
Low-Overhead Early-Stopping Policies
for Efficient Random Forests Inference

on Microcontrollers

Francesco Daghero1(B), Alessio Burrello2, Chen Xie1, Luca Benini2,3,
Andrea Calimera1, Enrico Macii1, Massimo Poncino1,

and Daniele Jahier Pagliari1

1 Politecnico di Torino, Turin, Italy
{francesco.daghero,chen.xie,andrea.calimera,enrico.macii,

massimo.poncino,daniele.jahier}@polito.it
2 University of Bologna, Bologna, Italy

{alessio.burrello,luca.benini}@unibo.it
3 ETH, Zurich, Switzerland
benini@iis.ee.ethz.ch

Abstract. Random Forests (RFs) are popular Machine Learning mod-
els for edge computing, due to their lightweight nature and high accuracy
on several common tasks. Large RFs however, still have significant energy
costs, a serious concern for battery-operated ultra-low-power devices.
Following the adaptive (or dynamic) inference paradigm, we introduce a
hardware-friendly early stopping policy for RF-based classifiers, halting
the execution as soon as a sufficient prediction confidence is achieved. We
benchmark our approach on three state-of-the-art datasets relative to dif-
ferent embedded classification tasks, and deploy our models on a single
core RISC-V microcontroller. We achieve an energy reduction ranging
from 18% to more than 91%, with an accuracy drop lower than 0.5%.
Additionally, we compare our approach with other early-stopping poli-
cies, showing that we outperform them.

Keywords: Machine learning · TinyML · Adaptive inference ·
Dynamic inference · Energy-efficiency · Random forests ·
Microcontrollers

1 Introduction

Machine Learning (ML) inference is one of the core components of an increasing
number of Internet of Things (IoT) applications, from time-series processing to
computer vision [12,31]. The cloud-based paradigm is the most popular deploy-
ment approach for this kind of application, relying on a powerful high-end server
performing the inference with a computationally expensive and accurate model.
IoT devices are instead only responsible for the data collection and transmission,
offloading almost all the computations to the cloud and receiving back the final
output of the inference.
c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
V. Grimblatt et al. (Eds.): VLSI-SoC 2021, IFIP AICT 661, pp. 25–47, 2022.
https://doi.org/10.1007/978-3-031-16818-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16818-5_2&domain=pdf
https://doi.org/10.1007/978-3-031-16818-5_2


26 F. Daghero et al.

This approach however presents several limitations, mostly stemming from
the need to continuously send data to remote hardware [33,36]. A stable and reli-
able internet connection is in fact permanently necessary, an assumption that
may not always hold (e.g. for a wearable system used in a remote area). Even
when present, wireless connectivity may be unstable or slow, increasing the infer-
ence latency in an unpredictable way, and posing a serious challenge for real-time
applications. Additionally, transmitting possibly sensitive data over an untrusted
network poses a challenge to security, leading to privacy-related concerns. Last
but not least, sending large amounts of data to the cloud is an energy-hungry
operation [40], reducing the lifetime of battery-operated devices.

For all the above reasons, edge computing is becoming an increasingly pop-
ular approach for ML-based IoT applications [33,36], consisting of an on-device
deployment of the ML model, which completely eliminates (or limits to particu-
larly complex tasks) the interaction with remote servers. Performing all compu-
tations locally eliminates latency and privacy concerns at the source, while also
possibly obtaining higher energy efficiency.

However, directly deploying ML models at the edge is not easy due to
their memory and computational requirements, which clash with the tight con-
straints of IoT nodes, mostly based on Microcontrollers (MCUs). Deep Learn-
ing (DL) approaches, in particular, while reaching state-of-the-art accuracy on
many domains, maintain high complexity even after applying multiple optimiza-
tions [10,18], and are often too expensive, in terms of energy consumption and
memory occupation, for MCU-based edge devices.

There are however lightweight alternatives to DL, particularly suited for
easy recognition tasks such as the ones involved in IoT applications. Among
them, tree-based ensemble models, and in particular Random Forests (RFs) [5],
are increasingly popular. Their success stems from their inexpensive inference,
requiring often a small number of compare and branch operations, while also hav-
ing a compact memory footprint. At the same time, Random Forests (RFs) [5]
often reach an accuracy close to DL models and good resistance to overfit-
ting for simple IoT tasks, such as human activity recognition, ECG analysis,
and seizure detection [14,15,30,35]. For instance, the DL-based classifiers pro-
posed by the authors of [30] for an Electrocardiogram (ECG) anomaly detection
requires around 200k arithmetic operations and the storage of a similar amount
of parameters, while in Sect. 6, we show that an RF can achieve comparable
accuracy with ≈2k parameters and less than 1k operations.

Although less expensive than DL, the inference time and energy consumption
of RFs can nonetheless have a relevant impact on the battery lifetime of MCU-
based systems. Hence, inference optimization techniques are fundamental even
for these simple models.

In this work, which extends [11], we propose one such optimization origi-
nating from the observation that, for single-core MCUs, RF inference time and
energy costs are linearly dependent on the number of trees (the forest “width”).
In fact, the MCU will evaluate all the Decision Trees (DTs) that constitute the
ensemble in a sequential fashion, one after the other. However, evaluating the
whole forest may be necessary only for a subset of complex input samples, while



Low-Overhead Early-Stopping Policies for Efficient RFs on MCUs 27

being wasteful in terms of energy for easy inputs. Intuitively, if the initial bunch
of trees executed during an inference predicts that the output belongs to a spe-
cific class with very high confidence, it becomes unlikely (or even impossible)
that the remaining DTs will overturn that prediction. Thus, the execution of
the latter can be skipped completely, reducing the total time and energy, while
not affecting the final accuracy negatively.

Leveraging this idea, we propose an early stopping mechanism for RF infer-
ence, which stops the evaluation of DTs as soon as a user-defined confidence level
has been reached. While adaptive (or dynamic) inference approaches such as this
are widely adopted for DL [6,19,20,22,28,37], to the best of our knowledge, we
are the first to consider them for RFs, with a focus on embedded/IoT deploy-
ment. In fact, the few existing techniques for tree-based models [16,39] have been
studied only theoretically, without evaluating a practical implementation on a
low-power device, hence largely ignoring some important overheads derivating
from their deployment. In contrast, our proposed method is designed specifically
for embedded RFs, being based on low-overhead early stopping policies, easy to
execute efficiently at runtime, with minimal latency/energy overheads.

We benchmark our approach on three different embedded tasks, i.e., human
activity recognition, heart failure detection, and gesture recognition. Deploying
our models on a popular single-core RISC-V MCU, we obtain an energy reduction
ranging from 18% to 91% with less than 0.5% accuracy drop, with respect to a
standard (i.e., static) RF inference.

2 Background

2.1 Decision Trees and Random Forests

When used in a supervised learning setting, Decision Trees (DTs) learn a set
of decision rules extracted at training time from the data features, in order to
perform either a classification or regression task. Several training algorithms for
DTs have been proposed in the literature [23], differing in the criteria used for
selecting the features and decision thresholds considered at each internal node.
The details of the training phase are out of the scope of this work, and interested
readers may refer to [23]. Since this work proposes an inference optimization,
herein we detail only the operations of the inference phase.

Figure 1 shows a high-level overview of a “grown” (i.e., trained) DT used
for a 2-class classification task, in which leaf nodes are depicted as rectangles
and other nodes as circles. Leaf nodes contain the probabilities of the input
belonging to a specific class, while each non-terminal node stores the index of
the input data feature considered for branching in that node, and the threshold
that determines the left or right branch.

The DT inference pseudo-code is shown in Algorithm 1, where Root(T )
denotes the root node and Leaves(T ) the set of leaves. Feature(n) and
Threshold(n) are the input feature and comparison threshold considered in the
n-th node, and Left(n) and Right(n) are the left and right children of the node.
Finally, Prediction(n) is only defined for leaves and contains the corresponding



28 F. Daghero et al.

Fig. 1. High-level overview of a DT structure for a 2-class classification problem. The
leaves are represented as rectangles, each storing the class probabilities of an input
belonging to that path. Other nodes are represented as circles

Algorithm 1: Decision Tree inference.
1 n = Root(T )
2 while n /∈ Leaves(T ) do
3 if Feature(n) > Threshold(n) then
4 n = Right(n)
5 else
6 n = Left(n)
7 end

8 end
9 out = Prediction(n)

output prediction (an array of probabilities for a classification, and a continuous
scalar value for regression).

The time complexity of Algorithm 1 is O(D), where D denotes the tree
depth, i.e., the maximum length of a path from the root to the leaves. For a
classification, an additional O(M) scan over the output probabilities is then
needed to determine the final class label, where M is the number of classes.
The memory complexity, instead, grows with O(2D), i.e., it is proportional to
the total number of nodes, which is at most 2D in the case of a balanced and
unpruned DT, with all root-leaf paths having the same length [23].

DTs are prone to over-fitting, suffer from high variance even with small per-
turbations in the training data, and introduce biases when used with unbalanced
datasets. In order to overcome these limitations, Random Forests (RFs) have
been proposed [5]. RFs are ensembles of DTs (called “weak learners”), trained
with bagging (bootstrap aggregating) and, more recently, random features selec-
tion [29]. In practice, each DT is trained on a random subset of the training
samples, drawn with replacement, and on a limited set of the input features,
thus ensuring a low correlation among weak learners, which reduces overfitting.

At inference time, the individual DTs predictions are combined to obtain the
final RF output, as shown in Fig. 2. Specifically, in early implementations of RFs
for classification, each weak learner outputs a class prediction, then aggregated
with a majority voting. In contrast, modern RF libraries [29] store in the leaf
nodes of the trees the entire set of class probabilities, thus allowing the final



Low-Overhead Early-Stopping Policies for Efficient RFs on MCUs 29

Fig. 2. High-level overview of a RF inference with width 3 and depth 3. The output
of each DT is averaged to obtain the final predictions of the ensemble.

predictions to be computed as the average (or sum) of all the weak learners’
class probabilities. The final label is then selected as the argmax of the array.

Algorithm 2 reports the pseudo-code of a RF inference pass, for an imple-
mentation that loops sequentially over the weak learners (such as the one for a
single-core processor). The function DecisionTreeInference corresponds to Algo-
rithm 1. From a complexity point of view, a RF of width N , i.e., including N
trees, has a time and memory complexity of O(ND) and O(N2D) respectively,
where D is the maximum depth over all weak learners. Lastly, the argmax that
extract the predicted label has time complexity O(M), as for a single DT.

Algorithm 2: Random Forest Classification.
1 out = 0M //array of 0s of size M
2 for T ∈ Forest do
3 out = out + DecisionTreeInference(T )
4 end
5 class = arg max(out)

2.2 IoT End Nodes

The great majority of IoT end-nodes are based on low-power microcontrollers
(MCUs), whose main compute unit is a general-purpose CPU, typically based on
a RISC instruction set [17]. This is mainly due to their employment on extremely
low-cost devices. In this context, the flexibility and high programmability of
MCUs make them preferable to custom Application-Specific Integrated Circuits
(ASICs), potentially orders of magnitude more efficient, but whose design and
manufacturing costs are only affordable for high-end, high-volume devices.

Specifically, the RISC-V Instruction Set Architecture (ISA) is recently
becoming more and more adopted both in the research world and in compa-
nies for the realization of IoT devices [13,34]. Following this trend, we bench-
mark our results on a RISC-V processor from the PULP family [8]. Given the



30 F. Daghero et al.

very low-power requirements and tight cost constraints of our target applica-
tions, we select one of the smallest architectures in the family, the single-core
PULPissimo. This device is based on a RI5CY core with a 4-stage, in-order,
single-issue pipeline. The core implements the RV32IMC ISA, enhanced with
domain-specific extensions for DSP, such as Single Instruction Multiple Data
(SIMD) operations, hardware-loops, and loads/stores with index increment, and
no caches, all design choices aimed at providing significant speedups and energy
saving for ML applications.

2.3 Machine Learning at the Edge

In order to bridge the gap between the computational requirements of Machine
Learning models and the limited resources of IoT end nodes, several works have
introduced optimizations with the goal of making the inference as energy efficient
as possible, without affecting significantly its accuracy [1,9,15,19,21,27,28,37].
These optimizations can be divided into two categories: static and adaptive.

The first category optimizes a model before deployment, usually at training
or post-training, with the goal of reducing the inference latency, energy, or the
memory required to store the classifier parameters. Pruning and quantization are
among the most popular static optimizations for DL [18,26], reducing models’
complexity respectively through the removal of redundant parameters or by using
low-precision arithmetic. Notably, pruning can also be applied to DTs and RFs
during their training (or growth), with the goal of eliminating unimportant nodes
from the trees, hence reducing the number of parameters of the model [25].

Static approaches are, by definition, unable to efficiently support multiple
runtime operating modes, with different complexity versus accuracy trade-offs.
Nonetheless, this would be useful to respond to changes in external conditions,
such as the remaining battery life of the device or, more interestingly, to promptly
adapt to variations the complexity of the task being executed [9,28].

The naive solution to achieve such runtime flexibility is deploying multiple,
independent models, each with a different accuracy and computational complex-
ity, and selecting the most appropriate model at any given time. However, this
approach is often unfeasible due to the limited memory of IoT end nodes, which
makes it impossible to store a large number of models on a single device.

Adaptive (or dynamic) inference techniques try to overcome these limitations,
proposing a set of optimizations, mostly orthogonal to static ones, that allow
multiple operating points at runtime with limited memory overheads. These
optimizations are based on the concept that not all inputs are equally hard to
process for a ML model, and that easy inputs are often far more common than
difficult ones. Adapting the computational effort spent for inference based on
the difficulty of the processed input (i.e., reducing the effort for easy inputs
and increasing it for difficult ones), could then enable significant energy savings,
while keeping the classification accuracy unchanged. Accordingly, one of the focal
points of any adaptive inference technique is the design of an automatic mecha-
nism (or policy) for discerning between easy and hard inputs. Furthermore, this
policy should introduce low computational overheads, which do not overshadow
the energy savings obtained thanks to the adaptive effort tuning.



Low-Overhead Early-Stopping Policies for Efficient RFs on MCUs 31

3 Related Works

In the literature, adaptive inference implementations have been proposed by
multiple works, with a particular focus on DL. One of the earliest endeavors
proposed the so-called Big-Little scheme [28], combining two deep neural net-
works with different complexity and accuracy. At runtime, the inexpensive yet
less accurate network, named “little”, performs the first inference on each input.
The confidence of this model is then evaluated, stopping the execution in case
it surpasses a user-defined threshold. Otherwise, the input is fed to the sec-
ond model, an accurate yet more complex network named “big”, and its output
is taken as final prediction. The rationale of this technique is that, as long as
the easy inputs, predicted with high confidence by the “little” model, are more
common than hard ones, the average energy required for inference will decrease
significantly. At the same time, the final accuracy is not affected, since complex
inputs are still re-directed to the “big” model. The main flaw of this approach,
however, lies in its considerable memory overhead, since it requires the deploy-
ment of two completely separate networks on the edge device.

Based on this observation, multiple subsequent works have proposed alterna-
tive adaptive inference schemes for DL, that try to address the memory overhead
problem. For instance, deriving the ”little” network from the ”big” model by
using only a subset of the layers, channels or a lower bit-width quantization may
reduce significantly the number of parameters that need to be stored [19,27,37].
On an orthogonal direction, other works enhanced the Big-Little paradigm by
increasing the number of cascaded models to more than two, or improving the
stopping mechanism to handle class-specific confidence [9,37].

Applications of the adaptive paradigm to shallow ML models, and in partic-
ular to tree-based ones, are far less common compared to DL [16,32,39]. The
authors of [32] propose an early stopping criterion for RFs and other tree ensem-
bles, which allows reducing the number of trees invoked for inference on easy
inputs, modeling it with a binomial or multinomial distribution (depending on
the number of classes). The approach is benchmarked on 7 small public datasets
and one private, showing that, for ensembles with a large amount of trees, they
reduce the average number of weak learners required for inference by 63%. How-
ever, the proposed criterion requires the storage of a large lookup table with a
dimension in the order of O(N2), which introduces a significant memory over-
head (10s of kB) for large forests.

In another work, the authors of [16] propose an approach to determine the
best order of execution for weak learners depending on the most likely class
indicated by the DTs that have been already executed. This selection happens
at runtime, and takes into account the different computational costs associated
to weak learners due to their reliance on different features, finding the optimal
trade-off between complexity and accuracy to select the next DT. The authors
leverage a mixture of Gaussian distributions to design a probabilistic model
of the classifier, exploiting it to trigger an adaptive early stopping based on
the posterior probabilities. Furthermore, they also introduce a dimensionality
reduction technique to prune the number of computations required to perform



32 F. Daghero et al.

the selection of the following DT. However, on an ultra-low-power MCU-based
device, the introduced overhead would overshadow the energy savings obtained
by performing the inference on a subset of the weak learners. Hence, as stated
by the authors in the original paper, this approach becomes effective only if the
target task involves very complex feature extractions, which is rarely the case for
simple IoT applications.

The work closest to ours is named Quit When You Can (QWYC) [39]. In this
case, the authors focus on binary classification tasks and propose a simple early
stopping based on two probabilities thresholds (ε− and ε+) derived statically
post-training. Additionally, the authors propose a static sorting of the weak
learners, so that the DTs most likely to trigger an early stop are executed first.
At inference time, as soon as one of the probabilities of the last executed DT is
either lower than ε− or higher than ε+, the early stop mechanism is triggered,
selecting the negative or positive class as the final prediction, respectively.

While QWYC requires a small overhead at runtime (only two comparisons),
the extension to a multi-class problem is not straightforward. The authors pro-
pose a possible implementation of the multi-class version, but do not show any
results for it, leaving its effectiveness yet to be tested. Moreover, their approach
is still not tested on a real low-power IoT node.

In summary, all the works mentioned above are purely theoretical, and their
effectiveness is evaluated only from a complexity reduction point of view, i.e.,
computing the average number of DTs executed for inference, with no deploy-
ment on a real embedded device. Additionally, many of these works introduce
considerable overheads either in terms of memory or time/energy, both of which
are very precious resources on IoT devices. In our work, we compare the pro-
posed approach with QWYC [39], showing that we obtain similar or better
performance, despite the higher simplicity and generality of our method.

4 Motivation and Goal

RFs generally use a large number of trees N (e.g., between 10 and 100) to
improve the accuracy over single DTs. Indeed, using many weak learners instead
of a single powerful one is demonstrated to reduce the overfitting and the bias
of the model, leading to a better generalization on new unseen data and higher
accuracy overall. On the other hand, easy inputs would be correctly classified
also by means of fewer trees than the ones present in the complete forest. In this
case, employing the full set of trees of the RF is sub-optimal, leading to a possible
increment of energy consumption and higher latency, which could be critical for
IoT devices. Nonetheless, deploying a smaller RF with N ′ trees, where N ′ < N
may result in errors when classifying more complex samples, and therefore in a
reduction of the overall accuracy.

Our work is based on these observations: our aim is to design an adaptive
early stopping policy for tree-based ensembles, minimizing the DTs executed
to correctly classify easy inputs, while exploiting more DTs (up to the entire
RFs) to classify the most complex ones. The key to achieve high energy saving



Low-Overhead Early-Stopping Policies for Efficient RFs on MCUs 33

through this method lies in the light but accurate mechanism to distinguish easy
from hard inputs. Therefore, the main goal of this work is the search for a way
to allow an early stopping of the inference, before the execution of the whole
RF, without affecting the final accuracy. At the same time, we also look for a
lightweight early-stopping policy, to avoid overshadowing the savings obtained
thanks to the lower number of weak learners executed.

5 Methodology

5.1 Aggregated Score Thresholds for Early Stopping

Among the various confidence metrics introduced in the literature for adaptive
early-stopping in classification problems, the most common ones are based on
the output probabilities (P t) produced by the last model t executed. A first
approach considers the highest probability (i.e. the one associated with the most
likely class) to compute the confidence of the model. A large maximum probabil-
ity denotes a classifier confident in its prediction, while a small value is associated
with an uncertain classification. We name this approach Max Score (or simply
Max ). This metric is fast to compute at runtime, requiring O(M) pairwise com-
parisons. The second approach, named Score Margin (SM), extends the Max
policy by considering the two largest probabilities of the model. For a target
model t, we can compute its SM as:

SM = max(P t) − max
2nd

(P t) (1)

where max2nd(P t) denotes the second largest value in vector P t. Even though
the SM requires more operations compared to the simpler Max (around twice),
it makes the computation of the confidence more robust. For instance, the max
value for a 11-class prediction problem will be 0.5 in case of a distribution of
P 0 = 0.5, P 1 = 0.5, and P 2−10 = 0, which corresponds to a very uncertain
prediction, but also in the case of P 0 = 0.5, P 1−10 = 0.05, which is instead a
quite reliable output. On the other hand, the SM would be 0 in the first case
and 0.45 in the second, correctly capturing the different confidence of the model
in the two cases. From this example, the reader can understand why the SM
metric has become so popular in recent literature.

To determine when early-stopping should be performed, a threshold α is
compared with the selected confidence metric (Max or SM): when the metric is
higher than α, the inference is stopped and the output prediction is produced
based on (some of) the outputs of the classifiers that have been already executed.
Therefore, the value of α directly controls the energy vs accuracy trade-off, since
it determines how many classifiers are executed on average.

The advantage of this early-stopping criterion lies in its inexpensive deriva-
tion (requiring a single comparison after the computation of the corresponding
metric), while being accurate as long as the classifiers’ output probabilities are
calibrated (i.e., proportional to the likelihood of the class to be the correct one).
Furthermore, the threshold α can be changed at run-time, e.g., based on the



34 F. Daghero et al.

system condition (level of battery charge, period of the day, etc.), to produce
more accurate or more energy-efficient classifications.

Normally, the confidence metric (Max or SM) is computed using the output
probabilities of the last executed classifier t, neglecting the outputs of the models
executed before it, i.e., the “history” of the ensemble. This approach is ideal
for cascades of increasingly accurate classifiers, since taking into account the
t − 1-th classifier output may actually worsen the prediction of the (much more
accurate) t-th model [19,28]. However, it is not appropriate for an ensemble of
equally predictive weak learners, such as a RF.

Starting from this observation, we extend the policies described above so
that the early stopping is triggered using the aggregated predictions of all the
already executed classifiers (P [1,t]). Noteworthy, easy inputs will in fact have
partial aggregated probabilities already skewed towards one class even after the
execution of just a few DTs. Therefore, it is unlikely or even mathematically
impossible that when the aggregated probabilities are sufficiently skewed toward
one specific class, the remaining DTs will overturn the prediction, which makes
their execution not necessary to improve the accuracy of the prediction.

We define the partial output of a RF after executing t trees as:

P [1:t] =
t∑

i=1

P i (2)

where P i denotes the vector of output probabilities of the i-th weak learner.
We then define the Aggregated Max Score (S) early-stopping policy after the
execution of the t-th classifier as the rule:

St = max(P [1:t]) > α (3)

while the Aggregated Score Margin SM policy is defined as:

SM t = max(P [1:t]) − max
2nd

(P [1:t]) > α (4)

In our experiments, we consider both of these policies, with a tunable thresh-
old α, to determine when to perform early-stopping in a RF ensemble. To the
best of our knowledge, we are the first to propose an early-stopping approach
that considers the aggregated probabilities of the weak learners, while being
based on a lightweight comparison with a threshold. Our results show that we
outperform other state-of-the-art approaches that leverage only the last weak
learner of the ensemble, achieving higher energy efficiency during the inference
while also avoiding large accuracy drop.

Figure 3 shows a high-level overview of the adaptive inference mechanism
proposed in this work, for the case of the SM policy and with a batch B = 1 (see
Sect. 5.3 below). The RF represented has N = 3, M = 2, and D = 3. Orange
nodes are those “selected” by the series of compare-and-branch operations for a
hypothetical input. In a nutshell, after executing each DT, the partial predictions
are accumulated and used to determine whether the confidence of the inference
up to tree t is enough to trigger an early stop, based on α.



Low-Overhead Early-Stopping Policies for Efficient RFs on MCUs 35

Fig. 3. High-level overview of the proposed adaptive inference method for RFs, for
B = 1. At each step, the SM is computed on the partially aggregated scores.

5.2 Deployment on MCUs

Due to the lack of open-source RF libraries tailored for the target MCU
(described in Sect. 6), we design and deploy an optimized implementation in
C language of both the traditional RF and of our adaptive version, i.e., a RF
augmented with the early-stop mechanism described above.

We take inspiration from the open-source implementation available in
OpenCV [4], optimizing it for our target ultra-low-power platform. The main dif-
ference resides in the way RF nodes, leaves, and thresholds are stored: OpenCV
lists are replaced with C arrays in our version, both to save precious memory
space and to improve the memory locality of the data. Figure 4 shows the three
main arrays that compose our RF representation, i.e., FOREST, ROOT, and
LEAVES.

Fig. 4. C data structures of our RF implementation.

The array FOREST stores in each element a “struct” with the information
relative to a node belonging to one of the RF trees. The struct has three member
variables:



36 F. Daghero et al.

– fidx is the index of the feature on which the split has been performed. It is
used to select the correct value from the input feature array to be compared
with the threshold th at inference time. This value is set to -1 in leaf nodes.

– th: the value to be used as a comparison to determine the following node to
visit; left child if the input feature is lower than th, right otherwise.

– right : the index in FOREST of the right child of the current node. Note
that to reduce the memory occupation, the left child is always stored as the
following element of the array. For leaf nodes, the right child index stores the
index of the corresponding leaf probabilities in the LEAVES array.

The other two arrays, LEAVES, and ROOT, store respectively the output
probabilities of each leaf and the indexes of the root node of each DT in FOREST.

Figure 4 reports some data structure values corresponding to the RF shown
in Fig. 3. In particular, it shows the elements of FOREST which correspond to
the nodes in the decision path of the leftmost DT in Fig. 3.

To further compress the memory required to store our RFs, we quantize to
16-bit integers all the fields of the FOREST and LEAVES arrays, simplifying also
the deployment on MCUs not equipped with a Floating Point Unit. We verified
that quantizing the inputs, comparison thresholds, and output probabilities to
16-bit integers yields close to 0 accuracy drop, compared to the original floating-
point model. We also reduce to 16-bit the precision of the ROOT elements,
which guarantees the possibility of deploying large RFs (up to 216 nodes), while
significantly reducing the memory overhead of this vector.

5.3 Tree Batching

One of the main advantages of the aggregated Score Margin and Max early-
stop policies lies in their lightweight nature. Specifically, their time complexity
at inference time is O(M) to find either the highest or the two highest prob-
abilities and O(1) to compare with the threshold α. In the case of dynamic
inference systems for deep learning [28,37], this computational overhead is neg-
ligible w.r.t the execution of the individual neural networks. On the other hand,
when working on lightweight classifiers such as RFs, the computation of either
the aggregated Max or the SM can affect negatively the energy gains obtained
by avoiding the execution of the full forest. In fact, as introduced in Sect. 2, the
time complexity for a single DT inference is O(D), plus O(M) for the argmax
over classes. Large yet shallow adaptive RFs may then have a significant over-
head for the early-stopping decision (when D is comparable or lower than M),
becoming significantly less efficient than a static forest with fewer trees.

In order to tackle this problem, we propose a simple but effective approach
to reduce the impact of the early stopping policy, named tree batching. Rather
than evaluating the aggregated confidence metric after every DT inference, we
instead perform its computation after a batch of B trees. This additional hyper-
parameter has a contrasting effect on the energy consumption of the system. In
fact, larger batch sizes can reduce the overhead introduced by the computation
of the confidence metric by a factor of B, thus saving additional energy. On



Low-Overhead Early-Stopping Policies for Efficient RFs on MCUs 37

the other hand, evaluating the stopping criterion every B trees may cause the
classifier to perform up to B−1 additional inferences that could be avoided with
B = 1. Empirically we show that depending on the dataset, the results obtained
setting B > 1 can outperform the ones of B = 1 in terms of accuracy vs energy.

Algorithm 3 reports the pseudo-code of the adaptive inference with batch
size B, where Batch(b) denotes the subset of weak learners belonging to the b-th
batch. Metric(out) represents instead the computation of the confidence metric
at tree t, e.g., SM1:t in case of the aggregated Score Margin.

Algorithm 3: Adaptive Random Forest Classification.
1 for b ∈ [0, N/B] do
2 for T ∈ Batch(b) do
3 out = out + DecisionTreeInference(T )
4 end
5 if Metric(out) > α then
6 break
7 end

8 end
9 class = arg max(out)

5.4 Tree Ordering

The introduction of an early stopping mechanism that depends on the output
probabilities of each DT makes the inference results become dependent on the
order of the weak learners. As opposed to the classic approach, which sums or
averages the contributions of all DTs, the adaptive inference will, for most of
the inputs, leverage only the probabilities of a subset of them. As a consequence,
invoking first the most informative and confident DTs increases the probability
that the early-stopping mechanism will be triggered sooner, and therefore the
energy savings. Intuitively, one could then think of finding an optimal ordering
of the DTs on a subset of the training data (e.g. the validation set), by means of
a search algorithm such as greedy, random, exhaustive search, or others. As men-
tioned in Sect. 3, multiple previous works including QWYC [39] have proposed
mechanisms to determine such a “hardcoded” ordering of the classifiers.

However, in our experiments, we demonstrate that such an optimized order-
ing does not actually provide statistical advantages over executing the DTs in a
random order. In fact, we compare multiple permutations of the DTs composing
the ensembles, showing that those orderings that reduce the average number of
weak learners per inference on the validation dataset, do not obtain compara-
ble results on the test set. In other words, there is no correlation between the
“goodness” of a given ordering on the two data subsets.

Therefore, we conclude that an optimized hard-coded ordering of weak learn-
ers do not provide advantages, at least in our considered scenario, i.e., for a RF



38 F. Daghero et al.

classifier and considering the simple early-stopping policies described above. In
contrast, input-dependent DTs reordering could be effective, but is extremely
difficult to implement at low overhead [16], hence we leave it to future work.

6 Results

6.1 Benchmarks, Deployment Setup, and Comparisons

We evaluate the proposed technique on three different datasets for popular tiny-
ML tasks: ECG5000 [7], Ninapro DB1 [2], and UniMiB-SHAR [24].

ECG5000 [7] features annotated electrocardiogram (ECG) data, provided
already preprocessed in windows of 0.8 s, each containing a single heartbeat.
We perform the same task as the authors of [30], which consists in detecting
whether congestive heart failure happens. For this dataset, we take as a baseline
for comparison a static RF with N = 40 and D = 3. Our adaptive model uses an
identical RF structure, but dynamically reduces the number of trees executed
at runtime as described in Sect. 5.

The second set of experiments is performed on the popular Ninapro DB1
[3], featuring Electromyography (EMG) signals of 27 healthy subjects performing
different hand movements. We follow the experimental setup proposed in [3],
performing the classification of 14 hand movements using a 10-channel EMG
signal. In order to do so, we employ the same preprocessing used by the authors
of [3]. Our starting RF for this task has N = 24 and D = 12.

Finally, UniMiB-SHAR [24] is a Human Activity Recognition (HAR)
dataset featuring a tri-axial accelerometer signal collected from a sensor mounted
on a smartphone. The recorded motions belong either to one out of 9 daily-life
activities (e.g. walking, sitting, etc.) or one out of 8 kinds of falls. The signals
are collected 50 Hz, and already provided in fixed-size windows of 151 samples,
centered around peaks. We keep the same preprocessing as proposed in [24],
benchmarking our results on the AF-17 task, which is the one considering all
the target classes in the dataset. We derive the adaptive RFs from a baseline
with N = 32 and D = 9.

The three datasets refer to tasks with a significant difference in the level of
complexity, ranging from a binary classification (ECG5000) to a 17-classes one
(UniMiB-SHAR). Accordingly, the time and energy associated with the accu-
mulation of output probabilities during inference vary significantly, which influ-
ences our policies’ overheads, as explained in Sect. 5.3. As shown in the follow-
ing section, however, our approach remains effective even in conditions far from
ideal (M ≈ D). Additionally, after benchmarking the RFs both with raw data
and simple embedded-friendly features extracted in the time domain, we always
achieve higher accuracy with the former. Therefore, we report for all the three
datasets results obtained using raw data as input.

Due to the class imbalance of all three datasets, we always report the scoring
metric proposed in [24], i.e., the top-1 macro-average accuracy. All results are
reported on each dataset’s test set.



Low-Overhead Early-Stopping Policies for Efficient RFs on MCUs 39

We deploy all RFs on PULPissimo [8], a 32-bit single-core RISC-V MCU
belonging to the PULP family of architectures. Specifically, we refer to a 22 nm
realization of PULPissimo running at 205 MHz and equipped with 520 KB of L2
memory [13]. We estimate the inference clock cycles using a virtual platform [38],
deriving the energy values from [13]. Concerning the software stack, we train
the Random Forests using the open-source package scikit-learn [29] in Python
3.8. The inference phase uses the MCU-oriented C language implementation
described in Sect. 5.2 both for the baseline and adaptive classifiers.

We compare the proposed approach with a static RF, the standard Max/SM
policies evaluated on the last DT (as proposed in [28,37]), and the QWYC
method [39]. Concerning the latter, we limit the comparison to the binary
ECG5000 task, since as mentioned in Sect. 3, QWYC is only benchmarked on
binary problems. Independently on the early stopping criterion, the baseline
models have been derived from the RFs with the N and D reported above for
each dataset.

6.2 Hardware-Independent Results

Since all previous works on adaptive inference for RFs have only been evaluated
in theoretical terms, without any real deployment at the edge, we perform a first
hardware-independent comparison.

To this end, we consider the average number of trees executed per inference as
a metric to quantify the complexity of the various techniques. This is a reasonable
proxy for the time and energy consumption of inference, especially for a single-
core platform (such as an MCU) that executes weak learners sequentially. Of
course, this evaluation is unable to factor in the additional overhead introduced
by the evaluation of the early stopping policy, thus possibly favoring accurate yet
complex mechanisms to stop the inference. Thus, these results are meaningful
under the assumption that evaluating a single weak learner has a significantly
higher complexity than evaluating the early stopping criterion.

Figures 5–9 report the results of this experiment. Specifically, they report
Pareto fronts obtained by the various considered techniques in terms of accuracy
versus the average number of DTs per inference (N.Trees). In case of adaptive
methods, different points of the curve, when present, are obtained by varying
the early stopping threshold (α in Eqs. 3 and 4). Furthermore, all graphs also
report, as a comparison baseline, the results obtained with a static RF. In this
case, different points refer to ensembles with progressively fewer weak learners
(i.e., decreasing N), which have been retrained from scratch each time.

State-of-the-Art Comparison. Figure 5 compares one of our proposed poli-
cies (the Aggregated SM) with the standard SM applied to the last executed
model (as in [9,28,37]), and with a static RF. Additionally, for the binary
ECG5000, we also report the results obtained with QWYC, both with and with-
out the static ordering of the DTs. We do not apply tree batching yet.

For all three datasets, the Aggregated Score Margin with B = 1 lies on the
Pareto front, often outperforming both other adaptive approaches and static



40 F. Daghero et al.

Fig. 5. Accuracy versus average number of trees. Each point represents either a differ-
ent static RF for the baseline or the same RF with different early-stopping thresholds
for adaptive ones.

RFs. On the other hand, the classic SM computed only on the last tree either
obtains close results to the baseline or is underperforming. The only notable
exception is represented by the ECG5000 dataset, where with few DTs the clas-
sic SM is able to achieve results comparable to our method. Nonetheless, that
technique is unable to further grow in terms of prediction quality when changing
the early stopping threshold.

Both QWYC versions, lie close to the global Pareto front. However, we found
that even when testing several values of the hyperparameters that determine ε
(the parameter used to decide for early stopping in QWYC), the average number
of trees executed remains almost unchanged. Most importantly, the maximum
accuracy that we were able to obtain with QWYC on ECG500 is significantly
lower than with our approach, or with the largest static RF. Additionally, we
found that the DT sorting proposed in QWYC actually underperforms on our
dataset, leading to lower accuracy than the “unordered” version.

Considering the whole set of trade-off points of our approach, we obtain
a reduction in terms of average trees executed per inference of up to 93% on
ECG5000, with respect to a static RF achieving the same accuracy (2.26 vs 34
DTs on average, at 97% accuracy. On Ninapro, we achieve up to 47% reduction
(10.47 vs 20 average DTs at 76.5% accuracy), and on UniMiB up to 43% (12.5
vs 22 DTs at 52% accuracy).

Batch Size Exploration and Criteria Comparison. Figures 6, 7, 8, 9 report
a detailed comparison of the two proposed metrics (Aggregated SM and Aggre-
gated Max.) for different tree batching conditions (i.e., B values).

Intuitively, since these results still do not consider the overheads of the early
stopping criterion, increasing B should worsen the results. In fact, B = 1 the-
oretically offers a finer granularity of control on the early stopping, allowing to
interrupt an inference just after executing the first DT that makes the aggre-
gated SM or Max. overcome the threshold α. This is indeed what happens on
average, as shown by the fact that curves relative to larger B values come closer
to the static RF ones. However, it is not a hard rule, since the random sampling



Low-Overhead Early-Stopping Policies for Efficient RFs on MCUs 41

Fig. 6. Hardware-independent comparison of the two proposed metrics for B = 1.

Fig. 7. Hardware-independent comparison of the two proposed metrics for B = 2.

and feature selection used to train the DTs can lead to a non-monotonically
increase in prediction quality when adding weak learners. For instance, for the
UniMiB dataset, the Aggregated Max with B = 8 obtains the largest reduc-
tion in the average number of DTs without accuracy drop with respect to the
complete static RF (20.82 trees on average with +0.2% accuracy). On the con-
trary, Ninapro shows the expected results, with the Aggregated SM with B = 1
yielding the least average DTs for the same accuracy as the static RF (18.73).

Table 1 reports the detailed results of this comparison. Specifically, we show
the average number of trees executed by the different variants of the adaptive
inference policy, for two different accuracy conditions, i.e., to reach iso-accuracy
with the original RF (Drop 0.0%) or allowing a negligible degradation (Drop
0.5%) The Red.RF column reports smallest static RF obtaining the same accu-
racy. Since the standard Score Margin and QWYC only achieved accuracy val-
ues with drops larger than 0.5% with respect to the original RF, they are not
reported in the table.

On the ECG dataset we are able to reduce the average number of trees by
57% (17.18 vs 40) with no accuracy loss. Concerning the Ninapro dataset, the
proposed approach can reduce the number of weak learners by 22% (18.73 vs
24), while on UniMiB by 35% (20.82 vs 32).

When accepting an accuracy drop of 0.5%, we achieve a reduction in the
average DTs executed of 91% with respect to the closest RF (Red. RF column)



42 F. Daghero et al.

Fig. 8. Hardware-independent comparison of the two proposed metrics for B = 4.

Fig. 9. Hardware-independent comparison of the two proposed metrics for B = 8.

on the ECG dataset (2.1 vs 24 DTs). On Ninapro, we avoid the execution of
51% weak learners (9.73 vs 20) while for UniMiB of 29% (17.02 vs 24).

6.3 Tree-Ordering Analysis

As anticipated in Sect. 5.4, our results demonstrate that an optimized hardcoded
ordering of DTs to favour early exit does not provide practical advantages. A
first indication of this is shown in Fig. 5, where QWYC with optimized tree
ordering performs significantly worse than the randomly ordered one in terms of
accuracy, for a negligible reduction in the number of invoked trees.

A further confirmation is provided in Fig. 10. To generate it, we shuffled
the DTs of the original RF 20 times at random. For each ordering, we then
compared the early-stopping results on the validation and on the test set of each
dataset. Specifically, we selected an α threshold so that the accuracy drop is 0%
with respect to the static RF (as done in Table 1) and we then extracted the
average number of DTs executed with that threshold on the two data subsets.
We considered the Aggregated SM policy and a batch B = 1 for this experiment.

Two interesting results appear from the figure. First, tree ordering could ide-
ally play a significant role in the early stopping effectiveness. In fact, the average
number of DTs executed on the full test set varies by up to ±15 depending on
the weak learners’ permutation. However, obtaining the optimal ordering on a



Low-Overhead Early-Stopping Policies for Efficient RFs on MCUs 43

Table 1. Average number of trees for different accuracy drops with respect to a full
RF.

Data Full Red. Aggr. Max Aggr. SM

RF RF B = 1 B = 2 B = 4 B = 8 B = 1 B = 2 B = 4 B = 8

Drop: 0%

ECG 40 40 27.22 27.38 28.95 32.55 18.39 18.78 19.58 17.18

Ninapro 24 24 21.52 21.72 22.14 23.07 18.73 18.95 19.62 20.94

UniMiB 32 32 28.41 28.6 28.94 20.82 24.21 24.46 24.97 25.85

Drop: 0.5%

ECG 40 24 2.1 17.63 18.54 20.43 2.19 2.23 8.64 8.86

Ninapro 24 20 12.02 12.56 13.26 14.83 11.55 9.73 10.69 12.83

UniMiB 32 24 23.76 24.08 19.34 20.82 17.02 17.64 18.41 17.43

Fig. 10. Average number of DTs executed with the aggregated SM policy to reach the
same accuracy as the original static RF on the Validation and Test sets respectively.
Each point represent a different ordering of weak learners.

different data subset (in our case, the validation set) does not work, as evident
by the lack of correlation in the scatter plots.

The “optimal ordering” must therefore be computed dynamically based on
the processed input. How to do so while keeping a low overhead will be subject
of our future work.

6.4 Deployment Results

In this section, we report the results obtained with the proposed adaptive infer-
ence method when deployed on the target edge device. Figure 11 shows the
Pareto fronts in terms of accuracy versus average energy consumption per infer-
ence on PULPissimo. For each dataset, we report the results of static RFs
with different numbers of weak learners, as well as both our proposed early-
stopping policies (Aggregated Max Score and Aggregated SM), with two batch
sizes (B = 1 and B = 2). Differently from Sect. 6.2, here energy results include
also the overheads for evaluating the early-stopping policies.

Indeed, as expected, while the curves are similar to the ones reported in
Fig. 5, the early stopping overhead becomes visible. This brings the adaptive



44 F. Daghero et al.

Fig. 11. Accuracy versus average energy per inference.

approach closer to the baseline. Nonetheless, our proposed method still signif-
icantly outperforms static RFs. In detail, at iso-accuracy with a static RF, we
obtain energy savings up to 26% on the UniMiB dataset, up to 91% on ECG5000
and up to 45% on Ninapro.

Table 2 reports the detailed energy results on each dataset, under the same
conditions described in Table 1. While the top-performing approaches are similar
to the hardware-independent case, some notable exceptions occur. For instance,
on Ninapro, the aggregated Score Margin with B = 2, although requiring slightly
more trees on average, requires less energy than the one with B = 1. This
becomes even more evident for B = 4, requiring 0.67 additional trees on average
than B = 2, while “costing” only 0.02 nJ more. Regarding the UniMiB dataset,
the aggregated Score Margin with B = 1 requires the least amount of trees,
however, it has a higher cost in terms of energy than all the other batched
versions. Globally, these results show once again that properly accounting for
the early stopping policy overheads is fundamental in order to assess the real
effectiveness of an adaptive inference method.

Table 2. Average energy consumption, in nJ , for different accuracy drops with respect
to a full RF.

Data Full Red. Aggr. Max Aggr. SM

RF RF B = 1 B = 2 B = 4 B = 8 B = 1 B = 2 B = 4 B = 8

Drop: 0%

ECG 58.27 58.27 41.46 40.87 44.17 47.68 28.31 28.14 30.15 25.77

Ninapro 129.64 129.64 106.85 104.05 104.5 108.24 100.64 95.5 95.52 99.42

UniMiB 134.15 134.15 138.32 133.24 130.2 96.33 128.5 119.91 115.16 117.76

Drop: 0.5%

ECG 58.27 35.32 4.17 26.68 28.95 31.21 4.3 4.29 13.66 13.59

Ninapro 129.64 108.54 61.32 61.76 64.23 71.27 63.56 50.56 53.52 62.29

UniMiB 134.15 101.21 115.92 112.52 89.18 96.33 92.41 88.61 87.69 82.28



Low-Overhead Early-Stopping Policies for Efficient RFs on MCUs 45

7 Conclusions

In this work, we have presented an adaptive inference approach for RFs on
MCUs, based on executing only a subset of the weak learners in order to save
energy. To control this early-stopping mechanism, we have proposed two dif-
ferent lightweight policies which use the class probabilities produced in output
by DTs to estimate the partial prediction confidence. In order to validate our
approach, we have performed extensive experiments on three state-of-the-art
datasets concerning popular embedded tasks. Moreover, we have deployed the
proposed method on a single-core RISC-V MCU, showing that even when taking
into account the overhead associated with the evaluation of the early stopping
policy, we are able to save significant energy with respect to a static model, up
to more than 90% for the same accuracy.

References

1. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: Human activity
recognition on smartphones using a multiclass hardware-friendly support vector
machine. In: Bravo, J., Hervás, R., Rodŕıguez, M. (eds.) IWAAL 2012. LNCS,
vol. 7657, pp. 216–223. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-35395-6 30

2. Atzori, M., et al.: Building the Ninapro database: a resource for the biorobotics
community. In: 2012 4th IEEE RAS & EMBS International Conference on Biomed-
ical Robotics and Biomechatronics (BioRob). IEEE, pp. 1258–1265 (2012)

3. Atzori, M., et al.: Electromyography data for non-invasive naturally controlled
robotic hand prostheses. Sci. Data 1(1), 1–13 (2014)

4. Bradski, G.: The OpenCV library. In: Dr. Dobb’s Journal of Software Tools (2000)
5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/

10.1023/a:1010933404324
6. Burrello, A., et al.: Embedding temporal convolutional networks for energy-efficient

PPG-based heart rate monitoring. ACM Trans. Comput. Healthcare, 3(2) (2022).
issn: 2691–1957. https://doi.org/10.1145/3487910.

7. Chen, Y., Hao, Y., Rakthanmanon, T., Zakaria, J., Hu, B., Keogh, E.: A general
framework for never-ending learning from time series streams. Data Min. Knowl.
Disc. 29(6), 1622–1664 (2014). https://doi.org/10.1007/s10618-014-0388-4

8. Conti, F., Rossi, D., Pullini, A., Loi, I., Benini, L.: PULP: a ultra-low power parallel
accelerator for energy-efficient and flexible embedded vision. J. Signal Proc. Syst.
84(3), 339–354 (2015). https://doi.org/10.1007/s11265-015-1070-9

9. Daghero, F., et al.: Energy-efficient adaptive machine learning on IoT end-nodes
with class-dependent confidence. In: 2020 27th IEEE International Conference on
Electronics, Circuits and Systems (ICECS), pp. 1–4 (2020). https://doi.org/10.
1109/ICECS49266.2020.9294863

10. Daghero, F., et al.: Energy-efficient deep learning inference on edge devices. In:
Hardware Accelerator Systems for Artificial Intelligence and Machine Learning.
Ed. by Shiho Kim and Ganesh Chandra Deka, vol. 122. Advances in Computers.
Elsevier, pp. 247–301 (2021)

11. Daghero, F., et al.: Adaptive random forests for energy-efficient inference on micro-
controllers. In: 2021 IFIP/IEEE 29th International Conference on Very Large Scale
Integration (VLSI-SoC). IEEE, pp. 1–6 (2021)

https://doi.org/10.1007/978-3-642-35395-6_30
https://doi.org/10.1007/978-3-642-35395-6_30
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1145/3487910.
https://doi.org/10.1007/s10618-014-0388-4
https://doi.org/10.1007/s11265-015-1070-9
https://doi.org/10.1109/ICECS49266.2020.9294863
https://doi.org/10.1109/ICECS49266.2020.9294863


46 F. Daghero et al.

12. Daghero, F., et al.: Ultra-compact binary neural networks for human activity recog-
nition on RISC-V processors. In: Proceedings of the 18th ACM International Con-
ference on Computing Frontiers, pp. 3–11 (2021)

13. Di Mauro, A.Q., et al.: Always-on 674μ W@ 4GOP/s error resilient binary neural
networks with aggressive SRAM voltage scaling on a 22-nm IoT endnode. In: IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 11, pp. 3905–
3918 (2020)

14. Donos, C., Dümpelmann, M., Schulze-Bonhage, A.: Early seizure detection algo-
rithm based on intracranial EEG and random forest classification. Int. J. Neural
Syst. 25(05), 1550023 (2015). https://doi.org/10.1142/S0129065715500239

15. Fan, L., Wang, Z., Wang, H.: Human activity recognition model based on deci-
sion tree. In: Proceedings of the 2013 International Conference on Advanced
Cloud and Big Data. CBD 2013. USA. IEEE Computer Society, pp. 64–68. isbn:
9781479932610 (2013). https://doi.org/10.1109/CBD.2013.19

16. Gao, T., Koller, D.: Active classification based on value of classifier. In: Shawe-
Taylor, J., et al., (eds.) Advances in Neural Information Processing Systems 24.
Curran Associates Inc, pp. 1062–1070 (2011). http://papers.nips.cc/paper/4340-
active-classification-based-onvalue-of-classifier.pdf

17. Garofalo, A., et al.: PULP-NN: accelerating quantized neural networks on parallel
ultra-low-power RISC-V processors. Philos. Trans. R. Soc. A Math. Phys. Eng.
Sci. 378(2164), 20190155 (2020). https://doi.org/10.1098/rsta.2019.0155

18. Jacob, B., et al.: Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2018)

19. Jahier Pagliari, D., et al.: Dynamic bit-width reconfiguration for energy-efficient
deep learning hardware. In: Proceedings of the International Symposium on Low
Power Electronics and Design. ISLPED 2018. New York, NY, USA. ACM, vol. 47,
no. (1–47), p. 6. isbn: 978-1-4503-5704-3 (2018). https://doi.org/10.1145/3218603.
3218611

20. Jahier Pagliari, D., et al.: Sequence-to-sequence neural networks inference on
embedded processors using dynamic beam search. Electronics, 9(2) (2020). issn:
2079–9292

21. Jahier Pagliari, D., et al.: CRIME: input-dependent collaborative inference for
recurrent neural networks. IEEE Trans. Comput. 1 (2020). issn: 1557–9956.
https://doi.org/10.1109/TC.2020.3021199

22. Jahier Pagliari, D., et al.: Input-dependent edge-cloud mapping of recurrent neu-
ral networks inference. In: 2020 57th ACM/IEEE Design Automation Conference
(DAC), pp. 1–6 (2020). https://doi.org/10.1109/DAC18072.2020.9218595

23. Maimon, O.Z., Rokach, L.: Data mining with decision trees: theory and applica-
tions, vol. 81. World scientific (2014)

24. Micucci, D., et al.: Unimib shar: a dataset for human activity recognition using
acceleration data from smartphones. Appl. Sci. 7(10), 1101 (2017)

25. John Mingers, J.: An empirical comparison of pruning methods for decision
tree induction. Mach. Learn. 4(2), 227–243 (1989). https://doi.org/10.1023/A:
1022604100933

26. Molchanov, P., et al.: Pruning convolutional neural networks for resource efficient
inference. In: 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, 24–26 April 2017, Conference Track Proceedings. OpenRe-
view.net (2017). https://openreview.net/forum?id=SJGCiw5gl

https://doi.org/10.1142/S0129065715500239
https://doi.org/10.1109/CBD.2013.19
http://papers.nips.cc/paper/4340-active-classification-based-onvalue-of-classifier.pdf
http://papers.nips.cc/paper/4340-active-classification-based-onvalue-of-classifier.pdf
https://doi.org/10.1098/rsta.2019.0155
https://doi.org/10.1145/3218603.3218611
https://doi.org/10.1145/3218603.3218611
https://doi.org/10.1109/TC.2020.3021199
https://doi.org/10.1109/DAC18072.2020.9218595
https://doi.org/10.1023/A:1022604100933
https://doi.org/10.1023/A:1022604100933
https://openreview.net/forum?id=SJGCiw5gl


Low-Overhead Early-Stopping Policies for Efficient RFs on MCUs 47

27. Panda, P., Sengupta, A., Roy, K.: Conditional deep learning for energy-efficient and
enhanced pattern recognition. In: Proceedings of the 2016 Conference on Design,
Automation & Test in Europe. DATE 2016, San Jose, CA, USA. EDA Consortium,
pp. 475–480 (2016). isbn: 9783981537062

28. Park, E., et al.: Big/little deep neural network for ultra low power inference. In:
2015 International Conference on Hardware/Software Code- sign and System Syn-
thesis (CODES+ISSS), pp. 124–132 (2015). isbn: 978-1-4673-8321-9. https://doi.
org/10.1109/CODESISSS.2015.7331375

29. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

30. Pereira, J., Silveira, M.: Learning representations from healthcare time series data
for unsupervised anomaly detection. In: 2019 IEEE International Conference on
Big Data and Smart Computing (BigComp). IEEE, pp. 1–7 (2019)

31. Samie, F., et al.: From cloud down to things: an overview of machine learning in
internet of things. IEEE Internet Things J. 6(3), 4921–4934 (2019). issn: 2327–
4662. https://doi.org/10.1109/JIOT.2019.2893866

32. Schwing, A.G., et al.: Adaptive random forest - how many “experts” to ask before
making a decision? In: CVPR 2011, pp. 1377–1384 (2011). https://doi.org/10.
1109/CVPR.2011.5995684

33. Shi, W., et al.: Edge computing: vision and challenges. In: IEEE Internet Things
J. 3(5), 637–646 (2016). issn: 2327–4662. https://doi.org/10.1109/JIOT.2016.
2579198

34. SiFive. SiFive Core IP. (2021). https://www.sive.com/risc-v-core-ip
35. STMicroelectronics. iNEMO inertial module: always-on 3D accelerometer and 3D

gyroscope. Website (2019). www.st.com/resource/en/datasheet/lsm6dsox.pdf
36. Sze, V., et al.: Efficient processing of deep neural networks: a tutorial and survey.

Proc. IEEE, 105(12), 2295–2329 (2017). issn: 00189219. https://doi.org/10.1109/
JPROC.2017.2761740, arXiv: 1703.09039

37. Tann, H., et al.: Runtime configurable deep neural networks for energy-
accuracy trade-off. In: Proceedings of the Eleventh IEEE/ACM/IFIP Inter-
national Conference on Hardware/SoftwareCodesign and System Synthesis
- CODES 2016, pp. 1–10 (2016). isbn: 9781450344838. https://doi.org/
10.1145/2968456.2968458, arXiv: arXiv:1508.06655v1, http://dl.acm.org/citation.
cfm?doid=2968456.2968458

38. The PULP Platform. GVSOC: PULP Virtual Platform (2020). https://github.
com/pulp-platform/gvsoc

39. Wang, S., et al.: Quit when you can: efficient evaluation of ensembles by optimized
ordering. ACM J. Emerg. Technol. Comput. Syst. (JETC) 17(4), 1–20 (2021)

40. Zhou, Z., et al.: Edge intelligence: paving the last mile of artificial intelligence with
edge computing. Proc. IEEE, 107(8), 1738–1762 (2019). issn: 1558–2256 VO - 107.
2918951. https://doi.org/10.1109/JPROC.2019.2918951

https://doi.org/10.1109/CODESISSS.2015.7331375
https://doi.org/10.1109/CODESISSS.2015.7331375
https://doi.org/10.1109/JIOT.2019.2893866
https://doi.org/10.1109/CVPR.2011.5995684
https://doi.org/10.1109/CVPR.2011.5995684
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/JIOT.2016.2579198
https://www.sive.com/risc-v-core-ip
www.st.com/resource/en/datasheet/lsm6dsox.pdf
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
http://arxiv.org/abs/1703.09039
https://doi.org/10.1145/2968456.2968458
https://doi.org/10.1145/2968456.2968458
http://arxiv.org/abs/1508.06655v1
http://dl.acm.org/citation.cfm?doid=2968456.2968458
http://dl.acm.org/citation.cfm?doid=2968456.2968458
https://github.com/pulp-platform/gvsoc
https://github.com/pulp-platform/gvsoc
https://doi.org/10.1109/JPROC.2019.2918951

	Low-Overhead Early-Stopping Policies for Efficient Random Forests Inference on Microcontrollers
	1 Introduction
	2 Background
	2.1 Decision Trees and Random Forests
	2.2 IoT End Nodes
	2.3 Machine Learning at the Edge

	3 Related Works
	4 Motivation and Goal
	5 Methodology
	5.1 Aggregated Score Thresholds for Early Stopping
	5.2 Deployment on MCUs
	5.3 Tree Batching
	5.4 Tree Ordering

	6 Results
	6.1 Benchmarks, Deployment Setup, and Comparisons
	6.2 Hardware-Independent Results
	6.3 Tree-Ordering Analysis
	6.4 Deployment Results

	7 Conclusions
	References




