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Abstract. Despite the high configurability of IPs and hardware gener-
ators, code modifications are still required to introduce aspect-oriented
instrumentation to satisfy emerging aspectual design requirements such
as on-chip debug and functional safety. These code modifications escalate
development, verification efforts, and deteriorate code reuse. This paper
proposes a highly efficient transformative hardware design methodology
that leverages graph-grammar-based model transformations. Following
the proposed methodology, main design functionalities and aspectual
instrumentation are separately developed, automatically integrated, and
verified. To demonstrate the applicability, industrial SoCs were trans-
formed to support on-chip debug. Compared to the manual RTL coding,
the proposed transformative methodology needed less than 32x Lines of
Code (LoC) to develop and integrate the aspectual instrumentation. In
particular, our approach enables high code reusability, as the implemen-
tation of the transformation script is a one-time effort, and can be applied
to all evaluated SoCs. This high LoC gain and code reuse promote the
overall productivity of digital design.

Keywords: Electronic design automation · Aspect-oriented
programming · Model-driven architecture

1 Introduction

With growing complexity in System on Chips (SoCs), the hardware develop-
ment cycle is prolonged and the cost increases. Intellectual Property (IP) reuse
is a major productivity booster in hardware development and helps to promote
code reuse. Following the IP reuse methodology, designers are encouraged to
build configurable IPs that encapsulate verified design implementations. After,
IPs are adapted and integrated to build large and complex designs to accel-
erate the development cycle. For further code reuse, hardware generators are
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built to encode design knowledge with hardware generation frameworks [1–5].
Hardware generators enable design customization reuse and are implemented
with high-level programming languages such as Scala and Python. Making use
of modern programming paradigms such as object orientation, hardware gener-
ators can adapt highly complex configurations and generate adequate Hardware
Description Language (HDL) code.

However, beyond main functionalities, aspectual design requirements such as
On-Chip Debug (OCD) [6] and functional safety [7] have emerged over the years
and are essential for product success. On-chip instrumentation satisfying these
design requirements is dependent on core functionality realizations and demands
system-wide support. Towards this end, code pieces are scattered across different
IPs to implement the required on-chip instrumentation. For example, to support
OCD, not only debug IPs (e.g. JTAG) but also special features are needed in
existing IPs, e.g. hardware breakpoints in the CPU. But due to the absence of
aspect orientation [8] in state-of-the-art HDLs (e.g. SystemVerilog [9]) and hard-
ware generation frameworks (e.g. Chisel [2]), the OCD instrumentation is either
always implemented [10] or configurable by increasing the IP generality [11]. The
former option results in an additional chip area and introduces possible security
breaches, whereas escalated development and verification efforts are expected in
the latter one [12]. In this paper, we use the term design aspects to describe these
scattered and tangled aspect-oriented on-chip instrumentation. Design aspects
pose new challenges in hardware development, because the scattering and tan-
gling make the hardware implementations hard to understand, maintain, and
reuse.

To address these issues, we propose to weave aspect-oriented instrumen-
tation by transforming existing designs leveraging graph grammar [13]. The
proposed transformative hardware design methodology is built on top of a
model-driven hardware generation framework, which follows the Model-Driven
Architecture R© (MDA R©) vision [14]. The intermediate layer of this framework
contains platform-independent design models that capture intended microar-
chitectures. Design models are graph-based: Hierarchical and logic components
are vertices, whereas connections among ports and hierarchizations of compo-
nents are edges. The proposed methodology transforms existing design models
to incorporate desired aspect-oriented instrumentation. Model transformations
are formalized and guided by graph grammar. Thus, the main contributions of
this paper are: (1) Main functionalities and design aspects are decoupled and
addressed separately with the proposed methodology. This separation of design
concerns promotes modularity, reduces development efforts, and enables high
code reuse. (2) For quality assurance, design constraints are developed to vali-
date introduced design modifications. Besides, formal properties are automated
to verify transformed designs. (3) One Domain-Specific Language (DSL) is used
to construct and transform designs. This consistent design environment prevents
semantic gaps and lowers integration and maintenance burdens.

The rest of the paper is organized as follows: Related work is discussed in the
next section. Section 3 depicts the underlying model-driven hardware generation
framework. After, the proposed transformative hardware design methodology is
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elaborated in Sect. 4. To demonstrate the applicability, Sect. 5 presents an indus-
trial case study on RISC-V OCD transformation and discusses the experimental
results. The last section concludes the significance of this paper.

2 Related Work

High-level languages such as SystemC are used to describe hardware and com-
piled to HDL to improve design productivity [15]. To further reuse design cus-
tomizations, hardware generation frameworks such as Genesis2 [1] are proposed.
However, they fail to separate design aspects from main functionalities. Design-
ers must consider aspect-oriented instrumentation during the implementation
of the main functionality. Consequently, the scattered and tangled-up aspect-
oriented instrumentation leads to increased development and verification efforts
[12].

Moreover, the intermediate layer of the hardware generation framework used
by Chisel is called Flexible Intermediate Representation for RTL (FIRRTL)
[3]. FIRRTL enables instrumentation insertion by rewriting its abstract syn-
tax tree. In doing so, simple circuits such as hardware counters can be inserted
into designs. Also, PyRTL [4] and PyMTL [5] follow the same idea to enable
instrumentation transformation. Furthermore, FTI [16] provides a graphical user
interface to assist hardware engineers to harden a design step by step. Internally,
FTI translates designs written in VHDL to tree-based AIRE-CE representations
[17].

However, there are three main drawbacks of these approaches. First, the
underlying tree-based data structure is inappropriate, as it is not the intrinsic
structure of circuits, i.e., graphs. As a result, development efforts escalate, which
diminishes the gained design productivity. Second, the employment of different
languages for design construction and transformation introduces semantic gaps
and complicates hardware development. Most importantly, they do not generate
verification artifacts to assure the quality of transformed designs.

3 Model-Driven Hardware Generation Framework

MDA R© [18] established itself as an important part of modern development pro-
cesses over the last decades. Following MDA R©, a model-driven hardware genera-
tion framework called MetaRTL has been developed to improve hardware design
productivity [14]. With this design-centric framework, designers can focus on
design intent instead of implementation details such as code formatting.

MetaRTL consists of three layers: Things, Design, and View (Fig. 1). The
things layer captures specification items into the Formal Specification Model. For
satisfying specifications, designs are constructed with the expressive MetaRTL
DSL [19] and stored as platform-independent Design Models. Subsequently, Tar-
get Code Models are derived for different HDLs and technologies (e.g. FPGA)
in the view layer. State-of-the-art HDLs such as VHDL [20], Verilog [21], and
SystemVerilog [9] are supported as the possible generator outputs.
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Fig. 1. Model-driven hardware generation framework (MetaRTL). The generation
framework is extended with the transformative hardware design methodology as
depicted in the right part.

A hardware generation flow starts from a formalized specification, which
includes all must-have features and properties. In the main stage, i.e., design
layer, the translation from the specification model to a design model is conducted
by making use of a design template [22]. Design models are abstract RTL models
and include all high-level design details, for instance, port connections among
different logic gates. Next, the design model is translated to a target HDL code
model by a view template [23], which includes target-specific aspects. Finally,
the HDL code is derived from the target code model.

4 Transformative Hardware Design Methodology

The proposed methodology is implemented as part of the MetaRTL in Fig. 1. The
left part in the figure shows the hardware generation flow, whereas the right part
addresses design aspects with the transformative hardware design methodology.
The proposed methodology integrates aspect-oriented instrumentation by trans-
forming design models leveraging graph grammar. For easing hardware transfor-
mation development, various transformation utilities and reusable basic transfor-
mations are provided by the hardware transformation system. To assure quality,
modified design models are validated with design constraints and transformed
designs are verified with automated formal properties.

4.1 Graph-Based Design Model

In the main stage of MetaRTL, platform-independent design models capture
microarchitectures. For describing microarchitectures, four types of components
can be included in a design model [24]:
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– Descriptive components indicate design hierarchies and description styles in
the MetaRTL DSL [25].

– Behavioural components describe hardware behavior on a high level, such as
finite state machines.

– Sequential components such as register store information, as their outputs
depend on past and current inputs.

– Primitive components describe combinatorial logic, such as bitwise AND.

Hardware designs are usually represented as schematic diagrams, which use
graphs to depict the instantiated components and connections among them. The
design model is graph-based as well. Let LAB be an arbitrary but fixed set of
suitable labels. A design model can be formalized with a hierarchical port graph
[24]:

H = (V, P,E, (si, ti)i∈{G,T}, p, t, d, l)

– V is a finite set of vertices (components).
– P is a finite set of ports.
– E = EG ∪ ET are finite sets of graph and tree edges.
– sG, sT are source functions for graph and tree edges respectively.
– tG, tT are target functions for graph and tree edges respectively.
– p : P → V is a parent function that returns the parent component of a port.
– t : V → Descriptive ∪ Behavioural ∪ Sequential ∪ Primitive is the type

function for vertices (components).
– d : P → {In,Out, Inout} is the direction function for ports.
– l : V ∪ P → LAB is a labeling function for vertices and ports.

The hierarchy in design models is a tree spanning over the same set of vertices
V . This means, some vertices in design models are subgraphs that contain other
vertices. These vertices are descriptive components, since they indicate design
hierarchies and contain sub-components in design models. Hence, a vertex v ∈ V
can be denoted as

v = (Vv, Pv, Ev, (si.v, ti.v)i∈{G,T}, pv, tv, dv, lv)

It is noteworthy that Vv ⊆ V , EV ⊆ EG, and PV ⊆ P . Besides, these
functions are restricted by the functions of the graph. This means, the global
functions apply to subgraphs as well, i.e.,

v = (Vv, Pv, Ev, (si, ti)i∈{G,T}, p, t, d, l)

When a vertex v ∈ V is not a descriptive component, then it does not contain
any sub-component or edge, i.e., Vv = v,Ev = ∅. In contrast, when a vertex
v ∈ V is the top-level component, then Vv = V, Pv = P , and Ev = E. The
top-level component is not a target of any tree edge.

For an illustrative example, the hierarchical port graph of a half adder
is shown in Fig. 2. Labels of components and ports are illustrated, e.g.
l(v0) = “halfAdder”. The descriptive component v0 indicates a hierarchy, i.e.,
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Fig. 2. Hierarchical port graph for a half adder. Solid black edges describe connections
among ports and dashed grey edges depict hierarchizations of vertices (components).
(Color figure online)

t(v0) ∈ Descriptive. Where Vv0 = {v1, v2}, Pv0 = {p0, p1, ..., p9} and Ev0 =
{e0, e1, ..., e7}. Components v1, v2 are bitwise XOR and AND respectively.

Ports belong to components, i.e., p(pi)i∈{0,1,2,3} = v0, p(pi)i∈{4,5,6} = v1,
and p(pi)i∈{7,8,9} = v2. Directions of ports are: d(pi)i∈{0,1,4,5,7,8} = In and
d(pi)i∈{2,3,6,9} = Out. Connections among ports are identified by their source
and target ports in the graph:

sG(e0) = p0, tG(e0) = p4

sG(e1) = p1, tG(e1) = p5

sG(e2) = p0, tG(e2) = p7

sG(e3) = p1, tG(e3) = p8

sG(e4) = p6, tG(e4) = p2

sG(e5) = p9, tG(e5) = p3

In a design model, a port might be connected to multiple ports. But con-
nections across hierarchies are forbidden. Therefore, a port such as p4 can only
be connected to another port that belongs to the current hierarchy (e.g. p0)
or a component in the current hierarchy (e.g. p9). The port direction must be
considered as well. A connection between two ports pi, pj ∈ P is represented
as eG ∈ EG, e.g. e0 = (p0, p4). Whilst, a tree edge eT ∈ ET describes the
hierarchical inclusion between two components vi, vj ∈ V , e.g. e7 = (v0, v2).

The uniqueness of labels is only assured inside a design hierarchy and among
ports of the same component. Therefore, labels maybe not unique in a design
model, e.g. l(p4) = l(p7). To locate an exact component, additional hierarchical
information is required. To this end, let h be a hierarchical path from vi to
vj , where t(vi) ∈ Descriptive. A hierarchical path h is a sequence of vertices
vi, vi+1, ..., vj such that, for any x = i, i + 1, ..., j, there exists an edge eT ∈
ET , that sT (eT ) = vx and tT (eT ) = vx+1. That is, the previous descriptive
component contains the next component in a hierarchical path.
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Fig. 3. Graph grammar. (a) A rewrite rule consists of a pattern graph L and a rewrit-
ing graph R. (b) By matching the subgraph M ′ in host graph M according to the
pattern graph L, design modifications indicated by the rewriting graph R are inserted
automatically to form the transformed graph N .

4.2 Design Model Transformation

The design model transformation can be referred to as graph rewriting. A graph
rewriting is guided with graph grammar, which describes an iterative process of
applying a set of rewrite rules on the matched subgraphs in the host graph [26].
For this purpose, the definition of graph morphisms and subgraphs is adapted
for hierarchical port graphs.

Let M and N be two hierarchical port graphs. A hierarchical port graph
morphism f from M to N consists of three functions: fV , fP , and fE . The interre-
lations of edges, hierarchical inclusions between components, labels and types of
components, labels and directions of ports are preserved, i.e., for any vM ∈ VM ,
pM ∈ PM , eM.G ∈ EM.G, and eM.T ∈ EM.T , the following properties hold:

fP (sM.G(eM.G)) = sN.G(fE(eM.G))
fP (tM.G(eM.G)) = tN.G(fE(eM.G))
fV (sM.T (eM.T )) = sN.T (fE(eM.T ))
fV (tM.T (eM.T )) = tN.T (fE(eM.T ))
l(vM ) = l(fV (vM )) ∧ t(vM ) = t(fV (vM ))
l(pM ) = l(fP (pM )) ∧ d(pM ) = d(fP (pM ))

Further, let M be a subgraph of a hierarchical port graph N , denoted as
M ⊆ N , where VM ⊆ VN , PM ⊆ PN and EM ⊆ EN , and the functions of M are
restrictions of those in N . For any v ∈ VM , if t(v) ∈ Descriptive, then all sub-
components and edges in this descriptive component in N should be included in
M as well, i.e., VN.v ⊆ VM , PN.v ⊆ PM , and EN.v ⊆ EM .

Algorithm 1 describes the graph-grammar-based design model transforma-
tion. A graph grammar consists of a set of rewrite rules R. A rewrite rule r ∈ R
consists of two graphs: left-hand-side pattern graph L and right-hand-side rewrit-
ing graph R (Fig. 3a).

The application of a rewrite rule consists of three steps:

1. Match a subgraph M ′ in host graph M that has a graph morphism from
pattern graph L to M ′ (Fig. 3b).



56 Z. Han et al.

Algorithm 1: Design Model Transformation
Input : Host graph M = (VM , PM , EM , (sM.i, tM.i)i∈{G,T}, pM , tM , dM , lM ),

Rules R = {r0, rn, ..., rn}
Output: Transformed Graph N
Let N be the duplication of M
for r = (L,R) ∈ R do

M ′ = match(M,L)
for v ∈ VL and v /∈ VR do

VN = VN \ {v}
end
for e ∈ EL and e /∈ ER do

EN = EN \ {e}
end
for v ∈ VR and v /∈ VL do

VN = VN ∪ {v}
end
for e ∈ ER and e /∈ EL do

EN = EN ∪ {e}
end

end
return N = (VN , PN , EN , (sN.i, tN.i)i∈{G,T}, pN , tN , dN , lN )

2. Remove the components, ports and edges that belong to L but not R.
3. Add the components, ports and edges that belong to R but not L.

In the algorithm, the function match(M,L) returns the found subgraph M ′.
During transformations, graph functions such as labeling function l are updated
automatically when the host graph is modified.

To find the subgraph M ′ in host graph M , components in M are located for
every vertex in L with its hierarchical path, name, and type. Since the name and
direction of ports are preserved in the matched subgraph, connections are rec-
ognized by locating the linked ports. The located components, ports, and edges
compose the matched subgraph M ′. In doing so, a graph morphism from M ′ to
L is derived. Based on such graph morphism, design modifications described by
the rewriting graph R are incorporated automatically to form the transformed
graph N .

Design construction is a special case of design transformation, where the
pattern graph L is always a subgraph of the rewriting graph R in rewrite rules.
That is, the removal of components, ports, and connections is absent in design
construction. Inspired by this observation, we use the MetaRTL DSL to not only
construct but also transform designs.

4.3 Hardware Transformation System

To ease hardware transformation development, a hardware transformation sys-
tem is developed (Fig. 4). Essential operations such as Localization, Removal,
and Addition of components, ports, and connections are needed during design
model transformations. These operations are performed with the Transforma-
tion Utilities. Making use of transformation utilities, various Transformations
are developed. Transformations are classified into Basic, Design-Independent,
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Fig. 4. Hardware transformation system. Transformation utilities consist of localiza-
tion, removal, and addition utilities for components, ports, and connections. Making
use of these utilities, basic transformations introduce elementary design modifications
and are reused to construct complex design-independent and design-specific transfor-
mations.

and Design-Specific transformations. A basic transformation introduces an ele-
mentary design modification, which affects only a few components, ports, and
connections in design models. In contrast, by reusing basic transformations, com-
plex design-independent and design-specific transformations are developed with
reduced efforts for systematic design modifications. These systematic transfor-
mations differ due to microarchitectural dependency.

Transformation Utilities. During hardware transformation, specific compo-
nents, ports, and connections are modified to introduce design modifications. For
this purpose, hardware transformations start with the localization of target com-
ponents, ports, and connections. This step is formalized as the first application
step of rewrite rules. To assist this step, the MetaRTL DSL offers localization
utilities. For example, a simplified component localization function is shown in
Listing 1.1.

1 de f componentLocal izat ion ( hierarchy , name , comp type , path , designModel )
:

2 founds = l i s t ( )
3 f o r comp in h i e ra rchy . getComponents ( ) :
4 cu r r en tH i e ra r ch i ca lPath = getH i e ra r ch i ca lPath (comp , designModel )
5 i f cu r r en tH i e ra r ch i ca lPath in path :
6 i f i s i n s t a n c e (comp , De s c r i p t i v e ) :
7 foundComps = componentLocal izat ion (comp , name , comp type , path ,

designModel )
8 founds . extends ( foundComps )
9 e l i f cu r r en tH i e ra r ch i ca lPath == path :

10 i f comp . getName ( ) == name :
11 i f i s i n s t a n c e (comp , comp type ) :
12 founds . append (comp)
13 cont inue
14 return founds

Listing 1.1. Component Localization Function. This function localizes a component
based on its name, type, and hierarchical path. In doing so, adequate components in
the design model are located and returned as a list.

The shown component localization function has five arguments: the current
design hierarchy, target component name, comp type, its absolute hierarchical
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path, and the designModel. First, components under the current design hierar-
chy are iterated in line 3. The absolute hierarchical path of the iterated com-
ponent (comp) is retrieved with the getHierarchicalPath function in line 4. By
comparing the retrieved hierarchical path (currentHierarchicalPath) to the given
path, different steps are followed: If the retrieved hierarchical path is part of the
given absolute hierarchical path and the iterated component is a descriptive
component (lines 5–6), target components are located in the design hierarchy
indicated by the iterated component. Then, the localization process conducts
further inside the iterated component in line 7. But if the retrieved hierarchical
path is identical to the given absolute hierarchical path, component name and
type are then compared (lines 9–11). When all these search criteria are satisfied,
the current iterated component is marked in line 12. However, if the retrieved
hierarchical path does not satisfy the previous conditions, the component local-
ization function continues to iterate the next component in the current design
hierarchy.

After the localization step in model transformations, components, ports,
and/or connections are removed from and/or added in located subgraphs to
introduce design modifications. During this process, three graph-based opera-
tions are observed: remove, add, and replace. The remove and add operations
are supported inherently by the MetaRTL DSL [19], while the replace operation
is the composition of remove and add operations. For example, an exemplary
component replacement function is shown in Listing 1.2.

1 de f componentReplacement ( o r i g i n a l , new) :
2 h i e ra r chy = o r i g i n a l . parent
3 f o r port in o r i g i n a l . getPorts ( ) :
4 newPort = new . getPort (Name=port . getName ( ) )
5 connect i ons = getConnect ions ( port , h i e ra rchy )
6 f o r connect ion in connect ions :
7 connect ion . delConnector ( port )
8 connect ion . addConnector ( newPort )
9 h i e ra r chy . delComponent ( o r i g i n a l )

10 h i e ra rchy . insComponent (new)

Listing 1.2. Component replacement function. This simplified function considers only
components with identical port definitions in terms of name, type, and number.

The shown component replacement function replaces the original component
with the new component. The target design hierarchy is located in line 2. Since
both components have identical port definitions, connections linking the ports
of the original component are rewired in lines 3–8. To do this, the port newPort
of the new component is retrieved with the getPort function by the name of
the iterated port in line 4. The connections linking the iterated port under the
current design hierarchy are then obtained with the getConnections function in
line 5. Later, these connections are rewired by replacing the iterated port with
the newPort (lines 6–8). Afterward, the original component is removed and the
new component is placed under the same design hierarchy (lines 9–10).

Moreover, design details such as the related connections and connected ports
of the target port are often required in model transformations. For this purpose,
transformation utilities for connections such as getConnections in Listing 1.2
are provided. Various transformation utilities are served as the intuitive pro-
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gramming interface for hardware transformation and are the fundament of the
hardware transformation system.

Basic Transformations. Basic transformations introduce elementary design
modifications into design models. Exemplary basic transformations are the nam-
ing convention transformation and safety mechanism transformations.

A basic transformation for the naming convention has been developed [25] to
adapt component and port names to different design projects. That is, specific
prefixes and suffixes are often predefined for different design elements to avoid
ambiguity and assist readability. For example, ports are named with the prefix
“p ”. Also, the name suffix “ i” or “ o” of ports indicates the direction. With
this naming convention transformation, component and port names are adapted
automatically to meet coding guidelines in the target design project.

Moreover, the transformation system offers basic transformations for vari-
ous safety mechanisms [27]. Safety mechanisms introduce redundancy into the
system to enable error detection (and correction). In doing so, the system is
maintained in a safe state and, thus, dangerous consequences caused by malfunc-
tions are reduced. The introduced redundancy has three categories: information
redundancy, hardware redundancy, and time redundancy [7]. For introducing
information redundancy into the hardware system, basic transformations are
provided for parity error detection code, CRC, hamming code, etc. Whilst, basic
transformations for hardware redundancy mechanisms such as Dual Modular
Redundancy (DMR) and Triple Modular Redundancy (TMR) are also provided.
But time redundancy safety mechanisms are software-based [28] and, thus, not
offered as basic transformations.

Basic transformations are implemented in a configurable and modular man-
ner. Hereby, basic transformations can serve as building blocks and form the
“transformation library”. This modularity and reusability assist and ease the
complex hardware transformation development.

Design-Specific/-Independent Transformations. To address aspectual
design requirements such as on-chip debug [6] and functional safety [7], design-
specific and -independent transformations introduce systematic design modifi-
cations to design models. As the name indicates, design-specific transformations
are dependent on the microarchitecture and, thus, are applicable to only a set of
designs. Whereas, design-independent transformations have no such restrictions
and are applicable to all designs.

Design-specific transformations are highly dependent on the microarchitec-
ture. For example, the RISC-V OCD transformation introduces on-chip debug
support in a CPU subsystem that implements RISC-V ISA [29]. In this ISA
specification, the exception handling behavior and related information storage
are detailed for RISC-V architecture. If the target architecture does not support
the RISC-V ISA, these design details may differ and, thus, the RISC-V OCD
transformation is not applicable anymore.
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In contrast, design-independent transformations are independent of the
microarchitecture. For example, a systematic functional safety transformation
has been developed [27]. This functional safety transformation reuses basic trans-
formations for safety mechanisms to harden sequential components such as reg-
isters and memories in a design. Moreover, different design projects may have
different coding requirements for e.g. linting checks and code review. Thus, dif-
ferent RTL coding styles may be required. For this purpose, design-independent
model transformations have been developed to fine-tune design models to vary
IP-coding styles [25].

4.4 Quality Assurance

Model Validation. After transformations, modified design models are val-
idated against design constraints. This validation assures the consistency of
design models, which ensures that the generated HDL code is synthesizable.
Following design constraints must be satisfied by all design models:

– Multiple Connections: For any two connections ei, ej ∈ EG, their source and
target can not be identical at the same time.

sG(ei) = sG(ej) ∧ tG(ei) �= tG(ej) ∨
sG(ei) �= sG(ej) ∧ tG(ei) = tG(ej) ∨
sG(ei) �= sG(ej) ∧ tG(ei) �= tG(ej)

– Cross-Hierarchy Connections: Connections across hierarchies are not allowed.
To simplify the notation, we introduce a helper function s : V → V that
returns the parent component of a component. For any connection e ∈ EG,
its source and target port must belong to the same hierarchy, i.e.,

• if t(p(sG(e))), t(p(tG(e))) /∈ Descriptive, then

s(p(sG(e))) = s(p(tG(e)))

• if t(p(sG(e))) ∈ Descriptive and t(p(tG(e))) /∈ Descriptive, then

s(p(sG(e))) = s(p(tG(e))) ∨
p(sG(e)) = s(p(tG(e)))

• if t(p(sG(e))), t(p(tG(e))) ∈ Descriptive, then

s(p(sG(e))) = s(p(tG(e))) ∨
p(sG(e)) = s(p(tG(e))) ∨
s(p(sG(e))) = p(tG(e))

– Dangling Connections: For any connection e ∈ EG, there must exist a source
and a target port, i.e.,

sG(e), tG(e) ∈ P
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– Valid Connections: For any connection e ∈ EG, it must be feasible in terms
of port directions. As an exception, a connection is always feasible, if any
of the connected ports has the direction “Inout”. Thus, following constraints
apply to a connection e ∈ EG that connects ports with direction either “In”
or “Out”, i.e., d(sG(e)), d(tG(e)) ∈ {In,Out}.

• If two connected ports belong to components under the same hierarchy,
i.e., s(p(sG(e))) = s(p(tG(e))), then connector directions must differ.

d(sG(e)) �= d(tG(e))

• If two connected ports belong to components under different hierarchies,
i.e., s(p(sG(e))) �= s(p(tG(e))). This means, one of these components is a
descriptive component that contains the other connector’s parent, then
connector directions must be identical.

d(sG(e)) = d(tG(e))

– Zero-Driven Connections: Except input ports of the top component, for any
port p ∈ P , there exists e ∈ EG such that

tG(e) = p

– Multi-Driven Connections: For any two connections ei, ej ∈ EG, they must
have different targets.

tG(ei) �= tG(ej)

– Unconnected Component : For any port p ∈ P , it must be connected, i.e.,
there exists a connection e ∈ EG such that

sG(e) = p ∨ tG(e) = p

– Single Hierarchy : For any component v ∈ V , it must be located in only one
hierarchy. This means, for any two hierarchical inclusions ei, ej ∈ ET , their
targets must be different.

tT (ei) �= tT (ej)

Design Verification. To verify the design functionality, two verification suites
are employed: existing regressions tests for main functionalities and newly auto-
mated formal properties for introduced design modifications.

Existing regression tests consisting of verification artifacts such as test-
benches are developed for existing designs. Because the proposed approach tar-
gets design aspects, the main functionalities should stay intact. Thus, with ade-
quate additional constraining, transformed designs must behave identically as
original designs in regression tests.

Further, a formal property generation framework is used to automate for-
mal properties for introduced design modifications [30]. The meta-information
produced by applying a rewrite rule indicates the component and connection
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modifications. With this information, the property templates developed from
design specifications generate suitable formal properties. For example, a rewrite
rule is developed to harden a General-Purpose Register (GPR) sp under the reg-
ister file (RF ) with DMR. The DMR inserts a duplicated register sp copy. A new
signal err det indicates an error when the outputs of sp and sp copy differ. After-
ward, we apply this rule to a design model, where RF is in instruction decode
stage ID in CPU. Alongside the rewrite rule application, formal properties are
generated in SystemVerilog Assertions to verify the inserted DMR (Listing 1.3).

1 property RegisterFi le sp DMR ErrorFree ;
2 ( CPU. ID .RF. sp . Out == CPU. ID .RF. sp copy . Out)
3 |−>
4 ( CPU. ID .RF. sp . e r r d e t == 0 ) ;
5 endproperty
6 property Regis terFi l e sp DMR ErrorDetect ion ;
7 ( CPU. ID .RF. sp . Out != CPU. ID .RF. sp copy . Out)
8 |−>
9 ( CPU. ID .RF. sp . e r r d e t == 1 ) ;

10 endproperty

Listing 1.3. Generated properties for DMR transformation. The first property verifies
the error-free scenario, whereas the second property is for the erroneous scenario.

The proposed methodology complements the hardware generation. By rewrit-
ing existing design models following graph-grammar-based transformations,
design aspects are addressed separately from main functionalities. This sepa-
ration of design concerns reduces complexity in hardware generators, which can
be developed and verified with decreased efforts. Moreover, the development
of hardware transformations is assisted with the transformation utilities and
reusable basic transformations provided by the hardware transformation system.
After transformation, modified design models are validated by design constraints
and formal properties are generated to verify introduced aspect-oriented instru-
mentation. In particular, because one DSL is used for design construction and
transformation, the proposed approach avoids semantic gaps, lowers integration,
and maintenance burdens.

5 Case Study

In this section, a case study is conducted on the RISC-V OCD transformation.
To demonstrate the applicability, we apply the OCD transformation to different
industrial SoCs. Resource utilization and the time to conduct hardware transfor-
mations are discussed. Subsequently, the achieved code reusability and required
development efforts are analyzed.

5.1 RISC-V On-Chip Debug Automation

With the increasing complexity in chips and stringent time to market require-
ments, post-silicon firmware debug solutions such as In-Circuit Emulator (ICE)
becomes rapidly unfavorable because of the high cost and long development time.
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Whereas, with low-cost hardware probes, OCD instrumentation provides dedi-
cated debug circuitry for a reasonable area increase. An OCD system provides
advanced functionalities such as hardware breakpoints, single stepping, register,
and memory accesses [6]. To support these OCD features, system-wide design
modifications are required. For instance, the CPU needs to allow external register
accesses and the bus matrix needs to support external memory accesses. It is also
important to note that these design modifications are highly microarchitecture-
specific. To separate these design concerns, the OCD automation is developed
following the proposed transformative hardware design methodology.

Fig. 5. RISC-V on-chip debug specification metamodel. This metamodel captures the
main features of the debug transport module, debug module, and required system-wide
support.

For formalizing the OCD requirements, the On-Chip Debug metamodel is
abstracted from the RISC-V debug specification [6] (Fig. 5). Other than design-
specific information such as the Debug Transport Module (DTM) instruction
register length (IR Length), memory offset and size, and the Number of sup-
ported Hardware Breakpoints, Debug Accesses can be configured as well. That
is, the Debug Module (DM) may support different debug accesses: AbstractCom-
mand, ProgramBuffer, and SystemBus. Since it is mandatory to support GPR
accesses with the abstract command, these debug accesses differ in terms of
Control and Status Registers (CSRs) and memory access methods. In this case
study, abstract-command-based OCD implementation is used as an example.

The OCD transformation consists of basic transformations for enabling exter-
nal register access, inserting hardware breakpoint CSRs, supporting breakpoint
exception in the exception pipeline, etc. These basic transformations target dif-
ferent system parts and insert design modifications depending on the microar-
chitecture. In this paper, we focus on basic transformations for two essential
design modifications: register access and hardware breakpoint (HWBP).

The register access transformation adds several multiplexers for accessing
the GPR and CSR Units (Fig. 6). The GPR unit supports two concurrent reg-
ister read accesses. These registers are addressed by the rs1 addr and rs2 addr.
Ports rs1 data and rs2 data indicate respective register data. The write access
is supported by the rd addr, rd data, and wr en. They carry the address, data,
and write enable signals respectively. In contrast, the CSR unit supports only
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Fig. 6. On-chip debug transformation of RISC-V CPU. The CPU has a superscalar
five-pipeline-stage architecture [31]. For simplicity, only transformation-related design
details in the Decode and Execute stages are depicted.

one concurrent read or write access. Thus, the CSR unit has a much simpler
interface: addr, wdata, wr en, and rdata.

1 de f transformGPRUnit ( designModel , debugModule ) :
2 EP = componentLocal izat ion ( designModel , ” Except ionPipe l ine ” )
3 GPRUnit = componentLocal izat ion ( designModel , ”GPRUnit” )
4 bp s i g = EP. getPort (Name=”bp” )
5 t r an s f o rm d i c t = {” r s2 addr ” : ”GPR addr” ,
6 ” rd addr ” : ”GPR addr” ,
7 ” rd data ” : ”GPR wdata” ,
8 ”wr en” : ”GPR wr en” ,
9 ” r s2 data ” : ”GPR rdata”}

10 f o r o r i g s i g , debug s ig in transform . i t e r i t em s ( ) :
11 t a r g e t p o r t = GPRUnit . getPort (Name=o r i g s i g )
12 mux = Mux(Name=”{} mux” . format ( o r i g s i g ) , Se l=bp s ig , parent=GPRUnit

. Parent )
13 connect ion = getConnect ion ( ta rg e t po r t , GPRUnit . Parent )
14 connect ion . delConnector ( t a r g e t p o r t )
15 connect ion . addConnector (mux . addIn ( ) )
16 debug port = debugModule . getPort (Name=debug s ig )
17 mux . addIn ( ) . connect ( debug port )
18 r s2 da ta = GPRUnit . getPort (Name=” r s2 data ” )
19 GPR rdata = debugModule . getPort (Name=”GPR rdata” )
20 r s2 data . connect (GPR rdata )

Listing 1.4. Register accesses transformation of the GPR unit. This transformation
locates and rewrites the rs2 and rd of the GPR unit for the read and write access
respectively.

The transformation that enables external GPR accesses is shown in List-
ing 1.4. In the transformGPRUnit, the exception pipeline (EP) and GPR unit
(GPRUnit) are first located in lines 2–3. The signal bp sig provided by the
exception pipeline indicates whether the CPU enters debug mode or not (line
4). Signals such as GPR addr, GPR wdata, GPR wr en, and GPR rdata belong
to the debugModule and indicate the current debug GPR access. For allowing
the external GPR accesses in CPU, a mapping of ports of the GPR unit and
DM is defined in lines 5–9. Based on this port mapping, target input ports of
the GPR unit are located and their connections are reworked (lines 10–17). In
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doing so, the target inputs of the GPR unit are re-connected to insert several
multiplexers (mux ). These multiplexers are controlled by the bp sig. That is,
when the CPU enters debug mode, the GPR unit is accessed by the DM, oth-
erwise, by the CPU. After, the rs2 data signal is connected to the GPR rdata
(lines 18–19). Following similar steps, external CSR accesses are enabled.

Furthermore, the HWBP transformation transforms specific CSRs [6] in the
CSR unit : tselect, tdata1, tdata2 (Fig. 6). The tdata1 stores the configuration of
an HWBP, whereas the tdata2 stores the comparison data, e.g. target instruction
address. For supporting multiple HWBPs, the tdata1 and tdata2 are designed as
virtual CSRs, where multiple CSRs are accessible with the same CSR address.
The tselect CSR determines the current accessible HWBP CSRs.

1 c l a s s TSELECT( Des c r i p t i v e ) :
2 de f i n i t ( s e l f , DebugMoT)
3 c l a s s TDATA1( Des c r i p t i v e ) :
4 de f i n i t ( s e l f , DebugMoT)
5 c l a s s TDATA2( Des c r i p t i v e ) :
6 de f i n i t ( s e l f , DebugMoT)
7 de f transformHWBP( designModel , DebugMoT) :
8 CSRUnit = componentLocal izat ion ( designModel , ”CSRUnit” )
9 t s e l e c t = componentLocal izat ion (CSRUnit , ” t s e l e c t ” )

10 tdata1 = componentLocal izat ion (CSRUnit , ” tdata1 ” )
11 tdata2 = componentLocal izat ion (CSRUnit , ” tdata2 ” )
12 componentReplacement ( t s e l e c t , TSELECT(DebugMoT) )
13 componentReplacement ( tdata1 , TDATA1(DebugMoT) )
14 componentReplacement ( tdata2 , TDATA2(DebugMoT) )

Listing 1.5. Hardware breakpoint transformation of the CSR unit. This
transformation is simplified, since it only considers the scenarios, when inadequate
hardware breakpoint CSRs are already implemented.

Listing 1.5 illustrates the HWBP transformation in the CSR unit. In this
transformation, the target design hierarchy (CSRUnit) and tselect, tdata1, and
tdata2 CSRs are located in lines 8–11. By replacing these original CSRs with
the instantiated HWBP CSRs according to the DebugMoT, the HWBP trans-
formation is complete (lines 12–14). The component replacement utility (com-
ponentReplacement) is part of transformation utilities.

Following the proposed methodology, the OCD transformation serves as the
single source for implementing and integrating RISC-V OCD support. Subse-
quently, the transformed design models are validated against design constraints
and the inserted OCD instrumentation is verified exhaustively with the auto-
mated formal properties.

5.2 Results

Five industrial 32-bit RISC-V SoCs with different feature sets targeting the pow-
ertrain market are evaluated. Besides peripherals such as Serial Peripheral Inter-
face (SPI) and timers, the supported ISA extensions differ as well. Other than
the base integer instruction set, SoCs may support standard extensions such
as compressed instructions [29]. Additionally, customized multiply-accumulate
instructions can be supported to boost the execution of machine learning appli-
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cations. The more features are supported, the more complex is the design as
shown in Fig. 7.

Fig. 7. Design complexity of experimented SoCs. The complexity is indicated by four
factors: the number of components, LoC of the code base, bit width of input, and
output ports.

Since the GPR and CSR units in evaluated SoCs have the same interface, the
register access basic transformation introduces the same design modifications.
To diversify the inserted design modifications, different amounts of HWBPs are
enabled in SoCs, i.e., 4 HWBPs are enabled in SoC1, SoC2 and SoC3, whereas
SoC4 and SoC5 are enabled with 8 and 12 HWBPs respectively.

The resource utilization of SoCs is reported by the Vivado R© v2018.1 design
tool targeting the Arty-7 FPGA board from Xilinx R©. All experiments are con-
ducted on an Intel Xeon CPU E5-2690 v4 machine.

Design Area. Figure 8 shows the register and Look-Up-Table (LUT) utilization
for the SoCs with and without OCD respectively. Resource utilization indicates
the design area. A similar design area increase is observed in SoC1, SoC2 and
SoC3. With more HWBPs supported, SoC4 and SoC5 require more resources.
The area penalty introduced by OCD cannot be neglected, which implies the
importance of the RISC-V OCD automation.

Transformation Time. The time consumption of transforming an existing
design model into a new design model is defined as the transformation time
(Fig. 9). In general, more components and LoC of an SoC indicate a more com-
plex graph representation in terms of vertices, ports, and edges. The increasing
graph elements complicate the first step of the rewrite rule application, i.e.,
subgraph matching. However, around 1.1 s was used to enable external register
access for SoCs with different design complexity. The reason is that the pro-
posed approach can match a subgraph efficiently with hierarchical information.
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Fig. 8. Resource utilization before and after RISC-V On-Chip Debug (OCD) trans-
formation. Light colors show the resource utilization of experimented SoCs, whereas
dark colors depict utilization changes after RISC-V OCD transformation. (Color figure
online)

Fig. 9. Transformation time to apply rewrite rules. The hardware breakpoint rewrite
rule introduces more design modifications when more hardware breakpoints are
enabled. Whereas, the register access rewrite rule introduces the same design mod-
ifications in experimented SoCs.

Furthermore, a proportional relationship is observed between the number of
enabled HWBPs and the transformation time. This shows, the transformation
time for HWBPs increases linearly with introduced design modifications and is
independent of the design complexity of target SoCs. This observation confirms
the scalability and efficiency of the proposed methodology.

Development Efforts. Table 1 shows the required LoC for hardware trans-
formations in the MetaRTL and state-of-the-art manual VHDL coding. Follow-
ing the proposed transformative design methodology, 1.8k LoC is required to
implement the RISC-V OCD automation. Whilst, at least 59k LoC needs to
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Table 1. On-chip debug development efforts (LoC)

Platform SoC1 SoC2 SoC3 SoC4 SoC5

VHDL 59.0k 60.4k 62.3k 66.5k 73.1k

MetaRTL 1.8k – – – –

be revisited to implement and integrate the RISC-V OCD instrumentation for
evaluated SoCs with the manual approach. As a result, an LoC gain of more
than 32x is observed. Further, the error-prone manual approach is replaced with
the proposed design transformation, which promotes further modularity and
automation in hardware development. Finally, it is important to note that the
development efforts with MetaRTL are shown only for SoC1 in the second row.
This means, the transformation script requires only one-time implementation
efforts and is applicable for all evaluated SoC models. The actual LoC gain and
the code reusability factors are high.

6 Conclusion

In this paper, we propose to satisfy emerging aspectual design requirements
such as On-Chip Debug (OCD) and functional safety with the transforma-
tive hardware design methodology. The proposed methodology is supported
by graph-grammar-based model transformations that are implemented as part
of a model-driven hardware generation framework. The model transformations
enable aspect orientation in the conventional hardware generation. The aspect
orientation separates design concerns and assures high modularity in hardware
development. As a result, the complexity of hardware generators is reduced since
their focal point is the core functionalities. Whilst, the aspect-oriented instru-
mentation is separately developed and automatically incorporated with model
transformations. For easing transformation development, transformation utilities
and reusable basic transformations are provided in the hardware transformation
system. To assure quality, introduced design modifications are validated against
design constraints and formal properties are generated to verify the transformed
designs. Of note, we use one DSL to construct as well as transform designs, which
prevents semantic gaps and lowers integration and maintenance burdens in hard-
ware development. To demonstrate the applicability, the RISC-V OCD trans-
formation was implemented and applied to different industry-strength SoCs.
Compared to manual VHDL development, the LoC to develop and integrate the
OCD instrumentation is reduced more than 32x with the proposed methodology.
In particular, the transformation script requires only one-time implementation
efforts and is applicable for different SoCs. The achieved high LoC gain and code
reuse improve the overall productivity of digital design.
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