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Abstract. A medical imaging network that was trained on a particular
source domain usually suffers significant performance degradation when
transferred to a different target domain. This is known as the domain-
shift problem. In this study, we propose a general method for transfer
knowledge from a source site with labeled data to a target site where
only unlabeled data is available. We leverage the variability that is often
present within each site, the intra-site variability, and propose an unsu-
pervised site adaptation method that jointly aligns the intra-site data
variability in the source and target sites while training the network on
the labeled source site data. We applied our method to several medical
MRI image segmentation tasks and show that it consistently outperforms
state-of-the-art methods.

Keywords: Unsupervised domain adaptation + UDA - Intra-site
variability -+ MRI segmentation

1 Introduction

Neural networks have been successfully applied to medical image analysis. Unfor-
tunately, a model that is trained to achieve high performance on a certain
dataset, often drops in performance when tested on medical images from different
acquisition protocols or different clinical sites. This model robustness problem,
known as domain shift, especially occurs in Magnetic Resonance Imaging (MRI)
since different scanning protocols result in significant variations in slice thick-
ness and overall image intensities. Site adaptation improves model generalization
capabilities in the target site by mitigating the domain shift between the sites.
Unsupervised Domain Adaptation (UDA) assumes the availability of data from
the new site but without manual annotations. The goal of UDA is to train a
network using both the labeled source site data and the unlabeled target site
data to make accurate predictions about the target site data. In this study we
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concentrate on segmentation tasks (see an updated review on UDA for segmen-
tation in [6]). Another setup is supervised domain adaptation where we also have
labeled data from the target site (see e.g. [10]).

Recent UDA methods include feature alignment adversarial networks that
are based on learning domain-invariant features using a domain discriminator
which is co-trained with the network [23,26,28]. Image alignment adversarial
networks (e.g. [4,5,8]) translate the appearance from one domain to another
using multiple discriminators and a pixel-wise cycle consistency loss. Seg-JDOT
[1] solves a site adaptation scenario using optimal transport theory by presenting
a domain shift minimization in the feature space. Li et al. Another approach is
transferring the trained model to a new domain by modulating the statistics
in the Batch-Normalization layer [13,16]. Some methods such as [2,12] suggest
test-time adaptation methods.

Intra-site variability can result from multiple reasons in the medical space,
including slice variability across an imaged organ, varying scanning protocols
and differences in the patient population being imaged. The intra-variability
of the data collected from the source and targets site is often based on simi-
lar factors. Importantly, this can be exploited in the site adaptation process.
Recent studies on UDA for classification have used intra-site variability induced
by different classes to divide the feature space into different subsets. [7,9,20,27].
Pseudo labels, which are produced for samples in the target domain, are used
for domain alignment. These methods cannot be applied to segmentation tasks,
as mentioned in [1], since the number of possible segmentation maps is exponen-
tially larger than the number of classes in a classification task.

This gap has motivated us to look for a different approach for solving the
domain shift problem for segmentation tasks. We present a domain adaptation
approach that tackles the inter-domain shift by aligning the intra-variability of
the source and target sites. Our approach consistently out-performs the state-of-
the-art site adaptation methods on several publicly available medical images seg-
mentation tasks. The code to reproduce our experiments is available at https://
github.com/yishayahu/AIVA.git.

2 Site Adaptation Based on Intra-site Variability
Alignment

We present an unsupervised site adaptation method that explicitly takes the
intra-site variability into account. We concentrate on MRI image segmentation
task. In this scenario, we are given a U-net network that was trained on the
source site. We jointly align the feature space of the target site to the source
site, so as when optimizing the model on the source site, we obtain a model that
performs well on the target site as well. More specifically, our method minimizes
the domain shift between the source and the target by aligning the intra-site
variability of the target site with the intra-site variability of the source site.
The intra-site variability is modeled by separately clustering the source and the
target sites in a suitable embedded space. The centers of the clusters of the
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Fig. 1. A scheme of the fine-tuning loss assembly of the AIVA site adaptation method.

two sites are then matched, and each target cluster is pushed in towards its
corresponding source cluster. In parallel, the segmentation loss is minimized on
the source labeled data to maintain accurate semantic segmentation masks for
the source site. Aligning the structure of the target site with the source site
while maintaining good results on the source site, yields a good segmentation
performance on the target site. In what follows, we provide a detailed description
of each step of the proposed site adaptation algorithm.

Intra-site Variability Modeling. The intra-site variability is modeled by clus-
tering the images of each site in a suitable embedded space. We compute an image
embedding by considering the segmentation U-net bottleneck layer with its spa-
tial dimensions and its convolutional filter dimension. We denote this image
representation as the BottleNeck Space (BNS). Next, we apply the k-means
algorithm to cluster the source site images in the BNS into k centers and in a
similar manner we cluster the target site images into k centers. It is well known
that applying k-means clustering to high-dimensional data does not work well
because of the curse of dimensionality. Hence, in practice the actual clustering of
the image representations is computed in a 2D embedding obtained by the PCA
algorithm [11] followed by the t-SNE algorithm [19] that are applied jointly to
the BNS representations of the source and target data points. We denote the 2D
k clustering centers of the source site by {uf}%_,, and the 2D target site centers
by {uiHiy-

Clustering Matching. In this step, we align the intra-site variability structure
of the target site to the source site by matching the two clusterings. We look for
the optimal matching between the k source centers puf,..., u; and the k target

centers pf, ..., puk:
k

T= argmgnz i = 13y I (1)
i=1
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where 7 goes over all the k! permutations. The Kuhn-Munkers matching algo-
rithm, also known as the Hungarian method [14,21] is an algorithm that can
efficiently solve the minimization problem (1) in time complexity O(k3). The
clustering of the source and target images and the matching between the clus-
terings’ centers are done once every epoch and are kept fixed throughout all the
mini-batches of the epoch. This implies that the t-SNE procedure, the clustering
and the matching algorithms do not need to be differentiable with respect to the
model parameters since this process is separate from the backwards calculation
of gradients and their impact on the total training running time is negligible
(less than 2% addition to training time). Note that we can view the source (and
target) site centers as the modes of a multi-modal distribution of the source (and
target) data. Aligning the centers thus corresponds to aligning the source and
target multi-modal distributions.

Alignment Loss. The assignment (1) found above is used to align the two
sites by encouraging each target cluster center to be closer to the corresponding
source center. Since in practice we work in mini-batches, we encourage the BNS
representation of the average of target images in the current minibatch which
were assigned to the same cluster, to be closer to the center of the corresponding
source cluster. We define the following loss function in the BNS space:

k
Lalignment = Z ”'ff - V;(i) ||2 (2)
=1

such that z! is the average of all the target-site points in the minibatch that
were assigned by the clustering procedure to the ¢-th cluster. The vector v} is
the average of all source points that were assigned to the i-th cluster (pf is the
average of the same set in the t-SNE embedded space). The domain shift between
the source and target sites is thus minimized by aligning the data structure
of the target site with the data structure of the source site. Note that in the
alignment loss (2), while the source centers are kept fixed during an epoch, the
target samples are obtained as a function of the model parameters, and the loss
gradients with respect to the parameters are back propagated through them.

In addition to the alignment loss, we use a standard segmentation cross-
entropy loss which is computed at the final output layer for the source samples
and is designed to avoid degradation of the segmentation performances. Indi-
rectly, it improves the segmentation of the target site data. The overall loss
function is thus:

L= Lsegmentation + )\Lalignment- (3)

The regularization coefficient A is a hyper-parameter that is usually tuned using
cross-validation. Since there are no labels from the current target site, we can-
not tune A on a validation set. Instead, we use the following unsupervised tuning
procedure: we average the values of Lajignment in the first minibatches and define
lambda as the reciprocal of the average. This makes the scaled alignment score
close to 1 and makes it the same scale as our segmentation loss. The network is
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Algorithm 1. The AIVA site adaptation algorithm
input: Source labeled images, target unlabeled images and a U-net that was trained
on the source site.
for each epoch do
Compute the BNS representation of all the source and the target samples.
Cluster each site in a joint t-SNE embedding into k centers {pf}r_q, {uf}5 ;.
Find the optimal matching 7 between the source and the target centers:

k
~ . s 2
= argmin Y — o
i=1
for each mini-batch do '
For each cluster 4, let ¢ be the average of the target-site points (in the BNS
domain) in the minibatch that were assigned to cluster i.
Compute Lalignment = Zle ||a"sf — ug(i) ||2 where v} is the average of all
source-site points (in the BNS domain) that were assigned cluster 3.
Apply a gradient descent step to the loss: L = Leegmentation + ALalignment-
output: A model adapted to the target site.

pretrained on the source site, and then is adapted to the target site by minimiz-
ing the loss function (3). We dub the proposed method Adaptation by Intra-site
Variability Alignment (AIVA). A scheme of the loss function of the ATVA algo-
rithm is shown in Fig. 1. The AIVA algorithm is summarized in Algorithm Box 1.

3 Experiments

We evaluated the performance of our method and compared it with other unsu-
pervised domain adaptation methods on two different medical image datasets
for segmentation tasks. Our experiments were conducted on the following unsu-
pervised domain adaptation setup: we have labeled data from a source site and
unlabeled data from the target site and we are given a network that was trained
on the source site data.

We chose a representative baseline from each of the three most dominant
approaches today that deal with UDA (image statistics, domain shift minimiza-
tion in feature space and feature alignment adversarial networks).

— AdaBN': recalculating the statistics of the batch normalization layers on the
target site [16].

— Seg-JDOT: aligning the distributions of the source and the target sites using
an optimal transport algorithm [1].

— AdaptSegNet: aligning feature space using adversarial learning [26].

We also directly trained a network on the target site using the labels of the
training data of the target site, thereby setting an upper bound for UDA methods.
In addition, we show the results on the pretrained model without any adaptation
to set a lower bound.

MRI Skull Stripping: The publicly available dataset CC359 [25] consists of
359 MR images of heads where the task consists of skull stripping. The dataset
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Table 1. Segmentation surface-Dice results on the brain MRI dataset CC359 [25].

Target site Target site | Source site | Unsupervised adaptation

model model AdaBN | Seg-JDOT | AdaptSegNet | ATVA
Siemens, 1.5T | 80.13 58.44 62.20 |64.27 63.41 67.43
Siemens, 3T | 80.19 59.65 58.82 |61.83 57.57 66.31
GE, 1.5T 81.58 38.96 58.04 | 50.06 57.71 59.95
GE, 3T 84.16 56.27 54.23 | 59.82 55.94 65.04
Philips, 1.5T | 84.00 56.38 73.01 |69.59 68.22 75.68
Philips, 3T 82.19 41.93 51.18 |50.30 50.51 54.34
Average 82.04 51.94 59.58 |59.31 58.89 64.79

was collected from six sites which exhibit domain shift resulting in a severe score
deterioration [24]. For preprocessing we interpolated to 1 x 1 x 1mm voxel
spacing and scaled the intensities to a range of 0 to 1. To evaluate the different
approaches, we used the surface Dice score [22] at a tolerance of 1 mm. While
preserving consistency with the methodology in [24], we also found that surface
Dice score to be a more suitable metric for the brain segmentation task than the
standard Dice Score (similar to [29]). We used a U-net network that processes
each 2D image slice separately. All the models were pretrained on a single source
data for 5K steps starting with a learning rate of 10~2 that polynomially decays
with an exponential power of 0.9 and a batch size 16. All compared models were
finetuned using 6.5K steps. For AIVA we used 12 clusters. We ensured that all
the models reached the loss plateau. Each target site was split into a training
set and a test set. Since the assumption here was that we only has unlabeled
images from the target site we chose the checkpoint using the performance on
the source test set. We used 25 pairs of source and target sites and averaged
the results of each target site. The remaining five pairs were used to examine
the robustness of the method to different amount of clusters. The surface-Dice
results are shown at Table 1. It highlights the significant deterioration between
the supervised and the no-adaptation. Furthermore, we observe that our model
consistently outperformed the baselines for each new site.

We visualize the alignment process in the AVIA algorithm. Intuitively we
expect the intra-variability to be represented by the different clusters and the
matching to align them across the source and the target. This is demonstrated in
Fig. 2 (clusters 1-4) by examples from each cluster. Figure 3 shows the clustering
of the source and target slices and the matching between the clusters. The two
clusterings are similar, but not perfectly aligned due to the domain shift. Figure 4
shows that after the adaptation process the two sites are better aligned as a result
of minimization of the alignment loss. Finally, Fig. 5 shows the sDice score as a
function of the number of clusters (averaged over 5 source-target pairs). We can
see that AIVA is robust to the amount of clusters when it is at least 9.
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Fig. 2. Matching clusters images examples from source (top) and target (bottom) from
CC359 brain dataset (1-4) and the prostate dataset (5-7).
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Fig. 3. Clustering of the slice samples of source (a) and target (b), at the beginning of
the fine-tuning phase, in 2D space. Matched clusters - same color.

Prostate MRI Segmentation: To show the robustness of our method we eval-
uated it on a multi-source single-target setup as well. We used a publicly avail-
able multi-site dataset for prostate MRI segmentation which contains prostate
T2-weighted MRI data (with segmentation masks) collected from different data
sources with a distribution shift. Details of data and imaging protocols from the
six different sites appear in [18]. Samples of sites A and B were taken from the
NCI-ISBI13 dataset [3], samples of site C were from the I2CVB dataset [15], and
samples of sites D, E and F were from the PROMISE12 dataset [17].

For pre-processing, we normalized each sample to have a zero mean and a
unit variance in intensity value before inputting to the network. For each target
site we used the other five sites as the source. The results were calculated on
six possible targets. To evaluate different approaches, we used the Dice Score.
We used the same network architecture and learning rate as in the experiment
described above. We pretrained the network for 3.5K steps and finetuned the
model for every method for another 3.5K steps. We ensured that all the models
reached the loss plateau. Each site was split into a training set and a test set.
We chose the checkpoint to evaluate using the source test set. We showed in
the previous experiment that the AIVA algorithm is robust to the number of
clusters. We fixed the number of clusters here to twelve as before.
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Fig. 5. The AIVA sDice-score as a
function of the of number of clus-
ters.

Fig. 4. Clusters’ centers of the source (circles)
and the target (triangles) in the 2D space before
(left) and after (right) the adaptation phase.

Results. Figure2 (5-7) shows the matching clusters in the training process:
whereas in the Brain data the clusters focused on morphological variations, here
we see a focus on the image contrast variability. In Table 2 we present compar-
ative performances for each target site. We could not get a convergence for seg-
JDOT [1] on this dataset, probably due to lack of data. Therefore, we omitted it
from the result report. We note that AIVA yielded the overall best Dice score. In
some sites, the difference between the supervised training and the source model
is relatively small. For these cases, relatively weak results were seen for some
of the UDA methods. AIVA showed stability by consistently yielding improved
results. Examples of segmentation results are shown in Fig. 6.

Table 2. Segmentation Dice results on the prostate MRI dataset [18].

Target site | Target site | Source site | Unsupervised adaptation
model model AdaBN | AdaptSegNet | AIVA
Site A 87.48 80.63 79.03 76.63 79.94
Site B 85.62 59.84 73.32 64.45 78.50
Site C 78.86 58.84 68.08 67.64 69.67
Site D 85.30 61.78 66.99 77.39 78.88
Site E 80.55 77.72 80.48 |79.13 79.65
Site F 86.10 79.98 53.36 80.88 85.42
Average 83.98 69.80 70.21 74.35 78.67

source model

adaBN

NS

AdaptSegNet

AIVA

Fig. 6. Qualitative segmentation results from the prostate MRI dataset.
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Conclusion

To conclude, in this study we presented AIVA, a general scheme for unsuper-
vised site adaptation. The intra-site variability of the data collected from the
source and target sites is often based on similar factors. AIVA uses this observa-
tion to align the two sites. Our experiments showed that AIVA is robust to the
variations exhibited and consistently improves results over previous site adapta-
tion methods. We concentrated here on two applications. The proposed method,
however, is general and is especially suitable for segmentation tasks where we
cannot align the source and target site using the labels.
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