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Abstract. Convolutional Neural Network (CNN) is widely acknowl-
edged as an effective machine learning model for various detection and
recognition tasks. However, CNN often requires a significant amount of
hardware resources and is high in its power consumption. This hinders
the widespread deployment of CNN model in embedded systems and
wearable devices. Therefore, stochastic computing (SC) which leverages
the power-accuracy trade-off, began to gain popularity in various neu-
ral network (NN) implementations. This paper presents an improved SC
multiply-and-accumulate (MAC) unit that can be utilized as convolu-
tion engines in CNN. The proposed SC-MAC is operated using deter-
ministic sequence and the design achieves latency and power reductions
through parallelism and split mechanism optimizations. Furthermore, we
also introduce decoder-based Stochastic Number Generator (SNG) that
is capable of generating uncorrelated and segmented stochastic number
(SN) without using random sources. The proposed deterministic and split
SC-MAC is synthesized using typical libraries of UMC 40 nm technol-
ogy for detailed hardware evaluation. The functionality of the presented
SC-MAC is also verified in CNN using the MNIST dataset. Overall, our
SC-MAC is proven to achieve higher power efficiency (GMACS/mW)
and lower in energy consumption (pJ/MAC) as compared to the related
works.

Keywords: Stochastic Computing (SC) · Stochastic Number
Generator (SNG) · multiply-and-accumulate (MAC) · Shared
segmented/split design · Convolution engine

1 Introduction

In recent years, Convolutional Neural Network (CNN) has emerged as one
of the most promising artificial neural networks and has been deployed in a
wide range of machine learning applications such as image/video classification

This research is supported by Programmatic grant no. A1687b0033 from the Singapore
government’s Research, Innovation and Enterprise 2020 plan (Advanced Manufacturing
and Engineering domain).

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
V. Grimblatt et al. (Eds.): VLSI-SoC 2021, IFIP AICT 661, pp. 245–266, 2022.
https://doi.org/10.1007/978-3-031-16818-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16818-5_12&domain=pdf
https://doi.org/10.1007/978-3-031-16818-5_12


246 M. M. Wong et al.

[4,14], speech recognition [25] and natural language processing [8]. Software-
based CNN/DCNN usually requires high-performance computer (with acceler-
ators such as GPUs) to process excessive and intensive computations at a very
high processing speed.

The core operation in CNN/DNN computational layer is the convolution
function that involves multiplication and accumulation of the receptive field
and a set of filters/kernels. Due to the excessive amount of multiply-accumulate
(MAC) functions, CNN has rather high implementation cost. With that, MAC
unit is also known as system’s bottleneck as its design’s characteristic fundamen-
tally determines the system’s overall area, power and performance [31]. Hence,
researchers have placed great emphasis on MAC design optimization techniques,
so as to enable neural network (NN) deployment in resource-constrained embed-
ded systems. Instead of exploring new optimization techniques in binary arith-
metic computing, this study focuses on the non-conventional computing domain,
which is Stochastic Computing (SC) for CNN implementation.

In the recent decade, SC has appeared to be a popular solution for hardware
implementation of NN. SC is a form of approximation computing that substitutes
complex mathematical operations with simple logic gates. The biggest advantage
of employing SC is that the resultant circuitry has significantly smaller hardware
footage compared to their binary fixed point counterparts [6,18]. Besides, SC is
also proven capable to outperform conventional computing in terms of fault
tolerance [23]. It is further reported that DSP and NN in their nature are able
to work relatively well using SC, provided its internal computations are able
to attain a certain level of accuracy [23,31]. However, the typical approach for
binary-to-stochastic domain conversion is rather costly as it requires random
number generators (RNGs). Not only that, in order to minimize the conversion
error due to the random fluctuations, the required length of the bit-streams
is increased exponentially with respect to its binary resolution n. As a result,
stochastic bit-stream is larger than 22n bits [13].

This paper is an extended version of an earlier publication of ours [29], where
we provide further descriptions and analysis of our SC-MAC design. To this end,
we highlight the following contribution aspects of this work:

– We present a decoder-based stochastic number generator (SNG) that pro-
duces deterministic and highly uncorrelated stochastic number (SN). Preci-
sion progression of the SNs that are generated from both the positive and
negative binary numbers are analyzed. Results proved that our SNG achieves
lower representation error and requires smaller resolution bit.

– We address the main challenges in the conventional non-deterministic SC in
achieving low latency and high accuracy multiplication. We further demon-
strate that SC multiplication using our SNG is free from random fluctuation
and accuracy loss due to data correlation.

– We incorporate parallelism and split mechanism in our SC-MAC unit in order
to reduce the computational latency. The implementation of both of the opti-
mization techniques is discussed in detail and we further elaborate the inte-
gration of approximate parallel counter (APC) in our SC-MAC design.
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– Our design’s implementation cost and its performance are evaluated using
40 nm process while the computational accuracy is validated in CNN using
MNIST dataset.

The rest of the paper is organized as follows. Section 2 briefly introduces the
background concepts of stochastic computing (SC) that are used in the rest of the
chapter. Section 3 highlights the challenges and the problems in the conventional
non-deterministic SNG design. Section 4 describes our new decoder-based SNG
design and its analysis results are presented as well. Section 5 elaborates our
new SC-MAC solution that is optimized with parallelism and split mechanism.
Section 6 summarizes the overall performance analysis and the benchmarks with
related works. Finally, the conclusions are drawn in Sect. 7.

2 Theory of Stochastic Computation

Stochastic computing (SC) is a form of non-conventional computation where
the computational data is represented as a result of continuous time stochastic
process [9]. This section describes the preliminaries of SC that will be used
throughout this chapter.

2.1 Architecture of Stochastic Computing (SC)

The general architecture of Stochastic Computing (SC) is illustrated in Fig. 1.
The architecture is comprised of stochastic number generator (SNG) that con-
verts (or randomized) binary values into stochastic bit-streams. Meanwhile, the
arithmetic functions (i.e. multiplication, addition/subtraction and many more)
are implemented as stochastic computational elements (SCE) by using simple
logic gates. The final outputs of SCE are converted (or de-randomized) back to
the binary representation. This conversion is performed through counting the
total number of non-zero bits in the stochastic bit-stream. Further descriptions
of the SC components are elaborated in the following subsections.

Fig. 1. Stochastic computing architecture that comprises of stochastic number gen-
erator (SNG), stochastic computing elements (SCE) and de-randomizer. The SCE is
performed in SC domain where its inputs and outputs are represented in stochastic
numbers (SN).
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2.2 Stochastic Number (SN)

The computational data (i.e. Stochastic Number (SN)) is encoded in the
form of digitized probability which is defined by the number of non-zero bits
in the bit-stream. In other words, the SN value is associated with the ratio of
total bit-1s to the total bit number [23]. SN represents computational data in
two different formats: unipolar and bipolar representations [9]. Using unipolar
representation, the values are bound within the internal 0 ≤ s ≤ 1, while using
bipolar representation, the values are extended to −1 ≤ s ≤ 1.

With P (S = 1) is the probability of non-zero bits in bit-stream S, both
the unipolar (UR) and bipolar (BR) representations are derived using Eq. 1
[9,28]. For example, in Fig. 2, bit-stream S of 24 = 16 bits has 13 bit-1. In
unipolar representation, bit-stream S is equivalent to UR = P (S = 1) = 0.625.
Meanwhile, in bipolar representation, the same bit-stream will be interpreted as
BR = 0.8125.

UR = P (S = 1)

BR = 2
(
P (S = 1) − 1

2

)
(1)

Fig. 2. Stochastic Number (SN) generated in serial, S = 13/16 representing 0.625 in
unipolar representation and 0.8125 in bipolar representation.

Note that stochastic representation is not defined based on the position of
any particular bit in the bit-stream S [28]. Instead, it is based on the proba-
bility of total bit-1s at arbitrary position. As SC utilizes non-positional number
representation, it is less susceptible towards errors that are caused by bit-flip.
Meanwhile, in the conventional 2’s complement computation, single bit-flip on
the higher-order bit will lead to significant error. As all the bits in the SN bit-
stream carry equal significance, single bit-flip in a long bit-stream will only cause
a minor deviation in its binary representation.

2.3 Binary-Stochastic Data Conversion

There are two types of converters (refer Fig. 3) that are required in SC archi-
tecture, which is the randomizer or generally known as the stochastic number
generator (SNG), and the de-randomizer or simply known as counter.

SNG performs binary to stochastic conversion and it is typically designed
using random source and comparator. The conversion is based on the compar-
ison between the binary data and the values from the random source (refer
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Fig. 3 (i)). If the binary input is larger than the random value, output bit-1 will
be generated, otherwise output bit-0 will be generated. Linear Feedback Shift
Register (LFSR) is one of the common choices for (pseudo) random number
generator [12]. A k-bit LFSR is able to generate a total of 2k − 1 unique k-bit
outputs. Therefore, comparing the binary input X (of k-bit) with the LFSR out-
put sequence will generate SN bit-stream of 2k−1 bits. The generated bit-stream
contains a total of X − 1 bit-1s which the SN of binary input X is represented
as X

2k
[12].

On the other hand, converting the SN back to the binary data is simply
calculating the total bit-1s in the bit-stream. This can be easily implemented
using counter such as shown in Fig. 3 (ii). Following the nature of this stochastic
representation, the subsequent SC arithmetic can be implemented using simple
logic circuits [2,23] which will be explained next.

Fig. 3. Computational data conversion. (i) Randomizer/SNG: From binary data to
stochastic representation (ii) De-randomizer/counter: From stochastic representation
back to binary data.

2.4 Stochastic Computing Elements (SCE)

Multiplication in SC can be effectively implemented using single logical gate.
Assuming the input to the multiplication, X1 and X2 are uncorrelated, the
derivation of its output Y , is given in Eq. 2. With that, as depicted in Fig. 4, the
logical AND gate and logical XNOR gate are used as a SC multiplier in unipolar
and bipolar representation respectively.

y = P (Y )
= P (X1) · P (X2) + (1 − P (X1)) · (1 − P (X2)) (2)
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Fig. 4. Stochastic Multiplier for (i) unipolar and (ii) bipolar representations.

Addition in SC is performed in a scaled manner such that the output is
probability value within the range [0, 1]. To be exact, SC addition requires a
constant scale, S, such that the sum (Y ) of two inputs X1 and X2, is defined as
Eq. 3.

y = P (Y )
= P (S)P (X1) + (1 − P (S))(P (X2))
= SX1 + (1 − S)X2 (3)

Thus, multiplexer with conditional select line S, set as P (S) = 1
2 can be used to

realize the scaled addition of two stochastic bit-streams in digital circuit.
Subtraction in SC is essentially the same as the SC addition but with one

of the input is inverted (using logical NOT gate). Both the stochastic scaled
adder and scaled subtractor are shown in Fig. 5.

Fig. 5. Stochastic scaled adder/substractor for (i) unipolar and (ii) bipolar represen-
tations.

3 Challenges in Conventional (Non-deterministic)
Stochastic Computing (SC)

Though SC is a favourable alternative to binary computing, we have identified
two main drawbacks in the computation, which also serve as the main motiva-
tions of this study. First, the stochastic number generator (SNG) incurs
the major overhead in the entire SC system. To be exact, conventional SNG
that utilizes random sources consumed up to 80% of the overall computational
cost [3]. For instance, the LFSR-based SNG that is commonly used for binary-
to-stochastic conversion (refer to Sect. 2), has high power dissipation per area as
compared to the SC element such as the logical AND or XNOR gates.
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Following this, several works either designed compact random source (such
as RNG) for SNG [11] or proposed random source sharing between the SNGs
in order to reduce the overall hardware area cost [16,20]. However, it is worth
a note that the latter approach causes correlation between the input SN bit-
streams [20]. This leads to the second challenge in SC circuit design, which the
correlation between the SN bit-streams will degrade the overall com-
putational accuracy. In other words, correlation in the input data tends to
alter the expected outcome of the stochastic logic and this is evident in stochas-
tic multiplication. One of the potential scenarios is to multiply stochastic inputs
that are directly inverse of each other and this produces the output Z as zero
instead of the product PxPy.

The technical implication of data correlation in SC context is reported in [1,
22]. The works proved that SC multiplication which involves logical AND/XNOR
gates will suffer from accuracy degradation when the inputs are correlated. On
the other hand, the study further reported that such output discrepancy does not
happen when correlated or uncorrelated input data are used in the multiplexer.
Therefore, stochastic scaled addition/subtraction naturally is not affected. This
analysis is also summarized using the examples given in Fig. 6.

Fig. 6. Analysis of SCE with correlation data. (Left) Stochastic multiplication (i) using
uncorrelated inputs and produces accurate/expected result and (ii) using correlated
inputs and produces inaccurate/unexpected results. (Right) Stochastic addition with
accurate/expected result using (iii) uncorrelated inputs and (iv) correlated inputs.

Based on the discussion above, it is evident that uncorrelated SN generation
is essential to obtain high accuracy computation in SC multiplication, as well
as SC-MAC. This also implies that random source is not necessarily needed for
SNG. Therefore, this study focuses on non-conventional SC approach where the
computations are performed on deterministic sequences.

4 New Lightweight and Deterministic SNG Design

In this work, we presented a new SNG that overcomes the drawbacks in the
conventional design (refer to Sect. 3). The new SNG is lightweight, and pro-
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duces deterministic and uncorrelated SN without the need of random sources
(PRNG/RNG). Detailed description of our design and its analysis results are
elaborated in the following subsections.

4.1 Decoder-Based and Deterministic SNG

The main concept of the proposed SNG is using binary data to produce a pri-
mary k-bit pattern which can be repeated p times to generate the deterministic
SN bit-stream. An example of the generated SN bit-stream is shown in Fig. 7.
Furthermore, both the parameters p and k can be configured in a way that the
SN fulfills the required precision and correlation levels in the SC system.

Fig. 7. Deterministic SN examples (i) For X = 0.40, 2/5 is repeated 4 times to generate
bit-stream that comprises of 40% bit-1 and 60% bit-0. (ii) For Y = 0.75, 3/4 is repeated
5 times to generate bit-stream that comprises of 75% bit-1 and 25% bit-0.

The core design of this SNG is the k-bit pattern generator, which we imple-
mented using n-to-2n decoder. With that, the decoder’s output is concatenated
p times to produce SN bit-stream of k × p bit length. The design is low in
hardware cost and high in efficiency because the SN bit-stream can be gener-
ated instantaneously within a clock cycle. The proposed decoder-based SNG and
its comparison with the conventional SNG and the existing deterministic SNGs
(using source/wave generator) are illustrated in Fig. 8.

In addition to the design complexity, we also analyzed the precision progres-
sion of the generated SN in representing the positive and the negative binary
numbers. As our deterministic SNG does not utilize random source, the gener-
ated SN is free from random fluctuations. Besides, with our SNG, highly accurate
SN can be attained with smaller resolution bit. As presented in Fig. 9, conven-
tional SNG (using random source) requires at least 216 bits to accurately repre-
sent bipolar real number in the intervals of [0, 1] and [−1, 0]. On the other hand,
our proposed SNG requires only 26 bits to sufficiently represent the same bipolar
numbers (refer Fig. 10).
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Fig. 8. (Top) SNG designs from prior works. The deterministic SNG design is reported
[13] .(Bottom) The proposed decoder-based SNG: SNG conversion for 8-bits input, X,
to deterministic SN output of 28-bits with (p = 16) segments and each segment is
(k = 16) bit-length. Note that the parameters p and k can be configured according to
the application’s requirements.

Fig. 9. Stochastic values derived using conventional (non-deterministic) SNG across a
range of 2n precision bits. It is shown that at least 216 bits is required to represent
both (i) positive and (ii) negative values in SN without error.
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Fig. 10. Stochastic values derived using proposed (deterministic) SNG across a range
of 2n precision bits. It is shown that 26 bits is sufficient to represent both (i) positive
and (ii) negative values in SN without error.

4.2 Stochastic Multiplication Using Decoder-Based SNG

Since the proposed SNG produces deterministic bit-stream which is comprised of
p repetitions of k-bit pattern, we configure these parameters to generate uncorre-
lated SNs for stochastic multiplications. Given u/x is represented in x-bits with
u number of bit-1 and the remaining x − u bits are zeros. Similarly, given v/y
is represented in y-bits with v number of bit-1 and the remaining y − v bits are
zeros. Assuming both bit-streams are repeated to S-bit length, the stochastic
multiplication of (u/x) × (v/y) can be computed correctly if S is the least com-
mon multiple (LCM) number of x and y and that x and y are relatively prime
[21].

As an example, the generated SN using the proposed SNG for input X and
Y are shown in Fig. 11 and are contrasted with the conventional random SNs.
In Fig. 11 (ii), the input x = 2/5 is repeated 3 times while the input y = 2/3 is
repeated 5 times to produce bit-streams of 15-bit (i.e. LCM(5, 3)). As a result,
multiplying (AND) both the bit-streams produces the same result as the con-
ventional stochastic multiplication in Fig. 11 (i). This example demonstrates the
generated deterministic SNs are uncorrelated and are feasible for SC multiplica-
tion.

We further analyzed the distribution of the output obtained from SC mul-
tiplication across a range of different j-bit resolution. In this analysis, SC mul-
tiplication is performed using SNs of the same value 0.6 (i.e. 0.6 × 0.6) that is
represented using bit-streams of 2j length with j varies from 5 to 10 bits. The
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Fig. 11. SC unipolar multiplication (logical AND operation) of two input sequences,
X and Y , which are generated in two different probabilistic representations; (i) random
stochastic sequence (ii) uncorrelated and segmented stochastic sequence. The example
shows that sequences in (ii) that are generated by the proposed SNG can be used to
perform multiplication in the same way as the conventional random sequence in (i).

computation is experimented using SNs generated from (i) Conventional SNG,
(ii) SNG [16] and (iii) Proposed SNG. The outcome of the SC multiplication
using various precision bits is shown in Fig. 12.

In this figure, the accuracy of SC multiplication is reflected in terms of the
mean, max and min values where the expected value is 0.6 × 0.6 = 0.36. From
the observation in Fig. 12 (iii), multiplication using deterministic and uncorre-
lated SNs produces output that is free from random fluctuation resultant from
PRNG/RNG. With that, the output is always consistent and hence, the max and
min values are the same as the median value for all the precision bit. Therefore,
our SNG in (iii) has outperformed (i) and (ii) in terms of the quality of the gen-
erated SN bit-streams. In addition to that, we further extended the experiment
to using random inputs to perform SC multiplication. The average errors with
respect to the range of precision bits are summarized in Fig. 12 (iv). For j = 10
bits, the observed error from the multiplication is less than 3%. This analysis
has proven that our proposed SNG ensures both the SC representation accuracy
and multiplication accuracy.

4.3 Near Zero Bipolar Representation Analysis

We further evaluate the accuracy of the proposed SNG in converting the near
zero binary value to SC bipolar representation. For SC bipolar encoding, it is
known that near-zero values tend to generate large random errors and this will
affect the accuracy in SC multiplication [15]. In CNN/DNN architecture, the
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Fig. 12. Accuracy of SC unipolar multiplication (logical AND operation) using inputs
0.6 derived from (i) Conventional SNG (ii) SNG reported in [16] and (iii) Proposed
SNG. The expected value is 0.36. (iv) Average error ratio for 100 runs with random
inputs.

synaptic weights are often initialized to normally distributed random numbers.
At the same time, the weights value are aggregated towards zero (due to L1-,
L2-regularization) so as to give penalties to non-zero parameters as a means to
prevent over-fitting [10]. Thus, deploying SC for CNN/DNN applications can be
challenging where the majority kernel weights are near-zero values. In this case,
using deterministic SN which is highly consistent (without random fluctuation)
will be a better alternative.

In this analysis, the representation accuracy for zero and near-zero values
using deterministic SN (from our SNG) as compared to the conventional random
SN is shown in Fig. 13. First, the accuracy obtained from zero values encoding
in SC bipolar representation using a range of precision bit is shown in Fig. 13
(i). The result shows that it requires more than 216 bits to achieve error free SC
encoding for zero binary value. On the other hand, our deterministic approach
only requires 24 bits to accurately represent zero value. Next, we analyzed the
approximation error obtained for near zero values (x ∈ [−0.02, 0.02]) in SC
bipolar representation. Based on the result in Fig. 13 (ii), conventional bipolar
representation has significant higher approximation error for near zero values.
The error is observed to be higher at the value is closer towards zero.
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Fig. 13. Error analysis in SC bipolar representation for (i) zero value (ii) near zero
values. The analysis results show that the proposed SNG is able to produce SN with
lower error.

4.4 Hardware Area and Power Analysis

In this subsection, we present the analysis of the hardware cost (area resource and
power consumption) of the proposed SNG. The synthesis result of the existing
designs and our SNG are summarized in Table 1. The results show that our SNG
has the lowest power consumption and is the most lightweight (area) compared
to both the conventional and the other deterministic-based SNGs.

5 New SC-MAC Solution for Convolution Engine

In the previous section, we presented a new SNG design that generates uncorre-
lated and deterministic SN which (i) is free from random fluctuation errors and
(ii) achieves high bipolar representation accuracy. Following this, we propose a
new SC-MAC design for convolution engine that computes under deterministic
stochastic logic. We further incorporated parallelism and split SC mechanism in
order to achieve energy reduction and power efficiency improvement. Detailed
description of the proposed SC-MAC design will be explained in the following
subsections.
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Table 1. Hardware area and power for various SNG designs for 2 parallel inputs of
8-bits resolution, synthesized using 40 nm process node at nominal voltage.

SNG Area Power Remarks

Work [23] 357.14 366.62 LFSR and comparator

Work [3] 263.90 470.91 Analog-stochastic Converter

Work [30] 211.75 210.17 Error cancellation (ECPCC)

Work [21] 237.04 395.06 PWM (deterministic)

327.46 NA Relative prime (deterministic)

Work [13] 436.61 NA Rotation (deterministic)

327.46 NA Clock divider (deterministic)

This work 173.71 4.2 Split SC and decoder (deterministic)

5.1 Parallel and Split SC Computation

Conventional SC often suffers from long computational latency due to SNG that
is operated in a serial manner. On the other hand, the decoder-based SNG pre-
sented in this work enables the SN bit-stream to be generated instantaneously
(refer to Sect. 4). With that, the overall SC performance is no longer constrained
by the stochastic input generation rate. Subsequently, speed improvement tech-
niques are feasible to be incorporated in our SC-MAC design effectively.

First, parallelism technique can be employed in order to reduce the total
execution cycles. Using this approach, bit-parallel processing is incorporated
in the SC-MAC operation such that L-bit sequence is partitioned into L/r
sequences of r bits. This way, all of the L/r sequences can be processed in
parallel as shown in the example in Fig. 14. This figure shows that the 16-bit
input is partitioned into four of 4-bit sequences which can be processed simul-
taneously. Therefore, for our SC-MAC implementation, we have chosen r = 32
such that the inputs to the SC-MAC with L = 256 can be completed in 8 cycles.
In each cycle, the r-XNOR can be processed simultaneously and followed by
accumulation, which will be discussed in the next subsection.

Second, split SC mechanism can be incorporated to effectively reduce the
SN bit-length. We introduced split SC-MAC architecture where the N bits fixed-
point binary data is split into k parts prior to the computation. Therefore, the
resulting SN is represented as k times of 2N/k bit-streams (instead of a single
2N bit-stream). This results in computation speedup by a factor of k. Similar
approach was presented in [7] but the work reviewed that their design incurred
higher area and power consumption as compared to the original SC architecture.
Furthermore, the design also required additional SNGs to generate parallel bit-
streams and this leads to hardware cost overheads.

In this study, we implemented split stochastic processing with k = 2 such that
the binary inputs are divided into 2 equal segments (refer Fig. 16). In the context
of convolution, given two fixed point binary input to the SC-MAC are input
feature X, and kernel weights W , these inputs are divided as X = {XH ,XL} and
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Fig. 14. Bit-parallelism of r = 4 for SC-MAC function. This example shows the input
sequence of 16-bits that are partitioned into shorter sequences (r = 4).

W = {WH ,WL}. With that the SNG converts the segments XH ,XL,WH ,WL

to SN bit-streams prior to MAC operations.

5.2 Optimized Bipolar SC Multiplication and Addition

The overall architecture of our split SC-MAC architecture as the core compu-
tation for convolution engine is depicted in Fig. 15. An example is provided in
the figure to explain the computation. The bipolar SC multiplication and SC
addition for the MAC operation in our design are explained in the following.

SC Multiplication: While the conventional bipolar SC multiplication is
described in Sect. 2, the split bipolar SC multiplication used in this work
is described in Eq. 4 (also refer to Fig. 16). Note that in Eq. 4, the term
Pr(Xlo) · Pr(Whi) is intentionally excluded from the original dot-product terms
(i.e. Pr(Xlo) ·Pr(Wlo), Pr(Xlo) ·Pr(Whi), Pr(Xhi) ·Pr(Wlo), Pr(Xhi) ·Pr(Whi)).
For the input feature X, its MSB carries larger significance over its LSB and
meanwhile, the kernel weights values are often very small and hence its LSB
is more significant compared than its MSB. Therefore, for split SC-MAC, this
dot-product term can be omitted in order to reduce the computation complexity.

The split bipolar SC multiplication requires XNOR for dot-product (·) and
the term {Pr(Xhi) + Pr(Xlo)} is simply a bit concatenation. Furthermore, the
dot-product is performed using 32 XNORs executed in parallel.
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Fig. 15. Architecture of the proposed split SC-MAC. SNG is performed on the LSB
and MSB of both the 8-bits input feature (X) and the kernel weight (W ). SNGs
generate deterministic SN of 256-bits using segments of 16-bits (×15) and 15-bits (×16)
respectively. The parallel SC-MAC can be referred to Fig. 14 with r = 32. The output
is converted back via bit-shifting and addition.

Fig. 16. Split SC and deterministic bipolar multiplication (using XNOR) for input
X = {XH , XL} and W = {WH ,WL}. The bipolar multiplication is as derived in Eq. 4.
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Pr(X) = {Pr(Xhi), Pr(Xlo)}
Pr(W ) = {Pr(Whi), Pr(Wlo)}

Pr(Z) = Pr(X) · Pr(W )
= {Pr(Xhi) · Pr(Whi), Pr(Wlo) · [Pr(Xhi) + Pr(Xlo)]} (4)

SC Addition: Stochastic representation values are kept within the probability
interval of either [0, 1] or [−1, 1] for unipolar and bipolar format respectively.
Therefore, a typical SC addition/subtraction is implemented using multiplexer
(with fixed select-and-scale) in order to keep the output value within the interval
(see Fig. 17). Given an example where SC-MAC is used as a convolution engine
for grayscale images with a filter of N × N kernel size, there are two potential
problems that can be identified. First, there will be an inevitable precision lost
as the output can only be scaled up to the closest factor of �log2(N ×N)�. Fur-
thermore, the accuracy will be affected due to the loss of n− 1 information [19].
Second, if there are several zero value operands throughout the MAC computa-
tion, using a multiplexer with constant selector as the SC scaled-adder will end
up over scaling in the accumulated output.

Fig. 17. Conventional SC fixed scaled adders for 4-operands.

With that, using a parallel counter (see Fig. 18 (i)) will guarantee accurate
accumulation but it is consisted of array of full adders (FA). FA uses binary adder
logic circuit and hence it is relatively high in hardware cost [17,19]. Therefore,
in this study, we utilize Approximate Parallel Counter (APC) [17] which has
reduced number of FA components (see Fig. 18 (ii)). The computation fulfils the
same counting function but using less area and power consumption compared to
the parallel counter. However, there is a slight trade-off in the accuracy, which is
acceptable for approximation computing such as SC. Unlike multiplexers, APC
enables us to have the flexibility to scale the accumulated values (i.e. count-and-
scale) which the factor can be fine-tuned to suit different applications. Not only
that, since the output of the APC is already in binary domain, the stochastic-
to-binary conversion/de-randomizer is no longer needed.
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Fig. 18. Converter/De-randomizer to convert SN bit-stream to binary number using
counter [17]. The example shown is to convert 16-bit SN to 4-bit binary using (i)
Approximate Parallel Counter (ii) Parallel counter.

6 Experimental Result and Analysis

In this section, we discuss the evaluation result of our proposed SC-MAC unit
in terms of its functionality as convolution engine, as well as its performance in
hardware implementation. In doing so, our SC-MAC is integrated in CNN and
the network’s accuracy performance in MNIST classification is analyzed. There-
fore, a total of 70, 000 MNIST data samples with each is 28 × 28 of handwritten
digit images in grayscale are used for classification. The CNN topology used in
our test case is as the following.

The first hidden layer is a Convolution layer that has 32 filters and all of the
filters have 3 × 3 sliding window with a stride of 1. This is followed by a Max
pooling layer with pool size of 2×2. Regularization layer (Dropout) is configured
to randomly exclude 25% of the neurons in the layer to avoid over-fitting. This
is followed by a Flatten layer that converts 2D convolution matrix data to 1D
data, which will then be connected to Fully Connected layer. Dropout layer of
30% is used after that and finally, the output layer has 10 neuron for 10 classes.
Using the proposed SC-MAC in the Convolution layer, the accuracy obtained
from MNIST classification is 98.2%.

Furthermore, we benchmark our SC-MAC design with the existing works
in terms of power efficiency (TOPS/W) and energy per operation (pJ/MAC).
For comprehensive hardware analysis, our design is synthesized using typical
libraries of UMC 40 nm technology. In Table 2, the works presented in [26] and
[27] are the only work besides ours that implemented SC-MAC without using
random sources.

The work in [26] presented a new SC multiplication algorithm which is also
known as vectorized multiplication (BISC-MVM). In this design, the SNG uti-
lized a finite state machine (FSM) and a multiplexer to generate deterministic SN
with bit shuffling pattern. The work is further extended to the implementation in
Fully Connected layer and has successfully achieved performance improvement
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[27]. The study performed quantitative analysis that is inclusive of the end-to-
end SC computation only. In addition, the work in [15] proposed LFSR-based
SNG and the SNGs are effectively shared in the parallel computation. Despite
the fact that the proposed SNG sharing approach does not lead to data corre-
lation, the generated SNs may be susceptible towards random fluctuation error.
In addition to that, the reported accuracy is lower compared to our work.

With this study, we have further proven the feasibility of utilizing determinis-
tic sequence for SC. The presented bipolar decoder-based SNG is able to generate
deterministic and uncorrelated SN which attains high precision progression with
shorter bit-length compared to the conventional SNG. The generated SN bit-
stream is free from random fluctuations error for both the zero and near-zero
bipolar representation. Furthermore, our SNG is the most compact in size and
has the lowest power consumption compared to the existing deterministic SNG
in digital domain [13,21]. As the SN is generated instantaneously in our design,
this enable further latency reduction through parallelism and split mechanism in
our SC-MAC design. Overall, our proposed SC-MAC design attained the highest
power efficiency (12.5 GMACS/mW or 25TOPS/W) and the lowest energy per
MAC operation (80 fJ/MAC) as compared to the prior arts.

7 Conclusion

In summary, we presented a power-efficient deterministic SC-MAC unit, that is
suitable to be deployed as a lightweight convolution engine. This SC-MAC uti-
lizes decoder-based SNG that is capable of generating deterministic and uncorre-
lated SN bit-streams without using random source. Furthermore, the new SNG
requires significantly shorter bit-length to accurately encode bipolar SN without
random fluctuation. As the SNs are generated instantaneously, the subsequent
computation latency can be reduced effectively and this leads to energy savings
in the proposed SC-MAC. Our work incorporated parallelism and split mecha-
nism in the presented SC-MAC unit in order to improve the power efficiency of
the design without incurring excessive cost. We further demonstrated the pro-
posed SC-MAC as convolution engine in CNN and its functionality is tested in
MNIST classification. The experimental results proved that our deterministic
SC-MAC surpasses the existing designs in terms of GMACS/W and fJ/MAC
metrics.
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