for each block by splitting the
available attention heads into 3. Thus, a third of the attention heads are assigned
to each axis dimension to compute attention by modifying the keys and values
of each query in MSA to attend only over the assigned axis, as in [4] for the
temporal index. The outputs of all heads are concatenated and linearly projected
to compute attention across all axes.

In the axile factorized encoder (Fig. 2(c)), we factorize the attention operation
into 3 parts by performing MSA axially. First, we only compute MSA among all
blocks along the x-axis, followed by MSA computation along the y-axis and the
z-axis. We efficiently compute factorized self-attention along a single axis in the
same manner that [4] computes temporal self-attention, namely, by reshaping
the flattened patches to extract the axis in question to the leading dimension.

Multi-View Factorized NiT (MVNiT). The factorized self-attention meth-
ods described in [4] differentiate the axes of the input video into spatial axes
and a temporal axis. In neuroimage analysis, an analogous operation is to split
a 3D neuroimage into a 2D plane combining two axes, and the orthogonal axis
to the plane. We can form the 2D plane to be one of 3 views commonly used in
neuroimage analysis, namely, transverse, coronal, and sagittal. Using 2D slices
of a 3D neuroimage has been found to be beneficial [20], and thus we consider
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Fig. 3. Multi-View Factorized NiT Model. The encoders on the left show the Axile
Factorized and Dot Product Factorized NiT encoders for this Multi-View approach.

a multi-view factorized NiT that uses factorized or dot-product factorized NiT
encoders on all 3 views (Fig. 3).

We build factorized and dot-product factorized MSA blocks, which perform
their respective attention operations on a combined 2D plane and the orthogonal
axis. Thus, given one of the transverse, coronal, or sagittal planes with the
respective orthogonal axis, the block would perform MSA treating the 2D plane
as the spatial dimension and the orthogonal axis as the third dimension. We
create three distinct encoders with these MSA blocks that consider the combined
plane to be the transverse, coronal, and sagittal planes, respectively. The input
sequence of patches is fed to all three encoders with distinct classification tokens,
which then produce their respective class embeddings. These embeddings are
concatenated and linearly projected to generate the class prediction.

Rotary Embeddings. As an alternative, we modify our positional embedding
to use rotary embeddings (RE) [35]. RE has been shown to enhance predic-
tion accuracies by incorporating explicit relative position dependency in self-
attention. We adapt this method by calculating rotary embeddings along each
axis, concatenating them, and then calculating self-attention as normal.

2.2 Multiple Instance NiT (MINiT)

Inspired by some prior MIL deep learning models applied to medical images [7,
24], we next develop a convolution-free transformer-based architecture inspired
by the MIL paradigm, called MINiT. Given the input neuroimage, we first map
it to a sequence of nB cubiform blocks. Each of these nB blocks is fed to an NiT
model, in which each block is considered the input neuroimage of the model.
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Fig. 4. MINiT: We split the 3D image into nB fixed-size blocks, add block embeddings,
and feed each to a standard NiT encoder. For MINiT, the resulting sequence of pre-
dictions is concatenated and linearly projected to arrive at the final class predictions.

The NiT model further maps each block to a sequence of nP smaller flattened
patches. Here, each of the nB blocks is considered to be the bag of instances,
while the nP flattened patches are analogous to the instances in MIL [24] (Fig. 4).

The sequence of patches for each block is processed similar to NiT, albeit
with one modification. In addition to adding learned positional embeddings to
the patches (patch embeddings), and prepending a learned classification token
to their sequence, we add learned block embeddings, which retain the posi-
tional information of the block within the neuroimage to each patch. This is
crucial to loosely emulating the benefits of non-overlapping hierarchical atten-
tion, as in [30], because block embeddings ensure that each patch learns its
position within the input neuroimage. After this step, the patches are processed
by the NiT block to produce class predictions for each block, which are concate-
nated and linearly projected to generate class predictions for the original input
neuroimage.

MiGNiT: Multiple Instance Global NiT. In this architecture, we compute
global attention [16] by additionally computing self-attention on the output class
embeddings produced by each block using an NiT model block. Modifying the
MINiT model architecture, we change the NiT blocks to NiT encoders by strip-
ping the final class prediction MLP head. Thus, given an individual 3D block
from the input neuroimage, the NiT encoder block produces output class embed-
dings in R

D. This sequence of output class embeddings produced from each block
is fed into a complete NiT block producing class predictions (Fig. 5).
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Fig. 5. MiGNiT overview: We split the 3D image into nB fixed-size blocks, add block
embeddings, and feed each to a standard NiT encoder. The output class embeddings
are input into a transformer to generate the final class predictions.

3 Experiments

As a proof-of-concept, we apply and compare MINiT with other models on identi-
fying sex from the t1-w MRIs of two large-scale adolescent brain image datasets:
ABCD [9] and NCANDA [6]. We compare MINiT with both variants of NiTs
and two CNN models, namely a 3D-CNN from [2] and an MIL-based version of a
CNN, called MICNN. To identify brain regions contributing to sex classification,
we visualize the attention maps learned by NiT and MINiT. All methods were
implemented using Python 3.7.10 and its libraries (NumPy 1.15.1, Scikit-Learn
0.19.2, PyTorch 1.9.1 and TorchIO 0.18.41) on Debian GNU/Linux 10.

Data. We use 8653 baseline T1w MRI of participants from the ABCD Study
Release 2.0 (ages 10.2 ± 0.78 years; 52.2% boys and 47.8% girls). From the
NCANDA Study (release NCANDA_PUBLIC_6Y_STRUCTURAL_V01 [29]), we con-
sider the T1-w MRIs from all available visits of 808 participants at-risk recruited
between ages 12–21 years (49.16% boys and 50.84% girls). Participants made
4.77 average visits to collect 3856 scans (age among all scans 18.77±3.14 years).
Observed sex for all the participants across both datasets is defined as sex at
birth.

In line with prior studies [28,44], all T1-w MRIs in the following experiments
are first pre-processed by a pipeline composed of denoising, bias field correction,
skull stripping, correcting for differences in head size via affine registration to a
template, and re-scaling to a 64×64×64 volume. This downsampling allows for
models with smaller number of network parameters, boosting training speed.

Post data pre-processing, our dataset combining both ABCD and NCANDA
studies totals 12, 506 T1-w MRIs, which we split into training, validation, and
test sets. We use 80% of the training split for training, 10% for validation, and
another 10% for computing test metrics.
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We further augment the training data by applying random flip and random
affine transformations, adding gaussian noise, and swapping 16×16×16 patches
within the MRIs at random. This process increases the size of the training set by
a factor of 10. Based on the augmented training set, we perform the training of
both MINiT and all NiT and CNN based comparison models from scratch. Due
to the higher proportion of MRIs provided by the ABCD study, our augmented
training set has class imbalance skewed towards males. We use weighted random
sampling to train all models to account for class imbalance [14].

Training Strategy and Hyperparameters. For all NiT based models, the
64× 64× 64 input neuroimage volume is split into n = 8 blocks of size 8× 8× 8.
All MIL-based models, however, use nB = 4 blocks of size 16×16×16, which are
further split into nP = 4 volumetric patches of size 4 × 4 × 4. We apply dropout
[33] and weight decay [26] to both MINiT and all NiT and CNN based comparison
models, as in [13,34]. In addition, we perform run-time data augmentations,
relying on the combination of Mixup [42] and Cutmix [40]. We train both MINiT
and all NiT and CNN based comparison models using two optimizers - AdamW
[26] using β1 = 0.9 and β2 = 0.99 and with SAM minimization [11] with Adam
[22] using β1 = 0.9 and β2 = 0.99, and present results from the best of the
two. We use a cosine decay learning rate schedule [25] with gradual warmup
[15], and train for 200 epochs. With the exception of all MIL NiTs, which took
48 hours, all NiT models train to convergence within 24 hours on a machine with
8 NVIDIA Tesla V100 GPUs with 16GBs of memory.

We perform a search of training hyperparameters, including learning rate,
dropout rates, number of warm up epochs, number of scaling epochs and their
multiplier, weight decay, and probabilities to apply cutmix and mixup for both
MINiT and all NiT and CNN based comparison models. For all NiT based
models, we additionally perform a search for the best combination of (L, NH ,
D, DMLP ), where L is the number of transformer encoder layers, each with an
MSA block of NH heads, D dimension, and DMLP hidden MLP dimension.

Hyperparameter Settings. We share the NiT model-specific hyperparameters
used for training in Table 1. We also present the total number of trainable param-
eters for each model. The memory footprint of these models is smaller to that
of most vision transformer models. Compared to small versions of contemporary
vision transformer models (ViT-Small has 22.2M parameters) [13,34], MiNiT,
has 3.6M trainable parameters. Small memory footprints make our models more
appropriate for training on small datasets on smaller GPUs, thus making our
work accessible to a large audience. Note that all models are trained and evalu-
ated exactly once using these hyperparameters.

Evaluation Metrics. The classification accuracy and the Area Under the
Receiver Operating Characteristic (ROC) curve (AUC) of each method are com-
puted by first binarizing the final prediction score of each participant to 0 (girl)
or 1 (boy) followed by comparison to the observed sex. We additionally calculate
the F-1 score (F1), sensitivity (SEN), specificity (SPE), and precision (PRC).
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Table 1. NiT model-specific hyperparameters for all NiT variants. These hyperpa-
rameters are Transformer Layers (L), NH attention heads, D dimension, DMLP MLP
dimension, Learning Rate (LR) and Weight Decay (WD).

Model Factorization Trainable parameters L NH D DMLP LR WD

NiT ✗ 1.8M 4 8 256 234 1e−4 0.16

NiT Axile 5.1M 6 8 256 64 1.3e−5 0.05

NiT DP 4M 3 12 512 175 6.5e−5 0.25

MVNiT MV & Axile 15M 6 8 512 209 9e−4 0.21

MVNiT MV & DP 8.9M 6 4 512 215 5e−4 0.13

MiGNiT ✗ 8.5M 6 8 256 309 2e−4 0.3

MiNiT Axile 3.1M 6 8 128 128 1e−4 0.01

MiNiT DP 3.9M 6 12 258 128 5e−5 0.24

MiNiT ✗ 3.6M 6 8 256 309 1e−4 0.125

Apart from our NiT based comparison methods, we further compare MINiT
with two contemporary CNN based models. First, we include the aforementioned
3D-CNN architecture from [2], modified to accommodate 64× 64× 64 inputs, in
contrast to the original input of 64 × 64 × 32. This CNN architecture contains
4 convolutional blocks connected by 2 × 2 × 2 3D Max-Pooling, where each
convolutional block consists of 3×3×3 3D convolution (16/32/64/128 as number
of channels for the 4 blocks), Batch Normalization [19] and Re-LU [3]. The
resulting 4, 096 dimensional features were fed into a three final linear projections
of dimensions 64, 32, and 1 with tanh, tanh and sigmoid activations respectively,
to generate the final class predictions. Secondly, in line with our own MIL based
approach, we create a Multiple Instance CNN (MICNN) model, which applies
multiple instance learning to the inputs using the CNN framework described
above. The overarching approach from Sect. 2.2 remains the same, with the only
difference in architecture being the replacement of the NiT Transformer with the
CNN model. We equally conduct hyperparameter search for both MINiT and all
NiT and CNN based comparison models.

Results. According to the accuracy scores in Table 2, all but one of the trans-
former models have better or comparable accuracy to the 3D-CNN model, with
the MINiT model reporting the highest classification accuracy of 92.1% as well
as the highest F-1 and AUC scores of 92.1% and 97.2%. The MVNiT using Dot-
Product Factorization also reports a comparable classification accuracy of 91.9%
to the MINiT model, with both models surpassing the 3D-CNN with over 1.5%.

MINiT’s performance indicates that the use of a hierarchical attention scheme
helps add positional inductive biases similar to convolutional inductive biases,
while retaining the advantages of integrating information from the entire volume,
even in the earlier transformer layers from self-attention [13]. These results show
that our MINiT model is capable of capturing identifying characteristics between
sexes, while not being insensitive to class imbalances in comparison to the 3D-
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Table 2. ACCuracy, area under the curve (AUC), F-1 score, SENsitivity, SPEcificity,
and precision (PRC) for predicting sex from MRIs. Second column shows the factor-
ization method: Axile, Dot-Product (DP), or Multi-View (MV).

Model Factorization Rotary embedding ACC (%) AUC (%) F1 (%) SEN (%) SPE (%) PRC (%)

3D-CNN [2] — — 90.4 96.8 91.5 94.7 84.9 88.6

MI-CNN — ✗ 90.1 96.0 88.6 84.9 94.3 92.5

NiT ✗ ✗ 86.4 93.5 86.7 87.4 85.4 86.1

NiT ✗ ✓ 89.1 95.0 88.9 87.6 90.7 90.2

NiT Axile ✗ 90.0 96.6 91.7 94.2 86.3 89.3

NiT DP ✗ 89.5 96.1 91.0 95.0 82.7 87.3

MVNiT MV & Axile ✗ 88.0 94.0 87.4 88.2 87.7 86.5

MVNiT MV & DP ✗ 91.9 96.2 91.6 93.8 88.8 89.5

MIGNiT ✗ ✓ 90.1 96.1 89.9 90.8 89.4 88.9

MINiT Axile ✗ 87.9 94.1 88.0 87.6 88.1 88.3

MINiT DP ✗ 90.7 96.2 89.9 88.3 92.9 91.6

MINiT ✗ ✗ 92.1 97.2 92.1 94.2 90.0 90.1

Fig. 6. Attention maps learned by (a) NiT and (b) MINiT models. The bar shows the
color-map (from red = 0.4 to yellow = 0.8; thresholded on the lower bound for clarity).

CNN. The 3D-CNN is extremely sensitive to class imbalances, as evidenced by
the ≈ 10% gap between sensitivity and specificity. All but one of the NiT models
are significantly less sensitive to class imbalances, a common problem in medical
image analysis [23]. Factorized encoders by themselves have high sensitivity to
class imbalances, but using them in Multi-View or MIL settings reduces this
sensitivity. MVNiT and MINiT with Axile Factorization have the lowest gaps
between sensitivity and specificity, which allows them to generalize well against
class imbalances, at some cost to accuracy.

We compute the attention maps for the base NiT from the output token
to the input space using Attention Rollout [1]. For MINiT, we use Attention
Rollout to calculate attention weights for each patch in a block, which we con-
catenate and then average to build attention weights for a block. We proceed
to use Attention Rollout using the block attention weights to compute the final
attention maps. From Fig. 6, we observe that MINiT attends between numer-
ous different voxels in the neuroimage (due to MIL nature), in contrast to the
focused attention between fewer, but larger, voxels by the base NiT. Considering
existing documented evidences [21] that sex differences in youth are widespread
in the brain and the significant difference in accuracy between the two models,
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it is evident that MINiT is able to better generalize by capturing features spread
all around the brain.

4 Conclusion

In this paper, we propose Multiple Instance Neuroimage Transformer (MINiT), a
multiple instance learning based convolution-free transformer model for classifi-
cation of 3D T1w MRIs. They consider the entire 3D volume and train end-to-end
in a supervised fashion, with no excessive pre-training or fine-tuning required.
As a proof-of-concept, we train MINiT on identifying sex from T1w MRIs and
obtain state-of-the-art results. The visualization of the attention map learned by
our MiNiT model demonstrates its ability to sensitively capture identifying dif-
fering morphological characteristics between sexes, while not being insensitive
to class imbalances. Further extensions could investigate the transfer learning
capabilities of MINiT by fine-tuning on small-sized datasets for different tasks.
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Abstract. Accurate and automatic segmentation of intervertebral discs
from medical images is a critical task for the assessment of spine-related
diseases such as osteoporosis, vertebral fractures, and intervertebral disc
herniation. To date, various approaches have been developed in the
literature which routinely rely on detecting the discs as the primary
step for detecting abnormality in intervertebral Discs. A disadvantage of
many cohort studies is that the localization algorithm also yields to false
positive detections. In this study, we aim to alleviate this problem by
proposing a novel U-Net-based structure to predict a set of candidates
for intervertebral disc locations. In our design, we integrate the image
shape information (image gradients) to encourage the model to learn
rich and generic geometrical information. This additional signal guides
the model to selectively emphasize the contextual representation and
to supress the less discriminative features. On the post-processing side,
to further decrease the false positive rate, we propose a permutation
invariant “look once” model, which accelerates the candidate recovery
procedure. In comparison with previous studies, our proposed approach
does not need to perform the selection in an iterative fashion. The pro-
posed method was evaluated on the spine generic public multi-center
dataset and demonstrated superior performance compared to previous
work. The codes is publicly available at github.

Keywords: Deep learning · intervertebral disc labeling · look once ·
shape feature
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1 Introduction

The human vertebral column consists of 33 individual vertebrae stacked on top of
each other and connected through the ligaments and intervertebral discs (IVDs).
The vertebral column is divided into cervical, thoracic, lumbar, sacral and cau-
dal vertebrae [3]. Each of these regions performs a vital function in the human
body including, absorbing shock, load breathing, protection of the spinal cord,
controlling load through the vertebral column, and so on [1]. More precisely, the
IVDs act as cushions of fibrocartilage and as principal joints between vertebrae
and they absorb the stress and shock the body sustains during motion and allow
the spine to be flexible while preventing the vertebrae from grinding against
one another. Disruption in any of the vertebral discs through aging, degenera-
tion, or injury will result in an alteration in the corresponding disc’s properties
along with flaws in mechanical functionalities of adjacent tissues [19]. As a con-
sequence, location and segmentation of intervertebral discs is a crucial task for
spine disease diagnosis and provides versatile information in the quality of treat-
ment procedure. To this end, various semi-automated and automated techniques
have been proposed in the literature. These methods can be divided into two
taxonomies: hand-crafted methods and deep learning-based approaches. As an
example for hand-crafted dissertations, Cheng et al. [5] proposed a two-step app-
roach where they first localize the center of each IVD by adapting a data-driven
estimation framework [6] and, then, segment IVDs by classifying image pixels
around each disc center as either foreground (disc) or background. Glocker et
al. [11] utilized a regression forest and a probabilistic graphical model to detect
and localize intervertebral discs from CT scan images. A polynomial iterative
randomized Hough transform approach to segment the spine and intervertebral
discs was proposed in [4]. Irrespective of the good performance of these tradi-
tional methods, in some cases they intrinsically render poor performance when
compared to deep learning-based methods [2,5]. Recent advances in deep learn-
ing have facilitated investigation of robust intervertebral disc labeling [7,8,20]. In
[12] the authors proposed to use a standard CNN for IVD segmentation. Dolz et
al. [10] proposed an architecture called ’IVD-Net’ to leverage information from
multiple image modalities for inter-vertebral disc segmentation by adopting a
U-Net-like architecture. In a recent article Vania et al. [20] developed a method
which builds upon mask-RCNN and formulated a multi-optimization training
system at a different stage to increase the computational efficiency. In another
approach [21], a cross-modality method for detecting both vertebral and inter-
vertebral discs on volumetric data has been proposed. This approach utilizes
a local entropy-based texture model to localize the sacral region. Then, using
three-disc entropy models, detected positions are aligned and further refined by
taking into account the intensity match between regions and a spinal column
template. A transfer learning-based approach is utilized by [14]. In this work,
a 2D convolutional structure is exploited to detect the lumbar disc from axial
images. Their proposed network uses the strength of the U-Net structure with
a VGG backbone to produce a spine segmentation mask. Then, the segmented
regions are used to calculate the herniation in lumbar discs. The authors of [17]
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combine a fully convolutional network with inception modules to localize and
label intervertebral discs. Azad et al. [3] reformulated the semantic vertebral
disc labeling using pose estimation and utilized an hourglass neural network to
semantically label the intervertebral discs.

The main limitation of the reviewed methods is their dependency on the
regular CNN learning strategy (learning texture, shape, colour) which is not
optimal for labelling anatomical structures such as intervertebral discs and usu-
ally produces both false positive (FP) and false negative (FN) detections [13].
To overcome this issue, we propose to incorporate shape information within the
learning process. This additional signal guides the model to selectively empha-
size the contextual representation, magnifies the structural regions and supresses
the less discriminative features (e.g. color, texture).

Moreover, a principal limitation of many cohort studies is that, as they utilize
the local maximum technique to locate the position of the vertebral discs in 2D
space on top of the prediction masks, they encounter a substantial false positive
rate. Exhaustive search tree [3], template matching [18] and point coordinate
condition [17] are among the popular algorithms proposed to eliminate the FP
rate. However, these approaches usually lack computational efficiency and render
a poor candidate recovery. Therefore, a general method is required to handle this
challenge. In this work, we propose to mitigate this limitation by bolstering the
post-processing step in the intervertebral disc labeling procedure. The main idea
is that, inspired by the idea of YOLO [16], we propose a permutation invariant
“look once” model to increase the True Positive (TP) rate while reducing the FN
detection. We re-formulate the problem by a modified version of the PointNet
model [15] which is invariant to certain geometric transformations (e.g. rotation).
To the best of our knowledge, this is the first post-processing algorithm that
processes the whole prediction in one step without any iteration (“look once”).
Our contributions are as follows:

• Adapting U-Net structure for semantic intervertebral disc labeling;
• Incorporation of shape information to further boost model performance;
• A permutation-invariant post-processing approach to reduce the FP rate;
• Publicly available implementation source code (once accepted);

2 Proposed Method

Our proposed method consists of two stages. In the first stage we utilize a U-Net-
based structure to detect and predict semantic labeling for each intervertebral
disc location. In the second stage, we propose a deep permutation invariant “look
once” model to refine the prediction results and eliminate the FP candidates. In
the next subsections, we will discuss each phase in more detail.

2.1 Semantic Intervertebral Disc Labeling

The concept of the proposed method is depicted in Fig. 1. In our novel design, we
incorporate the shape information (gradient of the input image) as an additional
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Fig. 1. Proposed method for intervertebral disc labeling with incorporating shape infor-
mation.

signal to encourage the model to learn contextual and geometric information.
To this end, we form a pyramid representation using the multi-level description
resulting from each block of the encoder (U-Net encoder E parametrized with
θ) module: P = {fj = E(x, θ), j = 0, 1, ...L}, where L is the number of pyra-
mid levels. Next, we propose a shape attention module. Our attention module
(Fig. 2) uses the global representation of each feature map alongside the shape
description to selectively emphasize the contextual representation and supress
the less discriminative features. To this end, for each level of the pyramid, we
learn the channel-wise recalibration parameters (wf

j ) and spatial recalibration
parameters (wsp) from the shape feature description (sf):

wf
j = σ

(
W2δ

(
W1GAP f

j

))
, wsp = σ (W4δ (W3GAP (sf))) (1)

where Wk, k ∈ {1, 2, 3, 4} are the learning parameters that apply to the global
representation (GAP) of each pyramid level, and δ and σ stand for the ReLU
and Sigmoid activations. We form the re-calibrated description by scaling both
channel and spatial dimensions: P̃ f

j = wsp ·(wf
j ·P f

j )+sf . Once the re-calibration
performed, we aggregate the multi-level features in a nonlinear fashion (aggre-
gation parameter wprm) to produce a shape-attenuating description:

f ′ = σ

⎛
⎝

L∑
j=1

wj
prmP̃ f

j

⎞
⎠ (2)

Subsequently, the same decoder as in the regular U-Net, but with V = 11
output channels (we assume that the input image comprises, at most, 11 inter-
vertebral discs according to [9]), is utilized to estimate the location of each
intervertebral disc accordingly. Similarly, our ground truth mask consists of V
channels, where in each channel the location of an intervertebral disc is labelled
with a Gaussian kernel of radius 10. We employ the mean squared (MSE) loss
to train the network.
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Fig. 2. Detailed structure of the proposed shape attention mechanism.

2.2 Refinement Network

Detecting intervertebral disc locations often comprises FP and FN predictions.
Several post-processing approaches were proposed in the literature to overcome
this problem. Rouhier et al. [17], deploys a condition-based strategy to elim-
inate the FP candidate generated by their countception method. In a recent
article, Azad et al. [3] argues that the condition-based strategy usually fails to
recover the TP candidates among the detected regions and proposes a tree-based
decision space. Their approach suggests creating a search tree, where each path
shows one possible combination of ordered intervertebral disc locations. Then,
they calculate an error function between the general skeleton and the predicted
skeleton. This iterative algorithm performs an exhaustive search and is not effi-
cient when the number of FP is high. Template matching [18] is also another
approach that seeks to reduce the FP rate by considering predefined patterns.
These methods all have their assumption of particular conditions or predefined
patterns in common. In addition, some of these methods perform the selection in
an iterative fashion, which may not be feasible when the number of FP is high.
To mitigate these issues we propose a method to ’look only once’ at the noisy pre-
diction to recover the intervertebral disc locations. To this end, we assume that,
for the input image I with N intervertebral disc location, the detection model
predicts a set of M intervertebral disc candidates, usually M >= N and M ∈ R2

(i.e. 2D position). Taking into further consideration in a general form, we assume
that the prediction model is not able to provide any semantic labelling. Thus,
the objective is to recover N points out M which best matches the ground truth
intervertebral disc locations. Since the semantic information is not provided for
the predicted points, we consider it as a set of M intervertebral candidates. The
set is made up of unstructured data and selecting N intervertebral disc location
out of M candidates requires the following processing permutations:
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Fig. 3. Proposed structure for the post-processing step. The noisy prediction without
a semantic label passes through the model to eliminate the FP candidates.

(M)!
(N)!(M − N)!

(3)

permutations. The processing time will dramatically increase if M >> N . To
overcome this limitation, it is highly desirable that the post-processing algo-
rithm processes the whole prediction at once without any iterations(“look once”).
Therefore, the deep model needs to be permutation invariant, i.e., any order of
points should produce the same result. The proposed structure is depicted in
Fig. 3. The proposed method consists of two data streams, where in the first
stream (top), a series of feature transformation layers, followed by the multi-
layer perceptron (MLP), is designed to encode the input coordinate into a high-
level representational space. The objective of this representation is to create a
discriminative embedding space to characterize each point by a hidden depen-
dency underlying the input data. Intrinsically, the transformation layer in this
stream assures the robustness of the representation to the noisy samples and
provides a less sensitive transformation to an affine geometrical transformation
(e.g. rotation). Inspired by the permutation invariance characteristics, the MLP
layer deploys a shared kernel to produce a set of representations independent of
their order. Eventually, in addition to the generated feature map, a symmetric
function (global pooling) is utilized to capture the shared signature among all
points. We concatenate the global information with the local representation of
each point to describe each intervertebral disc candidate. Details on the network
structure is illustrated in Table 1. This representation more or less contains the
general structure of the data, however, it still requires pair-wise relational infor-
mation. To include such information, we create a geometrical representation. To
this end, using the fully connected layers, we learn the embedding parameters to
model the long-range geometrical dependency. The main objective of this layer
is to capture the geometrical relation between points and feed it to the scaler
function. We include the sigmoid function on top of the generated representation
to form an attention vector. This attention vector performs the re-calibration
process and adaptively scales the generated feature map. The generated final
representation is then fed to the single-layer perceptron model to perform the
softmax operation and to classify each candidate.
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Table 1. Details on network architecture for the post-processing stage. We follow [15]
for the structure of the Feature Transform module (including T-Net) which simply
aligns the input to a feature space using an affine transformation without changing
the dimension. We refer the reader to [15] for more general expositions. Note that n
denotes the number of vertebral discs detected.

Module Neurons Input-size Output-size

MLP Module(1) 64 (nx3) (nx64)

MLP Module(2) 128 (nx64) (nx128)

MLP Module(3) 512 (nx128) (nx512)

MLP Module(4) 1024 (nx512) (nx1024)

3 Experimental Results

In this section, we first describe the datasets and metrics used throughout our
experimental evaluation. Then, we provide a deep insight into the experimental
results. Our analysis was based on the publicly available Spine Generic Dataset
[9]. The dataset was acquired across 42 centers (with a total of 260 participants)
worldwide, accommodating both T1 and T2 MRI contrasts for each subject.
Images obtained from diverse institutes, considerably varying in image quality,
ages and imaging devices, render a feasibly challenging benchmark for the task
of intervertebral disc labelling.

3.1 Metrics

To ensure the validity of the comparison of results and to draw conclusions on
the applicability of our approach, we consider different comparison metrics. In
the first instance, we take into account the L2 norm by calculating the distance
of the vector coordinate between each predicted intervertebral disc location and
the ground truth while considering the superior-inferior axis to quantify the
punctuality of our proposal. In order to gain insights into the versatility of our
post-processing approach, the False Positive Rate (FPR) and False Negative
Rate (FNR) were selected as the primary inclusion criteria. Similar to [3], the
FPR calculates the number of predictions which are at least 5 mm away from
the ground truth positions. Likewise, the FNR counts the number of predictions
where the ground truth has at least 5mm distance from the predicted interver-
tebral position.

3.2 Comparison of Results

We train all of our models upstream using the Adam solver with the momen-
tum in 100 epochs with the batch size 2. In our experiments, we use an initial
learning rate of 0.0001 with the decay by a factor of 0.5 at every 20th epoch,
respectively. We use the same setting as explained in [17] to achieve a general
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Table 2. Intervertebral disc labeling results on the spine generic public dataset. Note
that DTT indicates Distance to target

Method

Template Matching [18]

Countception [17]

Pose Estimation [3]

Baseline

Proposed

T1

DTT (mm) FNR (%) FPR (%)

1.97(4.08) 8.1 2.53

1.03(2.81) 4.24 0.9

1.32(1.33) 0.32 0.0

1.45(2.70) 7.3 1.2

1.2(1.90) 0.7 0.0

T2

DTT (mm) FNR (%) FPR (%)

2.05(3.21) 11.1 2.11

1.78(2.64) 3.88 1.5

1.31(2.79) 1.2 0.6

1.80(2.80) 5.4 1.8

1.28(2.61) 0.9 0.0

consensus in comparing our method with the literature and we report our find-
ings in Table 2. Note: our baseline model uses the same structure as presented but
without employing the proposed modules. The results show that our approach
achieves a competitive result in T1 and T2 contrasts. Specifically, our proposed
method shows superior performance in T2 contrast, where our approach promi-
nently outperforms all other approaches in terms of FNR and distance to the
target. Compared to the pose estimation approach [3], our method produces on
T1 modality an average lower distance to the intervertebral locations, but there
is only a small gap in distance variance. We also observe that, by removing the
proposed modules the performance of the model slightly decreases, which high-
lights the importance of shape information in intervertebral disc labeling. More-
over, unlike the countception and template matching approaches, our method
does not require a heavy preprocessing step for spinal cord region detection and
outperforms these methods with both quantitative performance and inference
time. In contrast to our proposal, the inference time in the two aforementioned
approaches grows exponentially when the FP rates increases (see Table 3). In
Fig. 4(a) we provide sample results of the proposed model on T2 modalities. It
can be observed that the method precisely provides a semantic label for each
IVD location without any FP predictions. It should be noted that our method
requires less processing time even with large number of FP detection in opposite
to the SOTA approaches (illustrated in Fig. 5).

Fig. 4. (a): Intervertebral labeling results of three representative T2 images. upper
row: ground truth, lower row: predictions. (b): Before (left) and after (right) applying
look-once approach on the T1 generated noisy prediction.
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Table 3. Performance comparison of the proposed post-processing approach vs the
SOTA approach for eliminating FP detection. The experiment was done on 100 images,
where for each image 20 random FP detection was added.

Method F1 Accuracy specificity sensitivity AUC

Template Matching [18] 0.850 0.881 0.891 0.902 0.890

Pose Estimation [3] 0.902 0.921 0.925 0.914 0.920

Proposed method (without geometrical relationship module) 0.914 0.932 0.941 0.917 0.929

Proposed method (Only look once) 0.942 0.958 0.967 0.942 0.955

Fig. 5. Inference time of the proposed method vs the search-tree based approach [3].
Our method only looks once at the prediction to eliminate the FP samples while the
search based approach uses an iterative algorithm.

3.3 Evaluation on the Noisy Prediction

To further analyze the robustness of the proposed method in the presence of
noisy predictions, we attain an evaluation on the proposed “look once” post-
processing method. To this end, we create a 2D Gaussian distribution around
each intervertebral disc to generate new points. A sample of generated noisy
image along with the model prediction is depicted in Fig. 4(b). As shown, the
proposed method works well (including very fast timing) on retrieving IVD loca-
tions from the noisy prediction without relying on any predefined assumption. In
addition, in our experiment (supplementary file), we observe that for the search-
tree-based approach the post-processing time exponentially increased with the
increase of FP rate. Similarly, the template matching method failed to recover
the TP candidates in most of the cases. Whereas, our method recovered the
TP samples with high precision without any iteration. Moreover, to disentan-
gle the contribution of our proposal, we take a closer look at some additional
sample detections of our method in Fig. 6 which proves its efficiency in terms of
perceptual realism.
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Fig. 6. More results of the proposed method for intervertebral disc labeling on T1w
images. The first row shows the grand truth while the second row shows the predicted
intervertebral disc along with the semantic labeling (color).

4 Conclusion

In this paper, we systematically formulate the intervertebral disc labelling prob-
lem by designing a novel method to incorporate shape information. The proposed
method encourages the model to focus on learning contextual and geometrical
features. Additionally, we propose a “look once” post-processing approach. Pow-
ered by this, our model alleviates the false-positive detections along with a sub-
stantial refinement in model acceleration. The results presented in this paper
demonstrate the potential of our methodology across all competing methods.
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Abstract. Age predictions from T1-weighted (T1w) MR brain images
using deep learning models have become increasingly more accurate,
mainly with the construction of larger and more complex model architec-
tures, such as cascade networks, but also with the use of larger training
datasets. We adopted and evaluated a data augmentation strategy called
Mixup that combines input T1w brain scans and associated output ages
for the brain age regression task. On a multi-site dataset of 2504 T1w
brain scans we evaluated and tested multiple mixing factor distributions,
applied mixing of similar/different sample pairs based on low/high age
difference, and combined mixing in auxiliary variables. We found con-
sistent improvements in prediction accuracy with the use of Mixup aug-
mentation, with minimal computational overhead, and, despite using a
simple VGG-based deep learning model architecture, achieved a highly
competitive mean absolute error as low as 2.96 years.

Keywords: Deep regression · Brain age · Mixup data augmentation

1 Introduction

Data augmentation methods that expand the sampling space by combining mul-
tiple input images and associated output annotations have been shown to signifi-
cantly improve model performance on imaging datasets with little computational
overhead. For instance, the Thumbnail [18] approach creates a downsampled
copy of the original image and inserts it into a random location within the same
(original) image, thus forcing the model to learn global features. CutMix [19]
replaces a randomly-sized patch of the first image with a same-sized segment
from the second image. Similarly, Mixup [20] involves linearly interpolating two
input images and their corresponding one-hot encoded output labels. Improv-
ing upon the Mixup method, Manifold Mixup [17] mixes the two samples at a
randomly chosen hidden layer of the neural network (not necessarily the input
layer). While the aforementioned approaches were developed in the context of
classification tasks, MixR [7] was designed for regression models and is based
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
I. Rekik et al. (Eds.): PRIME 2022, LNCS 13564, pp. 60–70, 2022.
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on the assumption that mixing continuous labels of two very different samples
may result in arbitrarily-incorrect labels, and hence learns, for each example, how
many nearest neighbors it should be mixed with for the best model performance.

In medical imaging, Mixup was shown to improve performance of deep nural
networks for various medical imaging segmentation and classification tasks.
Among others it was used for MRI segmentation of brain gliomas [4], prostate [8]
and knee segmentation [12], classification of Alzheimer’s disease (AD) and pre-
diction of conversion to AD in individuals with mild cognitive impairment
(MCI) [1]. Moreover, it was improved upon for classification problems on unbal-
anced datasets, for instance, gastrointestinal image classification and diabetic
retinopathy grading [6]. To the best of our knowledge, Mixup has not yet been
applied in (medical) regression tasks.

In this paper, we apply and evaluate Mixup augmentation strategy for the
regression task of brain age prediction, i.e. prediction of age from T1-weighted
(T1w) brain magnetic resonance images (MRI). While initially devised for classi-
fication, the Mixup augmentation naturally extends to regression, where linearly
combining two scalar values results in a value in the domain space of the contin-
uous target. In most previous studies involving Mixup in the domain of medical
imaging, the Mixup was applied by considering a single sampling distribution
of mixing factor or even a single fixed mixing factor. In this paper we perform
an extensive experimental evaluation of Mixup augmentation hyperparameters
for the brain age regression task with the aim to improve upon the existing and
widely validated deep learning based age prediction models. For instance, we test
multiple input/output mixing distributions and, specific to regression tasks, we
consider combining pairs closer or further apart, based on their age difference,
and verifying their impact on the age prediction accuracy. We also explore Mixup
when using auxiliary variables, such as subject’s sex that was shown to improve
the brain age predictions [2], and perform an ablation study to investigate the
effect of Mixup and/or sex information on brain age prediction. The training
and validation of models was conducted on a large multi-site public database in
a fully reproducible study design.

2 Materials and Methods

2.1 Data

Heterogeneous multi-site dataset of T1w MR images were gathered from seven
public datasets, including healthy adult subjects between the age of 18 and
100 years. All T1w images underwent a visual quality check and the images with
poor visual contrast, motion artifacts and/or failed preprocessing were excluded.
The remaining 2504 subjects (1190 males) were split into train (Ntr = 2012), val-
idation (Nv = 245) and test (Nt = 247) datasets. Detailed dataset information
is given in Table 1.
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Table 1. Age statistics, i.e. span, mean age (μage) and standard deviation (sdage) in
years per dataset.

Dataset Nsamples Age span μage ± sdage

ABIDE I1 161 18.0− 48.0 25.7 ± 6.4
ADNI2 248 60.0− 90.0 76.2 ± 5.1
CamCAN [13–
15]3

624 18.0− 88.0 54.2 ± 18.4

CC-3594 349 29.0− 80.0 53.5 ± 7.8
FCON 10005 572 18.0− 85.0 45.3 ± 18.9
IXI6 472 20.1− 86.2 49.0 ± 16.2
OASIS-2 [10]7 78 60.0− 95.0 75.6 ± 8.4
Total 2504 18.0− 95.0 52.1 ± 19.1

1Data available at: http://fcon_1000.projects.nitrc.org/indi/abide/
abide_I.html.
2Data available at: http://adni.loni.usc.edu/.
3Data available at: https://camcan-archive.mrc-cbu.cam.ac.uk/
dataaccess/.
4Data available at: https://sites.google.com/view/calgary-
campinas-dataset/download.
5Data available at: http://fcon_1000.projects.nitrc.org/indi/enhanced/
neurodata.html.
6Data available at: https://brain-development.org/ixi-dataset/.
7Data available at: https://www.oasis-brains.org/.

2.2 T1w Preprocessing

Image preprocessing was conducted using a combination of publicly available
and in-house software tools. The input DICOM T1w image was first converted
to Nifti file format and re-oriented to a common reference space as the MNI152
nonlinear atlas, version 2009c [5], with size 193× 292× 193 and spacing 1 mm3.
The raw T1w image was denoised using adaptive non-local means denoising1
with spatially varying noise levels [9]. Following rigid and affine image registra-
tion of the denoised T1w image to the T1w image of the MNI152 atlas, per-
formed using the publicly available NiftyReg software [11]2, the sinc resampling
was applied to map the input MR image into atlas space. To improve registration
accuracy, the intensity inhomogeneity correction (without mask) was applied to
the denoised image using N4 algorithm [16]3, prior to running the registration.
The inhomogeneity corrected image was used during registration only, while,
finally, only the denoised image was sinc resampled using the rigid and affine
registrations.
1 Adaptive non-local means denoising: https://github.com/djkwon/naonlm3d.
2 NiftyReg registration: http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg.
3 N4 bias field correction: https://manpages.debian.org/testing/ants/N4BiasFieldCo

rrection.1.en.html.

http://adni.loni.usc.edu/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://sites.google.com/view/calgary-campinas-dataset/download
https://sites.google.com/view/calgary-campinas-dataset/download
https://brain-development.org/ixi-dataset/
https://www.oasis-brains.org/
https://github.com/djkwon/naonlm3d
http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg
https://manpages.debian.org/testing/ants/N4BiasFieldCorrection.1.en.html
https://manpages.debian.org/testing/ants/N4BiasFieldCorrection.1.en.html
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The registered T1w image was intensity windowed, setting grayscale outliers
above 99-th and below 5-th percentile to the corresponding limiting values. Next,
intensity inhomogeneity correction was applied to the T1w image, masked with
MNI152 atlas mask dilated by 3 voxels, using the N4 algorithm. Finally, to
remove the empty space around the head, the image was cropped to fixed size
of 157 × 189 × 170.

2.3 Brain Age Prediction

Model Architecture. For brain age prediction we implemented a simple VGG-
based model trained on 3D T1w MRIs, proposed by Cole et al. [3]. The model
was composed of five feature extracting convolutional blocks, each consisting of
a convolutional layer with 3×3×3 kernels, ReLU activation, convolutional layer
with 3× 3× 3 kernels, a batch normalization layer, ReLU activation and a max
pooling layer with 2×2×2 kernels. The number of feature maps was 8 in the fist
convolutional block and doubled in each consecutive block. The output of the
last block was flattened into a single fully connected layer with a linear activation
function so as to output a single scalar value, i.e. age. The model architecture is
depicted in Fig. 1.

Fig. 1. Brain age model architecture with Mixup augmentation.

Loss and Performance Metrics. The loss and evaluation metric used in all
experiments was the mean absolute error (MAE) between model prediction and
actual age.

Baseline Model. For the baseline model as described above the hyperparam-
eter values were chosen based on a grid search. Batch size (bs) was set to 4, 8,
16 and 24. The initial learning rate (lr) was set to 0.01, 0.001 and 0.0001 and
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reduced for 3% after each epoch. In each training session the L1 loss function
was optimized for 110 epochs using SGD algorithm with momentum 0.9 and
weight decay 5 × 10−5. The models were trained with commonly used augmen-
tation methods: (i) random shifting along all major axes with probability of 0.3
for an integer sampled form [−5, 5], (ii) random padding with probability of
0.3 for an integer form [0, 5], and (iii) flipping over central sagittal plane with
probability of 0.5. The optimal hyperparameter values (bs = 16 and lr = 0.0001)
were chosen as the values resulting in the lowest median MAE value of the last
10 epochs on the validation set. The baseline model was trained five times with
the chosen hyperparameter values, of which the best run is reported.

Postprocessing. To each trained model we apply a linear bias correction step,
by fitting a regression line ŷ = β1y + β0 on the validation set, where y denotes
true and ŷ predicted value. The estimated coefficients β0 and β1 were used for
correcting the predicted brain age on the test set as y′ = (ŷ − β0)/β1. This
results in an overall minor increase or decrease in MAE (from 3.26 to 3.27 years
for the baseline model), but allow for a minor correction on the edges of the age
interval, where regression models tend to over/underestimate.

2.4 Data Augmentation with Mixup

Mixup [20] is a data augmentation method, linearly combining two random input
samples (Xi, yi), (Xj , yj) into a new sample (X̃, ỹ) as

X̃ = λXi + (1 − λ)Xj ,

ỹ = λyi + (1 − λ)yj ,

where Xi,Xj denote the input images of random subjects i and j, yi, yj the
single-valued targets coming from a continuous distribution, and λ ∈ [0, 1] the
mixing factor.

For mixing binary input variables, i.e. sex information in our case, we used

b̃ = λbi + (1 − λ)bj ,

resulting in continuous variable b̃ ∈ [0, 1].
In practice, Mixup augmentation was implemented on a sample batch, by

shuffling randomly (or with respect to the age) the order of scans in the batch.
Such reordered batch was then linearly combined with the original sample batch,
by mixing correspondingly indexed pairs of T1w scans, sex information and
associated subject ages. An example of MRI Mixup is shown in Fig. 2.

3 Experiments and Results

In subsequent experimental sections we investigate the use of Mixup augmenta-
tion with respect to the baseline model and evaluate the impact of the choice of
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Fig. 2. MR image Mixup for λ = 0.5.

Mixup augmentation probability, the choice of λ and/or its sample distribution,
the strategy of sampling input pairs for Mixup according to the age difference,
and verify the consistency of the performance gains in age prediction accuracy
achieved by Mixup in combination with sex information as auxiliary input.

For all experiments and results reported in this paper, the same model archi-
tecture was trained using the same hyperparameters as for the baseline model.
Results are reported for the best model in the last 10 training epochs, chosen
according to the lowest MAE on validation set. Furthermore, each model under-
went a linear bias correction determined using linear regression on the validation
dataset.

Experiments were run using Intel Core i7-8700K CPU and three NVIDIA
GeForce RTX 2080 Ti GPUs. Models were implemented in PyTorch 1.4.0 for
Python 3.6.8. Each model was trained for approximately 10 h.

3.1 Mixup Probability

To find the optimal probability of Mixup augmentation during training we
applied it on each batch with a certain probability p. In this experiment, the
mixing parameter λ was set to a fixed value of 0.5. Additionally, we tested
whether it is best to apply the Mixup before or after other image augmentation
steps (e.g. padding, shifting and/or flipping).

The results in Table 2 show that the use of Mixup generally improves the
model performance. Best overall improvement on validation and test set com-
pared to the baseline was achieved when Mixup was applied after augmentation
steps with probability 0.5. We chose this value for the remaining experiments.

3.2 Mixing Sample Distribution

To gain a general sense of whether a symmetrical or asymmetrical input sample
mixing leads to better results, we mixed sample pairs with a fixed factor λ. We
then randomized the mixing parameter by sampling from multiple Unif([a, b])
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Table 2. MAE and standard deviation in years on validation and test set with Mixup
applied before or after other data augmentation steps with probability p and fixed
mixing factor λ = 0.5. The chosen parameters are marked in bold.

Mixup probability Before augmentation After augmentation
Validation Test Validation Test

p = 0.0 (baseline) 3.66 (2.66) 3.29 (2.63) 3.66 (2.66) 3.29 (2.63)
p = 0.1 3.73 (2.70) 3.21 (2.53) 3.69 (2.52) 3.00 (2.44)
p = 0.25 3.52 (2.83) 3.14 (2.56) 3.57 (2.78) 3.25 (2.65)
p = 0.5 3.67 (2.80) 3.10 (2.69) 3.30 (2.55) 3.03 (2.65)
p = 0.7 3.33 (2.55) 3.14 (2.56) 3.41 (2.78) 3.18 (2.66)

distribution by changing the lower interval limit and keeping the upper inter-
val limit equal to 0.5. Finally, we sampled λ from a symmetrical Beta(α, α)
distribution, as originally proposed by Zhang et al. [20].

Out of the two random distributions, the Beta distribution yielded better
results, with Beta(4, 4) resulting in the best improvement on the validation and
test set (cf. Table 3). However, for both distributions the models with mixing
parameters sampled closer to the value λ = 0.5 outperformed highly asymmetric
mixing. The overall best result on the validation and test set was achieved by a
fixed mixing parameter of 0.5 (cf. Table 3).

Table 3. MAE and standard deviation in years on validation and test set for different
distributions of mixing parameter λ. The best results for each tested mixing distribution
are marked in bold.

Fixed Unif(a,b) Beta(α,α)
λ Validation Test [a, b] Validation Test α Validation Test

0.1 3.64 (2.66) 3.30 (2.74) [0.0, 0.5] 3.69 (2.88) 3.27 (2.65) 0.1 3.60 (2.84) 3.15 (2.53)
0.2 3.74 (2.80) 3.18 (2.59) [0.1, 0.5] 3.72 (2.73) 3.24 (2.66) 0.2 3.68 (2.57) 3.08 (2.68)
0.3 3.59 (2.69) 3.26 (2.70) [0.2, 0.5] 3.43 (2.75) 3.10 (2.56) 0.4 3.55 (2.76) 3.15 (2.63)
0.4 3.53 (2.65) 3.16 (2.59) [0.3, 0.5] 3.86 (2.78) 3.21 (2.71) 1 3.53 (2.84) 3.22 (2.6)
0.5 3.30 (2.55) 3.03 (2.64) [0.4, 0.5] 3.43 (2.68) 3.32 (2.72) 2 3.56 (2.89) 3.08 (2.69)

4 3.35 (2.69) 3.09 (2.5)
8 3.55 (2.78) 3.11 (2.63)
12 3.59 (2.76) 3.18 (2.61)

3.3 Mixing Based on Age Difference

We further inspect whether pairing of vicinal samples, i.e. samples closer or fur-
ther apart in age, has an impact on brain age prediction performance. We per-
formed two experiments: in the first one we sampled pairs similar in age, where
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Fig. 3. Histogram of age differences between sample pairs when mixing pairs with small
age difference (blue), large age difference (orange) and random age difference (green).
(Color figure online)

the average age difference over the batches in all epochs was 2.1 ± 2.1 years; in
the second one, we sampled pairs further apart in age, where the average age
difference over the batches in all epochs was 31.5± 5.9 years. The sampling was
implemented by sorting the input batch according to the age and, in first exper-
iment, pairing samples with consecutive indices, while for the second experiment
samples were paired with a fixed stride, half the batch size.

The age difference distributions emanating from the two experiments, and the
age difference distribution of the random sampling based Mixup, are shown in
Fig. 3. In this experiment the mixing parameter λ was sampled from Beta(α, α)
distribution, with α = 4.

Both large age difference (MAEv = 3.62, MAEt = 3.17) and small age
difference (MAEv = 3.85, MAEt = 3.89) resulted in inferior MAE results when
compared to Mixup with random pair sampling (MAEv = 3.27, MAEt = 3.03).

3.4 Mixup with Auxiliary Input

We investigated the impact of Mixup when mixing an auxiliary binary input
variable (sex) in addition to the input T1w images. The mixed sex was modeled
as a linear combination, λs1 + (1 − λ)s2 ∈ [0, 1], s1, s2 ∈ {0, 1}, where 0 rep-
resents male and 1 female sex, and was concatenated with the fully connected
layer preceding the linear regression output layer. In this experiment the mixing
parameter λ was sampled from Beta(α, α) distribution, with α = 4.

Results of the ablation study are given in Table 4 and show that including
both the sex information and Mixup resulted in an overall best model on vali-
dation and test set, with MAE under three years. This verified that the use of
Mixup has a positive and consistent impact on the brain age prediction accuracy.
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Table 4. MAE and standard deviation in years on validation and test set for an
ablation study including sex information as input, and with or without Mixup aug-
mentation. Best result on test set is bolded.

Mixup Sex Validation Test

✗ ✗ 3.66 (2.66) 3.29 (2.63)
✓ ✗ 3.35 (2.69) 3.09 (2.50)
✗ ✓ 3.62 (2.79) 3.09 (2.66)
✓ ✓ 3.46 (2.80) 2.96 (2.50)

4 Discussion

Mixup augmentation was applied to the regression task of brain age prediction
using a simple VGG-based CNN and was shown to consistently improve the
prediction accuracy in terms of mean absolute age error (MAE). Even when
introducing Mixup to auxiliary data, such as sex information, the Mixup aug-
mentation consistently improved the age prediction accuracy.

The choice of mixing distribution and its parameters has a substantial impact
on the efficacy of Mixup data augmentation. In contrary to [20], where the opti-
mal parameter α in the Beta distribution for most use cases was smaller than 1,
the experimental results on the brain age regression task indicated improvements
when the samples were mixed with α > 1, in which the most likely the mixing
factor λ was close to the value 0.5. We argue this was due to rather homogeneous
distribution of the T1w MRI data, which was extensively preprocessed, includ-
ing affine registration to the MNI152 atlas and intensity corrections. Hence, the
T1w images being mixed were sufficiently distinguished only for λ close to 0.5.
Interestingly, α values above 1 were not tested for either the task of medical
image segmentation [4] nor classification [6] and, based on our findings, thus
remain an open avenue for further optimization.

Depending on the task at hand, the particular sequence of execution of
the augmentation operations and the Mixup may be relevant and should be
experimentally determined. In our task, the results indicate that the Mixup is
marginally more effective when applied after the other augmentation steps. We
argue that implementing Mixup after the other augmentation steps allows dif-
ferent random shifts for each image before mixing and thus prevents a complete
overlap of the otherwise atlas-aligned brain structures.

Mixing randomly across the training data manifold yielded best performance.
While simpler than the MixR strategy [7], our Mixup strategy controlled for pair-
ing based on (small or large) age difference. In both controlled pairing experi-
ments the Mixup performed worse than random pairing, which was in line with
the original Mixup study [20]. We argue that the controlled pairing of individuals
close in age may not fully take advantage of linear mixing across different age
groups as the morphological differences due to similar age are thus not empha-
sized, while the inherent biological variability acts as additive input noise. In the



Mixup Augmentation Improves Age Prediction from T1w Brain MRI Scans 69

other extreme of mixing individuals with large age differences, the model may
fail to learn to model a linear transition between the adjacent age groups. We
found that mixing pairs across all age intervals and age differences resulted in
best age prediction accuracy.

In conclusion, we found consistent improvements of age prediction accuracy
from T1w brain scans with the use of Mixup data augmentation, which had
minimal computational overhead, and, despite using a simple VGG-based deep
learning model architecture, achieved a highly competitive mean absolute error
as low as 2.96 years.
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Abstract. Magnetic Resonance Images (MRI) examinations are widely
used for diagnosing injuries in the knee. Automatic interpretable detec-
tion of meniscus, Anterior Cruciate Ligament (ACL) tears, and general
abnormalities from knee MRI is an essential task for automating the
clinical diagnosis of knee MRI. This paper proposes a combination of
convolution neural network and sequential network deep learning mod-
els for detecting general anomalies, ACL tears, and meniscal tears on
knee MRI. We combine information from multiple MRI views with trans-
former blocks for final diagnosis. Also, we did an ablation study which is
training with only CNN, and saw the impact of the transformer blocks
on the learning. On average, we achieve a performance of 0.905 AUC for
three injury cases on MRNet data.

Keywords: MRNet · Knee MRI · ACL · Abnormal · Meniscus

1 Introduction

The gold standard for diagnosing serious knee injuries is Magnetic resonance
imaging (MRI). The knee receives more MRI exams than any other part of
the body [1–3]. Manual analysis of knee MRI scans can be time-consuming and
error-prone. Patients’ MR images might differ significantly, making interpreta-
tion difficult for healthcare workers. Therefore, an automated diagnosis system
for knee MRI is an essential task.

In this study, we propose a method to automatically determine whether a
patient has a knee injury or not on a publicly available dataset of knee MRI scans
(MRNet dataset [4]). A network structure idea is developed to perform tear
detection on knees using MRNet data. Convolutional neural networks (CNN)
and transformer-based networks are used and combined to utilize multiple views
in combination. CNNs are used to extract image features of every single image,
and transformer encoders are used to gather information between slice images
for a patient.

The main contributions of this study are diagnosing the knee injuries with a
network consisting of CNN and transformer-based layers and finding out the
impact of transformer blocks to fuse information from multiple MRI slices.
Firstly, network architecture with ResNet [5] and transformer encoder layers
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
I. Rekik et al. (Eds.): PRIME 2022, LNCS 13564, pp. 71–78, 2022.
https://doi.org/10.1007/978-3-031-16919-9_7
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[6] are used to extract semantic features of each view, then bring together infor-
mation extracted from multiple views to get global information. Secondly, we
remove the transformer blocks and train the network with only ResNet layers
and compare the two networks to see the effects of the transformer block on
learning the MR images.

2 Related Works

Diagnosis of disease on knee MR images has been studied within the context
of the MRNet dataset. Bien, N. [7] published the MRNet Dataset and stated
Deep-learning-assisted diagnosis with MRNet architecture for knee magnetic res-
onance imaging. The article tries to diagnose three knee injuries: abnormalities,
ACL tears, and meniscal tears, from magnetic resonance images with the deep
learning-assisted method. An anterior cruciate ligament (ACL) injury is often
a complete tear of the ligament, resulting in an unstable knee. A meniscal tear
is a tear in the cartilage that supports the bones in the leg, and an abnormal
exam refers to general knee disorders. MRNet includes a CNN-based network
and logistic regression network at the end to predict a patient’s knee injuries for
all three cases. First, CNN networks are trained separately for all three planes
axial, coronal, and sagittal. Then, a logistic regression network is trained to com-
bine each plane’s output to a single probability for each injury case ACL tear,
abnormalities, and meniscal tear. MRNet contains AlexNet [8], which was pre-
trained on the ImageNet, as a feature extractor for each MR image. Each slice is
given to AlexNet separately and a global average pooling operation is performed
to reduce the dimension of the feature tensor. After the classification networks
are trained for each plane axial, coronal, and sagittal, a logistic regression oper-
ation is used to get the probability for each case of ACL tear, abnormalities, and
meniscal tear.

Azcona et al. [9] used the MRNet dataset to perform the detection of ACL
tear, abnormalities, and meniscal tear in knee MRI scans using a deep residual
network with a transfer learning approach. The paper uses ResNet-18 for fea-
ture extraction (similar to the original MRNet structure) and trains all planes
separately first, then combines the solutions with logistic regression.

Tsai et al. [10] proposed an Efficiently-Layered Network (ELNet) design that
has been tuned for MRI-based knee diagnostics. The fundamental contribution
of this paper is a novel slice feature extraction network that combines multi-slice
normalization with BlurPool down-sampling. They do not use all planes of the
MR images to detect the cases. The coronal images are chosen to detect meniscal
tears, and the axial images to detect ACL tears and abnormalities.

Kara et al. [11] proposed a study that has a combination of 3 different network
strategies to detect knee injuries from the MRNet dataset. The first network is
a ResNet50 network to select eligible data from the entire dataset. They created
a different number of classes based on the qualities of MR images for each plane,
and train the network with these labels. Then, to select the relevant area from
the eligible dataset, the second network which consists of CNN and autoencoder
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blocks is trained. After selecting the relevant are from MR images, the last
ResNet50 network is trained to detect the injury cases.

The original MRNet architecture method [7] and the best resulting method
of Azcona et al. [9] use the same approach that feeding all slices separately with
a CNN feature extractor. After they get the feature tensor with dimension s×N
(N is the feature length of the selected model’s output), an average pooling layer
is used to combine all slices and get the output with dimension N. Also, Tsai
et al. and Kara et al. brought novel intuitions for diagnosing knee injury tasks.
However, neither of them interpreted the information between the slices. In this
way, the information between slices is lost. However, the slices belong to the same
patient and they are taken sequentially, so, there can be gain helpful information
by considering the combination of slices while building the model. In this study,
we propose a new network architecture that consists of ResNet and transformer
encoder networks by considering the relative information between slices.

3 Materials and Methods

3.1 Dataset

MRNet Dataset [7] contains 1,370 knee MRI samples. Each patient’s exam has
3 different planes: axial, coronal, and sagittal. Each sample can have different
numbers of slices for all planes. The slice images in these series vary in number
from 17 to 61. (mean 31.48, SD 7.97). The dataset labels are binary numbers
for each patient’s exams in each injury case. Each exam can have multiple types
of disease, and all patients that have meniscal or/and ACL tears have abnormal
injury certainly.

The dataset includes;

– 1,104 (80.6%) abnormal exams
– 319 (23.3%) ACL (anterior cruciate ligament) tears
– 508 (37.1%) meniscal tears

Because patients who receive an MRI are more likely to develop a knee injury,
the dataset is highly imbalanced in favor of classifications with injuries. The
exams were split into a training set (1,130 exams), a validation set (120 exams),
and a test set (120 exams). The test set is a closed set that can be performed
in only MRNet Competition to test the performance of the models. Hence, the
validation set is used as the test set in this study.

3.2 Methods

We propose a network architecture for the diagnosis of three knee injuries ACL
tear, meniscal tear, and general abnormalities by using the MRNet dataset.
ResNet and transformer encoder networks are used in the architecture. We utilize
ResNet to extract semantic features from multiple view images. The transformer
structure is a deep neural network mainly based on the self-attention mechanism
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Fig. 1. Figure (a) represents the ResNet + Transformer structure which has ResNet34
and transformer encoder layers. Figure (b) represents the ResNet Only structure which
has only the ResNet34 blocks to learn from slice images.

to extract intrinsic features of sequential data. The transformer encoder is the
first part of the original transformer architecture to perform multi-headed atten-
tion networks to the input sequential set and encode to an output set.

MRNet dataset includes image slices for each patient exam at 3 different
views axial, coronal, and sagittal. The slice images are consecutive and any
image is significantly similar and related to the one before and after it. Therefore,
the slices are considered as a sequence of images like frames of a video, and the
relation between them is tried to examine with transformer-encoder blocks. After
that, the transformer blocks are removed and the network is trained with only
ResNet layers to see the effectiveness of the transformer blocks on the slice MR
images and compare the results. The networks are trained for all planes (axial,
coronal, sagittal) separately to see the results of learning the slice images in
every plane. We did this operation for all cases (ACL, abnormal, sagittal).

The whole structure of the proposed network can be seen in Fig. 1. The
ResNet structure which is pre-trained on the ImageNet dataset is used for the
feature extraction operation. The last layer of the ResNet network is removed to
obtain a proper size feature vector for each slice. The transformer part is used
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to consider the relative information between slices features which are extracted
from ResNet and create output features.

There are three separately initialized ResNet networks in this structure for
per plane axial, coronal, and sagittal. Every slice is given to the ResNet network
first to extract the semantic features. At the output of ResNet, it is obtained a
vector for each slice with dimension 512. Hence, there are tensors with dimen-
sions s×512 at each plane’s ResNet output. To decide about injuries by con-
sidering the relationships between slices the transformer encoder networks are
used. The features of slices are thought of as sequential data and fed to the
transformer encoder with positional encoding. Because the transformer has no
memory mechanism, positional encoding is carry the information about the order
of the sequence data. Embedding operation is not necessary for this work, as the
data is already in a numerical form. After the transformer encoder; it is acquired
tensors which carry not only the semantic information of each slice itself from
ResNet but also the relations between the slices from the transformer encoder.
These tensors are obtained for each plane with the same dimensionality with the
input s×512. Then, a max-pooling operation is used to reduce the s dimensional-
ity, and get one dimension vector for each plane. A last fully connected network
is used to decide whether the slice images of specific planes have an injury case
or not. For all injury cases, 3 different networks are trained separately for all
planes, then combine their outputs with logistic regression to decide the proba-
bility of one case. By doing that, we can analyze the results of each plane and
also each injury case. The whole procedure is executed for all knee injury cases
ACL tears, abnormalities, and meniscus tears. In total, 9 different models were
trained for each plane then 3 logistic regression models were trained to decide
for each case.

The structure of the “ResNet Only” network can be seen in Fig. 1. We consider
these networks as an ablation study to investigate the influence of transformer
blocks. The whole structure and hyperparameters are exactly the same between
these two networks to enable a fair comparison.

3.3 Implementation Details

ResNet34 structure is used as the backbone of the networks. The transformer has
2 encoder blocks with 8 heads. The dropout value is set as 0.1. Augmentation
strategy is used whenever a training example occurred in training. The exams
were rotated randomly between −25 and 25◦, moved randomly between −25
and 25 pixels, and flipped horizontally with a 50% probability. The networks are
trained with a single batch because the number of slices can vary for each exam
and plane. Hence, it cannot be combined with multiple tensors of image samples.
The slice images are given to the network’s backbone separately, then combined
with the transformer layers. The learning rate is set 1e−5 at the beginning of
training and configured with a learning rate optimization to arrange the learning
rate while training. Binary cross-entropy loss and Adam optimizer are used. The
loss is also scaled inversely proportionally to the number of samples of that
class in the dataset to handle the imbalanced dataset. The default maximum
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number of epochs is 50; however, an early stopping technique is used, where the
validation AUC score is monitored for 7 epochs, and the training is stopped if
no improvement is observed. Nvidia Tesla T4 GPU is used to train all models.

Table 1. Comparison of AUC scores of proposed networks for all injury cases and
planes. Almost all AUC scores of the ResNet+Transformer networks are higher than
the ResNet Only networks.

ResNet Only ResNet+Transformer

ACL axial 0.937 0.951
coronal 0.839 0.928
sagittal 0.841 0.933
log.reg. 0.838 0.952

Abnormal axial 0.718 0.913
coronal 0.898 0.871
sagittal 0.831 0.891
log.reg. 0.882 0.914

Meniscus axial 0.735 0.820
coronal 0.818 0.847
sagittal 0.652 0.730
log.reg 0.817 0.850

4 Results

4.1 Experimental Results

The performance criterion of MRNet competition [4] is mainly the AUC score
in ROC curves. We report the AUC score of all trained models on the validation
dataset. Table 1 shows the AUC scores of both ResNet+Transformer and ResNet
Only models. The first column represents the injury cases. The second column
is for slice planes and the combined logistic regression score for three planes.
The third and fourth columns represent the AUC scores of ResNet Only and
ResNet+Transformer models.

In Table 1, the AUC scores of the network with transformer encoder blocks
surpass the AUC scores of the ResNet Only network in almost every injury case,
plane, and combined logistic regression result. Figure 1 shows the ROC curves
of the networks for three injury cases. As can be seen in the figures most parts
of the ROC curves the ResNet+Transformer network method is ahead of the
ResNet Only method. It can be said that the transformer encoder blocks can
help to learn better the relationship between MRI slices and make more precise
decisions about the injury cases. By looking at these results, the transformer
encoder blocks can be used with convolutional neural networks to learn better
inference about sliced or multiple viewed datasets.
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Fig. 2. (a), (b), and (c) figures represent the comparison ROC curve of the ResNet Only
and ResNet+Transformer method in ACL, abnormal, and meniscus tasks respectively.
The ResNet+Transformer generates better results compared to the ResNet-only in
terms of AUC scores.

5 Conclusions

In this study, a network structure to address the problem of diagnosing the three
knee injuries ACL tear, general abnormalities, and meniscal tears is proposed.
We aimed to interpret both individual semantic information of the MR image
slices themselves and the common information of a combination of slices for all
injury cases. ResNet and transformer encoder networks are combined and used
to perform this task. Also, another network consisting of just ResNet blocks
is trained for all scenarios to perform an ablation study and compare it with
the proposed architecture. We validate the usage of transformer blocks when
used with CNN layers to learn from multiple slices or multiple view data in
classification tasks.

In the future, we aim to apply our model to medical image classification
tasks, where sequential information can be utilized (e.g. stroke detection in 3D
brain MRI). Besides, we aim to utilize advanced transformer structures with
multiple parameters to boost the classification performance further.
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Abstract. Mild Cognitive Impairment (MCI) is the transitional stage
between healthy aging and dementia. MCI patients are characterized by
very subtle changes in the brain. These changes with disease progression
might assist the more precise dementia staging, which can reduce the
number of Alzheimer’s Disease (AD) patients through early interven-
tion. Indeed, subjects diagnosed with MCI could be further divided into
sub-categories (stable MCI and progressive MCI) and only part of them
will convert to dementia. In this paper, we propose a multi-view con-
trastive transformer network for MCI sub-categories detection with the
aim of early AD conversion prediction. The proposed method is based
on a two-stage learning scheme that optimally captures local and global
information from 18F FluoroDeoxyGlucose Positron Emission Tomogra-
phy (18F-FDG PET) images. The proposed approach optimally exploits
the complementary of the three image projections (axial, sagittal, and
coronal), through contrastive learning, for efficient multi-view clinical
pattern (embedding) learning. The proposed method has been evaluated
on a subset of the ADNI dataset. Obtained results outperform recent
uni-modal and multi-modal state-of-the-art approaches in (sMCI) vs.
(pMCI) detection. We report an average accuracy, sensitivity, and sensi-
tivity of respectively 87.13%, 90.61%, and 83.65%.

Keywords: Alzheimer’s disease · Stable MCI · Progressive MCI ·
Prediction · Transformer · Contrastive learning · 18F-FDG PET
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1 Introduction

Alzheimer’s Disease (AD) is a dominant degenerative brain disease among elderly
people [1]. To date, there is no efficient cure available when the subject is once
diagnosed with AD, which is in the later disease stage. Mild Cognitive Impair-
ment (MCI) is considered a transitional stage between aging and AD. Clini-
cal studies have shown that the detection and the therapeutic intervention at
the MCI stage are promising to prevent dementia and hence can lead to social
and financial benefits [2]. Indeed, the MCI group can be categorized into two
subtypes1, early/stable MCI (sMCI), and late/progressive MCI (pMCI) known
respectively as non-converter and converter MCI in different studies. The sMCI
is considered as the earlier point in the clinical spectrum of AD while pMCI is at
the later point to progress to disease. Patients diagnosed as sMCI, had a lower
risk of conversion to AD, while subjects predicted as pMCI have a higher risk
to develop dementia in a short period. Therefore, MCI subtypes detection is of
vital importance for an early AD conversion prediction.

Several medical imaging modalities have been investigated with deep learning
techniques for early AD detection. However, few works have addressed the (sMCI
vs. pMCI) prediction problem [3] due to the challenge of learning a discriminat-
ing disease signature for these groups. In this context, the most used technique is
the MRI (structural MRI and functional MRI) which captures the MCI-related
alterations in the brain anatomy and functions [4–6]. Moreover, Diffusion Tensor
Imaging (DTI) have been recently used for MCI subtypes prediction [7,8]. How-
ever, themorphologicaland functionaldifferences in thebrain lesions,detectedwith
sMRI, fMRI, and DTI, in the intermediate stages of MCI are very small [9]. Yet,
18F-FluoroDeoxyGlucose Positron Emission Tomography (18F-FDG PET) which
measures cerebral glucose metabolism in the brain has been reported as a powerful
MCIbiomarker [10].Recently,variousdeep-learning-basedapproaches forearlyAD
prediction [9,11,12] showed the effectiveness of biomarkers derived from (18F-FDG
PET) versus other imaging modalities. Moreover, adding (18F-FDG PET) with
othersmodalitiesboosttheclassificationperformance(e.g.,MRI+PET)[11,13,14].
However, existing FDG-PET-based approaches present several limitations for effi-
cientsMCIandpMCIdetection.First,mostoftheexistingworksused2-Dimensional
Convolutional Neural Networks (2D-CNN), which lack the ability to build explicit
long-range semantic dependencies present in 3D medical images. More precisely,
the convolutional operations attend to only a local subset fromneighborhoodpixels
and force the network to focus on local patterns rather than the inter-slice medical
information. Moreover, traditional approaches use late or early fusion to combine
informationderived fromthe three imageprojections (axial, sagittal coronal)which
arenotoptimal to exploit the complementaryof theseprojections foratrophydetec-
tion [15]. To deal with these issues, some works proposed 3D-CNN [5] or combined
2D-CNN with Recurrent Neural Network (RNN) [16]. However, these approaches
suffer from overfitting and the vanishing gradient problem. Finally, most of the
existing approaches include pre-processed images to augment their dataset, which
may bias the prediction results by including images of the same patient.

1 Based on the WMS-R Logical Memory II Story A score.
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Recently, transformer-based models [17] have been shown their ability to
solve the CNN issue by dealing with long-range dependencies. Transformers are
built using a self-attention mechanism, enabling the model to capture the rela-
tions between associative features. Different from previous CNN-based methods,
transformers can achieve excellent results by modeling the global context in
computer vision tasks [17]. Transformers have also been successfully applied to
full-stack clinical applications, including image reconstruction, registration, seg-
mentation, detection, and diagnosis [18]. However, their investigation for early
AD detection is under-explored. Indeed, for AD disease detection local and global
information is important, i.e., intra-slice and inter-slices details are pertinent
to building a discriminating atrophy description. More additionally, modeling
the local features of medical image data (e.g., 3D PET scan) which contains
three projections beyond 2D, is also challenging as shown in [19] since the local
structure is lost after splitting the image into patches to train the transformer.
Therefore, motivated by the proprieties of transformers in modeling long-range
semantic dependencies [20], we propose to design a transformer-based approach
that can exploit the local and global multi-view dependencies from 3D images
for efficient early disease signature learning.

In this paper, we propose a multi-view contrastive transformer network for
MCI stages prediction. The proposed method is based on a two-stage learning
scheme that optimally captures local and global information from the three 18F-
FluoroDeoxyGlucose Positron Emission Tomography (18F-FDG PET) image’s
views. To the best of our knowledge, this is the first work that exploits long-
range semantic dependencies through transformers and contrastive learning for
efficient 18F-FDG PET multi-view embedding learning. The main contributions
of this work can be summarized as follows:

– We propose a simple yet efficient transformer-based network to model the
long-range semantic dependencies within the 3D PET images (intra-slice and
inter-slices metabolic features);

– A two-stage training framework that uses supervised contrastive learning for
efficient multi-view clinical pattern (embedding) learning is proposed. The
learned features are used in the second step for MCI subtypes detection;

– The proposed approach exploits the complementary of the three projections
(axial, sagittal, and coronal) for better embedding learning;

– Contrary to existing works that augment the data with longitudinal and pre-
processed images from the same patients, we evaluate the proposed approach
using one image per patient demonstrating the efficiency of the proposed
method when learning from small and non-biased data;

The remaining of this paper is structured as follows: First, Sect. 2 describes
the proposed framework. Then, experiments and results are presented and ana-
lyzed in Sect. 3. Finally, Sect. 4 concludes the paper and opens new perspectives.

2 Proposed Approach

The proposed strategy is a Multi vIew contraStive tranSformer Network
(MISS-Net) with Supervised Contrastive Learning (SCL) [21] for the prediction
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Fig. 1. Two-stage (step1 and step2) training network with transformer-based encoders
for Multi-view embedding learning and sMCI vs pMCI prediction.

of MCI conversion to AD, in which axial, sagittal and coronal views can give
complementary information owing to the separability of the proposed method, as
shown in Fig. 1. Briefly, we propose spatial transformer block for each projection
to map the view v to a vector z = Proj(v) ∈ RDP , where Dp is the vector size.
Afterward, a linear concatenation is made with the vectors from each projection
to build a multi-view embedding representation. These embeddings are pulled
closer for the same class and far away from different classes. A Multi-Layer Per-
ceptron (MLP) is added to the model followed by a softmax function to give
a prediction. Finally, the model is fine-tuned by blocking gradient propagation
from the MLP back to the model projectors.

2.1 Network Architecture

In this section, we introduce the proposed MISS-Net method in details, mainly
including the spatial vision transformer exploited for each view to encode the
images, which is then followed by a depth-wise convolutional layer to process the
spatial resolution and also not increase computational cost rather than applying
the commonly used 3D convolutions for medical imaging data.

Vision Transformer-Based Image Encoding The traditional self-attention
used in transformers suffers from the heavy computational complexity in neu-
roimaging data. For a given view of H × W resolution, the self-attention com-
plexity of dimension d is O (

H2W 2d
)
. The spatial vision transformer relies on

the spatial self-attention mechanism [20] aiming to diminish the complexity and
improve the results. In fact, this mechanism uses a scheme of alternated local
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and global attention, allowing to capture both short and long-range relations.
We adapt this idea to resolve the sMCI vers pMCI prediction task, where a
locally-grouped self-attention (LSA) is computed for each feature map, which is
spatially divided equally into k1 × k2 non-overlapping local windows, we assume
H%k1 = 0 and W%k2 = 0. Specifically, at this stage, the LSA is computed for
each sub-window separately. Thus, the complexity will decrease to O

(
H2W 2

k1k2
d
)
.

However, the non-overlapping division abstains the communication between sub-
windows. Thus, Global sub-sampled attention (GSA) comes into play to handle
this issue. Through a convolution operation, we represent each sub-window by
single key information. Then, a self-attention mechanism is applied to these key
representations to capture the global important features per view with a com-
plexity of O (k1k2HWd). Consequently, the alternated complexity of local and
global attention is O

(
H2W 2

k1k2
d + k1k2HWd

)
≤ O

(
H2W 2

2 d
)

for k1 ≤ H
2 and

k2 ≤ W
2 , which is significantly more efficient than the traditional self-attention.

Furthermore, the succession of both attentions respectively is a kind of spatial-
wise convolution aiming to retain distinctive patterns and point-wise convolu-
tion which learns significant representations among slices. The architecture is
constructed by stacking a series of stages that can be represented formally as:

ẑlijk = LSA
(

LayerNorm
(
zl−1
ijk

))
+ zl−1

ijk ,

zlijk = FFN
(

LayerNorm
(
ẑlijk

))
+ ẑlijk,

ẑl+1
k = GSA

(
LayerNorm

(
zlk

))
+ zlk,

zl+1
k = FFN

(
LayerNorm

(
ẑl+1
k

))
+ ẑl+1

k ,
i ∈ {1, 2, . . . ., k1}, j ∈ {1, 2, . . . , k2} and k ∈ {1, 2, 3}

(1)

where residual connections and layer normalization are included at each step.
ẑlijk ∈ R H

k1
× W

k2
×C is a sub-window of the lth layer from the kth view (i.e., axial,

sagittal or coronal) and C is its number of channels. Finally, after the first trans-
former block of each stage, the Position Encoding Generator (PEG) is added to
dynamically generates the Conditional Position Encodings (CPE) using a 2D
depth-wise convolution (i.e., based on the local neighbors of each slice). These
conditional position encodings are able to handle the sequence longer than the
absolute one as shown in [20], which is suitable for our medical data.

View Projection. At the bottleneck of the model (i.e., output of transformer’s
last layer of the last stage), [20] applied Global Average Pooling (GAP) replacing
the fully connected layers to make a classification. Although this layer reduces
the cost computation by averaging the feature map elements, it decreases the
model accuracy due to the spatial loss information, especially when the size of a
feature map is higher. To deal with this issue, inspired from [22], a 2D depth-wise
convolution layer is applied at the last layer of the transformer encoder. The main
intuition is to learn how to reduce the cost without losing spatial information.
In fact, using this convolution operation will make the model capable to learn
a matrix of different weights per feature map that have the same size n × m.
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Thus, instead of calculating the average sum per feature map, each element has
a weight that represents its importance in global information. We calculate the
weighted-average-sum per channel σc as follows:

σc = 1
n×m

∑n
i=1

∑m
j=1 wcijacij

c = 1, 2, . . . ,Dp
(2)

where Dp is the total number of channels, wcij and acij are the elements of the
weight matrix and the feature map respectively from the (i, j) position of the
cth channel. Therefore, each view is projected by a vector zv = [σ1, σ2, . . . , σDp

],
with v ∈ {axial, sagittal, coronal}.

Combination and Fully-Connected Layer. After the projection step, the
three projected views are linearly concatenated to get the multi-view embedding
representation zemb = conct (zaxial, zsagittal, zcoronal). Then, we fed zemb into
Fully-Connected (FC) layers followed by Relu as activation function except for
the last layer with 2 neurons which is delivered by a softmax function to make
a prediction.

2.2 Two-Stage Training Approach for sMCI vs. pMCI Prediction

Predictive Embedding Encoding with Contrastive Learning. In order
to learn a disease-related embedding able to discriminate between sMCI and
pMCI, we use supervised contrastive learning [21]. The supervised contrastive
coding gives a promising performance by using label information in pulling the
samples belonging to the same class in the embedding space while pushing apart
the samples from different classes in another embedding space. For a given batch
of N samples, we randomly apply data augmentation twice on that batch (for
each view) using flipping and rotations θ ∈ {45◦, 135◦, 225◦, 315◦}. The data
augmentation strategy did not deform the medical information and helps in
learning more efficient embedding. Then, all the inputs are propagated through
the encoder block (i.e., the transformer encoder) to get the embeddings zemb.
The supervised contrastive loss is computed on these outputs embeddings as
follows:

Lout =
∑

i∈I

−1
|P (i)|

∑

p∈P (i)

log
exp

(
z
(i)
emb · z(p)

emb/τ
)

∑
a∈A(i) exp

(
z
(i)
emb · z(a)

emb/τ
) (3)

Here, the · symbol denotes the inner (dot) product, τ ≤ 1 ∈ R+is a scalar
temperature parameter. i ∈ I ≡ {1 . . . 2N} are the indexes of the augmented
data and A(i) ≡ I\{i} is all the samples beside i which is the anchor. P (i) ≡{
p ∈ A(i) : yp = yi

}
is the set of all the positive samples of label yp distinct from

i of label yi and |P (i)| is its cardinally. The embedding learning is performed by
minimizing Lout, using n iterations.
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sMCI vs. pMCI Prediction. The contrastive learning strategy could help
in building a disease-related discriminating signature by integrating the comple-
mentary of the three projections in the embedding learning step. In a second
stage, we freeze the trained encoder (transformer) for each view and we train
only the MLP classifier on the zemb. The training is done by minimizing the
binary cross-entropy loss using the same number of epochs (i.e., n iterations).

3 Experiments and Results

3.1 Dataset Selection and Pre-processing

Data Samples Selection. In this work, we select our 18F-FDG data from the
publicly available Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
[23]. As the main objective is to predict the MCI conversion to AD, we choose
subjects diagnosed as MCI at the baseline, (1) then progress and stay with AD
for pMCI and (2) stay in the MCI stage or even revert to Normal Control (NC)
for sMCI. We collect a cohort of subjects for both stages (i.e., sMCI and pMCI),
where we select only the original images without any pre-processing. Finally,
the obtained data are checked manually to remove the images that fail in the
pre-processing step (described in the next paragraph). The dataset includes 50
18F-FDG images per class having a demographic characteristics listed in Table 1,
where MMSE is the Mini-Mental State Examination.

Table 1. Subject’s demographic information.

Characteristics # of Subjects Male/Female Age MMSE

sMCI 50 21/29 71.44 ± 6.69 28.47 ± 1.24

pMCI 50 32/18 72.65 ± 4.75 27.11 ± 1.64

Data Pre-processing Data are pre-processed using the SPM12 [24] software.
First, spatial normalization is done based on the template of the Montreal Neu-
rological Institute (MNI) to put the images in the same standardized space of
91 × 109 × 91 with a voxel size of 2 × 2 × 2mm3. Second, images are smoothed
using a Gaussian filter of 8mm Full Width at Half-Maximum (FWHM).

Technically, the transformer encoder architecture requires a divisible resolu-
tion to build the LSA and GSA [20] (i.e., H%k1 = 0 and W%k2 = 0, where
H = {91, 109} and W = {91, 109} depending on the image view). A slice selec-
tion step is mandatory. Hence, in order to improve the image content quality
and to respond to the transform’s input resolution requirement, we removed the
first and the last αv brain slices for each view v. These αv values are chosen
by checking the intensity’s histogram of slices for each view of all the samples
[25]. We hypothesize that slices with small content/lower intensity values are
not pertinent for diagnosis. By browsing the slices from the two extremities and
automatically checking the pixels intensity distribution, we remove slices (only
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the first and the last slices) in which we found 75% pixels with an intensity I
lower than 150, with I ∈ [0 . . . 255]. At the end, we obtain αaxial = αsagittal = 7
and αcoronal = 15, where we get a volume of 77×79×77 per sample. We add the
last removed 3, 1 and 3 slices for the axial, sagittal and coronal views respectively
to get a divisible size volume 80 × 80 × 80.

3.2 Network Training Parameters and Implementation Details

For each view, the transformer encoder includes two stages (green color in Fig. 1)
with a variable resolution to better tackle our dense prediction. The first stage
has a resolution of H

2 × W
2 and a sub-windows of size (8 × 8) (i.e., H

k1
= W

k2
= 8),

while for the remaining we fix the sub-windows size to (5×5) with a feature map
of size H

4 × W
4 . More additionally, the number of channels is 64 for both stages.

Thus, the output vector of each view has a size of Dp = 64, which gives a multi-
view embedding representation of size zemb = 64 × 3 = 192. Then, supervised
contrastive loss is used to minimize the distance between the embedding of the
augmentation-based sample and any sample that belongs to the same class. We
trained our encoder blocks for n = 150 epochs with a batch size of 4 using Adam
as an optimizer with β1 = 0.9 and β2 = 0.999. The initial learning rate is set
to 2e − 3 and decayed to 3e − 5 within 150 iterations. Afterward, we train an
MLP to build on the top of the encoder’s frozen blocks, including 03 FC layers
of 32, 16, and 02 neurons to make the predictions. The latter are trained for the
same number of iterations (i.e., n = 150) with the same hyper-parameters as
previously, except for the learning rate which is fixed to 1e − 3. Finally, due to
the limited number of samples, our model is validated on a fixed test set. Thus,
we evaluate MISS-Net on different data splits (cross-validation) using 05 fold to
test its generalization ability. Note that all the chosen parameters are based on
the best performances. We implement the proposed framework using PyTorch
1.9 on a single 32G Tesla V 100 GPU.

3.3 Results and Evaluation

Performance of Single View The proposed model architecture is built along
three views to make a prediction between (sMCI vs. pMCI) and the final result
is given by taking into consideration all the views jointly. To showcase the per-
formance and validate the efficiency of the proposed combination compared to
each view separately in prediction, we build a separate model based only on
the axial, sagittal, or coronal view using the same hyper-parameters. In Fig. 2,
we report the results in terms of accuracy (ACC), sensitivity (SEN), specificity
(SPEC), and the area under the curve (AUC) for each view (namely axial, sagit-
tal and coronal) and the concatenation of them. It can be seen from Fig. 2,
that the axial view reports the best performances compared to the remaining
views, especially in detecting the pMCI stage (i.e., specificity) with an average
precision of 83.57%. Moreover, our MISS-Net model which uses the multi-view
information improves the diagnostic accuracy by ≈2%.
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Fig. 2. Performance of each view and
the concatenation of them for sMCI vs.
pMCI(%).

Fig. 3. Results of the ablation studies of
our MISS-Net for sMCI vs. pMCI(%).

Fig. 4. Feature visualization via t-SNE of the Multi-view embedding representation.
(a) without contrastive learning. (b) with contrastive learning.

Ablation Study. In order to study the effect of the 2D depth-wise convolution
layer and the contrastive learning process in learning the multi-view embedding,
we conduct two independent sets of experiments. First, we replace the 2D depth-
wise convolution layer with a GAP layer and we train the network following the
same training steps as the proposed method. Figure 3 presents the obtained
classification results for both layers. We can see, that the 2D depth-wise convo-
lution layer improves the prediction diagnosis with ≈5% in terms of accuracy,
especially in detecting the pMCI stages compared to the use of the GAP layer,
which proves that pertinent information in medical images are localized. Second,
we omit the contrastive learning step and we train directly the model using only
the binary cross-entropy loss function while keeping the same hyper-parameters
on the same architecture. Figure 3 represents the classification results with and
without SCL. We note that the contrastive learning step boosts the accuracy
and the AUC metrics by respectively 5.57% and 5.63%. Furthermore, the SCL
step boosts the sensitivity with an average precision of 90.61%, which raises the
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Table 2. Results compared to SOTA prediction works of sMCI vs. pMCI (%).

Method Modality Data ACC SEN SPEC BAC AUC

[7]2020 fMRI 44/38 0.7805 0.7368 0.8182 0.7775 0.8571

DTI 0.5366 0.5789 0.5000 0.5390 0.5260

[8]2021 fMRI 44/38 0.7926 0.8421 0.7500 0.7960 0.9067

DTI 0.8292 0.9473 0.7272 0.8373 0.9414

[4]2022 MRI 145/104 0.8330 0.7270 0.9230 0.8250 0.8880

[5]2021 MRI 232/172 0.8210 0.8120 0.8090 0.8105 0.9200

[6]2022 MRI 296/302 0.8300 0.9000 0.7600 0.8300 0.8700

[13]2020 PET+MRI 297/196 0.8333 08235 0.8966 0.8600 0.8947

[14]2021 PET+MRI 59/55 0.7870 0.7730 0.8000 0.7865 0.7756

[11]2020 PET+MRI 273/187 0.7387 0.9055 0.4952 0.7003 0.7000

PET 0.6496 0.7817 0.4440 0.6128 0.6300

[9]2022 PET 290/147 0.8409 0.8235 0.9000 0.8617 0.8889

[12]2020 PET 360/166 0.8305 0.7576 0.8750 0.8163 0.8680

MISS-Net PET 50/50 0.8713 ±0.02 0.9061 ±0.03 0.8365 ±0.01 0.8713 ±0.02 0.9455 ±0.01

correctly detected samples of sMCI stage, making the model more adequate for
the early prediction of AD conversion. Figure 4, represents the learned feature
(multi-view embedding representation zemb) visualization with and without the
SCL step. Here, we use the t-distributed Stochastic Neighbor Embedding (t-
SNE) technique [26] for features visualization. We can conclude that the SCL
step improves the embedding representation quality by optimally exploiting the
complementarity of the three views.

Comparison with SOTA Approaches. We also compare our method with
several recent SOTA works aiming to predict the MCI conversion including dif-
ferent modalities. We add the balance accuracy (BAC) as a metric to make a fair
comparison since the data are not balanced for the SOTA works. From Table 2,
our method outperforms those based on 18F-FDG imaging data [9,11,12]. Specif-
ically, we surpass them with more than 3% in terms of accuracy and ≈ 1% in
terms of (BAC). In addition, compared to the works that used MRI data [4–6],
fMRI and DTI [7,8] our method also achieves an improvement in most metrics.
More additionally, even fusionning PET and MRI data to get complementary
information [11,13,14], the MISS-Net has dominant performance compared to
them. Thanks to the multi-view embedding representation which helps to get
such effectiveness.

4 Conclusion

We propose a novel framework for predicting the transitional phases of AD with
FDG-PET. MISS-Net captures the local and inter slices information for each
view and takes into consideration all the views jointly to make a prediction.
Our method with supervised contrastive learning achieves promising prediction
performance of sMCI vs. pMCI with small data. Obtained results outperform
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recent state-of-the-art results with FDG-PET as well as with multi-modal data.
In future work, we aim to extend the proposed work to deal with multi-modal
data and to evaluate it on others diagnosis problems that use 3D medical imag-
ing.
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2. López, C., Sánchez, J.L., Mart́ın, J.: The effect of cognitive stimulation on the
progression of cognitive impairment in subjects with alzheimer’s disease. Appl.
Neuropsychol.: Adult 29 1–10 (2020)

3. Lisowska, A., et al.: Joint pairing and structured mapping of convolutional brain
morphological multiplexes for early dementia diagnosis. Brain Connectivity 9(1),
22–36 (2019)

4. Zheng, G., et al: A transformer-based multi-features fusion model for prediction of
conversion in mild cognitive impairment. Methods 204, 241–248 (2022)

5. Zhang, X., Han, L., Zhu, W., Sun, L., Zhang, D.: An explainable 3D residual
self-attention deep neural network for joint atrophy localization and Alzheimer’s
disease diagnosis using structural MRI. IEEE J. Biomed. Health Inf. (2021)

6. Zhang, F., et al: A single model deep learning approach for Alzheimer’s disease
diagnosis. Neuroscience 491, 200–214 (2022)

7. Lei, B., et al: Self-calibrated brain network estimation and joint non-convex multi-
task learning for identification of early Alzheimer’s disease. Med. Image Anal. 61,
101652 (2020)

8. Song, X., et al: Graph convolution network with similarity awareness and adap-
tive calibration for disease-induced deterioration prediction. Med. Image Anal. 69,
101947 (2021)

9. Cui, W., et al: BMNet: a new region-based metric learning method for early
Alzheimer’s disease identification with FDG-PET images. Front. Neurosci. 16
(2022)

10. Rubinski, A., Franzmeier, N., Neitzel, J., Ewers, M.: FDG-PET hypermetabolism
is associated with higher tau-PET in mild cognitive impairment at low amyloid-
PET levels. Alzheimer’s research & therapy 12(1), 1–12 (2020). https://doi.org/
10.1186/s13195-020-00702-6

11. Hao, X., et al: Multi-modal neuroimaging feature selection with consistent metric
constraint for diagnosis of Alzheimer’s disease. Med. Image Anal. 60, 101625 (2020)

12. Pan, X., et al.: Multi-view separable pyramid network for AD prediction at MCI
stage by 18 F-FDG brain PET imaging. IEEE Trans. Med. Imaging 40(1), 81–92
(2020)

13. Fang, C., et al.: Gaussian discriminative component analysis for early detection of
Alzheimer’s disease: a supervised dimensionality reduction algorithm. J. Neurosci.
Methods 344, 108856 (2020)

14. Shen, H.T., et al: Heterogeneous data fusion for predicting mild cognitive impair-
ment conversion. Inf. Fusion 66, 54–63 (2021)

15. Ben-Ahmed, O., Lecellier, F., Paccalin, M., Fernandez-Maloigne, C.: Multi-view
visual saliency-based MRI classification for Alzheimer’s disease diagnosis. In: 2017
Seventh International Conference on Image Processing Theory, Tools and Appli-
cations (IPTA), pp. 1–6. IEEE (2017)

https://doi.org/10.1186/s13195-020-00702-6
https://doi.org/10.1186/s13195-020-00702-6


90 A. Kherchouche et al.

16. Li, F., Liu, M., Initiative, A.D.N., et al.: A hybrid convolutional and recurrent neu-
ral network for hippocampus analysis in Alzheimer’s disease. J. Neurosci. Methods
323, 108–118 (2019)

17. Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers
in vision: a survey. ACM Comput. Surv. (CSUR) (2021)

18. Wyburd, M.K., Dinsdale, N.K., Namburete, A.I.L., Jenkinson, M.: TEDS-Net:
enforcing diffeomorphisms in spatial transformers to guarantee topology preserva-
tion in segmentations. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol.
12901, pp. 250–260. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
87193-2 24

19. Yuan, L., ET AL: Tokens-to-token ViT: training vision transformers from scratch
on imagenet. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 558–567 (2021)

20. Chu, X., et al: Twins: revisiting the design of spatial attention in vision transform-
ers. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

21. Khosla, P., et al.: Supervised contrastive learning. Adv. Neural. Inf. Process. Syst.
33, 18661–18673 (2020)

22. Rahimzadeh, M., Parvin, S., Safi, E., Mohammadi, M.R.: Wise-SrNet: a novel
architecture for enhancing image classification by learning spatial resolution of
feature maps. arXiv preprint arXiv:2104.12294 (2021)

23. Jack Jr, C.R., et al: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI
methods. J. Magn. Reson. Imaging: Official J. Int. Soc. Magn. Reson. Med. 27(4),
685–691 (2008)

24. Penny, W.D., Friston, K.J., Ashburner, J.T., Kiebel, S.J., Nichols, T.E.: Statistical
Parametric Mapping: The Analysis of Functional Brain Images. Elsevier, Amster-
dam (2011)

25. Shakarami, A., Tarrah, H., Mahdavi-Hormat, A.: A cad system for diagnosing
alzheimer’s disease using 2d slices and an improved alexnet-svm method. Optik
212, 164237 (2020)

26. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9(11) (2008)

https://doi.org/10.1007/978-3-030-87193-2_24
https://doi.org/10.1007/978-3-030-87193-2_24
http://arxiv.org/abs/2104.12294


TransDeepLab: Convolution-Free
Transformer-Based DeepLab v3+
for Medical Image Segmentation

Reza Azad1(B), Moein Heidari2, Moein Shariatnia3,
Ehsan Khodapanah Aghdam4, Sanaz Karimijafarbigloo1, Ehsan Adeli5,

and Dorit Merhof1,6

1 Institute of Imaging and Computer Vision, RWTH Aachen University,
Aachen, Germany

{azad,dorit.merhof}@lfb.rwth-aachen.de
2 School of Electrical Engineering, Iran University of Science and Technology,

Tehran, Iran
3 School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

4 Department of Electrical Engineering, Shahid Beheshti University, Tehran, Iran
5 Stanford University, Stanford, USA

6 Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany

Abstract. Convolutional neural networks (CNNs) have been the de
facto standard in a diverse set of computer vision tasks for many years.
Especially, deep neural networks based on seminal architectures such as
U-shaped model with skip-connections or atrous convolution with pyra-
mid pooling have been tailored to a wide range of medical image anal-
ysis tasks. The main advantage of such architectures is that they are
prone to detaining versatile local features. However, as a general con-
sensus, CNNs fail to capture long-range dependencies and spatial cor-
relations due to the intrinsic property of confined receptive field size of
convolution operations. Alternatively, Transformer, profiting from global
information modeling that stems from the self-attention mechanism, has
recently attained remarkable performance in natural language process-
ing and computer vision. Nevertheless, previous studies prove that both
local and global features are critical for a deep model in dense prediction,
such as segmenting complicated structures with disparate shapes and
configurations. This paper proposes TransDeepLab, a novel DeepLab-
like pure Transformer for medical image segmentation. Specifically, we
exploit hierarchical Swin-Transformer with shifted windows to extend
the DeepLabv3 and model the Atrous Spatial Pyramid Pooling (ASPP)
module. A thorough search of the relevant literature yielded that we are
the first to model the seminal DeepLab model with a pure Transformer-
based model. Extensive experiments on various medical image segmenta-
tion tasks verify that our approach performs superior or on par with most
contemporary works on an amalgamation of Vision Transformer and
CNN-based methods, along with a significant reduction of model com-
plexity. The codes and trained models are publicly available at github.
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1 Introduction

Automatic and accurate medical image segmentation, which consists of auto-
mated delineation of anatomical structures and other regions of interest (ROIs),
plays an integral role in the assessment of computer-aided diagnosis (CAD)
[4,16]. As a flagship of deep learning, convolutional neural networks (CNNs)
have scattered existing contributions in various medical image segmentation
tasks for many years [21,24]. Among diverse CNN variants, the widely acknowl-
edged symmetric Encoder-Decoder architecture nomenclature as U-Net [24] has
demonstrated eminent segmentation potential. It mainly consists of a series of
continuous convolutional and down-sampling layers to capture contextual seman-
tic information through the contracting path. Then in the decoder, using lat-
eral connections from the encoder, the coarse-grained deep features, and fine-
grained shallow feature maps are up-sampled to generate a precise segmentation
map. Following this technical route, many U-Net variants such as U-Net++ [30]
and Res-UNet [29] have emerged to improve the segmentation performance. A
paramount caveat of such architectures is the gap of restricted receptive field
size, which makes the deep model unable to capture sufficient contextual infor-
mation, causing the segmentation to fail in complicated areas such as bound-
aries. To mitigate this problem, the notable DeepLab [5] work was exhibited,
triggering broad interest in the image segmentation era. The authors estab-
lished remarkable contributions which experimentally proved to have substan-
tial practical merit. First, they introduced a novel convolution operation with
up-sampled filters called ‘Atrous Convolution’, which allows enlarging the field
of view of filters to absorb larger contexts without imposing the burden of the
high amount of computation or increasing number of parameters. Second, to
incorporate smoothness terms enabling the network to capture fine details, they
exploit a fully connected Conditional Random Field (CRF) to refine the segmen-
tation results. Following the pioneering work, extended versions were employed
to accommodate further performance boosts. As such, the DeepLabv2 [6] was
proposed to conquer the challenge of the existence of objects at multiple scales.
To this end, they propose the atrous spatial pyramid pooling (ASPP) module
to segment objects at multiple scales robustly. ASPP probes a feature map with
multiple atrous convolutions with different sampling rates to obtain multi-scale
representation information. Afterward, the DeepLabv3 [7] designed an Encoder-
Decoder architecture with atrous convolution to attain sharper object bound-
aries, where they utilized depth-wise separable convolution to increase compu-
tational efficiency. Ultimately, Chen et al. [8] proposed the DeepLabv3+ that
extends DeepLabv3 by adding a simple yet effective decoder module to facil-
itate the segmentation performance. Despite all the efforts, the shortcomings
of CNNs are also very prominent as they inevitably have constraints in learn-
ing long-range dependency and spatial correlations due to their inductive bias of
locality and weight sharing [28] that results in sub-optimal segmentation of com-
plex structures. Recently, the novel architecture Transformer [26] has sparked
discussions in computer vision era [11,12] due to its elegant design and existence
of attention mechanism. Indeed, it has been witnessed as capable of learning
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long-term features and felicitously modeling global information. The pioneering
Vision Transformer (ViT) [11] was the major step toward adapting Transformers
for vision tasks which accomplished satisfactory results in image classification.
It mainly proposed to split the input image into patches and consider them as
the source of information for the Transformer module. Despite being feasibly
designed, the drawbacks of this scenario are noticeable and profound [3]. First,
Transformers impose a quadratic computational load, making it intolerable for
dense prediction with high-resolution image tasks. Moreover, despite being a
good design choice for capturing explicit global context and long-range rela-
tions, Transformers are weak in capturing low-level pixel information, which is
indisputably crucial in developing accurate segmentation. Thus, to circumvent
the high memory demand in Transformers, the Swin-Transformer [19] proposed
a hierarchical ViT with local computing of self-attention with non-overlapping
windows, which achieved a linear complexity as opposed to ViT. Recently, faced
with the dilemma between efficient CNNs and powerful ViT, crossovers between
the two areas have emerged where most try to model a U-Net-like architecture
with Transformers. Examples of such are Trans-UNet [4], Swin-UNet [3], and DS-
TransUNet [17]. Inspired by the breakthrough performance of DeepLab models
with attention mechanism in segmentation tasks [2], in this paper, we propose
TransDeepLab, a DeepLab-like pure Transformer for medical image segmenta-
tion. Akin to the recently proposed Swin-UNet that models a U-Net structure
with a Transformer module, we aim to imitate the seminal DeepLab with Swin-
Transformer. The intuition behind our choice is that we intend to facilitate the
efficient deployment of Swin-Transformer to restrain the hinder of computational
demand of ViT. Moreover, applying the Swin-Transformer module with multiple
window sizes can make it a lightweight yet suitable design choice for multi-scale
feature fusion, which is a particularly critical equipment in segmentation tasks.
In particular, we aim to substitute the ASPP module of the DeepLabv3+ model
with the aforementioned hierarchical design. All these lead us to the fact that the
proposed TransDeepLab can be the optimal design that is able to efficiently com-
pensate for the mediocre design flaws of DeepLab. The proposed method acquires
a significant parameter decrease compared to the cohort study. We will elabo-
rate on the details of our proposal by pinpointing the scope and contributions
of this paper in Sect. 2. Our contributions are as follows: (1) By incorporating
the advantages of hierarchical Swin-Transformer into the encoder, decoder, and
ASPP module of DeepLab, the proposed TransDeepLab can effectively capture
long-range and multi-scale representation. (2) The cross-contextual attention to
adaptively fuse multi-scale representation. (3) To the best of our knowledge,
this work is the first attempt to combine the Swin-Transformer with DeepLab
architecture for medical image segmentation.

2 Proposed Method

We propose the TransDeepLab model (Fig. 1), a pure Transformer-based
DeepLabv3+ architecture, for medical image segmentation. The network uti-
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lizes the strength of the Swin-Transformer block [19] to build hierarchical repre-
sentation. Following the original architecture of the DeepLab model, we uti-
lize a series of Swin-Transformer blocks to encode the input image into a
high-representational space. More specifically, the encoder module splits the
input medical image into non-overlapping patches of size 4 × 4, resulting in
4 × 4 × 3 = 48 as the feature dimension of each patch (signified as C) and
applies the Swin-Transformer block to encode both local semantic and long-range
contextual representation. To model Atrous Spatial Pyramid Pooling (ASPP),
a pyramid of Swin-Transformer blocks with varying window sizes is designed.
The main idea of the Swin pyramid is to capture multi-scale information by
exploiting different window sizes. The obtained multi-scale contextual represen-
tation is then fused into the decoder module using a Cross-Contextual attention
mechanism. The attention block applies two-level attention (e.g., channel and
spatial attention) on the tokens (derived from each level of the pyramid) to for-
mulate the multi-scale interaction. Finally, in the decoding path, the extracted
multi-scale features are first bilinearly upsampled and then concatenated with
the low-level features from the encoder to refine the feature representation. The
details of each component of the proposed network will be elaborated on in the
subsequent sections.

Fig. 1. The architecture of TransDeepLab, which extends the encoder-decoder struc-
ture of DeepLabv3+. Encoder and decoder are all constructed based on Swin-
Transformer blocks.

2.1 Swin-Transformer Block

Based on the fact that typical vision Transformers implement the self-attention
on a global receptive field, they endure quadratic computational complexity to
the number of tokens. To mitigate this, the Swin-Transformer has been devised
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whose key design characteristic is its shifting of the window partitioner between
consecutive self-attention layers constructed by designing a module based on
shifted windows as a surrogate for the multi-head self-attention (MSA) module
in a Transformer block. Thus, a Swin-Transformer block comprises a shifted
window-based MSA module, LayerNorm (LN) layer, a two-layer MLP, and
GELU nonlinearity. The window-based multi-head self-attention (W-MSA) mod-
ule and the shifted window-based multi-head self-attention (SW-MSA) module
are applied in the Transformer blocks in tandem. With such shifted window
partitioning scheme, consecutive Swin-Transformer blocks can be formulated as:

ẑl = W-MSA
(
LN

(
zl−1

))
+ zl−1

zl = MLP
(
LN

(
ẑl

))
+ ẑl

ẑl+1 = SW-MSA
(
LN

(
zl

))
+ zl

zl+1 = MLP
(
LN

(
ẑl+1

))
+ ẑl+1, (1)

where ẑl and zl denote the outputs of W-MSA and SW-MSA module of the lth

block, respectively. Following [13,14] the self-attention is computed according
to:

Attention(Q,K, V ) = SoftMax
(

QKT

√
d

+ B

)
V, (2)

where Q,K, V ∈ R
M2×d are the query, key and value matrices; d is the query/key

dimension, and M2 is the number of patches in a window and B indicates the
bias matrix whose values are acquired from B̂ ∈ R

(2M−1)×(2M+1).

2.2 Encoder

Inspired by the low computation burden of the Swin-Transformer [19] block
(contrary to the quadratic computation of the Vision Transformer [11]) and its
strength in modeling long-range contextual dependency (unlike regular CNNs),
we model our encoder model using the stacked Swin-Transformer module. Our
TransDeepLab encoder first feeds the C-dimensional tokenized input with the
resolution of H

4 × W
4 into two successive Swin-Transformer blocks to produce

a hierarchical representation while keeping the resolution unchanged. Then, it
applies a series of stacked Swin-Transformer blocks to gradually reduce the spa-
tial dimension (similar to a CNN encoder) of the feature map and increase the
feature dimension. The resulted mid-level representation is then fed to the Swin
Spatial Pyramid Pooling (SSPP) block to capture multi-scale representation.

2.3 Swin Spatial Pyramid Pooling

The spatial resolution of the deep features extracted by the encoder module is
considerably decreased due to the stacked Swin-Transformer blocks followed by
the patch merging layers (similar to the consecutive down-sampling operation
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in a CNN encoder). Thus, to compensate for the spatial representation and pro-
duce a multi-scale representation, the DeepLab model utilizes an ASPP module,
which replaces the pooling operation with atrous convolutions [6]. Concretely,
DeepLab aims to form a pyramid representation by applying parallel convolu-
tion operations with multiple atrous rates. To model such an operation in a
pure Transformer fashion, we create a Swin Spatial Pyramid Pooling (SSPP)
block with varying window sizes to capture multi-scale representation. In our
design, the smaller window size aims to capture local information while the
larger windows are included to extract global information. The resulted multi-
scale representation is then fed to a cross-contextual attention module to fuse
and capture a generic representation in a non-linear technique.

2.4 Cross-Contexual Attention

In the DeepLabv3+ model, the feature vectors resulting from each level of the
pyramid are concatenated and fed to the depthwise separable convolution to
perform the fusion operation. This operation performs the convolution for each
channel separately and is thus unable to model the channel-wise dependency
among pyramid levels. In our design, to model the multi-scale interaction and
fuse the pyramid features, we propose a cross-attention module. To this end,
we assume that each level of the pyramid (zP×C

m , P and C indicate the num-
ber of token and embedding dimension, respectively) represents the object of
interest in different scales, thus, by concatenating all these features in a new
dimension we create a multi-scale representation zP×MC

all = [z1‖z2...‖zM], where
‖ shows the concatenation operation. Next, to adaptively emphasize the con-
tribution of each feature map and surpass the less discriminative features, we
propose a scale attention module. Our attention module takes into account the
global representation of each channel and applies the MLP layer to produce the
scaling coefficients (wscale) to selectively scale the channel representation among
pyramid levels:

wscale = σ (W2δ (W1GAPzall
)) , z′

all = wscale · zall (3)

where W1 and W2 indicate the learnable MLP parameters and δ and σ show
the ReLU and Sigmoid activations, and the GAP indicates the global average
pooling. In the second attention level, we learn scaling parameters to highlight
the informative tokens. To do so, we apply the same strategy:

wtokens = σ
(
W3δ

(
W4GAPz′

all

))
, z′′

all = wtokens · z′
all (4)

2.5 Decoder

In the decoder, the acquired features (z′′
all) corresponding to the attention module

are first passed through the Swin-Transformer block with a patch-expanding
operation to be upsampled by a factor of 4 and then concatenated with the
low-level features. The scheme of concatenating the shallow features and the
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deep features together helps in reducing the loss of spatial details by the virtue
of down-sampling layers. Finally, a series of cascaded Swin-Transformer blocks
with path-expanding operations are applied to reach the full resolution of H×W .

3 Experiments

3.1 Datasets

Synapse Multi-organ Segmentation. This dataset includes 30 abdominal
CT scans with 3779 axial contrast-enhanced clinical images in total. Each CT
posess volumes in range of 85–198 slices of 512 × 512 pixels, with a voxel spatial
resolution of ([0.54–0.54] × [0.98–0.98] × [2.5–5.0]) mm3. We follow [4] in data
partitioning and reporting the quantitative results.

Skin Lesion Segmentation. Our analysis for skin lesion segmentation was
based on the ISIC 2017 [10], ISIC 2018 [9] and PH2 [20] datasets. The ISIC
datasets were collected by the International Skin Imaging Collaboration (ISIC)
as a large-scale dataset of dermoscopy images along with their corresponding
ground truth annotations. Furthermore, we exploit the PH2 dataset and pursue
the experimental setting used in [18] for splitting the data.

3.2 Implementation Details

Turning to implementation aspects, the proposed TransDeepLab is implemented
based on the PyTorch library and trained on a single Nvidia RTX 3090 GPU. We
train all of our models upstream using the SGD solver in 200 epochs using a batch
size of 24. The softmax Dice loss and cross-entropy loss are employed as objective
functions, and L2 Norm is also adopted for model regularization. Rotation and
flipping techniques are used as data augmentation methods with the aim of
diversifying the training set and obtaining an unbiased training strategy. An
initial learning rate of 0.05 with an adaptive decay value is used to train the
model. In addition, we use the pre-trained weights on ImageNet for the Swin-
Transformer module to initialize their parameters. We embraced a task-specific
approach to the scope of evaluation metrics aiming to trigger a fair comparison
with respect to each experiment. These metrics include: 1) Dice Similarity Score,
2) Hausdorff Distance, 3) Sensitivity and Specificity, 4) Accuracy.

3.3 Evaluation Results

In this section, we conduct experiments to evaluate our proposed model and com-
pare it with SOTA methods on the two aforementioned medical image segmen-
tation tasks. Notably, we assess TransDeepLab in two distinct ways in our exper-
iments, i.e., quantitative analysis and along with selected visualization results.
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Results of Synapse Multi-organ Segmentation. Experiment on Synapse
multi-organ CT dataset (Table 1) exhibit the effectiveness and generalization
potential of our method, achieving the best performance with segmentation accu-
racy of 80.16% (DSC ↑) and 21.25% (HD ↓). Indicatively, we attain the best per-
formance on Kidney(L) with 84.08%, Pancreas with 61.19%, and Stomach with
78.40% dice score. A sample of segmentation results of synapse multi-organ is
presented in Fig. 2. The organ instances are all detected and classified correctly
with slight variations in segmentation contours. Compared to the CNN-based
DeepLab model, our approach produces better segmentation results. All in all,
these results support our ultimate motivation of modeling both local and global
contextual representation with a pure Transformer-based method along with
providing a significant performance boost in the field of segmentation, where
maintaining rich semantic information is crucial.

Table 1. Comparison results of the proposed method on the Synapse dataset.

Methods DSC ↑ HD ↓ Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

V-Net [21] 68.81 − 75.34 51.87 77.10 80.75 87.84 40.05 80.56 56.98

R50 U-Net [4] 74.68 36.87 87.74 63.66 80.60 78.19 93.74 56.90 85.87 74.16

U-Net [24] 76.85 39.70 89.07 69.72 77.77 68.60 93.43 53.98 86.67 75.58

R50 Att-UNet [4] 75.57 36.97 55.92 63.91 79.20 72.71 93.56 49.37 87.19 74.95

Att-UNet [22] 77.77 36.02 89.55 68.88 77.98 71.11 93.57 58.04 87.30 75.75

R50 ViT [4] 71.29 32.87 73.73 55.13 75.80 72.20 91.51 45.99 81.99 73.95

TransUnet [4] 77.48 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62

SwinUnet [3] 79.13 21.55 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60

DeepLabv3+ (CNN) [6] 77.63 39.95 88.04 66.51 82.76 74.21 91.23 58.32 87.43 73.53

Proposed method 80.16 21.25 86.04 69.16 84.08 79.88 93.53 61.19 89.00 78.40

Fig. 2. Visualization result of the proposed method on the Synapse dataset.

Results of Skin Lesion Segmentation. The results are summarized in
Table 2. Our TransDeepLab performs better than other competitors w.r.t. most
of the evaluation metrics. We also show some samples of the skin lesion segmen-
tation obtained by the suggested network in Fig. 3. It is evident from Fig. 3 that
TransDeepLab exhibits higher boundary segmentation accuracy together with a
performance boost in capturing the fine-grained details.
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Table 2. Performance comparison of the proposed method against the SOTA
approaches on skin lesion segmentation benchmarks.

Methods ISIC 2017 ISIC 2018 PH2

DSC SE SP ACC DSC SE SP ACC DSC SE SP ACC

U-Net [24] 0.8159 0.8172 0.9680 0.9164 0.8545 0.8800 0.9697 0.9404 0.8936 0.9125 0.9588 0.9233

Att U-Net [22] 0.8082 0.7998 0.9776 0.9145 0.8566 0.8674 0.9863 0.9376 0.9003 0.9205 0.9640 0.9276

DAGAN [15] 0.8425 0.8363 0.9716 0.9304 0.8807 0.9072 0.9588 0.9324 0.9201 0.8320 0.9640 0.9425

TransUNet [4] 0.8123 0.8263 0.9577 0.9207 0.8499 0.8578 0.9653 0.9452 0.8840 0.9063 0.9427 0.9200

MCGU-Net [1] 0.8927 0.8502 0.9855 0.9570 0.895 0.848 0.986 0.955 0.9263 0.8322 0.9714 0.9537

MedT [25] 0.8037 0.8064 0.9546 0.9090 0.8389 0.8252 0.9637 0.9358 0.9122 0.8472 0.9657 0.9416

FAT-Net [27] 0.8500 0.8392 0.9725 0.9326 0.8903 0.9100 0.9699 0.9578 0.9440 0.9441 0.9741 0.9703

TMU-Net [23] 0.9164 0.9128 0.9789 0.9660 0.9059 0.9038 0.9746 0.9603 0.9414 0.9395 0.9756 0.9647

SwinU-Net [3] 0.9183 0.9142 0.9798 0.9701 0.8946 0.9056 0.9798 0.9645 0.9449 0.9410 0.9564 0.9678

DeepLabv3+ (CNN) [6] 0.9162 0.8733 0.9921 0.9691 0.882 0.856 0.977 0.951 0.9202 0.8818 0.9832 0.9503

Proposed method 0.9239 0.8971 0.9886 0.9705 0.9122 0.8756 0.9889 0.9654 0.9456 0.9161 0.9896 0.9657

Fig. 3. Segmentation results of the proposed method on the skin lesion segmentation.

Model Complexity. Last but not least, we analyze the training parameters
of the proposal, as heavy deep nets with small medical image datasets are usu-
ally prone to overfitting. TransDeepLab is essentially a lightweight model with
only 21.14M parameters. Compared with Swin-UNet [3], the original DeepLab
model [6], and Trans-UNet [4] which have 27.17M, 54.70M, and 105M parame-
ters respectively, our lightweight TransDeepLab shows great superiority in terms
of model complexity whilest being dominant in terms of evaluation metrics.

3.4 Ablation Study

CNN vs Transformer Encoder. The ablation experiment is conducted to
explore the Transformer’s replacement design. In particular, we employed the
same decoder and SSPP module as our baseline, but replaced the encoder with a
CNN backbone (e.g., ResNet-50) model (denoted as CNN as Encoder in Table 3).
Judging from the results of Table 3, we perceive that a solitary CNN-based
encoder yields a sub-optimal performance. Literally, the Transformer module
indeed helps TransDeepLab to do segmentation to a certain degree.

Attention Strategy. Then, we compared the policy of fusing each level of the
Swin-Transformer resulting in multi-scale representation. Concretely, we com-
pare the proposed cross-attention module with a basic scale fusion method, con-
catenating the feature maps and applying a fully connected layer to fuse them
(denoted as Basic Scale Fusion in Table 3). Judging from Table 3, we deduce that
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the cross-attention module confirms our intuition of capturing the interaction of
feature levels in terms of informativeness of the tokens in different scales. More-
over, as for perceptual realism, we have provided sample segmentation results
in Fig. 2 which indicate that by using the cross contextual attention mechanism
we attain closer to the ground truth results, in line with the real situation. This
visualization divulges the effect of a multi-scale Transformer module for long-
range contextual dependency learning leading to precise localization abilities,
especially in boundary areas, a substantial caveat in the image segmentation.

SSPP Influence. As discussed above, the SSPP module improves the represen-
tation ability of the model in context patterning by probing features at multiple
scales to attain multi-scale information. We conduct an inquiry into the fea-
ture aggregation from adjacent layers of Swin-Transformer assembling the SSPP
module with four sets of combinations which explicitly range from 1 to 4 in our
experiments. In Table 3 by comparing the results, we can deduce that using a two-
level SSPP module mostly leads to dice score performance gains as it assists in
handling scale variability in medical image segmentation. Moreover, we perceive
that a three-level SSPP module brings along a notable performance in terms of
Hausdorff distance. However, to attain more efficiency, the resolution of the input
image should be in compliance with the SSPP level, signifying that increasing
the number of SSPP levels should follow a higher resolution image. The results
also corroborate the propensity of Transformer in incorporating global context
information into the model than its CNN counterpart. While one might specu-
late that thoroughly modeling a CNN-based network using Transformer would
cause model complexity, it is worth mentioning that we aim to overcome this
issue by exploiting the Swin-Transformer instead of a typical ViT.

Table 3. Ablation study on the impact of modifying modules inside the proposed
method. We report our results using the Synapse dataset.

Setting DSC ↑ HD ↓ Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

CNN as encoder 75.89 28.87 85.03 65.17 80.18 76.38 90.49 57.29 85.68 69.93

Basic scale fusion 79.16 22.14 85.44 68.05 82.77 80.79 93.80 58.74 87.78 75.96

SSPP level 1 79.01 26.63 85.61 68.47 82.43 78.02 94.19 58.52 88.34 76.46

SSPP level 2 80.16 21.25 86.04 69.16 84.08 79.88 93.53 61.19 89.00 78.40

SSPP level 3 79.87 18.93 86.34 66.41 84.13 82.40 93.73 59.28 89.66 76.99

SSPP level 4 79.85 25.69 85.64 69.36 82.93 81.25 93.09 63.18 87.80 75.56

4 Conclusion

In this paper, we present TransDeepLab, a pure Transformer-based architec-
ture for medical image segmentation. Specifically, we model the encoder-decoder
DeepLabv3+ model and leverage the potential of Transformers by using the
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Swin-Transformer as the fundamental component of the architecture. Showcased
on a variety of medical image segmentation tasks, TransDeepLab has shown the
potential to effectively build long-range dependencies and outperforms other
SOTA Vision Transformers in our experiments.
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Abstract. Osteoporosis is a common disease that increases fracture risk.
Hip fractures, especially in elderly people, lead to increased morbidity,
decreased quality of life and increased mortality. Being a silent disease
before fracture, osteoporosis often remains undiagnosed and untreated.
Areal bone mineral density (aBMD) assessed by dual-energy X-ray
absorptiometry (DXA) is the gold-standard method for osteoporosis diag-
nosis and hence also for future fracture prediction (prognostic). However,
the required special equipment is not broadly available everywhere, in par-
ticular not to patients in developing countries. We propose a deep learning
classification model (FORM) that can directly predict hip fracture risk
from either plain radiographs (X-ray) or 2D projection images of com-
puted tomography (CT) data. Our method is fully automated and there-
fore well suited for opportunistic screening settings, identifying high risk
patients in a broader population without additional screening. FORM was
trained and evaluated on X-rays and CT projections from the Osteoporo-
sis in Men (MrOS) study. 3108 X-rays (89 incident hip fractures) or 2150
CTs (80 incident hip fractures) with a 80/20 split (training/validation)
were used. We show that FORM can correctly predict the 10-year hip
fracture risk with a validation AUC of 81.44% ± 3.11%/81.04% ± 5.54%
(mean ± STD) including additional information like age, BMI, fall his-
tory and health background across a 5-fold cross validation on the X-
ray and CT cohort, respectively. Our approach significantly (p < 0.01)
outperforms previous methods like Cox Proportional-Hazards Model and
FRAX

R©

with 70.19 ± 6.58 and 74.72 ± 7.21 respectively on the X-ray
cohort. Our model outperform on both cohorts hip aBMD based predic-
tions (validation AUC 82.67% ± 0.21% vs. 71.82% ± 0.50% and 78.41%
± 0.33 vs. 76.55% ± 0.89%). We are confident that FORM can contribute
on improving osteoporosis diagnosis at an early stage.
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Keywords: fracture risk prediction · osteoporosis · opportunistic
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1 Introduction

Osteoporosis is a wide-spread systemic disease that leads to deterioration of bone
mass and micro structure and subsequently to decreased bone strength inducing
an increased fracture risk [23]. According to the United States Preventive Ser-
vices Task Force, the lifetime risk of an osteoporotic fracture is about 50% in
women and about 20%–25% in men [22,34]. While osteoporosis affects all bones,
fractures of the spine and hip are the most frequent. Especially hip fractures lead
to increased morbidity, decreased quality of life and increased mortality—20% of
osteoporotic hip fractures lead to death within six month [7]. Being a silent dis-
ease before fracture, osteoporosis often remains undiagnosed and consequently
untreated. Especially in men, only about 2% are diagnosed before fracture [22].

The gold-standard method for osteoporosis diagnosis is based on areal bone
mineral density (aBMD) assessed by dual-energy X-ray absorptiometry (DXA).
This modality is in general broadly available to patients in many countries world-
wide - with some degree of uneven distribution among industrial nations. In
developing countries in African and South America and the Middle East, the
availability is poor [11,17]. More elaborate methods like volumetric bone min-
eral density (vBMD) assessed by quantitative computed tomography (QCT)
or finite element modeling (FEM) of bone strength, either based on QCT or
DXA, have shown to be superior to standard aBMD [2,20,29,35,39]. However,
all these method either require special equipment, protocols or domain experts
and the prognosis of osteoporotic fractures is an even more challenging and
labor-intensive task.

In this paper, we focus on fracture prognosis in an opportunistic screening sce-
nario: whenever radiographic imaging is available an automated method inspects
the image for indicators of possible future fractures. Patients with high fracture
risk could be advised to see a specialist to confirm the risk and possibly initi-
ate preventive actions. Due to their outstanding capacity to learn task-relevant
image features such methods - in particular convolutional neural networks (CNN)
- have outperformed “classical” machine learning algorithms in many image anal-
ysis tasks [10,24–27,31]. We predict the risk of future fractures (prognostics), in
contrast to detecting acute osteoporosis or incident fractures (diagnostics).

The goal is to develop a pipeline that can be used for opportunistic screen-
ing and hence beneficially leverage additional risk factors. For this purpose we
propose a two-stage deep learning based classification method that is able to
predict the 10-year fracture risk using only X-ray or CT scans and optionally
case history as inputs. We train and evaluate our method on a dataset from the
Osteoporotic Fractures in Men (MrOS1) study. We restrict our main evaluation
to information (e.g. age, weight, height, etc.) that would be collectible in this
setting; other information (e.g. aBMD) is only included for comparison.
1 The Osteoporotic Fractures in Men (MrOS) Study: https://mrosonline.ucsf.edu.

https://mrosonline.ucsf.edu
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(a) Overview Pipeline
(b) Overview of the used models

Fig. 1. Illustration of proposed pipeline. (a) Inputs and pipeline stages: preprocessing,
feature extraction and risk estimation. (b) Detailed view of models in (a) (yellow,
green). Parameter of fully connected (FC) layers: number of hidden neurons. Further
information can be found in Sect. 2. (Color figure online)

Our key contributions are: (1) a fully automated system that can be
used in an prognostic opportunistic screening scenario, (2) val AUC results of
81.44% and 81.04% on the X-ray and CT cohort respectively. (3) we significantly
outperform previous methods like Cox Proportional-Hazards Model and FRAX

R©

in the opportunistic use case and achieve improved or competitive results for
non-opportunistic settings, (4) beneficial integration of clinical risk factors with
image based features into a deep learning pipeline.

1.1 Related Work

In the past numerous risk factors for osteoporotic fractures were identified.
Among them are increased age, low body mass index (BMI), previous fragility
fractures, smoking or alcohol intake. While aBMD alone has shown to be a not
sufficiently sensitive predictor for screening applications [18], the combination
with other risk factors (RF) is more promising. In [28] Schousboe et al. found
that additional RF are better than a model using only aBMD and age for verte-
brae fracture prediction. Elaborate statistical shape and density modeling based
on volumetric QCT data has proven to be superior to DXA based aBMD models
[3] for hip fracture prognosis. Hippisley-Cox et al. proposed the QFractureScores
algorithm [13] to predict the 10-year fracture risk. FRAX

R©

[18] is a fracture risk
assessment tool that uses various RF with or without additional aBMD measure-
ments to predict a 10-year fracture risk. The National Osteoporosis Foundation
included FRAX

R©

in its guidelines to recommend aBMD measurements or even
treatment based on predicted fracture risk [36]. Su et al. [32] used classifica-
tion and regression trees (CART) on common RF to predict fracture risk on
the MrOS data and found a slight improvement over FRAX

R©

based predictions.
Treece et al. [33] used cortical bone mapping (CBM) to predict osteoporotic frac-
tures in the MrOS study. They found that adding CBM to aBMD can improve
fracture prognosis performance. Most of these methods do, however, require spe-
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cial protocols, modalities or in-depth interviews of the patient that might not
be applicable to an opportunistic screening setting.

In [21], Pickhardt et al. were able to discriminate manually between patients
with osteoporosis and with normal BMD using opportunistic abdomen CTs.
Recently, several related deep learning based approaches for semi-automated
osteoporosis diagnosis have been presented. Ho et al. [14] and Hsieh et al. [15]
used a deep learning architecture to predict DXA based aBMD from hip X-ray.
Other works like [16] or [38] detect osteoporosis directly from image features
of X-ray using end-to-end classification networks. They achieve high classifica-
tion performance (AUC > 0.9) which could even be slightly improved [38] by
incorporating clinical risk factors (AUC > 0.92). However, this diagnosis task it
not comparable to the prognosis task that we target in our work. For progno-
sis, Hsieh et al. [15] used their predicted aBMD as input to FRAX

R©

to predict
a 10-year fracture risk. However, since the performance of this combination is
limited by the performance of DXA-based aBMD, they were unable to achieve
any improvement over baseline FRAX

R©

+ (DXA-based) aBMD.
Recently, Damm et al. proposed a fully automatic deep learning method to

predict hip fractures in women using X-rays from the Study of Osteoporotic
Fractures (SOF2) [6]. They showed that deep learning based methods are able
to improve the prognostic performance of classical aBMD based models while
maintaining a high degree of automation. However, they did not investigate
additional risk factors and other image modalities as input such as CT.

2 Method

We propose an automatic image processing pipeline for the prediction of Future
Osteoporotic Fractures Risk in Men for Hips (FORM). The pipeline consists of
a preprocessing, a feature extraction and a risk estimation stage for each patient
x. An overview is given in Fig. 1a.

2.1 Preprocessing

The proposed method should be able to process 2D X-rays as well as 3D CT
scans. To share both architecture and hyperparameters for both input modalities,
we compute 2D projections from the 3D CT scans. This way, however, most
of the 3D structural information from the CT scans is lost. To fully exploit
the 3D information, a native 3D CNN could have been used, but this would
have resulted in a much larger memory footprint and thus higher hardware
requirements. Therefore, in this work, we have focused at first on confirming the
usefulness of CT image data for predicting future fractures. In the following, the
CT projections will be referred to simply as CT.

A Hough transform is used to detect the QCT calibration phantom that is
present in all scans in order to remove it and the underlying table from the

2 The Study of Osteoporotic Fractures (SOF:) https://sofonline.ucsf.edu.

https://sofonline.ucsf.edu
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image3,4. Since the phantom is always located beneath the patient, the scans
can easily be cropped to exclude the phantom and the table. The cropped 3D
scans are then projected onto the coronal plane and re-scaled by a constant
value to achieve pixel value range of [0, 1]. We also investigated a re-scaling per
patient to investigate the influence of the scanner HU calibration; results on
these normalized CTs (CTN) are reported in the supplement.

CT projections and X-ray images I(x) were split into two halves depicting
the right and the left hip, respectively; images of the left hip were vertically
flipped. A key point detection CNN inspired by [6] were used to detect 12 key
points located around the femur. The key point detector was trained jointly on
1797 X-ray images and 208 CT projections (104 CT, 104 CTN) with manually
annotated key point positions. The key point CNN classifies the image halves
into three classes: complete (full proximal femur is visible), incomplete (proximal
femur not completely visible) and implant. A selection of key points is used to
crop the image to the proximal femur region (including the trochanter minor
and the femoral head). This automatic selection of the region of interest leads
to a more suitable input size for the neural networks without any loss of quality.
These cropped images G(x) are included in the dataset if the predicted class is
complete with a confidence above 0.01 (X-ray) or 0.2 (CT).

The risk factors (RF) are additional information about the patient which
might improve the hip fracture risk prediction. As we are not interested on the
impact of a single risk factor, but rather whether the information is helpful in
combination with image data, we grouped the RF for better referencing: Base,
Multiple, aBMD, FRAX

R©

and TBS [30]. The details are summarized in the
supplementary. The Base group contains basic patient information like age and
BMI. The Multiple group extends base and adds additional information from the
case history and health background. This information might not be present in
clinical routine but could be acquired from every patient via a questionaire (non-
densitometric). The other groups consists of other well-known risk factors, also
including densitometry. For densitometry, additional imaging and evaluation is
required and thus is not suitable for opportunistic screening. We included these
risk factors as a comparison. 52 patients were excluded from the dataset due to
missing data for at least one risk factor.

2.2 Feature Extraction

We train a CNN as a Feature Extractor with output r′(x) on the cropped femur
images G(x) and extract the predicted Global Average Pooling (GAP) Features
of the network. These GAP features IG(x) ∈ R

2048 are used as input for the
next pipeline stage. For the training of the CNN, a ground truth label Ft(x)
is needed indicating whether the patient x will fracture by time horizon t (e.g.

3 Example image and key points only for illustrative purpose; image source https://
radiopaedia.org/cases/normal-hip-x-rays.

4 In the MrOS study, the phantoms are used to calibrate HU to BMD. In this work no
BMD calibration is performed for a more realistic opportunistic screening setting.

https://radiopaedia.org/cases/normal-hip-x-rays
https://radiopaedia.org/cases/normal-hip-x-rays
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10 years) or not. All patients with unknown fracture status, e.g., due to death
before time horizon t, were excluded from the dataset. This renders all predicted
risks conditional on the patient survival to time horizon t. This is acceptable for
an opportunistic screening because we need to screen all patients regardless of
whether or not they would survive to t [4] but might introduce a bias. FORM has
a ResNet50v2 [12] backbone pretrained on ImageNet [19] with three additional
layers depicted in Fig. 1b. Data was augmented with random flips, zooms and
color changes; classes were weighted. Input image dimensions were 96 × 96 (CT)
or 224× 244 (X-ray) pixels. Training was performed for 50 epochs, a batch size
of 36, learning rate of 10−4, dropout (0.5)5. A cross-entropy loss was used and
input samples were weighted based on their class distribution. GAP features
G(x) were extracted after early stopping (see Subsect. 3.1 for details about the
metrics).

2.3 Risk Estimation

For the risk estimation r(x), we train a multi layer perceptron (MLP) to predict
hip fractures up to the horizon t with the target Ft(x). Its input can be varied:
GAP-Features IG(x), RF IR(x) or both. Categorical data is one hot encoded
and concatenated with normalized continuous data into the input vector IR(x).
Using many RF together with the high-dimensional GAP features might make
the model more prone to overfitting because individual datapoints become more
distinct [1,9]. This is counteracted by a high dropout rate. To prevent imbalanc-
ing between IG(x) and IR(x) due to high dimensional differences (e.g. 2048 vs.
4) an MLP with 128 and s ·k hidden nodes is used to reduce the dimension of the
GAP features before concatenation. Here k is the dimension of IR(x) and s is a
scaling hyperparameter set to 5. Hyperparameters are mostly shared in Feature
Extraction and Risk Estimation and the differences are illustrated in Fig. 1b. An
ablation study to inspect the impact of the hyperparameters is included in the
supplementary material and discussed in Subsect. 3.3.

3 Evaluation

3.1 Datasets and Baseline Methods

For training and evaluation, we used the dataset from the Osteoporosis in Men
(MrOS) study6. Patients were followed for more than 10 years. We used the
first hip fracture that occurred after the baseline visit as our primary outcome.
A detailed overview of the datasets statistics for the X-ray and the CT cohort
in comparison to the complete study population can be found in Table 1. The
number of included patients n is decreased by about one third of the overall num-
ber of patients with available image data due to censoring and excluded image

5 Implemented in Tensorflow 2.4, source code will be release on publication, experi-
ments executed on Nvidia RTX 3090, inference < 1 s per image.

6 https://mrosonline.ucsf.edu, Update august 2021.

https://mrosonline.ucsf.edu
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Table 1. Statistics for three different cohorts (all, CT or X-Ray data available). For
each cohort we give the statistics for the complete cohort and with respect to the hip
fracture horizon with (w) and without (w/o) fracture (fx). n represents the number
of samples. Age is given as relative percentage for a specific range from n. Train-
ing/validation refer to the number of used images in the respective sets in the first
fold. - means that no data was used for training or validation. All other risk factors are
given as mean (STD in brackets).

halves (e.g. due to implants). During a 5/10 year follow-up 1.45% and 3% of the
men suffered a hip fracture, respectively. This low number of cases limits the
generalizability but it is possible to identify trends which repeat across different
modalities, horizons and settings. Therefore, we use the same training validation
split based on the patient IDs across all experiments for the respective cohorts.
We used area under the receiver-operator curve (AUC) as the main metric. A
5-fold cross-validation was used to ascertain the validity of the comparison with
the established baselines; across folds validation means and standard deviations
(STD) are reported. To ensure reproducibility training was repeated 10 times for
deep learning models. In the ablation studies, we analyzed only one fold across
10 repetitions and report means with their standard errors (SE). A two-sided
Welch-Test [37] was used to compare the calculated means.

As baselines a Cox Proportional-Hazards Model (Cox) [5] and FRAX
R©

was
used. For the Cox model the same input as to our model FORM was used. How-
ever, the low variance of the high dimensional GAP features lead to a numerical
degeneration of the Cox model. This was circumvented by performing a dimen-
sionality reduction using Principal Component Analysis (PCA) [8] of the GAP
feature space. The Cox model was fitted on the training data and used for pre-
diction on the validation data. Best performing number of PCA components are
reported based on the validation set.
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Table 2. Cross-validation results (mean val. AUC ± STD) – columns: different meth-
ods/inputs; rows: cohort. Bold: results within a one percent margin of the best for each
cohort.

Table 3. Comparison fracture risk prediction – columns: different inputs which were
used to train FORM; rows: different cohorts. All scores are given as mean val AUC ±
SE. Significant differences between the first and the other columns are marked italic
(p < 0.05) or bold (p < 0.01). † input not used for FORM

Cohort GAP + Multiple Base Multiple GAP GAP + Base FRAX
R© †

X-Ray 78.41 ± 0.33 66.38 ± 1.76 69.67 ± 0.99 77.24 ± 0.30 77.81 ± 0.38 77.43
CT 82.67 ± 0.21 60.89 ± 0.73 67.03 ± 0.93 82.58 ± 0.21 82.48 ± 0.24 75.94

(a) Non-densitometric Settings

Cohort GAP + Multiple aBMD + Base FRAX
R©

+ aBMD + Base TBS + Base FRAX
R©

+ aBMD†
X-Ray 78.41 ± 0.33 76.55 ± 0.89 81.50 ± 0.83 72.66 ± 1.34 80.92
CT 82.67 ± 0.21 71.82 ± 0.50 81.08 ± 0.34 71.56 ± 0.39 79.19

(b) Densitometric Settings

3.2 Results

The proposed method (FORM), a Cox Proportional-Hazards Model (Cox) and
FRAX

R©

are compared using a five-fold cross-validation analysis in Table 2. It
can be seen, that the proposed method outperforms Cox and FRAX

R©

on both
cohorts by around 6%. In general, using more risk factors in the GAP feature
input improves the prediction; this benefit is slightly higher on the CT cohort.
Especially for Cox, a high variance without risk factors can be observed which
can be credited to one or two folds with significant lower performance (e.g.
around 35% on one fold for the X-ray Cohort).

On one fold the power to predict hip fractures were analyzed further by
adding comparisons without GAP features and evaluations including densito-
metric inputs variables in Table 3. Across both cohorts, a significant improve-
ment of around 20% to only using the risk factors group Base or Multiple can be
seen. Moreover, a significant improvement of up to one percent is achieved when
adding information about risk factors on X-ray and the vanilla FRAX

R©

is worse
for both cohorts. Overall the image-based result are all similar and within a range
of around three percent of 80%. For the densitometric settings, only the usage
of Base risk factors is reported, because further information did not improve the
results. In the comparison of the best non-densitometric model, with densito-
metric settings FORM still outperform most risk factors or the vanilla FRAX

R©

+ aBMD predictor. Only X-ray based imaging is up to three percent worse
than FRAX

R©

based predictions. We see an improvement of using the FRAX
R©

+
Base as input to FORM in comparison to the vanilla FRAX

R©

predictor. Further
results and ablations are in the supplementary.
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3.3 Discussion

We conclude three major results: (1) FORM outperforms Cox and FRAX
R©

on
two image cohorts and performs similarly or better even if we include densito-
metric inputs as comparison, (2) only image information can be used for fracture
risk prediction but additional risk factors can help the risk estimation and (3)
FORM can leverage the combined information of image information and risk
factors better than Cox. Across all experiments FORM outperforms the other
non-densitometric models. Only the densitometric FRAX

R©

predictor (including
aBMD) performs better on the X-ray cohort than FORM.

However, our models do not require additional imaging with DXA. Future
research could highlight important image regions for the risk estimation or the
importance of additional risk factors which could improve the interpretability
and therefore the acceptance of the system in clinical routine. For Cox and
FORM in Table 2, it can be seen that a fracture risk estimation only based
on image information is possible and even outperforms predictions only based
on risk factors in Table 3. Using additional risk factors as input can improve the
results significantly by up to four percent. This shows that risk factors are a valid
source for additional information but also that a majority of the information is
already encoded in a patient’s X-ray or CT. The Cox model performs in the best
case similar or worse than FRAX

R©

but is outperformed by FORM. While FRAX
R©

might use other input variables, the Cox model is trained with the same inputs
as FORM. We conclude that our model can learn from the high dimensional
data better than Cox due to two reason: The Cox model required preprocessed
inputs via PCA to prevent degeneration. The overfitting prevents adding more
than one or two PCA components as input. In Subsect. 2.2, we explained that
patients were excluded due to early death. The censored patients cannot be
directly evaluated, but their subgroup which survived for at least the first 5
years without a fracture. The number of false positive predicted patients across
20 repetitions are 3.63% ± 0.51% SE and 5.01% ± 0.80% SE for the validation
and censored subset, respectively. We conclude that our model is performing at
least plausible on this subset.

3.4 Limitations and Future Work

This study is based solely on the MrOS dataset, which consists only of men and
contains an expected low number of incident (future) fractures. The identified
trends are supported across different cohorts and settings but have to be con-
firmed on other studies. This study can only analyze the benefits of image data
for opportunistic screening in a proof-of-concept fashion, since the strict imaging
protocols were imposed for the study. A long term study in clinical routine is
required to evaluate the practicability and questions about sensitivity/specificity
calibration.
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3.5 Conclusion

We have shown that X-ray and CT data can be automatically analyzed and
processed by our method FORM for opportunistic hip fracture prognosis. We
achieved a mean validation AUC of greater than 80% for 10-year hip fracture
risk in a five-fold cross-validation in both cohorts based on radiographic and CT
data. This is significantly better than previous methods like Cox or FRAX

R©

on
the same or comparable input. Even in most cases, with additional densitometric
RF, our method is signficantly better. Overall, we are confident that our method
FORM and image input in general are promising candidates for improving the
identification of men at high risk of future osteoporotic hip fractures.
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Abstract. In Whole Slide Image (WSI) analysis, detecting nuclei sub-
types such as Tumor Infiltrating Lymphocytes (TILs) which are a pri-
mary bio-marker for cancer diagnosis, is an important yet challenging
task. Though several conventional methods have been proposed and
applied to target user’s nuclei sub-types (e.g., TILs), they often fail
to detect subtle differences between instances due to similar morphol-
ogy across sub-types. To address this, we propose a novel decoupled
segmentation architecture that leverages point annotations in a weakly-
supervised manner to adapt to the nuclei sub-type. Our design consists of
an encoder for feature extraction, a boundary regressor that learns prior
knowledge from nuclei boundary masks, and a point detector that pre-
dicts the center positions of nuclei, respectively. Moreover, employing a
frozen pre-trained nuclei segmenter facilitates easier adaptation to TILs
segmentation via fine-tuning, while learning a decoupled point detector.
To demonstrate the effectiveness of our approach, we evaluated on an in-
house Melanoma TIL dataset, and report significant improvements over a
state-of-the-art weakly-supervised TILs segmentation method, including
conventional approaches based on pseudo-label construction.

Keywords: Point annotation · TILs segmentation · Transfer
learning · Weakly-supervised learning

1 Introduction

In digital pathology, the analysis of whole slide images (WSIs) is crucial for
cancer diagnosis and immune response prognoses. Prior to computer-aided WSI,
conventional analysis involved manually counting the number of nuclei, and mea-
suring the density of abnormal nuclei such as Tumor Infiltrating Lymphocytes

S. Nam and M. Knag—Equal contribution.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
I. Rekik et al. (Eds.): PRIME 2022, LNCS 13564, pp. 115–125, 2022.
https://doi.org/10.1007/978-3-031-16919-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16919-9_11&domain=pdf
https://doi.org/10.1007/978-3-031-16919-9_11


116 S. Nam et al.

(TILs) for diagnosis [1]. However, due to the extremely large high resolution
nature of WSIs, as well as the presence of diverse types of nuclei, pathologists
find analysis laborious and tedious. Thus, many experts prefer employing auto-
mated tools yet these require the curation of precise annotations per sub-type,
which is equally time consuming.

Following the advances in deep learning, several deep-learning based meth-
ods [5,10,16] have been proposed for nuclei segmentation. For instance, Kumar
et al. [10] separates adjacent nuclei by training a segmentation model with addi-
tional boundary labels. Graham et al. [5] jointly trained three classification mod-
ules to handle multiple types of nuclei in WSIs. Yao et al. [16] performs a multi-
class nuclei segmentation using center positions and corresponding class-agnostic
masks through a keypoint detector and a dynamic instance segmentation, respec-
tively. Though promising, these works are fully-supervised and require accurate
pixel-level labels for training. Thus, recent works tend towards weakly-supervised
approaches where less accurate/weaker annotations are cheaper to collect.

In particular, several point-based weakly-supervised learning methods have
been proposed [13,15,17] to ease human annotation efforts. These methods use
point annotations (e.g., center of nuclei) to perform mask delineation, and show
comparable performance to methods that use more complete annotations. For
example, Qu et al. [13] generated pseudo-labels using Voronoi diagrams and
k -means clustering algorithm, and then trained a segmentation model using a
constructed pseudo-labels. Tian et al. [15] proposed a two-strategy processes for
coarse-to-fine segmentation using point distance maps, Voronoi edge maps, and
edge maps to focus more on the contour of nuclei. Yoo et al. [17] proposed an
auxiliary network with an attention module that predicts edges and blobs from
point annotations. However, these methods tend to segment for all nuclei present
in WSI without considering the type of instances and predict touching and over-
lapped nuclei as one instance due to uncertainty in the boundary information.

In this paper, we propose a novel point-based weakly-supervised TILs seg-
mentation model using a transfer learning strategy that distinguishing similar
appearance nuclei (e.g., tumor cells, lymphocytes) more effectively. We decouple
the segmentation task into point detection and boundary regression i.e., center
position- and nuclei boundary vector-predictions. We first train our segmenta-
tion model in a fully supervised manner using pixel-level supervision to acquire
prior knowledge of nuclei. Later, we fine-tune the point detector in order to
adapt a target instance from nuclei to TILs using point annotations alone, while
exploiting a pre-trained boundary regressor on nuclei. Our final segmentation
results can be obtained by a contour-filling algorithm using predicted center
points and boundary-projected vectors. The main contributions of this work are
summarized as follows:

– We propose a point-based weakly-supervised learning method for TILs seg-
mentation. To the best of our knowledge, this is the first attempt to segment
TILs in H&E stained WSI using weak supervision.
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– We decouple the segmentation task into a point detection and a boundary
regression. This approach facilitates to adapt pre-trained nuclei segmentation
to TILs easier.

– We evaluated our method on an in-house dataset with TIL point annotations,
and outperformed a state-of-the-art weakly-supervised nuclei segmentation
method and two traditional pseudo-label construction approaches.

2 Related Works

2.1 Nuclei Segmentation

In literature, the majority of nuclei segmentation methods are fully-supervised
and use expert curated masks to train deep models [5,10,16]. Kumar et al. [10]
proposed to divide masks into three classes: inside, boundary, and background,
enabling accurate distinction of over-lapped or touched nuclei by predicting
the boundary. The foreground classes (i.e., inside and boundary) perform the
nuclei instance segmentation through using the boundary-map to separate the
inside-map. Graham et al. [5] designed a network that jointly segments and
classifies nuclei types using multiple branches. Each branch predicts a nuclei
pixel, horizontal and vertical map, nuclei types, respectively. The nuclei instance
segmentation is performed using a constructed boundary map that is post-
processed by combining the horizontal and vertical maps. Yao et al. [16] con-
sidered nuclei instance segmentation as a keypoint detection task i.e., a novel
network design with three branches that predicts keypoint heatmaps per class,
kernels, and feature maps, respectively. From the predicted heatmaps, the cen-
ter peak points of nuclei are obtained via the normalized Gaussian kernel; with
predicted kernels and features later are used in a dynamic convolution operation
for instance segmentation. However, several nuclei that have various shapes and
types exist in the extremely high-resolution WSIs, following labor-expensive and
time-consuming annotation costs are required for WSIs analysis.

2.2 Weakly-Supervised Segmentation

To reduce the time-consuming annotation process in WSIs, weakly-supervision
approaches have been introduced. Among the existing types of weakly-
supervision (e.g., bounding box [7], scribble [11], and point annotation [13]),
A point annotation is being considered as an easy and effective annotation for
WSIs, and can expanded to various informative cues to detect nuclei in WSIs
[13,15,17]. Qu et al. [13] suggested two types of coarse labels from point anno-
tations that provide the approximated foreground and background information
using Voronoi diagram and k -means clustering algorithm. These coarse labels
were used to optimize loss functions alongside the main nuclei segmentation
model. Tian et al. [15] performs nuclei segmentation with a coarse-to-fine strat-
egy. In coarse strategy, three maps i.e., point distance maps, Voronoi maps, and
self-predicted maps are used to train the segmentation model in a weakly and
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Fig. 1. Diagram of the proposed method.

self-supervised manners. In fine strategy, edge maps of self-predicted maps using
Sobel operator are used to further improve the prediction of the nucleus contour.
Yoo et al. [17] proposed an auxiliary network combining an edge network with
an attention module to find edges and blobs of nuclei using point annotations
only. From the input image, the edge network and attention module predict the
sparse edges and contour maps that visualize coarse structures of nuclei, respec-
tively. Despite the success in detecting nuclei, none of the prior methods have
explored targeting TILs, even though TILs are the most prominent factor for
cancer diagnosis in WSIs. To the best of our knowledge, our method is the first
to address TILs segmentation using weak supervision.

3 Method

Although various weakly-supervised nuclei segmentation approaches have been
proposed, training TILs with weak-supervision is challenging since they assume
all nuclei in the image as the same instance and unable to adapt to other types
of nuclei with only point annotations. To this end, we propose a novel decou-
pled segmentation architecture that learns and transfers to targeted nuclei by
leveraging the prior knowledge of common nuclei.

Our model consists of three modules: feature extractor E, point detector Dp,
and a boundary regressor Dr where each module outputs intermediate features,
center positions, and boundary-projected vectors of TILs (or nuclei), respec-
tively. Given a nuclei segmentation dataset with a full pixel-level annotations,
we first pre-train the model to obtain representative features for common nuclei.
In the subsequent stage, we fix E and Dr, and only fine-tune Dp to identify
TILs in an image using point annotations (i.e., center positions). Consequently,
an accurate segmentation model for new types of nuclei (e.g., TILs) can be
obtained. The overall framework is shown in Fig. 1 and 2.
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Fig. 2. Overview of pre-training and fine-tuning stages for TIL segmentation. (a) pre-
training stage using segmentation masks, and (b) fine-tuning stage using point anno-
tations only.

3.1 Center Positions and Boundary-Projected Vectors

To learn prior knowledge of nuclei, our model uses a multi-organ histopathol-
ogy dataset Dnuclei = {X1

nuclei, · · · ,Xm
nuclei} with a corresponding segmen-

tation labels (a full pixel annotation) maski (e.g., MoNuSeg [9]). Also, we
employ TIL histopathology images denoted Dtil = {X1

til, · · · ,Xn
til} with k TIL

center positions {(cxi
1, cy

i
1), · · · , (cxi

k, cy
i
k)} corresponding to each image Xi

til.
In particular, we compose maski as a combination of center positions and
boundary-projected vectors i.e., a single instance is a combination of (cxi

l, cy
i
l )

and {(bxi
l,1, by

i
l,1), · · · , (bxi

l,j , by
i
l,j)}, where (bxi

l,j , by
i
l,j) denotes a boundary vec-

tor. The center position indicates the central location of a nucleus, and each
element is represented with boundary-projected vectors (j = 18) from the center
position to the nucleus boundary at every 20 ◦ angle (e.g., 20, 40, · · · , 360 ◦),
as shown in Fig. 1. The combination of center positions with corresponding
boundary-projected vectors can be decoded into a segmentation mask using a
contour-filling algorithm.

3.2 Network Training

We first input Xi
nuclei (or Xi

til) to E, and feed the output features to Dr and
Dp to predict the center positions and boundary-projected vectors of nuclei (or
TILs). In particular, Dp outputs the probabilities of nuclei centers, and the
output of Dr indicates the x and y coordinates of boundary-projected vectors
corresponding to a center position in Dp. For Dp training, center positions are
converted to a point map pi as illustrated in Fig. 1. We used dice and cross-
entropy losses for Dp training.

Ldice(E,Dp) =
2Dp(E(Xi))pi

2(Dp(E(Xi))pi) +Dp(E(Xi))(1− pi) + (1−Dp(E(Xi)))pi
,

(1)
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Lce(E,Dp) = −
∑

pi log(Dp(E(Xi))), (2)

where Xi denotes the Xi
nuclei (or Xi

til).
For boundary regression, the ground-truth center position is employed to

index Dr during training; also, the ground-truth boundary-projected vectors
and corresponding outputs of Dr are used in the loss objective. We employ the
L1 loss for this task:

Lreg(E,Dr) =
∑

||bi −Dr(E(Xi))I ||, (3)

bi is the flattened vector (dim= 36) of {(bxi
l,1, by

i
l,1), · · · , (bxi

l,j , by
i
l,j)} and I

denotes an index where the corresponding center position is located. Finally,
the overall loss function is defined as:

Ltotal = Lreg(E,Dr) + Lce(E,Dp) + Ldice(E,Dp). (4)

In the inference stage, the output of Dp is post-processed to obtain center posi-
tions by thresholding Dp’s probability map. The final segmentation results can
be decoded by using a contour-filling algorithm with corresponding boundary-
projected vectors from Dr.

3.3 TILs Adaptation

Since our method consists of two separate decoders i.e., Dr and Dp for each task,
we can easily update our modules (e.g., detection or mask prediction) toward
the target task. Towards this goal, we adapt a pre-trained segmentation model
with common nuclei for TILs segmentation by fine-tuning with Lce(E,Dp) +
Ldice(E,Dp) using point annotations whilst the parameters in E and Dr are
frozen as shown in Fig. 2. Consequently, we can obtain precise mask predictions
by transferring the boundary-projected vectors trained by common nuclei (from
fixed E and Dr) with accurate TILs identification trained from TILs (using
updated Dp) for TILs segmentation.

4 Experiments

4.1 Datasets

To evaluated our approach on different nuclei types, we constructed an in-
house H&E stained WSI Melanoma dataset as shown in Fig. 3(a). An expert
pathologist annotated center positions of TILs using the automated slide analysis
platform [4]. During pre-processing, we cropped 5 WSIs scanned at x40 magni-
fication into 512 × 512 patches, obtaining a total of 200 patches. 120 patches
were used for training, the remaining 40 and 60 patches are used for validation
and test, respectively. Since segmentation masks are not provided for evalua-
tion, we constructed the ground-truth segmentation mask of TILs by assigning
point annotations to the closest mask prediction using state-of-the-art nuclei
segmentation method [12], as shown in Fig. 3.
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Fig. 3. TILs ground-truth construction. (a) input image, (b) center positions (point
annotations), (c) Luna et al. [12] nuclei segmentation results, and (d) constructed TIL
segmentation masks.

In the pre-training stage, we used a public multi-organ histopathology dataset
i.e., MoNuSeg [9]. This dataset has a 30 images with seven different organs,
each image having dimensions 1000× 1000. 16 images (breast: 4, liver: 4, kidney:
4, and prostate: 4) for training, and 14 images (breast: 2, liver: 2, kidney: 2,
prostate: 2, bladder: 2, brain: 2, and stomach: 2) in testing splits, respectively.
The images were cropped into patches of size 512× 512 at stride 162 pixels,
obtaining 396 patches in total.

4.2 Experimental Settings

Our method is based on a U-Net [14] architecture with two decoders. For train-
ing, Adam optimizer [8] with batch size 8 is used. The model is trained for 300
epochs using a Plateau learning rate scheduler with patience value of 30 and a
decrease-factor value of 0.2. The initial learning-rate is set to 0.0003, and we set
the minimum learning-rate threshold to 0.000001. For augmentation, we applied
random affine translation, random flipping, random gamma contrast, and elastic
transformation.

To demonstrate the usefulness of the proposed method, a state-of-the-art
point based weakly-supervised nuclei segmentation method [13] and two marker
based pseudo label construction approaches (i.e., Watershed [3], Flood fill [6])
were compared to our method. For Qu et al. [13]’s method training, we followed
the same network architecture and training settings described in the original
paper. To implement the traditional pseudo-label construction approaches, we
used OpenCV libraries [2] to create segmentation masks from TIL center posi-
tions and trained them with the U-Net model. The rest of the training setting
is identical to our method. For the evaluation metric, the dice coefficient score
(DSC) was used.
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Fig. 4. Qualitative results of the proposed method and competitors. (a) input images,
(b) ground-truth masks, (c) Qu et al. [13], (d) Watershed + U-Net, (e) Flood fill +
U-Net, and (f) Ours.

Table 1. Test results (DSC) on Melanoma dataset.

Method DSC

Qu et al. [13] 18.57
Watershed + UNet 52.67
Flood fill + UNet 52.28
Proposed method 63.80

5 Results

Table 1 shows the overall performance of the evaluated methods. Our method
outperformed the state-of-the-art point based weakly-supervised method [13]
and traditional label construction approaches, i.e., Watershed [3] and Flood
fill [6] algorithms with significant margins. In addition, segmentation results in
Fig. 4 show that our method (Fig. 4(f)) could delineated masks precisely and can
distinguish TILs from nuclei more accurately than the compared methods (in
Fig. 4(c), (d), (e)).

Moreover, Fig. 4(c) shows that the previous state-of-the-art weakly segmenta-
tion methods for nuclei segmentation could not distinguish TILs from non-TIL
nuclei correctly in most cases. The pseudo labels generated by Qu et al. [13]
using k -means clustering failed to exclude non-TIL instances, instead captured
most nuclei in the image and considered them as TILs. As shown in Fig. 5, we
illustrate how the quality of the pseudo label depends on the different clipped
value i.e., none of choosen values could were optimal to generate accurate TIL
segmentation masks. For instance, all non-TIL nuclei or tissues are included in
the pseudo mask when using low clip values. Even if high clip values were used
(Fig. 5(e)), the boundary information of the nucleus was not considered as all
TILs were over-segmentated. Therefore, the performance of segmentation model
was low since the pseudo label is extremely poor.
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Fig. 5. Pseudo segmentation masks obtained using Qu et al. [13] by varying clip values.
Green color indicates pseudo TIL masks, red and black color indicates background and
ignored regions, respectively. In general, all the generated masks were low quality, and
are sensitive to the chosen clip value. (a) an input image, (b) center positions, (c) a
pseudo segmentation mask using clip value 20, (d) a pseudo mask using clip value 35,
and (e) using clip value 50. (Color figure online)

Fig. 6. Pseudo segmentation masks of Watershed and Flood fill algorithms. The bound-
ary of the constructed TIL’s masks are not clear. (a) an input image, (b) center posi-
tions, (c) a ground-truth mask, and (d) a pseudo mask of Watershed, and (e) a pseudo
mask of Flood fill.

On the other hand, the pseudo segmentation masks using Watershed [3] and
Flood fill [6] algorithms are shown in Fig. 6. These masks are relatively similar
to the ground-truth TIL mask. However, the generated mask does not find the
proper boundaries of TILs or misses some TILs that have a point annotation.
Due to the uneven pixel values of the cytoplasm and the nucleus, as well as
unclear boundaries of TILs, it is difficult to generate an accurate mask using
traditional algorithms.

Unlike prior methods, our method is able to distinguish TILs correctly and
segments the boundary of instances more accurately. Since all nuclei of H&E
stained pathology images have similar shapes and boundaries, knowledge of
nucleus’ contour can be transferred to TILs appropriately. Our novel decou-
pled segmentation model could successfully detect TILs by solely fine-tuning the
separated Dp parameters while ignoring the non-TIL instances. Thus, we believe
transfer learning strategy with a decoupled architecture is a valid choice for TILs
segmentation.
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6 Conclusion

In this paper, we proposed a point based weakly-supervised TILs segmentation
model using a novel decoupled segmentation approach with a transfer learning
strategy. We separate the segmentation task into point detection and boundary
regression, enabling our model to transfer boundary regressed predictions from
nuclei to TILs while solely fine-tuning the point detector for TILs segmentation.
We compared our method against a state-of-the-art nuclei segmentation model
and two traditional pseudo label construction algorithms. Our method outper-
formed all competitors and showed improved segmentation results with precise
predictions and accurate TILs delineation.
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Abstract. Knee osteoarthritis (OA) is a degenerative joint disease that
causes physical disability worldwide and has a significant impact on pub-
lic health. The diagnosis of OA is often made from X-ray images, however,
this diagnosis suffers from subjectivity as it is achieved visually by evalu-
ating symptoms according to the radiologist experience/expertise. In this
article, we introduce a new deep convolutional neural network based on
the standard DenseNet model to automatically score early knee OA from
X-ray images. Our method consists of two main ideas: improving network
texture analysis to better identify early signs of OA, and combining pre-
diction loss with a novel discriminative loss to address the problem of
the high similarity shown between knee joint radiographs of OA and non-
OA subjects. Comprehensive experimental results over two large public
databases demonstrate the potential of the proposed network.

Keywords: Convolutional Neural Network · Discriminative loss ·
Knee osteoarthritis · Plain radiography

1 Introduction

Osteoarthritis (OA) is a degenerative joint disease caused by the breakdown of
the cartilage located at the end of the bone. Generally, OA is characterized by
stiffness, swelling, pain and a grating sensation on movement which lead to a
decrease in quality of life. Knee OA is the most common type of osteoarthritis.
Due to their safety, availability and accessibility, the standard imaging modality
for knee OA diagnosis is radiography (X-ray). The major hallmarks features of
knee OA such as joint space narrowing, osteophytes formation, and subchondral
bone changes could be visualized using X-ray images. Based on these pathological
features, The Kellgren and Lawrence (KL) grading system [1] splits knee OA
severity into five grades from grade 0 to grade 4. Grade 0 indicates the definite
absence of OA and grade 2 early presence of OA. However, X-ray image patterns
at early stage of knee OA present differentiation challenges and often result in
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high inter-reader variability across radiologists. Hence, the KL grading system is
semi-quantitative, which introduces subjectivity/ambiguity into decision making
and makes knee OA diagnosis more challenging.

Recently, a significant body of literature has been proposed on the application
of deep learning networks to X-ray images for knee OA detection and prediction.
In [2,3], Anthony et al. applied deep Convolutional Neural Networks (CNN) to
automatically detect knee joint regions and classify the different stages of knee
OA severity. In [4], Tiulpin et al. proposed an approach based on Deep Siamese
CNN, which reduces the number of learnable parameters compared to standard
CNNs. In their paper, the authors use an independent test set for evaluating its
obtained results. In [5], Chen et al. applied a custom YOLOv2 model to detect
the knee joint and fine-tuned a CNN model with a novel ordinal loss to classify
knee OA severity.

All aforementioned deep learning based studies used Convolutional Neural
Networks. However, classical CNNs rely mainly on the global shape information
extracted from the last layers and ignore the texture information that charac-
terizes bone architecture changes due to OA.

In [6], Nasser et al. introduced a Discriminative Regularized Auto-Encoder
(DRAE) for early knee OA prediction using X-ray images. The proposed DRAE
was based on Auto-Encoders (AE) with a combination between the standard AE
training criterion and a novel discriminative loss. The mean goal was to maximize
the class separability and learn the most useful discriminative features into the
classifier. The limitation of this study that it was focused only on texture changes
and neglected the overall deformation of the knee shape.

In this study, we propose to use a deep CNN model to predict knee OA in
early stage from plain radiographs. Inspired by previous research in texture CNN
[10,11], and the recently proposed discriminative regularization [6], we propose
a new network to consider both shape and texture changes and maximize the
class separability between OA and non-OA subjects.

The remainder of this paper is organized as follows. We report in Sect. 2 a
detailed description of the proposed method. Section 3 presents the experimen-
tal settings. The results of a comparative evaluation with effective alternative
solutions are discussed in Sect. 4. Finally, we give some concluding remarks and
perspectives in Sect. 5.

2 Proposed Method

2.1 Overview

Conventional CNN architectures usually lead to extract complex correlations
in upper layers corresponding to shape information and neglecting fine proper-
ties that contain the texture information [10,11]. However, knee osteoarthritis
diagnosis depends on shape and texture properties across the entire distal knee
joint. Thus, it is important to consider both features to create the training model.
Nevertheless, early diagnosis of OA remains a challenging task, due to the high
degree of similarity between non-OA and OA cases. Moreover, several studies
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[7–9] have shown that in case of strong inter-class similarities or strong intra-
class variations, and using only softmax loss, features learned with conventional
CNNs of the same class are often scattered, and those learned from different
classes overlap. Therefore, the discriminative aspect of the OA diagnostic model
should also be improved.

To address these issue, we propose a new method based on the standard
DenseNet [12]. The method combines texture information extracted from the
mid-level layers with deep features in the top layer to better identify early signs
of OA from inputs images (see Fig. 2). Moreover, we propose to add a novel
discriminative loss function to the standard softmax in order to maximize the
distance between non-OA and OA subjects.

2.2 DenseNet Learning Model

Our proposed network is derived from the classical DenseNet architecture [12],
which is a densely connected convolutional network pre-trained on ImageNet
[14]. In this section, a brief review of its architecture is given.

Let xl be the output of the lth layer. In conventional CNNs, xl is computed
by applying a nonlinear transformation Hl to previous layer’s output xl−1:

xl = Hl(xl−1) (1)

During consecutive convolutions, activation function and pooling operation,
the network obtains robust semantic features in the top layers. However, fine
image details related texture tend to disappear in the top layers of the network.

Inspired by the main idea of the ResNet learning model [13], which introduces
a residual block that sums the identity mapping of the input to the output of a
layer, and in order to improve the information flow between layers, DenseNet pro-
poses a direct connection from any layer to all subsequent layers. Consequently,
the lth layer receives the feature maps from all preceding layers as inputs. Thus,
it is possible to define the output of the lth layer as:

xl = Hl([x0, x1, ..., xl−1]) (2)

Fig. 1. Architecture of the DenseNet-121 learning model.
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where [...] represents the concatenation operation, Hl(.) is a composite function
of the following consecutive operations: Batch Normalization (BN), Rectified
Linear Units (ReLU), and a 3×3 Convolution (Conv). We denote such composite
function as one layer.

DenseNet-121 used in our experiments consists of four dense blocks, each of
which has 6, 12, 24 and 16 layers. In order to reduce the number of feature-maps,
DenseNet introduces a transition down block between each two contiguous dense
blocks. A transition down layer consists of a batch of normalization followed by
a ReLU function, and a 1×1 convolutional layer followed by a 2×2 max-pooling
layer. Figure 1 provides an illustrative overview of the architecture of DenseNet
and the composition of each block.

2.3 Proposed Discriminative Shape-Texture DenseNet

In order to tackle the high similarity between OA and non-OA knee X-ray images
at the early stages and to better detect the early signs of OA, we force the
proposed network to : (i) learn a deep discriminative representation and (ii)
consider both texture and shape information at the different layers of the model.

Learning a Deep Discriminative Representation. To learn deep discrimi-
native features, a penalty term is imposed on the mid-level representations of the
DenseNet (see Fig. 2). Apart from minimizing the standard classification loss, the
objective is to improve the discriminative power of the network by forcing the
representations of the different classes to be mapped faraway from each other.
More specifically, we incorporate an additional discriminative term to the orig-
inal classification cost function. The new objective function, LT consists of two
terms including the softmax cross-entropy loss and the discriminative penalty
one:

LT = LC + λLD (3)

where λ is a trade-off parameter which controls the relative contribution of these
two terms.

LC is the softmax cross-entropy loss, which is the traditional cost function
of the DenseNet model. It aims at minimizing the classification error for each

Fig. 2. Overview of the proposed method. Combination of texture and shape informa-
tion to improve the prediction of OA in early stage. Fl is the global average pooling of
the output of the lth transition layer.
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given training sample. Over a batch X of multiple samples of size N , the binary
CE loss is defined as:

JCls = − 1
N

N∑

i=1

yi log(ŷi) + (1 − yi) log(1 − ŷi) (4)

LD represents the discriminative loss used to enforce the discriminative abil-
ity of the proposed model. LD attempts to bring “similar” inputs close to each
other and “dissimilar” inputs apart. To compute LD, we first feed the set of
training samples X to the network and compute the outputs (feature maps)
in each layer for each training sample, xi ∈ X. Then, we compute Fl(xi), the
Global Average Pooling (GAP) of the output feature maps of each transition
layer l. Finally, the total discriminative loss LD is defined as follows:

LD =
L∑

l=1

El (5)

where El is the discriminative loss at a transition layer l. In the current study,
we test two loss functions, the online Triplet Hard and SemiHard losses [21] and
the Ωdisc one used in [6].

The Triplet loss [21], aims to ensure that the image xa
i (anchor) is closer to

all images xp
i (positive) belonging to the same class, and is as far as possible

from the images xn
i (negative) belonging to an other class. Hence, when using a

triple loss, EL can be defined as

El =
N∑

i=1

max(d(Fl(xa
i ), Fl(x

p
i )) − d(Fl(xa

i ), Fl(xn
i )) + ε) (6)

where d is a distance metric, ε is a margin that is enforced between positive and
negative pairs.

The Ωdisc loss [6], attempts to encourage classes separability, at each tran-
sition layer l, by maximizing the distance between the means μp

l and μn
l of the

learned feature sets (Fl(x
p
i ) and Fl(xn

i )) of each class and minimizing their vari-
ances vp

l and vn
l . The discriminative loss El which will be minimized in the use

case of Ωdisc is defined then

El =
vp
l + vn

l

|μp
l − μn

l |2 (7)

Combining Shape and Texture. As mentioned above, several studies have
shown that the first layers of CNNs are designed to learn low-level features, such
as edges and curves which characterize the texture information, while the deeper
layers are learned to capture more complex and high-level patterns, such as the
overall shape information [17,18]. Moreover, CNN layers are highly related to fil-
ter banks methods widely used in texture analysis, with the key advantages that
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the CNN filters learn directly from the data rather than from handcrafted fea-
tures. CNNs have also an architecture of learning which increases the abstraction
level of the representation with depth [10,11,19].

Based on these studies and especially on the main idea of the texture and
shape CNN (T-CNN) learning model [10], we propose a simple and efficient
modification to the DenseNet architecture to improve its ability to consider both
texture and shape.

Figure 2 illustrates the proposed architecture for combining texture informa-
tion of the mid-level layers with the shape information of the top layer. First,
using a specific concatenation layer, we fuse into a single vector the selected
{Fl|l = 1, .., L} which contain meaningful information about texture with the
features of the last network layer that represent shape information. Then, we
feed this vector to the final classification layer (i.e. the Fully Connected (FC)
layer). Consequently, the network can learn texture information as well as the
overall shape from the input image. This combination of features at different
hierarchical layers enables to describe the input image at different scales.

3 Experimental Setup

3.1 Data Description

Knee X-ray images used to train and evaluate the proposed model were obtained
from two public datasets: The Multicenter Osteoarthritis Study (MOST) [16]
and the OsteoArthritis Initiative (OAI) [15]. The entire MOST database (3026
subjects) is used for the training, and the OAI baseline database (4796 sub-
jects) is used for validation and test. The model was trained with regions of
interest (ROI) corresponding to the distal area of the knee extracted from right
knees and horizontally flipped left ones. Each ROI was associated with its KL
grade. The objective of this study is to distinguish between the definite absence
(KL-G0) and the definite presence of OA (KL-G2), which is the most important
and challenging task, due to the high degree of similarity between their corre-
sponding X-ray images, as shown in Fig. 3. KL-G1, is a doubtful one and was
not considered in the current study. Table 1 summarizes the number of training,
validation and testing samples.

3.2 Implementation Details

Our experiments were conducted using Python with the framework Tensorflow
on Nvidia GeForce GTX 1050 Ti with 4 GB memory. The proposed approach
was evaluated quantitatively using four metrics: Accuracy (Acc); Precision (Pr);
Recall (Re) and F1-score (F1).

Dataset Preparation. As shown in Table 1, data are imbalanced. To overcome
this issue during the training stage, data were balanced using the oversampling
technique. To do so, different random linear transformations were applied to
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Fig. 3. Knee joint X-ray samples showing the high similarity between KL grades 0
and 2.

Table 1. Dataset description and distribution

Group Dataset KL-0 KL-2

Train MOST 6008 3045

Validation OAI 1116 806

Test OAI 2313 1545

the samples, including: (i) random rotations using a random angle varying from
−150 to 150, (ii) color jittering with random contrast and random brightness
with a factor of 0.3, and (iii) a gamma correction.

Training Phase. As mentioned previously, DenseNet [12] pre-trained on Ima-
geNet [14] was retained as our basic network structure (section II). The input
size of the ROIs is 224 × 224, which is the standard size used in the literature.
The proposed model was trained and optimized end-to-end using Adam opti-
mizer with an initial learning rate of 0.0001. Hyper-parameters (λ, batch size,
size of the fully connected layer, ration of dropout) were tuned using grid search
on the validation set.

4 Experimental Results

In this section, the performance of our proposed method is evaluated for early
knee OA detection. Firstly, two discriminative loss functions are tested. Then, the
proposed network is compared to the deep learning pre-trained models, including
the standard DenseNet [12], ResNet [13] as well as to Inception-V3 [20]. Finally,
a visualisation analysis using t-SNE scatter plots is performed.

We test Triplet Hard and SemiHard losses with three distance metrics: l2-
norm, squared l2-norm and the cosine similarity distance. We test also the dis-
criminative loss Ωdisc proposed in [6]. The results are reported in Table 2. As can
be seen, the best overall classification performance is obtained using the Ωdisc
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discriminative loss with an accuracy rate of 87.69%. In term of the F1-score,
the highest value (87.06%) is also reached using the Ωdisc discriminative loss,
which corresponds to a precision rate of 87.48% and recall rate of 86.72%. We
notice that Triplet SemiHard loss with l2-norm distance achieves competitive
performance with Ωdisc loss. These results show that Ωdisc discriminative loss,
leads generally to better performance compared to other tested losses. Hence, it
is retained for the following experiments.

Table 2. Classification Performance of the proposed method using different discrimi-
native loss functions

Discriminative loss Distance metric Acc (%) Pr (%) Re (%) F1 (%)

Triplet hard l2-norm 86.21 85.51 86.31 85.82

squared l2-norm 86.50 85.94 85.93 85.94

cosine similarity 86.39 85.76 86.02 85.88

Triplet SemiHard l2-norm 87.48 87.88 85.94 86.66

squared l2-norm 86.91 86.74 85.82 86.21

cosine similarity 85.82 85.16 85.49 85.31

Ωdisc used in [6] x 87.69 87.48 86.72 87.06

The proposed method is compared to some deep learning pre-trained net-
works, that are the standard DenseNet [12], ResNet [13] as well as Inception-
V3 [20]. Results are reported in Table 3. As can be seen, the proposed method
achieved the highest prediction performance compared to the other networks.
In terms of accuracy, our proposed method obtains a score of 87.69% com-
pared to 85.07%, 86.49% and 84.03% achieved by ResNet-101, DenseNet-169
and Inception-V3, respectively. The highest F1-score (87.06%) is obtained also
by our proposed model. Even though DenseNet-169 achieved a high precision
compared to other networks, it still has a low recall (75.08%). Therefore, with
the exception of the precision values of DenseNet-169, our approach outperforms
all other networks for all four metrics. In particular, a significant improvement in
terms of F1-score is observed, as our model increases results by 5.14% from the
81.92% achieved by the standard DenseNet to 87.06% for the proposed method.

In addition to the quantitative evaluation, we check whether our model is able
to increase the segregation of classes. To this end, we display the 2D scatter plots
using t-distributed Stochastic Neighbor Embedding (t-SNE) [22] on each features
levels {F1, F2, F3}. Results are illustrated in Fig. 4. The first column shows the
feature vector F1 extracted from the first transition layer. As can be seen, the
two classes significantly overlap. This may be due to common textual features
shared between classes, such as edges and contours that form the overall joint
shape. The second column shows the learned feature vectors F2 obtained from
the second transition layer. In this case, the network improves the separation
between the two classes but not enough. The last column shows the learned
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Table 3. Comparison of the proposed method to the deep learning pre-trained networks

Methods Acc (%) Pr (%) Re (%) F1 (%)

ResNet ResNet-50 83.23 88.41 74.49 80.85

ResNet-101 85.07 83.56 80.04 81.76

ResNet-152 84.86 75.99 84.64 80.08

DenseNet DenseNet-121 85.66 82.76 81.10 81.92

DenseNet-169 86.49 89.50 75.08 81.66

DenseNet-201 84.76 86.22 73.72 79.48

Inception Inception-V3 84.03 83.39 75.08 79.02

Proposed method 87.69 87.48 86.72 87.06

features vector F3 obtained from the third transition layer. Results show that
by going deeper, our proposed model learned two discriminant representations.
Thus, it leads to a better classes discrimination and thus a good prediction of
knee OA at an early stage.

Fig. 4. Obtained t-SNE scatter plots for each feature levels using our proposed network.

5 Conclusion

In this paper, we proposed a novel deep learning method based on CNNs architec-
ture with two distinct ideas: (i) combining the learned shape and texture features,
(ii) enhancing the discriminative power to improve the challenging classification
task, where a high similarity exists between early knee OA cases and healthy sub-
jects. We tested the performance of our method using two discriminative losses
with several distance metrics. The experimental results show that the proposed
method surpasses the most influencial deep learning pre-trained networks. The
results are promising and a further extension in a context of multi-classification
with more KL grades and other loss functions will be considered in a future
work.
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Abstract. While the number of stroke patients is increasing worldwide
and every fifth stroke survivor is developing long-term cognitive impair-
ment, its prediction becomes more and more important. In this work,
we address the challenge of predicting any long-term cognitive impair-
ment after a stroke using deep learning. We explore multi-task learn-
ing that combines the cognitive classification with the segmentation of
brain lesions such as infarct and white matter hyperintensities or the
reconstruction of the brain. Our approach is further expanded to include
clinical non-imaging data to the input imaging information. The multi-
task model using an autoencoder for reconstruction achieved the high-
est performance in classifying post-stroke cognitive impairment when
only imaging data is used. The performance can be further improved by
incorporating clinical information using a previously proposed dynamic
affine feature map transformation. We developed and tested our approach
on an in-house acquired dataset of magnetic resonance images specifi-
cally used to visualize stroke damage right after stroke occurrence. The
patients were followed-up after one year to assess their cognitive status.
The multi-task model trained on infarct segmentation on diffusion tensor
images and enriched with clinical non-imaging information achieved the
best overall performance with a balanced accuracy score of 70.3% and
an area-under-the-curve of 0.791.

Keywords: Post-stroke cognitive impairment · Multi-task learning ·
Deep learning · Stroke · Dementia · UNet · Autoencoder

1 Introduction

Up to one third of all people with a history of stroke are at risk of developing
Post-Stroke Cognitive Impairment (PSCI) [1]. A reliable prediction whether the
patients will suffer from long-term PSCI or recover to their old cognitive health
is a missing piece in the medical treatment of stroke survivors. Currently, the
lack of reliable predictive markers and the high variance of stroke characteristics
challenge an early prediction of PSCI. Additionally, every brain has its own
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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unique and flexible structure which challenges doctors to infer the long-term
cognitive prognosis from damaged tissue.

The stroke might lead to damaged tissue in the brain with short- and long-
term consequences for the patient. Infarct and White Matter Hyperintensities
(WMH) are two types of lesions which occur due to a stroke. Both lesions can
be visualized using Magnetic Resonance Imaging (MRI). An infarct is an area,
which suffered a tissue death after an inadequate blood supply. Through the
reduced blood flow, the infarct lesion is visible in Diffusion Tensor Images (DTI).
WMH lesions are well visible as hyperintense structures in FLAIR images and
are a direct sign for a white matter injury. Patients with WMH and infarct
areas carry the worst prognosis of long-term survival, self-rated health and are
strongly limited in their activities of daily living [2].

Previous work on the prediction of PSCI focused on the identification of
imaging and non-imaging biomarkers. Research conducted by Zietemann et al.
suggests a predictive importance of the Montreal Cognitive Assessment (MoCA)
score regarding the prediction of long-term cognitive impairment [3]. The MoCA
score consists out of 30 questions, which evaluate the cognitive status of the
patient. In addition, markers of the small vessel disease such as lacunes, WMH,
cerebral microbleeds and enlarged perivascular spaces were associated with a
long-term cognitive and functional impairment [4].

Possible risk factors for PSCI were examined in [5]. Patient characteristics
such as age as well as stroke characteristics like severity have shown an impact on
the patients risk of developing PSCI. In addition, radiological data such as white
matter changes can be considered as risk factor as well. However, the occurrence
of white matter changes are coupled with the presence of cerebral atrophy and
lacunar infarcts.

The expressiveness of computed tomography (CT) and MRI (T1, T2, FLAIR,
and DWI) imaging data for PSCI prediction was demonstrated in [6] by showing
the importance of spatial location of the infarct for the prediction. Their analyses
of the stroke locations suggested that the left frontotemporal lobes, right parietal
lobe, and left thalamus are the strongest predictors for PSCI [6]. Such works
emphasize the importance of both imaging and non-imaging information for the
prediction of PSCI.

In this work, we will explore deep learning (DL) techniques for the predic-
tion of PSCI using MR images acquired directly after the stroke diagnosis. DL
methods have shown remarkable success in image classification and prediction
tasks. Such methods learn to extract features, which are most predictive for a
given task. This is especially useful when it comes to complex prediction tasks
such as PSCI prediction.

Multi-task learning is a learning paradigm in DL which aims at learning
multiple related tasks simultaneously to leverage knowledge of each task for
better performances. This can be used for example to cope with the lack of
large annotated datasets [7,8]. There are two main approaches for multi-task
learning: (i) hard parameter sharing, where the majority of network weights are
shared among all task, and (ii) soft parameter sharing, where each task is learned
by a separate network and the distance between network weights is minimized
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across tasks [9]. The former approach can be for example realized through a
shared encoder. In a medical context such networks were successfully applied
for detection and classification of breast tumors [10], placenta segmentation and
location classification [8] and many more.

Contributions. The use of DL to predict long-term PSCI is very limited [11].
We compare for the first time different single- and multi-task DL approaches
and the effectiveness of several surrogate tasks for the prediction of PSCI. The
assumption is that additional tasks, such as segmentation of relevant structures,
can improve the image feature extraction ability and enable the model to build
a more meaningful latent space for the downstream task of PSCI prediction. We
explore the use of different modalities for the prediction (FLAIR and DTI), and
we evaluate different approaches to combine imaging and non-imaging data for
PSCI prediction in the DL models.

2 Methodology

We explore the effect of multi-task learning with convolutional neural networks
(CNNs) on the prediction of long-term PSCI. Additionally, we compare CNN
models trained solely on imaging data with models incorporating non-imaging
(tabular) information into the DL models. The models can be divided into single-
task models, multi-task models and models which integrate non-imaging data
into their training. An overview of all network architectures that were inves-
tigated are visualized in Fig. 1 and are described in detail below. As relevant
tasks, we chose the classification of PSCI (diagnosed 12 months after the stroke)
as the downstream task, and the segmentation of relevant structures and the
reconstruction of the image as two surrogate tasks.

2.1 Single-Task Networks

The single-task models represent our baseline models. We conducted single-task
experiments regarding classification, segmentation and image reconstruction.

Image Classification. A CNN encoder is used to extract the underlying fea-
tures of the 3D image. This encoder (EncNet) consists of four residual blocks
which are composed of a convolutional layer with batch normalization and ReLU
activation. The encoder down-samples the whole 3D image to its latent feature
space with the dimensions (256, 8, 8, 8) of channel dimension, height, width and
depth. A subsequent linear block with batch normalization and Sigmoid acti-
vation outputs the classification result. An attention mechanism [12] is incor-
porated in the third layer of the encoder to improve the interpretation and
performance of the model. To cope with imbalanced datasets, we use a weighted
binary cross entropy as loss function for the classification task. We denote such
loss function for optimizing the classification task between the reference label
C ∈ {0, 1} and the predicted label ˜C ∈ {0, 1} as LClass( ˜C,C).
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Fig. 1. Convolutional neural network architectures investigated in this work divided by
tasks and input data. (a) single task networks for classification (EncNet), reconstruc-
tion (RNet) and segmentation (SNet); (b) multi-task networks for classification and
reconstruction (MRNet) and classification and segmentation (MSNet); (c) multi-task
networks for classification and segmentation combining both imaging and tabular data
using two different methods: concatenation in latent space (CMNet) and DAFT [15]
(DMet). The grey boxes in (c) represent the MSNet architecture and visualize which
input was enriched with tabular data. (Color figure online)

Image Segmentation. We used a modified UNet architecture to segment the
infarct or WMH areas based on manual labeled reference segmentation, denoted
as SNet. The original UNet has an encoder-decoder structure with convolutional
layers and symmetric skip connections from the encoder to the decoder [13]. Our
network uses residual blocks with strided convolution, batch normalization and
ReLU activation. The encoder and decoder consists of four layers each, which
are symmetrically connected via skip connections. During the training we use
the sum of the binary cross-entropy loss and Dice loss between the predicted
segmentation mask ˜S ∈ Rl×h×w and the manual reference segmentation S ∈
Rl×h×w as loss function for the optimization, where l, h, w denote the length,
height and width of the 3D image. We denote this loss function as LSeg( ˜S,S).

Image Reconstruction. For the reconstruction of the image we adapt an
Autoencoder (AE) network from [14], which we denote as RNet. Similar to the
SNet, we use an encoder-decoder structure which has residual blocks with strided
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convolution, batch normalization and ReLU activation but no skip connections
between the encoding and decoding part. As one variation of our RNet we added
a reparametrization layer in the bottleneck similar to a Variational Autoencoder
(VAE). This forces the encoder to output a statistical distribution, whereby a
continuous smooth latent feature representation is enforced. The encoding and
decoding part consists out of four respective layers. For the training, the loss
function between the input image R ∈ Rl×h×w and the reconstructed image
˜R ∈ Rl×h×w is denoted as LRec( ˜R,R). For the AE network the Mean Squared
Error (MSE) is used as a loss function to optimize the model’s weights. As for
the VAE, the reconstructed image ˜R is represented through a distribution, and
the Kullback-Leibler Divergence loss is used for the optimization.

2.2 Multi-task Networks

In multi-task learning, multiple tasks are optimized simultaneously. To reduce
the risk of overfitting, we use hard parameter sharing, as our model needs to
find an representation suitable for all task. To optimize for the classification
and segmentation (MSNet) or classification and reconstruction (MRNet) task
simultaneously, we added a classification branch (linear layer) after the bottle-
neck layer of the SNet and RNet, respectively (similar to [8]). In addition, an
attention mechanism [12] is added to the third layer of the encoder.

The overall loss Lall( ˜C,C, ˜I, I) is defined through the weighted sum of the
loss for each task, where β ∈ R+ is the weighting parameter between the tasks:

Lall( ˜C,C, ˜I, I) = LClass( ˜C,C) + βLTask(˜I, I). (1)

The loss LTask(˜I, I) is chosen as LSeg( ˜S,S), when segmentation, and
LRec( ˜R,R) when reconstruction is the surrogate task.

2.3 Incorporation of Non-imaging Data

Due to the predictive importance of several clinical parameters and to expand the
available information for the model, tabular data was included to the input data.
We explored two different strategies to incorporate the tabular information into
the model. As a straightforward approach in CMNet, we added the tabular data
after the encoder to the latent feature space. The tabular data was transformed
to a numerical format before.

In our DMNet we use a more complex approach to include the non-imaging
data. We use a Dynamic Affine Feature Map Transform (DAFT) [15]. This app-
roach introduces an interaction between the clinical parameters and the imaging
information. Hence, we replace the last encoding block with a corresponding
DAFT block.
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3 Materials and Experiments

3.1 Implementation Details

We selected relevant hyperparameters (learning rate, batch size, initial channel
dimension, dimension of the latent space, data augmentations) by performing a
grid search on SNet and RNet and fixed them for all experiments. We trained
with intensity transformations (blurring), random spatial transformations, image
flipping and synthetic MRI motion artifacts for data augmentation. The augmen-
tation techniques were implemented using TorchIO [16]. For the final training
of all models, we used a learning rate of 1e−3, a batch size of 16 and a initial
channel dimension of 32. For the RNet, a latent space with a dimension of (256,
8, 8, 8) was selected. The training was run on a working station with 251 GB of
RAM and AMD Ryzen Threadrupper 29600X 24.core processor and a NVIDIA
Quadro RTX 8000 GPU.

3.2 Data

We used an in-house acquired MR dataset of 414 stroke patients, in which around
every fifth patient suffered under long-term PSCI. The images (T1, FLAIR and
DTI Trace) were acquired within a few days after stroke diagnosis and clini-
cal data were collected, including age, sex, education, stroke severity (NIHSS),
information about health history and cognitive status (MoCA). The patients
were followed-up after 12 months of stroke occurrence and categorized as PSCI-
negative or PSCI-positive by a clinical expert based on the results of neurological
examinations.

Infarct and WMH lesions were semi-automatically segmented and manually
corrected by a clinical expert. The infarct lesions were segmented in the DTI
Trace images and the WMH lesions in the FLAIR images. As preprocessing
steps, the brain tissue is extracted from the T1 images [17], mapped in an affine
way to the Montreal Neurological Institute brain [18] using affine registration
[19]. All other modalities where then registered to the T1 image in atlas space
and the image intensities are standardized. We split suitable patients into two
groups with the same ratio of PSCI candidates, using 90 % for training and 10 %
for testing. The training data was then further split into five subgroups for a
5-fold cross validation.

3.3 Evaluation Measures

Classification. As a reliable PSCI prediction is the main goal of our work, the
evaluation of the classification performance plays an important role. To cope with
any occurring imbalance, the balanced accuracy was selected as main evaluation
metric for the classification. This measure is the arithmetic mean between the
sensitivity and specificity of the classification model. To evaluate the overall
quality of the model’s prediction we evaluated the Area under the Curve (AUC).



Cognitive Outcome Prediction Using Multi-task Learning 143

Segmentation. For the evaluation of the segmentation performance, we com-
pare the predicted segmentation with the reference segmentation. As overlap
measure, we report the Dice score which indicates the overlap of two areas. As
surface measures, the robust (95%) Hausdorff Distance (HD) and the average
surface distance (ASD) are considered.

4 Results

We present three types of results: First, the baseline single-task model for clas-
sification and segmentation, second, the classification of PSCI with multi-task
learning using imaging data only, and lastly the PSCI classification with multi-
task learning using imaging and tabular data as input. For all models, we trained
two configurations, depending on the imaging input (FLAIR or DTI Trace).
Exemplary attention maps for all classification networks are shown in Fig. 3.
These heat maps visualize the most important features that were identified by
the network for the final prediction. The classification results for all experiments
are visualized in Fig. 2.

For EncNet, the model trained on the FLAIR sequence achieved the highest
balanced accuracy of 0.668 ± 0.106. For the DTI Trace modality, the balanced
accuracy of the EncNet model was 0.569 ± 0.0814. This forms our baseline for
further classification networks.

The segmentation results of SNet are summarized in Table 1 and compared to
the other networks which solve segmentation as surrogate task. The infarct seg-
mentations in DTI Trace achieved higher performances compared to the WMH
segmentations in FLAIR images. This is due to the small size of the WHM
lesions. It is harder to segment smaller structures and overlap measures, such as
Dice and Jaccard, are very sensitive in this regard. We observe that the over-
lap measures for infarct segmentation are comparable for all four models. The
multi-task models outperform the baseline SNet on the HD, indicating that the
number of outliers is reduced due to the multi-task training. The best performing
model is the CMNet. For WMH segmentation, the models MSNet and CMNet
did not perform well, while the best results are obtained with DMNet.

We observe a different pattern for the multi-task models when trained on
either FLAIR or DTI Trace images. The balanced accuracy does not improve
for multi-task models when using FLAIR image compared to the EncNet perfor-
mance (see Fig. 2 right, blue plots). Only the MRNet model using an AE was able
to achieve a similar balanced accuracy of 0.655 ± 0.117 with an AUC increased
to 0.867 ± 0.0563. On the other hand, the multi-task learning improved the
PSCI classification performance when using the DTI Trace images as imaging
data (see Fig. 2 left, blue plots). The MRNet model using an AE for recon-
struction and DTI Trace brain images, was able to achieve the highest balanced
accuracy of 0.736 ± 0.024 and an AUC of 0.769 ± 0.088. The MSNet model on
DTI Trace using infarct segmentation was also able to further improve the clas-
sification performance compared to the EncNet, suggesting that the additional
infarct segmentation benefits the pretext task. These results suggest that the
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Table 1. Segmentation results of the single-task network SNet and the multi-task
networks MSNet, MCNet and MDNet. Overall, the models were better able to segment
the infarct in DTI Trace than the WMH areas in FLAIR.

Model Lesion Dice Jaccard Robust HD 95% ASD

SNet WMH 0.427 ± 0.018 0.287 ± 0.14 36.5 ± 24 9.2 ± 22.5

MSNet 0.118 ± 0.102 0.066 ± 0.061 54.2 ± 17.1 23.3 ± 15.1

CMNet 0.144 ± 0.183 0.090 ± 0.122 46.1 ± 17.8 23.7 ± 17.0

DMNet 0.447 ± 0.175 0.303 ± 0.138 15.2 ± 18.5 4.7 ± 7.9

SNet infarct 0.662 ± 0.221 0.528 ± 0.209 19.5 ± 28.4 6.78 ± 22.6

MSNet 0.654 ± 0.250 0.528 ± 0.231 15.1 ± 31.2 8.12 ± 22.1

CMNet 0.668 ± 0.210 0.533 ± 0.207 8.24 ± 21.3 3.79 ± 12.1

DMNet 0.634 ± 0.260 0.509 ± 0.237 15.4 ± 31.9 8.26 ± 21.0

Fig. 2. Left: Network performances with FLAIR as MRI sequence for the imaging data.
Right: Network performances of models trained on DTI Trace. The color determines,
what type of data was used for input. (blue: only the MRI image was used as input,
green: the MRI image and non-imaging clinical data was used as input). (Color figure
online)

DTI Trace data and infarct lesion have a more predictive power than FLAIR
and WMH lesions, but this has to be investigated in the future using more
extensive experiments.
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Fig. 3. Attention maps from different network architectures. The attention maps of
the MSNet WMH and INF models focus on the brain lesions for their classification
(green contour). While the EncNet focuses on the ventricles of the brain, the MRNet
does not focus on a specific brain area. (Color figure online)

Analysing the attention maps in Fig. 3, the MSNet shows an increased atten-
tion to the segmented risk area. While the MRNet did not seem to focus on a
specific brain area, the EncNet show a high focus on the ventricles of the brain.
Especially the frontal horn of the lateral ventricle is receiving a high attention.

The results of multi-task learning (with segmentation as surrogate task) com-
bined with tabular data is also shown in Fig. 2 (green plots). The naive approach
of simply concatenating the vectorized tabular data to the latent space features
did not improve PSCI classification results for either input data. The MDNet
model using DAFT incorporated the tabular data more efficiently and the best
model (MDNet on DTI data) achieved a mean balanced accuracy of 0.703 ±
0.161 and an AUC of 0.791 ± 0.086.

5 Discussion and Conclusion

In this work, we addressed the challenge of long-term PSCI prediction using
brain MRIs and clinical non-imaging data. We proposed a multi-task approach
for PSCI classification in combination with risk area segmentation or image
reconstruction. The motivation for this approach is the advantage of multi-task
learning, where learning two tasks simultaneously leverages the performance of
the downstream task.

We found in our experiments that multi-task learning particularly improves
PSCI prediction using DTI imaging data. A possible interpretation is that the
infarct lesions, visible in DTI Trace images, are easier to segment and possibly
more predictive for PSCI than the smaller lesions of WMH. Both segmentation
and reconstruction are promising surrogate tasks to improve the feature extrac-
tion for PSCI classification. Using reconstruction as a subtask, the MRNet using
an AE yielded to a higher classification performance than a VAE. This con-
tradicts the assumption that a latent feature space, which is based on distri-
butions, benefits the classification task. However, minor changes in the brain,
which are responsible for PSCI development, might be underrepresented in such
a distribution-based representation. Hence, this can cause the classification to
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miss such minor but nevertheless important changes. More extensive experiments
are required to investigate the potential of AE and VAE as surrogate tasks.

We included an attention mechanism in the encoder of our models. The
analyses of the attention maps strengthens the presumption that an awareness
of the spatial location and/or extend of the brain lesions, as already suggested
in [6], are beneficial for the classification task.

Including clinical information through concatenation to the latent feature
space did not improve the performances of the models. This approach seems to
be too naive to effectively incorporate tabular data into a CNN. In contrast,
a DAFT layer in MDNet enables the network to receive image information in
context to tabular data. This further improved the classification performance
on the multi-task model segmenting the infarct area and represents the most
promising approach of this work.

This work presents a first step towards reliable long-term PSCI predictions
in stroke patients using DL. Our approach is able to make PSCI predictions
with a good balanced accuracy of 0.70 on our test set and shows interesting
research directions towards PSCI prediction. However, our results are only pre-
liminary in the sense that more research is needed to confirm the conclusions and
interpretations drawn from our experiments and explore other research avenues.

Specifically, we plan to further investigate the predictive power of differ-
ent and/or multiple MR modalities. The visibility of each lesion differs in each
modality. Enabling the network to process more than one modality at the same
time could improve the expressiveness of the latent feature space. One approach
could be to process FLAIR and DTI images at the same time and solve infarct
and WMH segmentation as surrogate tasks simultaneously. Another approach
could explore the reconstruction of T1 images, as these have a high informative
value and show different brain tissues and lesions than DTI and FLAIR.

Also, we will investigate different parameter sharing methods for multi-task
learning. To this end, we adopted hard parameter sharing, where the core lay-
ers are shared between task. For very different tasks, as classification and lesion
segmentation, a soft parameter sharing approach could be more suitable. Addi-
tionally, we want to further explore additional baseline and ablation studies.
A pre-training of the encoder weights on a larger dataset could improve the
performances of the single-task and multi-task learning models.

The relatively low dice scores indicate a high false positive and false negative
rate of the segmentations. We plan to further investigate what influence a more
stable segmentation has on the classification task.

Lastly, the exploration of different ways to incorporate non-imaging data is
worth exploring. The non-imaging data (patient characteristics, health history,
stroke severity, etc.) contain predictive parameters for PSCI prediction. Although
DAFT already shows very promising results, other approaches are worth inves-
tigating. Also the positioning of the DAFT block and its influence on the data
interaction can be explored in the future.
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Abstract. Predicting cognitive scores (e.g., intelligence quotient (IQ)) from
functional brain connectomes enables the analysis of the underlying connectiv-
ity patterns that determine such abilities. In this context, recent works addressed
IQ prediction from connectomes by designing graph neural network (GNN)
architectures for regression. While effective, existing studies have two impor-
tant drawbacks. First, the majority of these works train and evaluate regression
GNNs on data from the same distribution. Thus, the performance of the models
under domain shifts, where the target training and testing behavioral scores are
drawn from different distributions, has not been considered. Second, the proposed
architectures do not produce uncertainty estimates for their predictions, limiting
their usage in critical real-world settings where data distribution may drastically
change and render the predictions unreliable. To cope with this, a few studies pro-
posed proposed Bayesian neural networks for estimating predictive uncertainty.
However, these require heavy computation of the training process and have not
been applied to regression GNNs. To address this problem, we unprecedentedly
propose a deep graph ensemble of regression GNNs for estimating predictive
uncertainty under domain shifts. Our main contributions are three-fold: (i) form-
ing ensembles of regression GNNs for estimating their predictive uncertainties,
(ii) simulating domain shift between training and test sets by applying clustering
algorithms in the target domain, (iii) designing a novel metric for quantifying the
uncertainty of GNN ensembles. We believe our study will inspire future research
on the performance and uncertainty of GNNs under domain shifts, allowing their
use in real-world scenarios. Our code is available at https://github.com/basiralab/
predUncertaintywithDomainShift.

Keywords: Predictive uncertainty estimation · Domain shift · Regression
GNNs · Brain connectivity

1 Introduction

Prediction of cognitive scores such as intelligence quotients (IQ) from functional brain
connectomes has attracted the attention of the network neuroscience community as it
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150 S. Yürekli et al.

provides a method for discovering brain structures and connectivities that directly inter-
act with cognitive abilities. Moreover, studies have shown a strong correlation between
intelligence scores measured in childhood and academic success, and these scores have
also been linked to health and mortality [1,2].

To this end, multiple works [3–7] applied learning-based methods for predict-
ing behavioral and cognitive scores. For example, [3] proposed the first connectome-
based predictive modeling method (CPM) by utilizing machine learning techniques.
[4] applied this method to the problem of IQ prediction in both neurotypical (NT) and
autism spectrum disorder (ASD) cohorts. Inspired by the recent works that showcase the
predictive power of deep neural networks (DNN), [5] compared multiple DNN archi-
tectures for behavioral prediction. Most recently, [6] utilized geometric deep learning
methods and designed a graph neural network (GNN) architecture for regression that
leverages the underlying graph structure of the brain connectomes. Although these stud-
ies have promising prediction results, they have either focused on data drawn from a
single cohort [3,5] or trained separate models for each cohort [4,6]. However, real-
world applications of medical imaging encounter the problem of domain shift, where a
model trained on a target data distribution (e.g., of the target score to predict) is tested
on samples drawn from a different distribution [8].

To address the problem of domain shift in medical imaging, multiple domain adap-
tation techniques have been proposed. For example, [9] proposed a method for fine-
tuning a trained model on a new domain with minimal annotated data. [10] compared
multiple transfer learning tools for brain structure segmentation from magnetic reso-
nance images (MRI). However, domain adaptation cannot be applied in all situations
as data collection in each target domain is expensive and unfeasible for large-scale
applications. An alternative approach to overcome this challenge is quantifying pre-
dictive uncertainty. For instance, [11] applies Bayesian inference to a classification
problem for estimating predictive uncertainty, whereas [12] utilizes Bayesian neural
networks for medical segmentation tasks. While Bayesian methods have proven effec-
tive for uncertainty quantification, they require high compute for training. To alleviate
these problems, [13] proposed training deep ensembles. These ensembles have outper-
formed alternative approaches for accuracy and uncertainty estimation according to a
large body of empirical research [14], and they were shown to be more robust against
dataset shifts [15]. However, they have not been applied to graph neural networks for
regression problems.

To address all these limitations, we propose the first method for quantifying the pre-
dictive uncertainty of regression GNN models under shifts of the target domain between
the train and test sets. Our contributions include 1) estimating predictive uncertainties
of regression GNNs by forming deep ensembles, 2) simulating domain shifts at train-
ing time by clustering the target domain outputs (i.e., target scores), and 3) designing a
novel metric for measuring the uncertainty of the output of a deep ensemble.

2 Methods

In this section, we present the main steps of our deep graph ensemble method for pre-
dictive uncertainty estimation under target domain shift. Figure 1 provides an overview
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Fig. 1. Illustration of the predictive uncertainty estimation with target domain shift using an
ensemble of GNN architectures. A) Preparing the cohort for the ensemble in order to evaluate
the uncertainty estimation with target domain fracture A-i) using clustering algorithms in order
to A-ii) build differently distributed A-iii) training and testing data in the output domain. B) To
overcome the limitations of uncertainty in the target domain, we design a simple but effective
ensemble method to predict uncertainty. B-i) First, we construct the ensemble with diverse base
learners merely consisting of RegGNNs [6] and PNAs [16]. Moreover, each of the base learners
is trained with built training sets. B-ii) Second, We evaluate the ensemble model with generated
test sets. We calculate the target score and predictive uncertainty estimation of the ensemble by
calculating the mean and standard deviation over all base learners in ensemble. Third, compute
the mean of both cognitive score and uncertainty estimation among domain shift simulations.

of the proposed evaluation method: 1) clustering brain connectomes in the target out-
put space (i.e. cognitive scores) using unsupervised clustering algorithms to simulate
train and test sets with different distributions, 2) constructing and training deep graph
ensembles, and 3) estimating predictive uncertainty with ensembles on test sets.
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A) Domain Shift Simulation in Target Domain. Let Gi(Vi, Ei) ∈ R
d×d denote the

adjacency matrix of the brain connectome graph for subject i where each node in
Vi denotes one of d regions of interest (ROI) and each edge in Ei represents the
connection between two ROIs. We define yi ∈ R as the target cognitive score of
subject i.
Let Dtrain = {(Gi(Vi, Ei), yi) | i ∈ {1, . . . , N}} as the training set where yi ∈
R denotes the target cognitive score. We use Dtest for the test dataset with the
same definition. We use one of K unsupervised clustering algorithms to cluster
connectomes into 3 folds based on the target cognitive score. Next, we form the
train and test sets by using one of the folds clustered by a given algorithm for
testing and the remaining folds for training. Specifically, we define D

kf

train and

D
kf

test to represent the train and test sets built by putting the fth fold into the test
dataset using the kth algorithm, where k ∈ {1, . . . , K}. In the end, we obtain train
and test sets with K domain shifts in order to evaluate deep graph ensembles. We
emphasize that the target output distributions of the generated train and test sets
are different from each other.
In addition to the domain shift simulation, we also use 3-fold cross-validation with
S different random seeds in order to estimate predictive uncertainty in our ensem-
bles with no domain shift. Specifically, we define D

sf

train,Dsf

test to represent the
train and test sets built with sth seed where fth fold is used for testing.

B) IQ Score and Uncertainty Prediction
i) Ensemble Construction, Training and Testing. Let GNNj represent a regression

GNN with set of parameters Wj , which computes the cognitive score prediction via
a learned mapping fj(Gi) ∈ R for subject i in the dataset. We formed ensembles
of regression GNNs as {GNN1, . . . , GNNα} where α denotes the number of base
learners in the ensemble. Without loss of generality, the underlying architecture of
each GNNj is selected as either RegGNN [6] or PNA [16] in this prime work.
Furthermore, we have improved the RegGNN by adding additional nc convolution
layers and nl linear layers in order to diversify the base learners in the ensemble
as recommended by [14], noting that the diversification of the base learners in an
ensemble increases the performance in terms of predictive uncertainty estimation.
With this motivation, we achieve further diversification among the base learners in
the ensemble by varying various parameters including dropout rates, convolutional
layer counts nc, linear layer counts nl, and hidden sizes nh.
We use either D

kf

train (with domain shift) or D
sf

train (without domain shift) to train
an ensemble. We treat ensembles as uniformly-weighted mixture models and com-
bine the predictions to predict the target cognitive score for subject i in D

sf

test as
shown in Eq. 1:
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M(Gi) =
1
α

α∑

j=1

fj(Gi) (1)

ii) Ensemble Cognitive Score Prediction and Uncertainty Estimation. We estimate the
predictive uncertainty for subject i in Dtest by calculating the standard deviation
of the predictions of the ensemble as shown in Eq. 2:

σ2(Gi) =
1
α

α∑

j=1

(fj(Gi) − M(Gi))2 (2)

We reach the final predictions for uncertainty and target scores under target
domain fracture by combining the predictions for subject i from different clus-
tering algorithms using the following equation: M(Gi) = 1

K

∑K
k=1 Mk(Gi),

where M(Gi) denotes the final target score prediction, Mk(Gi) is the predicted
target score for subject i trained and tested with the kth clustering algorithm.
σ2(Gi) = 1

K

∑K
k=1 (σ

2)k(Gi), where (σ2)k(Gi) is the uncertainty estimation for
subject i trained and tested with the kth clustering algorithm and σ2(Gi) denotes
the final predictive uncertainty estimation. Similarly, same equations are applied in
the case of seed shuffling for randomizing the cross-validation (i.e., perturbing the
distributions of the training and testing sets). M(Gi) = 1

S

∑S
s=1 Ms(Gi) where

M(Gi) is the final target score prediction, Ms(Gi) is the predicted target score for
subject i trained and tested with the sth seed, σ2(Gi) = 1

S

∑S
s=1 (σ

2)s(Gi) where
(σ2)s(Gi) is the uncertainty estimation for subject i trained and tested with the sth

seed and σ2(Gi) the final predictive uncertainty estimation.
We also propose a novel error metric to quantify the performance of ensembles
according to the fitting error of the predicted target score and predictive uncertainty
error. The intuition behind the presented metric is based on the motivation that if
the prediction of the target score results in a high mean absolute error for any
subject, then the model should have a high uncertainty and vice versa. Likewise,
if the prediction of uncertainty results in high certainty, i.e. standard deviation,
then the mean absolute error should be low. With this motivation, we introduce the
following error metric eU in Eq. 3:

eU =
1
N

∑N
i=1

μi

(σ2
i+ε)

+ 1
N

∑N
n=1

σ2
i

(μi+ε)

1
N

∑N
i=1

μi

(σ2
i+ε)

× 1
N

∑N
n=1

σ2
i

(μi+ε)

, (3)

where σ2
i is the squared standard deviation (i.e., predictive uncertainty estimate).

μi is the mean absolute error for the predicted target cognitive score for subject i,
and N is the size of the cohort.

3 Experimental Results and Discussion

Evaluation Dataset. For the experiments, we used a randomly selected subset of the
Autism Brain Imaging Data Exchange (ABIDE) dataset [17] to account for imaging
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site bias. Preprocessed datasets are available online1. Each subject is represented by a
functional brain connectome that is parcellated into 116 ROIs as defined in AAL [18];
they were obtained from resting-state functional magnetic resonance imaging (rs-fMRI)
and corresponding full-scale intelligence quotients (FIQ) are given. Our subset con-
tained 202 subjects in the autism spectrum disorder (ASD) cohort (with mean age =
(15.4 ± 3.8) and mean FIQ = (106.102 ± 15.045)).

Parameter Setting. We trained our GNN models using the Adam [19] optimizer for 10
epochs with a learning rate of 0.001 and weight decay at 0.0005.

Evaluation and Comparison Methods. To evaluate the performance of deep ensem-
bles with regression GNNs, we trained 8 ensemble models with varying architectures
and parameters. The details of the proposed ensembles are explained in Tables 1a–1h.

To measure the predictive uncertainty of deep graph ensembles without domain
shift, we trained and tested each ensemble using 3-fold cross-validation. To simulate
the domain shift, we clustered the target output scores using a clustering algorithm
and trained the ensemble on N − 1 clusters while using the N th cluster as a test set,
effectively simulating a fracture in the target output space.

For cross-validation, we repeated the experiments with 5 random seeds. For domain
shift simulation, we repeated the experiments using 5 different clustering algorithms

Fig. 2. Uncertainty results for GNN regression ensembles. In all plots, subjects are sorted increas-
ingly by FIQ score on the x-axis and the scores are given on the y-axis. The light blue dotted curve
represents the ground truth FIQ scores, the pink line represents the mean of the ensemble predic-
tion under domain shift simulation and the green represents the mean under cross-validation. For
both lines, the standard deviation of the predictions is given as the area chart of the corresponding
color. (Color figure online)

1 https://github.com/preprocessed-connectomes-project/abide.

https://github.com/preprocessed-connectomes-project/abide
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Table 1. Proposed regression GNN ensembles. A total of 8 ensembles are proposed, with each
ensemble including base learners obtained by varying one or more parameters of regression
GNNs from previous works.

Ensemble 1

Model nh nc nl Dropout

RegGNN 64 0 0 0.3

PNA 64 0 0 0.3

(a)Varying architecture

Ensemble 2

Model nh nc nl Dropout

PNA 64 0 0 0.3

PNA 32 0 0 0.3

PNA 16 0 0 0.3

PNA 4 0 0 0.3

(b) Varying hidden size in PNA

Ensemble 3

Model nh nc nl Dropout

RegGNN 64 0 0 0.3

RegGNN 32 0 0 0.3

RegGNN 16 0 0 0.3

RegGNN 4 0 0 0.3

(c) Varying hidden size in RegGNN

Ensemble 4

Model nh nc nl Dropout

PNA 64 0 0 0.1

PNA 64 0 0 0.2

PNA 64 0 0 0.3

PNA 64 0 0 0.4

(d) Varying dropout in PNA

Ensemble 5

Model nh nc nl Dropout

RegGNN 64 0 0 0.1

RegGNN 64 0 0 0.2

RegGNN 64 0 0 0.3

RegGNN 64 0 0 0.4

(e) Varying dropout in RegGNN

Ensemble 6

Model nh nc nl Dropout

RegGNN 64 1 1 0.1

RegGNN 64 3 3 0.2

RegGNN 64 5 5 0.3

RegGNN 64 7 7 0.4

(f) Varying layer counts in RegGNN

Ensemble 7

Model nh nc nl Dropout

RegGNN 64 1 1 0.1

RegGNN 64 3 3 0.2

RegGNN 64 5 5 0.3

RegGNN 64 7 7 0.4

RegGNN 64 1 1 0.1

RegGNN 32 3 3 0.2

RegGNN 16 5 5 0.3

RegGNN 4 7 7 0.4

(g) Varying layer counts and
dropout in RegGNN

Ensemble 8

Model nh nc nl Dropout

RegGNN 64 1 1 0.3

RegGNN 64 2 2 0.3

RegGNN 64 3 3 0.3

RegGNN 32 1 1 0.3

RegGNN 32 2 2 0.3

RegGNN 32 3 3 0.3

RegGNN 16 1 1 0.3

RegGNN 16 2 2 0.3

RegGNN 16 3 3 0.3

RegGNN 4 1 1 0.3

RegGNN 4 2 2 0.3

RegGNN 4 3 3 0.3

(h) Varying hidden sizes and layer
counts in RegGNN

to eliminate biases stemming from the clustering algorithm of the target outputs. The
clustering algorithms used are as follows.

– K-Means [20],
– Affinity Propagation [21],
– BIRCH [22],
– Agglomerative Clustering [23]
– Spectral Clustring [24].
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Fig. 3. Comparison of GNN regression ensembles using the mean distance between the predicted
target scores and the ground truth ones across subjects. These values represent the distance
between the ground-truth line displayed in blue in Fig. 2 and the red (under domain fracture)
and green (cross-validation with no domain fracture) lines, respectively. (Color figure online)

In Fig. 2, evaluation results for the eight deep graph ensemble models are given
with and without domain shift simulation. The uncertainty field obtained as a result
of domain shift should be higher than the uncertainty field obtained as a result of the
absence of domain shift. The model should not be confident of the target score predic-
tions since the overall target score prediction and estimation of predictive uncertainty
has been performed in the case of domain shift fracture. With this motivation, we con-
clude that ensemble 8 performs the most successful uncertainty estimation by probing
the results in Fig. 2. On the other hand, we quantify the distance of the predicted tar-
get scores in Fig. 2 with and without domain shift where the distance is the mean of
distance between the predicted target score line and ground truth line. The results are
shown in Fig. 3 for the ensembles. While ensemble 8 and ensemble 3 perform better
than other ensembles in the case of no domain shift, ensemble 6 and ensemble 8 achieve
the best target score prediction under domain shift. It is important to note that all the
successful ensembles in terms of the distance between the predicted target score and
ground truth merely consist of RegGNNs. Therefore, we conclude from the results in
Fig. 3 that ensembles including only RegGNN tend to perform more successfully than
ensembles mixing RegGNN and PNA or having only PNA.

In Fig. 4, we compare the average performance of ensembles based on the mean
absolute error (MAE). We note that the cross-validation errors are lower as the data is
uniformly distributed across folds. We obtained higher error values under domain shift
simulation as expected, proving that our simulation captures the shift between the train
and test data distributions. We can conclude that Ensembles 3, 5, and 8 achieve the
lowest errors with no domain shift. However, under the presence of domain shift sim-
ulation, the most successful model is Ensemble 8, which is the most diverse ensemble.
Remarkably, this shows the robustness of diverse deep graph ensembles against domain
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Fig. 4. Comparison of ensembles using the mean absolute error (MAE). Each ensemble is evalu-
ated with and without domain shift simulation. Error bars represent the standard deviation of the
predictions.

Fig. 5. Comparison of ensembles using the proposed uncertainty error eU . Each ensemble is
evaluated with and without domain shift simulation to estimate predictive uncertainty.

shift. Also, we observe that ensemble models formed with RegGNN perform better,
which is in line with the previous work [6] stating that RegGNN outperforms PNA in
regression despite its simple architecture.

In Fig. 5, we compare the performance of the GNN regression ensembles using
the proposed predictive uncertainty measure eU . We observe that Ensemble 8 has the
lowest uncertainty error under both cross-validation and domain shift simulations, again
showing its efficiency in minimizing uncertainty. We also concluded that when using
larger deep graph ensembles with a diverse set of base learners helps optimize predictive
uncertainty.



158 S. Yürekli et al.

4 Conclusion

In this paper, we proposed a deep graph ensemble method with regression graph neu-
ral networks for quantifying the predictive uncertainty caused by target domain shifts.
Moreover, we designed a method for domain shift simulation in the target output space
and we proposed a novel predictive uncertainty measure to quantify the uncertainty
of an ensemble. Our experimental results showed that diverse ensembles using regres-
sion GNNs reduce the predictive uncertainty error in both uniformly distributed data
and under target domain shifts. [14] demonstrated that the generated ensembles with
neural architectural search algorithms perform better than manually constructed deep
ensembles in terms of uncertainty calibration and dataset shift robustness. With this
motivation, in our future work, we aim to apply neural architectural search methods to
the ensemble design in order to automatically construct optimal deep graph ensembles
from a search space. We will also investigate the uncertainty reproducibility [25] across
diverse datasets and models.
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6. Hanik, M., Demirtaş, M.A., Gharsallaoui, M.A., Rekik, I.: Predicting cognitive scores with
graph neural networks through sample selection learning. Brain Imaging Behav. 16, 1123–
1138 (2021). https://doi.org/10.1007/s11682-021-00585-7

7. Bessadok, A., Mahjoub, M.A., Rekik, I.: Brain graph synthesis by dual adversarial domain
alignment and target graph prediction from a source graph. Med. Image Anal. 68, 101902
(2021)

8. Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–
153 (2018)

http://basira-lab.com/normnets/
http://basira-lab.com/reprime/
https://doi.org/10.1007/s11682-019-00111-w
https://doi.org/10.1007/s11682-021-00585-7


Quantifying the Predictive Uncertainty of Regression GNN Models 159

9. Zakazov, I., Shirokikh, B., Chernyavskiy, A., Belyaev, M.: Anatomy of domain shift impact
on U-Net layers in MRI segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS,
vol. 12903, pp. 211–220. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-
4 20

10. Kushibar, K., et al.: Supervised domain adaptation for automatic sub-cortical brain structure
segmentation with minimal user interaction. Sci. Rep. 9, 1–15 (2019)
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Abstract. Graph neural networks (GNNs) have achieved extraordinary enhance-
ments in various areas including the fields medical imaging and network neuro-
science where they displayed a high accuracy in diagnosing challenging neu-
rological disorders such as autism. In the face of medical data scarcity and
high-privacy, training such data-hungry models remains challenging. Federated
learning brings an efficient solution to this issue by allowing to train models on
multiple datasets, collected independently by different hospitals, in fully data-
preserving manner. Although both state-of-the-art GNNs and federated learn-
ing techniques focus on boosting classification accuracy, they overlook a crit-
ical unsolved problem: investigating the reproducibility of the most discrimi-
native biomarkers (i.e., features) selected by the GNN models within a feder-
ated learning paradigm. Quantifying the reproducibility of a predictive medical
model against perturbations of training and testing data distributions presents one
of the biggest hurdles to overcome in developing translational clinical applica-
tions. To the best of our knowledge, this presents the first work investigating the
reproducibility of federated GNN models with application to classifying medical
imaging and brain connectivity datasets. We evaluated our framework using vari-
ous GNN models trained on medical imaging and connectomic datasets. More
importantly, we showed that federated learning boosts both the accuracy and
reproducibility of GNN models in such medical learning tasks. Our source code
is available at https://github.com/basiralab/reproducibleFedGNN.

Keywords: Graph neural networks · Federated Learning · Reproducibility ·
Brain connectivity graphs · Predictive medicine

1 Introduction

Over the last years, artificial intelligence (AI) applied to medicine has witnessed expo-
nential growth aiming to ease the diagnostic approach and propel, consequently, the
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development of personalized treatment strategies. Specifically, advanced deep learning
(DL) models such as convolutional neural networks (CNNs) have achieved a remark-
able performance across of variety of medical imaging tasks including segmentation,
classification, and registration [1,2]. However, such networks were primarily designed
to handle images, thereby failing to generalize to non-euclidean data such as graphs and
manifolds [3,4]. Recently, graph neural networks (GNNs) were introduced to solve this
problem by designing novel graph-based convolutions [4,5]. A recent review paper [6]
demonstrated the merits of using GNNs particularly when applied to brain connectomes
(i.e., graphs) across different learning tasks including longitudinal brain graph predic-
tion, brain graph super-resolution and classification for neurological disorder diagnosis.
Althgouh promising, GNNs remain deep models which are data-hungry. Faced with the
scarcity of medical imaging datasets and their high privacy and sensitivity, they can
remain sub-optimal in their performance. In this perspective, federated learning [7] can
bring a promising alternative to training GNNs models using decentralized data spread
across multiple hospitals while boosting the accuracy of each local GNN model in a
fully data-preserving manner. Although increasing the model accuracy through fed-
eration seems compelling, there remains a more important goal to achieve which is
maximizing the reproducibility of a locally trained model. A model is defined as highly
reproducible when its top discriminative features (e.g., biomarkers) remain unchanged
against perturbations of training and testing data distributions as well as across other
models [8–10]. Quantifying the reproducibility of a predictive medical model presents
one of the biggest hurdles to overcome in developing translational clinical applications.
In fact, this allows identifying the most reproducible biomarkers that can be used in
treating patients with a particular disorder. To the best of our knowledge, reproducibil-
ity in federated learning remains an untackled problem.

[8] proposed the first framework investigating the reproducibility of GNN models.
Specifically, the designed RG-Select framework used 5 different state-of-the-art GNN
models to identify the most reproducible GNN model for a given connectomic dataset
of interest. Although RG-Select solves both GNN reproducibility and non-euclidean
data learning problems, it does not address the problem of model reproducibility when
learning on decentralized datasets distributed across different hospitals. Undeniably,
medical datasets carry information about patients and their medical conditions. Hence,
the patient may be identified using such data. Patients have the right to control their
personal information and keep it for themselves [11]. Such data must be held private
between the patient and their health care workers. For such reasons, federated learning
presents a great opportunity to learn without clinical data sharing and while boosting
the model accuracy as well as its reproducibility.

We draw inspiration from the seminal work on decentralized learning where [7]
proposed a federated averaging algorithm based on training many local models on their
local datasets then aggregating the learned models at the server level. Next, the global
server broadcasts their learned weights to each local modal for local updates. Several
researchers were inspired by federated learning and adapted it to graphs [12,13]. Even
though these proposed frameworks managed to boost the local accuracy of local mod-
els while handling decentralized data, they overlook the reproducibility of the most
discriminative features (i.e., biomarkers). Will federated learning also boost the repro-
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ducibility of locally trained GNN models? Here we set out to address this prime ques-
tion by quantifying the reproducibility of federated local models.

In order to ensure high accuracy, handle decentralized datasets and identify the most
reproducible discriminative features, we federate GNNmodels and quantify their repro-
ducibility by perturbing training and testing medical data distributions through random
data splits. Our framework generalizes the seminal work of RG-Select [8] to feder-
ated models. Specifically, given a pool of GNN architectures to federate, we aim to
identify the most reproducible GNN model across local hospitals and its corresponding
biomarkers by quantifying the reproducibility of the global model. The key contribu-
tions of our framework are to: (1) Federate the learning of predictive GNN models with
application to medical imaging and connectomic datasets. (2) Investigate and quantify
the reproducibility of federated GNN models, and (3) identify the most reproducible
biomarkers for neurological disorder diagnosis.

2 Proposed Method

In this section, we detail our federated reproducibility quantification framework as illus-
trated in Fig. 1. First, we divide the whole data into H different subsets. Each subset
represents the local data of a particular hospital. Second, we train different GNNmodels
using federated learning trained on each local dataset. Following the training, we extract
the top K discriminative biomarkers (features) identified by each locally trained GNN
model. Next, for each hospital, we produce a hospital-specific GNN-to-GNN repro-
ducibility matrix where each element denotes the overlap ratio between the extracted
top K biomarker sets by pairs of locally trained GNN models. We then construct the
global reproducibility matrix by averaging all hospital-specific reproducibility matrices.
Finally, we identify the most reproducible GNN model across hospitals in the federa-
tion process by identifying the central node with the highest overlap with other nodes
in the global average reproducibility matrix. The selected model is then used to identify
the most reproducible features.

Problem Statement. Given H hospitals with the local datasets Dh = (Gh,Yh) that
belongs to the hth hospital, where h ∈ {1, 2, . . . ,H}, let Dh denote a local dataset
including subjects with their diagnostic states/labels (e.g., normal control and disor-
dered). Let S denote the number of subjects in Dh. Gh = {Gh,1,Gh,2, . . . ,Gh,S}
denotes the set of medical data graphs and their labels are denoted by Yh =
{yh,1, yh,2, . . . , yh,N}. Each graphGh,n is represented by an adjacency matrixXh,n ∈
R

N×N and a label yh,n ∈ {0, 1} whereN denotes the number of brain regions of inter-
est (ROIs) for connectivity datasets or pixels for medical imaging datasets. Note thatN
also represents the number of nodes in the corresponding graph.

Given a pool of M GNNs {GNN1, GNN2, . . . GNNM}, we are interested in
training a GNN modelGNNh,m : Gh → Yh on the local dataset of hospital h. Our aim
is to identify the most reproducible biomarkers or features that discriminate between
the two classes. Hence, we extract the top K features rKh,m ∈ R

K learned by the mth

local GNN model in the hth hospital, where m ∈ {1, 2, . . . ,M}. We calculate the
intersection of the extracted local top K features rKh,m ∩ rKh,l, where m and l are the
indexes of GNN models in the GNN pool and h is the index of a hospital. In order to
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Fig. 1. Overview of the proposed framework for quantifying the reproducibility of federated GNN
models across decentralized datasets. (A) Medical datasets. We split our dataset into H local
datasets. (B) Federated learning with different GNNs. We use M GNN models to identify
the most reproducible GNN model during the federation learning. For each local hospital model
GNNm where m ∈ {1, . . . , M}, we extract its top K discriminative features and calculate their
overlap ratio with discriminative feature sets selected by other GNN models. (C) Construction
of hospital-specific reproducibility matrix. Using the intersections calculated in the previous
step, we construct the hospital-specific reproducibility matrix where each element (i, j) denotes
the overlap in the top K features identified by the locally trained GNNi and GNNj . (D) Con-
struction of average global reproducibility matrix across federated models. Using the pro-
duced hospital-specific reproducibility matrices, we calculate the average global reproducibility
matrix, thereby identifying the most reproducible features across models and hospitals.

calculate the reproducibility matrices, we extract the weights wh,m ∈ R
N learned by

the hth hospital using the mth GNN architecture.

Definition 1. Let GNNi and GNNj be two GNN models and let wi ∈ R
n and wj ∈

R
n be their weights, respectively. The top K biomarkers extracted using the weights

wi,wj are denoted by rKi and rKj , respectively. Reproducibility among models GNNi

and GNNj is denoted by RK
i,j which can be calculated as:RK

i,j =
|rKi ∩rKj |

K .

GNN Training Mode. Each local data is divided into 3 folds where 2 folds are used for
training and the left-out fold is used for validation. We train each local GNN on its local
dataset overE epochs and usingB batches. Both global and local models communicate
for C rounds. In each round, the global model sends a deep copy of the current GNN
model to all local hospitals. Each hospital does training using its local data. When the
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training ends, hospitals send locally updated weights to the central server. The server
applies Algorithm 1 on the weights that came from the local models and loads the
averaged weights to the global model.

Biomarker Selection. We extract the learned weights by each GNN model in order
to select the top K discriminative biomarkers. The extracted weights belong to the
last embedding layer of the GNN model [8]. Next, we rank the biomarkers according
to the absolute value of their corresponding weights and select the top K with the
highest weights. We use these biomarkers to construct GNN-to-GNN hospital-specific
reproducibility matrices.

Algorithm 1. FederatedAveraging. H hospitals indexed by h; C is the number of com-
munication rounds; G is the global model
1: LocalUpdate(G) : // Runs on hospital h
2: for each epoch i in {1, . . . , E} do
3: for batch b in B do
4: w ← w − η∇l(w; b)

5: return w
6: Server Executes:
7: initialize global model G
8: for each round t in {1, . . . , C} do
9: for each hospital h in {1, . . . , H} do
10: wh

t+1 ← LocalUpdate(deepCopy(G)) // Copy of global model sent to local update

11: wt+1 ← ∑H
h=1

wh
t+1
H

Algorithm 2. AvgRepMatrixConstruction. W weights of all GNNs; K is the threshold
value
1: RepMatrixConstruction(W, K):
2: for wi and wj in |W | do // absolute value of weights is used
3: rKi ← Top K features from wi

4: rKj ← Top K features from wj

5: RK
ij ← |rKi ∩rKj |

K

6: returnRK

7: Execute:
8: initialize R̄ ∈ RM×M with zeros
9: for each hospital weights Wh where h in {1, . . . , H} do
10: R̄ ← R̄+ RepMatrixConstruction(Wh, K)

11: R̄ ← R̄
H

GNN-to-GNN Reproducibility Matrix. Using the top K biomarkers, the overlap of
each pair of GNN models is calculated thereby producing their GNN-to-GNN repro-
ducibility score. This step is executed for each hospital individually to produce a
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hospital-specific reproducibility matrix. Repeating this operation for all H hospitals,
the average of H hospital-specific matrices is then calculated, and the average global
reproducibility matrix is constructed using Algorithm 2.

The Most Reproducible GNN and Biomarker Selection. In order to select the most
reproducible GNN model, we use the average reproducibility matrix of theH hospital-
specific reproducibility matrices. We consider this matrix as a graph where the GNN
models are its nodes. We use the highest node strength to identify the most reproducible
global federated model (Definition 2). In fact, such a hub GNN node implies a maximal
overlap with other GNN models, thereby evidencing its reproducible power. Next, we
find the most reproducible K biomarkers with the highest weights learned by the most
reproducible GNN model.

Definition 2. Given M GNN models to federate, let R ∈ R
M×M denote the con-

structed reproducibility matrix where each element encodes the intersection rate of the
top K biomarkers identify by pairs of global GNN models. Let ri be the ith row of R
where i ∈ {1, 2, . . . ,M}. The ri includes the top K biomarkers intersection ratios of
GNNi with all GNN models including itself. Let si denote the strength (i.e., score) of
GNNi defined as: si = (

∑M
m=1 ri,m)− 1 (minus one is for excluding the relation with

itself).

3 Results and Discussion

Evaluation of Biomedical Image Datasets. We evaluated our federated reproducibil-
ity framework on two large-scale biomedical image datasets which are retrieved from
MedMNIST1 public dataset collection [14]. The first biomedical image dataset (Pneu-
moniaMNIST dataset) contains 5856 X-ray images, with a size of 28× 28, and belong-
ing to a normal control class or displaying pneumonia which is a respiratory infection
that affects the lungs [15]. Out of the 5856 subjects, we randomly selected 1000 sam-
ples with balanced classes (normal and pneumonia). The second dataset (BreastMNIST
dataset) contains 780 breast ultrasound images, with the size of 28× 28, belonging to a
normal control or diagnosed with malignant breast cancer. We randomly sampled 546
subjects where 399 subjects are labeled as normal and 147 as malignant. We used two
different representations of the imaging datasets to feed into the models. In the first
representation, we simply fed the original image to the target GNN whereas in the sec-
ond representation we converted each image into weighted graph matrix. The weights
of connectivity matrix were calculated using absolute differences in intensity between
pixel pairs.

Evaluation of Connectomic Datasets. Additionally, we used the Autism Brain Imag-
ing Data Exchange (ABIDE I) public dataset [16] to evaluate our federated repro-
ducibility framework on morphological brain networks [17]. We used the left and right
hemisphere brain connectivity datasets of autism spectrum disorder (ASD) and normal
controls (NC). These datasets include 300 brain graphs with balanced classes. Both left

1 https://medmnist.com/.

https://medmnist.com/
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and right hemispheres are parcellated into 35 regions of interest (ROIs) using Desikan-
Killiany Atlas [18] and FreeSurfer [19] software. The connectivity weight encodes the
average morphological dissimilarity in cortical thickness between two cortical ROIs as
introduced in [17,20].

Pool of GNNs. For our federated reproducibility framework, we used 2 state-of-the-art
GNNs which are DiffPool [21] and GCN [22]. DiffPool includes a differentiable graph
pooling module that is able to generate hierarchical representations of a given graph.
Soft cluster assignments learned by DiffPool at each layer of GNN [21] to capture the
graph nested modularity. The original aim of GCN is to perform node classification.
However, we adapted the original GCN to handle whole-graph-based classification as
in [8]. The code of [8]2 was used to develop our framework.

Training Settings and Hyperparameters. To train models in a federated manner, we
divided each dataset into H = 3 local (independent) sets. We also divided each local
data into 3-folds where two folds are used for training and the left one for testing.
We selected all of the learning rates empirically. For DiffPool, the learning rate is set to
10−4 across all datasets. For GCN, the selected learning rates are 10−6, 10−5, 10−5 and
5×10−6 for the datasets PneumoniaMNIST, BreastMNIST, ASD/NC LH and ASD/NC
RH, respectively. The threshold value K for the top features is set to 20 in our exper-
iment. The epoch size E is fixed to 100 and batch size B is set to 1. The number of
communication rounds C is set to 5.

Model Accuracy and Reproducibility Evaluation.We compared our federated repro-
ducibility framework to the non-federated technique (without using Algorithm 1). The
comparison was performed for both validation accuracies and average reproducibility
matrices storing the intersection ratio of the top K discriminative biomarkers between
global GNN models. Fig. 2 shows the comparison results of the classification accuracy
and reproducibility matrices for two biomedical image datasets and two connectomic
datasets. Notably, the classification accuracy was boosted across all datasets for each
local model using federation. For the datasets, PneumoniaMNIST, ASD/NC LH and
ASD/NC RH, an increase in the GNN reproducibility score is noted. However, a slight
decrease was observed when we evaluated our federated reproducibility framework
with the BreastMNIST dataset. The results of biomedical image datasets displayed
in Fig. 2 were obtained when traininng GNN models on the original images directly.
Supp. Fig. 1 displays the accuracy and reproducibility score comparison of the graph
and image representations of the biomedical image datasets. Interestingly, according
to Supp. Fig. 1, models performed better in terms of both accuracy and reproducibility
when the original images were used without resorting to transforming them into graphs.

Most Reproducible Connectomic Biomarkers. Figures 3 and 4 shows the absolute
value of the feature weights learned by the globally most reproducible GNN, which
are the averages of the locally learned weights using ASD/NC LH and RH datasets,
respectively. We considered the global GNN model rather than the hospital-specific
local models to select the most reproducible biomarkers since the most reproducible
model may change across hospitals. According to Fig. 4, the insula cortex and lingual

2 https://github.com/basiralab/RG-Select.

https://github.com/basiralab/RG-Select
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Fig. 2. Accuracy and global reproducibility matrix comparison across datasets and GNN models.
Each row in the figure represents individual datasets. The first and second columns are the accu-
racy comparison results of DiffPool and GCN models, respectively. The third and fourth columns
represent the baseline and federated reproducibility matrices, respectively.

gyrus are selected as the most reproducible biomarkers for both LH and RH datasets
followed by the precuneus and the inferior parietal cortex. In patients presenting with
autism, the insula cortex shows an important variation in T1 according to [23]. Such
finding embodies the nature of this neurodevelopmental disorder mainly characterized
by altered cognitive, emotional and sensory functions. These neurological aspects of
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the disease are orchestrated by the insular cortex [24] pinpointing further that autism
is considered an insula pathology and highlighting the reliability of such biomarker as
a fingerprint of the disease [25]. [26] demonstrated a significant relationship between
ASD traits and cortical thickness of the lingual gyrus. As a matter of fact, it has been
linked to the specific aspect of sensory disturbances in ASD [27]. Regarding the pre-
cuneus, the medial part of the posterior parietal lobe, it has been linked to a specific
clinical phenotype of ASD which is associated with psychological comorbidities, such
as post-traumatic stress disorder. According to [28], the reduction in the precuneus gray
matter was correlated with adverse childhood experiences leading to intrusive reexpe-
riencing in adults with ASD. Thus, the precuneus represents a potential biomarker of
the disease even more valuable since it could be phenotype-dependant. Furthermore,
the almost miror effect discernible by comparing both hemispheres (Fig 3 and 4) might
be explained by the heterogeneity of the sample with patients’ age ranging from 5 to
64 years (mean age of onset = 14 years). It pinpoints the evolving aspect of the mor-
phological abnormalities over time going from being primarily left-lateralized to inter-
hemispheric differences diminishing progressively when reaching adulthood [29].

Limitations and Future Directions. Even though we used different datasets to evaluate
our federated reproducibility framework, it has several limitations. First, we assumed
that each local hospital has almost the same number of samples –which might not be
the case for decentralized medical datasets. Second, we only used 2 different GNNs.
In our future work, we aim to optimize our hyperparameters using advanced methods,
use an early stopping technique, consider imbalanced data distributions across hospitals
and extend the pool of GNNs to obtain more results for an enhanced comparison and
generalizability. Incorporating clinical features of patients such as a detailed assess-
ment of cognition, sensory disturbances and the presence of comorbidities may help
add phenotypic value to the already established biomarkers of the ASD in our study.

Fig. 3. The learned weights of the cortical regions by the most reproducible GNN model for the
dataset ASD/NC LH.
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Fig. 4. The learned GNN weights of the cortical regions by the most reproducible GNN model for
the dataset ASD/NC RH.

4 Conclusion

In this paper, we investigated and quantified the reproducibility of GNN models trained
in a federated manner. We evaluated our federated reproducibility framework using
several medical imaging and connectomic datasets. Our framework aims to calculate
the most reproducible biomarkers or features while handling decentralized datasets
and boosting the local model accuracies. In this prime work, we showed that feder-
ated learning not only increases the performance of locally trained GNN models but
also boosts their reproducibility. In our future work, we will investigate federated GNN
reproducibility when learning on non-IID clinical datasets and examine other state-of-
the-art GNN models.
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Abstract. Cortical parcellations that are tailored to individual subjects
have been shown to improve functional connectivity prediction of behav-
ior and provide useful information about brain function and dysfunction.
A hierarchical Bayesian (HB) model derived from resting-state fMRI (rs-
fMRI) is a state-of-the art tool for delineating individualized, spatially
localized functional parcels. However, rs-fMRI acquisition is not routine
in clinical practice and may not always be available. To overcome this
issue, we hypothesize that functional parcellation may be inferred from
more commonly acquired T1- and T2-weighted structural MRI scans,
through cortical labeling with deep learning. Here, we investigate this
hypothesis by employing spherical convolutional neural networks to infer
individualized functional parcellation from structural MRI. We show
that the proposed model can achieve comparable parcellation accuracy
against rs-fMRI derived ground truth labels, with a mean Dice score
of 0.74. We also showed that our individual-level parcellations improve
areal functional homogeneity over widely used group parcellations. We
envision the use of this framework for predicting the expected spatially
contiguous areal labels when rs-fMRI is not available.

Keywords: Structural features · Cortical surface · Individual-
specific · Functional boundaries

1 Introduction

Complex human cognition is enabled through communication between function-
ally synchronized distributed networks that are comprised of computational units
across the brain. To study human behavior and brain function, there has been
a significant interest in mapping these localized functional regions using non-
invasive brain imaging techniques such as magnetic resonance imaging (MRI).
These delineations of distinct functional units across the brain, also called par-
cellations, are widely used to facilitate investigations into cognition and disease
[1,2].
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Earlier efforts focused on defining brain areas through histological exami-
nation of post-mortem brains [3]. With the advent of MRI, architectonic and
topographical features could be examined noninvasively (e.g., Harvard-Oxford,
Juelich atlases). In addition to structural and anatomic features, functional MRI
has also been used to find temporally coherent regions across the brain [4,5].
Computational atlases, both structural and functional, are typically summarized
at the population level [5,6] and are designed to correspond across subjects, thus
capturing stable units that are shared in common across individuals.

However, there is considerable variability across people that the group-level
mappings fail to capture. Indeed, it has been shown that the neuroscientific
validity of statistical inferences may improve greatly when using individualized
parcellations [7–10]. Subject-specific spatial features (i.e. spatial boundaries or
parcel size) are shown to associate with behavior [7] and functional state [9]. Indi-
vidualized mapping of functional architecture is also a fundamental requirement
of clinical procedures such as surgical planning and brain stimulation therapies
[11]. A range of automated techniques have been developed for deriving individ-
ual parcellations [8,12,13], including a multi-session hierarchical Bayesian (HB)
model derived from resting-state fMRI (rs-fMRI) proposed by [10]. This lat-
ter approach is currently the state-of-the-art tool for delineating individualized,
spatially localized functional parcellations and has shown to improve behavioral
predictions from functional connectivity, demonstrating its utility in determining
individualized functional parcels.

However, application of this approach broadly relies on the availability and
quality of rs-fMRI data. Of note, rs-fMRI acquisitions are not routine in clinical
practice, and when available they may be brief in duration. The reproducibil-
ity and test-retest reliability of connectivity estimates have been shown to be
compromised by the length of the rs-fMRI scan [14] rendering short rs-fMRI
acquisitions (<10min [15]) of limited utility. In a separate body of literature,
structural MRI has been found to provide architectonic markers that exhibit
some degree of correspondence with functionally distinct areas in individual sub-
jects [17,18], and are more widely performed in clinical brain scans compared
to resting-state fMRI. Therefore, to generate individualized parcellations in the
absence of rs-fMRI data (or of sufficiently long rs-fMRI scans), we hypothesize
that functional parcellations derived from state-of-the-art rs-fMRI methods may
be inferred from more commonly acquired structural MRI scans, through cortical
labeling with deep learning.

In this paper, we propose a novel way to infer individualized functional par-
cellations using only cortical surface measures reconstructed from commonly
acquired T1-and T2-weighted MRI scans, by employing spherical convolutional
neural networks. We train our models using cortical surface measures and evalu-
ate the resulting functional parcels using rs-fMRI data. As ground truth labels,
we use individualized functional parcellations from [10], which were derived from
rs-fMRI using a multi-session Hierarchical Bayesian modeling approach. We eval-
uate the generalizability of our parcellations to out-of-sample subjects in terms
of segmentation accuracy using Dice correlation coefficient. We also compare our
proposed approach with a group-level parcellation [5] and with the previously
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defined rsfMRI-based individual-level parcellations [10] in terms of areal homo-
geneity (temporal similarity of vertices within a given parcel). To the best of our
knowledge, this is the first work to capture a mapping between cortical surface
features and functionally (temporally) coherent regions.

The remainder of the paper is organized as follows. Section 2 briefly explains
the dataset, preprocessing, model training and evaluation. In Sect. 3, the pre-
dicted labels are compared against population-based and ground truth indi-
vidualized parcellations (derived from rs-fMRI) both qualitatively and through
functional homogeneity. In Sect. 4, we discuss the implications and limitations
of this work.

2 Methods

2.1 Dataset

The Human Connectome Project (HCP) is a large-scale data collection effort.
The S1200 release consists of structural MRI (sMRI), resting-state fMRI
(rs-fMRI) and behavioral measures [16]. T1-weighted images (T1w) were
acquired using a 3D-magnetization-prepared rapid acquisition with gradient echo
(MPRAGE) sequence and T2-weighted (T2w) images were acquired using a 3D
T2-sampling perfection with application-optimized contrasts by using flip angle
evolution (SPACE) sequence, both with spatial resolution of 0.7mm isotropic
[22]. Surface data was already preprocessed according to [17] using both T1w
and T2w images. Briefly, surface extraction was performed using the standard
FreeSurfer protocol [19] and shape features (convexity, thickness, etc.) were
calculated. Surface data was then mapped to a standard 32k reference mesh.
Resting-state functional MRI (rs-fMRI) images were obtained by multiband gra-
dient echo-planar imaging with the following parameters: temporal resolution
(TR) of 0.72 s, duration of 1200 frames per run (14.4min), and spatial resolu-
tion of 2mm isotropic [22]. Rs-fMRI was preprocessed according to [20,23] and
each volume was mapped to a standard 32k reference mesh. Since the units of
fMRI signals are arbitrary, we temporally normalized all signals to zero mean
and unit variance. In addition, following [10], we reduced potential sources of
artifact by regressing out the global signal and head motion parameters, along
with their temporal derivatives. In this project, we randomly selected 150 sub-
jects for training. Another set of randomly selected 300 subjects from the same
HCP release was used for testing and subsequent analyses (Fig. 1).

2.2 Cortical Surface Features

For the cortical surface features, we used sulc (average convexity) [19], curv
(mean curvature), cortical thickness, and bias corrected cortical myelin maps.
Here we employ data augmentation to generate extra surface features through
geometric transformations. Following [25], we compute decomposable deforma-
tion trajectories (ranging from rigid body alignment to more local non-rigid
deformation) encoded by spherical harmonics coefficients [21] and generate the
intermediate deformation of each cortical feature as augmented data.
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Fig. 1. The pipeline for learning functional parcellations from structural data is shown.
Four surface measures (average convexity, curvature, cortical thickness, and bias cor-
rected myelin map) are used to create an augmented dataset. Augmentation is achieved
through geometric transformations. The resulting augmented set is provided to the
spherical convolutional neural network (CNN) that is already adapted for cortical seg-
mentation as input. The output is individual-specific functional parcellations.

2.3 Model Training

The spherical CNN architecture by [24,25] is used for the segmentation task. In
our framework, four cortical shape measures with their augmentation are pro-
vided as input, and 200 labels (corresponding to individualized parcels from the
left hemisphere, described next) are predicted. The MS-HBM [10] parcellation,
consisting of 400 regions of interest (200 on the left hemisphere), was used as
ground truth labels. Within the set of 150 training subjects, 5-fold cross valida-
tion was used for model training, using a 60/20/20 split respectively for training,
validation and testing by rotating partitions. We used cross-entropy loss and the
ADAM optimizer, and networks were allowed to train up to 30 epochs. All net-
works were trained with learning rate 0.01 with decay of factor 0.1 and patience
2. The best models were saved based on the validation loss. A batch size of 2
was used at icosahedral subdivision level 6. The experiments were performed on
an NVIDIA RTX 3090 GPU. Programs were implemented with Python using
the Pytorch deep learning library.

2.4 Generating and Evaluating Predicted Parcellations on the Test
Set

We subsequently turned to the set of 300 subjects that were held out from
training. For each subject in this test set, 5 sets of segmentations (individualized
parcellations) are predicted, corresponding to the 5 models (one from each fold)
of the aforementioned 5-fold CV (that had been performed on the training set of
150 subjects). These segmentations are combined using majority vote to form one
final segmentation. Segmentation accuracy is calculated using Dice coefficient,
accuracy and Intersection-Over-Union (IoU, Jaccard Index):
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Dice(A,B) =
2A · B|
|A|+ |B| (1)

Accuracy(A,B) =
|A · B|
|A| (2)

IoU(A,B) =
|A · B|

|max(A,B)| =
|A · B|

|A|+ |B| − |A · B| (3)

where A is ground truth parcel and B is predicted parcel. These three met-
rics were each averaged across the set of 200 parcels, resulting in a mean Dice,
Accuracy, and IoU value per scan.

2.5 Assessment of Homogeneity

To further evaluate the utility of the predicted parcellations in investigations
of brain function, we assess the homogeneity (similarity) of time courses within
a given parcel, based on the assumption that parcellations that follow an indi-
vidual’s functional boundaries ought to contain voxels with highly similar time
courses. Therefore, higher homogeneity indicates better parcellation quality. For
each subject, we computed homogeneity for all four runs separately (two fMRI
sessions on two consecutive days). Vertex time-courses are extracted using a
set of labels (i.e. Schaefer, Kong, or predicted parcellations). For each parcel,
within-parcel homogeneity is calculated by averaging the pairwise Pearson’s cor-
relations between rs-fMRI time courses of all vertices within that parcel. An
overall homogeneity value is then constructed by averaging across the within-
parcel homogeneities of all 200 parcels, adjusted for parcel size [10]:

Homogeneity =

L∑

l=1

ρl|l|
L∑

l=1

|l|
(4)

where ρl is the homogeneity of parcel l and |l| is the number of vertices (or
voxels) for parcel l.

3 Results

Evaluation of the proposed framework indicates that functional parcellations
can be approximated solely from anatomic (cortical shape) features. Individ-
ualized parcellations derived from cortical surface features on a held-out test
cohort showed moderate agreement against multi-session hierarchical Bayesian-
based ground truth labels derived from rs-fMRI data, with a mean Dice score
of 0.740.

Figure 2a shows two example subject predictions, along with their ground
truth labels, for subjects in the held-out test set. Figure 2b demonstrates the
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Fig. 2. (a) Two example subjects were randomly selected for visual inspection. Pre-
dicted and ground truth labels are projected onto their respective inflated surfaces.
The yellow box highlights that indeed the model was able to capture individual differ-
ences. (b) During training, 5-fold cross-validation is performed. Three separate scores,
capturing the similarity of the predicted labels against ground truth, are reported
separately on the test split for each fold. Both the mean Dice and mean accuracy
are 0.730± 0.004 and mean intersection of union (IoU) is 0.583± 0.005 across 5 folds.
(Color figure online)

Fig. 3. For each subject in the held-out test set: (a) similarity with ground truth
parcellations was calculated using the same 3 metrics as in Fig. 2. Scores recorded
consisted of mean Dice = 0.740± 0.032, accuracy = 0.753± 0.028 and intersection of
union (IoU) = 0.604± 0.037; (b) 5 sets of parcellations are predicted, corresponding
to the 5 models of the 5-fold CV (one from each fold). These parcellations were then
applied to all four rs-fMRI runs. Resting-state homogeneity is calculated for Schaefer
group-level, Kong individual-level (ground truth) and the predicted individual-level
parcellation from the proposed model. Proposed method outperformed the group-level
atlas, showing higher parcel homogeneity.
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performance on the held-out partitions of 5-fold CV (within the training set of
150 subjects). Each data point in Fig. 2b represents the average similarity score
across all parcels (and all subjects in a given test fold), using three different
similarity metrics.

Results on a separate set of held-out test data are shown in Fig. 3. As
described above, for each subject in the test set (300 subjects) that was held
out from training, 5 sets of parcellations are predicted, corresponding to the
5 models (one from each fold) of the aforementioned 5-fold CV that had been
performed on the training set of 150 subjects. These segmentations are com-
bined using majority vote to form one final segmentation. Figure 3a shows the
similarity between predicted and ground-truth parcellations, quantified with the
same three metrics, for each of these 300 test subjects. Figure 3b shows the
temporal homogeneity of the parcellations, comparing across (i) the group-level
parcellation (Schaefer, which uses the same parcels for all subjects), (ii) the indi-
vidualized parcellations from rs-fMRI data (Kong; here used as ground truth),
and (iii) the parcellation resulting from the proposed method. The proposed
method outperformed the group-level parcellation, indicating that it is able to
learn information about individualized functional boundaries.

4 Discussion and Conclusion

We demonstrate a novel way of inferring individual-specific functional parcella-
tions from cortical features derived from structural (T1w, T2w) MRI. Functional
parcellations are most commonly derived using rs-fMRI data, as coherent activity
across rs-fMRI time courses has been shown to correspond with subject-specific
functional networks and behavioral measures more closely than those defined
from traditional anatomic subdivisions [28]. By contrast, the present work indi-
cates that structural brain images contain information about these functional
boundaries, suggesting that functional parcellations could be inferred without
the need to measure brain activity time courses with a resting-state fMRI scan.

Indeed, compared with the population-based [5] atlas parcellation, the pro-
posed approach estimated more homogeneous regions during resting state, in
agreement with the claims of [10]. Of note, the aim of this approach was to
achieve individual precision (i.e., to outperform the population-based atlas)
rather than to exceed the quality of the individualized rs-fMRI parcellations
that were used as ground truth for training. Therefore, any improvement over
a group-level parcellation (that is extracted from fMRI data) using solely struc-
tural features exceeds the current expectations of the neuroimaging community.

Importantly, the ability to delineate functional parcellations solely from
structural MRI has important implications both in clinical applications and
research. In preoperative planning and brain stimulation therapies, the ability
to precisely localize functional boundaries in an individual will enable individu-
alized treatment and can potentially improve patient outcome. In addition, an
increasing number of studies suggest that individual differences in the size or
shape of functional parcels can be related to cognition and behavior [7,9], and
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may therefore present informative non-invasive biomarkers. Together with the
aforementioned studies, our ability to extract functionally relevant units from
anatomic images underscores a prominent link between structure and function.

Recent work by [9,27] has suggested that the brain parcellations reconfigure
dynamically and across different cognitive states. Accordingly, identifying par-
cellations within their dynamic states would improve reproducibility and quality
over “static” parcellations. Similar to the argument of [10], our study does not
challenge this notion. It is possible that computationally stable units across
the brain could potentially reconfigure to form dynamic networks that change
moment-to-moment, and the degree to which cortical shape features can predict
parcellations corresponding to different brain states is an area of future investi-
gation. Our study, and that of Kong et al., may be delineating parcellations that
are most stable - on average - in an individual.

In future work, the dataset can be extended to fully utilize all 1029 subjects
and explore a coarser or finer labeling scheme from the same individual label-
ing protocol [2]. As this study used only resting-state data from healthy young
adult subjects, another potential avenue of investigation could be to examine
the generalizability and impact of this approach on task fMRI data and patient
populations.
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Abstract. Recently, self-supervised learning(SSL) has shown its great
potential in representation learning and been applied to various com-
puter vision tasks. With the success of SSL, which showed performance
improvement in natural images, SSL research is actively being conducted
in medical image analysis. In this paper, we present a triplet network for
the medical image representation learning to learn robust patterns of
medical images against global and local changes by comparing latent
feature distance between positive and negative pairs with anchors. This
approach does not require large batches or the asymmetry of the net-
work. It has been experimentally shown that the proposed method can
outperform ImageNet pretrained models and the state-of-the-art SSL
methods.

Keywords: Self-supervised Learning · Triplet Network · Triplet
Margin Loss · Medical Image Classification · Chest X-Ray

1 Introduction

Self-supervised learning (SSL) aims to improve the feature extraction capability
of a model by designing proxy tasks that explore the representations of the
data itself and to transfer the learned representations to fine-tune them on a
new labeled task. Therefore, the design of proxy tasks has become an important
topic in SSL. In this context, various self-supervised learning methods have been
introduced, and most of them have adopted the contrast learning architecture.
That is, the representation is learned by making the distance of one similar
sample smaller and the distance of different samples larger. However, contrastive
learning methods like SimCLR[4], MoCo[5] need to find ways to construct as
many negative samples as possible to learn different features, hence the increased
memory burden. Recent methods such as BYOL[7] and PixPro[15] modified the
network structure by adding projection heads to inject asymmetry and to update
the weights using gradient stopping or momentum update structure. This type of
contrastive learning approaches throws away negative samples and relies solely
on training tactics to avoid model collapse. Despite their success with natural
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
I. Rekik et al. (Eds.): PRIME 2022, LNCS 13564, pp. 181–190, 2022.
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images, the contrastive learning approaches are not widely utilized in medical
image analysis due to the differences between medical images and natural images.
For example, abnormal lesions are not stereotyped in images, they may appear
in small sizes, and these regional variations are not easy to model using the
contrastive learning using ordinary instance-level self-supervised structures.

In this paper, we present a self-supervised learning method based on a triplet
comparison network [9] to learn anomaly features in medical images more effec-
tively by putting in global changes representing body structure and local changes
focusing on texture. The global view takes the overall body structure as positive
and the local view looks at the detailed texture of the image as negative. Then
using triplet loss brings the global structure closer and closer to the original
image, while local details are further and further away from the original image.
The whole and the local are learned simultaneously to promote a multi-level
feature representation. Our model does not require large batches like [4] or large
queues to store negative samples like [5] or asymmetry to prevent model collapse
like [7] compared to other methods, and only requires small amounts of data to
meet or even exceed the state-of-the-art model.

2 Related Work

Self-supervised Learning in Computer Vision. In recent years, self-
supervised learning in natural still images regard gained promising results. For
example, in the context-based jigsaw puzzle model[11], the pictures are divided
into 9 patches that were out of order. Patches were then restored to the correct
order as a proxy task. In contrastive-based MoCoV2, a queue was designed to
store negative samples. Different data from the same image are augmented as
positive samples. Data in the queue are negative samples. The contrastive loss
function[13] is used to make the positive samples more similar and the negative
samples less similar. PixPro[15] builds pixel-level counterparts to the excuse task
through different views of a single image. If the distance between pixels in differ-
ent views is greater than a threshold value of 1 and less than a threshold value
of 0. PixPro[15] not only looks at local information, but also does not require a
large queue size, but loses sight of global features.

Self-supervised Learning in Medical Image. Self-supervised learning has
also been frequently applied to medical data in recent years to mitigate the
problems such as small medical datasets and difficult annotation. Some works
are designed with special pretext tasks[2,19] and some are based on contrast-
ing works with positive and negative pairs[1,3,14]. The work closest to us is
C2L[18]. C2L proposes to construct homogeneous and heterogeneous data pairs
by mixup[17] data augmentation and mixing feature batches. And instead of
contrastive loss simplifies the calculation with cross-entropy loss.

Limitations of Self-supervised Learning. Medical image data sets usually
relate to the structure of the human body and the abnormal white (increased
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density) or abnormal black (decreased density) due to disease. And, now most
of self-supervised learning models only focus on the location information of the
thorax, airway, lung, heart, etc. Center the data as a whole and ignore local
textures.

Fig. 1. An illustration of the proposed method which is based on a triplet network. Each
of the three well-made views is passed into the backbone network with shared weights
(shown as blue rectangles) and then they are cast to the projection head (green pink
and yellow rectangles indicate no shared weights) to obtain the three feature vectors.
The loss is calculated using the triplet loss. The fine-tuning stage picks up the backbone
network to add to the classification head for training. (Color figure online)

3 Proposed Method

Inspired by recent contrastive learning algorithms, proposed method learns data
information through the synergy of the global and the local. Figure 1 and Algo-
rithm1 provides the overall workflow. As exhibited in Fig. 1, this framework
includes the following five main components.

First, the pretrained model is composed of a global view and a local view by
image enhancement and cutmix[16] respectively. Secondly, the global, local, and
original views are fed into a backbone network with shared weights across views.
The resulting feature vectors are then placed into the projection head separately
to obtain the positive, anchor, and negative, which are finally computed with
triplet loss[12]. The fine-tuning process migrates only the backbone network and
adds untrained classification head to train the classification task.
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Algorithm 1: pseudocode for our approach (one epoch)
Input: batch size N × C × W × H, number of crop Crop, Crop size I

1 for X in minibatch do
2 ZP = augment(X) // Create global change view
3 ZA = resize(X) // Create local change view with cutmix
4 for index = 1 to Crop do
5 shuffle index = shuffle batch(N);
6 ZN = X.clone();
7 // Get coordinates of crops
8 cx = randint(W );
9 cy = randint(H);

10 x1 = Clip(cx − I // 2, 0, W );
11 x2 = Clip(cx + I // 2, 0, W );
12 y1 = Clip(cy − I // 2, 0, H);
13 y2 = Clip(cy + I // 2, 0, H);
14 // Cut and paste crops
15 ZN [: , : , x1:x2, y1:y2] = X[shuffle index , : , x1:x2, y1:y2 ];
16 end
17 // Put three different views into network
18 P = g1(f(ZP ));
19 A = g2(f(ZA));
20 N = g3(f(ZN ));
21 // TripletLoss
22 define L(A, P, N ) as L(A, P, N ) = max(d(A , P) − d(A , N ) +

marge , 0);
23 loss += L(A, P, N );
24 Backward(loss);
25 end

3.1 Local Change

For the building of local variations, we have chosen cutmix enhancements[16].
Simply put, another image is selected from the batch and a part of the image is
cropped and superimposed on top of the original image X as the local change
ZN . Lung images rely mainly on lung texture, and cropped patches may carry
features that are the opposite of the original image. For example, the original
image is a healthy lung, yet the cropped patch may be located exactly where
it carries information about the disease. Such an alteration is not part of the
information that the original image would have carried, so the local change can
be considered negative.

3.2 Global Change

As is done in most contrastive learning methods, the proposed method consti-
tutes a global change ZP by sampling an augmentation view from the single
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image X. The image augmentation pipeline is made up of colorJitter, elastic,
and patch rotation[6]. We also experimented with other combinations of data
augmentations and compared them with our approach (see Table 3). The first
transformation colorJitter is always applied. And elastic can simulate the defor-
mation of some chest x-rays due to lung disease. Patch rotation is the process of
dividing the original image into a number of patches and then randomly select-
ing whether or not to rotate and at what angle. Because the change in local
change is made up of patches, we chose to Patch Rotation that looks similar to
Cutmix. This was done to mimic and add difficulty to the proxy task, interfere
with global change and give the illusion of local change.

Besides images with global and local changes, the original image X is fed it
into the network after resizing as an anchor.

3.3 Network

The network is divided into backbone f(·) (e.g., ResNet [8]) and MLP projection
head g(·). The MLP projection head consists of adding the ReLU activation
function between the three linear layers. Previous work [4,7] has shown that the
use of such projections can improve performance. At the beginning of place the
created local change view ZN , the global change view ZP and the original image
ZA in a triplet network where the three backbones use the same network and
share weights. In this step, feature vectors extracted from backbone networks are
obtained. The feature vectors are subsequently sent into the projection head to
acquire negative samples N , positive samples P , and anchor A. Proposed method
uses a projection head with non-shared weights to map the feature vectors to
the space of contrasts. The aim of using a projection head is to pull in anchor
A and positive P distances and push away anchor A and negative N distances.

3.4 Triplet Loss

Triplet loss[12] was first proposed as an algorithm in the field of face recognition.
It is mainly known for sibling face differentiation. It is obvious that triplet loss
can distinguish non-identical and very similar samples. Since the advantage of
triplet loss is in detail differentiation, it can easily be extended to lung image
processing. As shown in Fig. 2 the definition of the triplet loss function in the
proposed method is based on three different views A, N, and P. We expect the
distance between the three views to satisfy Eq. 1 A and P to be much smaller
than the distance between A and N even when marge is added.

‖A − P‖22 + margin<‖A − N‖22 (1)

Equation1 can be further expressed as Eq. 2.

‖A − P‖22 − ‖A − N‖22 + margin<0 (2)

When Eq. 2 is greater than 0, the loss is greater than zero and the parameters
are updated. When Eq. 2 is less than 0, the loss is zero and the parameters are
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not updated because the objective has been achieved. The final triplet loss can
be expressed as Eq. 3.

N∑

i=0

[‖Ai − Pi‖22 − ‖Ai − Ni‖22 + margin
]
+

(3)

Fig. 2. The principle of triplet loss. The training brings the anchor and the positive
closer together and pushes the negative farther apart.

3.5 Fine-Tuning

Through pretraining, this model has learned general features such as body struc-
ture and texture information in images. Although the extracted features are
consistent but the type of downstream and excuse tasks are not, we keep the
backbone network replacing the projection head used for comparison with the
classification head used for classification and retrain for the downstream task.

4 Experiments

Datasets. CheXpert[10] is a large public dataset comprising 224,316 frontal and
lateral chest X-rays of 65,240 patients. The dataset contains information on the
labeling of 14 common chest radiographic observations, all of which were man-
ually labeled by three certified radiologists. We randomly selected 500 frontal
chest X-rays from each of the 14 observations of frontal chest X-rays in the pre-
training phase, for a total of 7000 X-rays. In the fine-tuning phase, all frontal
chest X-rays were selected and the test index included the mean AUC for five
chest diseases (Atelectasis, Cardiomegaly, Consolidation, Edema, Pleural Effu-
sion).

Implementation Details. In the pretraining phase, we first resized the chest
image to a size of 224 × 224 as the original image. When constructing a local
change view, 10 images are randomly selected in the batch to crop 10 patches
of size 16 × 16 and pasted onto the original image. Apply elastic, colorJitter,
and crop rotation to the original image when building a global change view.
The crop rotation patch size is also 16 × 16 as is the local change, which can
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Table 1. Comparison of transfer learning performance of our self-supervised approach
with previous methods across 5 classes. All models use a ResNet-50 backbone. The
best results for the category are shown in bold.

Method Average Cardiomegaly Edema Consolidation Atelectasis Pleural effusion

MoCoV2 87.14 81.81 91.22 86.58 83.87 92.22

C2L 87.81 82.61 93.30 87.85 83.20 92.09

ImageNet 87.87 81.37 94.02 89.71 82.09 92.14

PixPro 88.53 84.00 93.54 88.01 83.38 93.72

Jigsaw 88.81 86.16 93.44 89.12 82.61 92.71

Ours 89.42 86.89 93.48 90.29 83.41 93.05

Table 2. Data augmentation should only be applied to the performance of global
changes and the performance of global changes and local changes all added to the data
augmentation.

view ColorJitter GaussianBlur

global 88.71 88.05

global + local 88.37 87.88

add difficulty to the proxy task. We use ResNet-50[8] as the backbone network.
All three branches use the same backbone network and share weights. Following
BYOL [7], we are adding 3-layer MLP as a projection head and a feature vector
of size 2048 is obtained. The margin of the triplet loss is set to 1. We use SGD
as the optimizer where the initial learning rate is le-5 and a weight decay is le-4.
We train each model for 300 epochs and the batch size is 64. The fine-tuning
phase takes away the pretrained backbone network and replaces the projection
head with a fully connected classification head. And the image size was resized
to 320 × 320 with a batch size of 64 and trained 30 epochs.

Comparison with Previous Results. We examined the improvement in AUC
when the backbone was ResNet-50. Table 1 compares our results with previ-
ous methods. Our proposed method achieved the best results at two observa-
tions(Cardiomegaly, Consolidation) and a mean AUC of 89.94%. Although the
other three observations did not reach the optimal AUC, they did almost reach
the top two. The competitiveness of our proposed approach can be seen.

Data Augmentations Ablations. Table 2 reports the results of local change
using the same data augmentation as global change on top of cut and paste.
Because the same data augmentation reduces the difficulty of the proxy task,
the effect is lower than without.

In Table 3, we investigate the effects of various data enhancements. We found
that colorJitter, elastic, and crop rotation were the top three individual data
enhancements. We have since combined them to obtain the final result.
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Table 3. The effect of individual data augmentations and the effect of progressively
increasing data augmentations.

GaussNoise GaussianBlur GridDistortion Elastic Crop rotation ColorJitter Average

� 87.93

� 88.05

� 88.24

� 88.30

� 88.33

� 88.71

� � 88.82

� � � 89.42

Network Explorations. Mapping features to the same space using projection
head has become popular since projection head was first introduced in SimCLR
[4]. BYOL[7] adds to this by doing prediction to prevent network collapse. Table 4
reports the results on whether projection head, predication head, and update
methods are utilized. The results show that prediction head does not help for
the proposed method and that the best AUC is achieved in the case of training
the projection head alone.

Table 4. The result of whether to include projection head, prediction head and whether
to share the weights.

baseline Projection head Prediction head Average AUC

a share weights share weights 88.57

b no share weights no share weights 88.70

c share weights ✗ 89.15

d no share weights ✗ 89.42

e ✗ ✗ 89.24

5 Conclusion

In this paper, we introduce a pre-trained self-supervised learning method using
the triplet loss. Comparisons of global and local variations are used to learn
information from multiple ranges of medical images. We also demonstrate the
performance improvement of the proposed method in X-Ray image classification
over the previous pre-training and state-of-the-art self-supervised methods.
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Abstract. A central challenge in training one-shot learning models is
the limited representativeness of the available shots of the data space.
Particularly in the field of network neuroscience where the brain is repre-
sented as a graph, such models may lead to low performance when clas-
sifying brain states (e.g., typical vs. autistic). To cope with this, most of
the existing works involve a data augmentation step to increase the size
of the training set, its diversity and representativeness. Though effective,
such augmentation methods are limited to generating samples with the
same size as the input shots (e.g., generating brain connectivity matrices
from a single shot matrix). To the best of our knowledge, the problem
of generating brain multigraphs capturing multiple types of connectivity
between pairs of nodes (i.e., anatomical regions) from a single brain graph
remains unsolved. In this paper, we unprecedentedly propose a hybrid
graph neural network (GNN) architecture, namely Multigraph Generator
Network or briefly MultigraphGNet, comprising two subnetworks: (1) a
many-to-one GNN which integrates an input population of brain multi-
graphs into a single template graph, namely a connectional brain temple
(CBT), and (2) a reverse one-to-many U-Net network which takes the
learned CBT in each training step and outputs the reconstructed input
multigraph population. Both networks are trained in an end-to-end way
using a cyclic loss. Experimental results demonstrate that our Multi-
graphGNet boosts the performance of an independent classifier when
trained on the augmented brain multigraphs in comparison with train-
ing on a single CBT from each class. We hope that our framework can
shed some light on the future research of multigraph augmentation from
a single graph. Our MultigraphGNet source code is available at https://
github.com/basiralab/MultigraphGNet.

Keywords: Multigraph augmentation from a single graph · One-shot
learning · Brain connectivity · Connectional brain template

1 Introduction

Brain graphs present powerful tools in modeling the relationship between differ-
ent anatomical regions of interest (ROIs) as well as fingerprinting neural states
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
I. Rekik et al. (Eds.): PRIME 2022, LNCS 13564, pp. 191–202, 2022.
https://doi.org/10.1007/978-3-031-16919-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16919-9_18&domain=pdf
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https://doi.org/10.1007/978-3-031-16919-9_18


192 F. Pala and I. Rekik

(e.g., typical and atypical) [1]. Recently, graph neural network (GNN) models
have achieved remarkable results across different brain graph learning tasks [2]
such as time-dependent prediction [3,4], super-resolution [5,6] and classification
[7,8]. Despite their ability to extract meaningful and powerful representations
from labelled brain graph data, they might fail to handle training data with a
limited number of samples. Particularly, such data-hungry architectures might
struggle to converge and produce a good performance within a few-shot learning
(FSL) paradigm [9–11] –let alone one-shot learning [12].

Such problem is usually remedied by data augmentation where labeled sam-
ples are generated from the available shots to better generalize to unseen distri-
butions of testing samples. Several FSL works [13] proposed novel methods to
solve medical image-based learning tasks. For instance, [14] presented a learning-
based method that is trained on a few samples while leveraging data augmen-
tation and unlabeled image data to enhance model generalizability. [15] used
the meta-train data from common diseases for rare disease diagnosis and tack-
led the low-data regime problem while leveraging meta-learning. [16] presented
a novel task-driven and semi-supervised data augmentation scheme to improve
medical image segmentation performance in a limited data setting. However, to
the best of our knowledge and as revealed by this recent GNN in network neuro-
science review paper [2], one-shot GNN learning remains unexplored in the field
of network neuroscience –with the exception of [12] where one-shot GNN archi-
tectures are trained for brain connectivity regression and classification tasks.
Specifically, representative connectional brain templates (CBTs) [17] were used
to train GNN architectures in one-shot fashion. Such graph templates present a
compact representation of a particular brain state.

However, this landmark work did not resort to any data augmentation strate-
gies or generative models to better estimate the unseen distributions of the
classes to discriminate. Besides, existing graph augmentation methods are lim-
ited to generating graphs with the same size as the input shots (e.g., gener-
ating brain connectivity matrices from a single shot matrix). To the best of
our knowledge, the problem of generating brain multigraphs capturing multiple
types of connectivity between pairs of nodes (i.e., anatomical regions) from a
single brain graph remains unsolved. Note that a brain multigraph is encoded
in a tensor, where each frontal view captures a particular type of connectivity
between pairs of brain ROIs (e.g., morphological or functional). In this paper,
we set out to boost a one-shot brain graph classifier by learning how to generate
multi-connectivity brain multigraphs from a single template graph. Specifically,
we propose a hybrid graph neural network (GNN) architecture, namely Multi-
graph Generator Network or briefly MultigraphGNet, comprising two subnet-
works: (1) a many-to-one GNN which integrates an input population of brain
multigraphs into a single CBT graph using deep graph normalizer (DGN) [18],
and (2) a reverse one-to-many convolutional neural network (CNN) which takes
the learned CBT in each training step and outputs the reconstructed input
multigraph population. Our prime contributions are listed below:
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1. We are the first to learn how to generate brain multigraphs from a single
graph template (namely CBT).

2. We propose a hybrid cyclic GNN architecture for multigraph graph augmen-
tation from a single CBT.

3. We show that the augmented brain multigraphs can boost the performance
of an independent classifier across various evaluation metrics.

2 Methodology

In this section, we explain our proposed MultigraphGNet in detail. We represent
tensors by calligraphic font capital letters, e.g., X , matrices by boldface capital
letters, e.g., X, vectors by boldface lowercase letters, e.g., x and scalars by letters,
e.g., x. Table 1 summarizes the mathematical notations we used throughout the
paper.

Table 1. Mathematical notations followed in the paper

Mathematical
notation

Definition

S Training set

nr Number of region of interests (ROIs) in the brain

nv Number of connectomic views in the brain multigraph (tensor)

Xs Brain graph tensor ∈ R
nr×nr×nv of subject s

Xv
s Brain graph matrix ∈ R

nr×nr of the view v and subject s

Cs Subject-driven connectional brain template (CBT) ∈ R
nr×nr of

the subject s

X̂s Reconstructed brain graph tensor ∈ R
nr×nr×nv for the subject s

Problem Statement. A brain connectome can be encoded in a single view (i.e.,
matrix) or multiple views (i.e., matrices forming a tensor) so that each view sits
on a different manifold and captures a specific relationship, e.g., morphological
or functional, between anatomical brain regions of interest. Since multiview con-
nectomic data is scarce, we set out to learn how to predict brain connectivity
tensors (i.e., multigraphs) from a single graph template (i.e., brain connectivity
matrix). Thus, we propose a one-to-many brain graph augmentation approach.
Specifically, given a set of multi-view brain graphs where each view models a spe-
cific relationship between pairs of brain ROIs, our goal is to first collapse these
graphs to a single view graph-based representation, i.e., connectional brain tem-
plate (CBT), then, reconstruct the original brain graphs using the generated
CBT, so that we can augment new multi-view brain graphs by adding small
noise to the global CBT which can be considered as an average connectome over
all subjects and views.
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Definition 1. Let Cs denote a subject-driven connectional brain template,
which is a centered representation of subject s with respect to the training
population tensor (i.e., multigraph) distribution. Specifically, Cs is encoded in
a single-view brain connectivity matrix which is a normalized graph-based rep-
resentation of the multi-view brain graph (i.e., tensor) of subject s.

2.1 CBT Learning

The first block (Fig. 1-A) of our MultigraphGNet utilizes the Deep Graph Nor-
malizer (DGN) [18] network to produce a subject-driven CBT Cs for each train-
ing subject s. We represent a brain graph view i as Gi(Vi, Ei) where Vi is
the set of nr nodes each corresponds to a brain ROI and E is a set of edges
each encoding a particular type of relationship between two ROIs (e.g., struc-
tural). Thus, we can define a multi-view brain graph for subject s as a tensor
Xs ∈ R

nr×nr×nv , where nr and nv denote the number of ROIs and views, respec-
tively. Since self-connections do not carry important information, we set the diag-
onal entries in the tensor to zero. The DGN network takes a node embedding
matrix V0 ∈ R

nr×d0 , where d0 is the initial node embedding size and a multi-
view edge embedding tensor X . Since we do not have any node/ROI features ini-
tially, we set the V0 to 1. DGN utilizes 3 edge-conditioned graph convolution lay-
ers [19] with a ReLU at the end of each layer to learn the node embeddings. Each
layer l ∈ {1, 2, 3} includes a dense filter neural network F l : Rnv �→ R

dl×dl−1 that
implements the message passing between ROIs i and j given the edge embed-
dings eij ∈ R

nv×1 as follows

vl
i = Θl.vl−1

i +
1

|N (i)|

( ∑
j∈N (i)

F l(eij ;Wl)vl−1
j + bl

)

F l(eij ;Wl) = Θij ,

where vl
i is the node embedding corresponding to the ith ROI in layer l. The

dense filter neural network F l with weights Wl and bias bl produces new edge
weights in each layer for the edges between node i and its neighbour j ∈ N (i).
The resulting node embeddings tensor V 3 ∈ R

nr×d3 is first repeated horizontally
to get a tensor, then, we compute the element-wise absolute difference between
its transpose. Here we use the absolute difference since the original brain con-
nectivity tensors were generated using this operation. One can use any other
operation that is differentiable for the back propagation process. The final out-
put is obtained by summing along the z-axis which gives us the subject-driven
CBT Cs ∈ R

nr×nr for subject s.
We use the Subject Normalization Loss (SNL) as proposed in the DGN. SNL

for training subject s is defined as the mean Frobenius distance between the
learned CBT and each training subject view as follows:
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SNLs =
1

nv × |S|
nv∑
v=1

∑
i∈S

||Cs − Xv
i ||F × λv,

where S is the training set and λv is the loss weight computed for each view v
as follows:

λv =
1
µv

max
{

1
µj

}nv

j=1

,

where μv is computed by taking the mean of edge attributes for view v. Next, we
define and optimize the DGN Loss using the following objective function [18]:

LDGN =
1

|S|
∑
s∈S

SNLs

2.2 Reverse Mapping

The second block (Fig. 1-B) of our MultigraphGNet aims to reverse the DGN
process, thus we call it reverse DGN (RDGN) network by taking the learned
CBT Cs and mapping it back into the original brain multigraph tensor Xs for
subject s. We use the U-Net [20] architecture to design the RDGN, which consists
of an encoder and a decoder. Specifically, in each iteration of the optimization
process, the encoder takes the learned CBT and applies the same convolution
operation with a kernel size of 3, stride and padding of 1 two times, each followed
by a ReLU non-linearity and a batch normalization layer. To down-sample the
resulting feature map, we use a max pooling layer with a kernel size and stride of
2. The number of output channels is doubled at the end of the down-sampling.
We repeat this process 4 times to get the feature map with 1024 channels. In
the decoder part, we first up-sample using a 2×2 transposed convolutional layer
with a stride of 2 that halves the number of output channels which is followed
by a concatenation with the feature map from the counterpart in the encoder.
As for the decoder, we apply the same convolution operation twice. This process
is repeat 4 times, as well. The final layer consists of a 1×1 convolution layer that
outputs the reconstructed tensor X̂s ∈ R

nr×nr×nv . To preserve the similarity to
the original tensor, we additionally minimize the L1 distance, i.e., mean absolute
error (MAE), between the original (X ) and reconstructed (X̂ ) tensor views as
follows:

LL1 = ||X − X̂ ||1
We train the DGN and RDGN in an end-to-end and fully cyclic manner to
ensure that the generated CBT can well collapse the multiple views into a single
connectivity matrix, which in turn is used to reconstruct back the original brain
multigraph using the U-Net augmentation process. Thus, we define our RDGN
loss as follows:

Lcyclic = LDGN + λLL1
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2.3 Multigraph Data Augmentation from a Single Graph

The trained RDGN is able to generate multiple views from a given single-view
CBT, which makes it possible to predict a multigraph from a single representa-
tive template graph. Hence, by slightly modifying the an particular input CBT,
RDGN can produce unique brain multigraphs where it acts as a one-to-many
augmentation network. To augment new brain multigraphs from a single CBT,
we first obtain a subject-driven CBT for each training subject as follows:

SCBT =
{
Cs|∀s ∈ S

}
Cs = DGN(Xs)

Next, we construct a global CBT C by taking the element-wise median of all the
subject-driven CBTs in SCBT . C can be considered as an average brain network
over all the training brain multigraph set. To create diversity in our augmented
multigraphs, we add a small noisy matrix Wi ∼ N (μC, σ2

C) to the global CBT
for each augmented new sample i as follows:

C̃i = C + cWi,

where μC denotes the CBT mean and σC its standard deviation. c is a scaling
coefficient to control the added noise. Note that we re-sample the added noise
in each augmentation step. We augment new samples as follows:

Saug =
{

X̂i|i ∈ {1, 2, . . . , k}
}

X̂i = RDGN(C̃i),

where k is the number of samples that we want to augment.

3 Experimental Results and Discussion

Evaluation Dataset. We evaluated our framework on the Autism Brain Imag-
ing Data Exchange (ABIDE-I) public dataset1 using a random subset including
150 normal control (NC) and 150 subjects with autism spectrum disorder (ASD),
each wit 6 views of morphological brain connectomes (extracted from the max-
imum principal curvature, the mean cortical thickness, the mean sulcal depth,
the average curvature, the minimum principle area and the cortical surface area)
of the left cortical hemispheres (LH). The cortical surface is split into 35 ROIs
via Desikan-Killiany atlas [21] after the reconstruction from T1-weighted MRI
using the FreeSurfer pipeline [22]. Next, the brain network is obtained by taking
the absolute difference between the cortical measurements in each pair of ROIs.
We used 5-fold cross-validation with 5 different seeds to evaluate the generaliz-
ability of our MultigraphGNet. We implemented our framework in PyTorch and
PyTorch-Geometric [23] libraries.
1 http://preprocessed-connectomes-project.org/abide/.

http://preprocessed-connectomes-project.org/abide/
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Table 2. Testing classification results of independent SVM classifiers trained using (i)
a single CBT from each class and (ii) samples augmented using the trained RDGN
network. We report the average accuracy, precision, recall and F1 score obtained when
training on 10, 25 and 50 augmented samples. Each row displays the mean of the results
over the 5 cross-validation folds with different random seeds for the train-test split.

One-shot CBT Augmented multigraphs

Acc Prec Rec F1 Acc Prec Rec F1

Seed #1 0.929 0.944 0.916 0.928 0.989 0.953 0.993 0.989

Seed #2 0.960 0.993 0.928 0.959 0.956 0.939 1.000 0.964

Seed #3 0.948 0.993 0.903 0.944 0.971 0.985 0.955 0.968

Seed #4 0.961 0.981 0.941 0.960 0.965 0.991 0.935 0.958

Seed #5 0.954 0.992 0.915 0.952 0.968 0.961 0.979 0.969

Avg 0.950 0.981 0.921 0.949 0.970 0.966 0.972 0.970

Hyperparameters. In DGN, we used 3 edge-conditioned graph convolution lay-
ers followed by ReLU non-linearity and each layer has an output node embedding
size of 36, 24 and 5, respectively. In RDGN, we used a U-Net architecture. For
the optimizer, we chose AdamW [24] with a learning rate of 0.001, beta1 and
beta2 of 0.9 and 0.999, and a weight decay of 0.01. We set λ = 1 in the total
loss function and c = 0.2 for the added noise in the CBT augmentation using
RDGN.

Evaluation and Comparison Methods. To evaluate the effectiveness of our
brain multigraph augmentation strategy from a single CBT, we trained two
support vector machine (SVM) classifiers in each cross-validation fold. Note
that we provided the same seeds in both DGN/RDGN and SVM training so
that neither our augmentation framework nor the classifier have seen the test
set before.

One-shot CBT. We generated two global CBTs CASD and CNC using the
trained DGN for ASD and NC training sets, respectively. We vectorized the
upper-triangular part of both CBTs to get two feature vectors cASD, cNC ∈
R

nr×nr−1
2 . In the testing step, we created a subject-driven CBT using the trained

DGN for each brain multigraph in the test set since the SVM was not trained
on multiple views.

Augmented samples. We augmented k = 10, 25, 50 multigraphs as explained
in the Sect. 2.3 and vectorized the upper-triangular parts of each view to get the
feature vector xi ∈ R

nv×nr×nr−1
2 for each augmented sample i ∈ {1, 2, . . . , k}.

Next, we trained a new SVM classifier on the augmented set and tested it on the
left-out test set. In this case, there is no need for generating subject-driven CBTs
in the testing phase since the SVM was already trained on multi-view tensors. We
report the comparison between the classification accuracy, precision, recall and
F1 scores for the both methods in the Table 2 for both methods. It can be clearly
seen that our framework is able to reconstruct the initial brain graph views and
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Fig. 2. Visual inspection of the reconstructed brain multigraph from a single CBT. On
top, we display the brain tensor including 6 connectivity views for a randomly selected
ASD testing sample. In the middle, we present the subject-driven CBT obtained using
the trained DGN network. In the bottom, we compare the reconstructed views by the
trained RDGN network given the learned CBT as input. We also measure the MAE
between the corresponding ground-truth and predicted views.

produces relevant features for the ASD/NC classification task. While one-shot
CBT is considerably enough to distinguish between ASD and NC subjects, our
framework further boosts the independent classifier performance by augmenting
multiple multi-view brain connectomes using only one single-view CBT.

Visual Inspection. In Fig. 2, we show the original and reconstructed brain
multigraph tensor including 6 views as well as the learned CBT for a randomly
selected ASD testing subject. In addition, we report the mean absolute error
(MAE) between reconstructed and original views. Obviously, RDGN network is
able to expand and decode the CBT into multiple views with a low error.

Limitations and Future Directions. Although the L1 Loss between the the
ground truth and reconstructed views produced very promising reconstructions
and is resistant to data outliers, it only considers the element-wise similarity
in connectivity weights without examining the topological properties (e.g., hub-
ness) of the augmented multigraphs. Hence in our future work, we will add a
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topological sub-loss to the cyclic loss in our reconstruction block. Furthermore,
the RDGN can be further boosted by adding a discriminator network to the
U-Net under an adversarial learning paradigm as in [4]. We also will replace the
convolutional U-Net with a graph U-Net [25] for further improvement.

4 Conclusion

In this paper, we introduced the first study that provides a one-to-many U-Net
augmentation framework for generating multi-view brain graphs from a single
connectional template to boost one-shot learning classifiers. Given the high-cost
of connectomic data collection and processing, our framework offers an affordable
approach to learning how in a frugal setting with limited data. We showed that
the augmented samples are able to improve the classification results of autistic
subjects. In our future work, we will evaluate our MultigraphGNet on subjects
with different neurological disorders such as Alzheimer’s Disease (AD) or mild
cognitive impairment (MCI) and assess the generalizability of model to different
classes.

Acknowledgements. This work was funded by generous grants from the European
H2020 Marie Sklodowska-Curie action (grant no. 101003403, http://basira-lab.com/
normnets/) to I.R. and the Scientific and Technological Research Council of Turkey to
I.R. under the TUBITAK 2232 Fellowship for Outstanding Researchers (no. 118C288,
http://basira-lab.com/reprime/). However, all scientific contributions made in this
project are owned and approved solely by the authors.

References

1. van den Heuvel, M.P., Sporns, O.: A cross-disorder connectome landscape of brain
dysconnectivity. Nat. Rev. Neurosci. 20, 435–446 (2019)

2. Bessadok, A., Mahjoub, M.A., Rekik, I.: Brain graph synthesis by dual adversarial
domain alignment and target graph prediction from a source graph. Med. Image
Anal. 68, 101902 (2021)

3. Tekin, A., Nebli, A., Rekik, I.: Recurrent brain graph mapper for predicting time-
dependent brain graph evaluation trajectory. In: Albarqouni, S., et al. (eds.)
DART/FAIR -2021. LNCS, vol. 12968, pp. 180–190. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-87722-4 17

4. Gürler, Z., Nebli, A., Rekik, I.: Foreseeing brain graph evolution over time using
deep adversarial network normalizer. In: Rekik, I., Adeli, E., Park, S.H., Valdés
Hernández, M.C. (eds.) PRIME 2020. LNCS, vol. 12329, pp. 111–122. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-59354-4 11

5. Isallari, M., Rekik, I.: Brain graph super-resolution using adversarial graph neural
network with application to functional brain connectivity. Med. Image Anal. 71,
102084 (2021)

6. Mhiri, I., Nebli, A., Mahjoub, M.A., Rekik, I.: Non-isomorphic inter-modality graph
alignment and synthesis for holistic brain mapping. In: Feragen, A., Sommer,
S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 203–215.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0 16

http://basira-lab.com/normnets/
http://basira-lab.com/normnets/
http://basira-lab.com/reprime/
https://doi.org/10.1007/978-3-030-87722-4_17
https://doi.org/10.1007/978-3-030-59354-4_11
https://doi.org/10.1007/978-3-030-78191-0_16


Predicting Brain Multigraph Population from a Single Graph 201

7. Oh, K.H., et al.: Diagnosis of schizophrenia with functional connectome data:
a graph-based convolutional neural network approach. BMC Neurosci. 23, 1–11
(2022)

8. Nebli, A., Gharsallaoui, M.A., Gürler, Z., Rekik, I., Initiative, A.D.N., et al.: Quan-
tifying the reproducibility of graph neural networks using multigraph data repre-
sentation. Neural Netw. 148, 254–265 (2022)

9. Kadam, S., Vaidya, V.: Review and analysis of zero, one and few shot learning
approaches. In: Abraham, A., Cherukuri, A.K., Melin, P., Gandhi, N. (eds.) ISDA
2018 2018. AISC, vol. 940, pp. 100–112. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-16657-1 10

10. Sun, Q., Liu, Y., Chua, T.S., Schiele, B.: Meta-transfer learning for few-shot learn-
ing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, vol. 403–412 (2019)

11. Li, X., Sun, Z., Xue, J.H., Ma, Z.: A concise review of recent few-shot meta-learning
methods. arXiv preprint arXiv:2005.10953 (2020)

12. Guvercin, U., Gharsallaoui, M.A., Rekik, I.: One representative-shot learning using
a population-driven template with application to brain connectivity classification
and evolution prediction. In: Rekik, I., Adeli, E., Park, S.H., Schnabel, J. (eds.)
PRIME 2021. LNCS, vol. 12928, pp. 25–36. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-87602-9 3

13. Kotia, J., Kotwal, A., Bharti, R., Mangrulkar, R.: Few shot learning for medical
imaging. In: Das, S.K., Das, S.P., Dey, N., Hassanien, A.-E. (eds.) Machine Learn-
ing Algorithms for Industrial Applications. SCI, vol. 907, pp. 107–132. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-50641-4 7

14. Zhao, A., Balakrishnan, G., Durand, F., Guttag, J.V., Dalca, A.V.: Data augmen-
tation using learned transformations for one-shot medical image segmentation.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8543–8553 (2019)

15. Li, X., Yu, L., Jin, Y., Fu, C.-W., Xing, L., Heng, P.-A.: Difficulty-aware meta-
learning for rare disease diagnosis. In: Martel, A.L., et al. (eds.) MICCAI 2020.
LNCS, vol. 12261, pp. 357–366. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-59710-8 35

16. Chaitanya, K., et al.: Semi-supervised task-driven data augmentation for medical
image segmentation. Med. Image Anal. 68, 101934 (2021)

17. Chaari, N., Akdag, H.C., Rekik, I.: Comparative survey of multigraph integration
methods for holistic brain connectivity mapping. arXiv preprint arXiv:2204.05110
(2022)

18. Gurbuz, M.B., Rekik, I.: Deep graph normalizer: a geometric deep learning app-
roach for estimating connectional brain templates. In: Martel, A.L., et al. (eds.)
MICCAI 2020. LNCS, vol. 12267, pp. 155–165. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-59728-3 16

19. Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional
neural networks on graphs. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, vol. 3693–3702 (2017)

20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

21. Fischl, B., et al.: Automatically parcellating the human cerebral cortex. Cereb.
Cortex 14, 11–22 (2004)

https://doi.org/10.1007/978-3-030-16657-1_10
https://doi.org/10.1007/978-3-030-16657-1_10
http://arxiv.org/abs/2005.10953
https://doi.org/10.1007/978-3-030-87602-9_3
https://doi.org/10.1007/978-3-030-87602-9_3
https://doi.org/10.1007/978-3-030-50641-4_7
https://doi.org/10.1007/978-3-030-59710-8_35
https://doi.org/10.1007/978-3-030-59710-8_35
http://arxiv.org/abs/2204.05110
https://doi.org/10.1007/978-3-030-59728-3_16
https://doi.org/10.1007/978-3-030-59728-3_16
https://doi.org/10.1007/978-3-319-24574-4_28


202 F. Pala and I. Rekik

22. Fischl, B.: Freesurfer. Neuroimage 62, 774–781 (2012)
23. Fey, M., Lenssen, J.E.: Fast graph representation learning with pytorch geometric.

arXiv preprint arXiv:1903.02428 (2019)
24. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam (2018)
25. Gao, H., Ji, S.: Graph u-nets (2019)

http://arxiv.org/abs/1903.02428


Meta-RegGNN: Predicting Verbal
and Full-Scale Intelligence Scores Using

Graph Neural Networks
and Meta-learning

Imen Jegham1,2,3 and Islem Rekik2,3(B)

1 LATIS - Laboratory of Advanced Technology and Intelligent Systems,
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Abstract. Decrypting intelligence from the human brain construct is
vital in the detection of particular neurological disorders. Recently, func-
tional brain connectomes have been used successfully to predict behav-
ioral scores. However, state-of-the-art methods, on one hand, neglect the
topological properties of the connectomes and, on the other hand, fail to
solve the high inter-subject brain heterogeneity. To address these limita-
tions, we propose a novel regression graph neural network through meta-
learning namely Meta-RegGNN for predicting behavioral scores from
brain connectomes. The parameters of our proposed regression GNN are
explicitly trained so that a small number of gradient steps combined with
a small training data amount produces a good generalization to unseen
brain connectomes. Our results on verbal and full-scale intelligence quo-
tient (IQ) prediction outperform existing methods in both neurotypical
and autism spectrum disorder cohorts. Furthermore, we show that our
proposed approach ensures generalizability, particularly for autistic sub-
jects. Our Meta-RegGNN source code is available at https://github.com/
basiralab/Meta-RegGNN.

Keywords: Meta-learning · Graph neural networks · Behavioral score
prediction · Brain connectivity regression · Functional brain
connectomes

1 Introduction

Autism, or Autism Spectrum Disorder (ASD), is a neurodevelopmental disorder
that affects how a person feels, thinks, interacts with others, and encounters their
environment. Research has shown that subjects with ASD have higher rates of
health issues throughout childhood, adolescence, and adulthood and this can
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lead to a high risk of early mortality. ASD diagnosis remains a challenging task
due to the wide range in the severity of its symptoms and the lack of a patho-
physiological marker [1,2]. Recently, machine learning techniques have become
a primary route for computer-aided diagnosis, and have been broadly used to
analyze autism disorders [3–5]. Intelligence, in particular, is a key aspect of ASD.
State-of-the-art methods successfully used functional brain connectomes to pre-
dict cognitive measures such as Intelligence Quotient (IQ) scores in both disor-
dered and healthy cohorts [6–8]. Indeed, functional brain connectomes describe
the brain network structure and are derived from resting-state magnetic reso-
nance imaging (MRI). They are modeled as graphs whose nodes depict anatom-
ical regions of interest (ROIs) and edges represent the correlations in activity
between ROI pairs [9].

To improve generalizability across contexts and populations, Shen et al. [10]
developed a data-driven protocol for Connectome-based Predictive Modeling
(CPM) of brain-behavior relationships by training linear regression model using
cross-validation. To ameliorate the obtained results, Dryburgh et al. [6] studied
how neural correlates of intelligence scores are altered by atypical neurodevel-
opmental disorders by performing their analysis in both Neuro Typical (NT)
subjects and subjects with ASD. For that, they adopted CPM and evaluated neg-
ative and positive correlations of brain regions separately. However, these meth-
ods flatten the brain connectome matrix though vectorization which neglects
the graph structure of the connectomes. Thus, the local and global topological
properties of the connectomes that are rich of information are not exploited.

To overcome this issue, Graph Neural Networks (GNNs) have been proposed.
They can handle complex graph data and have proven their exclusive ability in
learning in non-Euclidean spaces including graphs with complex topologies and
a wide range of graphs [11]. GNN is firstly proposed in 2005 [12] to be then
elaborated on in detail [13]. GNNs are a class of deep learning techniques with
graph convolutional layers that outperform existing methods in a large range of
computer vision applications [14]. Recently, they have received large attention
thanks to their exclusive ability in effectively modeling the correlation between
samples. They provide an efficient solution to integrate diverse information. How-
ever, a lack of works that explored GNN for the prediction of cognitive scores
has been noticed. Hanik et al. [7] was the first to propose a GNN architecture,
called RegGNN, specialized in regressing brain connectomes to a cognitive score
to predict. To better improve the performance of GNN, they also proposed a
learning-based sample selection method that selects training samples with the
highest predictive power. However, existing GNN-based models present a major
drawback which is the lack of flexibility which means that the model fails to be
used for independent testing [15].

As a key challenge for the cognitive score prediction is high heterogeneity
across individual brains, standard learning approaches fail when applied in dif-
ferent conditions than used for training. To decrease this covariate shift that
drastically affects the usefulness of machine learning models and improve the
generalizability of proposed methods, meta-learning approaches have been pro-
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posed and achieved a tremendous success in recent years [16]. The basic idea
of meta-learning or learn to learn is to gradually enhance the performance of
a model by learning multiple different tasks. It is similar to transfer learning
[17]. In transfer learning, model parameters are learned after being trained with
lots of data and then fine-tuned to obtain good parameters, while in meta-
learning, good model parameters that are sensitive to small changes and give
large improvement on loss function for a particular task are learned. Meta-
learning aims to rapidly learn a new task from a small amount of new data,
and the model is trained by the meta-learner to be able to learn on several exist-
ing tasks [18]. There are different meta-learning approaches including one-shot
learning with memory augmented neural networks [19], optimization as a model
for few-shot learning [20] and Model Agnostic Meta-Learning (MAML) [21]. The
latter may be directly applied to any learning model that is trained with a gradi-
ent descent procedure. With minimal modification, it can simply manage several
architectures and multiple problem settings, including policy gradient reinforce-
ment learning, classification and regression. However, despite their important
role to ensure generalizability and solve data fracture problem, this method has
not been previously employed in predicting cognitive scores.

In this paper, we introduce the first regression GNN network through meta-
learning, namely Meta-RegGNN that regresses functional brain connectomes
to predict cognitive scores. Our Meta-RegGNN network on one hand properly
includes the graph structure of functional brain connectomes and effectively
models the correlation between them, and on the other hand, thanks to meta-
learning, makes the regression GNN model more flexible while decreasing the
impact of the high brain variability and domain fracture issues.

The main contributions of our method can be summarized as follows:

1. We introduce a novel meta-learning regression graph neural network that
shows an exclusive ability in modeling the correlation between data and
incorporates global and local topological properties of the functional brain
connectomes to predict behavioral scores.

2. We present the first work on meta-learning for regression graph neural net-
works rooted in inductive learning and which boosts the prediction perfor-
mance by decreasing the effect of sample heterogeneity. This network shows a
good trade-off between flexibility and performance and can be used in other
application fields suffering from high intra-class variability issues.

3. We illustrate a pipeline, consisting of Meta-RegGNN, which outperforms
state-of-the-art models in predicting Verbal Intelligence Quotient (VIQ) and
Full-scale Intelligence Quotient (FIQ) from functional brain connectomes in
neurotypical and autism spectrum disorder cohorts.

2 Methodology

In this section, we detail the architecture and the algorithm of our proposed.
Figure 1 shows the layout of the overall process of Meta-RegGNN. In our pro-
posed approach, meta-training is implemented as episodic tasks on support and
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query sets. A few-shot learning framework is used for the query set. The goal of
this few-shot regression is to predict the behavioral scores from only a few sam-
ples after training on many samples with similar statistical properties. During
the meta-testing, predicted behavioral scores are obtained using unseen samples
that are provided with the optimized weights obtained from the meta-learning
stage.

Fig. 1. Illustration of the proposed meta-training and validation of regression GNN in
a few-shot setting.

• Problem statement. We consider a regression GNN model, denoted f ,
that maps brain graphs g to behavioral scores s. During meta-learning, the
regression GNN model is trained to be able to adapt to a large number
of tasks. We present a generic notion of a learning task below. Each task
T = {L(g1, s1, ..., gH , sH), q(g1), q(gt+1|gt, st),H} consists of a loss function
L, a distribution over initial observations q(g1), a transition distribution
q(gt+1|gt, st) and an episode length H (in our case, we can define H = 1
and drop the time-step t on xt, as the model is used for supervised learning
and accepts one input and gives one output). For regression, the loss function
is defined as follows:

LTi =
∑

g(j),s(j)∼Ti

‖f(g(j)) − s(j)‖22, (1)
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where g(j), s(j) represent respectively the input and output sampled from task
Ti. In our model agnostic meta-learning scenario, we define a distribution over
tasks p(T ) that we want our regression GNN model to adapt to. In the K-shot
learning setting, the regression GNN is trained to learn a new task Ti from
p(T ) from only K samples drawn from qi and the feedback LTi produced by
Ti. At the end of meta-training, new tasks are sampled from p(T ), and meta-
performance is measured by the model’s performance after learning from K
samples.

• Meta-RegGNN algorithm. The aim of our Meta-RegGNN is to prepare
our regression GNN model for fast adaptation. Thus, the GNN might learn
internal features of functinal brain connectomes that are relevant to all tasks
in p(T ). For that, we first find the RegGNN model parameters that are
responsive to modifications in the given task, so that small modifications
in the parameters produce large improvements on the loss function of any
task from p(T ). Let us consider our regression GNN model represented by
a parametrized function fΘ with parameters Θ. The latter is updated to Θ′

when adapting to a new task Ti. The updated Θ is defined as:

Θ′
i = Θ − γ∇ΘLTi(fΘ), (2)

where γ represents the step size hyperparameter. The meta-optimization is
achieved over the regression GNN model parameters Θ, while the objective is
calculated using the updated regression GNN model parameters Θ’. Indeed,
our Meta-RegGNN aims to optimize the model parameters so that one or a
small number of gradient steps on a new task generate effective behavior.
The meta-optimization through tasks is conceived in order to update the
regression GNN model parameters Θ as follows:

Θ = Θ − η∇Θ

∑

Ti∼p(T )

LTi(fΘ′
i
) (3)

where η presents the meta-step size. The meta-training algorithm is outlined
in Algorithm 1.

• Regression GNN. To properly take into account the graph structure of the
brain connectomes and effectively model the correlation between data sam-
ples, we used a regression GNN network that consists of two graph convolution
layers and a fully connected layer (Fig. 1). Given a correlation matrix of a
connectome C is symmetric, that can have zero or positive eigenvalues, we
may simply regularize it to be symmetric positive definite according to:

I ′ = C + μI, (4)

where I represents the identity matrix and μ > 0 [22]. In fact, since positive
correlations have been demonstrated to be more important in analyzing brain
networks [23], all negative eigenvalues are set to zero to train our regression
GNN [7]. Thus, regression GNN receives the regularized positive adjacency
matrix I ′ of a connectome and predicts the corresponding behavioral scores
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Algorithm 1. Meta-training regression GNN algorithm.
Require: p(T)= Distribution over tasks
Require: γ, η: Step size hyperparameters
1: Initialize Θ randomly
2: while not done do
3: Sample tasks batch Ti ∼ p(T )
4: for all Ti do
5: Randomly choose k samples D = {g(i), s(i)} from Ti
6: Evaluate ∇ΘLTi(fΘ) with respect to k using D and LTi in Eq. 1
7: Compute adapted parameters Θ′

i according to Eq. 2

8: Update Θ according to Eq. 3 using LTi in Eq. 1

9: end

using graph convolutions. This reduces the size of the brain connectomes
and learns an embedding for the brain connectomes. After the first graph
convolution operation, we add a dropout layer for regularization. Finally, the
obtained embedding goes through a fully connected layer which produces a
scalar output (IQ scores).

3 Experimental Results and Discussion

Evaluation Dataset. To highlight the utility of our proposed Meta-RegGNN,
we evaluated our method on subjects drawn from the Autism Brain Imaging
Data Exchange (ABIDE) preprocessed dataset [24]. The preprocessed datasets
are available online1. They contain two cohorts: ASD and NT. The ASD cohort
comprises 202 patients (with mean age = (15.4 ± 3.8)), while the NT cohort
includes 226 subjects (with mean age = (15 ± 3.6)). VIQ and FIQ scores in the
ASD cohort have means 106.102 ± 15.045 and 103.005 ± 16.874 whereas VIQ
and FIQ scores in the NT cohort have means 111.573 ± 12.056 and 112.787 ±
12.018, respectively. The connectomes of the brain were derived from resting-
state fMRI using the parcellation from [25] into 116 ROIs.

Parameter Settings. To evaluate the generazabilty and the effectiveness of
our Meta-RegGNN, we used 3-fold cross-validation on ASD and NT cohorts
for VIQ and FIQ prediction. Based on empirical observations, we trained our
proposed method for 300 epochs with a weight decay at 0.0005 and a learning
rate of 0.001. The dropout rate was set to 0.2. For the meta-training, we used one
gradient update with K=5 shots with a step size γ = 10−7 and employed Adam
optimizer as meta-optimizer [26]. For all methods, we state the Mean Absolute
Error (MAE) and the Root Mean Squared Error (RMSE).

Evaluation and Comparison Method. To benchmark our method, we chose
the first and unique deep learning method proposed in the literature that uses
1 http://preprocessed-connectomes-project.org/abide/.

http://preprocessed-connectomes-project.org/abide/
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Fig. 2. Cognitive scores prediction results using different evaluation metrics on the NT
and ASD cohorts.

GNN to predict cognitive scores [7] without the proposed sample selection step.
The results for the ASD and NT cohorts for FIQ and VIQ are shown in Fig. 2.
These results present the average of more than 40 random repetitions of our
3-fold cross-validation.

Compared to the NT cohort, the ASD cohort achieved the worst results across
all methods. The difficulty of predicting behavioral scores in the ASD cohort may
be explained by the high inter-subject heterogeneity [27]. A general improvement
by our Meta-RegGNN is noticed in all learning tasks. Our method dealt with
the correlation of functional brain connectomes and combined the prior knowl-
edge with automatically learned similarity. Therefore, a high improvement in the
ASD cohort is recorded that can be explained by the generalizability improve-
ment. Even with the repeated randomized runs, our Meta-RegGNN displayed
the lowest prediction error across both cohorts and metrics, which indicates the
stability of our model under data distribution shifts. The best results in terms
of MAE and RMSE are noted in the NT cohort which may be explained by the
similarity between neurotypical brains.

Compared with previous studies on predicting behavioral scores, our model
achieved a good trade-off between flexibility and performance requiring fewer
samples for training. Moreover, it can deal with test samples that are different
from those of the training samples (brains diagnosed with Alzheimer’s Disease for
example). Despite its multiple advantages, this prime work needs to be further
validated on other datasets and different brain connectivity classes.

4 Conclusion

In this paper, we proposed the first GNN for regression through meta-learning
namely Meta-RegGNN, for behavioral score prediction from brain connectomes.
Our network nicely provides an efficient solution which handles the topologi-
cal properties of functional brain connectomes. Furthermore, it ensures model
flexibility and enables inductive learning, thereby enhancing the model generaliz-
ability to unseen data. Our key contributions consist in designing a graph neural
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network for regression that predicts behavioral scores and training our GNN via
model agnostic meta-learning. Our proposed method outperforms state-of-the-
art methods in terms of prediction results. In our future work, we will investigate
the explainability aspect of our Meta-RegGNN in order to identify connectivity
biomarkers distinguishing between typical and atypical brain states.
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