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Abstract. Designing embedded systems for critical applications requires meet-
ing strict safety constraints according to official standards. In current practice,
safety analysis (e.g., Failure Mode and Effects Analysis) is often only relying on
human experience and therefore lacks detailed data. Performing more detailed
analyses on complex systems is a major challenge to avoid pessimistic assump-
tions and consequently to avoid over-design of the system, i.e., adding too many
protections with respect to the system specifications and risk. Many fault injection
techniques have been previously proposed to better evaluate the robustness of cir-
cuit designs described at various abstraction levels. However, very few take into
account the global system constraints. Also, fault injection experiments become
very time-consuming for complex designs. At the highest levels of abstraction
(e.g., Transaction level), simulations are faster but suffer of the lack of realism of
high-level models. Our contribution is to propose both an increase in safety analy-
sis precision and a fault injection flow improving the analysis duration. The flow is
based on an iterative process, taking into account the global system specifications
and allowing improvements of high-level models to achieve both precision and
efficiency. Improvements are based on metrics, and results are shown on a real
airborne system.
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1 Introduction

When developing embedded systems for critical applications, Original Equipment Man-
ufacturers (OEMs) must perform FailureMode and Effects Analysis (FMEA) to demon-
strate the robustness of each component. Standards guide the development of these crit-
ical systems. Standards such as ARP5580 [1] for airborne systems and DO254 [2] for
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electronic embedded systems in aircraft recommend that robustness analysis starts early
in the design flow.

FMEAaims et analyzing the failure effects of a component on the systemand consists
in 3 steps:

- Definition of possible failures and their probability of occurrence,
- Determination of the failure effects on the functional block,
- Determination of the global effect on the whole system and computation of the
probability of occurrence of unacceptable events.

Designers must perform detailed FMEA considering:

- Single Event Upsets (SEUs), i.e., single bit-flips,
- Multiple Bit Upsets (MBUs), i.e., multiple bit-flips in the same logic word,
- Multiple Cell Upsets (MCUs), i.e., multiple bit-flips in the several logic words.

This FMEA, called SEU FMEA (even if it also relates to MBUs and MCUs) is often
based solely on engineer experience. Some solutions to assist FMEAhave been proposed
[3, 4] but these tools do not allow early estimations of the robustness of complex systems.

Evaluating the robustness of a circuit can be based on different fault models, at
different levels from functional to gate or transistor level. Low levels (transistor or gate
level), or even Register Transfer level (RTL) can be used, but are very time-consuming
to perform the robustness evaluation of complex systems. Furthermore, some errors
observed using RTL fault simulations have no real effect on the overall system because
these errors are filtered out or detected by the system. Thus, the interactions of the circuit
with other parts of the system must be taken into account. High-level modeling at the
Transaction level (Transaction Level Modeling or TLM) allows the quick simulation of
complex systems. Such high-level simulations with adequate fault modeling accelerate
fault simulations andmake possible to account for the whole system. Nevertheless, high-
level modeling requires details to be removed (such as a clock or internal signals), which
causes some realism issues.

Previous works [5, 6] have studied these issues. For example, results in [6] show that
some of the faults injected at RT-Level have no high-level equivalent and conversely,
some high-level faults have no RTL equivalent. Cross-layer methods aim to take advan-
tage of fault injections in both RTL and TLM (or e.g., Matlab models) to take into
account the whole system [7–11]

However, as far as we know, no previous study proposed a way to build relevant
high-level models of the system and of the faults. Safe-Air approach presented in [11]
is a cross-layer fault simulation approach allowing speeding up SEU FMEA on circuits
used in critical applications. This approach is composed of three steps: (1) system high-
level fault simulations, (2) block-level RTL fault simulations, and (3) evaluation of the
high-level models. It allows the high-level model realism validation but this validation
happens late in the process. In particular, no improvement of the high-level models
related to the obtained results was proposed in [11].

As proposed in [12], an iterative process can lead to both perform an early robustness
analysis and to improve the realismof the high-levelmodels using the robustness analysis
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results. The method makes use of “quick and dirty” iterations to speed up the validation
of the high-level models. Each round allows improving the high-level models that are
simulatedwith a small number of randomly injected faults. Thefirst rounds are performed
on approximate models with a small number of randomly injected faults (dirty), in order
to get a quick simulation. Then, the quality of the high-level fault simulation is evaluated
through several metrics. The main novelty of this approach relies on these “quick and
dirty” rounds with randomly injected faults and on the definition of several metrics.

Ourmain contributions, in particularwith respect to [12], is to present amore detailed
discussion with respect to the state-of-the-art, and to show a more detailed analysis of
the results with a comparison between the results obtained and data from the initial case
study.

This paper is organized as follows.More details on the state-of-the art are presented in
Sect. 2. The Safe-Air methodology is briefly reminded in Sect. 3. The proposed iterative
flow based on the “quick and dirty” evaluations is presented in 4. Section 5 presents and
discusses results applied to a case study. Section 6 concludes the paper.

2 State-of-the-Art and Discussion

2.1 Fault Injections

Formore than twenty years, an efficient technique to evaluate the robustness of electronic
circuits is fault injection. The results are used to complete FMEAs performed by human
specialists, specially to quantify the risks. There are mainly three categories of fault
injection techniques: simulation, emulation and physical injection.

When using simulation, faults derived from a given model (e.g., SEUs) are volun-
tarily introduced in some elements at different execution times. The main advantage of
simulation is the possibility to use system models designed with different abstraction
levels, from TLM (Transaction Level Modeling) down to transistor-level or even phys-
ical device descriptions. Of course, the fault models have to be adapted to each level.
Simulations at the highest levels are less precise but when coming to lower levels the
simulation times are much higher and quickly become intractable, even when using sta-
tistical fault injections [13]. The lowest levels are therefore used to characterize small
cells and the results are used to make the highest fault models more realistic.

Even simulations at RT-Level can lead to very long simulation times, thus requiring
the use of emulation (or hardware prototyping). In that case, the system is implemented
on a hardware platform where faults are injected using logic modifications during the
application execution. The advantage is to speed-up the execution for each injected
fault, compared to simulation, but at the expense of a non-negligible time to prepare the
hardware set-up. Also, such emulations cannot be performed for all description levels
of the system; in general, they are limited to RT-Level descriptions.

The third type of method that can be used is physical injection. There are mainly two
techniques used to mimic the effects of environmental disturbances: laser [14, 15], or
particle accelerators (e.g., [16]). Experiments in natural conditions (so-called life-time
experiments) are also possible, in space or on the earth e.g., onmountains or underground,
depending on the type of particle that has to be considered. Such experiments are in all
cases very costly, especially when particles are used, and a lot of effort is required
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to prepare them. Furthermore, they need of course to have the final circuit available
and any required improvement of the robustness implies a long and expensive process.
Such experiments should therefore be restricted to the final product characterization and
cannot be considered in early development phases.

Combining laser-based experiments, statistical fault injections andbeamexperiments
was also proved worthwhile in [17]. However, once again, the final circuit must be
available to complete the evaluation process.

As mentioned in the introduction, standards for critical embedded systems require
an early evaluation of the robustness. Also, reducing costs and time to market imply
having a quick identification of weak points in the system. We will therefore focus in
the sequel on approaches based on behavioral simulation, aiming at reducing the time
required to perform the fault injections while achieving an efficient early analysis of the
system-level robustness.

Within this context, many authors have made proposals. We will cite the main
approaches related to our proposal.

2.2 Simulated Fault Injections

Injection of faults during a simulation can use two types of approaches: with or with-
out modifying the system description. Most works target RTL descriptions, but similar
approaches can be used with TLM descriptions or at lower levels.

Avoiding modifications of the model requires the use of simulator commands to
modify signals or variables at a given time. It is therefore not intrusive but depends on
the simulator used. To avoid this dependency, it is possible to add control signals to
the model, that command internal injection logic. This logic can be added to internal
interconnections between blocks or gates in order to force the value of a signal; this is
called saboteur insertion. Some types of errors cannot be injected using saboteurs and the
behavioral model of the block must then be modified; this is called mutant generation.
The pioneer work in [18] proposed both simulator commands and saboteurs. An example
of mutant generation can be found in [19]. Of course, modifying the model of the system
can become very complex andmay also lead to functional errors.Wewill therefore avoid
model modifications in our methodology.

As previously mentioned simulations even at RT-Level are very expensive when the
system complexity increases. Furthermore, some errors observed at the circuit level have
no real effect on the global system due to intrinsic tolerance properties on some param-
eters, to detection/tolerance logic or to masking effects during the error propagation.
Thus, the global interactions within the system and the system specifications have to be
taken into account to avoid a too pessimistic safety evaluation [7, 20].

In order to speed-up the evaluation, TLM models can be used. However, in that
case many system characteristics are not yet defined (e.g., communication protocols or
timing). Consequently, results are less accurate. This paper will show how it is possible
to achieve both accelerated simulations and accuracy.
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2.3 Limitations of High-Level Fault Models

Since most of the registers in the system are not yet defined, injecting faults in a TLM
description is generally done using specific high-level fault models rather than for exam-
ple SEU/MBU/MCU. Of course, saboteurs can be used but since the description is quite
far from the following RTL model the results obtained are in general not very useful.

High-level modeling removes for example clocks or detailed data types, so some
RTL faults have no high-level equivalent as shown in the case study presented in [21],
based on a TLM SoC model written in SystemC.

Other works have studied this problem of fault model realism at high-level.
In [22], gate-level fault injections are used to define a realistic high-level fault library.

The library is obtained from the circuit without safety mechanisms and used to perform
high-level simulations after adding such mechanisms. Such an approach has several
limitations. First the RTL description (and even the gate-level description) must be
available, thus the high-level fault models are obtained very late in the design process.
Then, gate-level simulations are very slow. Finally, the system specifications are not
taken into account.

In [5], RTL and TLM faults are compared using a formal approach. More precisely,
the TLM faults equivalent to an RTL fault are extracted. The study shows again that
some RTL faults have no high-level representation, but also that a single RTL fault can
have several equivalences at high-level.

In conclusion, there is no TLM fault model allowing a complete and realistic safety
evaluation with this level of description.

2.4 Cross-Layer Approaches

Since a complete evaluation is not possible on high-level models only, many authors
considered Cross-layer approaches. This can be used for example to co-simulate an
RTL description and the gate-level description of some circuit blocks, but we will focus
here on earlier evaluations.

The CLERECO project [8] aimed at performing cross-layer reliability evaluations
in order to accelerate the analysis. However, it was focused on microprocessors and
software.

Simulations are also performed at several levels in [9], to guide architecture and RTL
hardware designers of a critical embedded system. The approach allows early decision
making and avoids time-consuming design iterations. However, the problem mentioned
in the previous section is not addressed and no verification is made about the realism of
the results obtained at high-level. Also, the global system specifications are not taken
into account to decide what errors are actually critical.

In [23], faults are injected at both high-level and RT-Level in a processor. The high-
level description is used to simulate longer scenarios but there is no comparison between
the results obtained at the two levels.

These examples show that there is usually no proof of relevance of the results
obtained at high-level with respect to the results obtained at lower levels, and the scope
is sometimes limited to a part of the system, in particular microprocessors.
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2.5 Safety Analysis Tools

Tools have also been proposed to assist engineers when doing FMEA, in particular:
The AltaRica project [24] aimed at safety analyses in airborne systems. Systems

are described at very high level with states and transitions, and critical scenarios are
identified with a formal approach. This level of description is useful for the global
system validation, but no link is made with hardware implementations.

A tool was proposed in [3], to help extracting quantitative information useful for
FMEA. Here some specific parts of an RTL description are chosen and exhaustive fault
injections are performed. The RTL description must therefore be available, and the
complete system and its specifications are not taken into account.

3 Methodology Based on Cross-Layer Fault Simulation

As shown in the previous section, there are currently strong limitations to available
approaches. The goal of the work presented hereafter is to reduce some of them. First,
fault injections in high-level TLM models allow early robustness evaluations, but are
not completely realistic. The other advantage of simulations at that level is to be able
to take into account the whole system and its global specifications (no matter if it is
completely implemented as a circuit or designed with several circuits, and even other
types of components). It is however necessary, when a lower description level is made
available, to check the accuracy of the results obtained at high-level. This can be done
using a cross-layer approach, with RTL simulations made at the block level and keeping
the TLM model for the whole system, thus noticeably reducing the simulation times
compared to a full RTL simulation while being able to take into account the global
system specifications. None of the approaches and tools presented in the state of the art
has such characteristics. Our methodology allows extracting critical ranges at high-level,
then verifying the relevance of the obtained statistics, and also refining the high-level
fault models.

The cross-layer fault simulation methodology has been detailed in [25]. We give
here an overview of it to keep the paper self-contained. In the sequel of the paper, we
will insist more on the extensions of the approach that were presented in [12] and on the
comparison with a classical FMEA for one case study.

Our methodology can be divided into three steps illustrated in Fig. 1.
Step 1: We perform a fault injection on a high-level system model at each interface

signal of each block: a function corrupts the original value of signals by a fixed amplitude.
We analyze the results according to the system specification. The signal corruptions that
propagate to outputs and are not detected by any specific mechanism are analyzed to
extract critical parameter ranges on the interface signals. Critical parameter ranges are
converted into assertions to observe the behavior of these signals: if the assertion is not
verified, the value of the signal is not in the range that can be tolerated and leads to a
critical behavior of the whole system. This step allows detecting critical blocks.

Step 2: We statistically inject faults [13] in each RTL block leading to critical behav-
iors at the system level. Statistical fault injections are based on computing the number of
faults required to achieve robustness evaluation with a predefined accuracy. The number
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Fig. 1. The three steps in our cross-layer methodology.

of faults depends on three parameters: the number of possible faults (i.e., number of
targets multiplied by the number of execution cycles), the margin of error, and the level
of confidence (the probability that the exact value is in the margin of error). The usually
chosen level of confidence is at least 90%. This method highly reduces the number of
faults to inject while the confidence level remains high and the error margin can be
reduced to a small percentage. Injected faults are simulated along with the assertions.
The values of the assertions allow sorting faults into two categories: critical faults (if
assertions are violated) and silent faults (if assertions are satisfied).

Step 3: It verifies the relevance of the high-level models used in step 1. Each RTL
block is co-simulated within the high-level system model, and we inject the same faults
on it as in step 2. Since the simulation is on the whole system but with a component
modeled at lower level with more precise faults to inject, this step requires much more
simulation time. Faults are sorted according to the observed behavior of the system.
For each block, we obtain a confusion matrix (see Table 1). The “Predicted” column
in this matrix corresponds to the results from steps 1 and 2. The “Co-simulation” line
corresponds to the results of step 3 and is considered as the reference behavior.

Table 1. Confusion matrix.

From this confusion matrix, we extract three metrics: the precision, the true silent
rate, and the accuracy.

The precision is the proportion of true critical behaviors:

Precision = TC / (TC+ FC) (1)
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A low precision indicates that too many faults are critical in step 2. The assertions
are too restrictive, and critical parameter ranges are too large. Since critical parameter
ranges are computed according to the fault amplitude, the low precision may be due to
the high-level fault model used in step 1 that is not accurate enough: the amplitude of
the fault should be modified.

The True Silent Rate (TSR) is the proportion of true silent behaviors:

TSR = TS / (TS+ FS) (2)

A low TSR means that assertions have not been able to detect correctly the critical
faults. Since the critical behaviors are detected during the co-simulation, but not in the
RTL simulation, it may mean that no assertion was generated to detect it. If the assertion
is not created, it means that the critical behavior was not generated in step 1. This critical
behavior is present at the RT-Level but not in the high-level model; it may be due to a
bad high-level system modeling.

The accuracy defines the proportion of true results among injected faults:

Accuracy = (TC+ TS) / (TC+ TS+ FC+ FS) (3)

This metric is a kind of trade-off between TSR and precision. It allows us to know
the weight of each of the two other metrics. If the accuracy is high, but one of the two
others is low, it indicates that the number of faults (either critical or silent) not correctly
sorted in step 2 is small according to the whole number of faults. It may not be useful to
modify the fault model (low precision) or the high-level model (low TSR).

4 Quick and Dirty Flow

The “quick and dirty” flow aims at highly speeding up the validation of high-levelmodels
and the overall evaluation of the system robustness. It is based on successive “quick and
dirty” evaluations of the cross-layer fault simulation. It allows obtaining early evaluations
of:

• the blocks leading to critical behaviors (step 1),
• the approximate probability of critical SEU (step 2),
• the realism of the high-level system model (step 3),
• the realism of the high-level fault model (step 3).

The flow is illustrated in Fig. 2. According to the design, we empirically define a
threshold on metrics that indicates confidence in the high-level models. This threshold
constrains the accuracy; we recommend at least 90%. Below, the quality of the high-
level system model may not be sufficient. The next rounds depend on the value of the
threshold:

• If the threshold is achieved, we perform a final statistical fault injection (arrow from
the metric computations to step 2) with a very high confidence level and a low margin
of errors to get an accurate evaluation of the probability of critical events. This last
round may be very long but it is performed only once.
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• If the threshold is not reached, the designer manually improves the high-level models.
If the precision is low, he/she modifies the fault model. If the TSR is low, he/she ana-
lyzes the location of false silent faults to understand the origin of themodel inaccuracy
and to correct the system model. Then, a new round is performed (arrow from the
metric computations to high-level models).

thres

thres

Metrics

Probability 
of critical 
SEUs

Simulation
constraintsStep 1

Step 3

Step 2

High Level 
models

Fig. 2. Quick and dirty flow.

For each round, we define a maximum simulation time. This maximum time impacts
the number of faults that can be injected in each block and therefore the couple (confi-
dence level, margin of errors) that can be chosen. We evaluate the RTL simulation time
of all blocks (simulation time of each block multiplied by the number of injected faults)
for three confidence levels usually used in statistical fault injections (90%, 95%, and
99.8%) and several values of the margin of error. We then select a couple (confidence
level, margin of error) that is below the maximum simulation time but still presents a
correct robustness evaluation accuracy. During the first rounds, as the high-level model
realism is not known, it is useless to obtain a very accurate robustness evaluation. Unac-
curate (or dirty) evaluations allow us to quickly validate or improve high-level models.
The simulation time per round can be progressively increased with the progress of the
model quality.

5 Analysis Results on a Case Study

In this section, we apply the quick and dirty flow on a system converting the frequency
of the oscillations of a sensor into a digital value. This design is used in aeronautic. For
confidentiality reasons and without loss of generality, all names have been concealed,
and all values normalized. The fault model used during the simulations is the SEU fault
model (single bit-flips).
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5.1 Case Study: System Description

We study an embedded system SYS_X that measures a physical value X, which is sent to
the main airplane ECU (Electronic Control Unit). From other collected information, the
ECU deduces the flight information. The system inputs the oscillations of a sensor which
depend on the physical valueX and converts the oscillation frequency into a digital value.
Since SensorX is sensitive to temperature, a second sensor SensorT is used to capture
the temperature, also generating oscillations. The architecture of the whole system is
presented in Fig. 3. It contains a FPGA, a microcontroller, and a memory. Dividers and
counters are used to obtain the digital values and are implemented in the FPGA. The
microcontroller periodically reads the number of cycles counted during themeasurement
windowof 100ms (an interrupt occurswhen newvalues arewritten in the output registers
of CounterX and CounterT). The value of X is then computed based on a sensor table
(series of points containing the values X corresponding to a given couple of periods of
SensorT and SensorX) characterizing each type of sensorX. An interpolation method
is used by the microcontroller to calculate an accurate value of X. The microcontroller
then transmits the calculated value and some maintenance information (error detection
mechanism outputs) to the FPGA in charge of the communication. The communication
block then formats the frame in order to transmit the data to the ECU.

MemoryMicrocontrollerSensorX

Communication

DIVC

SYNC

DIVBDIVA CounterX
Nx

F(T)

F(X)

Fref
FPGA

CounterT
SensorTT

X

Nt
N2

Xcomputed

N1

Fig. 3. Architecture of the system used for the case study.

Table 2. System specifications.

Property Specification

Data flow rate 100 ms ± 3.3 ms

Time to alarm 300 ms ± 3.3 ms

Accuracy ±0.8 U (confidential unit)

Transmission period <100 ms

Computation period <100 ms

Transport delay 300 ms ± 3.3 ms

The system specifications are summarized in Table 2. “Data Flow Rate” is the time
between two value transmissions. The “Time toAlarm” property corresponds to themin-
imum error duration before notifying the error during data measurement. The “Trans-
mission Period” is the time spent by the communication block to transmit the data.
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“Computation Period” is the maximum time spent by the microcontroller to compute
the final value and to transmit it to the communication block when an interrupt occurs.
“Transport Delay” is the time between the beginning of a measure window and the data
transmission by the communication block to the ECU. Several error detection mecha-
nisms are also implemented in the system: counters overflow, detectors of periods out
of the sensor table, detection of X value out of the possible range, etc. These system
specifications are taken into account in our approach to classify an error as critical or
not. As an example, the exact computation time of the controller is not critical; what is
critical is to be under the maximum time allowed by the system. Also, a detected error
is managed by the ECU or other redundant elements in the airplane and is therefore not
critical.

5.2 Case Study: Initial FMEA

The usual FMEAprocess,managedmainly thanks to experienced engineers, is illustrated
in Fig. 4. The global analysis involves several steps.

The first step is performed considering the architecture description (equivalent to our
use of a high-level model, but in current practice it is most often a written description).
At that step, a functional FMEA is performed in compliance with the ARP5580 standard
(since it is an airborne system). This step early identifies the level of criticality of the
different parts in the system. It only takes into account a subset of potential faults and
all those are not necessarily realistic.

The second step goes into more details with respect to the implementation. It evalu-
ates the probability of critical errors if a perturbation occurs in one block, especially in
one block identified as critical during the first step. One part of this second step is focused
on permanent failure of the block (or component) and is very global because this type of
event is less frequent than the others, especially with the regular maintenance processes.
The second part is focused on transient disturbances and in particular atmospheric par-
ticle effects for airborne systems. These events have a much higher probability than
permanent failures. This is the SEU FMEA mentioned in introduction.

Fig. 4. Classical FMEA process.
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Knowing the conditions in which the system will be used (e.g., flight altitude), a
particle flux can be characterized and used to evaluate the flux per block (or component)
with respect to the area of each block and to the sensitivity of the component in which
it is implemented (depending on the technology). Taking into account the probability of
critical errors if a SEU (or MBU/MCU) occurs in this block, it is possible to compute
the probability of critical failures and, summing this over all the blocks, it is possible to
derive the Mean Time Between Failures (MTBF) for the system.

Since the analysis is empirically managed by humans, any doubt about a potential
SEU effect leads to the decision that it is critical in order to be conservative and the
repartition between the types of failure modes is very rough. The result is often a pes-
simistic calculation of the MTBF, leading potentially to over-protect the system with
consequences on cost and time-to-market. In addition, the analysis is only performed
at the level of macro-components and with few failure modes, as illustrated in Table 3.
This indicates the most critical components and the main failure modes but cannot give
precisions on the criticality of each individual function in the architecture. In this case,
the probability of faults per hour due to the particle flux is higher for the FPGA than for
the microcontroller and the probability of each major failure mode is just estimated at
50%.

Table 3. Initial SEU FMEA for the case study.

Block Particle flux
per component (per hour)

Failure mode Ratio

Microcontroller 0.03E−07 Erroneous X value 50%

Reset 50%

FPGA 0.15E−07 Erroneous X value 50%

No transmission 50%

For this system, taking into account before the actual implementation that about 25%
of the logic resources should be used in the FPGA, and that all SEUs in these resources
lead to a critical event, the critical error probability was evaluated around 1E-7 faults
per flight hour for the functions in the FPGA.

5.3 Quick and Dirty Flow: First Round

We have modeled the whole system in SystemC at the transaction level approximately
timed according to the architecture given in Fig. 3. Each block is implemented by a pro-
cess. The interface signals between blocks are implemented with sc_fifo communication
channels. When a new input is available on a communication channel, the process is
notified. The input oscillations are directly modeled by the value of their frequency, i.e.
an integer value.

Simulations allow identifying the level of disturbances that may be tolerated on the
interface signals. This is illustrated in Table 4 for CounterX. Some signal corruptions can
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be tolerated thanks to the system specifications, but some others lead to characteristics
out of range due to either amplitude or injection time. We can see for example that
disturbances have no effect at 150 ms, but have a strong effect if at 100 ms or 200 ms,
especially if the value is modified in the range −2% to +10% because in that case they
are not detected by the available mechanisms. This leads to assertions, such as for this
case:

Assert always window - > (Nx < Nx_gold * 0.98) or (Nx > Nx_gold * 1.1).
or (Nx = Nx_gold) report « ERR_ASSERTION»;

Table 4. Analysis at high-level of disturbances effects onCounterX (C in redmeans unacceptable,
D in orange means detected, in green it is either silent or tolerable for the system).

0 ms 50 ms 100 ms 150 ms 200ms 

-50% - - D - D

-40% - - D - D

-30% - - D - D

-20% - - D - D

-10% - - D - D

-5% - - D - D

-4% - - D - D

-3% - - D - D 

-2% - - C - C

-1% - - C - C

0%

1% - - C - C

2% - - C - C

3% - - C - C

4% - - C - C

5% - - C - C

10% - - C - C

20% - - D - D

30% - - D - D

40% - - D - D 
50% - - D - D

The first step of the cross-layer fault simulation leads to generate 8 assertions that
are used in Step 2 to sort the behaviors. Those assertions monitor the signals on the
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communication interfaces. In blocks DIVA, DIVB, and SYNC, no fault leads to a critical
behavior, so no assertion is generated for these blocks. Only blocks DIVC, CounterX,
and CounterY lead to critical behaviors with respect to the system specifications.

To follow the quick and dirty flow,we chose a confidence level (c) greater than 90%, a
margin of error (e) less than 10%, and a simulation time less than 3 h. In the third column
of Table 5, we have the simulation time of each RTL block that allows us to compute the
simulation time for a given number of injected faults. Figure 5 represents this simulation
time according to the margin of error for different confidence levels. Three couples (c,e)
are compliant with our constraints: either (90%, 4%), (95%, 5%) or (99.8%, 9%). Since
a typical value for the confidence level is 95%, we choose the couple (95%, 5%). In
Table 5 all the values are computed according to this couple. Columns 4 and 5 give the
number of injected faults, then the corresponding simulation time. Columns 6 and 7 give
the number of critical faults and the number of silent faults.

Table 5. RTL fault injection during the first round of the quick and dirty evaluation, for c= 95%
and e = 5%.

Block Number of
possible
faults

RTL
simulation
time per
fault (s)

Number of
faults to
inject

Simulation
time (min)

Number of
critical
faults

Number of
silent faults

DIVA 2,500 1.1 333 6.1 0 333
(100%)

DIVB 1,500 1.1 305 5.6 0 305
(100%)

DIVC 18,750 1.1 376 6.9 37
(10.0%)

334
(90.0%)

SYNC 2,500 1.1 333 6.1 0 333
(100%)

CounterX 30E6 2 384 12.8 182
(47.5%)

202
(52.5%)

CounterT 150E6 21 384 134.4 157
(40.9%)

227
(59.1%)

The fault simulations of all RTL blocks may take 171 min. Since DIVA, DIVB, and
SYNCwere not considered critical at Step 1, all the faults are silent (there is no assertion)
and the number of critical errors will be null. For this second step, it was therefore not
useful to simulate them. For the other blocks, results show that some are more vulnerable
than the others: in CounterX and CounterT, quite half of the faults lead to a critical error.

For the three blocks considered as critical at Step 1 and forwhich assertions have been
generated, Table 6 illustrates the interest of taking the system-level specifications into
account. In a classical fault injection process, all “tolerable faults”would be considered as
critical, significantly reducing theMTBFand increasing the fault tolerance requirements.
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Fig. 5. RTL simulation time according to the margin of error.

Table 6. Classification of injected faults at RTL taking into account assertions with respect to
system-level specifications (“tolerable faults”), for c = 95% and e = 5%.

Block Number of critical faults Number of
tolerable faults

Number of silent faults

DIVC 37
(10%)

79
(21.0%)

260
(69.0%)

CounterX 182
(47.5%)

165
(42.9%)

37
(9.6%)

CounterT 157
(40.9%)

35
(9.1%)

192
(50%)

The co-simulation (Step 3) takes 278 min. The same faults as in Step 2 are injected,
and in this step randomly chosen bit flips are also injected in DIVA, DIVB, and SYNC.
We extract for each block the precision, the accuracy, and the True Silent Rate. The
first column of Table 7 gives the name of the blocks. Simulation times for each block
are displayed in the second column (co-simulation time). In the three last columns, the
different metrics are reported, indicating the quality of the high-level models. Let us
recall that we fix a threshold for the accuracy at 90%. The precision for blocks DIVA,
DIVB, and SYNC is not applicable since they were classified as not critical at step 1.
For these blocks, few fault injections led to errors and all of those were tolerated with
respect to the system specifications. Block DIVC presents a good accuracy, a perfect
TSR, but a very low precision (many critical faults identified in Step 2 turn out to be not
critical in Step 3). Since the accuracy threshold is achieved, the low precision rate is not
relevant. We do not need to change the high-level fault model.

The accuracy of block CounterX is below the threshold. The two other metrics are
relevant. The TSR is very low: quite half the critical errors in Step 3 have not been
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correctly identified at Step 1. We must refine the high-level model to be closer to reality.
We will not dwell on CounterT that is a different instantiation of CounterX.

Table 7. Results of the quick and dirty analysis at Step 3, 1st round.

Block Co-simulation time (min) Accuracy Precision True silent rate

DIVA 61 100% N.A 100%

DIVB 45.75 100% N.A 100%

DIVC 9.4 92% 2.8% 100%

SYNC 6.1 100% N.A 100%

CounterX 96 71.6% 96.5% 55%

CounterT 70.4 78.1% 92.4% 69.8%

5.4 Quick and Dirty Flow: Next Rounds

CounterX (see Fig. 6) is a block that counts the number of impulsions on signals Fref
and F(X) between two impulsions of signal F(D).

F(X)

Fref
F(D)

IT

Nx

N1
CounterX

Fig. 6. CounterX RTL model.

Without loss of generality, we will focus only on signal F(X). Signal IT indicates
that a fresh value on Nx is available and it interrupts the microcontroller. The behavior
of CounterX is illustrated in Fig. 7. Between the two impulsions of F(D), there are 3
impulsions of F(X). On the last impulsion of F(D), signal Nx takes value 3, and signal
IT is enabled.

F(D)
F(X)

Nx ... ... 3
IT

Fig. 7. CounterX behavior.

In the high-level system model, signals F(X) and F(D) were integers and not impul-
sions. Output Nx was the result of the division of F(X) by F(D). Since Nx is modeled
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with sc_fifo communication channels that notify the microcontroller when new data is
available, signal IT is not modeled.

To improve the quality of the high-level CounterX model, we accurately analyzed
the injection results of Step 3. Figure 8 shows the distribution of false silent faults per
register. We see that less than 10 registers are sensitive to false silent faults. All these
registers are used to compute signal IT.
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Fig. 8. False silent fault distribution per register.

At the system level, the faults we injected modified the amplitude of the values of
Nx but did not modify the instant when they were available. Figure 9 illustrates this
behavior: processes CounterX and uC are intrinsically synchronized through the sc_fifo
communication channel. At the RT-Level, injected faults modify signal IT so no fresh
data may be sent to the microcontroller. It is illustrated in Fig. 10: at T0, signal IT is
correct and the microcontroller reads a value Nx1, but at time T1, signal IT is corrupted,
CounterX has not finished its computation, and the microcontroller reads value Nx1
again.

Write Nx1                                  Write Nx2                                              

Read Nx1                                Read Nx2                                              

CounterX Process CounterX Process CounterX

uC Process uC Wait (Nx, N1) Process uC Wait (Nx, N1)

T0 T1

Fig. 9. CounterX TLM model synchronization with the microcontroller.

To avoid this problem, we changed the high-level model: an interruption signal was
explicitly described. The second round of the quick and dirty method is then performed.
At the end of this round, we get the metrics displayed in Table 8. We observe that in step
2, more faults are critical (column 2), both in CounterX and in CounterT. It means that
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Read Nx1  Read Nx1

IT

Nx Nx1 Nx2

uC Process uC Wait (Nx) Process uC Wait (Nx)

C
ou

nt
er

X
uC

T0 T1

Fig. 10. CounterX RTL model with fault injection propagating on IT signal.

these blocks are more critical than initially assumed. TSR and accuracy are considerably
improved. The threshold on the accuracy is reached, we are confident on the high-level
model, and we can stop the quick and dirty rounds.

Table 8. Results of the quick and dirty analysis at Step 3, 2nd round, for c = 95% and e = 5%.

Block Critical (step 2) Accuracy Precision True silent rate

CounterX 73.4% 94.4% 93.7% 95.4%

CounterT 56.5% 95.4% 95.3% 95.3%

Table 9. Results of the quick and dirty analysis at 3rd round for c = 99.8% and e = 2%.

Block Critical
(1st round)

Critical (3rd round) Silent
(1st round)

Silent
(3rd round)

DIVA 0% 0% 100% 100%

DIVB 0% 0% 100% 100%

DIVC 10.2% 10.2% 89.8% 89.8%

SYNC 0% 0% 100% 100%

CounterX 47.5% 73.4% 52.5% 26.6%

CounterT 40.7% 70.2% 59.3% 29.8%

The final step is to improve the accuracy of the robustness evaluation in Step 2. We
increase the confidence level and decrease the margin of error.With a confidence level of
99.8% and a margin of error of 1%, we inject 23,855 faults in CounterX for a simulation
time of 14 h. The percentage of critical faults is 73.8% (very close to the percentage
obtained after the second round). More complete results are shown in Table 9, with a
global simulation time of 41 h.
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5.5 Comparison Between the Proposed Flow and the Initial FMEA

The comparison with the initial FMEA stands on two aspects: the functional analysis
and the SEU analysis.

For the functional analysis, the simulations of high-level models allows getting a
quick and automatic first insight about critical blocks or components in the architecture,
more precise that what can be done by an expert from paper specifications. In addition, it
is possible to get data about the criticality range of some blocks and timings as illustrated
in Table 4.

For the SEU analysis, several strong points can be mentioned. First, with the “quick
and dirty” flow, it is possible to keep simulation times acceptable and at the same time
to refine the high-level models. Second, results can be obtained not only on components
(e.g., FPGA) but also on the different blocks implemented inside the component, as
illustrated in Table 10. This is much more precise than the type of analysis illustrated in
Table 3 and can help a designer in focusing protection techniques on the most critical
parts e.g., in that case, the counters. Also, comparing the figures in Table 10 and the
initial estimation for the FPGA component (with the same flux of neutrons but with a
conservative assumption that each SEU is a critical fault) the evaluated probability of
critical errors is clearly reduced (4.62E−8 vs. 1E−7), leading to a better MTBF and
potentially to a reduced need of additional design.

Table 10. Results after the last round assuming a particle flux of α = 7.2E−11 neutrons/bit/h.

Block Critical (3rd round) Criticality per block (f/h)

DIVA 0% 0

DIVB 0% 0

DIVC 10.2% 1.59E−9

SYNC 0% 0

CounterX 73.4% 2.28E−8

CounterT 70.2% 2.18E−8

Total 4.62E−8

6 Conclusion

This contribution presents an iterative flow to quickly and accurately evaluate both cir-
cuit robustness with a cross-layer methodology and improving the realism of high-level
models. This approach complies with aeronautics standards that recommend perform-
ing robustness analysis at different modeling levels and early in the design flow, from
functional level models when possible. The method is based on iterative statistical fault
injections that allow during first rounds quick fault simulations with an adapted level
of confidence and improvement of the high-level models. When the high-level models



132 J. Roux et al.

are accurate enough, RTL fault simulations of each block with a high number of faults
are performed. These RTL fault simulations determine if the faults are critical using
the critical parameter ranges given by system high-level fault simulations. The proposed
flow allows evaluating quickly and accurately the robustness of each block. It also allows
identifying the most critical SEUs and then proposing fair cost countermeasures. This
method has been applied to a critical airborne embedded system and demonstrated that,
after improvement of high-level models, some RTL blocks were more critical than oth-
ers. In comparison with the human FMEA analysis available as reference, much more
details are available on the different blocks used in the application. The global MTBF is
better and so should reduce the need for over-design, while the additional information
allows focusing the required protections on the most critical blocks.

At that time, the approach has been applied to only one “real-life” case study. Results
are promising, but in future works, we will apply this approach to other test cases. Also,
metrics and thresholds used to measure the realism of the high-level models will have
to be assessed further.
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