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Preface

This book contains extended and revised versions of the highest quality papers, pre-
sented during the 29th edition of the IFIP/IEEE WG 10.5 International Conference on
Very Large Scale Integration (VLSI-SoC 2021), a global system-on-chip design and
computer-aided design conference. The 29th edition of the conference was held during
October 4–8, 2021, virtually from Singapore. Previous conferences have taken place in
Edinburgh, Scotland (1981); Trondheim, Norway (1983); Tokyo, Japan (1985);
Vancouver, Canada (1987); Munich, Germany (1989); Edinburgh, Scotland (1991);
Grenoble, France (1993); Chiba, Japan (1995); Gramado, Brazil (1997); Lisbon,
Portugal (1999); Montpellier, France (2001); Darmstadt, Germany (2003); Perth,
Australia (2005); Nice, France (2006); Atlanta, GA, USA (2007); Rhodes, Greece
(2008); Florianopolis, Brazil (2009); Madrid, Spain (2010); Kowloon, Hong Kong
(2011); Santa Cruz, CA, USA (2012); Istanbul, Turkey (2013); Playa del Carmen,
Mexico (2014); Daejeon, South Korea (2015); Tallin, Estonia (2016); Abu Dhabi,
United Arab Emirates (2017); Verona, Italy (2018); Cuzco, Peru (2019); and Salt Lake
City (2020, virtual edition).

The purpose of this conference, sponsored by IFIP TC 10 Working Group 10.5, the
IEEE Council on Electronic Design Automation (CEDA), and the IEEE Circuits and
Systems Society, with the In-Cooperation of ACM SIGDA, is to provide a forum for
the presentation and discussion of the latest academic and industrial results and
developments as well as the future trends in the field of system-on-chip (SoC) design,
considering the challenges of nano-scale, state-of-the-art, and emerging manufacturing
technologies. In particular, VLSI-SoC 2021 addressed cutting-edge research fields like
emerging technologies, analog and mixed-signal circuits, VLSI and embedded system
design, testing and verification, computer-aided design, design for security, reliable
in-memory computing, secure hardware architectures, and cyber-physical systems
on heterogeneous system-on-chips. The chapters of this new book in the VLSI-SoC
series continue its tradition of providing an internationally acknowledged platform for
scientific contributions and industrial progress in this field.

For VLSI-SoC 2021, 44 papers out of 75 submissions were selected for oral and
poster presentations. There was an average of 3.45 reviews of each paper in the
conference selection process and out of the 44 full papers presented at the conference,
12 papers were chosen by a special selection committee to have an extended and
revised version included in this book. The selection process of these papers considered
the evaluation scores during the conference review process as well as the review forms
provided by members of the Technical Program Committee and the session chairs as a
result of the presentations. After the authors sent their extended versions, the book
co-editors reviewed the final papers.

The chapters of this book have authors from Canada, France, Italy, Germany,
Singapore, and the USA. The Technical Program Committee for the regular tracks
comprised 125 members from more than 25 countries.



VLSI-SoC 2021 was the culmination of the work of many dedicated volunteers:
paper authors, reviewers, session chairs, invited speakers, and various committee
chairs. We thank them all for their contributions.

This book is intended for the VLSI community at large, and in particular the many
colleagues who did not have the chance to attend the conference. We hope you will
enjoy reading this book and that you will find it useful in your professional life and for
the development of the VLSI community as a whole.

August 2022 Victor Grimblatt
Chip Hong Chang

Ricardo Reis
Anupam Chattopadhyay

Andrea Calimera
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On the Efficiency of AdapTTA:
An Adaptive Test-Time Augmentation

Strategy for Reliable Embedded
ConvNets

Luca Mocerino1(B), Roberto G. Rizzo1, Valentino Peluso2, Andrea Calimera1,
and Enrico Macii2

1 Department of Control and Computer Engineering, Politecnico di Torino,
10129 Turin, Italy

{luca.mocerino,robertogiorgio.rizzo,andrea.calimera}@polito.it
2 Interuniversity Department of Regional and Urban Studies and Planning,

Politecnico di Torino, 10129 Turin, Italy
{valentino.peluso,enrico.macii}@polito.it

Abstract. Test-Time Augmentation (TTA) is a popular technique that
aims to improve the accuracy of Convolutional Neural Networks (Con-
vNets) at inference-time. TTA addresses a limitation inherent to any
deep learning pipeline, that is, training datasets cover only a tiny portion
of the possible inputs. For this reason, when ported to real-life scenar-
ios, ConvNets may suffer from substantial accuracy loss due to unseen
input patterns received under unpredictable external conditions that can
mislead the model. TTA tackles this problem directly on the field, first
running multiple inferences on a set of altered versions of the same input
sample and then computing the final outcome through a consensus of
the aggregated predictions. TTA has been conceived to run on cloud
systems powered with high-performance GPUs, where the altered inputs
get processed in parallel with no (or negligible) performance overhead.
Unfortunately, when shifted on embedded CPUs, TTA introduces latency
penalties that limit its adoption for edge applications. For a more effi-
cient resource usage, we can rely on an adaptive implementation of TTA,
AdapTTA, that adjusts the number of inferences dynamically, depending
on the input complexity. In this work, we assess the figures of merit of
the AdapTTA framework, exploring different configurations of its basic
blocks, i.e., the augmentation policy, the predictions aggregation func-
tion, and the model confidence score estimator, suitable for the inte-
gration with the proposed adaptive system. We conducted an extensive
experimental evaluation, considering state-of-the-art ConvNets for image
classification, MobileNets and EfficientNets, deployed onto a commercial
embedded device, the ARM Cortex-A CPU. The collected results reveal
that thanks to optimal design choices, AdapTTA ensures substantial
acceleration compared to a static TTA, with up to 2.21× faster pro-
cessing preserving the same accuracy level. This comprehensive analysis
helps designers identify the most efficient AdapTTA configuration for
custom inference engines running on the edge.

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
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Keywords: Test-time augmentation · Deep learning · Embedded
systems

1 Introduction

1.1 Context

Convolutional Neural Networks (ConvNets) are the backbone of many computer
vision applications, thanks to their ability to recognize complex data structures
with good generalization capability. However, state-of-the-art ConvNets are far
from the robustness of the human vision systems, which can deal with abstract
changes in structure and style and are rarely misled by spatial changes in images or
forms of corruption such as blur, snow, noise, and a combination of them. Achiev-
ing this level of generalization is an essential target for intelligent systems, espe-
cially in safety-critical applications. Still, current ConvNets suffer from accuracy
drop when ported to real-life scenarios and operated on input patterns that differ
substantially from those used at training time, which often represents only a lim-
ited subset of all the possible patterns. This issue gets critical in high-dimensional
problems like image classification, for which covering the large variability across
different data samples is unfeasible. For example, the most common sources of
misprediction are the discrepancy in size and orientation of the objects caught in
the image [1], as well as different light conditions or contrast.

The first actions to address this problem can be taken at training time.
Among the possible options, data augmentation is one of the most common tech-
niques, thanks to its straightforward integration in standard training pipelines.
It consists of applying random transformations on the input data to increase
the diversity of the training samples, with the final goal of improving the gener-
alization capability. The most simple implementations used in computer vision
problems rely on a set of geometric and graphical transformations, often hand-
tuned by domain experts to match the conditions of real-life scenarios [2,3]. More
advanced strategies aim to automate the design of the augmentation policy, for
instance, through a grid search [4], reinforcement learning [5], or gradient-based
optimization [6]. Some of these strategies have been successfully integrated with
the training of state-of-the-art ConvNets [7].

Despite these efforts, ConvNets may still fail to handle unpredictable changes
in the data distribution [8,9] in real-life scenarios. For a more robust general-
ization, recent works proposed complementary strategies operating at inference
time [10,11]. Among them, Test-Time Augmentation (TTA) is a valuable option
for ConvNets hosted in the cloud and operated for visual tasks like image clas-
sification [2,12,13]. It is a simple yet efficient strategy that leverages multiple
predictions to increase the model’s confidence. Specifically, it involves the aggre-
gation of partial predictions over a set of transformed versions of the same input
image. In practice, the transformations applied are inspired by the data aug-
mentation techniques typically adopted during training.

Different implementations of TTA exist, yet all of them have been validated
only on high-performance platforms for cloud applications. In this work, we focus
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Table 1. Inference latency (ms) of state-of-the-art ConvNets measured at different
batch sizes (1, 5, and 10) on a cloud GPU (NVIDIA Titan Xp with 3840 CUDA cores)
and an embedded CPU (ARM Cortex-A53 with 4 cores).

ConvNet NVIDIA Titan Xp ARM Cortex-A53

1 5 10 1 5 10

MobileNetV1 18.2 18.6 18.7 53.1 290.6 569.9

MobileNetV2 12.1 12.4 12.9 44.2 261.8 513.5

MobileNetV3 19.0 20.1 21.3 46.2 221.3 470.6

EfficientNet-B0 21.3 22.4 22.6 68.5 358.9 682.3

EfficientNet-B1 31.9 33.4 33.9 103.4 536.4 1290.2

EfficientNet-B2 33.2 35.7 38.4 122.6 591.9 1360.4

instead on the portability of TTA to inference engines running on embedded
systems integrating low-power CPUs. This shift raises several challenges due to
the limited computational resources of embedded systems, as detailed in the
following sub-section.

1.2 Motivations

Conventional TTA policies have been conceived for high-performance architec-
tures like GPUs, which offer thousands of parallel processing cores. For exam-
ple, a commercial device like the NVIDIA Titan XP hosts 3840 CUDA cores.
These architectures enable to process multiple inputs in parallel with a single feed-
forward pass, a procedure commonly called batch inference. When implemented
on cloud GPUs, TTA relies on batch inference to process the augmented images
with negligible performance overhead (see Table 1). The same does not hold on
the edge, where ConvNets are made run on mobile devices powered by low-power
CPUs with limited resources [14–16] (e.g., 4 cores in the ARM Cortex-A53). On
low-power CPUs, a single image is enough to saturate all the available comput-
ing units. Table 1 demonstrates this observation with a quantitative comparison,
showing that batch inference raises a prohibitive latency overhead on embedded
CPUs, which in turn prevents the portability of TTA. Specifically, batch inference
gets 5.5× (batch size = 5) and 11.2× (batch size = 10) slower than a single infer-
ence (batch size = 1), therefore it is even less efficient than sequential processing.

In our recent work [17], we introduced AdapTTA, an adaptive implementa-
tion of TTA suited for embedded systems. Unlike static TTA strategies, where
the number of modified samples fed to the ConvNet is fixed, AdapTTA self-
regulates the number of transformations and feed-forward passes dynamically.
The transformed images are generated and processed sequentially till the model
achieves good confidence in the main outcome. In other words, it only runs those
inferences that make the model confident enough about the prediction. Specif-
ically, AdapTTA relies on the fact that different inputs have different intrinsic
complexity and the minimum number of transformations needed to reach an
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accurate classification changes on a sample basis. This suggests that the number
of feed-forward passes can be adjusted at run-time depending on the confidence
level accumulated. The processing gets faster for “easy” images and slower for the
most “complex” ones. Leveraging the statistics of the input patterns, AdapTTA
allows a substantial average speed-up compared to the original static approach.

1.3 Contributions

Starting from the findings of AdapTTA, we further investigate the design of a
TTA framework for embedded ConvNets, exploring different implementations of
its basic components and quantifying their impact on accuracy gain and perfor-
mance. Specifically, the design and the optimization of AdapTTA involve three
main choices: (i) the augmentation policy, i.e., the set of transformations to apply
to the input image; (ii) the aggregation function, i.e., the method to combine the
partial predictions; (iii) the confidence score estimator, i.e., a proxy to control
the number of transformations needed for each input. For all three blocks, we
consider different options borrowed from the literature, focusing on those con-
figurations that fit the target of our adaptive strategy, i.e., systems with limited
computing resources.

The remainder of this paper is organized as follows. After a brief descrip-
tion of data augmentation and TTA, we report the most recent advancements
in cloud-based TTA policies (Sect. 2). We then introduce the architecture of
AdapTTA, discussing the viable options for the implementation of augmentation
policy, aggregation function, and confidence score (Sect. 3). To assess the figures
of merit of AdapTTA, we considered two families of ConvNets for image clas-
sification, MobileNets and EfficientNets, running on a commercial off-the-shelf
embedded platform powered by an ARM Cortex-A53 CPU (Sect. 4). The results
collected from the comprehensive analysis of different AdapTTA configurations
guide designers towards the understanding of the best practices for an efficient
porting of AdapTTA to embedded platforms (Sect. 5). Finally, a summary of the
main achievements concludes the work (Sect. 6).

2 Background and Related Work

2.1 Data Augmentation for Training

The main bottleneck for training reliable ConvNets lies in imperfections in the
data. The most critical aspects to consider include (i) domain mismatch when
the data used for training differs from that processed on the field, (ii) data bias
when the data is imbalanced towards specific classes or categories, (iii) data
noise when the data is cluttered or corrupted.

Data augmentation is one of the simplest solutions to deal with these prob-
lems. It consists of adding additional training data through the application of ran-
dom transformations on the available training samples. In computer vision tasks,
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Fig. 1. Example of data augmentations for an image classification task.

the most popular augmentation procedures involve a set of geometric transforma-
tions (e.g., translation, rotation, flipping) and color transformations (e.g., bright-
ness, contrast, saturation) that try to reproduce the conditions of the application
domain [2,3] (Fig. 1). More sophisticated techniques introduce graphical artifacts
injecting random noise, masking random regions on the input (Cutout [18]), or
mixing multiple samples in a single image (Mixup [19] and CutMix [20]). The gen-
erated samples help the model learn features that make the classification more
robust to changes in objects’ position, lighting conditions, and scales.

Common training pipelines combine multiple transformations to further
increase the diversity of data. The set of the transformations selected defines
the augmentation policy. At each training iteration, a random subset of these
transformations are applied sequentially to the original data. Augmentation poli-
cies can be hand-crafted or built with automatic techniques. For example, the
optimal selection can be driven by a random search engine to adapt the augmen-
tation policy to different contexts [4]. In general, automatic solutions outperform
manual designs, motivating their integration in the training flow of state-of-the-
art ConvNets [7,21].

Rather than transforming the original input, alternative solutions are pro-
posed to extend the training dataset with synthetic images that preserve the
features of the original data. These solutions rely on generative models, like
Variational Autoencoders [22] or Generative Adversarial Networks [23], that are
trained on the available samples together with the classification model. Despite
the potential benefits, the additional training operations generate a substantial
computational overhead, which hinders the adoption of these methods.
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Fig. 2. Flow diagram of static TTA policy for an image classification task.

2.2 Test-Time Augmentation

Even if trained with complex augmentation policies, ConvNets still remain sus-
ceptible to unpredictable changes in the data distribution due to the shift from
laboratory conditions to real-life scenarios [9]. TTA has emerged as a common
strategy integrated with prediction services hosted in the cloud to increase the
model robustness. In practice, TTA employs the same transformations for data
augmentation to generate altered versions of an input sample. The generated
instances are fed to the ConvNet, and the partial predictions are aggregated
to compute the outcome. The rationale behind this process is that an altered
version of the same input data increases the information contents provided to
the model, improving the decision-making process.

Like data augmentation, most research efforts to optimize TTA focused on
the search for the transformations that maximize the accuracy gains. Early
works in the literature adopted hand-crafted policies based on basic spatial
transformations such as image cropping & flipping and input resolution re-
scaling [2,12,13,24]. More recent studies investigated algorithms for the auto-
matic design of the TTA policy. For example, the selection of the transformations
can be driven by a greedy exploration [8] or even tailored to each input sample
[25]. However, automatic methods share an import shortcoming, that is, they
require the training of additional modules or the re-training of the entire Con-
vNets.

Regardless of the transformations adopted, the major limitation of all the
TTA implementations lies in their static behavior: they apply a predefined num-
ber of transformations to each input data without discriminating their features
and complexity. Figure 2 shows a more detailed view of the execution flow of
a generic TTA strategy. It depicts an image classification problem involving C
classes. First, a set of N augmented versions x′ of the input image x is generated
through the application of a set of transformations included in the augmenta-
tion policy T : x → x′. Second, the generated images are fed to the ConvNet
in parallel or sequentially (more details in Sect. 5). Third, the N outputs are
processed by a softmax layer to score the available labels. Finally, the resulting
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partial predictions are aggregated through a function A that returns the final
outcome. The parameter N is fixed at design time by the TTA policy, therefore
each prediction encompasses the same number of inferences for each input image.

Existing TTA policies address a single optimization goal that is the accu-
racy gain. They have been conceived and integrated with ConvNets running on
cloud systems, which can process a high number of transformations still without
saturating the available processing units thanks to the extensive parallelism of
GPUs. On the contrary, embedded systems cannot offer comparable levels of
parallelism, and even the inference of a single image requires the full utilization
of resources. Besides accuracy, latency is an important variable to consider for
the efficiency of TTA on low-power devices. This is a less explored problem,
which motivated the design of AdapTTA.

3 Adaptive Test-Time Augmentation

Static TTA policies might be too conservative for most input samples, especially
for specific inputs with well-exposed features that ConvNets can spot with a sin-
gle or few feed-forward passes. Therefore, we conceived AdapTTA with a specific
goal: provide a more flexible TTA mechanism that monitors intermediate pre-
dictions to minimize the number of transformations needed to return a reliable
classification.

The schematic flow of Fig. 3 illustrates the working principle of AdapTTA.
The flow is iterative, and the number of iterations changes on a sample basis
depending on the level of confidence of the classification. In each iteration, the
ConvNet takes as input an altered version of the original data x′

i, which is
generated with a transformation defined in the augmentation policy T . Then, the
ConvNet returns a partial prediction pi, which contains the probabilities over the
C classes. The partial predictions are aggregated class-wise after each inference
using the aggregation function A(pi). The resulting probability distribution PA

is evaluated with the confidence score CS to decide whether to process to the
next transformation or return PA to infer the final output. Specifically, if the
confidence score satisfies a user-defined threshold τ , i.e., CS > τ , the prediction
is deemed reliable, and the TTA loop ends. The class with the largest probability
in PA is then selected as the label of the input image. In other words, AdapTTA
implements an adaptive mechanism to control the augmentation passes at run-
time based on the confidence level accumulated across repeated inferences. In the
worst-case scenario, namely, if CS falls below the threshold τ for each iteration,
the entire set of augmented samples extracted from the policy T is evaluated. In
this case, AdapTTA delivers the same predictions as the static TTA, with the
same computing effort and accuracy gain.

The flow depicted in Fig. 3 is kept general to underline that, in principle,
AdapTTA is compatible with different augmentation policies, aggregation func-
tions, and confidence scores. However, the design and optimization of these com-
ponents are paramount to build an efficient adaptive scheme that maximizes the
accuracy gain with minimum computational effort. Regarding the augmentation
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Fig. 3. AdapTTA schematic flow. Augmented images are generated and fed sequen-
tially to the ConvNet. After each iteration, the predictions are aggregated, and the
confidence score is computed. Depending on its value, the following transformation is
applied and evaluated, or the loop is interrupted. In the example, only x′

0, x′
1, and

x′
2 get processed by the ConvNet to compute the final prediction. The label with the

largest probability in PA is assigned to the input.

policies and aggregation functions, we considered solutions already adopted in
static TTA strategies. The confidence score, on the contrary, is the fundamental
component that distinguishes AdapTTA from the static approach, as it regu-
lates the dynamic behavior of the proposed flow. For such reason, it is critical to
identify a good proxy to evaluate the confidence of a model prediction. For such
purpose, we considered different metrics that investigated the level of correctness
of a classification taken from the recent literature [26–30]. Compared to these
works, the novelty of our contribution lies in the application of the confidence
score for the optimization of TTA.

Among the possible design choices for the above mentioned blocks, only a
subset of them is compliant with the systems having limited computing resources.
Therefore, we conducted our analysis considering the portability ops such blocks
to embedded systems as a primary constraint (more details in the following
subsections).

3.1 Augmentation Policy

The augmentation policy T defines the set of transformations that generate N
different versions of the input image. In resource-constrained environments, the
design of the augmentation policies should follow two important considerations.
First, the augmentation policy should keep N as small as possible, as larger
values of N imply more network feed-forward passes, which can affect both
latency and power dissipation [31]. Second, the execution time needed to process
a transformation should be negligible compared to that needed for inference.
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Fig. 4. Example of 5-Crops and 10-Crops TTA policies. HF denotes the application of
horizontal flipping.

Following these observations, we considered only simple spatial manipulations,
i.e., cropping & flipping. We integrated them into two TTA policies, 5-Crops and
10-Crops, inspired by the early implementations of TTA [2,12,13,24]. These two
policies fit our design target. On the ARM Cortex-A53 CPU, cropping requires
only 0.8 ms and horizontal flipping 0.9 ms, which is negligible compared to the
tens of ms needed for network inference. Specifically, the two policies can be
described as follows:

5-Crops (5C) - This policy takes as input a Kr × Kr image (the leftmost
in Fig. 4) and extracts consecutively a set of five crops of size Kc × Kc, with
Kc < Kr, from different areas of the input image. Specifically, it returns the
center crop and the four corner crops (top-left, top-right, bottom-left and
bottom-right).
10-Crops (10C) - This policy is an extension of the 5C policy; it applies the
left-to-right horizontal flipping to the five crops of 5C for a total of 10 images
(Fig. 4). Doubling the number of transformations (from 5C to 10C) should
increase the accuracy gain at the cost of a higher overall inference latency.

3.2 Aggregation Function

The aggregation function A(pi) defines how to combine the partial predictions
pi generated at the different iterations of the flow in Fig. 3. The study in [26]
reported the most common implementations adopted in cloud-based TTA, Max
and Mean aggregation. Although introduced for the cloud, we imported these two
functions to our design target. Their execution, consisting of simple arithmetic
operations, is negligible compared to the intensive workloads of ConvNets, and
makes these functions a good fit for systems with limited computing resources.
We summarize them as follows:
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Max Aggregation - The Max function selects the distribution pi that con-
tains the class with the largest score among all the partial predictions. There-
fore, the outcome of this function rewards only a single prediction and discards
the contribution of the other ones.
Mean Aggregation - The Mean function performs the class-wise average of
the partial predictions pi. Different from Max, this aggregation function gives
the same importance to all the partial predictions. For higher accuracy, it is
possible to apply a weighted average, where the weights are trained with a
dedicated procedure [26]. However, this procedure requires additional calibra-
tion data, which might be unavailable in the deployment phase. Therefore,
our analysis considers only the arithmetic average.
In static TTA, the aggregation is performed after processing all the trans-
formations defined in the augmentation policy. In AdapTTA, the aggregated
probability PA is instead updated after every inference to evaluate the clas-
sification confidence at the end of each iteration.

3.3 Confidence Score Estimator

The confidence score estimates the correctness of the classification and regu-
lates the dynamic behavior of AdapTTA. A proper definition of the confidence
score should guarantee two essential properties: (i) an high confidence value
should correspond to a correct prediction, avoiding early stops of AdapTTA; (ii)
low confidence should be assigned only to those inputs that need more trans-
formations for committing the correct prediction, avoiding waste of computing
resources.

Estimating the classification confidence of a ConvNet is not a new research
problem; still, it remains an open issue. Among the viable options, we considered
the following approaches:

MaxP - This function selects as confidence score the largest probability in
PA [26], over the C classes. This function considers only the top-1 probability,
thus it may be misleading if all class probabilities have similar values.
Score Margin (SM) - It denotes the difference between the first and second
largest probabilities over the C classes contained in PA [27,28].

SM = PAtop1 − PAtop2 (1)

Intuitively, low values of SM denote that the model is uncertain between the
two most likely classes.
Entropy - In information theory and statistics, entropy represents the infor-
mative content of a random variable [32]. For this reason, it has been adopted
as an uncertainty metric in many deep learning problems like active learn-
ing [29] and unsupervised learning [33]. For the AdapTTA design, we com-
puted the normalized entropy Hn [34] of PA (over the C classes).
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H = −
C−1∑

c=0

PAc · log(PAc) (2)

Hn = 1 − H

log(C)
(3)

In this way, the Entropy score ranges in [0, 1] like the above mentioned confi-
dence metrics, where lower values imply higher uncertainty and larger values
indicate stronger confidence.
Similar to the aggregation functions, these confidence scores are suitable for
low-power systems as they only require simple arithmetic operations with
negligible computational overhead compared to the execution of a ConvNet.

4 Experimental Setup

This section describes the hardware platforms and the software environment for
AdapTTA deployment. In addition, we discuss the ConvNets families used as
benchmarks for the experiments.

4.1 Hardware Platform and Software Setup

The Odroid-C2 platform, powered by the Amlogic S905 SoC, serves as the hard-
ware testbench. The CPU is a quad-core ARM Cortex-A53 with a nominal fre-
quency of 1.5 GHz. The board runs Ubuntu Mate 18.04 with Hardkernel’s version
3.16.72-46. TensorFlow Lite 1.14 is the inference engine, and it includes a collec-
tion of neural-network procedures tailored for the ARM Cortex-A architecture.
TensorFlow Lite is cross-compiled in our environment using the GNU ARM
Embedded Toolchain (version 6.5) [35].

4.2 ConvNet Benchmarks

The adopted benchmarks are pre-trained models from TensorFlow Hub [36] and
TensorFlow Hosted Models [37] repository. Specifically, they belong to two fami-
lies of ConvNets that represent the state-of-the-art for image classification tasks
for the mobile segment: MobileNets [38–40] and EfficientNets [7]. All the models
were trained on the ImageNet [41] dataset and quantized to 8 bits, which is a
standard solution for edge inference as it provides a smaller memory footprint
and faster processing with negligible accuracy loss when compared to floating-
point.

Table 2 reports structural properties (memory footprint and latency) and
functional (the classification accuracy) of the ConvNets under test. Specifically,
the column Storage collects the size (in MB) of the ConvNet in .tflite format,
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Table 2. Storage requirements, input resolution (Kc), top-1 accuracy without TTA
(Top-1), and inference latency (Lnom) of the selected benchmarks.

ConvNet Storage [MB] Kc Top-1 [%] Lnom [ms]

MobileNetV1 4.3 224 70.0 53.1

MobileNetV2 3.4 224 70.8 44.2

MobileNetV3 4.2 224 72.2 46.2

EfficientNet-B0 5.4 224 74.4 68.5

EfficientNet-B1 6.4 240 75.9 103.4

EfficientNet-B2 6.9 260 77.0 122.6

which includes the model weights and additional metadata (i.e., the topology
description) to deploy the model on the target device. The metric Top-1 refers to
the top-1 classification accuracy measured on the ImageNet validation set, which
consists of 50k images split into 1k different classes. The accuracy is evaluated
without TTA, i.e., with a standard pre-processing pipeline consisting of resizing
the images to a fixed resolution of Kr × Kr pixels and extracting the central
crop of shape Kc × Kc (Kr = Kc + 32). Finally, the column Lnom reports the
nominal latency of a single inference running at the maximum available resources
(4 threads @1.5 GHz).

5 Results

5.1 Design and Optimization of AdapTTA

The primary goal of any TTA strategy, static or adaptive, is to improve clas-
sification accuracy. For this reason, our first analysis aims to identify the most
accurate static configurations that will serve as baselines to assess the quality of
AdapTTA. In the static TTA, the design choices that impact the accuracy are
the augmentation policy and the aggregation function. Therefore, we conducted
an exhaustive exploration that considers all the possible combinations of the
augmentation policies and aggregation functions under investigation.

Specifically, the results in Table 3 report the accuracy gain achieved by Max
and Mean aggregation functions with the 5C and 10C policies for the entire
benchmark suite. Regardless of the design choices, TTA improves the classifi-
cation quality, yet with different benefits depending on the configuration. The
accuracy gain ranges from 0.5% (MobileNetV3) to 2.70% (MobileNetV1) for 5C
policy and from 0.9% (EfficientNet-B2) to 3.1% (MobileNetV1) for 10C policy.
In general, a larger number of transformations brings higher accuracy. Moreover,
the Mean aggregation function always outperforms Max, with relative improve-
ments up to 1.2% (MobileNetV2 with 5C policy). The two functions only reach
the same accuracy level for MobileNetV3 with the 5C policy. For two ConvNets
(MobileNetV2 and EfficientNet-B0), Mean with 5C shows even a larger gain than
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Table 3. Accuracy gain (in %) of 5-Crops (5C) and 10-Crops (10C) TTA policies
with Max and Mean aggregation functions.

ConvNet 5C 10C

Max Mean Max Mean

MobileNetV1 2.4% 2.7% 2.8% 3.1%

MobileNetV2 1.0% 2.2% 1.8% 2.9%

MobileNetV3 0.5% 0.5% 1.0% 1.2%

EfficientNet-B0 0.7% 1.1% 0.9% 1.3%

EfficientNet-B1 1.9% 2.2% 2.2% 2.5%

EfficientNet-B2 0.7% 0.8% 0.9% 1.1%

Max with 10C, suggesting that the proper selection of the aggregation function
enables a smaller number of transformations, retaining the same accuracy.

Our findings confirm the analyses conducted in previous studies like [26],
which reported similar trends on a different set of networks and datasets. We
believe that the Max function is susceptible to wrong classifications due to a
partial prediction that erroneously overestimates a class probability. In these
cases, the other predictions would be simply discarded. On the contrary, the
Mean function mitigate this effect, as averaging over all the predictions can
distribute the influence of outliers over the final decision. Motivated by these
observations, we selected Mean as the aggregation function for both the static
TTA used as a reference and the implementation of AdapTTA (more details
about their comparison in Sect. 5.2).

As described in Sect. 3, the dynamic behavior of AdapTTA is controlled by
the confidence score and the corresponding value of the confidence threshold τ
(set as a hyper-parameter). We then focus on understanding which confidence
estimator provides the most reliable evaluation of the classification correctness.
For this purpose, we validated the three candidate functions (MaxP, Entropy,
SM) in AdapTTA and we measured the accuracy gain for different values of
τ ∈ [0.1, 0.9], with a step of 0.1. Notice that τ = 0 is equivalent to classification
without TTA, and τ = 1 corresponds to the static TTA (all the transformations
get processed).

The results are reported in Figs. 5 and 6 for the MobileNet and EfficientNet
families, respectively. SM is the only metric that, with appropriate values of τ ,
ensures the same accuracy as the static TTA (dashed grey line in the plots). In
general, SM always outperforms the other metrics, even at lower values of τ . The
same trend holds for all the ConvNets and augmentation policies (5C and 10C).
The most representative example is MobileNetV2 with the 5C policy (Fig. 5-b
left). In this case, SM keeps almost the maximum level of accuracy even with
τ = 0.4, while MaxP and Entropy reduce accuracy by 1.48%. In summary, with
SM the accuracy shows a lower sensitivity to the variations of τ . This is a
desirable property, as lowering the value of τ could enable higher acceleration.
Intuitively, if the classification is deemed correct even at “low” confidence lev-
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Fig. 5. Accuracy gain of AdapTTA for different confidence scores (MaxP, Entropy,
SM) using 5C policy (left) and 10C policy (right). Results on the MobileNets family.

els, fewer transformations must be processed to return the final prediction (see
Sect. 5.3 for more details). In MobileNetV3 with 10C policy (Fig. 5-c right) and
EfficientNet-B2 with 5C policy (Fig. 6-c left), SM shows the lowest sensitivity to
τ : the accuracy gain quickly saturates to the maximum level of accuracy starting
from τ ≥ 0.3.

5.2 Comparing Static TTA and AdapTTA

We compared the computational efficiency of a standard static TTA and
AdapTTA, measuring the average prediction rate (in FPS) across the ImageNet
validation set (50k images). For the static TTA, we benchmarked two different
implementations:
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Fig. 6. Accuracy gain of AdapTTA for different confidence scores (MaxP, Entropy,
SM) using 5C policy (left) and 10C policy (right). Results on the EfficientNets family.

Batch-TTA - the augmented images get processed in parallel through batch-
ing (the batch size is equal to the number of transformations);
Seq-TTA - the augmented images get processed sequentially.
The overall inference time includes the data augmentations latency measured
on the target device (0.8 ms for cropping and 0.9 ms for horizontal flipping).

In all cases, we considered the Mean aggregation, and we studied both the 5C
and 10C policies. For AdapTTA, we fixed τ = 0.8 to ensure the same accuracy
gain of the static TTA, although this high value could limit the potential accel-
eration of AdapTTA. However, we opted for this conservative choice to assess
the feasibility of AdapTTA decoupling our analysis from the optimization of τ .
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Fig. 7. Average prediction rate (Avg. FPS - the higher, the better) for 5C and 10C
policies of the static implementations (Batch-TTA and Seq-TTA) and AdapTTA. The
arrows indicate the relative speed-up of AdapTTA compared to Seq-TTA. Results on
the MobileNets family.

Figures 7 and 8 summarize the collected results for the two families of bench-
marks. As mentioned in Sect. 1, batching turns out to be inefficient on embedded
CPUs due to the low number of parallel cores (4 in the Cortex-A53); hence,
Seq-TTA is slightly faster than Batch-TTA. Also, AdapTTA enables substan-
tial acceleration, with much faster prediction rates ranging from 1.16× to 1.78×
in 5C and from 1.19× to 2.21× in 10C. In MobileNetV1, AdapTTA on 10C
outperforms Seq-TTA on 5C in both accuracy (+3.1% vs. +2.7%) and speed
(4.05 FPS vs. 3.73 FPS). The reason can be inferred from Table 4, which reports
the average number of inferences needed to run a prediction with AdapTTA.
AdapTTA needs less than 5 (4.57) inferences on average (row MobileNetV1, col-
umn 10C), achieving superior performance than a static 5C implementation. A
comprehensive analysis on all the benchmarks shows that the average number
of images ranges from 2.81 to 4.32 for 5C and from 4.57 to 8.41 for 10C at the
same accuracy level, demonstrating that static TTA is too conservative in most
cases and unreliable for less frequent complex inputs.
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Fig. 8. Average prediction rate (Avg. FPS - the higher, the better) for 5C and 10C
policies of the static implementations (Batch-TTA and Seq-TTA) and AdapTTA. The
arrows indicate the relative speed-up of AdapTTA compared to Seq-TTA. Results on
the EfficientNets family.

Table 4. Average number of inferences in AdapTTA for the 5-Crops (5C) and 10-Crops
(10C) policies.

ConvNet 5C 10C

MobileNetV1 2.81 4.57

MobileNetV2 3.37 6.26

MobileNetV3 3.48 6.54

EfficientNet-B0 3.57 6.75

EfficientNet-B1 3.24 6.02

EfficientNet-B2 4.32 8.41

5.3 Accuracy vs. Performance Trade-Offs

This section aims to assess the sensitivity of AdapTTA efficiency on the hyper-
parameter τ . Even though we selected the same value (τ = 0.8) for all the
networks in the preliminary analysis of Sect. 5.2, more precise control of τ could
enable additional margins of optimization. Indeed, a too low value of τ can limit
the accuracy gains of AdapTTA, while a too high value can lower the prediction
rate as unneeded transformations get processed. Here, we aim to quantify the
maximum speed-ups that can be achieved while retaining the maximum accu-
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Fig. 9. Accuracy gain (in %) vs. average prediction rate (Avg. FPS) at different values
of τ for 5C and 10C policy. The size of the circles is proportional to τ (a larger size
indicates a higher τ). Results on the MobileNets family.

racy. For this purpose, we evaluated a discrete set of values of τ , ranging from
0.1 to 0.9, with a step of 0.1. The experiments were conducted on the ImageNet
validation set.

The main outcome of the analysis is that the minimum value of τ ensur-
ing the highest accuracy gain differs across the selected benchmarks: from 0.7
for MobileNetV1 in 5C policy to 0.3 for MobileNetV3 in 10C policy (Fig. 9).
This translates to additional acceleration: in MobileNetV1 5C policy, the pre-
diction rate increases from 6.64 FPS (τ = 0.8) to 7.28 FPS (τ = 0.7) on average;
in MobileNetV3 10C policy, from 3.26 FPS (τ = 0.8) to 6.07 FPS (τ = 0.3).
Similar trends do hold for the EfficientNet family (Fig. 10). Besides a different
topology, these networks followed a different training protocol, e.g., integrat-
ing different data augmentation pipelines [7,38]. This observation suggests that
training hyper-parameters can affect the efficiency of AdapTTA, and potentially
corrective actions applied at training time could reduce the number of transfor-
mations needed at test time.

Moreover, the circles in the plots represent different operating points that
can be selected at run-time to enable a fine-grain trade-off between accuracy and
speed. This can be helpful when the application has to rescale its energy footprint
(e.g., together with DVFS [42], if the mobile system is running out of battery)
or when the classification task is not a critical application (some accuracy loss is
tolerable). For example, with τ = 0.5, MobileNetV1 reaches 8.7 FPS, yet with a
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Fig. 10. Accuracy gain (in %) vs. average prediction rate (Avg. FPS) at different values
of τ for 5C and 10C policy. The size of the circles is proportional to τ (a larger size
indicates a higher τ). Results on the EfficientNets family. (Color figure online)

marginal accuracy loss with respect to Seq-TTA (< 0.5%). Also, a more in-depth
analysis of the collected results reveals an interesting relationship between the
value of τ and the policy selection. In all the networks except MobileNetV3 and
EfficientNet-B2, the 10C (blue) and 5C (yellow) curves show a point of intersec-
tion. This point qualitatively delimits the boundary of two working conditions,
high-accuracy on the left and high-performance on the right. For high-accuracy,
10C always outperforms 5C, while, for high-performance, the opposite consider-
ation holds. This is due to the rapid drop in the accuracy observed in the 10C
policy at lower values of τ . In summary, the maximum efficiency can be reached
only with the joint optimization of τ and the augmentation policy. However,
MobileNetV3 (Fig. 9-c) and EfficientNet-B2 (Fig. 10-c) show different trends. As
mentioned, the accuracy of these networks is less sensitive to the variations of
τ , resulting in almost flat curves in the accuracy vs. performance space. Specifi-
cally, the 10C curve never intersects the 5C curve, indicating that the 10C policy
is the most practical choice for these networks. The 5C policy could be taken
into account only for smaller values of τ (the two rightmost points in this case),
which can still guarantee high-performance operating conditions with limited
accuracy loss (<0.4% for MobileNetV3 and <0.7% for EfficientNet-B2).
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6 Conclusions

AdapTTA introduced a dynamic implementation of TTA targeting low-power
applications deployed on embedded systems. Specifically, AdapTTA minimizes
the number of augmented samples to process, with the final goal of reducing the
computational effort while preserving the same accuracy benefits. To validate
the efficiency of AdapTTA, we conducted a comprehensive analysis of different
components and configurations of the proposed framework. We explored differ-
ent TTA policies, aggregation functions, and confidence scores, assessing their
impact on accuracy and performance. Our analyses serve as practical guidelines
for designers and end-users to identify the most efficient configuration. Moreover,
extensive experiments on a large variety of benchmarks reveal that AdapTTA
reaches substantial acceleration, from 1.16× to 2.21× compared to static TTA
policies, with no loss of prediction accuracy.
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Abstract. Random Forests (RFs) are popular Machine Learning mod-
els for edge computing, due to their lightweight nature and high accuracy
on several common tasks. Large RFs however, still have significant energy
costs, a serious concern for battery-operated ultra-low-power devices.
Following the adaptive (or dynamic) inference paradigm, we introduce a
hardware-friendly early stopping policy for RF-based classifiers, halting
the execution as soon as a sufficient prediction confidence is achieved. We
benchmark our approach on three state-of-the-art datasets relative to dif-
ferent embedded classification tasks, and deploy our models on a single
core RISC-V microcontroller. We achieve an energy reduction ranging
from 18% to more than 91%, with an accuracy drop lower than 0.5%.
Additionally, we compare our approach with other early-stopping poli-
cies, showing that we outperform them.

Keywords: Machine learning · TinyML · Adaptive inference ·
Dynamic inference · Energy-efficiency · Random forests ·
Microcontrollers

1 Introduction

Machine Learning (ML) inference is one of the core components of an increasing
number of Internet of Things (IoT) applications, from time-series processing to
computer vision [12,31]. The cloud-based paradigm is the most popular deploy-
ment approach for this kind of application, relying on a powerful high-end server
performing the inference with a computationally expensive and accurate model.
IoT devices are instead only responsible for the data collection and transmission,
offloading almost all the computations to the cloud and receiving back the final
output of the inference.
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This approach however presents several limitations, mostly stemming from
the need to continuously send data to remote hardware [33,36]. A stable and reli-
able internet connection is in fact permanently necessary, an assumption that
may not always hold (e.g. for a wearable system used in a remote area). Even
when present, wireless connectivity may be unstable or slow, increasing the infer-
ence latency in an unpredictable way, and posing a serious challenge for real-time
applications. Additionally, transmitting possibly sensitive data over an untrusted
network poses a challenge to security, leading to privacy-related concerns. Last
but not least, sending large amounts of data to the cloud is an energy-hungry
operation [40], reducing the lifetime of battery-operated devices.

For all the above reasons, edge computing is becoming an increasingly pop-
ular approach for ML-based IoT applications [33,36], consisting of an on-device
deployment of the ML model, which completely eliminates (or limits to particu-
larly complex tasks) the interaction with remote servers. Performing all compu-
tations locally eliminates latency and privacy concerns at the source, while also
possibly obtaining higher energy efficiency.

However, directly deploying ML models at the edge is not easy due to
their memory and computational requirements, which clash with the tight con-
straints of IoT nodes, mostly based on Microcontrollers (MCUs). Deep Learn-
ing (DL) approaches, in particular, while reaching state-of-the-art accuracy on
many domains, maintain high complexity even after applying multiple optimiza-
tions [10,18], and are often too expensive, in terms of energy consumption and
memory occupation, for MCU-based edge devices.

There are however lightweight alternatives to DL, particularly suited for
easy recognition tasks such as the ones involved in IoT applications. Among
them, tree-based ensemble models, and in particular Random Forests (RFs) [5],
are increasingly popular. Their success stems from their inexpensive inference,
requiring often a small number of compare and branch operations, while also hav-
ing a compact memory footprint. At the same time, Random Forests (RFs) [5]
often reach an accuracy close to DL models and good resistance to overfit-
ting for simple IoT tasks, such as human activity recognition, ECG analysis,
and seizure detection [14,15,30,35]. For instance, the DL-based classifiers pro-
posed by the authors of [30] for an Electrocardiogram (ECG) anomaly detection
requires around 200k arithmetic operations and the storage of a similar amount
of parameters, while in Sect. 6, we show that an RF can achieve comparable
accuracy with ≈2k parameters and less than 1k operations.

Although less expensive than DL, the inference time and energy consumption
of RFs can nonetheless have a relevant impact on the battery lifetime of MCU-
based systems. Hence, inference optimization techniques are fundamental even
for these simple models.

In this work, which extends [11], we propose one such optimization origi-
nating from the observation that, for single-core MCUs, RF inference time and
energy costs are linearly dependent on the number of trees (the forest “width”).
In fact, the MCU will evaluate all the Decision Trees (DTs) that constitute the
ensemble in a sequential fashion, one after the other. However, evaluating the
whole forest may be necessary only for a subset of complex input samples, while
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being wasteful in terms of energy for easy inputs. Intuitively, if the initial bunch
of trees executed during an inference predicts that the output belongs to a spe-
cific class with very high confidence, it becomes unlikely (or even impossible)
that the remaining DTs will overturn that prediction. Thus, the execution of
the latter can be skipped completely, reducing the total time and energy, while
not affecting the final accuracy negatively.

Leveraging this idea, we propose an early stopping mechanism for RF infer-
ence, which stops the evaluation of DTs as soon as a user-defined confidence level
has been reached. While adaptive (or dynamic) inference approaches such as this
are widely adopted for DL [6,19,20,22,28,37], to the best of our knowledge, we
are the first to consider them for RFs, with a focus on embedded/IoT deploy-
ment. In fact, the few existing techniques for tree-based models [16,39] have been
studied only theoretically, without evaluating a practical implementation on a
low-power device, hence largely ignoring some important overheads derivating
from their deployment. In contrast, our proposed method is designed specifically
for embedded RFs, being based on low-overhead early stopping policies, easy to
execute efficiently at runtime, with minimal latency/energy overheads.

We benchmark our approach on three different embedded tasks, i.e., human
activity recognition, heart failure detection, and gesture recognition. Deploying
our models on a popular single-core RISC-V MCU, we obtain an energy reduction
ranging from 18% to 91% with less than 0.5% accuracy drop, with respect to a
standard (i.e., static) RF inference.

2 Background

2.1 Decision Trees and Random Forests

When used in a supervised learning setting, Decision Trees (DTs) learn a set
of decision rules extracted at training time from the data features, in order to
perform either a classification or regression task. Several training algorithms for
DTs have been proposed in the literature [23], differing in the criteria used for
selecting the features and decision thresholds considered at each internal node.
The details of the training phase are out of the scope of this work, and interested
readers may refer to [23]. Since this work proposes an inference optimization,
herein we detail only the operations of the inference phase.

Figure 1 shows a high-level overview of a “grown” (i.e., trained) DT used
for a 2-class classification task, in which leaf nodes are depicted as rectangles
and other nodes as circles. Leaf nodes contain the probabilities of the input
belonging to a specific class, while each non-terminal node stores the index of
the input data feature considered for branching in that node, and the threshold
that determines the left or right branch.

The DT inference pseudo-code is shown in Algorithm 1, where Root(T )
denotes the root node and Leaves(T ) the set of leaves. Feature(n) and
Threshold(n) are the input feature and comparison threshold considered in the
n-th node, and Left(n) and Right(n) are the left and right children of the node.
Finally, Prediction(n) is only defined for leaves and contains the corresponding
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Fig. 1. High-level overview of a DT structure for a 2-class classification problem. The
leaves are represented as rectangles, each storing the class probabilities of an input
belonging to that path. Other nodes are represented as circles

Algorithm 1: Decision Tree inference.
1 n = Root(T )
2 while n /∈ Leaves(T ) do
3 if Feature(n) > Threshold(n) then
4 n = Right(n)
5 else
6 n = Left(n)
7 end

8 end
9 out = Prediction(n)

output prediction (an array of probabilities for a classification, and a continuous
scalar value for regression).

The time complexity of Algorithm 1 is O(D), where D denotes the tree
depth, i.e., the maximum length of a path from the root to the leaves. For a
classification, an additional O(M) scan over the output probabilities is then
needed to determine the final class label, where M is the number of classes.
The memory complexity, instead, grows with O(2D), i.e., it is proportional to
the total number of nodes, which is at most 2D in the case of a balanced and
unpruned DT, with all root-leaf paths having the same length [23].

DTs are prone to over-fitting, suffer from high variance even with small per-
turbations in the training data, and introduce biases when used with unbalanced
datasets. In order to overcome these limitations, Random Forests (RFs) have
been proposed [5]. RFs are ensembles of DTs (called “weak learners”), trained
with bagging (bootstrap aggregating) and, more recently, random features selec-
tion [29]. In practice, each DT is trained on a random subset of the training
samples, drawn with replacement, and on a limited set of the input features,
thus ensuring a low correlation among weak learners, which reduces overfitting.

At inference time, the individual DTs predictions are combined to obtain the
final RF output, as shown in Fig. 2. Specifically, in early implementations of RFs
for classification, each weak learner outputs a class prediction, then aggregated
with a majority voting. In contrast, modern RF libraries [29] store in the leaf
nodes of the trees the entire set of class probabilities, thus allowing the final
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Fig. 2. High-level overview of a RF inference with width 3 and depth 3. The output
of each DT is averaged to obtain the final predictions of the ensemble.

predictions to be computed as the average (or sum) of all the weak learners’
class probabilities. The final label is then selected as the argmax of the array.

Algorithm 2 reports the pseudo-code of a RF inference pass, for an imple-
mentation that loops sequentially over the weak learners (such as the one for a
single-core processor). The function DecisionTreeInference corresponds to Algo-
rithm 1. From a complexity point of view, a RF of width N , i.e., including N
trees, has a time and memory complexity of O(ND) and O(N2D) respectively,
where D is the maximum depth over all weak learners. Lastly, the argmax that
extract the predicted label has time complexity O(M), as for a single DT.

Algorithm 2: Random Forest Classification.
1 out = 0M //array of 0s of size M
2 for T ∈ Forest do
3 out = out + DecisionTreeInference(T )
4 end
5 class = arg max(out)

2.2 IoT End Nodes

The great majority of IoT end-nodes are based on low-power microcontrollers
(MCUs), whose main compute unit is a general-purpose CPU, typically based on
a RISC instruction set [17]. This is mainly due to their employment on extremely
low-cost devices. In this context, the flexibility and high programmability of
MCUs make them preferable to custom Application-Specific Integrated Circuits
(ASICs), potentially orders of magnitude more efficient, but whose design and
manufacturing costs are only affordable for high-end, high-volume devices.

Specifically, the RISC-V Instruction Set Architecture (ISA) is recently
becoming more and more adopted both in the research world and in compa-
nies for the realization of IoT devices [13,34]. Following this trend, we bench-
mark our results on a RISC-V processor from the PULP family [8]. Given the
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very low-power requirements and tight cost constraints of our target applica-
tions, we select one of the smallest architectures in the family, the single-core
PULPissimo. This device is based on a RI5CY core with a 4-stage, in-order,
single-issue pipeline. The core implements the RV32IMC ISA, enhanced with
domain-specific extensions for DSP, such as Single Instruction Multiple Data
(SIMD) operations, hardware-loops, and loads/stores with index increment, and
no caches, all design choices aimed at providing significant speedups and energy
saving for ML applications.

2.3 Machine Learning at the Edge

In order to bridge the gap between the computational requirements of Machine
Learning models and the limited resources of IoT end nodes, several works have
introduced optimizations with the goal of making the inference as energy efficient
as possible, without affecting significantly its accuracy [1,9,15,19,21,27,28,37].
These optimizations can be divided into two categories: static and adaptive.

The first category optimizes a model before deployment, usually at training
or post-training, with the goal of reducing the inference latency, energy, or the
memory required to store the classifier parameters. Pruning and quantization are
among the most popular static optimizations for DL [18,26], reducing models’
complexity respectively through the removal of redundant parameters or by using
low-precision arithmetic. Notably, pruning can also be applied to DTs and RFs
during their training (or growth), with the goal of eliminating unimportant nodes
from the trees, hence reducing the number of parameters of the model [25].

Static approaches are, by definition, unable to efficiently support multiple
runtime operating modes, with different complexity versus accuracy trade-offs.
Nonetheless, this would be useful to respond to changes in external conditions,
such as the remaining battery life of the device or, more interestingly, to promptly
adapt to variations the complexity of the task being executed [9,28].

The naive solution to achieve such runtime flexibility is deploying multiple,
independent models, each with a different accuracy and computational complex-
ity, and selecting the most appropriate model at any given time. However, this
approach is often unfeasible due to the limited memory of IoT end nodes, which
makes it impossible to store a large number of models on a single device.

Adaptive (or dynamic) inference techniques try to overcome these limitations,
proposing a set of optimizations, mostly orthogonal to static ones, that allow
multiple operating points at runtime with limited memory overheads. These
optimizations are based on the concept that not all inputs are equally hard to
process for a ML model, and that easy inputs are often far more common than
difficult ones. Adapting the computational effort spent for inference based on
the difficulty of the processed input (i.e., reducing the effort for easy inputs
and increasing it for difficult ones), could then enable significant energy savings,
while keeping the classification accuracy unchanged. Accordingly, one of the focal
points of any adaptive inference technique is the design of an automatic mecha-
nism (or policy) for discerning between easy and hard inputs. Furthermore, this
policy should introduce low computational overheads, which do not overshadow
the energy savings obtained thanks to the adaptive effort tuning.



Low-Overhead Early-Stopping Policies for Efficient RFs on MCUs 31

3 Related Works

In the literature, adaptive inference implementations have been proposed by
multiple works, with a particular focus on DL. One of the earliest endeavors
proposed the so-called Big-Little scheme [28], combining two deep neural net-
works with different complexity and accuracy. At runtime, the inexpensive yet
less accurate network, named “little”, performs the first inference on each input.
The confidence of this model is then evaluated, stopping the execution in case
it surpasses a user-defined threshold. Otherwise, the input is fed to the sec-
ond model, an accurate yet more complex network named “big”, and its output
is taken as final prediction. The rationale of this technique is that, as long as
the easy inputs, predicted with high confidence by the “little” model, are more
common than hard ones, the average energy required for inference will decrease
significantly. At the same time, the final accuracy is not affected, since complex
inputs are still re-directed to the “big” model. The main flaw of this approach,
however, lies in its considerable memory overhead, since it requires the deploy-
ment of two completely separate networks on the edge device.

Based on this observation, multiple subsequent works have proposed alterna-
tive adaptive inference schemes for DL, that try to address the memory overhead
problem. For instance, deriving the ”little” network from the ”big” model by
using only a subset of the layers, channels or a lower bit-width quantization may
reduce significantly the number of parameters that need to be stored [19,27,37].
On an orthogonal direction, other works enhanced the Big-Little paradigm by
increasing the number of cascaded models to more than two, or improving the
stopping mechanism to handle class-specific confidence [9,37].

Applications of the adaptive paradigm to shallow ML models, and in partic-
ular to tree-based ones, are far less common compared to DL [16,32,39]. The
authors of [32] propose an early stopping criterion for RFs and other tree ensem-
bles, which allows reducing the number of trees invoked for inference on easy
inputs, modeling it with a binomial or multinomial distribution (depending on
the number of classes). The approach is benchmarked on 7 small public datasets
and one private, showing that, for ensembles with a large amount of trees, they
reduce the average number of weak learners required for inference by 63%. How-
ever, the proposed criterion requires the storage of a large lookup table with a
dimension in the order of O(N2), which introduces a significant memory over-
head (10s of kB) for large forests.

In another work, the authors of [16] propose an approach to determine the
best order of execution for weak learners depending on the most likely class
indicated by the DTs that have been already executed. This selection happens
at runtime, and takes into account the different computational costs associated
to weak learners due to their reliance on different features, finding the optimal
trade-off between complexity and accuracy to select the next DT. The authors
leverage a mixture of Gaussian distributions to design a probabilistic model
of the classifier, exploiting it to trigger an adaptive early stopping based on
the posterior probabilities. Furthermore, they also introduce a dimensionality
reduction technique to prune the number of computations required to perform
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the selection of the following DT. However, on an ultra-low-power MCU-based
device, the introduced overhead would overshadow the energy savings obtained
by performing the inference on a subset of the weak learners. Hence, as stated
by the authors in the original paper, this approach becomes effective only if the
target task involves very complex feature extractions, which is rarely the case for
simple IoT applications.

The work closest to ours is named Quit When You Can (QWYC) [39]. In this
case, the authors focus on binary classification tasks and propose a simple early
stopping based on two probabilities thresholds (ε− and ε+) derived statically
post-training. Additionally, the authors propose a static sorting of the weak
learners, so that the DTs most likely to trigger an early stop are executed first.
At inference time, as soon as one of the probabilities of the last executed DT is
either lower than ε− or higher than ε+, the early stop mechanism is triggered,
selecting the negative or positive class as the final prediction, respectively.

While QWYC requires a small overhead at runtime (only two comparisons),
the extension to a multi-class problem is not straightforward. The authors pro-
pose a possible implementation of the multi-class version, but do not show any
results for it, leaving its effectiveness yet to be tested. Moreover, their approach
is still not tested on a real low-power IoT node.

In summary, all the works mentioned above are purely theoretical, and their
effectiveness is evaluated only from a complexity reduction point of view, i.e.,
computing the average number of DTs executed for inference, with no deploy-
ment on a real embedded device. Additionally, many of these works introduce
considerable overheads either in terms of memory or time/energy, both of which
are very precious resources on IoT devices. In our work, we compare the pro-
posed approach with QWYC [39], showing that we obtain similar or better
performance, despite the higher simplicity and generality of our method.

4 Motivation and Goal

RFs generally use a large number of trees N (e.g., between 10 and 100) to
improve the accuracy over single DTs. Indeed, using many weak learners instead
of a single powerful one is demonstrated to reduce the overfitting and the bias
of the model, leading to a better generalization on new unseen data and higher
accuracy overall. On the other hand, easy inputs would be correctly classified
also by means of fewer trees than the ones present in the complete forest. In this
case, employing the full set of trees of the RF is sub-optimal, leading to a possible
increment of energy consumption and higher latency, which could be critical for
IoT devices. Nonetheless, deploying a smaller RF with N ′ trees, where N ′ < N
may result in errors when classifying more complex samples, and therefore in a
reduction of the overall accuracy.

Our work is based on these observations: our aim is to design an adaptive
early stopping policy for tree-based ensembles, minimizing the DTs executed
to correctly classify easy inputs, while exploiting more DTs (up to the entire
RFs) to classify the most complex ones. The key to achieve high energy saving
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through this method lies in the light but accurate mechanism to distinguish easy
from hard inputs. Therefore, the main goal of this work is the search for a way
to allow an early stopping of the inference, before the execution of the whole
RF, without affecting the final accuracy. At the same time, we also look for a
lightweight early-stopping policy, to avoid overshadowing the savings obtained
thanks to the lower number of weak learners executed.

5 Methodology

5.1 Aggregated Score Thresholds for Early Stopping

Among the various confidence metrics introduced in the literature for adaptive
early-stopping in classification problems, the most common ones are based on
the output probabilities (P t) produced by the last model t executed. A first
approach considers the highest probability (i.e. the one associated with the most
likely class) to compute the confidence of the model. A large maximum probabil-
ity denotes a classifier confident in its prediction, while a small value is associated
with an uncertain classification. We name this approach Max Score (or simply
Max ). This metric is fast to compute at runtime, requiring O(M) pairwise com-
parisons. The second approach, named Score Margin (SM), extends the Max
policy by considering the two largest probabilities of the model. For a target
model t, we can compute its SM as:

SM = max(P t) − max
2nd

(P t) (1)

where max2nd(P t) denotes the second largest value in vector P t. Even though
the SM requires more operations compared to the simpler Max (around twice),
it makes the computation of the confidence more robust. For instance, the max
value for a 11-class prediction problem will be 0.5 in case of a distribution of
P 0 = 0.5, P 1 = 0.5, and P 2−10 = 0, which corresponds to a very uncertain
prediction, but also in the case of P 0 = 0.5, P 1−10 = 0.05, which is instead a
quite reliable output. On the other hand, the SM would be 0 in the first case
and 0.45 in the second, correctly capturing the different confidence of the model
in the two cases. From this example, the reader can understand why the SM
metric has become so popular in recent literature.

To determine when early-stopping should be performed, a threshold α is
compared with the selected confidence metric (Max or SM): when the metric is
higher than α, the inference is stopped and the output prediction is produced
based on (some of) the outputs of the classifiers that have been already executed.
Therefore, the value of α directly controls the energy vs accuracy trade-off, since
it determines how many classifiers are executed on average.

The advantage of this early-stopping criterion lies in its inexpensive deriva-
tion (requiring a single comparison after the computation of the corresponding
metric), while being accurate as long as the classifiers’ output probabilities are
calibrated (i.e., proportional to the likelihood of the class to be the correct one).
Furthermore, the threshold α can be changed at run-time, e.g., based on the
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system condition (level of battery charge, period of the day, etc.), to produce
more accurate or more energy-efficient classifications.

Normally, the confidence metric (Max or SM) is computed using the output
probabilities of the last executed classifier t, neglecting the outputs of the models
executed before it, i.e., the “history” of the ensemble. This approach is ideal
for cascades of increasingly accurate classifiers, since taking into account the
t − 1-th classifier output may actually worsen the prediction of the (much more
accurate) t-th model [19,28]. However, it is not appropriate for an ensemble of
equally predictive weak learners, such as a RF.

Starting from this observation, we extend the policies described above so
that the early stopping is triggered using the aggregated predictions of all the
already executed classifiers (P [1,t]). Noteworthy, easy inputs will in fact have
partial aggregated probabilities already skewed towards one class even after the
execution of just a few DTs. Therefore, it is unlikely or even mathematically
impossible that when the aggregated probabilities are sufficiently skewed toward
one specific class, the remaining DTs will overturn the prediction, which makes
their execution not necessary to improve the accuracy of the prediction.

We define the partial output of a RF after executing t trees as:

P [1:t] =
t∑

i=1

P i (2)

where P i denotes the vector of output probabilities of the i-th weak learner.
We then define the Aggregated Max Score (S) early-stopping policy after the
execution of the t-th classifier as the rule:

St = max(P [1:t]) > α (3)

while the Aggregated Score Margin SM policy is defined as:

SM t = max(P [1:t]) − max
2nd

(P [1:t]) > α (4)

In our experiments, we consider both of these policies, with a tunable thresh-
old α, to determine when to perform early-stopping in a RF ensemble. To the
best of our knowledge, we are the first to propose an early-stopping approach
that considers the aggregated probabilities of the weak learners, while being
based on a lightweight comparison with a threshold. Our results show that we
outperform other state-of-the-art approaches that leverage only the last weak
learner of the ensemble, achieving higher energy efficiency during the inference
while also avoiding large accuracy drop.

Figure 3 shows a high-level overview of the adaptive inference mechanism
proposed in this work, for the case of the SM policy and with a batch B = 1 (see
Sect. 5.3 below). The RF represented has N = 3, M = 2, and D = 3. Orange
nodes are those “selected” by the series of compare-and-branch operations for a
hypothetical input. In a nutshell, after executing each DT, the partial predictions
are accumulated and used to determine whether the confidence of the inference
up to tree t is enough to trigger an early stop, based on α.
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Fig. 3. High-level overview of the proposed adaptive inference method for RFs, for
B = 1. At each step, the SM is computed on the partially aggregated scores.

5.2 Deployment on MCUs

Due to the lack of open-source RF libraries tailored for the target MCU
(described in Sect. 6), we design and deploy an optimized implementation in
C language of both the traditional RF and of our adaptive version, i.e., a RF
augmented with the early-stop mechanism described above.

We take inspiration from the open-source implementation available in
OpenCV [4], optimizing it for our target ultra-low-power platform. The main dif-
ference resides in the way RF nodes, leaves, and thresholds are stored: OpenCV
lists are replaced with C arrays in our version, both to save precious memory
space and to improve the memory locality of the data. Figure 4 shows the three
main arrays that compose our RF representation, i.e., FOREST, ROOT, and
LEAVES.

Fig. 4. C data structures of our RF implementation.

The array FOREST stores in each element a “struct” with the information
relative to a node belonging to one of the RF trees. The struct has three member
variables:
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– fidx is the index of the feature on which the split has been performed. It is
used to select the correct value from the input feature array to be compared
with the threshold th at inference time. This value is set to -1 in leaf nodes.

– th: the value to be used as a comparison to determine the following node to
visit; left child if the input feature is lower than th, right otherwise.

– right : the index in FOREST of the right child of the current node. Note
that to reduce the memory occupation, the left child is always stored as the
following element of the array. For leaf nodes, the right child index stores the
index of the corresponding leaf probabilities in the LEAVES array.

The other two arrays, LEAVES, and ROOT, store respectively the output
probabilities of each leaf and the indexes of the root node of each DT in FOREST.

Figure 4 reports some data structure values corresponding to the RF shown
in Fig. 3. In particular, it shows the elements of FOREST which correspond to
the nodes in the decision path of the leftmost DT in Fig. 3.

To further compress the memory required to store our RFs, we quantize to
16-bit integers all the fields of the FOREST and LEAVES arrays, simplifying also
the deployment on MCUs not equipped with a Floating Point Unit. We verified
that quantizing the inputs, comparison thresholds, and output probabilities to
16-bit integers yields close to 0 accuracy drop, compared to the original floating-
point model. We also reduce to 16-bit the precision of the ROOT elements,
which guarantees the possibility of deploying large RFs (up to 216 nodes), while
significantly reducing the memory overhead of this vector.

5.3 Tree Batching

One of the main advantages of the aggregated Score Margin and Max early-
stop policies lies in their lightweight nature. Specifically, their time complexity
at inference time is O(M) to find either the highest or the two highest prob-
abilities and O(1) to compare with the threshold α. In the case of dynamic
inference systems for deep learning [28,37], this computational overhead is neg-
ligible w.r.t the execution of the individual neural networks. On the other hand,
when working on lightweight classifiers such as RFs, the computation of either
the aggregated Max or the SM can affect negatively the energy gains obtained
by avoiding the execution of the full forest. In fact, as introduced in Sect. 2, the
time complexity for a single DT inference is O(D), plus O(M) for the argmax
over classes. Large yet shallow adaptive RFs may then have a significant over-
head for the early-stopping decision (when D is comparable or lower than M),
becoming significantly less efficient than a static forest with fewer trees.

In order to tackle this problem, we propose a simple but effective approach
to reduce the impact of the early stopping policy, named tree batching. Rather
than evaluating the aggregated confidence metric after every DT inference, we
instead perform its computation after a batch of B trees. This additional hyper-
parameter has a contrasting effect on the energy consumption of the system. In
fact, larger batch sizes can reduce the overhead introduced by the computation
of the confidence metric by a factor of B, thus saving additional energy. On
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the other hand, evaluating the stopping criterion every B trees may cause the
classifier to perform up to B−1 additional inferences that could be avoided with
B = 1. Empirically we show that depending on the dataset, the results obtained
setting B > 1 can outperform the ones of B = 1 in terms of accuracy vs energy.

Algorithm 3 reports the pseudo-code of the adaptive inference with batch
size B, where Batch(b) denotes the subset of weak learners belonging to the b-th
batch. Metric(out) represents instead the computation of the confidence metric
at tree t, e.g., SM1:t in case of the aggregated Score Margin.

Algorithm 3: Adaptive Random Forest Classification.
1 for b ∈ [0, N/B] do
2 for T ∈ Batch(b) do
3 out = out + DecisionTreeInference(T )
4 end
5 if Metric(out) > α then
6 break
7 end

8 end
9 class = arg max(out)

5.4 Tree Ordering

The introduction of an early stopping mechanism that depends on the output
probabilities of each DT makes the inference results become dependent on the
order of the weak learners. As opposed to the classic approach, which sums or
averages the contributions of all DTs, the adaptive inference will, for most of
the inputs, leverage only the probabilities of a subset of them. As a consequence,
invoking first the most informative and confident DTs increases the probability
that the early-stopping mechanism will be triggered sooner, and therefore the
energy savings. Intuitively, one could then think of finding an optimal ordering
of the DTs on a subset of the training data (e.g. the validation set), by means of
a search algorithm such as greedy, random, exhaustive search, or others. As men-
tioned in Sect. 3, multiple previous works including QWYC [39] have proposed
mechanisms to determine such a “hardcoded” ordering of the classifiers.

However, in our experiments, we demonstrate that such an optimized order-
ing does not actually provide statistical advantages over executing the DTs in a
random order. In fact, we compare multiple permutations of the DTs composing
the ensembles, showing that those orderings that reduce the average number of
weak learners per inference on the validation dataset, do not obtain compara-
ble results on the test set. In other words, there is no correlation between the
“goodness” of a given ordering on the two data subsets.

Therefore, we conclude that an optimized hard-coded ordering of weak learn-
ers do not provide advantages, at least in our considered scenario, i.e., for a RF
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classifier and considering the simple early-stopping policies described above. In
contrast, input-dependent DTs reordering could be effective, but is extremely
difficult to implement at low overhead [16], hence we leave it to future work.

6 Results

6.1 Benchmarks, Deployment Setup, and Comparisons

We evaluate the proposed technique on three different datasets for popular tiny-
ML tasks: ECG5000 [7], Ninapro DB1 [2], and UniMiB-SHAR [24].

ECG5000 [7] features annotated electrocardiogram (ECG) data, provided
already preprocessed in windows of 0.8 s, each containing a single heartbeat.
We perform the same task as the authors of [30], which consists in detecting
whether congestive heart failure happens. For this dataset, we take as a baseline
for comparison a static RF with N = 40 and D = 3. Our adaptive model uses an
identical RF structure, but dynamically reduces the number of trees executed
at runtime as described in Sect. 5.

The second set of experiments is performed on the popular Ninapro DB1
[3], featuring Electromyography (EMG) signals of 27 healthy subjects performing
different hand movements. We follow the experimental setup proposed in [3],
performing the classification of 14 hand movements using a 10-channel EMG
signal. In order to do so, we employ the same preprocessing used by the authors
of [3]. Our starting RF for this task has N = 24 and D = 12.

Finally, UniMiB-SHAR [24] is a Human Activity Recognition (HAR)
dataset featuring a tri-axial accelerometer signal collected from a sensor mounted
on a smartphone. The recorded motions belong either to one out of 9 daily-life
activities (e.g. walking, sitting, etc.) or one out of 8 kinds of falls. The signals
are collected 50 Hz, and already provided in fixed-size windows of 151 samples,
centered around peaks. We keep the same preprocessing as proposed in [24],
benchmarking our results on the AF-17 task, which is the one considering all
the target classes in the dataset. We derive the adaptive RFs from a baseline
with N = 32 and D = 9.

The three datasets refer to tasks with a significant difference in the level of
complexity, ranging from a binary classification (ECG5000) to a 17-classes one
(UniMiB-SHAR). Accordingly, the time and energy associated with the accu-
mulation of output probabilities during inference vary significantly, which influ-
ences our policies’ overheads, as explained in Sect. 5.3. As shown in the follow-
ing section, however, our approach remains effective even in conditions far from
ideal (M ≈ D). Additionally, after benchmarking the RFs both with raw data
and simple embedded-friendly features extracted in the time domain, we always
achieve higher accuracy with the former. Therefore, we report for all the three
datasets results obtained using raw data as input.

Due to the class imbalance of all three datasets, we always report the scoring
metric proposed in [24], i.e., the top-1 macro-average accuracy. All results are
reported on each dataset’s test set.
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We deploy all RFs on PULPissimo [8], a 32-bit single-core RISC-V MCU
belonging to the PULP family of architectures. Specifically, we refer to a 22 nm
realization of PULPissimo running at 205 MHz and equipped with 520 KB of L2
memory [13]. We estimate the inference clock cycles using a virtual platform [38],
deriving the energy values from [13]. Concerning the software stack, we train
the Random Forests using the open-source package scikit-learn [29] in Python
3.8. The inference phase uses the MCU-oriented C language implementation
described in Sect. 5.2 both for the baseline and adaptive classifiers.

We compare the proposed approach with a static RF, the standard Max/SM
policies evaluated on the last DT (as proposed in [28,37]), and the QWYC
method [39]. Concerning the latter, we limit the comparison to the binary
ECG5000 task, since as mentioned in Sect. 3, QWYC is only benchmarked on
binary problems. Independently on the early stopping criterion, the baseline
models have been derived from the RFs with the N and D reported above for
each dataset.

6.2 Hardware-Independent Results

Since all previous works on adaptive inference for RFs have only been evaluated
in theoretical terms, without any real deployment at the edge, we perform a first
hardware-independent comparison.

To this end, we consider the average number of trees executed per inference as
a metric to quantify the complexity of the various techniques. This is a reasonable
proxy for the time and energy consumption of inference, especially for a single-
core platform (such as an MCU) that executes weak learners sequentially. Of
course, this evaluation is unable to factor in the additional overhead introduced
by the evaluation of the early stopping policy, thus possibly favoring accurate yet
complex mechanisms to stop the inference. Thus, these results are meaningful
under the assumption that evaluating a single weak learner has a significantly
higher complexity than evaluating the early stopping criterion.

Figures 5–9 report the results of this experiment. Specifically, they report
Pareto fronts obtained by the various considered techniques in terms of accuracy
versus the average number of DTs per inference (N.Trees). In case of adaptive
methods, different points of the curve, when present, are obtained by varying
the early stopping threshold (α in Eqs. 3 and 4). Furthermore, all graphs also
report, as a comparison baseline, the results obtained with a static RF. In this
case, different points refer to ensembles with progressively fewer weak learners
(i.e., decreasing N), which have been retrained from scratch each time.

State-of-the-Art Comparison. Figure 5 compares one of our proposed poli-
cies (the Aggregated SM) with the standard SM applied to the last executed
model (as in [9,28,37]), and with a static RF. Additionally, for the binary
ECG5000, we also report the results obtained with QWYC, both with and with-
out the static ordering of the DTs. We do not apply tree batching yet.

For all three datasets, the Aggregated Score Margin with B = 1 lies on the
Pareto front, often outperforming both other adaptive approaches and static
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Fig. 5. Accuracy versus average number of trees. Each point represents either a differ-
ent static RF for the baseline or the same RF with different early-stopping thresholds
for adaptive ones.

RFs. On the other hand, the classic SM computed only on the last tree either
obtains close results to the baseline or is underperforming. The only notable
exception is represented by the ECG5000 dataset, where with few DTs the clas-
sic SM is able to achieve results comparable to our method. Nonetheless, that
technique is unable to further grow in terms of prediction quality when changing
the early stopping threshold.

Both QWYC versions, lie close to the global Pareto front. However, we found
that even when testing several values of the hyperparameters that determine ε
(the parameter used to decide for early stopping in QWYC), the average number
of trees executed remains almost unchanged. Most importantly, the maximum
accuracy that we were able to obtain with QWYC on ECG500 is significantly
lower than with our approach, or with the largest static RF. Additionally, we
found that the DT sorting proposed in QWYC actually underperforms on our
dataset, leading to lower accuracy than the “unordered” version.

Considering the whole set of trade-off points of our approach, we obtain
a reduction in terms of average trees executed per inference of up to 93% on
ECG5000, with respect to a static RF achieving the same accuracy (2.26 vs 34
DTs on average, at 97% accuracy. On Ninapro, we achieve up to 47% reduction
(10.47 vs 20 average DTs at 76.5% accuracy), and on UniMiB up to 43% (12.5
vs 22 DTs at 52% accuracy).

Batch Size Exploration and Criteria Comparison. Figures 6, 7, 8, 9 report
a detailed comparison of the two proposed metrics (Aggregated SM and Aggre-
gated Max.) for different tree batching conditions (i.e., B values).

Intuitively, since these results still do not consider the overheads of the early
stopping criterion, increasing B should worsen the results. In fact, B = 1 the-
oretically offers a finer granularity of control on the early stopping, allowing to
interrupt an inference just after executing the first DT that makes the aggre-
gated SM or Max. overcome the threshold α. This is indeed what happens on
average, as shown by the fact that curves relative to larger B values come closer
to the static RF ones. However, it is not a hard rule, since the random sampling
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Fig. 6. Hardware-independent comparison of the two proposed metrics for B = 1.

Fig. 7. Hardware-independent comparison of the two proposed metrics for B = 2.

and feature selection used to train the DTs can lead to a non-monotonically
increase in prediction quality when adding weak learners. For instance, for the
UniMiB dataset, the Aggregated Max with B = 8 obtains the largest reduc-
tion in the average number of DTs without accuracy drop with respect to the
complete static RF (20.82 trees on average with +0.2% accuracy). On the con-
trary, Ninapro shows the expected results, with the Aggregated SM with B = 1
yielding the least average DTs for the same accuracy as the static RF (18.73).

Table 1 reports the detailed results of this comparison. Specifically, we show
the average number of trees executed by the different variants of the adaptive
inference policy, for two different accuracy conditions, i.e., to reach iso-accuracy
with the original RF (Drop 0.0%) or allowing a negligible degradation (Drop
0.5%) The Red.RF column reports smallest static RF obtaining the same accu-
racy. Since the standard Score Margin and QWYC only achieved accuracy val-
ues with drops larger than 0.5% with respect to the original RF, they are not
reported in the table.

On the ECG dataset we are able to reduce the average number of trees by
57% (17.18 vs 40) with no accuracy loss. Concerning the Ninapro dataset, the
proposed approach can reduce the number of weak learners by 22% (18.73 vs
24), while on UniMiB by 35% (20.82 vs 32).

When accepting an accuracy drop of 0.5%, we achieve a reduction in the
average DTs executed of 91% with respect to the closest RF (Red. RF column)
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Fig. 8. Hardware-independent comparison of the two proposed metrics for B = 4.

Fig. 9. Hardware-independent comparison of the two proposed metrics for B = 8.

on the ECG dataset (2.1 vs 24 DTs). On Ninapro, we avoid the execution of
51% weak learners (9.73 vs 20) while for UniMiB of 29% (17.02 vs 24).

6.3 Tree-Ordering Analysis

As anticipated in Sect. 5.4, our results demonstrate that an optimized hardcoded
ordering of DTs to favour early exit does not provide practical advantages. A
first indication of this is shown in Fig. 5, where QWYC with optimized tree
ordering performs significantly worse than the randomly ordered one in terms of
accuracy, for a negligible reduction in the number of invoked trees.

A further confirmation is provided in Fig. 10. To generate it, we shuffled
the DTs of the original RF 20 times at random. For each ordering, we then
compared the early-stopping results on the validation and on the test set of each
dataset. Specifically, we selected an α threshold so that the accuracy drop is 0%
with respect to the static RF (as done in Table 1) and we then extracted the
average number of DTs executed with that threshold on the two data subsets.
We considered the Aggregated SM policy and a batch B = 1 for this experiment.

Two interesting results appear from the figure. First, tree ordering could ide-
ally play a significant role in the early stopping effectiveness. In fact, the average
number of DTs executed on the full test set varies by up to ±15 depending on
the weak learners’ permutation. However, obtaining the optimal ordering on a
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Table 1. Average number of trees for different accuracy drops with respect to a full
RF.

Data Full Red. Aggr. Max Aggr. SM

RF RF B = 1 B = 2 B = 4 B = 8 B = 1 B = 2 B = 4 B = 8

Drop: 0%

ECG 40 40 27.22 27.38 28.95 32.55 18.39 18.78 19.58 17.18

Ninapro 24 24 21.52 21.72 22.14 23.07 18.73 18.95 19.62 20.94

UniMiB 32 32 28.41 28.6 28.94 20.82 24.21 24.46 24.97 25.85

Drop: 0.5%

ECG 40 24 2.1 17.63 18.54 20.43 2.19 2.23 8.64 8.86

Ninapro 24 20 12.02 12.56 13.26 14.83 11.55 9.73 10.69 12.83

UniMiB 32 24 23.76 24.08 19.34 20.82 17.02 17.64 18.41 17.43

Fig. 10. Average number of DTs executed with the aggregated SM policy to reach the
same accuracy as the original static RF on the Validation and Test sets respectively.
Each point represent a different ordering of weak learners.

different data subset (in our case, the validation set) does not work, as evident
by the lack of correlation in the scatter plots.

The “optimal ordering” must therefore be computed dynamically based on
the processed input. How to do so while keeping a low overhead will be subject
of our future work.

6.4 Deployment Results

In this section, we report the results obtained with the proposed adaptive infer-
ence method when deployed on the target edge device. Figure 11 shows the
Pareto fronts in terms of accuracy versus average energy consumption per infer-
ence on PULPissimo. For each dataset, we report the results of static RFs
with different numbers of weak learners, as well as both our proposed early-
stopping policies (Aggregated Max Score and Aggregated SM), with two batch
sizes (B = 1 and B = 2). Differently from Sect. 6.2, here energy results include
also the overheads for evaluating the early-stopping policies.

Indeed, as expected, while the curves are similar to the ones reported in
Fig. 5, the early stopping overhead becomes visible. This brings the adaptive
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Fig. 11. Accuracy versus average energy per inference.

approach closer to the baseline. Nonetheless, our proposed method still signif-
icantly outperforms static RFs. In detail, at iso-accuracy with a static RF, we
obtain energy savings up to 26% on the UniMiB dataset, up to 91% on ECG5000
and up to 45% on Ninapro.

Table 2 reports the detailed energy results on each dataset, under the same
conditions described in Table 1. While the top-performing approaches are similar
to the hardware-independent case, some notable exceptions occur. For instance,
on Ninapro, the aggregated Score Margin with B = 2, although requiring slightly
more trees on average, requires less energy than the one with B = 1. This
becomes even more evident for B = 4, requiring 0.67 additional trees on average
than B = 2, while “costing” only 0.02 nJ more. Regarding the UniMiB dataset,
the aggregated Score Margin with B = 1 requires the least amount of trees,
however, it has a higher cost in terms of energy than all the other batched
versions. Globally, these results show once again that properly accounting for
the early stopping policy overheads is fundamental in order to assess the real
effectiveness of an adaptive inference method.

Table 2. Average energy consumption, in nJ , for different accuracy drops with respect
to a full RF.

Data Full Red. Aggr. Max Aggr. SM

RF RF B = 1 B = 2 B = 4 B = 8 B = 1 B = 2 B = 4 B = 8

Drop: 0%

ECG 58.27 58.27 41.46 40.87 44.17 47.68 28.31 28.14 30.15 25.77

Ninapro 129.64 129.64 106.85 104.05 104.5 108.24 100.64 95.5 95.52 99.42

UniMiB 134.15 134.15 138.32 133.24 130.2 96.33 128.5 119.91 115.16 117.76

Drop: 0.5%

ECG 58.27 35.32 4.17 26.68 28.95 31.21 4.3 4.29 13.66 13.59

Ninapro 129.64 108.54 61.32 61.76 64.23 71.27 63.56 50.56 53.52 62.29

UniMiB 134.15 101.21 115.92 112.52 89.18 96.33 92.41 88.61 87.69 82.28
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7 Conclusions

In this work, we have presented an adaptive inference approach for RFs on
MCUs, based on executing only a subset of the weak learners in order to save
energy. To control this early-stopping mechanism, we have proposed two dif-
ferent lightweight policies which use the class probabilities produced in output
by DTs to estimate the partial prediction confidence. In order to validate our
approach, we have performed extensive experiments on three state-of-the-art
datasets concerning popular embedded tasks. Moreover, we have deployed the
proposed method on a single-core RISC-V MCU, showing that even when taking
into account the overhead associated with the evaluation of the early stopping
policy, we are able to save significant energy with respect to a static model, up
to more than 90% for the same accuracy.
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Abstract. Despite the high configurability of IPs and hardware gener-
ators, code modifications are still required to introduce aspect-oriented
instrumentation to satisfy emerging aspectual design requirements such
as on-chip debug and functional safety. These code modifications escalate
development, verification efforts, and deteriorate code reuse. This paper
proposes a highly efficient transformative hardware design methodology
that leverages graph-grammar-based model transformations. Following
the proposed methodology, main design functionalities and aspectual
instrumentation are separately developed, automatically integrated, and
verified. To demonstrate the applicability, industrial SoCs were trans-
formed to support on-chip debug. Compared to the manual RTL coding,
the proposed transformative methodology needed less than 32x Lines of
Code (LoC) to develop and integrate the aspectual instrumentation. In
particular, our approach enables high code reusability, as the implemen-
tation of the transformation script is a one-time effort, and can be applied
to all evaluated SoCs. This high LoC gain and code reuse promote the
overall productivity of digital design.

Keywords: Electronic design automation · Aspect-oriented
programming · Model-driven architecture

1 Introduction

With growing complexity in System on Chips (SoCs), the hardware develop-
ment cycle is prolonged and the cost increases. Intellectual Property (IP) reuse
is a major productivity booster in hardware development and helps to promote
code reuse. Following the IP reuse methodology, designers are encouraged to
build configurable IPs that encapsulate verified design implementations. After,
IPs are adapted and integrated to build large and complex designs to accel-
erate the development cycle. For further code reuse, hardware generators are
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built to encode design knowledge with hardware generation frameworks [1–5].
Hardware generators enable design customization reuse and are implemented
with high-level programming languages such as Scala and Python. Making use
of modern programming paradigms such as object orientation, hardware gener-
ators can adapt highly complex configurations and generate adequate Hardware
Description Language (HDL) code.

However, beyond main functionalities, aspectual design requirements such as
On-Chip Debug (OCD) [6] and functional safety [7] have emerged over the years
and are essential for product success. On-chip instrumentation satisfying these
design requirements is dependent on core functionality realizations and demands
system-wide support. Towards this end, code pieces are scattered across different
IPs to implement the required on-chip instrumentation. For example, to support
OCD, not only debug IPs (e.g. JTAG) but also special features are needed in
existing IPs, e.g. hardware breakpoints in the CPU. But due to the absence of
aspect orientation [8] in state-of-the-art HDLs (e.g. SystemVerilog [9]) and hard-
ware generation frameworks (e.g. Chisel [2]), the OCD instrumentation is either
always implemented [10] or configurable by increasing the IP generality [11]. The
former option results in an additional chip area and introduces possible security
breaches, whereas escalated development and verification efforts are expected in
the latter one [12]. In this paper, we use the term design aspects to describe these
scattered and tangled aspect-oriented on-chip instrumentation. Design aspects
pose new challenges in hardware development, because the scattering and tan-
gling make the hardware implementations hard to understand, maintain, and
reuse.

To address these issues, we propose to weave aspect-oriented instrumen-
tation by transforming existing designs leveraging graph grammar [13]. The
proposed transformative hardware design methodology is built on top of a
model-driven hardware generation framework, which follows the Model-Driven
Architecture R© (MDA R©) vision [14]. The intermediate layer of this framework
contains platform-independent design models that capture intended microar-
chitectures. Design models are graph-based: Hierarchical and logic components
are vertices, whereas connections among ports and hierarchizations of compo-
nents are edges. The proposed methodology transforms existing design models
to incorporate desired aspect-oriented instrumentation. Model transformations
are formalized and guided by graph grammar. Thus, the main contributions of
this paper are: (1) Main functionalities and design aspects are decoupled and
addressed separately with the proposed methodology. This separation of design
concerns promotes modularity, reduces development efforts, and enables high
code reuse. (2) For quality assurance, design constraints are developed to vali-
date introduced design modifications. Besides, formal properties are automated
to verify transformed designs. (3) One Domain-Specific Language (DSL) is used
to construct and transform designs. This consistent design environment prevents
semantic gaps and lowers integration and maintenance burdens.

The rest of the paper is organized as follows: Related work is discussed in the
next section. Section 3 depicts the underlying model-driven hardware generation
framework. After, the proposed transformative hardware design methodology is
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elaborated in Sect. 4. To demonstrate the applicability, Sect. 5 presents an indus-
trial case study on RISC-V OCD transformation and discusses the experimental
results. The last section concludes the significance of this paper.

2 Related Work

High-level languages such as SystemC are used to describe hardware and com-
piled to HDL to improve design productivity [15]. To further reuse design cus-
tomizations, hardware generation frameworks such as Genesis2 [1] are proposed.
However, they fail to separate design aspects from main functionalities. Design-
ers must consider aspect-oriented instrumentation during the implementation
of the main functionality. Consequently, the scattered and tangled-up aspect-
oriented instrumentation leads to increased development and verification efforts
[12].

Moreover, the intermediate layer of the hardware generation framework used
by Chisel is called Flexible Intermediate Representation for RTL (FIRRTL)
[3]. FIRRTL enables instrumentation insertion by rewriting its abstract syn-
tax tree. In doing so, simple circuits such as hardware counters can be inserted
into designs. Also, PyRTL [4] and PyMTL [5] follow the same idea to enable
instrumentation transformation. Furthermore, FTI [16] provides a graphical user
interface to assist hardware engineers to harden a design step by step. Internally,
FTI translates designs written in VHDL to tree-based AIRE-CE representations
[17].

However, there are three main drawbacks of these approaches. First, the
underlying tree-based data structure is inappropriate, as it is not the intrinsic
structure of circuits, i.e., graphs. As a result, development efforts escalate, which
diminishes the gained design productivity. Second, the employment of different
languages for design construction and transformation introduces semantic gaps
and complicates hardware development. Most importantly, they do not generate
verification artifacts to assure the quality of transformed designs.

3 Model-Driven Hardware Generation Framework

MDA R© [18] established itself as an important part of modern development pro-
cesses over the last decades. Following MDA R©, a model-driven hardware genera-
tion framework called MetaRTL has been developed to improve hardware design
productivity [14]. With this design-centric framework, designers can focus on
design intent instead of implementation details such as code formatting.

MetaRTL consists of three layers: Things, Design, and View (Fig. 1). The
things layer captures specification items into the Formal Specification Model. For
satisfying specifications, designs are constructed with the expressive MetaRTL
DSL [19] and stored as platform-independent Design Models. Subsequently, Tar-
get Code Models are derived for different HDLs and technologies (e.g. FPGA)
in the view layer. State-of-the-art HDLs such as VHDL [20], Verilog [21], and
SystemVerilog [9] are supported as the possible generator outputs.
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Fig. 1. Model-driven hardware generation framework (MetaRTL). The generation
framework is extended with the transformative hardware design methodology as
depicted in the right part.

A hardware generation flow starts from a formalized specification, which
includes all must-have features and properties. In the main stage, i.e., design
layer, the translation from the specification model to a design model is conducted
by making use of a design template [22]. Design models are abstract RTL models
and include all high-level design details, for instance, port connections among
different logic gates. Next, the design model is translated to a target HDL code
model by a view template [23], which includes target-specific aspects. Finally,
the HDL code is derived from the target code model.

4 Transformative Hardware Design Methodology

The proposed methodology is implemented as part of the MetaRTL in Fig. 1. The
left part in the figure shows the hardware generation flow, whereas the right part
addresses design aspects with the transformative hardware design methodology.
The proposed methodology integrates aspect-oriented instrumentation by trans-
forming design models leveraging graph grammar. For easing hardware transfor-
mation development, various transformation utilities and reusable basic transfor-
mations are provided by the hardware transformation system. To assure quality,
modified design models are validated with design constraints and transformed
designs are verified with automated formal properties.

4.1 Graph-Based Design Model

In the main stage of MetaRTL, platform-independent design models capture
microarchitectures. For describing microarchitectures, four types of components
can be included in a design model [24]:
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– Descriptive components indicate design hierarchies and description styles in
the MetaRTL DSL [25].

– Behavioural components describe hardware behavior on a high level, such as
finite state machines.

– Sequential components such as register store information, as their outputs
depend on past and current inputs.

– Primitive components describe combinatorial logic, such as bitwise AND.

Hardware designs are usually represented as schematic diagrams, which use
graphs to depict the instantiated components and connections among them. The
design model is graph-based as well. Let LAB be an arbitrary but fixed set of
suitable labels. A design model can be formalized with a hierarchical port graph
[24]:

H = (V, P,E, (si, ti)i∈{G,T}, p, t, d, l)

– V is a finite set of vertices (components).
– P is a finite set of ports.
– E = EG ∪ ET are finite sets of graph and tree edges.
– sG, sT are source functions for graph and tree edges respectively.
– tG, tT are target functions for graph and tree edges respectively.
– p : P → V is a parent function that returns the parent component of a port.
– t : V → Descriptive ∪ Behavioural ∪ Sequential ∪ Primitive is the type

function for vertices (components).
– d : P → {In,Out, Inout} is the direction function for ports.
– l : V ∪ P → LAB is a labeling function for vertices and ports.

The hierarchy in design models is a tree spanning over the same set of vertices
V . This means, some vertices in design models are subgraphs that contain other
vertices. These vertices are descriptive components, since they indicate design
hierarchies and contain sub-components in design models. Hence, a vertex v ∈ V
can be denoted as

v = (Vv, Pv, Ev, (si.v, ti.v)i∈{G,T}, pv, tv, dv, lv)

It is noteworthy that Vv ⊆ V , EV ⊆ EG, and PV ⊆ P . Besides, these
functions are restricted by the functions of the graph. This means, the global
functions apply to subgraphs as well, i.e.,

v = (Vv, Pv, Ev, (si, ti)i∈{G,T}, p, t, d, l)

When a vertex v ∈ V is not a descriptive component, then it does not contain
any sub-component or edge, i.e., Vv = v,Ev = ∅. In contrast, when a vertex
v ∈ V is the top-level component, then Vv = V, Pv = P , and Ev = E. The
top-level component is not a target of any tree edge.

For an illustrative example, the hierarchical port graph of a half adder
is shown in Fig. 2. Labels of components and ports are illustrated, e.g.
l(v0) = “halfAdder”. The descriptive component v0 indicates a hierarchy, i.e.,
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Fig. 2. Hierarchical port graph for a half adder. Solid black edges describe connections
among ports and dashed grey edges depict hierarchizations of vertices (components).
(Color figure online)

t(v0) ∈ Descriptive. Where Vv0 = {v1, v2}, Pv0 = {p0, p1, ..., p9} and Ev0 =
{e0, e1, ..., e7}. Components v1, v2 are bitwise XOR and AND respectively.

Ports belong to components, i.e., p(pi)i∈{0,1,2,3} = v0, p(pi)i∈{4,5,6} = v1,
and p(pi)i∈{7,8,9} = v2. Directions of ports are: d(pi)i∈{0,1,4,5,7,8} = In and
d(pi)i∈{2,3,6,9} = Out. Connections among ports are identified by their source
and target ports in the graph:

sG(e0) = p0, tG(e0) = p4

sG(e1) = p1, tG(e1) = p5

sG(e2) = p0, tG(e2) = p7

sG(e3) = p1, tG(e3) = p8

sG(e4) = p6, tG(e4) = p2

sG(e5) = p9, tG(e5) = p3

In a design model, a port might be connected to multiple ports. But con-
nections across hierarchies are forbidden. Therefore, a port such as p4 can only
be connected to another port that belongs to the current hierarchy (e.g. p0)
or a component in the current hierarchy (e.g. p9). The port direction must be
considered as well. A connection between two ports pi, pj ∈ P is represented
as eG ∈ EG, e.g. e0 = (p0, p4). Whilst, a tree edge eT ∈ ET describes the
hierarchical inclusion between two components vi, vj ∈ V , e.g. e7 = (v0, v2).

The uniqueness of labels is only assured inside a design hierarchy and among
ports of the same component. Therefore, labels maybe not unique in a design
model, e.g. l(p4) = l(p7). To locate an exact component, additional hierarchical
information is required. To this end, let h be a hierarchical path from vi to
vj , where t(vi) ∈ Descriptive. A hierarchical path h is a sequence of vertices
vi, vi+1, ..., vj such that, for any x = i, i + 1, ..., j, there exists an edge eT ∈
ET , that sT (eT ) = vx and tT (eT ) = vx+1. That is, the previous descriptive
component contains the next component in a hierarchical path.
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Fig. 3. Graph grammar. (a) A rewrite rule consists of a pattern graph L and a rewrit-
ing graph R. (b) By matching the subgraph M ′ in host graph M according to the
pattern graph L, design modifications indicated by the rewriting graph R are inserted
automatically to form the transformed graph N .

4.2 Design Model Transformation

The design model transformation can be referred to as graph rewriting. A graph
rewriting is guided with graph grammar, which describes an iterative process of
applying a set of rewrite rules on the matched subgraphs in the host graph [26].
For this purpose, the definition of graph morphisms and subgraphs is adapted
for hierarchical port graphs.

Let M and N be two hierarchical port graphs. A hierarchical port graph
morphism f from M to N consists of three functions: fV , fP , and fE . The interre-
lations of edges, hierarchical inclusions between components, labels and types of
components, labels and directions of ports are preserved, i.e., for any vM ∈ VM ,
pM ∈ PM , eM.G ∈ EM.G, and eM.T ∈ EM.T , the following properties hold:

fP (sM.G(eM.G)) = sN.G(fE(eM.G))
fP (tM.G(eM.G)) = tN.G(fE(eM.G))
fV (sM.T (eM.T )) = sN.T (fE(eM.T ))
fV (tM.T (eM.T )) = tN.T (fE(eM.T ))
l(vM ) = l(fV (vM )) ∧ t(vM ) = t(fV (vM ))
l(pM ) = l(fP (pM )) ∧ d(pM ) = d(fP (pM ))

Further, let M be a subgraph of a hierarchical port graph N , denoted as
M ⊆ N , where VM ⊆ VN , PM ⊆ PN and EM ⊆ EN , and the functions of M are
restrictions of those in N . For any v ∈ VM , if t(v) ∈ Descriptive, then all sub-
components and edges in this descriptive component in N should be included in
M as well, i.e., VN.v ⊆ VM , PN.v ⊆ PM , and EN.v ⊆ EM .

Algorithm 1 describes the graph-grammar-based design model transforma-
tion. A graph grammar consists of a set of rewrite rules R. A rewrite rule r ∈ R
consists of two graphs: left-hand-side pattern graph L and right-hand-side rewrit-
ing graph R (Fig. 3a).

The application of a rewrite rule consists of three steps:

1. Match a subgraph M ′ in host graph M that has a graph morphism from
pattern graph L to M ′ (Fig. 3b).
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Algorithm 1: Design Model Transformation
Input : Host graph M = (VM , PM , EM , (sM.i, tM.i)i∈{G,T}, pM , tM , dM , lM ),

Rules R = {r0, rn, ..., rn}
Output: Transformed Graph N
Let N be the duplication of M
for r = (L,R) ∈ R do

M ′ = match(M,L)
for v ∈ VL and v /∈ VR do

VN = VN \ {v}
end
for e ∈ EL and e /∈ ER do

EN = EN \ {e}
end
for v ∈ VR and v /∈ VL do

VN = VN ∪ {v}
end
for e ∈ ER and e /∈ EL do

EN = EN ∪ {e}
end

end
return N = (VN , PN , EN , (sN.i, tN.i)i∈{G,T}, pN , tN , dN , lN )

2. Remove the components, ports and edges that belong to L but not R.
3. Add the components, ports and edges that belong to R but not L.

In the algorithm, the function match(M,L) returns the found subgraph M ′.
During transformations, graph functions such as labeling function l are updated
automatically when the host graph is modified.

To find the subgraph M ′ in host graph M , components in M are located for
every vertex in L with its hierarchical path, name, and type. Since the name and
direction of ports are preserved in the matched subgraph, connections are rec-
ognized by locating the linked ports. The located components, ports, and edges
compose the matched subgraph M ′. In doing so, a graph morphism from M ′ to
L is derived. Based on such graph morphism, design modifications described by
the rewriting graph R are incorporated automatically to form the transformed
graph N .

Design construction is a special case of design transformation, where the
pattern graph L is always a subgraph of the rewriting graph R in rewrite rules.
That is, the removal of components, ports, and connections is absent in design
construction. Inspired by this observation, we use the MetaRTL DSL to not only
construct but also transform designs.

4.3 Hardware Transformation System

To ease hardware transformation development, a hardware transformation sys-
tem is developed (Fig. 4). Essential operations such as Localization, Removal,
and Addition of components, ports, and connections are needed during design
model transformations. These operations are performed with the Transforma-
tion Utilities. Making use of transformation utilities, various Transformations
are developed. Transformations are classified into Basic, Design-Independent,
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Fig. 4. Hardware transformation system. Transformation utilities consist of localiza-
tion, removal, and addition utilities for components, ports, and connections. Making
use of these utilities, basic transformations introduce elementary design modifications
and are reused to construct complex design-independent and design-specific transfor-
mations.

and Design-Specific transformations. A basic transformation introduces an ele-
mentary design modification, which affects only a few components, ports, and
connections in design models. In contrast, by reusing basic transformations, com-
plex design-independent and design-specific transformations are developed with
reduced efforts for systematic design modifications. These systematic transfor-
mations differ due to microarchitectural dependency.

Transformation Utilities. During hardware transformation, specific compo-
nents, ports, and connections are modified to introduce design modifications. For
this purpose, hardware transformations start with the localization of target com-
ponents, ports, and connections. This step is formalized as the first application
step of rewrite rules. To assist this step, the MetaRTL DSL offers localization
utilities. For example, a simplified component localization function is shown in
Listing 1.1.

1 de f componentLocal izat ion ( hierarchy , name , comp type , path , designModel )
:

2 founds = l i s t ( )
3 f o r comp in h i e ra rchy . getComponents ( ) :
4 cu r r en tH i e ra r ch i ca lPath = getH i e ra r ch i ca lPath (comp , designModel )
5 i f cu r r en tH i e ra r ch i ca lPath in path :
6 i f i s i n s t a n c e (comp , De s c r i p t i v e ) :
7 foundComps = componentLocal izat ion (comp , name , comp type , path ,

designModel )
8 founds . extends ( foundComps )
9 e l i f cu r r en tH i e ra r ch i ca lPath == path :

10 i f comp . getName ( ) == name :
11 i f i s i n s t a n c e (comp , comp type ) :
12 founds . append (comp)
13 cont inue
14 return founds

Listing 1.1. Component Localization Function. This function localizes a component
based on its name, type, and hierarchical path. In doing so, adequate components in
the design model are located and returned as a list.

The shown component localization function has five arguments: the current
design hierarchy, target component name, comp type, its absolute hierarchical
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path, and the designModel. First, components under the current design hierar-
chy are iterated in line 3. The absolute hierarchical path of the iterated com-
ponent (comp) is retrieved with the getHierarchicalPath function in line 4. By
comparing the retrieved hierarchical path (currentHierarchicalPath) to the given
path, different steps are followed: If the retrieved hierarchical path is part of the
given absolute hierarchical path and the iterated component is a descriptive
component (lines 5–6), target components are located in the design hierarchy
indicated by the iterated component. Then, the localization process conducts
further inside the iterated component in line 7. But if the retrieved hierarchical
path is identical to the given absolute hierarchical path, component name and
type are then compared (lines 9–11). When all these search criteria are satisfied,
the current iterated component is marked in line 12. However, if the retrieved
hierarchical path does not satisfy the previous conditions, the component local-
ization function continues to iterate the next component in the current design
hierarchy.

After the localization step in model transformations, components, ports,
and/or connections are removed from and/or added in located subgraphs to
introduce design modifications. During this process, three graph-based opera-
tions are observed: remove, add, and replace. The remove and add operations
are supported inherently by the MetaRTL DSL [19], while the replace operation
is the composition of remove and add operations. For example, an exemplary
component replacement function is shown in Listing 1.2.

1 de f componentReplacement ( o r i g i n a l , new) :
2 h i e ra r chy = o r i g i n a l . parent
3 f o r port in o r i g i n a l . getPorts ( ) :
4 newPort = new . getPort (Name=port . getName ( ) )
5 connect i ons = getConnect ions ( port , h i e ra rchy )
6 f o r connect ion in connect ions :
7 connect ion . delConnector ( port )
8 connect ion . addConnector ( newPort )
9 h i e ra r chy . delComponent ( o r i g i n a l )

10 h i e ra rchy . insComponent (new)

Listing 1.2. Component replacement function. This simplified function considers only
components with identical port definitions in terms of name, type, and number.

The shown component replacement function replaces the original component
with the new component. The target design hierarchy is located in line 2. Since
both components have identical port definitions, connections linking the ports
of the original component are rewired in lines 3–8. To do this, the port newPort
of the new component is retrieved with the getPort function by the name of
the iterated port in line 4. The connections linking the iterated port under the
current design hierarchy are then obtained with the getConnections function in
line 5. Later, these connections are rewired by replacing the iterated port with
the newPort (lines 6–8). Afterward, the original component is removed and the
new component is placed under the same design hierarchy (lines 9–10).

Moreover, design details such as the related connections and connected ports
of the target port are often required in model transformations. For this purpose,
transformation utilities for connections such as getConnections in Listing 1.2
are provided. Various transformation utilities are served as the intuitive pro-
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gramming interface for hardware transformation and are the fundament of the
hardware transformation system.

Basic Transformations. Basic transformations introduce elementary design
modifications into design models. Exemplary basic transformations are the nam-
ing convention transformation and safety mechanism transformations.

A basic transformation for the naming convention has been developed [25] to
adapt component and port names to different design projects. That is, specific
prefixes and suffixes are often predefined for different design elements to avoid
ambiguity and assist readability. For example, ports are named with the prefix
“p ”. Also, the name suffix “ i” or “ o” of ports indicates the direction. With
this naming convention transformation, component and port names are adapted
automatically to meet coding guidelines in the target design project.

Moreover, the transformation system offers basic transformations for vari-
ous safety mechanisms [27]. Safety mechanisms introduce redundancy into the
system to enable error detection (and correction). In doing so, the system is
maintained in a safe state and, thus, dangerous consequences caused by malfunc-
tions are reduced. The introduced redundancy has three categories: information
redundancy, hardware redundancy, and time redundancy [7]. For introducing
information redundancy into the hardware system, basic transformations are
provided for parity error detection code, CRC, hamming code, etc. Whilst, basic
transformations for hardware redundancy mechanisms such as Dual Modular
Redundancy (DMR) and Triple Modular Redundancy (TMR) are also provided.
But time redundancy safety mechanisms are software-based [28] and, thus, not
offered as basic transformations.

Basic transformations are implemented in a configurable and modular man-
ner. Hereby, basic transformations can serve as building blocks and form the
“transformation library”. This modularity and reusability assist and ease the
complex hardware transformation development.

Design-Specific/-Independent Transformations. To address aspectual
design requirements such as on-chip debug [6] and functional safety [7], design-
specific and -independent transformations introduce systematic design modifi-
cations to design models. As the name indicates, design-specific transformations
are dependent on the microarchitecture and, thus, are applicable to only a set of
designs. Whereas, design-independent transformations have no such restrictions
and are applicable to all designs.

Design-specific transformations are highly dependent on the microarchitec-
ture. For example, the RISC-V OCD transformation introduces on-chip debug
support in a CPU subsystem that implements RISC-V ISA [29]. In this ISA
specification, the exception handling behavior and related information storage
are detailed for RISC-V architecture. If the target architecture does not support
the RISC-V ISA, these design details may differ and, thus, the RISC-V OCD
transformation is not applicable anymore.
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In contrast, design-independent transformations are independent of the
microarchitecture. For example, a systematic functional safety transformation
has been developed [27]. This functional safety transformation reuses basic trans-
formations for safety mechanisms to harden sequential components such as reg-
isters and memories in a design. Moreover, different design projects may have
different coding requirements for e.g. linting checks and code review. Thus, dif-
ferent RTL coding styles may be required. For this purpose, design-independent
model transformations have been developed to fine-tune design models to vary
IP-coding styles [25].

4.4 Quality Assurance

Model Validation. After transformations, modified design models are val-
idated against design constraints. This validation assures the consistency of
design models, which ensures that the generated HDL code is synthesizable.
Following design constraints must be satisfied by all design models:

– Multiple Connections: For any two connections ei, ej ∈ EG, their source and
target can not be identical at the same time.

sG(ei) = sG(ej) ∧ tG(ei) �= tG(ej) ∨
sG(ei) �= sG(ej) ∧ tG(ei) = tG(ej) ∨
sG(ei) �= sG(ej) ∧ tG(ei) �= tG(ej)

– Cross-Hierarchy Connections: Connections across hierarchies are not allowed.
To simplify the notation, we introduce a helper function s : V → V that
returns the parent component of a component. For any connection e ∈ EG,
its source and target port must belong to the same hierarchy, i.e.,

• if t(p(sG(e))), t(p(tG(e))) /∈ Descriptive, then

s(p(sG(e))) = s(p(tG(e)))

• if t(p(sG(e))) ∈ Descriptive and t(p(tG(e))) /∈ Descriptive, then

s(p(sG(e))) = s(p(tG(e))) ∨
p(sG(e)) = s(p(tG(e)))

• if t(p(sG(e))), t(p(tG(e))) ∈ Descriptive, then

s(p(sG(e))) = s(p(tG(e))) ∨
p(sG(e)) = s(p(tG(e))) ∨
s(p(sG(e))) = p(tG(e))

– Dangling Connections: For any connection e ∈ EG, there must exist a source
and a target port, i.e.,

sG(e), tG(e) ∈ P
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– Valid Connections: For any connection e ∈ EG, it must be feasible in terms
of port directions. As an exception, a connection is always feasible, if any
of the connected ports has the direction “Inout”. Thus, following constraints
apply to a connection e ∈ EG that connects ports with direction either “In”
or “Out”, i.e., d(sG(e)), d(tG(e)) ∈ {In,Out}.

• If two connected ports belong to components under the same hierarchy,
i.e., s(p(sG(e))) = s(p(tG(e))), then connector directions must differ.

d(sG(e)) �= d(tG(e))

• If two connected ports belong to components under different hierarchies,
i.e., s(p(sG(e))) �= s(p(tG(e))). This means, one of these components is a
descriptive component that contains the other connector’s parent, then
connector directions must be identical.

d(sG(e)) = d(tG(e))

– Zero-Driven Connections: Except input ports of the top component, for any
port p ∈ P , there exists e ∈ EG such that

tG(e) = p

– Multi-Driven Connections: For any two connections ei, ej ∈ EG, they must
have different targets.

tG(ei) �= tG(ej)

– Unconnected Component : For any port p ∈ P , it must be connected, i.e.,
there exists a connection e ∈ EG such that

sG(e) = p ∨ tG(e) = p

– Single Hierarchy : For any component v ∈ V , it must be located in only one
hierarchy. This means, for any two hierarchical inclusions ei, ej ∈ ET , their
targets must be different.

tT (ei) �= tT (ej)

Design Verification. To verify the design functionality, two verification suites
are employed: existing regressions tests for main functionalities and newly auto-
mated formal properties for introduced design modifications.

Existing regression tests consisting of verification artifacts such as test-
benches are developed for existing designs. Because the proposed approach tar-
gets design aspects, the main functionalities should stay intact. Thus, with ade-
quate additional constraining, transformed designs must behave identically as
original designs in regression tests.

Further, a formal property generation framework is used to automate for-
mal properties for introduced design modifications [30]. The meta-information
produced by applying a rewrite rule indicates the component and connection
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modifications. With this information, the property templates developed from
design specifications generate suitable formal properties. For example, a rewrite
rule is developed to harden a General-Purpose Register (GPR) sp under the reg-
ister file (RF ) with DMR. The DMR inserts a duplicated register sp copy. A new
signal err det indicates an error when the outputs of sp and sp copy differ. After-
ward, we apply this rule to a design model, where RF is in instruction decode
stage ID in CPU. Alongside the rewrite rule application, formal properties are
generated in SystemVerilog Assertions to verify the inserted DMR (Listing 1.3).

1 property RegisterFi le sp DMR ErrorFree ;
2 ( CPU. ID .RF. sp . Out == CPU. ID .RF. sp copy . Out)
3 |−>
4 ( CPU. ID .RF. sp . e r r d e t == 0 ) ;
5 endproperty
6 property Regis terFi l e sp DMR ErrorDetect ion ;
7 ( CPU. ID .RF. sp . Out != CPU. ID .RF. sp copy . Out)
8 |−>
9 ( CPU. ID .RF. sp . e r r d e t == 1 ) ;

10 endproperty

Listing 1.3. Generated properties for DMR transformation. The first property verifies
the error-free scenario, whereas the second property is for the erroneous scenario.

The proposed methodology complements the hardware generation. By rewrit-
ing existing design models following graph-grammar-based transformations,
design aspects are addressed separately from main functionalities. This sepa-
ration of design concerns reduces complexity in hardware generators, which can
be developed and verified with decreased efforts. Moreover, the development
of hardware transformations is assisted with the transformation utilities and
reusable basic transformations provided by the hardware transformation system.
After transformation, modified design models are validated by design constraints
and formal properties are generated to verify introduced aspect-oriented instru-
mentation. In particular, because one DSL is used for design construction and
transformation, the proposed approach avoids semantic gaps, lowers integration,
and maintenance burdens.

5 Case Study

In this section, a case study is conducted on the RISC-V OCD transformation.
To demonstrate the applicability, we apply the OCD transformation to different
industrial SoCs. Resource utilization and the time to conduct hardware transfor-
mations are discussed. Subsequently, the achieved code reusability and required
development efforts are analyzed.

5.1 RISC-V On-Chip Debug Automation

With the increasing complexity in chips and stringent time to market require-
ments, post-silicon firmware debug solutions such as In-Circuit Emulator (ICE)
becomes rapidly unfavorable because of the high cost and long development time.
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Whereas, with low-cost hardware probes, OCD instrumentation provides dedi-
cated debug circuitry for a reasonable area increase. An OCD system provides
advanced functionalities such as hardware breakpoints, single stepping, register,
and memory accesses [6]. To support these OCD features, system-wide design
modifications are required. For instance, the CPU needs to allow external register
accesses and the bus matrix needs to support external memory accesses. It is also
important to note that these design modifications are highly microarchitecture-
specific. To separate these design concerns, the OCD automation is developed
following the proposed transformative hardware design methodology.

Fig. 5. RISC-V on-chip debug specification metamodel. This metamodel captures the
main features of the debug transport module, debug module, and required system-wide
support.

For formalizing the OCD requirements, the On-Chip Debug metamodel is
abstracted from the RISC-V debug specification [6] (Fig. 5). Other than design-
specific information such as the Debug Transport Module (DTM) instruction
register length (IR Length), memory offset and size, and the Number of sup-
ported Hardware Breakpoints, Debug Accesses can be configured as well. That
is, the Debug Module (DM) may support different debug accesses: AbstractCom-
mand, ProgramBuffer, and SystemBus. Since it is mandatory to support GPR
accesses with the abstract command, these debug accesses differ in terms of
Control and Status Registers (CSRs) and memory access methods. In this case
study, abstract-command-based OCD implementation is used as an example.

The OCD transformation consists of basic transformations for enabling exter-
nal register access, inserting hardware breakpoint CSRs, supporting breakpoint
exception in the exception pipeline, etc. These basic transformations target dif-
ferent system parts and insert design modifications depending on the microar-
chitecture. In this paper, we focus on basic transformations for two essential
design modifications: register access and hardware breakpoint (HWBP).

The register access transformation adds several multiplexers for accessing
the GPR and CSR Units (Fig. 6). The GPR unit supports two concurrent reg-
ister read accesses. These registers are addressed by the rs1 addr and rs2 addr.
Ports rs1 data and rs2 data indicate respective register data. The write access
is supported by the rd addr, rd data, and wr en. They carry the address, data,
and write enable signals respectively. In contrast, the CSR unit supports only
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Fig. 6. On-chip debug transformation of RISC-V CPU. The CPU has a superscalar
five-pipeline-stage architecture [31]. For simplicity, only transformation-related design
details in the Decode and Execute stages are depicted.

one concurrent read or write access. Thus, the CSR unit has a much simpler
interface: addr, wdata, wr en, and rdata.

1 de f transformGPRUnit ( designModel , debugModule ) :
2 EP = componentLocal izat ion ( designModel , ” Except ionPipe l ine ” )
3 GPRUnit = componentLocal izat ion ( designModel , ”GPRUnit” )
4 bp s i g = EP. getPort (Name=”bp” )
5 t r an s f o rm d i c t = {” r s2 addr ” : ”GPR addr” ,
6 ” rd addr ” : ”GPR addr” ,
7 ” rd data ” : ”GPR wdata” ,
8 ”wr en” : ”GPR wr en” ,
9 ” r s2 data ” : ”GPR rdata”}

10 f o r o r i g s i g , debug s ig in transform . i t e r i t em s ( ) :
11 t a r g e t p o r t = GPRUnit . getPort (Name=o r i g s i g )
12 mux = Mux(Name=”{} mux” . format ( o r i g s i g ) , Se l=bp s ig , parent=GPRUnit

. Parent )
13 connect ion = getConnect ion ( ta rg e t po r t , GPRUnit . Parent )
14 connect ion . delConnector ( t a r g e t p o r t )
15 connect ion . addConnector (mux . addIn ( ) )
16 debug port = debugModule . getPort (Name=debug s ig )
17 mux . addIn ( ) . connect ( debug port )
18 r s2 da ta = GPRUnit . getPort (Name=” r s2 data ” )
19 GPR rdata = debugModule . getPort (Name=”GPR rdata” )
20 r s2 data . connect (GPR rdata )

Listing 1.4. Register accesses transformation of the GPR unit. This transformation
locates and rewrites the rs2 and rd of the GPR unit for the read and write access
respectively.

The transformation that enables external GPR accesses is shown in List-
ing 1.4. In the transformGPRUnit, the exception pipeline (EP) and GPR unit
(GPRUnit) are first located in lines 2–3. The signal bp sig provided by the
exception pipeline indicates whether the CPU enters debug mode or not (line
4). Signals such as GPR addr, GPR wdata, GPR wr en, and GPR rdata belong
to the debugModule and indicate the current debug GPR access. For allowing
the external GPR accesses in CPU, a mapping of ports of the GPR unit and
DM is defined in lines 5–9. Based on this port mapping, target input ports of
the GPR unit are located and their connections are reworked (lines 10–17). In
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doing so, the target inputs of the GPR unit are re-connected to insert several
multiplexers (mux ). These multiplexers are controlled by the bp sig. That is,
when the CPU enters debug mode, the GPR unit is accessed by the DM, oth-
erwise, by the CPU. After, the rs2 data signal is connected to the GPR rdata
(lines 18–19). Following similar steps, external CSR accesses are enabled.

Furthermore, the HWBP transformation transforms specific CSRs [6] in the
CSR unit : tselect, tdata1, tdata2 (Fig. 6). The tdata1 stores the configuration of
an HWBP, whereas the tdata2 stores the comparison data, e.g. target instruction
address. For supporting multiple HWBPs, the tdata1 and tdata2 are designed as
virtual CSRs, where multiple CSRs are accessible with the same CSR address.
The tselect CSR determines the current accessible HWBP CSRs.

1 c l a s s TSELECT( Des c r i p t i v e ) :
2 de f i n i t ( s e l f , DebugMoT)
3 c l a s s TDATA1( Des c r i p t i v e ) :
4 de f i n i t ( s e l f , DebugMoT)
5 c l a s s TDATA2( Des c r i p t i v e ) :
6 de f i n i t ( s e l f , DebugMoT)
7 de f transformHWBP( designModel , DebugMoT) :
8 CSRUnit = componentLocal izat ion ( designModel , ”CSRUnit” )
9 t s e l e c t = componentLocal izat ion (CSRUnit , ” t s e l e c t ” )

10 tdata1 = componentLocal izat ion (CSRUnit , ” tdata1 ” )
11 tdata2 = componentLocal izat ion (CSRUnit , ” tdata2 ” )
12 componentReplacement ( t s e l e c t , TSELECT(DebugMoT) )
13 componentReplacement ( tdata1 , TDATA1(DebugMoT) )
14 componentReplacement ( tdata2 , TDATA2(DebugMoT) )

Listing 1.5. Hardware breakpoint transformation of the CSR unit. This
transformation is simplified, since it only considers the scenarios, when inadequate
hardware breakpoint CSRs are already implemented.

Listing 1.5 illustrates the HWBP transformation in the CSR unit. In this
transformation, the target design hierarchy (CSRUnit) and tselect, tdata1, and
tdata2 CSRs are located in lines 8–11. By replacing these original CSRs with
the instantiated HWBP CSRs according to the DebugMoT, the HWBP trans-
formation is complete (lines 12–14). The component replacement utility (com-
ponentReplacement) is part of transformation utilities.

Following the proposed methodology, the OCD transformation serves as the
single source for implementing and integrating RISC-V OCD support. Subse-
quently, the transformed design models are validated against design constraints
and the inserted OCD instrumentation is verified exhaustively with the auto-
mated formal properties.

5.2 Results

Five industrial 32-bit RISC-V SoCs with different feature sets targeting the pow-
ertrain market are evaluated. Besides peripherals such as Serial Peripheral Inter-
face (SPI) and timers, the supported ISA extensions differ as well. Other than
the base integer instruction set, SoCs may support standard extensions such
as compressed instructions [29]. Additionally, customized multiply-accumulate
instructions can be supported to boost the execution of machine learning appli-
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cations. The more features are supported, the more complex is the design as
shown in Fig. 7.

Fig. 7. Design complexity of experimented SoCs. The complexity is indicated by four
factors: the number of components, LoC of the code base, bit width of input, and
output ports.

Since the GPR and CSR units in evaluated SoCs have the same interface, the
register access basic transformation introduces the same design modifications.
To diversify the inserted design modifications, different amounts of HWBPs are
enabled in SoCs, i.e., 4 HWBPs are enabled in SoC1, SoC2 and SoC3, whereas
SoC4 and SoC5 are enabled with 8 and 12 HWBPs respectively.

The resource utilization of SoCs is reported by the Vivado R© v2018.1 design
tool targeting the Arty-7 FPGA board from Xilinx R©. All experiments are con-
ducted on an Intel Xeon CPU E5-2690 v4 machine.

Design Area. Figure 8 shows the register and Look-Up-Table (LUT) utilization
for the SoCs with and without OCD respectively. Resource utilization indicates
the design area. A similar design area increase is observed in SoC1, SoC2 and
SoC3. With more HWBPs supported, SoC4 and SoC5 require more resources.
The area penalty introduced by OCD cannot be neglected, which implies the
importance of the RISC-V OCD automation.

Transformation Time. The time consumption of transforming an existing
design model into a new design model is defined as the transformation time
(Fig. 9). In general, more components and LoC of an SoC indicate a more com-
plex graph representation in terms of vertices, ports, and edges. The increasing
graph elements complicate the first step of the rewrite rule application, i.e.,
subgraph matching. However, around 1.1 s was used to enable external register
access for SoCs with different design complexity. The reason is that the pro-
posed approach can match a subgraph efficiently with hierarchical information.
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Fig. 8. Resource utilization before and after RISC-V On-Chip Debug (OCD) trans-
formation. Light colors show the resource utilization of experimented SoCs, whereas
dark colors depict utilization changes after RISC-V OCD transformation. (Color figure
online)

Fig. 9. Transformation time to apply rewrite rules. The hardware breakpoint rewrite
rule introduces more design modifications when more hardware breakpoints are
enabled. Whereas, the register access rewrite rule introduces the same design mod-
ifications in experimented SoCs.

Furthermore, a proportional relationship is observed between the number of
enabled HWBPs and the transformation time. This shows, the transformation
time for HWBPs increases linearly with introduced design modifications and is
independent of the design complexity of target SoCs. This observation confirms
the scalability and efficiency of the proposed methodology.

Development Efforts. Table 1 shows the required LoC for hardware trans-
formations in the MetaRTL and state-of-the-art manual VHDL coding. Follow-
ing the proposed transformative design methodology, 1.8k LoC is required to
implement the RISC-V OCD automation. Whilst, at least 59k LoC needs to
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Table 1. On-chip debug development efforts (LoC)

Platform SoC1 SoC2 SoC3 SoC4 SoC5

VHDL 59.0k 60.4k 62.3k 66.5k 73.1k

MetaRTL 1.8k – – – –

be revisited to implement and integrate the RISC-V OCD instrumentation for
evaluated SoCs with the manual approach. As a result, an LoC gain of more
than 32x is observed. Further, the error-prone manual approach is replaced with
the proposed design transformation, which promotes further modularity and
automation in hardware development. Finally, it is important to note that the
development efforts with MetaRTL are shown only for SoC1 in the second row.
This means, the transformation script requires only one-time implementation
efforts and is applicable for all evaluated SoC models. The actual LoC gain and
the code reusability factors are high.

6 Conclusion

In this paper, we propose to satisfy emerging aspectual design requirements
such as On-Chip Debug (OCD) and functional safety with the transforma-
tive hardware design methodology. The proposed methodology is supported
by graph-grammar-based model transformations that are implemented as part
of a model-driven hardware generation framework. The model transformations
enable aspect orientation in the conventional hardware generation. The aspect
orientation separates design concerns and assures high modularity in hardware
development. As a result, the complexity of hardware generators is reduced since
their focal point is the core functionalities. Whilst, the aspect-oriented instru-
mentation is separately developed and automatically incorporated with model
transformations. For easing transformation development, transformation utilities
and reusable basic transformations are provided in the hardware transformation
system. To assure quality, introduced design modifications are validated against
design constraints and formal properties are generated to verify the transformed
designs. Of note, we use one DSL to construct as well as transform designs, which
prevents semantic gaps and lowers integration and maintenance burdens in hard-
ware development. To demonstrate the applicability, the RISC-V OCD trans-
formation was implemented and applied to different industry-strength SoCs.
Compared to manual VHDL development, the LoC to develop and integrate the
OCD instrumentation is reduced more than 32x with the proposed methodology.
In particular, the transformation script requires only one-time implementation
efforts and is applicable for different SoCs. The achieved high LoC gain and code
reuse improve the overall productivity of digital design.
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Abstract. Several verification strategies exist to identify unexpected
behaviours due to the presence of bugs in system-level HW/SW descrip-
tions. However, when the bug is found, further effort must be spent by the
design team to understand its cause and then fix the originating error.
This requires a tedious and time-consuming process, generally based on
the manual inspection of the execution traces of the design under verifi-
cation (DUV). This process becomes even more demanding for systems
whose behaviours span across wide time windows. Nevertheless, in these
cases, usually only a few instructions belonging to long execution traces
are relevant for understanding the cause of the unexpected behaviour.
Then, we propose a tool that supports the verification engineers in the
identification of such a few instructions, to focus their attention on the
actual origin of the bug. The tool works by combining dynamic program
slicing with a clustering procedure on the execution traces corresponding
to unexpected behaviours. Firstly, program slicing is applied to remove
instructions not belonging to the cone of influence of the unexpected
behaviour. Then, clusters of instructions based on store operations at
the LLVM intermediate representation of the DUV are created to guide
the heuristic in removing further irrelevant instructions.

Keywords: Bug explanation · Clusterization · Temporal assertions ·
Program slicing · LLVM · LTL

1 Introduction

Early identification and correction of bugs is a key point in order to save money
and speed up the time-to-market of modern embedded systems. In this con-
text, while designers focus on generating a bug-free implementation that meets
the specifications, verification engineers work to check that such an implemen-
tation indeed satisfies the initial specifications without including unexpected
behaviours. Thus, many approaches have been developed both from the point of
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view of the designers and of the verification engineers to detect bugs and, more
generally, unexpected behaviours in system-level descriptions, before they are
propagated throughout the lower design levels. However, when such behaviours
are found, the verification engineer still has to understand their cause through
manual inspection of the execution traces of the design under verification (DUV).

In the context of temporised DUVs, functional requirements involve the con-
cept of time, where behaviours are allowed to span across multiple time units.
These behaviours are usually verified using assertions formalised through tem-
poral logic such as linear temporal logic (LTL). Due to its complex nature,
understanding and fixing a bug involving temporal logic is way more demanding
than finding the cause of an error observable through the failure of a simple
propositional assertion. Nonetheless, in both scenarios, understanding the cause
of a bug requires a long and tedious manual process of inspection of the exe-
cution traces. In most cases, this process is unnecessarily long, since only a few
instructions of the execution traces are relevant for understanding and fixing the
unwanted behaviours.

To fill in the gap, we present a new methodology and a related tool to auto-
matically remove irrelevant instructions from the execution traces of unexpected
temporal behaviours such that verification engineers can focus on the real cause
of the problem when debugging their DUV. The tool works on any system-
level implementation that can be compiled into a Low-Level Virtual Machine
(LLVM) bitcode [1]. Given an unexpected behaviour formalised by means of
a propositional assertion, the tool provides the user with a reduced execution
trace that still triggers such behaviour, thus highlighting the essential instruc-
tions related to it. The underpinning methodology applies a sequence of reduc-
tions to the execution trace through a program-slicing-based technique. After
each reduction, we verify by simulation if the remaining trace is still an exe-
cutable program capable of triggering the unexpected behaviour. This procedure
works in two phases. Firstly, we remove all the instructions not belonging to the
cone of influence of the unexpected behaviour by exploring the dynamic pro-
gram dependency graph (DPDG). Secondly, we apply a heuristic based on an
instruction-clustering procedure to further reduce the remaining trace. In this
work, we extend the methodology described in [2] to perform bug explanation
of unexpected behaviours modelled as temporal assertions.

The rest of the paper is organised as follows. In Sect. 2, we report the related
work. In Sect. 3, we provide a few preliminary definitions necessary to clearly
understand the proposed approach. In Sect. 4, we overview the methodology,
then we describe in detail each step. In Sect. 5, we describe how to extend the
methodology to perform bug explanation with temporal assertions. In Sect. 6,
we report the experimental results; finally, in Sect. 7, we draw our conclusions.

2 Related Work

In the last decades, several methodologies, mainly in the software field, have
been proposed to tackle the aforementioned problem. A well-known technique to
perform fault localisation and bug explanation is, in particular, program slicing.
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The original notion of a program slice was proposed by Weiser [3]. Weiser
defined a program slice as a reduced program obtained from a program p by
removing statements, such that the slice replicates part of the behavior of p.
Program slicing techniques fall in two main categories: static and dynamic pro-
gram slicing. A static slice is computed without making assumptions regarding
the input of the program while a dynamic slice relies on some specific test case.
Several techniques have been proposed to produce a static slice using reachability
algorithms on program dependency graphs (PDG) [4–8]. A PDG is an intermedi-
ate program representation to make explicit both data and control dependencies
in a program.

Dynamic program slicing was first introduced by Korel and Laski in [9],
which allows extracting a (small) executable section of the original program that
preserves part of the program’s behaviour for a specific input with respect to a
subset of selected variables, rather than for all possible computations. One of the
most popular applications of dynamic program slicing consists of comparing two
or more slices to identify differences or similarities. In [10], the authors present
a technique to isolate the region of the bug by computing the difference between
a correct slice and the faulty one; likewise, [11] propose an approach to find
a correct slice that is the nearest to a related faulty slice. Similar techniques
based on intersections and unions between dynamic slices are reported in [12].
In [13], the authors describe a tool to find the cause of a bug by comparing
a faulty slice with several correct slices generated through symbolic simulation
and converted to sequences of strings. A dynamic program dependency graph
is usually employed in conjunction with program slicing as a dynamic variant
of a PDG. In a DPDG, dependencies consider a specific occurrence of a certain
instruction as there may be several repetitions in a single execution trace. The
paper in [14] describes several techniques to exploit a DPDG while performing
dynamic program slicing.

Several approaches have been proposed to generate slices by exploiting both
static and dynamic information [15–20].

Other approaches rely on statistical methods to perform fault localisation
[21,22]. These techniques aim at gathering coverage details of correct and faulty
executions over a bugged program, then they rate each programming element in
terms of their suspiciousness. In [23] the authors combine dynamic program slic-
ing with statistical methods to build program slicing spectra to rank suspicious
elements.

With regard to the use of clustering techniques, Wang et al. [24] proposed
a guided technique called “hierarchical program slicing”, where the execution
trace is divided into phases to simplify the comprehension of data and control
dependencies between the instructions in the trace.

The above works provide valid solutions to help the verification engineers
in the process of bug localisation and explanation. However, these solutions
are usually available only for specific application domains and do not offer a
standardised way of defying unexpected behaviors. Furthermore, none of the
previous works is capable of providing a reduced execution trace for expected
behaviours modelled as temporal assertions.
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3 Preliminary Definitions

Definition 1. An instruction is a programming statement following the LLVM
bitcode syntax [25].

Definition 2. An execution trace is a sequence of instructions representing
an executable instance of a program.

Definition 3. Let i1 and i2 be two instructions, i2 is data dependent on i1 if
i2 accesses a portion of memory allocated or modified by i1.

Definition 4. Let i1 and i2 two instructions, where i1 is a branch with multiple
branch targets, if changing the branch target of i1 may cause i2 is not executed,
then i2 is control dependent on i1.

Definition 5. A dynamic program dependence graph is a structure com-
posed of nodes and edges where each node represents an instruction of an execu-
tion trace and each edge represents a data or control dependency between instruc-
tions. Let n1,n2 be two nodes of a DPDG, if n2 has an incoming edge e1 connect-
ing n2 with n1, then the instruction represented by n2 is either data dependent
or control dependent on the instruction represented by n1.

Figure 3 shows an example of a DPDG where red edges are data dependencies
and blue edges are control dependencies.

Definition 6. Linear temporal logic (LTL) is a modal temporal logic used
to formalise behaviours spanning multiple instants of time. In LTL, one can
encode formulae about the future of paths, e.g., a condition will eventually be
true, a condition will be true until another fact becomes true, and so on. We
recommend [26] for a full reference of the semantics.

Definition 7. An assertion is a logic property that must hold during the exe-
cution of the design. They are divided into two main categories. I) immediate
assertion: a function assert defined inside the source code of the design; it checks
if a propositional formula is satisfied when assert is called during execution. A
proposition can be any kind of Boolean expression that can be constructed in
C by connecting variables using boolean, relational or arithmetic operators. II)
temporal assertions: a logic formula formalised using LTL. The truth value of
the formula is checked by the simulator independently from the execution of the
design. In this work, we allow the formalisation of assertions following the gram-
mar in Fig. 1.

Definition 8. Let as be an assertion and A = {a0, a1, ..., an} the set of mem-
ory addresses of variables v0, v1, ..., vn on which as predicates, then the memory
address af is a fundamental address of as if af ∈ A.
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Fig. 1. Temporal assertion grammar

4 Methodology

As shown in Fig. 2, the proposed tool is composed of 3 main steps executed
sequentially. The inputs of the tool are the LLVM code of the DUV and a set
of propositional assertions capturing the expected behaviours. Additionally, the
user can provide the sequences of inputs that eventually falsify the assertions,
thus highlighting the presence of a bug. For each failed assertion, the tool pro-
duces a sequence of minimal instructions explaining the cause of the failure, i.e.,
the reason for the bug. Hereafter, we provide an overview of the 3 main steps.

1. Trace Extraction: given the failure of an assertion, in the first step of the
methodology, we extract the sequences of LLVM instructions that brings the
execution to activate the unexpected behaviours. This procedure may occur
in two ways, depending on whether the user provided the sequences of inputs
or only the assertion. In the first case, the sequence of instructions firing
the unexpected behaviour is extracted by executing the implementation with
the given inputs until the related assertion fails. In the latter case, we use
symbolic simulation to find a sequence of instructions capable of falsifying
the assertion.



76 M. Bragaglio et al.

Fig. 2. Methodology execution flow

2. Cone of Influence Generation: each trace extracted in the previous step
is reduced by applying a dynamic program slicing algorithm to eliminate all
instructions not belonging to the cone of influence (CoI) of the assertion. For
each trace, we generate a DPDG characterising control and data dependen-
cies between instructions. After that, we apply a reachability algorithm to
determine what instructions influence the value of the variables contained
in the assertions. The instructions not selected by the above procedure are
removed from the trace.

3. Instruction Clustering: in the last step of the methodology, we apply a
clustering procedure to further reduce the remaining instructions. Our app-
roach consists of dividing the instructions into independent clusters such that
applying any reduction procedures to one cluster would not prevent a satis-
fying minimisation in another. Once such clusters are identified, we apply a
combinatorial-based reduction to obtain the minimal sequence in each cluster.

To simplify the exposition, we apply the proposed methodology to the exam-
ple shown in listing 1.1. It consists of a design written in C implementing a simple
arithmetic transformation. The code is decorated with an immediate assertion
(line 16) specifying a property that must hold during execution.
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1 i n t in ;
2 i n t main ( ) {
3 i n t a=0;
4 i n t b=5;
5 whi le (1 ) {
6 in= getNextInput ( ) ;
7 i f ( in == 0) {
8 a=4;
9 a++;

10 } e l s e i f ( in < 5) {
11 a+=10;
12 a−−;
13 } e l s e i f ( in > 90) {
14 a−=2;
15 b+=3;
16 a s s e r t ( a != 12) ;
17 }
18 }
19 }

Listing 1.1. Running example

4.1 Trace Extraction

In the first step of the methodology, we extract the sequences of LLVM instruc-
tions that expose the unexpected behaviour, namely, sequences starting with the
first instruction of the program and ending with the assertion failure.

In Table 1 we report an execution trace falsifying the assertion contained in
the running example. The instructions are labelled with two identifiers: the first
uniquely identifies each LLVM instruction, the second links each instruction to
its corresponding high-level statement in listing 1.1. To extract such an execu-
tion trace, we symbolically simulate the DUV, until we find an execution path
that falsifies the target assertion. To accomplish that, we exploit the symbolic
simulation engine provided by KLEE [27]. To simulate the DUV with KLEE, the
DUV inputs are marked as “symbolic” to declare where symbolic values should
be injected. For example, to symbolically simulate the running example, line 6
must be replaced by klee make symbolic(in), since variable in is the only input.
Then the symbolic simulation explores the various paths of the running example,
until it finds a path that makes the assertion at line 16 fail. Such a path has
the following symbolic constraints: (in1 == 0, in2 < 5, in3 > 90), where the
subscript i of ini refers to the value of the variable in at the symbolic iteration i.

Symbolic simulation is quite expensive in terms of computational resources.
As a matter of fact, it is an exponential-time algorithm; however, if the user
already has the required sequence of inputs to activate the bug, it can be run
in a linear-time constrained mode, since only one path needs to be explored. In
the running example, we assumed the following sequence of inputs: {〈in1, 0〉,
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Table 1. LLVM execution trace of the running example

<label>:0: <label>:14:

[0, 1] %1 = alloca i32 [26, 11] %15 = load i32, i32* %2

[1, 3] %2 = alloca i32 [27, 11] %16 = add add nsw i32 %15,10

[2, 5] %3 = alloca i32 [28, 11] store i32 %16, i32* %2

[3, 1] store i32 0, i32* %1 [29, 12] %17 = load i32, i32* %2

[5, 3] store i32 0, i32* %2 [30, 12] %18 = add nsw i32 %17, -1

[7, 4] store i32 5, i32* %3 [31, 12] store i32 %18, i32* %2

[8, 5] br label %4 [32, 18] br label %31

<label>:4: //in=0 <label>:31:

[9, 6] store i32 getNextInput(), i32* %1 [33, 5] br label %4

[10, 7] %6 = load i32, i32* %1 <label>:4: //in=125

[11, 7] %7 = icmp eq i32 %6, 0 [34, 6] store i32 getNextInput(), i32* %1

[12, 7] br i1 %7, label %8, label %11 [35, 7] %6 = load i32, i32* %1

<label>:8: [36, 7] %7 = icmp eq i32 %6, 0

[13, 8] store i32 4, i32* %2 [37, 7] br i1 %7, label %8, label %11

[14, 9] %9 = load i32, i32* %2 <label>:11:

[15, 9] %10 = add nsw i32 %9, 1 [38, 10] %12 = load i32, i32* %1

[16, 9] store i32 %10, i32* %2 [39, 10] %13 = icmp slt i32 %12, 5

[17, 18] br label %31 [40, 10] br i1 %13, label %14, label %19

<label>:31: <label>:19:

[18, 5] br label %4 [41, 13] %20 = load i32, i32* %1

<label>:4: //in=4 [42, 13] %21 = icmp sgt i32 %20, 90

[19, 6] store i32 getNextInput(), i32* %1 [43, 13] br i1 %21, label %22, label %31

[20, 7] %6 = load i32, i32* %1 <label>:22:

[21, 7] %7 = icmp eq i32 %6, 0 [44, 14] = load i32, i32* %2

[22, 7] br i1 %7, label %8, label %11 [45, 14] %24 = sub nsw i32 %23, 2

<label>:11: [46, 14] store i32 %24, i32* %2

[23, 10] %12 = load i32, i32* %1 [47, 15] %25 = load i32, i32* %3

[24, 10] %13 = icmp slt i32 %12, 5 [48, 15] %26 = add nsw i32 %25, 3

[25, 10] br i1 %13, label %14, label %19 [49, 15] store i32 %26, i32* %3

[50, 16] %27 = load i32, i32* %2

[51, 16] %28 = icmp ne i32 %27, 12

[52, 16] %29 = zext i1 %28 to i32

[53, 16] %30 = call @assert

〈in2, 4〉, 〈in3, 125〉}. Therefore, the symbolic simulation must explore only one
path with the following constraints: in1 == 0, in2 == 4, in3 == 125 producing
the sequence of instructions reported in Table 1.
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4.2 Cone of Influence Generation

In the second step of the methodology, the execution trace extracted in the
previous phase is reduced by applying a dynamic program slicing algorithm. The
remaining elements of the execution trace correspond to instructions involved
directly (or indirectly through association) in data or control dependencies with
the variables contained in the failed assertion, that is, the cone of influence of
the assertion. The procedure works in three main sub-steps.

In the first step, we generate the DPDG of the execution trace extracted
in the first step of the methodology. In the last decades, many algorithms have
been proposed to generate DPDGs efficiently, one of which can be found in [28];
therefore, we do not describe such an algorithm in this paper. Figure 3 shows
the DPDG for the execution trace listed in Table 1.

In the second step, we identify all store instructions in the execution trace
accessing fundamental addresses for the target assertion. These are the only
instructions that can modify the variables on which the assertion predicates,
and therefore, that can change its truth value. We call fundInst the set of
instructions collected with the above procedure. Since the algorithm to identify
fundInst is trivial, we do not give any further details on it. In the running
example, there is only one fundamental address, namely, the memory address of
variable a in assertion a! = 12. Such an address is allocated by instruction 3 of
Table 1 and saved in the LLVM label %2. In this example, fundInst is composed
of the store instructions {5, 13, 16, 28, 31, 46}, which are accessing the address in
label %2.

In the last step, we traverse the generated DPDG starting from each store
instruction in fundInst and going backward through the incoming edges until
a node with no incoming edges is found. By construction, the generated DPDG
is an acyclic direct graph, therefore the whole procedure has worst-case time-
complexity of O(V ), where V is the number of nodes in the DPDG. Each instruc-
tion represented by a node in the DPDG that is not visited in the aforementioned
procedure will be removed from the execution trace. The whole procedure is for-
malised in function extractCoI of Algorithm 1.

The inputs of this function are the identifiers corresponding to fundamental
instructions fundInst, the execution trace trace and the DPDG dpdg. First,
visited and reducedTrace are declared and initialised (line 2, 3); the first variable
contains the visited nodes, while the latter contains the reduced execution trace.
After that, we apply the function backwardDFS to all the nodes representing the
fundamental instructions in fundInst (line 4–6). Each node is retrieved from the
DPDG through the method getNodeFromeId (line 5) which returns a node data
structure for a given instruction identifier. The function backwardDFS performs
a depth-first search algorithm going backward from the incoming edges of each
node. First, the function marks the current node as visited (line 17). After that,
it iterates through all the incoming edges of the current node (line 18). Then,
it retrieves the source node sourceNode connected to node through edge using
the method getSource (line 19). If sourceNode is not already marked (line 20),
then we apply backwardDFS recursively using sourceNode as input (line 21).
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Algorithm 1. Cone of influence extraction
1: function extractCoI(fundInst, trace, dpdg)
2: visited = ∅
3: coi Trace = ∅
4: for all fiid in fundInst do
5: node = dpdg.getNodeFromId(fiid)
6: backwardDFS(node, visited)
7: end for
8: for id = 0, id < trace.size(), id++ do
9: if !visited.contains(id) then

10: reducedTrace.pushBack(trace[id])
11: end if
12: end for
13: return reducedTrace
14: end function
15:
16: function backwardDFS(node, &visited)
17: visited.insert(node)
18: for all edge in node.getInEdges() do
19: sourceNode = edge.getSource()
20: if !visited.contains(sourceNode.getId()) then
21: backwardDFS(sourceNode, visited)
22: end if
23: end for
24: end function

When all the visits are concluded, we iterate on all the instructions in trace (line
8) and we add to coi Trace the instructions that do not have a corresponding
marked node (line 9–10), that is, that do not have a corresponding node stored
in visited. Finally, the reduced trace is returned (line 13).

If we apply the above procedure to the running example, the instructions
corresponding to nodes 2, 7, 47, 48, 49 are removed from the trace. These nodes
are highlighted in red in Fig. 3. Intuitively, these instructions refer to the dec-
laration and utilisation of variable b, which does not have any control or data
dependency with variable a in the assertion. From now on, we will use the term
CoI-Trace to refer to the execution trace reduced with the above procedure.

4.3 Instruction Clustering

In the last step of the methodology, we apply a heuristic procedure to further
reduce the remaining instructions in the CoI-Trace. Further reductions are nec-
essary because in most cases, step two of our methodology can not produce
a minimal sequence of instructions falsifying an assertion. Consider, for exam-
ple, the high-level instructions a++ and a−− contained, respectively, at lines
9 and 12 of the running example. Since the assertion predicates on variable a,
which is data-dependent on these instructions, the previous step is not capable
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Fig. 3. DPDG of the running example (Color figure online)

of removing them. In theory, any subsequence of instructions of the execution
trace could be a minimum sequence of instructions explaining the unexpected
behaviour. Therefore, any algorithm seeking to find the minimal sequence would
suffer from exponential complexity, and hence, scalability issues. To tackle this
problem, our approach splits the instructions of the CoI-Trace into indepen-
dent clusters such that applying any reduction to one cluster would not prevent
a satisfying reduction to another cluster. Since every cluster contains a small
number of instructions, it is feasible to quickly find the optimal reduction for
each cluster. We generate such clusters by grouping store instructions accessing
the same memory address. Note that this is just one method of clustering the
instructions, the whole methodology can be still applied with different heuris-
tics. Our clustering heuristic does not produce clusters completely data/control
independent from one another; nonetheless, they provide a satisfying amount of
independence to apply effective individual reductions. Since each store instruc-
tion can only access one memory address, the required clustering procedure is
straightforward. In the running example, the clustering procedure produces two
clusters for the execution trace of Table 1: c1 = {13, 16, 28, 31, 46} for the stores
instructions accessing to the address of variable a, and c2 = {9, 19, 34} for the
address of variable in.

Let ai, a2, ..., ak be the addresses accessed in the store instructions of the
CoI-Trace, C = {c1, c2, ..., ck} is the set of clusters generated with the above
procedure, where ci contains the store instructions for address ai. We define the
optimal reduction as the biggest set of instructions optRedi = {i1, i2..., im}
in a cluster ci such that if the execution trace is stripped of the instructions
contained in optRedi, the trace is still an executable program capable of falsifying
the assertion. For each cluster, we find its optimal reduction and we remove
the respective instructions from the execution trace. In the running example,
instructions 16 and 31 correspond to the optimal reduction of cluster c1. We
identify a candidate optimal reduction optRedi of a cluster ci by applying a
“select and test” procedure. Firstly, we select a subset si ⊆ ci, then we remove
the selected instructions from the trace. Secondly, we test if the execution trace
is still an executable program capable of falsifying the assertion. To perform such
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Algorithm 2. Reduction through clustering and slicing
1: function reduce(trace,dpdg)
2: finalTrace = trace
3: C = generateClusters(trace)
4: for all ci in C do
5: for s = ci.size(), s > 0, s−− do
6: combs = getCombs(ci.size(), s)
7: for all combi in combs do
8: csel = select(ci, combi)
9: traces = strip(csel, finalTrace)

10: if test(traces) then
11: removeLooseInst(csel, dpdg, trace

s)
12: finalTrace = traces

13: goto newCluster
14: end if
15: end for
16: end for
17: label newCluster
18: end for
19: return finalTrace
20: end function
21:
22: function removeLooseInst(csel,dpdg,&traces)
23: for all cj in csel do
24: visited = ∅
25: node = dpdg.getNodeFromId(cj)
26: removeLooseNodes(node, visited)
27: traces.erase(visited)
28: end for
29: end function
30:
31: function findLooseNodes(node,&visited)
32: if node.getInEdges().size() > 1 then
33: return
34: end if
35: visited.insert(node)
36: for all edge in node.getInEdges() do
37: sourceNode = edge.getSource()
38: findLooseNodes(sourceNode, visited)
39: end for
40: end function

a test, we exploit the KLEE LLVM interpreter to re-execute the reduced trace.
This procedure can produce only three outcomes: (1) the assertion fails during
execution; (2) the assertion does not fail; (3) a branch instruction jumps to a
different target than the one in the original trace.

In the first scenario, removing the instructions does not affect the truth value
of the assertion, hence, the removed instructions are considered a candidate opti-
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mal reduction. On the contrary, in the second and third scenario, the removed
instructions were necessary to, respectively, falsify or reach the assertion, there-
fore, they can not be removed from the trace. The biggest candidate optimal
reduction identified with the above procedure is the optimal reduction for the
given cluster. Step three of our methodology is completely formalised in the func-
tion reduce of Algorithm 2. First, the function generates the clusters of stores
instructions (line 3) through the method generateClusters. Then, the selection
and test procedure is performed for all clusters. The selection phase works by
selecting progressively smaller combinations of cluster instructions (lines 4–8).
For example, let cp = {23, 45, 98} be a cluster of instructions, the selection phase
starts by selecting combinations of size 3, which is only 〈23, 45, 98〉. After that, it
continues with combinations of size two, which are 〈23, 45〉, 〈23, 98〉, 〈45, 98〉 and
finishes with combinations of size 1, which are 〈23〉, 〈45〉, 〈98〉. For each combi-
nation, a new reduced trace traces is generated by removing the corresponding
instructions using function strip (line 9). traces is re-executed through function
test (line 10). If test returns true, then we are in scenario 1 of the aforemen-
tioned procedure and csel is an optimal reduction of ci. In this case, the newly
reduced trace is saved in finalTrace (line 11) and the execution moves to the
next cluster (line 13). Finally, when the trace is reduced using all clusters, we
return the final trace (line 19). If we apply this procedure to cluster c1 and c2 of
the running example, we discover that there is no candidate reduction for c2 as
all its store instructions are necessary to explain the unexpected behaviour; on
the contrary, cluster c1 admits an optimal reduction consisting of instructions
16 and 31.

In most cases, removing a store instruction is generates a chain of “loose
instructions” i1, i2,..., ip−1, ip where is is data dependent only to i1, i1 is data
dependent only to i2 ..., ip is data dependent only on ip−1. Since i1 is the only
data dependence of is, removing is causes i1 to become independent from all
the other instructions in the trace. Therefore, since i1 is no longer part of the
cone-of-the influence, we can safely remove it from the trace. In the same way,
i2...ip−1, ip are removed in a chain-reaction fashion once their only dependence is
removed. The above procedure is implemented by the function removeLooseInst
of Algorithm 2. The inputs of removeLooseInst are the store instructions csel
removed in the previous iteration of reduce, the DPDG dpdg and the stripped
trace traces. The procedure works in two phases executed for every instruc-
tion in csel (line 23). First, it finds the nodes visited corresponding to loose
instructions in dpdg using function findLooseNodes (line 24–26). Second, the
found instructions are removed from traces (line 27). Function findLooseNodes
performs the same task of backwardDFS, except that it returns when a node
with more than one dependence is found (line 32). By removing instructions
16 and 31 in the running example, we generate the loose instructions 14, 15
and 29, 30, respectively. These instructions are removed automatically through
the removeLooseInst function. Overall, step three of the methodology removes
instructions 14, 15, 16, 29, 30, 31 whose corresponding nodes are highlighted in
blue in Fig. 3.
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5 Bug Explanation with Temporal Assertions

In this section, we describe how to extend the methodology in Sect. 4 to perform
bug explanation where the unexpected behaviour is identified through a failing
temporal assertion. First, we describe how to handle the advancement of time
(Sect. 5.1). After that, we report how to extract an execution trace that makes a
temporal assertion fail (Sect. 5.2). Finally, we show how to modify the extracted
trace in order to apply the techniques explained in the second and third steps
of the methodology (Sect 5.3).

5.1 Time Flow

Temporal assertions are an invaluable tool to verify synchronous RTL designs
where the advancement of time is usually defined through a clock signal. Each
time a clock signal reaches a positive (or negative) edge, time advances by 1 unit
inside the assertion. However, in the specific domain of application of this work,
there is no signal that is responsible for articulating the advancement of time.
To solve this issue, in this work time advances by one time unit each whenever
a new input is provided to the design. The values of the variables inside an
assertion at time ti (corresponding to the i-th input) are equal to the values of
the corresponding variables inside the design before executing the instructions
necessary to read inputi+1. In the running example, the value of variable a is
equal to 0 at time t0, before reading the first input. a becomes equal to 5 after
receiving the first input 〈input1, 0〉 at time t1. Note that inside the assertion,
the first evaluation unit is t1 (first sample of the variables) and not t0.

If the executions reads multiple consecutively inputs, they are all considered
part of the same time unit. For example, if the execution is currently at time tj
and the simulation must execute the following instructions

1 in1 = getNextInput1 ( ) ;
2 in2 = getNextInput2 ( ) ;
3 in3 = getNextInput3 ( ) ;

then, time is equal to tj+1 after executing the third statement. This is necessary
to allow the evaluation of multiple inputs on a single time unit.

In this work, we consider only safety assertions following the template
always(antecedent → consequence) (see Definition 7) where both the antece-
dent and the consequent can be any LTL temporal formula.

5.2 Trace Extraction

Evaluating temporal assertions while performing symbolic simulation presents
several additional issues, we describe the main challenges below.

– The assertion is no longer part of the source code of the design; therefore, it
must be handled by the simulator outside the simulation.
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Fig. 4. Trace extraction with temporal assertion

– The variables used inside an assertion might not be always available dur-
ing simulation; this happens because the existence in memory of a variable
depends on the scope in which it is declared.

– The symbolic simulation explores several computational paths; therefore, the
simulator must keep track of the state of the temporal assertion for every
path.

To solve the above issues, we have developed the procedure described in Fig. 4.
Before starting the simulation, the LTL assertion is translated to a checker

in the form of a deterministic finite-state automaton. The automaton always
contains a root node as the initial state of the checker and a rejecting node
where the assertion fails. The state of a checker is completely identified with
an unsigned integer. Each edge is labelled with a propositional formula. Given
a checker ch in state si and a proposition pk on the outer edge connecting si
with sj ; if pk is true for the current sample, then sj is the next state of the
checker. A sample is a set of couples Si = {(var1, val1)i, ..., (varn, valn)i} where
each element (varj , valj)i corresponds to value valj at time i of variable varj ;
var1, ..., varn are the variables contained in the LTL assertion. To determine
value valj , the simulator must know the scope in which to find the corresponding
variable varj ; therefore, the user has to add such information in the assertion
by appending the scope to the variable. In the assertion of Fig. 4, variable a is
used as main :: a since it is declared in the main function; likewise, variable in
is used without any additional information to specify that it is declared in the
global scope. If the simulator tries to make a sample of variable vark that does
not exist in memory at time i, then the sample will contain a valk equal to 0.
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Algorithm 3. Automaton’s evaluation
1: function evalAutomaton(aut, samp)
2: for all outEdge in aut.currState.outEdges do
3: if outEdge.prop.evaluate(samp) then
4: aut.state = edge.toState
5: if outEdge.toState.type == Rejecting then
6: return false
7: end if
8: break
9: end if

10: end for
11: return true
12: end function

Function evalAutomaton of Algorithm 3 formalises how to perform an eval-
uation for an automaton aut and a sample samp. The function searches for an
outer edge outEdge labelled with a proposition that is true for sample samp (line
2–3). After that, the state of the automaton is updated (line 4). If the next state
is rejecting (line 5), then the function returns false to notify that the assertion
failed (line 6). If the next state is not rejecting, then the function returns true
as the assertion did not fail on the current time unit (line 11).

Once the checker and all the utilities to evaluate it on a trace are prepared,
we perform symbolic simulation to identify a computational path on which the
assertion fails. To do that, we have extended the KLEE framework [27]. In par-
ticular, each time a new input must be read in the execution (new symbolic
value), the simulator creates a sample of the variables and evaluates the checker
on the current time unit. Note that each computational path (called Execution-
State in KLEE) contains a unique instance of the checker stored as an unsigned
integer (we only need to keep track of its current state). If the evaluation of
checkeri on pathi returns false, then the assertion failed and a faulty execution
trace exec tracei is found; otherwise, the simulation continues. As in Sect. 4.1,
if the user provided the inputs necessary to make the assertion fail, then only
one path is explored by the symbolic simulation.

5.3 Trace Decoration

In this section, we describe how to modify an extracted execution trace to
include the information of the failure of a temporal assertion. The result of this
procedure is a set of decorated execution traces on which to apply steps 2 and
3 of the methodology described in Sect. 4. To simplify the exposition, we will
refer to the example in Fig. 5. The example involves the same implementation
reported in listing 1.1 that generates the same execution trace reported in Table
1 on which assertion a1 fails.

The methodology is based on the assumption that the failure of a temporal
assertion can be described as a sequence of propositions 〈p1, ..., pn〉 that are true
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Fig. 5. Trace decoration of the running example

on a sequence of time units 〈1, ..., n〉, where pi is true at time i. For example,
assertion a1 of Fig. 5 fails if the sequence of propositions 〈in! = 0 & a < 5,
a == 12 & in > 90〉 is true on two consecutive time units. This sequence
of propositions corresponds to an accepting path of the automaton generated
from the expression ant & !con, where ant and con is the antecedent and the
consequent of the original assertion. The simulator deduces that the assertion
fails on the execution trace by checking that all the propositions in the sequence
are true on the corresponding time units.

The whole procedure consists of three main steps. First, the origi-
nal assertion G(antecedent → consequent) is converted to the expression
antecedent & !consequent and translated to an automaton. Note that this automa-
ton contains both accepting and rejecting states. Figure 5 contains the conversion
of assertion a1 to expression e1 and its translation to automaton aut1.

In the second step, the procedure retrieves the paths of the automaton justi-
fying the failure of the assertion on the execution trace. This process is formalised
in function retrievePaths of Algorithm 4. The idea of the algorithm is to eval-
uate the edges of the automaton using the samples of the execution trace to
build the sequences of propositions that make the assertion fail. The inputs of
function retrievePaths are the automaton aut and the list of samples samps.
Variables paths contains the list of retrieved paths, and currPath is a utility
variable used to build the paths (line 2–3). The algorithm starts by evaluating
the edges of the accepting state of the automaton (where the assertion fails)
with the last sample of the execution trace (lines 4–6). In the running example,
the algorithm starts from state 4 of aut1 with the sample obtained after the
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Algorithm 4. Function to retrieve the paths triggering the failure
1: function retrievePaths(aut, samps)
2: paths = ∅
3: currPath = ∅
4: for all inEdge in aut.accState.inEdges do
5: visitAut(inEdge, aut, samps, paths, currPath, samps.size() − 1)
6: end for
7: return paths
8: end function
9:

10: function visitAut(currEdge, aut, samps, paths, currPath, si)
11: if currEdge.prop.evaluate(samps[si]) then
12: currPath.push front(currEdge.prop)
13: si−−
14: if currEdge.fromState == aut.rootNode then
15: paths.push back(currPath)
16: else if si >= 0 then
17: for all inEdge in currEdge.fromNode.inEdges do
18: visitAut(inEdge, aut, samps, paths, currPath, si)
19: end for
20: end if
21: si++
22: currPath.pop front()
23: end if
24: end function

third input 〈in3, 125〉}. For each edge aut.accState.inEdge, the algorithm calls
function visitAut. Among the inputs of visitAut we have the edge currEdge
with which the function is trying to build a path and the index si to keep track
of which sample must be used to evaluate the proposition on currEdge. At line
5, visitAut he is called with si equal to sample.size() − 1 to specify that the
path is built from the last sample (last time unit). Function visitAut recursively
visits the inner edges of each state of aut in a DFS fashion (line 10–24). Each
time the function manages to build a path that connects the root state with
the accepting state of aut (line 14), a new path is found and stored in paths
(line 15). Figure 5 reports the two failing paths retrieved from assertion a1 in
the running example.

In the final step of the procedure, each sequence of propositions is used
to generate a decorated execution trace. Formally, a sequence of propositions
〈p1, ..., pn〉 is used to decorate an execution trace with a sequence of checkpoints
〈c1, ..., cn〉 where ci is a function that returns true if pi is true at time i, false
otherwise. If all checkpoints return true, then the assertion must fail on the
execution trace. Figure 5 reports the execution trace decorated with one of the
failing paths.
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Once a decorated execution trace is generated, we can easily apply the tech-
niques described in the second and third steps of the methodology by considering
the differences highlighted below.

– The DPDG must consider the fundamental addresses of all the propositions
in the checkpoints

– To determine if an assertion fails on a decorated execution trace, the simulator
must verify that all the checkpoints return true.

6 Experimental Results

The proposed methodology has been implemented in an automatic tool extend-
ing the KLEE symbolic engine. Its effectiveness and efficency has been evaluated
on four well-known C benchmarks compiled to LLVM:

– xtea implements the Extended Tiny Encryption Algorithm;
– matrix mult is a matrix multiplication algorithm;
– graph DFS is a depth first search algorithm;
– Newton-Raphson is the famous root finding algorithm.

The experimental results have been carried out on a 2.9 GHz Intel Core i7 pro-
cessor equipped with 16 GB of RAM and running Ubuntu 20.04 LTS.

Table 2 reports the results in terms of execution time and reduction quality
referred to an execution trace exposing a bug for each design. In particular,
Table 2 compares the results of our tool with a baseline obtained by applying
the best achievable reduction, that is, by manually inspecting the trace and
removing the unnecessary instructions; indeed, this procedure can be performed
only on short traces. The second column (Original length) reports the length of
the original execution trace that makes the assertion fail, before applying any
reduction. The third column (Our approach) reports the final length of the trace
after applying our approach. The fourth column (Manual Inspection) reports
the baseline. The fifth column reports the reduction quality as a ratio between
“Manual inspection” and “Our approach”. Here we can observe that our tool
produces results very close to the baseline (reduction quality close to 1) for all
the reported tests. The last column reports the execution time of our tool.

Table 3, instead, shows the scalability of our approach. It reports, for the
Netwon-Raphson benchmark, the reduction percentage and the execution time
at the increasing of the length of the target execution trace. These results show
that our tool is capable, in a few seconds, of providing a reduction of over 60%
of the original trace, even for traces hundreds of instructions long.
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Table 2. Analysis of the reduction quality

Name Original
length

Reduced length Reduction
quality

Reduction
time

Our
approach

Manual
inspection

xtea 190 155 155 1 1830 ms

Matrix mult 150 127 122 0.96 2631 ms

Newton-Raphson 213 76 76 1 2056 ms

Graph DFS 236 207 205 0.99 4623 ms

Table 3. Analysis of the approach’s scalability

Original length Reduced length Reduction time Reduction

482 154 3 s 68.05%

1379 389 36 s 71.79%

10283 2888 437 s 71.91%

7 Conclusions

In this paper, we presented a new methodology and a related tool to automati-
cally remove irrelevant instructions from execution traces identifying unexpected
behaviours in system-level designs. Starting from an unexpected behaviour for-
malised through an assertion, the tool generates a reduced execution trace that
triggers such behaviour, thus highlighting the essential instructions related to
it. To achieve that, we perform a preliminary reduction involving a DPDG and
dynamic program slicing; then, the remaining instructions are further reduced
through an instruction clusterization procedure. One of the main aspects of our
methodology is that we verify by simulation if the remaining trace is still capable
of triggering the unexpected behaviour; therefore, the output trace corresponds
to an executable program.

After that, the methodology was modified to support temporal behaviours.
This last extension opens a whole new world of possibilities, allowing the appli-
cation of old and new program slicing techniques to systems implementing func-
tional behaviours described by means of LTL formulas.

Experimental results show the effectiveness and scalability of the approach.
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Abstract. Limitations on Complementary Metal Oxide Semiconductor
(CMOS) technology scaling combined with the increasing demand for
emerging applications requiring high computing and storage capabilities
pose significant challenges to device technologies and computer architec-
tures. From the point of view of device technology, memristive devices
have become the most promising candidate to complement and/or replace
CMOS technology. The key advantages are the memristive device’s CMOS
manufacturing process compatibility, zero standby power consumption,
high scalability and density, as well as the memristive device’s capa-
bility to implement high-density memories as well as new computing
paradigms. Despite all these advantages, these novel devices are also sus-
ceptible to manufacturing deviations that may cause faulty behaviors not
observed in CMOS technology, significantly increasing the test complex-
ity. In such context, this paper presents a Design-for-Testability (DfT)
strategy able to detect traditional as well as unique faults in Resistive
Random Access Memories (RRAMs). In more detail, an on-chip sensor
able to perform electrical measurements, while performing a predefined
operating sequence, was implemented using an X-Fab technology library.
The obtained results demonstrate the proposed strategy’s capability to
detect unique faults in RRAM cells. Finally, the paper provides a discus-
sion about introduced overheads and implementation granularity.

Keywords: RRAMs · DfT strategy · Traditional faults · Unique faults

1 Introduction

Over the last fifty years, Moore’s and Dennard’s laws dictated the CMOS
technology miniaturization rate [1,2]. Limitations on the continued transistor
scaling and the increasing demand for emerging applications, requiring high-
performance systems with strict constraints, pose significant challenges to device
technologies and computer architectures. Device technology faces the following
three walls, preventing further transistor scaling [3,4]: (a) the reliability wall -
associated with a failure rate increase and lifetime reduction; (b) the leakage
wall - meaning that the static power consumption becomes even more impor-
tant than the dynamic power consumption when considering the overall power
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Published by Springer Nature Switzerland AG 2022
V. Grimblatt et al. (Eds.): VLSI-SoC 2021, IFIP AICT 661, pp. 93–111, 2022.
https://doi.org/10.1007/978-3-031-16818-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16818-5_5&domain=pdf
https://doi.org/10.1007/978-3-031-16818-5_5


94 T. S. Copetti et al.

consumption, and (c) the cost wall - showing that the cost per transistor via
pure geometric scaling is plateauing, with no tendency to get cheaper. From
the computer architecture point of view, the following walls can be identified:
(a) the memory wall - due to the limited memory bandwidth that impacts per-
formance and energy consumption of data-intensive applications as well as the
growing gap between memory and processor speeds; (b) the power wall - as the
practical power limit for cooling is reached and consequently, there is no possi-
bility to further increase the CPU clock frequency; and (c) the Instruction Level
Parallelism (ILP) wall - related to the always increasing complexity of keeping
all cores running in parallel. These aspects limit the use of CMOS technology
and von Neumann architectures as solutions for emerging applications’ imple-
mentation and increase the necessity for novel devices and architectures. Mem-
ristive devices represent one of the most promising candidates to complement
and/or replace CMOS technology mainly due to their CMOS manufacturing
process compatibility, zero standby power consumption, as well as high scalabil-
ity and density [4]. However, the fabrication of memristive devices is prone to
manufacture deviations, including process variation and manufacturing defects,
that can result in faults [5]. A fault is defined as any deviation from the mem-
ristor’s expected behavior due to process variations, manufacturing defects, or
design-induced anomalies [5]. The fault size is related to the deviation’s mag-
nitude and can be categorized into three different classes. A deviation higher
than the tolerance limit is classified as catastrophic. However, if the deviation
only degrades the performance, it is categorized as parametric. Finally, if the
deviation’s magnitude is insignificant, the fault is called benign. Thus, the use
of these novel devices depends on being able to guarantee their proper behavior
after manufacturing. Memristive devices are usually integrated during the CMOS
Back-End-Of-Line (BEOF) manufacturing process. In this context, it becomes
mandatory to properly test the fabricated devices after manufacturing, which
requires accurate fault models derived from realistic manufacturing defects. In
[6], the authors provide a review of the memristive device manufacturing pro-
cess as well as a discussion related to the possible defects that may affect these
novel devices, identifying the relation between manufacturing failure mechanisms
and faulty behaviors. Literature shows that Resistive Random Access Memory
(RRAM) cells can be affected not only by traditional faults, but also by unique
faults [6–9], demanding the development of new manufacturing test procedures
able to properly detect these faults [10,11]. In the last few years, some strategies
were proposed in order to test memristor-based circuits. A fault model and two
Design-for-Testability (DfT) schemes for RRAMs are presented in [7]. The DfT
schemes exploit the access time duration and supply voltage level of RRAM cells
to facilitate the detection of unique faults. Moreover, the traditional March Tests
that explore the execution of predefined read and write operations applied at
each RRAM cell are extremely time-consuming and are also not able to guar-
antee the detection of all unique faults. In [12] the authors presented a scheme
based on “sneak-path sensing” able to test multiple elements of Phase Change
Memories (PCM) at the same time (1R RRAM cells). The detection is based



DfT Stategy for RRAMs 95

on a comparison between the output current related to a specific group of cells
and the ideal current. The groups are accessed based on the execution of March
elements. The main drawback of this scheme is related to the fact that it only
works for RRAMs that have sneak-paths as well as the fact that the amount of
cells that can be tested in parallel is limited.

In such context, this paper proposes a DfT strategy based on the introduction
of an on-chip sensor able to perform electrical measurements, while performing
a predefined operating sequence to detect both traditional and unique faults
in RRAMs. Note that this paper extends the work described in [13]. In more
detail, this paper presents an optimized version of the on-chip sensor proposed
in [13], making the DfT strategy able to detect all unique faults that can affect
RRAM cells. The validation of the proposed strategy was performed using a
1T1R RRAM cell implemented using a 350 nm X-Fab technology library and
a memristive model described in [14]. A defect injection scheme based on the
introduction of resistors on the 1T1R RRAM cell was adopted. The obtained
results demonstrated that the proposed approach is able to detect traditional
and unique faults. Finally, the paper also provides a more complete analysis and
discussion about introduced overheads and possible implementation granularity
when considering a crossbar memory array.

2 Background

This Section presents concepts related to memristive devices as well as existing
fault models associated to these novel devices.

2.1 Memristive Devices

In 1971, Leon Chua postulated the fourth basic circuit element named memris-
tive device, or memristor, while trying to establish a missing constitutive rela-
tionship between electrical charge and magnetic flux [15]. A memristive device
is a passive element that can be described by the time integral of the current
(charge q) through the time integral of the voltage (flux φ) across its two ter-
minals [15]. The memristive device has at least two distinct states, the High
Resistance State (HRS) and the Low Resistance State (LRS), and can switch
from HRS (LRS) to LRS (HRS) by applying a voltage VSET (VRESET) with
an absolute value larger than its threshold voltage (Vth). The essential finger-
print of memristive devices is the pinched current-voltage (I-V) hysteresis loop,
illustrated in Fig. 1(a). Note that when the memristive device is floating, or when
the voltage v(t) across the device is zero, the current i(t) is also zero [16]. An
RRAM data storage element is a three-layer device consisting of a dielectric sand-
wiched between two metal electrodes. In more detail, the memory cell is based on
Metal/Insulator/Metal (MIM) structure [17]. The “M” in MIM denotes any rea-
sonably good electron conductor, often asymmetric for the two sides with respect
to the materials’ work function and oxygen affinity, while “I” stands for insula-
tor, often an ion or mixed conducting oxide or higher chalcogenide. Figure 1(b)
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Fig. 1. (a) I-V characteristics of a bipolar resistive switching device [16], (b) Conductive
filament in bipolar RRAM, and (c) Symbols used for representing memristive devices
[18].

depicts the RRAM device including the Bottom Electrode (BE), the Top Elec-
trode (TE) and the internal structure (metallic oxide and capping layer). When
VSET is applied, the oxygen ions are attracted to the capping layer (cap) and
leave behind a conductive chain of vacancies that is called a Conductive Filament
(CF). However, when VRESET is applied, some of the oxygen ions move back
into the oxide and rupture the CF. Figure 1(c) shows two optional symbols used
for representing memristive devices, where the black square of the left symbol
represents the device’s terminal for positive voltage switching [18].

Memristive devices can be initially classified into two types: (a) ionic thin
film and molecular memristors, and (b) magnetic and spin-based memristor [19].
When used as memory devices, ionic thin film and molecular memristors are
called resistive memories, more precisely RRAMs, being classified as a non-
volatile memory [19,20]. Note that RRAMs can be further classified as unipolar
or bipolar, filamentary or area dependent switching-based, and finally accord-
ing to their switching mechanism as Valence Change Mechanism (VCM), Elec-
trochemical Mechanism (ECM) and, Thermochemical Mechanism (TCM) [17].
When considering filamentary switching, the CF is formed through the electro-
forming process, which is a soft breakdown phenomenon that creates a locally
degraded region with a high defect concentration [20]. Note that the CF is made
out of metallic impurities or oxygen vacancies, which are responsible for charge
transport. Thus, filamentary, memristive VCM cells can be manufactured using
different materials, such as TaOx, HfOx, and TiOx. The memristor can be man-
ufactured on a silicon-based substrate or on a processed integrated circuit with
planarized contact pads. In general terms, the memristor’s fabrication includes
the same basic processes, such as lithography, deposition, and etching [3,21].
It is important to highlight that after manufacturing, especially the oxide-based
filamentary-type devices, usually have a very high electrical resistance and a large
voltage is required for the very first SET operation, also known as the forming
process [16]. This process, a controlled soft breakdown, drastically reduces the
device resistance allowing the resistance switching behavior in the subsequent
cycles.
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2.2 Defect Injection Schemes and Fault Models

The manufacturing process of memristive devices aims to create devices com-
posed of three main parts, the BE, the Transition Metal Oxide (TMO) and
finally, the TE [6]. The fabrication of memristive devices includes the same basic
processes as CMOS circuits, including lithography, deposition and etching [6].
Thus, like any other device, memristors are prone to defects potentially gen-
erated during the manufacturing process due to deviations and failure mech-
anisms. These defects need to be properly modeled in order to guarantee an
accurate identification of possible faulty behaviors of RRAM cells. Functional
faults always impact the memory’s functionality and can be also referred to as
strong faults [22]. Contrarily, parametric faults cause parametric deviations and
can be also referred to as weak faults [22]. Faults can also be further classified
according to their detection conditions. In more detail, faults whose detection is
guaranteed using only read and write operations, March elements, are classified
as functional Easy-to-Detect (ETD) faults. They have deterministic behavior,
and therefore will always lead to a logic faulty behavior that can be detected
by writing into or reading from the memory cell. However, faults whose detec-
tion is not guaranteed using only read and write operations are classified as
Hard-to-Detect (HTD) faults [23].

Defect Injection Scheme: According to literature, manufacturing defects can
be injected based on the following two different models: (a) Resistive Defect (RD)
model or (b) Defect Oriented (DO) model [11]. On one hand, the simulation of
memristive device’s faults can be done by adopting defect injection schemes
based on the introduction of resistors, known as RD model. In such models, the
resistance values correspond to the strength of the defects [16]. On the other
hand, the simulation of a memristive device’s faulty behavior can be done by
altering the electrical properties of the device itself, known as DO model. It is
important to highlight that all traditional and unique faults considered in this
paper are modeled using the RD model.

Conventional Fault Model: The conventional fault model of RRAMs is com-
posed of faults that are also observed in CMOS-based memories, such as:

– Stuck-at-Fault (SAF): the cell has its logic value stuck-at in one state, LRS
or HRS [24];

– Transition Fault (TF) or Slow Write Fault (SWF): the cell fails to undergo a
RESET or SET operation in the allowed time [11]. Note that the fault may
occur only in one transition direction, from‘1’ to‘0’ or from ‘0’ to ‘1’;

– Read Disturb Fault (RDF): the cell returns a correct logic value when a read
operation is performed, while the data that is stored by the cell is flipped by
the read operation [11];

– Incorrect Read Fault (IRF): the cell returns an incorrect logic value when a
read operation is performed, while the data stored by the cell is correct and
not affected by the read operation [11];
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Fig. 2. Unique fault model: resistance intervals of faulty-free and faulty memristive
devices.

– State Coupling Fault (CFst): the state of an a-cell (aggressor) impacts the
data of a v-cell (victim) [25];

– Write Disturbance Fault (WDF): a write operation in a-cell changes the data
in the v-cell. This fault can appear after a cycle of operations (dynamic WDF
- dWDF) [26].

Unique Fault Model. As previously mentioned, there are some exclusive faulty
behaviors for RRAMs, including the following emerging faults:

– Undefined Write Fault (UWF): after a writing operation the cell is brought
into an undefined state ‘U’ between ‘0’ and ‘1’, HRS and LRS [11];

– Deep State Fault (DeepF): the resistance in the cell is beyond the boundaries
for each state of the cell [27];

– Unknown Read Fault (URF): the read operation results in unknown data,
which means a random logic value at the output, independent from the read-
ing conditions [11,12]. A URF can occur when LRS and HRS are close to
each other or when a state ‘U’ is stored in the cell. Note that the state ‘U’
needs to be detected because it indicates misbehavior in the memristor.

Figure 2 depicts the faulty resistance intervals of memristive devices, where
the regions highlighted in blue represent emerging faults associated to the unique
fault model.

3 The Proposed DfT Strategy

This Section describes the proposed DfT strategy including details related to its
specification as well as implementation.

3.1 Specification

The DfT strategy proposed in this paper is based on the introduction of an
on-chip sensor that performs electrical measurements of the RRAM cell while
executing a predefined operating sequence, including READ, SET, and RESET
operations. Figure 3 depicts the general idea of how the on-chip sensor is con-
nected to the 1T1R RRAM cell. Forward, will be proposed a DfT strategy that
could be adopted on a column basis introducing just one on-chip sensor per
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column. From the functional point of view, the on-chip sensor was designed
to operate during the execution of READ operations only, reading the voltage
between the memristor (1R) and the memristor node (MEM), and comparing
this signal with an input reference voltage (V REF). Note that two control sig-
nals are used in order to activate the target resistor, which generates the correct
internal reference voltage, the Voltage associated with High Resistance Refer-
ence (VHRR) or the Voltage associated to Low Resistance Reference (VLRR).
A Sensor Enable (SE) signal is used in order to enable the on-chip sensor during
the execution of the predefined operating sequence only, minimizing the power
consumption linked with the DfT strategy’s introduction. Finally, the Sensor
Output (SO) indicates the result related to the comparison between the voltage
at the MEM node and the internal reference voltage. Figure 4 depicts the block
diagram of the proposed on-chip sensor including the 1T1R RRAM cell. Note
that was included extra hardware in order to detect DeepFs. The on-chip sensor
consists of a two-stage sense amplifier [28], which compares two voltage out-
puts, and a set of reference resistors, named Extreme High Resistance Reference
(EHRR), High Resistance Reference (HRR), Low Resistance Reference (LRR),
and Extreme Low Resistance Reference (ELRR). The first resistor generates the
Extreme High Reference Voltage (V REF EH) and the second resistor the High
Reference Voltage (V REF H), the third, the Low Reference Voltage (V REF L),
and finally the fourth, the Extreme Low Reference Voltage (V REF HL). More
precisely, the sense amplifier compares the voltage of the memristor (1R) on the
memristor node (MEM) with the voltage related to the set of reference resistors
on the reference node (REF). Moreover, four nMOS access transistors, VEHRR,
VHRR, VLRR, and VHLRR, are used to provide a reference voltage to the REF
node. This reference voltage at the REF node is obtained based on the current
that flows through the set of reference resistors when applying a voltage reference
at VREF.

WL

BLSL
MEM

SOV_REF On-Chip Sensor

SE

VLRR

RRAM

1T1R cell

VHRR 

Fig. 3. DfT strategy: proposed on-chip sensor.
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3.2 Implementation

The on-chip sensor proposed in this paper was implemented using a 350 nm X-
FAB technology library. The selection of this particular CMOS technology node
is justified by the fact that some specific size constraints for a tape-out have been
posed by the group at Research Center Jülich (FZJ), Germany, that is going to
manufacture the memristive devices (BEOL). Figure 5 shows the layout of the
proposed on-chip sensor. Note that the presented layout does not include the set
of reference resistors (EHRR, HRR, ELRR and LRR).

The fault detection capability of the proposed methodology is guaranteed
based on monitoring and comparing the voltage value of the MEM node with
four distinct references (EHRR, HRR, ELRR and LRR). Note that the proposed
DfT strategy was especially designed to detect the unique faults, but the on-chip
sensor is also able to detect traditional faults, such as SAFs. It is important to
mention that a high voltage in the MEM node is observed when a high current
flows through the memristor, indicating that the memristor is in LRS or storing
the value ‘1’ (VREAD 1). Similarly, a low voltage in the MEM node is measured
when a low current flows through the memristor, indicating that the memristor
is in HRS or storing the value ‘0’ (VREAD 0). Thus, the on-chip sensor compares
the voltages associated to LRS and HRS with the respective reference voltages,
LRR, and HRR. Note that LRR assumes a value slightly lower than LRS and
HRR a value slightly higher than HRS. Figure 6 depicts the adopted voltage
levels for enabling the detection of unique faults (UWF and DeepF). The voltage
associated with reading a ‘1’ (VREAD 1) is the highest voltage to be observed in
the MEM node, 1.30 V, followed by the LRR with a value of 1.16 V, the value of
HRR with 1.09 V, and finally, the voltage associated to reading a ‘0’ (VREAD 0)
with 0.95 V. In order to guarantee the detection of DeepFs an extra comparison

WL

BLSL
MEM

VDD VDD

VDD

SE
SE SE

SE

SO

EHRR

V_REF

On-Chip Sensor

REF V_REF_EH

1T1R cell

VEHRR

HRRV_REF_H

LRRV_REF_L

VLRR

VELRR

ELRRV_REF_EL

VHRR

Fig. 4. Electrical schematic view of the proposed on-chip sensor.
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Fig. 5. Layout of the designed on-chip sensor.

needs to be made. In this case, the extreme LRR (ELRR) was set to 1.32 V and
the extreme HRR (EHRR) to 0.87 V.

Thus, when the on-chip sensor is enabled, the voltage associated to the mem-
ristor’s resistance state is compared with its respective reference voltage. The
results of such comparison are presented as a pulse in the SO signal, that can
be stored by a latch. Figure 7 presents implemented comparison logic. In more
detail, Fig. 7 summarizes the expected values of SO when considering one tra-
ditional fault (SAF) and two unique faults (UWF and DeepF). Thus, when
performing a read operation in which a ‘1’ is expected as output, but the volt-
age value in the MEM node is smaller than HRR, SO is going to be ‘0’, hence
indicating that the RRAM cell presents a SAF-0. However, if the voltage at the
MEM node is higher than HRR but lower than LRR, the RRAM cell assumed an
undefined state ‘U’, indicating the occurrence of an UWF. A SAF-1 occurs when
the current that flows through the memristor is higher than LRR. The DeepF
Low (High) is detected when the current that flows through the memristor is
higher (smaller) than ELRR (EHRR). An SO equal to ‘1’ indicates a DeepF Low
and an SO equal to ‘0’ a DeepF High. Finally, a fault-free behavior is detected
if the voltage in the MEM node is higher than LRR (SO is set to ‘1’) or lower
than HRR (SO is set to ‘0’).

It is important to point out that the detection of UWFs requires the execution
of two consecutive READ operations, since the on-chip sensor has to perform
two comparisons, one considering the value of HRR and another the value of
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Fig. 6. Adopted voltage levels MEM and REF nodes: READ1/LRS, LRR,
READ0/HRS, HRR, ELRR, and EHRR.

Fig. 7. The output of the on-chip sensor according to the performed comparisons.

LRR. However, the detection of SAFs and DeepFs can be assured performing
one READ operation only. Note that the fact that the proposed on-chip sensor
can detect faults from both fault models, conventional and unique, renders the
solution more attractive.

4 Case Study and Experimental Setup

This Section presents the adopted case study and the defined experimental setup
used for validating the detection capability of the proposed DFT strategy.

4.1 Case Study

In order to validate the proposed DfT strategy, a case study composed of a single
1T1R RRAM cell was implemented using the 350 nm X-Fab technology and the
memristor model defined in [14]. Figure 8(a) depicts the 1T1R RRAM cell and
Fig. 8(b) the adopted defect injection scheme, which is based on the injection
of two resistors. In this scheme, one of the resistors is in series and the other
is injected in parallel with the memristor. The resistor in series (Rs) is used
for reducing the current that flows through the memristor, increasing the LRS,
and consequently the voltage on the MEM node. On the contrary, the resistor
in parallel (Rp) is used to increase the memristor’s current flow, decreasing the
HRS, and the voltage on the MEM node. Note that the MEM node is connected
to the on-chip sensor’s input and the following three signals are used to control
the memristor: Bit Line (BL), Word Line (WL) and Source Line (SL).
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Fig. 8. (a) Case Study 1T1R, (b) Fault injection scheme used for the Memristor.

4.2 Simulation Results Related to Detection Capability

To demonstrate the detection capability of the proposed DfT strategy a set of
electrical simulations using SPECTRE from Cadence was performed. As previ-
ously mentioned, the adopted case study is composed of a 1T1R RRAM cell,
and the on-chip sensor was connected to the MEM node between the memristor
and the transistor, see Fig. 4.

In order to validate the DfT scheme, a simulation considering a defect-free
RRAM cell was performed. Figure 9 presents the behavior of the on-chip sensor
when the RRAM cell is fault-free, which means that no defect was injected.
Figure 9(a) presents the sensor output when performing a read operation where
the expected value is ‘1’ (LRS) and (b) when the memristor stores the value
‘0’ (HRS). The first line of the graphs presents the voltage values applied on
the memristor (BL) as well as on the sensor (VREF). The second line shows
the voltages used as VHRR and VLRR. The third line of the graphs shows the
voltage value associated with the resistance state stored in the RRAM cell. The
last two lines of the graphs depict the SE signal and the output of the sensor
(SO), respectively. Thus, the graphs depicted in Fig. 9(a) show that, when SE
is enabled and a read operation with an expected value of ‘1’ is executed (Read
1), the SO is high, reflecting a fault-free RRAM cell. However, when performing
a read operation expecting a ‘0’, a fault free situation will be indicated by a low
SO. Note that when reading a ‘1’, the reference voltage adopted is the LRR and
when reading ‘0’, HRR’s value is used as reference.

The next graphs, Figs. 10, 11, 12 and 13 depict the on-chip sensor’s behavior
when injecting defects (Rs and Rp) able to cause the following faults: SAF-0,
SAF-1, UWF, DeepF High as well as DeepF Low. Although the on-chip sensor
was not specifically developed for detecting traditional faults affecting RRAMs,
since the main goal of the proposed DfT was to guarantee the detection of unique
faults, the proposed approach is also able to detect traditional faults, such as
SAFs. The detection of SAF-0 occurs when the current that flows through the
memristor is lower than the expected one, see Fig. 10(a). In that case, the on-
chip sensor compares the voltage value at the MEM node with HRR and sets
the SO signal to low. Note that in order to model a SAF-0, Rs was set to 70 kΩ.
Figure 10(b) depicts the results associated with the injection of a defect that was
modeled by setting Rp equal to 1 kΩ. The graph in 10(b) shows the detection
of a SAF-1, since the expected output of the performed read operation was ‘0’.
Note that the detection of SAF-1 is indicated by setting SO to high.
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Fig. 9. Validation of the on-chip sensor considering fault free RRAM cell.

Figure 11 and 12 demonstrate the proposed on-chip sensor’s detection capa-
bility with respect to UWFs. As previously mentioned, the detection of these
faults requires the execution of two consecutive read operations, since two com-
parisons are required (one with HRR and another with LRR). Two different
simulations were performed, one injecting a defect using an Rs set to 15 kΩ (a
read operation of ‘1’) and another using an Rp with 30 kΩ (a read operation of
‘0’). Observing the graphs in Fig. 11 it is possible to see that the on-chip sensor
was able to detect the UWF when Read1 is performed since SO was set to low
when comparing the value of MEM node to LRR and set to high when compared
to HRR. The detection of the UWF when performing a read operation with an
expected output of ‘0’ is depicted in Fig. 12. In that case, SO is set to low when
compared to LRR and to high when compared to HRR. Note again that the
detection of UWFs is only possible by executing two comparisons. When con-
sidering a read operation expecting a ‘1’, the faulty behavior is detected when
the voltage at the MEM node is both smaller than LRR and bigger than HRR.

Figure 13 shows the on-chip sensor’s detection capability with respect to
DeepFs. Note that the detection of these unique faults requires one read opera-
tion only, and the signals in the second line now show the voltages VEHRR and
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Fig. 10. On-chip sensor detection capability: SAFs.

VELRR. The DeepF Low was modeled injecting an Rp of 500 Ω and the Deep
High an Rs of 1 MΩ. Observing the graphs depicted in Fig. 13 it is possible to
see that a read operation expecting a ‘1’ is performed in order to detect a DeepF
Low. The SO is set to ‘1’ when the voltage at the MEM node is bigger than
ELRR. However, a DeepF High is detected when the voltage at the MEM node
is smaller than EHRR. The detection of a Deep High is indicated by a SO equal
to ‘0’.

Finally, it is important to mention that the DfT strategy is also able to pro-
vide the detection of the other faults associated wtih the RRAM conventional
fault model, such as TF and RDF. The simulation results related to these tradi-
tional faults were omitted because the main goal of this Section is to demonstrate
the detection capability of the proposed approach with respect to unique faults
only since their detection represents the most important challenge when dealing
with RRAMs.
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Fig. 11. On-chip sensor detection capability when performing a read operation expect-
ing ‘1’: UWF.

4.3 Discussion About Introduced Overheads and Implementation
Granularity

The proposed DfT approach introduces an area overhead that is not observed
when using software-based manufacturing test procedures, such as March Tests.
However, March Tests can not guarantee the detection of all unique faults in
RRAMs. It is important to highlight that memory faults can be classified as
strong or weak faults [10]. Strong faults are functional faults that can always
be sensitized by applying a sequence of write and read operations. In contrast,
weak faults cause parametric faults and can not be detected with any sequence of
write and read operations, since they do not cause functional errors. These faults,
when not detected after manufacturing, may become a reliability issue during
their lifetime. Thus, as previously mentioned, depending on the effort needed to
detect faults caused by manufacturing defects, these faults can be further catego-
rized into ETD and HTD faults. Note that strong faults consist of ETD and HTD
faults, while weak faults are all HTD. To resume, the proposed DfT approach is
able to provide the detection of HTD faults, which justifies the introduced area
overhead. The area of the proposed on-chip sensor is around 278 µm2, assuming
the technology node adopted in this work (350 nm X-Fab technology). Note that
this value does not include the transistors related to the reference voltages. In
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Fig. 12. On-chip sensor detection capability when performing a read operation expect-
ing ‘0’: UWF.

order to understand the area impact related to the introduction of the proposed
DfT strategy, it is important to mention that the area associated to a 1T1R
RRAM cell is around 40 µm2 for the transistor and the memristor can have an
area of around 50 µm2, when fabricated based on the Microcrosbar technology,
or 0.1 µm2 if using the Nano-crossbar technology. This area overhead could be
considered relevant with respect to a 1T1R RRAM cell. However, the overhead
becomes irrelevant when considering a complete RRAM composed including the
1T1R cell array as well as all peripheral circuitry. Figure 14 depicts one possible
implementation of the proposed DfT strategy, where one on-chip sensor is con-
nected to each column of the RRAM block. In more detail, the on-chip sensor
could be connected to the Source Line (SL) of the block. During a read operation,
the on-chip sensor compares the current of the 1T1R RRAM cell column with
the two reference voltages, the V REF H and the V REF L. Thus, based on this
comparison, the on-chip sensor identifies the resistive state associated with the
current that flows through the 1T1R RRAM cell column. A possible limitation
of this implementation granularity is associated to the on-chip sensor resolu-
tion, since depending on the CMOS technology node, the on-chip sensor could
be susceptible to process variation, impacting its ability to properly indicate a
faulty behavior. Note that in order to assume this granularity, the on-chip sen-
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Fig. 13. On-chip sensor detection capability to detect DeepFs

sor needs to measure the current consumption, instead of the voltage. Another
important point to be considered is related to the power overhead. The on-chip
sensor has a power consumption of around 2.4 mW, while the 1T1R RRAM
cell consumes approximately 1.76 mW during the SET operation and 2.2 µW
during the RESET operation. Note that in order to reduce the power overhead
introduced by the proposed approach, the on-chip sensor is only enabled when
used, which means during the execution of read operations included in the pre-
defined operating sequence only. Finally, it is important to highlight that the
DfT strategy significantly reduces the time required for performing the manu-
facturing test with respect to March Tests, since the operating sequence applied
in combination with the electrical measurements is significantly smaller.
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Fig. 14. Electrical schematic view of the proposed on-chip sensor in the block.

5 Final Remarks

The use of RRAMs to replace classic CMOS-based memories represents an inter-
esting alternative in order to guarantee the storage of high data volumes as well
as implement emerging applications. However, aspects regarding their quality
after manufacturing are still a challenge, since functional test algorithms cannot
guarantee the detection of unique faults, which are classified as HTD faults. This
paper presents a DfT strategy able to detect traditional and unique faults caused
by manufacturing deviations in RRAMs. The proposed strategy consists of intro-
ducing an on-chip sensor able to compare the voltage associated with HRS and
LRS with a set of predefined reference voltages while executing a predefined oper-
ating sequence. This set is composed of at least two resistors, representing the
reference voltage associated with HRS and LRS. The results obtained through
electrical simulations demonstrate the fault detection capability of the proposed
DfT strategy. When compared to state-of-the-art solutions, the DfT strategy has
the advantage of detecting not only traditional faults but also all unique faults
that can affect RRAMs. The introduced area overhead can be minimized and
become tolerable when assuming an implementation granularity considering one
on-chip sensor per each RRAM column. Finally, the power consumption of the
proposed on-chip sensor does not represent a significant overhead when consid-
ering the power associated with a 1T1R RRAM cell executing SET and RESET
operations.
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Abstract. Designing embedded systems for critical applications requires meet-
ing strict safety constraints according to official standards. In current practice,
safety analysis (e.g., Failure Mode and Effects Analysis) is often only relying on
human experience and therefore lacks detailed data. Performing more detailed
analyses on complex systems is a major challenge to avoid pessimistic assump-
tions and consequently to avoid over-design of the system, i.e., adding too many
protections with respect to the system specifications and risk. Many fault injection
techniques have been previously proposed to better evaluate the robustness of cir-
cuit designs described at various abstraction levels. However, very few take into
account the global system constraints. Also, fault injection experiments become
very time-consuming for complex designs. At the highest levels of abstraction
(e.g., Transaction level), simulations are faster but suffer of the lack of realism of
high-level models. Our contribution is to propose both an increase in safety analy-
sis precision and a fault injection flow improving the analysis duration. The flow is
based on an iterative process, taking into account the global system specifications
and allowing improvements of high-level models to achieve both precision and
efficiency. Improvements are based on metrics, and results are shown on a real
airborne system.

Keywords: Safety · Embedded system · FMEA · Fault simulation · Cross-layer

1 Introduction

When developing embedded systems for critical applications, Original Equipment Man-
ufacturers (OEMs) must perform FailureMode and Effects Analysis (FMEA) to demon-
strate the robustness of each component. Standards guide the development of these crit-
ical systems. Standards such as ARP5580 [1] for airborne systems and DO254 [2] for
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electronic embedded systems in aircraft recommend that robustness analysis starts early
in the design flow.

FMEAaims et analyzing the failure effects of a component on the systemand consists
in 3 steps:

- Definition of possible failures and their probability of occurrence,
- Determination of the failure effects on the functional block,
- Determination of the global effect on the whole system and computation of the
probability of occurrence of unacceptable events.

Designers must perform detailed FMEA considering:

- Single Event Upsets (SEUs), i.e., single bit-flips,
- Multiple Bit Upsets (MBUs), i.e., multiple bit-flips in the same logic word,
- Multiple Cell Upsets (MCUs), i.e., multiple bit-flips in the several logic words.

This FMEA, called SEU FMEA (even if it also relates to MBUs and MCUs) is often
based solely on engineer experience. Some solutions to assist FMEAhave been proposed
[3, 4] but these tools do not allow early estimations of the robustness of complex systems.

Evaluating the robustness of a circuit can be based on different fault models, at
different levels from functional to gate or transistor level. Low levels (transistor or gate
level), or even Register Transfer level (RTL) can be used, but are very time-consuming
to perform the robustness evaluation of complex systems. Furthermore, some errors
observed using RTL fault simulations have no real effect on the overall system because
these errors are filtered out or detected by the system. Thus, the interactions of the circuit
with other parts of the system must be taken into account. High-level modeling at the
Transaction level (Transaction Level Modeling or TLM) allows the quick simulation of
complex systems. Such high-level simulations with adequate fault modeling accelerate
fault simulations andmake possible to account for the whole system. Nevertheless, high-
level modeling requires details to be removed (such as a clock or internal signals), which
causes some realism issues.

Previous works [5, 6] have studied these issues. For example, results in [6] show that
some of the faults injected at RT-Level have no high-level equivalent and conversely,
some high-level faults have no RTL equivalent. Cross-layer methods aim to take advan-
tage of fault injections in both RTL and TLM (or e.g., Matlab models) to take into
account the whole system [7–11]

However, as far as we know, no previous study proposed a way to build relevant
high-level models of the system and of the faults. Safe-Air approach presented in [11]
is a cross-layer fault simulation approach allowing speeding up SEU FMEA on circuits
used in critical applications. This approach is composed of three steps: (1) system high-
level fault simulations, (2) block-level RTL fault simulations, and (3) evaluation of the
high-level models. It allows the high-level model realism validation but this validation
happens late in the process. In particular, no improvement of the high-level models
related to the obtained results was proposed in [11].

As proposed in [12], an iterative process can lead to both perform an early robustness
analysis and to improve the realismof the high-levelmodels using the robustness analysis
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results. The method makes use of “quick and dirty” iterations to speed up the validation
of the high-level models. Each round allows improving the high-level models that are
simulatedwith a small number of randomly injected faults. Thefirst rounds are performed
on approximate models with a small number of randomly injected faults (dirty), in order
to get a quick simulation. Then, the quality of the high-level fault simulation is evaluated
through several metrics. The main novelty of this approach relies on these “quick and
dirty” rounds with randomly injected faults and on the definition of several metrics.

Ourmain contributions, in particularwith respect to [12], is to present amore detailed
discussion with respect to the state-of-the-art, and to show a more detailed analysis of
the results with a comparison between the results obtained and data from the initial case
study.

This paper is organized as follows.More details on the state-of-the art are presented in
Sect. 2. The Safe-Air methodology is briefly reminded in Sect. 3. The proposed iterative
flow based on the “quick and dirty” evaluations is presented in 4. Section 5 presents and
discusses results applied to a case study. Section 6 concludes the paper.

2 State-of-the-Art and Discussion

2.1 Fault Injections

Formore than twenty years, an efficient technique to evaluate the robustness of electronic
circuits is fault injection. The results are used to complete FMEAs performed by human
specialists, specially to quantify the risks. There are mainly three categories of fault
injection techniques: simulation, emulation and physical injection.

When using simulation, faults derived from a given model (e.g., SEUs) are volun-
tarily introduced in some elements at different execution times. The main advantage of
simulation is the possibility to use system models designed with different abstraction
levels, from TLM (Transaction Level Modeling) down to transistor-level or even phys-
ical device descriptions. Of course, the fault models have to be adapted to each level.
Simulations at the highest levels are less precise but when coming to lower levels the
simulation times are much higher and quickly become intractable, even when using sta-
tistical fault injections [13]. The lowest levels are therefore used to characterize small
cells and the results are used to make the highest fault models more realistic.

Even simulations at RT-Level can lead to very long simulation times, thus requiring
the use of emulation (or hardware prototyping). In that case, the system is implemented
on a hardware platform where faults are injected using logic modifications during the
application execution. The advantage is to speed-up the execution for each injected
fault, compared to simulation, but at the expense of a non-negligible time to prepare the
hardware set-up. Also, such emulations cannot be performed for all description levels
of the system; in general, they are limited to RT-Level descriptions.

The third type of method that can be used is physical injection. There are mainly two
techniques used to mimic the effects of environmental disturbances: laser [14, 15], or
particle accelerators (e.g., [16]). Experiments in natural conditions (so-called life-time
experiments) are also possible, in space or on the earth e.g., onmountains or underground,
depending on the type of particle that has to be considered. Such experiments are in all
cases very costly, especially when particles are used, and a lot of effort is required
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to prepare them. Furthermore, they need of course to have the final circuit available
and any required improvement of the robustness implies a long and expensive process.
Such experiments should therefore be restricted to the final product characterization and
cannot be considered in early development phases.

Combining laser-based experiments, statistical fault injections andbeamexperiments
was also proved worthwhile in [17]. However, once again, the final circuit must be
available to complete the evaluation process.

As mentioned in the introduction, standards for critical embedded systems require
an early evaluation of the robustness. Also, reducing costs and time to market imply
having a quick identification of weak points in the system. We will therefore focus in
the sequel on approaches based on behavioral simulation, aiming at reducing the time
required to perform the fault injections while achieving an efficient early analysis of the
system-level robustness.

Within this context, many authors have made proposals. We will cite the main
approaches related to our proposal.

2.2 Simulated Fault Injections

Injection of faults during a simulation can use two types of approaches: with or with-
out modifying the system description. Most works target RTL descriptions, but similar
approaches can be used with TLM descriptions or at lower levels.

Avoiding modifications of the model requires the use of simulator commands to
modify signals or variables at a given time. It is therefore not intrusive but depends on
the simulator used. To avoid this dependency, it is possible to add control signals to
the model, that command internal injection logic. This logic can be added to internal
interconnections between blocks or gates in order to force the value of a signal; this is
called saboteur insertion. Some types of errors cannot be injected using saboteurs and the
behavioral model of the block must then be modified; this is called mutant generation.
The pioneer work in [18] proposed both simulator commands and saboteurs. An example
of mutant generation can be found in [19]. Of course, modifying the model of the system
can become very complex andmay also lead to functional errors.Wewill therefore avoid
model modifications in our methodology.

As previously mentioned simulations even at RT-Level are very expensive when the
system complexity increases. Furthermore, some errors observed at the circuit level have
no real effect on the global system due to intrinsic tolerance properties on some param-
eters, to detection/tolerance logic or to masking effects during the error propagation.
Thus, the global interactions within the system and the system specifications have to be
taken into account to avoid a too pessimistic safety evaluation [7, 20].

In order to speed-up the evaluation, TLM models can be used. However, in that
case many system characteristics are not yet defined (e.g., communication protocols or
timing). Consequently, results are less accurate. This paper will show how it is possible
to achieve both accelerated simulations and accuracy.
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2.3 Limitations of High-Level Fault Models

Since most of the registers in the system are not yet defined, injecting faults in a TLM
description is generally done using specific high-level fault models rather than for exam-
ple SEU/MBU/MCU. Of course, saboteurs can be used but since the description is quite
far from the following RTL model the results obtained are in general not very useful.

High-level modeling removes for example clocks or detailed data types, so some
RTL faults have no high-level equivalent as shown in the case study presented in [21],
based on a TLM SoC model written in SystemC.

Other works have studied this problem of fault model realism at high-level.
In [22], gate-level fault injections are used to define a realistic high-level fault library.

The library is obtained from the circuit without safety mechanisms and used to perform
high-level simulations after adding such mechanisms. Such an approach has several
limitations. First the RTL description (and even the gate-level description) must be
available, thus the high-level fault models are obtained very late in the design process.
Then, gate-level simulations are very slow. Finally, the system specifications are not
taken into account.

In [5], RTL and TLM faults are compared using a formal approach. More precisely,
the TLM faults equivalent to an RTL fault are extracted. The study shows again that
some RTL faults have no high-level representation, but also that a single RTL fault can
have several equivalences at high-level.

In conclusion, there is no TLM fault model allowing a complete and realistic safety
evaluation with this level of description.

2.4 Cross-Layer Approaches

Since a complete evaluation is not possible on high-level models only, many authors
considered Cross-layer approaches. This can be used for example to co-simulate an
RTL description and the gate-level description of some circuit blocks, but we will focus
here on earlier evaluations.

The CLERECO project [8] aimed at performing cross-layer reliability evaluations
in order to accelerate the analysis. However, it was focused on microprocessors and
software.

Simulations are also performed at several levels in [9], to guide architecture and RTL
hardware designers of a critical embedded system. The approach allows early decision
making and avoids time-consuming design iterations. However, the problem mentioned
in the previous section is not addressed and no verification is made about the realism of
the results obtained at high-level. Also, the global system specifications are not taken
into account to decide what errors are actually critical.

In [23], faults are injected at both high-level and RT-Level in a processor. The high-
level description is used to simulate longer scenarios but there is no comparison between
the results obtained at the two levels.

These examples show that there is usually no proof of relevance of the results
obtained at high-level with respect to the results obtained at lower levels, and the scope
is sometimes limited to a part of the system, in particular microprocessors.
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2.5 Safety Analysis Tools

Tools have also been proposed to assist engineers when doing FMEA, in particular:
The AltaRica project [24] aimed at safety analyses in airborne systems. Systems

are described at very high level with states and transitions, and critical scenarios are
identified with a formal approach. This level of description is useful for the global
system validation, but no link is made with hardware implementations.

A tool was proposed in [3], to help extracting quantitative information useful for
FMEA. Here some specific parts of an RTL description are chosen and exhaustive fault
injections are performed. The RTL description must therefore be available, and the
complete system and its specifications are not taken into account.

3 Methodology Based on Cross-Layer Fault Simulation

As shown in the previous section, there are currently strong limitations to available
approaches. The goal of the work presented hereafter is to reduce some of them. First,
fault injections in high-level TLM models allow early robustness evaluations, but are
not completely realistic. The other advantage of simulations at that level is to be able
to take into account the whole system and its global specifications (no matter if it is
completely implemented as a circuit or designed with several circuits, and even other
types of components). It is however necessary, when a lower description level is made
available, to check the accuracy of the results obtained at high-level. This can be done
using a cross-layer approach, with RTL simulations made at the block level and keeping
the TLM model for the whole system, thus noticeably reducing the simulation times
compared to a full RTL simulation while being able to take into account the global
system specifications. None of the approaches and tools presented in the state of the art
has such characteristics. Our methodology allows extracting critical ranges at high-level,
then verifying the relevance of the obtained statistics, and also refining the high-level
fault models.

The cross-layer fault simulation methodology has been detailed in [25]. We give
here an overview of it to keep the paper self-contained. In the sequel of the paper, we
will insist more on the extensions of the approach that were presented in [12] and on the
comparison with a classical FMEA for one case study.

Our methodology can be divided into three steps illustrated in Fig. 1.
Step 1: We perform a fault injection on a high-level system model at each interface

signal of each block: a function corrupts the original value of signals by a fixed amplitude.
We analyze the results according to the system specification. The signal corruptions that
propagate to outputs and are not detected by any specific mechanism are analyzed to
extract critical parameter ranges on the interface signals. Critical parameter ranges are
converted into assertions to observe the behavior of these signals: if the assertion is not
verified, the value of the signal is not in the range that can be tolerated and leads to a
critical behavior of the whole system. This step allows detecting critical blocks.

Step 2: We statistically inject faults [13] in each RTL block leading to critical behav-
iors at the system level. Statistical fault injections are based on computing the number of
faults required to achieve robustness evaluation with a predefined accuracy. The number
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Fig. 1. The three steps in our cross-layer methodology.

of faults depends on three parameters: the number of possible faults (i.e., number of
targets multiplied by the number of execution cycles), the margin of error, and the level
of confidence (the probability that the exact value is in the margin of error). The usually
chosen level of confidence is at least 90%. This method highly reduces the number of
faults to inject while the confidence level remains high and the error margin can be
reduced to a small percentage. Injected faults are simulated along with the assertions.
The values of the assertions allow sorting faults into two categories: critical faults (if
assertions are violated) and silent faults (if assertions are satisfied).

Step 3: It verifies the relevance of the high-level models used in step 1. Each RTL
block is co-simulated within the high-level system model, and we inject the same faults
on it as in step 2. Since the simulation is on the whole system but with a component
modeled at lower level with more precise faults to inject, this step requires much more
simulation time. Faults are sorted according to the observed behavior of the system.
For each block, we obtain a confusion matrix (see Table 1). The “Predicted” column
in this matrix corresponds to the results from steps 1 and 2. The “Co-simulation” line
corresponds to the results of step 3 and is considered as the reference behavior.

Table 1. Confusion matrix.

From this confusion matrix, we extract three metrics: the precision, the true silent
rate, and the accuracy.

The precision is the proportion of true critical behaviors:

Precision = TC / (TC+ FC) (1)
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A low precision indicates that too many faults are critical in step 2. The assertions
are too restrictive, and critical parameter ranges are too large. Since critical parameter
ranges are computed according to the fault amplitude, the low precision may be due to
the high-level fault model used in step 1 that is not accurate enough: the amplitude of
the fault should be modified.

The True Silent Rate (TSR) is the proportion of true silent behaviors:

TSR = TS / (TS+ FS) (2)

A low TSR means that assertions have not been able to detect correctly the critical
faults. Since the critical behaviors are detected during the co-simulation, but not in the
RTL simulation, it may mean that no assertion was generated to detect it. If the assertion
is not created, it means that the critical behavior was not generated in step 1. This critical
behavior is present at the RT-Level but not in the high-level model; it may be due to a
bad high-level system modeling.

The accuracy defines the proportion of true results among injected faults:

Accuracy = (TC+ TS) / (TC+ TS+ FC+ FS) (3)

This metric is a kind of trade-off between TSR and precision. It allows us to know
the weight of each of the two other metrics. If the accuracy is high, but one of the two
others is low, it indicates that the number of faults (either critical or silent) not correctly
sorted in step 2 is small according to the whole number of faults. It may not be useful to
modify the fault model (low precision) or the high-level model (low TSR).

4 Quick and Dirty Flow

The “quick and dirty” flow aims at highly speeding up the validation of high-levelmodels
and the overall evaluation of the system robustness. It is based on successive “quick and
dirty” evaluations of the cross-layer fault simulation. It allows obtaining early evaluations
of:

• the blocks leading to critical behaviors (step 1),
• the approximate probability of critical SEU (step 2),
• the realism of the high-level system model (step 3),
• the realism of the high-level fault model (step 3).

The flow is illustrated in Fig. 2. According to the design, we empirically define a
threshold on metrics that indicates confidence in the high-level models. This threshold
constrains the accuracy; we recommend at least 90%. Below, the quality of the high-
level system model may not be sufficient. The next rounds depend on the value of the
threshold:

• If the threshold is achieved, we perform a final statistical fault injection (arrow from
the metric computations to step 2) with a very high confidence level and a low margin
of errors to get an accurate evaluation of the probability of critical events. This last
round may be very long but it is performed only once.
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• If the threshold is not reached, the designer manually improves the high-level models.
If the precision is low, he/she modifies the fault model. If the TSR is low, he/she ana-
lyzes the location of false silent faults to understand the origin of themodel inaccuracy
and to correct the system model. Then, a new round is performed (arrow from the
metric computations to high-level models).

thres

thres

Metrics

Probability 
of critical 
SEUs

Simulation
constraintsStep 1

Step 3

Step 2

High Level 
models

Fig. 2. Quick and dirty flow.

For each round, we define a maximum simulation time. This maximum time impacts
the number of faults that can be injected in each block and therefore the couple (confi-
dence level, margin of errors) that can be chosen. We evaluate the RTL simulation time
of all blocks (simulation time of each block multiplied by the number of injected faults)
for three confidence levels usually used in statistical fault injections (90%, 95%, and
99.8%) and several values of the margin of error. We then select a couple (confidence
level, margin of error) that is below the maximum simulation time but still presents a
correct robustness evaluation accuracy. During the first rounds, as the high-level model
realism is not known, it is useless to obtain a very accurate robustness evaluation. Unac-
curate (or dirty) evaluations allow us to quickly validate or improve high-level models.
The simulation time per round can be progressively increased with the progress of the
model quality.

5 Analysis Results on a Case Study

In this section, we apply the quick and dirty flow on a system converting the frequency
of the oscillations of a sensor into a digital value. This design is used in aeronautic. For
confidentiality reasons and without loss of generality, all names have been concealed,
and all values normalized. The fault model used during the simulations is the SEU fault
model (single bit-flips).
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5.1 Case Study: System Description

We study an embedded system SYS_X that measures a physical value X, which is sent to
the main airplane ECU (Electronic Control Unit). From other collected information, the
ECU deduces the flight information. The system inputs the oscillations of a sensor which
depend on the physical valueX and converts the oscillation frequency into a digital value.
Since SensorX is sensitive to temperature, a second sensor SensorT is used to capture
the temperature, also generating oscillations. The architecture of the whole system is
presented in Fig. 3. It contains a FPGA, a microcontroller, and a memory. Dividers and
counters are used to obtain the digital values and are implemented in the FPGA. The
microcontroller periodically reads the number of cycles counted during themeasurement
windowof 100ms (an interrupt occurswhen newvalues arewritten in the output registers
of CounterX and CounterT). The value of X is then computed based on a sensor table
(series of points containing the values X corresponding to a given couple of periods of
SensorT and SensorX) characterizing each type of sensorX. An interpolation method
is used by the microcontroller to calculate an accurate value of X. The microcontroller
then transmits the calculated value and some maintenance information (error detection
mechanism outputs) to the FPGA in charge of the communication. The communication
block then formats the frame in order to transmit the data to the ECU.

MemoryMicrocontrollerSensorX

Communication

DIVC

SYNC

DIVBDIVA CounterX
Nx

F(T)

F(X)

Fref
FPGA

CounterT
SensorTT

X

Nt
N2

Xcomputed

N1

Fig. 3. Architecture of the system used for the case study.

Table 2. System specifications.

Property Specification

Data flow rate 100 ms ± 3.3 ms

Time to alarm 300 ms ± 3.3 ms

Accuracy ±0.8 U (confidential unit)

Transmission period <100 ms

Computation period <100 ms

Transport delay 300 ms ± 3.3 ms

The system specifications are summarized in Table 2. “Data Flow Rate” is the time
between two value transmissions. The “Time toAlarm” property corresponds to themin-
imum error duration before notifying the error during data measurement. The “Trans-
mission Period” is the time spent by the communication block to transmit the data.
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“Computation Period” is the maximum time spent by the microcontroller to compute
the final value and to transmit it to the communication block when an interrupt occurs.
“Transport Delay” is the time between the beginning of a measure window and the data
transmission by the communication block to the ECU. Several error detection mecha-
nisms are also implemented in the system: counters overflow, detectors of periods out
of the sensor table, detection of X value out of the possible range, etc. These system
specifications are taken into account in our approach to classify an error as critical or
not. As an example, the exact computation time of the controller is not critical; what is
critical is to be under the maximum time allowed by the system. Also, a detected error
is managed by the ECU or other redundant elements in the airplane and is therefore not
critical.

5.2 Case Study: Initial FMEA

The usual FMEAprocess,managedmainly thanks to experienced engineers, is illustrated
in Fig. 4. The global analysis involves several steps.

The first step is performed considering the architecture description (equivalent to our
use of a high-level model, but in current practice it is most often a written description).
At that step, a functional FMEA is performed in compliance with the ARP5580 standard
(since it is an airborne system). This step early identifies the level of criticality of the
different parts in the system. It only takes into account a subset of potential faults and
all those are not necessarily realistic.

The second step goes into more details with respect to the implementation. It evalu-
ates the probability of critical errors if a perturbation occurs in one block, especially in
one block identified as critical during the first step. One part of this second step is focused
on permanent failure of the block (or component) and is very global because this type of
event is less frequent than the others, especially with the regular maintenance processes.
The second part is focused on transient disturbances and in particular atmospheric par-
ticle effects for airborne systems. These events have a much higher probability than
permanent failures. This is the SEU FMEA mentioned in introduction.

Fig. 4. Classical FMEA process.
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Knowing the conditions in which the system will be used (e.g., flight altitude), a
particle flux can be characterized and used to evaluate the flux per block (or component)
with respect to the area of each block and to the sensitivity of the component in which
it is implemented (depending on the technology). Taking into account the probability of
critical errors if a SEU (or MBU/MCU) occurs in this block, it is possible to compute
the probability of critical failures and, summing this over all the blocks, it is possible to
derive the Mean Time Between Failures (MTBF) for the system.

Since the analysis is empirically managed by humans, any doubt about a potential
SEU effect leads to the decision that it is critical in order to be conservative and the
repartition between the types of failure modes is very rough. The result is often a pes-
simistic calculation of the MTBF, leading potentially to over-protect the system with
consequences on cost and time-to-market. In addition, the analysis is only performed
at the level of macro-components and with few failure modes, as illustrated in Table 3.
This indicates the most critical components and the main failure modes but cannot give
precisions on the criticality of each individual function in the architecture. In this case,
the probability of faults per hour due to the particle flux is higher for the FPGA than for
the microcontroller and the probability of each major failure mode is just estimated at
50%.

Table 3. Initial SEU FMEA for the case study.

Block Particle flux
per component (per hour)

Failure mode Ratio

Microcontroller 0.03E−07 Erroneous X value 50%

Reset 50%

FPGA 0.15E−07 Erroneous X value 50%

No transmission 50%

For this system, taking into account before the actual implementation that about 25%
of the logic resources should be used in the FPGA, and that all SEUs in these resources
lead to a critical event, the critical error probability was evaluated around 1E-7 faults
per flight hour for the functions in the FPGA.

5.3 Quick and Dirty Flow: First Round

We have modeled the whole system in SystemC at the transaction level approximately
timed according to the architecture given in Fig. 3. Each block is implemented by a pro-
cess. The interface signals between blocks are implemented with sc_fifo communication
channels. When a new input is available on a communication channel, the process is
notified. The input oscillations are directly modeled by the value of their frequency, i.e.
an integer value.

Simulations allow identifying the level of disturbances that may be tolerated on the
interface signals. This is illustrated in Table 4 for CounterX. Some signal corruptions can
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be tolerated thanks to the system specifications, but some others lead to characteristics
out of range due to either amplitude or injection time. We can see for example that
disturbances have no effect at 150 ms, but have a strong effect if at 100 ms or 200 ms,
especially if the value is modified in the range −2% to +10% because in that case they
are not detected by the available mechanisms. This leads to assertions, such as for this
case:

Assert always window - > (Nx < Nx_gold * 0.98) or (Nx > Nx_gold * 1.1).
or (Nx = Nx_gold) report « ERR_ASSERTION»;

Table 4. Analysis at high-level of disturbances effects onCounterX (C in redmeans unacceptable,
D in orange means detected, in green it is either silent or tolerable for the system).

0 ms 50 ms 100 ms 150 ms 200ms 

-50% - - D - D

-40% - - D - D

-30% - - D - D

-20% - - D - D

-10% - - D - D

-5% - - D - D

-4% - - D - D

-3% - - D - D 

-2% - - C - C

-1% - - C - C

0%

1% - - C - C

2% - - C - C

3% - - C - C

4% - - C - C

5% - - C - C

10% - - C - C

20% - - D - D

30% - - D - D

40% - - D - D 
50% - - D - D

The first step of the cross-layer fault simulation leads to generate 8 assertions that
are used in Step 2 to sort the behaviors. Those assertions monitor the signals on the
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communication interfaces. In blocks DIVA, DIVB, and SYNC, no fault leads to a critical
behavior, so no assertion is generated for these blocks. Only blocks DIVC, CounterX,
and CounterY lead to critical behaviors with respect to the system specifications.

To follow the quick and dirty flow,we chose a confidence level (c) greater than 90%, a
margin of error (e) less than 10%, and a simulation time less than 3 h. In the third column
of Table 5, we have the simulation time of each RTL block that allows us to compute the
simulation time for a given number of injected faults. Figure 5 represents this simulation
time according to the margin of error for different confidence levels. Three couples (c,e)
are compliant with our constraints: either (90%, 4%), (95%, 5%) or (99.8%, 9%). Since
a typical value for the confidence level is 95%, we choose the couple (95%, 5%). In
Table 5 all the values are computed according to this couple. Columns 4 and 5 give the
number of injected faults, then the corresponding simulation time. Columns 6 and 7 give
the number of critical faults and the number of silent faults.

Table 5. RTL fault injection during the first round of the quick and dirty evaluation, for c= 95%
and e = 5%.

Block Number of
possible
faults

RTL
simulation
time per
fault (s)

Number of
faults to
inject

Simulation
time (min)

Number of
critical
faults

Number of
silent faults

DIVA 2,500 1.1 333 6.1 0 333
(100%)

DIVB 1,500 1.1 305 5.6 0 305
(100%)

DIVC 18,750 1.1 376 6.9 37
(10.0%)

334
(90.0%)

SYNC 2,500 1.1 333 6.1 0 333
(100%)

CounterX 30E6 2 384 12.8 182
(47.5%)

202
(52.5%)

CounterT 150E6 21 384 134.4 157
(40.9%)

227
(59.1%)

The fault simulations of all RTL blocks may take 171 min. Since DIVA, DIVB, and
SYNCwere not considered critical at Step 1, all the faults are silent (there is no assertion)
and the number of critical errors will be null. For this second step, it was therefore not
useful to simulate them. For the other blocks, results show that some are more vulnerable
than the others: in CounterX and CounterT, quite half of the faults lead to a critical error.

For the three blocks considered as critical at Step 1 and forwhich assertions have been
generated, Table 6 illustrates the interest of taking the system-level specifications into
account. In a classical fault injection process, all “tolerable faults”would be considered as
critical, significantly reducing theMTBFand increasing the fault tolerance requirements.
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Fig. 5. RTL simulation time according to the margin of error.

Table 6. Classification of injected faults at RTL taking into account assertions with respect to
system-level specifications (“tolerable faults”), for c = 95% and e = 5%.

Block Number of critical faults Number of
tolerable faults

Number of silent faults

DIVC 37
(10%)

79
(21.0%)

260
(69.0%)

CounterX 182
(47.5%)

165
(42.9%)

37
(9.6%)

CounterT 157
(40.9%)

35
(9.1%)

192
(50%)

The co-simulation (Step 3) takes 278 min. The same faults as in Step 2 are injected,
and in this step randomly chosen bit flips are also injected in DIVA, DIVB, and SYNC.
We extract for each block the precision, the accuracy, and the True Silent Rate. The
first column of Table 7 gives the name of the blocks. Simulation times for each block
are displayed in the second column (co-simulation time). In the three last columns, the
different metrics are reported, indicating the quality of the high-level models. Let us
recall that we fix a threshold for the accuracy at 90%. The precision for blocks DIVA,
DIVB, and SYNC is not applicable since they were classified as not critical at step 1.
For these blocks, few fault injections led to errors and all of those were tolerated with
respect to the system specifications. Block DIVC presents a good accuracy, a perfect
TSR, but a very low precision (many critical faults identified in Step 2 turn out to be not
critical in Step 3). Since the accuracy threshold is achieved, the low precision rate is not
relevant. We do not need to change the high-level fault model.

The accuracy of block CounterX is below the threshold. The two other metrics are
relevant. The TSR is very low: quite half the critical errors in Step 3 have not been
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correctly identified at Step 1. We must refine the high-level model to be closer to reality.
We will not dwell on CounterT that is a different instantiation of CounterX.

Table 7. Results of the quick and dirty analysis at Step 3, 1st round.

Block Co-simulation time (min) Accuracy Precision True silent rate

DIVA 61 100% N.A 100%

DIVB 45.75 100% N.A 100%

DIVC 9.4 92% 2.8% 100%

SYNC 6.1 100% N.A 100%

CounterX 96 71.6% 96.5% 55%

CounterT 70.4 78.1% 92.4% 69.8%

5.4 Quick and Dirty Flow: Next Rounds

CounterX (see Fig. 6) is a block that counts the number of impulsions on signals Fref
and F(X) between two impulsions of signal F(D).

F(X)

Fref
F(D)

IT

Nx

N1
CounterX

Fig. 6. CounterX RTL model.

Without loss of generality, we will focus only on signal F(X). Signal IT indicates
that a fresh value on Nx is available and it interrupts the microcontroller. The behavior
of CounterX is illustrated in Fig. 7. Between the two impulsions of F(D), there are 3
impulsions of F(X). On the last impulsion of F(D), signal Nx takes value 3, and signal
IT is enabled.

F(D)
F(X)

Nx ... ... 3
IT

Fig. 7. CounterX behavior.

In the high-level system model, signals F(X) and F(D) were integers and not impul-
sions. Output Nx was the result of the division of F(X) by F(D). Since Nx is modeled
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with sc_fifo communication channels that notify the microcontroller when new data is
available, signal IT is not modeled.

To improve the quality of the high-level CounterX model, we accurately analyzed
the injection results of Step 3. Figure 8 shows the distribution of false silent faults per
register. We see that less than 10 registers are sensitive to false silent faults. All these
registers are used to compute signal IT.
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Fig. 8. False silent fault distribution per register.

At the system level, the faults we injected modified the amplitude of the values of
Nx but did not modify the instant when they were available. Figure 9 illustrates this
behavior: processes CounterX and uC are intrinsically synchronized through the sc_fifo
communication channel. At the RT-Level, injected faults modify signal IT so no fresh
data may be sent to the microcontroller. It is illustrated in Fig. 10: at T0, signal IT is
correct and the microcontroller reads a value Nx1, but at time T1, signal IT is corrupted,
CounterX has not finished its computation, and the microcontroller reads value Nx1
again.

Write Nx1                                  Write Nx2                                              

Read Nx1                                Read Nx2                                              

CounterX Process CounterX Process CounterX

uC Process uC Wait (Nx, N1) Process uC Wait (Nx, N1)

T0 T1

Fig. 9. CounterX TLM model synchronization with the microcontroller.

To avoid this problem, we changed the high-level model: an interruption signal was
explicitly described. The second round of the quick and dirty method is then performed.
At the end of this round, we get the metrics displayed in Table 8. We observe that in step
2, more faults are critical (column 2), both in CounterX and in CounterT. It means that
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Fig. 10. CounterX RTL model with fault injection propagating on IT signal.

these blocks are more critical than initially assumed. TSR and accuracy are considerably
improved. The threshold on the accuracy is reached, we are confident on the high-level
model, and we can stop the quick and dirty rounds.

Table 8. Results of the quick and dirty analysis at Step 3, 2nd round, for c = 95% and e = 5%.

Block Critical (step 2) Accuracy Precision True silent rate

CounterX 73.4% 94.4% 93.7% 95.4%

CounterT 56.5% 95.4% 95.3% 95.3%

Table 9. Results of the quick and dirty analysis at 3rd round for c = 99.8% and e = 2%.

Block Critical
(1st round)

Critical (3rd round) Silent
(1st round)

Silent
(3rd round)

DIVA 0% 0% 100% 100%

DIVB 0% 0% 100% 100%

DIVC 10.2% 10.2% 89.8% 89.8%

SYNC 0% 0% 100% 100%

CounterX 47.5% 73.4% 52.5% 26.6%

CounterT 40.7% 70.2% 59.3% 29.8%

The final step is to improve the accuracy of the robustness evaluation in Step 2. We
increase the confidence level and decrease the margin of error.With a confidence level of
99.8% and a margin of error of 1%, we inject 23,855 faults in CounterX for a simulation
time of 14 h. The percentage of critical faults is 73.8% (very close to the percentage
obtained after the second round). More complete results are shown in Table 9, with a
global simulation time of 41 h.
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5.5 Comparison Between the Proposed Flow and the Initial FMEA

The comparison with the initial FMEA stands on two aspects: the functional analysis
and the SEU analysis.

For the functional analysis, the simulations of high-level models allows getting a
quick and automatic first insight about critical blocks or components in the architecture,
more precise that what can be done by an expert from paper specifications. In addition, it
is possible to get data about the criticality range of some blocks and timings as illustrated
in Table 4.

For the SEU analysis, several strong points can be mentioned. First, with the “quick
and dirty” flow, it is possible to keep simulation times acceptable and at the same time
to refine the high-level models. Second, results can be obtained not only on components
(e.g., FPGA) but also on the different blocks implemented inside the component, as
illustrated in Table 10. This is much more precise than the type of analysis illustrated in
Table 3 and can help a designer in focusing protection techniques on the most critical
parts e.g., in that case, the counters. Also, comparing the figures in Table 10 and the
initial estimation for the FPGA component (with the same flux of neutrons but with a
conservative assumption that each SEU is a critical fault) the evaluated probability of
critical errors is clearly reduced (4.62E−8 vs. 1E−7), leading to a better MTBF and
potentially to a reduced need of additional design.

Table 10. Results after the last round assuming a particle flux of α = 7.2E−11 neutrons/bit/h.

Block Critical (3rd round) Criticality per block (f/h)

DIVA 0% 0

DIVB 0% 0

DIVC 10.2% 1.59E−9

SYNC 0% 0

CounterX 73.4% 2.28E−8

CounterT 70.2% 2.18E−8

Total 4.62E−8

6 Conclusion

This contribution presents an iterative flow to quickly and accurately evaluate both cir-
cuit robustness with a cross-layer methodology and improving the realism of high-level
models. This approach complies with aeronautics standards that recommend perform-
ing robustness analysis at different modeling levels and early in the design flow, from
functional level models when possible. The method is based on iterative statistical fault
injections that allow during first rounds quick fault simulations with an adapted level
of confidence and improvement of the high-level models. When the high-level models
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are accurate enough, RTL fault simulations of each block with a high number of faults
are performed. These RTL fault simulations determine if the faults are critical using
the critical parameter ranges given by system high-level fault simulations. The proposed
flow allows evaluating quickly and accurately the robustness of each block. It also allows
identifying the most critical SEUs and then proposing fair cost countermeasures. This
method has been applied to a critical airborne embedded system and demonstrated that,
after improvement of high-level models, some RTL blocks were more critical than oth-
ers. In comparison with the human FMEA analysis available as reference, much more
details are available on the different blocks used in the application. The global MTBF is
better and so should reduce the need for over-design, while the additional information
allows focusing the required protections on the most critical blocks.

At that time, the approach has been applied to only one “real-life” case study. Results
are promising, but in future works, we will apply this approach to other test cases. Also,
metrics and thresholds used to measure the realism of the high-level models will have
to be assessed further.

Acknowledgment. This work is part of the Safe-Air project, from the “Pack ambition recherche”
program, funded by “La Region Auvergne-Rhone-Alpes”.
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Abstract. Static RAMmodules are widely adopted in high performance systems.
Single Event Effects (SEEs) resilient memories are required in many embedded
systems applied in automotive and aerospace applications to increase their overall
resiliency against SEEs. The current SEE resilient SRAM modules are obtained
by applying radiation-hardened by design solutions which leads to elevated area
overhead and difficulty to tune the resiliency capability with respect to the parti-
cle’s radiation profile. To overcome these limitations, we propose a methodology
for the analysis and mitigation of embedded SRAMs generated by the OpenRAM
memory compiler. A technology-oriented radiation analysis tool is presented to
support the interaction of the charged radiation particles with the SRAM layout
and depict the sensitive transistors of the SRAMmemory. A selective duplication
of the sensitive transistors has been applied to the 6T-SRAM cell designed at the
layout level. The designed cell is included in the OpenRAM compiler and used to
generate a mitigated 8 Kb SRAM-bank, a DMA interface is also added to the bank
in order to evaluate the interface capabilities.We evaluated the SEEs sensitivity by
comparative simulation-based radiation analysis observing a reduction more than
6 times with respect to the original 6T-SRAM cell for the SEE sensitivity at high
energy heavy ions particles, with negligible degradation of operations margins
and power consumption and area overhead of less than∼ 4%. The performance of
the developed OpenRAMmodule has been also evaluated considering its applica-
tion on a neural network behavioral model that demonstrate the feasibility of the
proposed solution on large scale memory block circuitry.

Keywords: Radiation effects · Single event effects · SRAM memory · Transistor
layout

1 Introduction

Embedded Static Random Access Memories are widely applied in various kinds of
commercial applications, and they are today an integrated module of aerospace and
automotive microprocessor systems [1]. RAMs are crucial components in System-on-
chips (SoCs) and due to their wide application, SRAM modules are characterized by
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several memory configuration requirements and constraints especially when they are
adopted in harsh environments [2]. SRAMs are vulnerable to two main effects, on one
side they are really sensitive to wear-out mechanisms such as aging, where the Bias
Temperature Instability (BTI) has been discovered as themain reliability concern. On the
other side, SRAMcells are extremely sensitive to radiation-induced errors such as Single
Event Effects (SEEs) caused by charged particles passing through the semiconductor
device and generating electron-hole pairs along the particle track. The collected charge
(Qcoll) of electron-hole pairs may change the memory cell state in the case it is greater
than the critical charge (Qcrit) [3]. The radiation sensitivity of embedded SRAM is
more emphasized considering that the area used by SRAM memory is dominating the
physical layout of CPUs or GPUs [3]. Hence, SRAM layout is typically characterized
by minimum device geometry that tends to reduce the Qcrit and conversely increase the
sensitivity to radiation-induced errors. In order to manufacture robust SRAM modules
and to increase the immunity to SEE, design and mitigation strategies for SRAM apply
radiation-hardened-by-design (RHBD) that are generally adopting special epitaxial or
eventually SOI substrate to limit ionizing radiation particle track length and including
high-density capacitors and resistors to avoid circuit response to the collected charge
[4]. Since the elevated cost of RHBD, typically error detection and correction (EDAC)
approaches are applied to SRAM modules such as caches and shared memory [5].
However, the inclusion of extra combinational logic, such as the one used for Error
Correction Mechanism, may also increase the occurrences of Single Event Transients
(SETs) since these errors are not easily protected by EDAC.

Considering the growing role of embedded SRAM in system performances, several
memory compiler tools have been recently developed [6]. The need for these tools
was supported by the fact that most academic ICs design approaches are limited by
the effective availability of memories. Nowadays, with the advent of an open-source
customizable compiler, researchers are able to design their own memory module with
the proper regular structure and configuration. This represents an undoubted advantage in
hardware design since the basic building blocks are provided by foundries in technology
process design kits (PDKs) and they are essential for hardware and device realization
[7]. Thanks to the availability of open-source PDKs for RAMs, several researchers
recently started to investigate the applicability of reliability analysis and mitigation of
open-source hardware designs [8].

In this work, we propose an analysis and mitigation framework targeting the Sin-
gle Event Effects (SEE) radiation-induced phenomena on Open-RAM physical design,
extending the methodology introduced [8]. The OpenRAM project is an open-source
memory compiler freely available under BSC license [6]. The compiler may be used
for the design of new architectures in order to evaluate power, performances and area
overhead on the other side, OpenRAM is usable to prototype and evaluate technologi-
cal modification [9] We selected Cyclone, the cyclotron of the University Catholic the
Louvain (UCL) heavy ions high-penetration cocktail as a reference for the radiation
characterization. We perform a complete radiation sensitivity evaluation of the RAM
block core cells in order to individuate the SEE cross-section and potential weak points
of each memory component. Secondly, we apply selective mitigation solutions to the 6T
cell of the SRAM by hardening the most sensitive transistor. Finally, we evaluated the
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performances and fault tolerance capability considering the OpenRAM bank connected
to a DMA module and stimulated in different data transfer conditions. Furthermore,
an extended performance evaluation of the developed solution has been integrating the
developed OpenRAMmemory bank into the simulationmodel of a Neural Network with
DSP-oriented neuron architecture.

The hardening insertion has been automatized by the development of a tool tomanip-
ulate the physical layout of each cell and to insert a resized duplicated transistor into
the 6T cell physical layout structure capable to increase the critical charge of the 6T cell
structure.

This work has two main scientific contributions. The former is characterized by
the first heavy ions radiation sensitivity evaluation of open-source embedded RAMs
showing promising results and a large margin of improvements. The second is the real-
ization of a tool to manipulate physical layout on large scale and to introduce miti-
gation strategies, the tool may be also ported to commercial technology nodes using
library technology files. In order to evaluate the developed methodology, we designed
two memory blocks using the physical implementations at 45 nm technology with the
OpenRAM compiler adopting the FreePDK45 design kit and we performed comparative
simulation-based radiation analysis. Experimental results demonstrate that the mitigated
Open-RAM memory is approximately 35% more robust than the original Open-RAM
design with a marginal degradation of the circuit performance and an area overhead of
less than 4%.

This paper is organized as follows. Section 2 presents previous works related to
analysis and mitigation methods for SEE effects on SRAMmodules. Section 3 gives an
overview on the OpenRAM analysis method, while the mitigation approach is described
in Sect. 4. The experimental results are reported in Sect. 5. Finally, Sect. 6 drafts some
conclusions and future works.

2 Related Works

Several previousworks have already analyzed the impact of radiation particles on SRAM
cells. With the progressive technology scaling, the number of errors within SRAMmod-
ule drastically increases. This effect can be explained by both the SRAM cell junction
reduction and by the reduced space between cells and lower values of critical charge [9,
10].

Radiation tests and 3-D simulations already demonstrated that the bipolar parasitic
physical mechanism of the MOS transistors is activated by radiation particle strikes and
is the cause of memory upsets [11]. In the last decade, real-time radiation test explored
the sensitivity of 45 nm SRAM modules and identify the soft error projection with
respect to the type of radiation particles and energies. The obtained results demonstrated
the importance of the device manufacturing and the thick interconnect metallization and
dielectric layers with respect to the effective sensitivity to charged particles [12].

On the other hand, two main categories of mitigation techniques targeting the cor-
rections of single and multiple cell upsets were proposed. The first category relies on
the insertion of Error Correction Code (ECC) mechanisms at the architectural level,
while effective for Single Event Upsets (SEUs) these approaches are not able to cope
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with many Multiple Event Upsets (MEUs), usually happening in the same word and
not necessarily in adjacent cells [6]. Besides, traditional error detection and correction
approaches introduce critical timing onmemory access making these solutions difficulty
applicable in cache memories [13].

The second category is based on radiation-hardened-by-design (RHBD) techniques
that allows to apply radiation mitigation circuit solutions to the manufacturing process
of commercial foundries in order to minimize the impact of radiation particles [14]. The
focus of RBHD techniques have been on Single Event Upsets (SEUs) affecting the 6T-
SRAM cell. The developed mitigation solutions were based on resizing of the sensitive
transistors [15] or adding extra transistors to reduce the proximity of the radiation strike
and distribute the charge collection. The insertion of extra transistors to the original 6T-
RAM cell has been also provided in the 8T-SRAM [16] where two transistors are added
to eliminate the charge sharing effect between the bit lines or in the differential-ended
10T-SRAM [17] for increasing the speed of the bit line signal or even as 12T-SRAM to
reduce the noise disturbance of the bit cell interleaving structure. The performance of
the memory block is strictly dependent on the Central Processing Unit (CPU) or Direct
Memory Access (DMA) modules.

In particular, the DMA module allows to speed up the data transfer versus and from
thememory. In System-on-a-Chip (SoC), DMAmodule is implemented through the allo-
cation of a controller physically close to the memory layout in order to provide a high-
bandwidth infrastructure. In order to provide error tolerant data transfer mechanisms,
radiation tolerant heterogeneous multi DMA core systems have been developed to sup-
port Single Event Upsets (SEUs) tolerant high-rate connections between the multi-core
module and the memory elements [18].

In order to evaluate the performance of the developed OpenRAM memory block
with respect to the typical DMA data transfer, we evaluated the Scatter-Gather (SG)
algorithm, which consist on the data transfer initialization on blocks of 32-bit words
through Buffer Descriptors (BD). A set of DMA configurations have been evaluated
considering different direction of the data transfer, parametric data length and different
test of read and write addresses (random and full burst transfer mode). We also evaluated
single data request from the DMA with data transfer request of a low number of data
packets in order to evaluate the performance limits of the OpenRAM block versus the
DMA data transfer routines.

In this work, we investigate specifically the sensitivity and mitigation of recoverable
SEEs phenomena affecting a SRAM memory bank. Typically, this type of SEE effect
happens in ground and avionics applications or, for aerospace applications at Low Earth
Orbit (LEO), where the eventuality of ultra-high energy radiation particle is nullified by
the Earth magnetic field. Thanks to the layout-oriented radiation analysis we implement
a RHBD mitigation solution at the layout level increasing the robustness of the original
6T-SRAM cell by adding two parametrizable transistors that can be tunable with respect
to the radiation particle energy required.

3 Radiation Analysis of VLSI Technology

In order to achieve an accurate radiation sensitivity of the SRAMmodule, we developed
the radiation particle simulation environment illustrated in Fig. 1. The simulation flow
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is based on the 3D radiation particle propagation tool presented in [20] and available as
open-source code. We extracted the physical layout description of the OpenRAM basic
cell library, and we inserted the layer material, thickness, and depth to the Graphic Data
Systems (GDS) description.

OpenRAM 
Cell Library

TRIM Radiation 
Profile

3D RADIATION
ANALYSIS

Current 
Injection 
Pulses

SEE Static 
Cross-section

FreePDK
Layers

Composite

Physical 
Layout 

Description
Energy Loss 

Profile

Fig. 1. The developed 3D simulation for the radiation particle analysis on the OpenRAM cell
library layout geometry.

The physical description and the particle radiation profile generated by the Transport
of Ions inMatter (TRIM) tool are used to calculate the energy distribution released by the
ions traversing the layer section of the cell. The last step of the analysis consists on the
analysis of the physical layout description and the energy loss of the radiation particle
used to calculate the transient sensitivity of the logic cells in terms of SEE cross-section
and the correspondent current injection pulses generated within the cell geometry.

3.1 The FreePDK 45 nm Technology Node

The OpenRAM memory module is generated by the open-source compiler using the
open-source variation-aware physical design kit FreePDK [19] based on Scalable CMOS
design rules. The cell library includes variation-aware tools compatible with commercial
design tools based on a theoretical 45 nm technology where each cell is described by
a proper structure including rectangular vias, metallizations and interconnects as well
as silicon active regions. We integrated the FreePDK library information building a 3D
model of the cell library adding thickness and layer material adopting the modeling
provided by the 45 nm high performance bulk logic platform technology lithography
[21]. The generated model consists of 13 layers from the Active region, the Well and
implant sections up to three aluminummetallizations connected by copper vias. The data
of the generated model are represented in Table 1 while a structural view of a 6T-SRAM
cell of the OpenRAM module is illustrated in Fig. 2.

The size of each layer and the position of each volumetric region of the FreePDK
library has been modeled considering the thickness and the implant position in order to
achieve a compliant three-dimensional model.
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Table 1. 45 nm FreePDK layers, thickness, and composite materials.

Layer name Layer [#] Thickness
[nm]

Layer
material

Active 1 520 SiO2

N-Well 2 100 n-Si

P-Well 3 110 p-Si

N-implant 4 100 n-Si

P-implant 5 110 p-Si

S-Block 6 85 SiN

Poly-Silicon 9 85 Poly-Si

Contact 10 150 Si3N4

M1 11 130 Al

Via1 12 120 Cu

M2 13 140 Al

Via2 14 120 Cu

M3 15 140 Al

Fig. 2. The 45 nm 6T-SRAM cell 3D model view from the Active layer up to the metallization
M1.
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3.2 SEE Radiation Analysis

The radiation analysis is performed considering four heavy ions energy profile related
to the UCL facility [22]. Table 2 reports the energies, ion range and Linear Energy
Transfer (LET) used. The analysis starts by extracting the geometry and size data of
layer volumes, material composition as well as the radiation profile for the considered
particles. The TRIM application calculates the energy loss level of the particle for each
layer of the cell. Figure 3 represents the amount of released energy in each layer of the
cell considering the Aluminium and Xenon heavy ion particles at the energies defined in
Table 2. Interestingly, vias are the volumes with the highest value of energy loss, while
the metalizations, contacts and in implants and well have a low energy loss.

Table 2. Radiation particle characteristics

Ion DUT energy [MeV] Range
[µmSi]

LET [MeV/mg/cm2]

13C4+ 131 269.3 1.3
27All8+ 250 131.2 5.7
58Ni18+ 582 100.5 20.4
124Xe35+ 995 73 62.5

Fig. 3. Release energy profile for the different layers of the 45 nm cell for the Aluminum (a) and
the Xenon (b) energy levels.

The developed tool elaborates the physical description of the cell, generating the 3D
mesh structure of the layout of the logic cell. Based on the size, shape, and material of
metallization and volumes of the cell with respect to the radiation profile of the mission
represented in Table 2, the developed radiation analysis tool simulates the effects of
highly charged particles traversing the silicon junction of the device and calculate the
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generated eV transmitted to the Silicon matter by the particles and provide the current
profile for each particle strike.

3.3 OpenRAM Radiation Sensitivity and SoC Interface

The System-on-Chip (SoC) under evaluation consists on an OpenRAM module and a
DMA core. They are connected through two buses: a control bus with read, write and
enable signals, and a data-bus of 32 bit wise. The overall scheme is illustrated in Fig. 4,
where it is also possible to distinguish the eight blocks of the OpenRAM architecture.
The hierarchical blocks of the memory bank are based on six main logic cells: Data
Flip-Flop (DFF), Master and Slave Flip-Flip (MS-Flop), Write Drivers, Three states
buffer, Sense Amplifier and the 6 Transistors RAM cell. The hierarchical decoder and
the control logic gates are outside of thememory bank; however they aremainly based on
DFFs and combinational logic cells which radiation sensitivity can be determined with
traditional analysis method [23]. We analyzed the memory bank cells with 10,000 heavy
ions particle using the 3D simulation approach and we computed the SEE cross-section
for each cell. The results are illustrated in Fig. 5.

bitcell_array

hierachical_ decoder

control_logic

Colum
nm

ux_array

sense_am
p_array

w
rite_driver_array

m
sf_data_in

tri_gate_array

Memory Bank

DMA model

Data Bus

Control Signals

Fig. 4. The overall OpenRAM hierarchical blocks. The hierarchical decoder and control logic
modules are outside from the memory bank. The DMAmodel directly configure the control logic
and performs the data transfer through the data bus.

The SEE cross-section may vary from 5.44·10–14 up to 5.46·10–13. The DFFs and
the MS-Flops are the most sensitive cells while the 6T-RAM cell is interestingly the cell
with the lower cross-section curve. However, considering the number of cells per block,
the memory bank cross-section is fully determined by the sensitivity of the 6T-SRAM
cell. For example, considering a memory bank of 8 Kb, the cross-section is equivalent
to 1.43·10–9 totally due by the 6T-SRAM radiation sensitivity.

We performed a Monte Carlo analysis in order to depict the vulnerability regions
of the 6T-SRAM cells and individuating the parasitic thyristor resistance spectrum dis-
tribution on the cell layout considering a static and unpowered condition of the cell.
In Fig. 6, it is possible to observe that the SRAM has various sensitive area, most of
them correlated to the layout position of the 6 transistors. Besides, we calculated the
distribution of the current pulses observing that 96.62% of the radiation particle injected
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over the 40,000 injections performed by the selected ions are generating current pulse
below 0.5 µA with a maximal peak of 17.4 µA.

4 8T-SRAMMitigation Strategies

Traditional 8T-SRAM schemes are based on the insertion of 2 additional transistors to
the 6T scheme depending on the target application of the memory. In case of mitigation
solutions for soft-errors, extra transistors are generally added to introduce redundancy
to the bit-lines or to the NMOS and PMOS used to implement the SRAM storage. The
main purpose of our approach is to insert two redundant transistors in parallel to the
original PMOS transistors, in order to distribute the radiation particle charge injected by
those particles directly crossing MP5 and MP6 and to increase the overall Qcrit margins
for the transient effects introduced by particles crossing other regions of the cell.

Fig. 5. The Single Event Effects (SEEs) cross-section sensitivity for theOpenRAMmemory bank
individual cell components.

We adopted a different approach to insert the redundant transistors to the original
scheme. Thanks to the availability of theOpenRAM layout, instead to start themitigation
insertion from the electrical scheme, we considered at first the 6T-SRAM original layout
available regions that can be modified without introducing area overhead to the cell. We
identify on the top of the MP6 and MP5 transistors enough physical space to introduce
to redundant transistors without affecting the SRAM cell size.

We introduced the following layers for each transistor: an active layer with h =
0.02 µm and w = 0.19 µm; a P-implant layer with h = 0.02 µm and w = 0.18 µm
centered with respect to the active layer; the poly-silicon section vertical to the active
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Fig. 6. The 6T-SRAM layout (a) and the vulnerability region reporting the µA current spectrum
for the Xenon energy analysis on the overall area (b).

Fig. 7. The view of the top area of the SRAM cell including the duplicated transistor T structure,
highlighted in yellow. (Color figure online)

layer has been extended of 0.05 µm in order to be effective with respect to the active
layer; two contact regions of h = 0.02 µm and w = 0.035 µm, finally, we extended the
metallization M1 of 0.06 µm in order to connect properly the VDD source and the drain
and source junctions.

The result of this modification is a T-structure added on the top of the original tran-
sistor as illustrated in Fig. 7. The layout insertions have been validated by a commercial
layout editor tool configured with the FreePDK45 library design rules check. Finally,
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Fig. 8. The electrical scheme obtained from the layout technology extraction of the mitigated
8T-SRAM cell with the highlights on the added transistors replica.

we performed the technology extraction and conversion to an H-spice model, reported
in Fig. 8, using the same layout editor tool.

5 Experimental Results

We designed two 8 Kb memory modules with 1 memory bank, 256 words and 32-bits
configuring the OpenRAM compiler with the original 6T-SRAM and with the developed
8T-SRAM adopting the T-structure redundant transistors. We performed two experi-
ments evaluating the static behavior of the memory bank. The former consists on a fault
injection campaign for evaluating the mitigation capability of the developed 8T-SRAM
cell, the latter consists on the comparative analysis of area, leakage current and SRAM
performance characteristics.

5.1 SEE Radiation Analysis

The fault injection simulation setup consists on modeling the SEE at the circuit level
by inserting transient current sources at the impact nodes. The fault injection has been
executed in two different campaigns. The former campaign measures the maximal cur-
rent pulse threshold tolerated before to create the upset for each individual transistor.
The latter campaign measures the dynamic sensitivity of the cell by injecting the current
pulse extracted from the current pulse profile generated by the radiation analysis tool
applied to the cell.
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Table 3. SRAM cell SEE threshold current

SRAM
configuration

SEE threshold current pulse [µA]

Q = 1 Qn = 0 Q = 0 Qn = 1

6T-Original 0.93 0.46

8T-Proposed 3.83 2.12

In general, the most sensitive part of the SRAM inverter configuration is the drain of
the n-mos transistor which is in the off stage; however, we performed the fault injection
in all the transistors, and we extracted the SRAM cell threshold current for creating a
bit-flip within the cell. The obtained results are reported in Table 3, as it possible to
notice the proposed mitigated cell increases the maximal current threshold of around 4
times at the static condition Q = 1 and Qn = 0 and more than 4.6 times for the condition
Q = 0 and Qn = 1.

A plot of the injection of the maximal current pulse for the configuration Q = 1 and
Qn = 0 is illustrated in Fig. 9. The injections are performed at the static storage condition
of the SRAMcell and for a duration of 2 nswhich is 18% longer than themaximal current
pulse width measured by the 3D radiation simulation. In details, the current pulse effect
has a duration of around 800 ps when the Q and Qn are simultaneously at low voltage.
As consequence, the two values are upset for 2.05 ns. Once the current pulse expires,
the original SRAM values are restored in less than 420 ps.

Fig. 9. An example of maximal current pulse injection on the proposed 8T-SRAM cell.

We evaluated the overall robustness of the mitigated OpenRAM memory bank con-
sidering the radiation particle spectra described within the radiation analysis section and
we performed 40,000 particle injection comparing the achieved SEE cross-section. The
results, illustrated in Fig. 10, show that the developed 8TSRAM is robust more than 6
times with respect to the original cell at higher energy. Please note, that the proposed
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8TSRAM is drastically more robust for low energy particles, since it is resilient more
than one order of magnitude at energies below 10 meV/mgcm2.

Fig. 10. The OpenRAM 8 Kb memory bank SEE cross-section comparison.

5.2 DMA Performance Analysis

Themain goal of the benchmark analysis is to mimic the hardware computing operations
of Direct Memory Access (DMA) data transfer considering a single core. As benchmark
DMA we selected a data transfer module capable to perform the Scatter-Gather algo-
rithm on memory blocks of 32-bit. We hypothesized to configure the DMAwith a single
channel mode managing data transfer individually per data transfer direction. We set-
tled two data transfer directions:Memory Mapped-to-Stream (MM2S) mainly based on
reading operation from the block RAM and Stream-to-Memory Mapped (S2MM) which
is performing continuous writing on the block RAM. The directions are addressed by
different buffer descriptor allocated in a dedicated memory within the DMA module.
Please note that the interrupt signals typically coming from the DMAs and connected to
the CPU have been properly monitored by the simulation model in order to measure the
performance of the memory block. A software routine running on the DMA is settled
in order to initialize and stimulate the memory and collect the reports on the simulation
environment. The achieved data are reported in Table 4, where we reported the minimal
clock period that allows to perform an error immune data transfer.

5.3 Comparative Analysis

The power dissipation, area and delay are marginally affected by the insertion of the
two redundant transistors. The size of the SRAM cell is not changed by the insertion
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Table 4. OpenRAM memory block DMA performances

32-bit words [#] Original 6TSRAM [ns] Proposed 8TSRAM [ns]

MM2S S2MM MM2S S2MM

1 2.18 2.19 2.94 3.02

8 17.41 17.49 23.55 23.55

64 139.31 141.45 148.41 159.41

256 556.05 562.08 645.66 682.32

of the T-structure transistors since we included them in the original 6T-SRAM layout.
However, in case of further optimization, our insertion will limit the reduction of the
SRAM cell area for less than 3%.

Table 5. SRAM cells characteristics comparison

Characteristic Original 6TSRAM Proposed 8TSRAM

VDD(V) 1.5 1.5

Leakage current (µA) 0.81 0.88

SNM 41.53 43.20

RSNM 27.40 38.42

WSNM 129.62 141.75

Considering the power consumption and the functional characteristics, we compared
the original and mitigated cells in order to compare the Static Noise Margin (SNM), the
Read Static Noise Margin (RSNM) and the Write Static Noise Margin (WSNM). As
expected, the results reported in Table 5 indicates that the proposed 8T-SRAM cell is
slightly degrading the leakage current while maintaining almost equivalent the SNM.

We compared the reading and writing delays characteristics of a single SRAM cell.
The delay is degraded due to the additional parasitic resistive capacitive load effects that
increases the average response time from 68 ps up to 92 ps. Finally, we also compared the
standby power for the traditional 6TSRAM cell with the developed 8TSRAM observing
a negligible increasing of power consumption from 6.30 µW to 6.83 µW.

6 OpenRAMModule Within Neural-Network Structure

The typical NN structure illustrated in Fig. 11, where floating point data are used for
weights, inputs and outputs. In order to implement a complete CNN, a number of parallel
neurons can be instantiated in parallel. All the data flow traversing the structure from
the synapse inputs up to the post rectified linear output are represented by 16 bits.
Considering that the data are generally representing values in a range from 0 to 1 and that
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Fig. 11. The neuron structure: the basic element of CNN architecture.

weights are signed values with a limited range of precision; the product will mandatory
requires higher resolution for the multiplication and extra range for the accumulation
to avoid overflow conditions of any arithmetic process. For the sake of this work, we
implemented a full neural network model consisting in a behavioral description of fully
parallel neurons in order to evaluate the impact of OpenRAM mitigated module on a
large scale circuit.

A feasible solution to insert the developed OpenRAMmodule in its original unmiti-
gated version and with the developed 8TSRAM cell is to adopt a Digital Signal Process-
ing (DSP) architecture for each neuron. The scheme of the developed implementation
is illustrated in Fig. 12.

The structure of the hardware synthesizable neuron consists of an input stream of
256 16 bits data words simultaneously read by all the neuron in the same layer. The
layer of parallel neurons is reducing the limitations on the input bandwidth thanks to the
essential data caching. The data inputs are multiplied with the weights; typically, each
weight value is used several times by the neurons depending on the position related to
the data set. The OpenRAM module is inserted in order to store the neuron weight. The
architecture used is the classical convolutional network [24] with reduced size, suitable
to evaluate mapping and implementation tools.

We tested the network with an input data stream consists of a 224 by 224 image
crop with 3 colors map convolved with 96 filters at the first layer, each one with a size
of 7 by 7and adopting a stride of 2 on both x and y. The feature map is then passed
through a rectifier linear function, max pooled with a 3 × 3 matrix with stride 2 and
finally normalized across feature maps and generating 55 × 55 elements feature map.
The intermediate layers 2 to 5 repeat the same operation, while the final two layers are
fully connected and are elaborating the features from the top convolutional layer in a



150 S. Azimi et al.

Counter
OpenRAM

Module
Weight

Bias

x
Pi

S

Input Stream 
Select

Select

+

Input 
Stream

ReLU

Valid

Fig. 12. The hardware neural network structure implementation.

vector of 9,216 dimensions. Finally, the last layer is a soft-max function with i-way, with
i being the number of classifications.

The developed design flow has been applied on the NN implemented and simulated
using the ModelSIM simulator instrumented with the OpenRAM structural netlist. The
NN has been implemented in five different implementation:

– Original: implemented with timing performance optimization considering a cus-
tomized memory block obtained by synthesis

– +Open: implemented with the original 8 Kb OpenRAMmodule used for the storage
of the neural node weights.

– +OpenOptiRead: implemented with the original 8 Kb OpenRAM module used for
the storage of the neural node weights, optimized for the reading operations

– +OpenMit: implemented with the developed mitigated 8 KbOpenRAMmodule used
for the storage of the neural node weights.

– FullOpen: implemented with the developed mitigated 8 Kb OpenRAM module used
for the storage of the neural node weights and for the storage of the input and data
output of the NN.

The obtained results are presented in Table 6 where we show the computational time
to elaborate a classification of 10 images. The performance results show the overall com-
putational time considering a simulation frequency of 100 MHz, however, we estimated
that that maximal working frequency of 220 MHz can be reached without incurring in
errors within the OpenRAM blocks.
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The result shows that the insertion of the OpenRAM memory block provides an
improvement of performances versus the original implementation of theNeural Network
with a customized memory block. We believe that this optimization is due to the faster
decoding circuitry of theOpenRAMblockversus the customizedones.On theother hand,
it is possible to notice a comparable trend on the NN with the mitigated OpenRAM, as
expected we observed a marginal degradation of the computational time. However, we
believe that this degradation ismainly due to the smaller size of the developedOpenRAM
block with respect to the requested size which may reach up to 33 Kb for the largest
Neural Network layer.

Table 6. Neural network performances considering the OpenRAM integration

Characteristic Overall computational time [ms]

Original 12.4

+Open 11.8

+OpenOptiRead 11.4

+OpenMit 12.1

FullOpen 14.9

7 Conclusions and Future Works

In this paper, we propose a methodology for the analysis and the mitigation of SRAM
circuit generated by the open-source OpenRAM memory compiler. The main novelty
of the proposed methodology is the capability to details the interaction of the radia-
tion particle with the SRAM memory layout, to depict the sensitive transistors and to
selectively mitigate the radiation effects by layout-oriented modifications. We applied
the workflow methodology to the design and mitigation of the 6TSRAM cell. Thanks to
the availability of the layout description provided by the OpenRAM project, we devel-
oped a new mitigation strategy to increase the current thresholds and reduce the voltage
transients. An experimental analysis performed on an 8 Kb memory module generated
by the OpenRAM compiler demonstrates that the developed 8TSRAM-based memory
module is 6 times more resilient than the original memory block at high energy particle.
The resiliency is improved up to one order of magnitude at lower energies, as specifically
target for ground and low earth orbit applications. We compared the functional charac-
teristics with the original cell, and we observed a minimal deviation in leakage current
and an evident improvement versus reading and writing noise margins. The performance
analysis of the developed cell has been also experimentally evaluated considering aDMA
System-on-a-Chip and a Neural Network simulation. Thanks to these two analyses it
has been possible to evaluate the proposed solution considering an high performance
architecture and large scale memory block usage. As future works, we plan to extend the
mitigation features to other memory components and to evaluate the robustness versus
destructive Single Event Latch-up (SEL) effects and to evaluate the application of error
detection and correction schemes.
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Abstract. Silicon photonics is an emerging technology allowing to take the
advantage of high-speed light propagation to accelerate computing kernels in inte-
grated systems. Micrometer-scale optical devices call for reconfigurable architec-
tures to maximize resources utilization. Typical reconfigurable optical computing
architectures involve micro-ring resonators for electro-optic modulation. How-
ever, such devices require voltage and thermal tuning to compensate for fabri-
cation process variability and thermal sensitivity. This power-hungry calibration
leads to significant static power overhead, thus limiting the scalability of optical
architectures. In this chapter, we propose to use non-volatile Phase Change Mate-
rials (PCM) elements to route optical signals only through the required resonators,
hence saving calibration energy of bypassed resonators. The non-volatility of PCM
elements allows maintaining the optical path. We investigate the efficiency of the
PCM elements on the Reconfigurable Directed Logic (RDL) architecture. We also
evaluate the static power saving induced by the use of couplers instead of micror-
ing to redirect WDM signals into a single waveguide. Finally, we show that the
couplers can be efficiently used to cascade the architectures, allowing to increase
the number of inputs to be processed without opto-electronic conversions. Com-
pared to a ring-based implementation of RDL architecture, results show that the
proposed implementation allows reducing the static power by 53% on average.

Keywords: Nanophotonics · Phase Change Material (PCM) · Reconfigurable
computing architectures

1 Introduction

Silicon photonics have attracted attention due to the compatibility with CMOS man-
ufacturing process. The technology allows integrating high speed photonic devices to
provide high bandwidth low latency chip scale interconnects [1, 2]. As the technology
continues to mature, emerging optical computing architectures are developed to accel-
erate neural networks applications [3] and microwave processing [4]. The design of
optical circuits dedicated to matrix multiplications, logic functions [5] and adders [6]
are also investigated. Logic circuits relying on integrated optics involve electro-optic
devices such as micro-ring resonators. In [7, 8] the rings are organized as an array of

© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
V. Grimblatt et al. (Eds.): VLSI-SoC 2021, IFIP AICT 661, pp. 155–174, 2022.
https://doi.org/10.1007/978-3-031-16818-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16818-5_8&domain=pdf
https://doi.org/10.1007/978-3-031-16818-5_8


156 P. Zolfaghari and S. Le Beux

optical switches to control light propagation. Such architecture allows to simultane-
ously controlling switching operation of the rings, which lead to low latency processing.
Reconfigurable optical architectures [9, 10] allow to efficiently use, bulky, optical devices
for multiple operation, thus allowing to reduce the cost overhead induced by the tech-
nology. A feature shared by such architecture is the need to calibrate ring resonators in
order to control optical signal transmissions. While high contrast can be achieved, the
method requires voltage and thermal tuning to calibrate the rings, which accounts for up
to 40% [10] of the static power consumption. Disruptive materials and architectures are
thus needed to overcome the low energy efficiency of optical devices calibration. Phase
ChangeMaterial (PCM) has been widely studied to design non-volatile photonic circuits
such as neural networks [11]. Indeed, the non-volatility of PCM based devices allows
to maintain the configuration of optical device without consuming energy. Typical con-
figurations involve amorphous (am) and crystalline (cr) states, which can be obtained
by heating the device [12]. Among recently demonstrated PCM based devices, a Direc-
tional Coupler (DC) reported in [13] leads to 0.16 dB and 0.72 dB attenuation under
cr and am states respectively at wavelength 1521.5 nm. Such low attenuation and the
associated high optical contrasts allow to envision new optical architectures involving
reconfigurable optical paths. In this chapter we propose an optical architecture allowing
to bypass unused optical devices. To achieve this, PCM-based directional couplers are
placed before and after resonating devices, thus allowing either to transmit optical sig-
nals to devices for modulation purpose or to bypass them. The use of the bypass path
allows to avoid calibration of the optical devices, thus leading to significant reduction in
the static power consumption. We investigate the efficiency of the proposed design on
the RDL architecture. We also investigate the cascading of the proposed cell using direc-
tional couplers combined with lasers source placed between the cells. The architecture
involves the use of coupler which induces loss resulting in laser power overhead.

To evaluate the proposed architectures, we define a loss model allowing to estimate
the laser power overhead and the reduced ring calibration power consumption. We also
investigate the impact of the architecture reconfiguration frequency on the power saving.
Results show coupler based implementation of PCM based RDL leads to 53% of static
power reduction comparedwith baselinewhile ring based implementation of RDL shows
19% of saving.

The chapter is organized as follows. Section 2 presents an overview of micro ring
resonator-based computing architectures and introduces PCM based photonic devices.
In Sect. 3, we present the proposed reconfigurable PCM-based architecture. Section 4
describes the power model and Sect. 5 presents results and discusses the cascading of
the proposed architecture for multi-input logic. Section 6 concludes the work.

2 Related Work

In this section we present works related to optical computing architectures and the
application of PCM in nanophotonic circuits.
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2.1 Optical Computing Architectures

Numerous optical accelerators have been designed to execute both arithmetic and logic
operation. They involve key optical devices such as micro rings, micro-disks, photonic
crystal cavities and waveguides. A common objective is to reduce the critical path delay,
which can be obtained by simultaneously applying multiple electro-optic modulation
on optical signals propagating along a waveguide. By doing so, an 8-bit ripple carry
adder with a 20ps critical path delay has been demonstrated in [14]. The same app-
roach has been used in [15] for the design of an n-bit multiplier. Directed logic (DL)
architectures have been proposed to efficiently utilize optical devices by simultaneously
executing AND and NAND [16], the outputs being available on through port and drop
port of a ring resonator. The approach has then been extended to XOR and XNOR oper-
ations [17]. A key issue with the above-mentioned architectures is the limited number of
operations that can be executed, which is solved by the Reconfigurable Directed Logic
(RDL) [10]. The RDL involves parallel waveguides on which modulators are serially
placed, thus allowing to map sum-of-product functions. To do so, the architecture relies
on modes (named pass/pass, pass/block, block/pass and block/block) which are config-
ured by calibrating the modulator using thermal tuning. Hence, the main drawback of
the architecture is the need to constantly thermally tuning ring resonators, even if no
modulation is carried out, which is power consuming. In [22], we solved the problem
by using PCM based directional couplers [13]. The directional couplers allow to bypass
rings when no modulation is needed, thus avoiding to thermally tuning unused modu-
lators. We investigated the efficiency of PCM based DC on RDL architecture. Results
showed an average power saving of 32.8% and architecture is more power efficient for
frequencies lower than 158 kHz. In this chapter we investigate the power consumptions
of RDL in [10] and our proposed RDL [22] taking into account the power consumed
by filter rings. We also extend the architecture to support multi-inputs logic through a
cascading of the reconfigurable cells.

2.2 Phase Change Material (PCM)

The use of Phase-ChangeMaterial (PCM) in photonic platforms has been widely studied
in recent years. Indeed, sub-nanosecond phase transition, femtojoule-scale phase transi-
tion energy consumption, 1015 switching cycle endurance and years long state retention
have provided the ground for the massive deployment of PCM in numerous applications.
Crystalline and amorphous states show significant differences in optical properties [12,
18]. Hence, binary applications such as memory set and reset can be achieved using
phase transition of PCM, which is obtained by thermal annealing using external heaters,
optical pulses or electrical pulses [12]. The use of intermediate phase levels, i.e. not fully
crystalline or amorphous, leads to multi-level memories [19] and weighting functions in
spiking neural networks [11]. PCM is also commonly used for on-chip optical routing
applications due to the high optical contrast they provide. For instance, an optical switch
based on GST (germanium-antimony-tellurium) sandwiched between the branches of a
directional coupler is reported in [20]. In the design, amorphous and crystalline states of
the GST lead to cross and bar transmission of optical signals respectively. The design has
been further improved in [13] in order to reach 0.16 dB and 0.72 dB Insertion Loss (IL)
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for cross and bar transmissions respectively. Low transmission loss and non-volatility
are the skey characteristics of the directional coupler we are using to bypass unused
modulators in the proposed architectures.

3 Proposed Cell

In this section, we first present an overview of the proposed reconfigurable logic cell.
We then detail the cell configurations according to the state of the PCM elements and
the detuning of the ring resonator. The implementation of the AND is presented using
the proposed cell and finally, we present two implementations of the RDL involving the
proposed cell.

3.1 Cell Overview

The proposed cell is composed of two phase change Directional Coupler (DC1 and
DC2) and one micro ring resonator, as shown in Fig. 1. The state of the PCM in DC is
electrically configured using a dedicated control signal. As defined in Sect. 3, cross and
bar are obtained forAmorphous (Am) andCrystalline (Cr) states respectively.Depending
on the state of DC1, two signal paths can be configured: i) modulation is obtained for Cr
state and ii) bypass is obtained for Am state. In the modulation path, the optical signal
propagates through a micro ring resonator, where modulation of the input data is carried
out, before reaching DC2. In the bypass path, the optical signal directly propagates
towards DC2. Depending on the state of DC2, signals are transmitted either to the output
of the cell or to a terminator.

Data (0/1) Ring 
calibration

C1PCM 
config.

heater

Micro
ring

DC1 DC2

C2

Fig. 1. Proposed cell based on micro ring resonator and phase change directional coupler

The cell is configured according to i) the state of the PCM elements in the DCs
and ii) the tuning of the ring. By combining the states of the PCM and ring tuning, the
following cell configurations are defined:

• Pass/Pass: Both DC1 and DC2 are in the Amorphous state as shown in Fig. 2.a. The
input signal propagates through the bypass path and is transmitted to the output. Since
the signal does not propagate through modulation path, no thermal calibration of the
ring is needed.
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• Block/Block: Fig. 2.b represents the block/block mode. Similarly to pass/pass mode,
the signal propagates through the bypass path since DC1 is set to the amorphous state.
However, instead of transmitting the signal to the output, DC2 is configured to the
crystalline state, which leads to a transmission of the signal to the terminator. Hence,
the optical signal is strongly attenuated on the output.

• Pass/block: The input signal is transmitted to the modulation path, which is achieved
with DC1 is configured in the crystalline state as shown in Fig. 2.c. The signal is first
modulated by the input data and is then transmitted to the output (DC in crystalline
state). Since a modulation occurs, the ring is thermally calibrated to the signal wave-
length (λs). Therefore, data input ‘0’ leads to the coupling of the signal, which results
in a strong attenuation, while data input ‘1’ detunes the resonance of the ring, which
leads to a high transmission of the signal.

• Block/Pass: Similarly, to Pass/block, the signal propagates through the modulation
path, as illustrated in Fig. 2.d. However, the ring is tuned to λs − �λ, i.e. the ring is
off signal resonance for data input ‘0’. Data input ‘1’ leads to a red shift of the ring
and hence a strong attenuation of the optical signal.

Fig. 2. Non-volatile implementation of a) pass/pass. b) block/block. c) pass/block d) block/pass
modes from RDL [10] using PCM-based directional couplers

3.2 Implementation of AND Function

In order to implement the multiplication of two operands, the cell is cascaded as shown
in Fig. 3. To reduce the design complexity, DC2 from the first cell is merged with DC1
from the second cell. Hence, the configuration of block/block mode is only available in
the second cell, which implies to configure the first cell in the pass/passmode. The design
allows to implement functions such as A, B, AB, AB′. Figure 3 illustrates the imple-
mentation of AB′. For this purpose first and second cells are configured in pass/block
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and block/pass modes respectively. This is obtained by configuring DC1, DC2 and DC3
in crystalline state and tuning the first and second cell to λ0 and λ0 − �λ respectively.

Fig. 3. Implementation of AB′.

3.3 Non-volatile RDL Architecture

In order to implement the function OR, the architecture in Fig. 3 is duplicated on two
parallel waveguides. Signals propagating from waveguides are transmitted to multiband
photo detector which results in the sum of products.

Proposed PCMbasedRDLarchitecture feature the implementation ofXOR function,
i.e. AB′ + BA′, with AB′ being implemented in the upper waveguide. It is obtained by
configuring first and second cell in pass/block and block/pass modes respectively. This
is achieved by configuring DC1, DC2 and DC3 in crystalline states and tuning the first
and second rings to λ0 and λ0 − �λ respectively. Therefore, signal at λ0 is transmitted
to the output when rings are off resonance, which requires A = 1 and B = 0. BA′ is
implemented on the lower waveguide by configuring first and second cells in block/pass
and pass/block modes respectively.

In the following, we present two non-volatile implementations of the RDL architec-
ture as illustrated in Fig. 4.a and Fig. 4.b.

• Ring filter based RDL (Fig. 4.a): The MRR filters on the left-hand side are used to
couple signal from lasers to the horizontal waveguides. The modulated signals are
transmitted to a photo detector through MRRs located on the right-hand side. The
filter MRRs require constant calibration.

• Coupler based RDL (Fig. 4.b): Lasers are placed on each waveguide allowing to turn
them off when signal is not used. Therefore block/block mode is not needed which
allows to remove the terminator. Signals propagating from twowaveguides aremerged
through coupler.



Design of a Reconfigurable Optical Computing Architecture 161

Fig. 4. Configuration of RDLs for XOR, a) Ring filter based RDL, b) coupler based RDL

Table 1 summarizes the configurations of PCMs and the rings according to the logic
function for filter ring based RDL architecture. Functions involving a single product
induce block/block mode for the lower waveguide which leads to bypassing of signal.
XOR and XNOR functions involve modulation on all the rings, which requires to con-
figure all the DCs in the cr state. MR3 modulates data when functions involving a second
product include operand ‘A’ (e.g. XOR and XNOR). Since all functions can be executed

Table 1. Device state according to the configured function for RDL with PCM and filter rings

Device Functions

A B AB AB′ A + B A + B
′

AB + A
′
B

′

DC1 cr am cr cr cr cr cr

DC2 am am cr cr am am cr

DC3 am cr cr cr am am cr

MR1 λ0 off λ0 λ0 λ0 λ0 λ0

MR2 off λ0 λ0 λ0 – �λ off off λ0

DC4 am am am am am am cr

DC5 cr cr cr cr am am cr

DC6 cr cr cr cr cr cr cr

MR3 off off off off off off λ1 – �λ

MR4 off off off off λ1 λ1 – �λ λ1 – �λ
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without reconfiguring DC6, the device could be removed for reduced hardware complex-
ity purpose. However, since keeping DC6 offers the opportunity to map single produce
function on the lower waveguide, we didn’t consider this optimization.

Table 2 summarizes the PCM configuration and ring tuning for coupler based RDL.
Laser is turned off on lower waveguide for functions involving the use of one waveguide
such as A, AB. This allows to avoid the configuration of PCMs which are shown with
don’t care (i.e. x) in the table.

Table 2. Device state according to the configured function for RDL with PCM and coupler

Device Functions

A B AB AB′ A + B A + B
′

AB + A
′
B

′

DC1 cr am cr cr cr cr cr

DC2 am am cr cr am am cr

DC3 am cr cr cr am am cr

MR1 λ0 off λ0 λ0 λ0 λ0 λ0

MR2 off λ0 λ0 λ0 – �λ off off λ0

DC4 x x x x am am cr

DC5 x x x x am am cr

DC6 x x x x cr cr cr

MR3 off off off off off off λ1 – �λ

MR4 off off off off λ1 λ1 – �λ λ1 – �λ

4 Power Model

In this section, we present the proposed power model. It takes into account the power
consumption of i) lasers, ii) rings resonators and iii) PCM, as defined by:

P_total = P_laser + P_ring + P_reconfig (1)

where P_laser is the laser power needed to reach the targeted optical power. P_ring
is power consumption induced by both ring tuning and data modulation. P_reconfig
corresponds to the power consumption required to change the state of the PCMs when
the architecture is reconfigured.

4.1 Laser Power

The optical signals propagating through the architecture experience losses induced by
micro ring resonator and directional coupler. Theworst-case Insertion Loss (ILwc) allows
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estimating the laser power consumption according to the received power (Preceived) and
the laser efficiency (eff ), as defined by:

Plaser = (Preceived+ILwc)/eff (2)

We estimate the losses for each device of the architecture as follows:

ILwc = ILring + ILDC + ILcoupler (3)

ILring =
∑M

m=1
ILλs +

∑N

n=1
ILλs−�λ (4)

ILDC =
∑K

k=1
ILbarcr +

∑F

f =1
ILcrossam (5)

where ILring , ILDC and ILcoupler are the ring, DC and coupler losses respectively. M and
N are the number of rings tuned to λs and λs – �λ respectively. K is the number of bar
transmission for PCM configured in cr state and F is the number of cross transmissions
for PCM in am state. As previously explained, am state leads to the cross transmission
of most signal power

(
ILcrossam

)
while only small fraction of the power is transmitted

to bar
(
ILbaram

)
as shown in [13]. The opposite occurs for cr state: most of the signal

power is bar transmitted while a small fraction of the signal power is cross transmitted
(ILcrosscr � ILbarcr ) (Fig. 5).

a b

Fig. 5. IL for DC according to the state of PCM and output port, a) am: cross transmission of
most signal power, b) cr: bar transmission of most signal power

In our model, we do not consider the crosstalk induced by bar and cross transmission
through ILcrosscr and ILbaram respectively.However, in block/blockmodewhere signalmostly
propagates toward the terminator, we consider ILcrosscr for the last DC to obtain the ratio
of signal propagation to the output. Table 3 summarizes the ring transmission parameters
according to the selected tuning resonance wavelength and the modulated data. Tuning
ring to λs (resp. λs − �λ) leads to ILs (resp. ILλs−λ + ERλs−λ) and ILλs + ERλs (resp.
ILs−λ) for logic inputs of ‘1’ and ‘0’ respectively. When the ring is tuned to λs + �λ,
the loss is independent from the data.

4.2 Ring Power

The total ring power is defined by i) the calibration power of modulating rings (i.e. rings
which are not bypassed using the directional couplers) ii) the calibration power of ring
filters and iii) the modulation power P_M, as defined by:

Pring =
∑I

i=1
Pλs +

∑J

j=1
Pλs−�λ +

∑K

k=1
Pλs+�λ +

∑I+J

l=1
PM (6)
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Table 3. Ring loss according to the tuning and modulated data

Tuning Data

0 1

λs (IL)λs + ERλs ILλs

λs − �λ ILλs−�λ (IL)λs−�λ + (ER)λs−�λ

λs + �λ ILλs+�λ

where I , J and K represent the number of rings calibrated at λs, λs − �λ and λs + �λ

respectively.

4.3 Reconfiguration Power

The configuration of a given function involves changing the state of PCMs (cr→am or
am→cr). While the static power consumption depends only on the losses induced by the
directional couplers, the dynamic power, Preconfig, depends on the PCM state conversion
energy Esc and the function reconfiguration frequency f . In our model, we first consider
the worst-case scenario since i) we assume that all PCM elements change state when a
new function is configured and ii) we use the largest of E(cr→am) and E(am→cr) for the
state conversion, as defined by:

Esc =max(Ecr→am,Eam→cr) (7)

Preconfig = f
∑

numberof
PCMs

i=0
Esc (8)

We also consider a scenario in which we take into account the actual number of PCMs
that change state for each possible reconfiguration.

5 Results

In this section, we evaluate the power consumption of the proposed architectures. We
first estimate the laser power overhead needed to compensate for losses induced by PCM
elements and coupler. We then estimate the impact of the reconfiguration frequency on
the cell power efficiency. Table 4 summarizes the considered parameters for micro ring
resonator and DC at 1521.5 nmwavelength.We assume 0.9 mWmodulation power (PM)
[10].
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Table 4. Cell parameters

Device Parameter type Parameter

MR Tuning power (mW) Pλs 9.9 [10]

Pλs−�λ 9.7 [10]

Pλs+�λ 12.9 [10]

Loss (dB) ILλs −1.25 [10]

ERλs −12.25 [10]

ILλs−�λ −1.25 [10]

ERλs−�λ −8.75 [10]

ILλs+�λ 0 [10]

DC Phase transition energy (nJ) Esc 2 [13]

Loss (dB) ILbarcr −0.16 [13]

ILcrosscr −13.7 [13]

ILbaram −22.9 [13]

ILcrossam −0.72 [13]

5.1 Cell Insertion Loss

Weevaluate the cell insertion loss for each configuration, as reported inTable 5. Pass/pass
leads to the lowest loss since the signal propagating from input to the output cross two
DCs in the am states. Assuming ILcrossam = 0.72 dB, this leads to 1.44 dB total loss.
Block/block leads to the 14.42 dB loss, i.e. the highest attenuation, by configuring DC1
and DC2 in am and cr states respectively. Pass/block involves using the modulation path,
i.e. DC1 and DC2 are in cr state and ring is tuned to λs. Depending on the modulated
data, the ring involves an attenuation of ILs = 1.25 dB (data ‘1’) and ILs + ERs =
13.5 dB (data ‘0’). The only difference for block/pass is the ring detuning, which is set
toλ0 − �λ. This leads to 1.57 dB and 10.32 dB loss for data ‘0’ and ‘1’ respectively, thus
resulting in high extinction ratio for both modulation modes. Since comparable insertion
losses are obtained for all the modes, data ‘1’ on the cell output will be represented by

Table 5. Cell insertion loss wrt cell configuration

Mode Device configuration IL (dB)

DC1 MR DC2

pass/pass am NA am 2 × ILcrossam 1.44

block/block am NA cr ILcrossam + ILcrosscr 14.4

pass/block cr λs cr 2 × ILbarcr + ILλs 1.57

block/pass cr λs−�λ cr 2 × ILbarcr + ILλs−�λ 1.57
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similar power levels. We thus conclude that a same laser power can be used for all the
configurations and that no laser power tuning is needed.

5.2 Laser Power

In order to estimate the required laser power, we estimate the worst-case loss at the
architecture level for each implementation of the non-volatile RDL architecture. Figure 6
illustrates the loss breakdown for each RDL. The worst-case loss occurs for functions in
which signal is propagating through two modulating rings such as AB and XOR, which
involves 3ILbarcr and 2ILλs/λs−�λ and results in 2.98 dB. For same functions RDL in [10]
leads to 2.5 dB loss.

0
1
2
3
4
5
6
7

reference RDL RDL (w PCM + microring filter) RDL (w PCM + coupler)

Lo
ss

 (d
B

)

 modulator rings PCM based DC coupler

Fig. 6. Loss breakdown for RDL architectures

To compensate the 0.48 dB and 3.48 dB additional loss for RDLs with ring filters
and coupler, the injected optical power are set to 2.25 mW and 4.5 mW respectively.
Assuming a 25% lasing efficiency [22], this leads to 1 mW and 10 mW laser power
overhead respectively. In the following, we discuss how energy saving can be achieved
for RDL with PCM and ring filters thanks to i) the use of the bypass path, which allows
to avoid tuning unused rings. For coupler based RDL extra saving is achieved thanks to
the ii) removal of ring filters which reduces MRR calibration power and iii) turning off
laser for functions which involves the use of one waveguide such as A and AB.

5.3 Power Saving Analysis

In the following we investigate the power saving of the two implementations of non-
volatile architecture wrt RDL in [10] as reported in Fig. 7. For functions A and B, three
rings out of four are bypassed thanks to the PCM based DC. This results in 35% saving
for RDL with ring filters. For coupler based RDL in addition to bypassing rings, turning
off the laser on the lower horizontal waveguide and saving the calibration power of ring
filters lead to 72% power saving. This is achieved despite of 10mW laser power overhead
needed to compensate for the loss induced by DCs and coupler. Functions involving two
operands (A + B, AB, AB′, A + B′) allow bypassing two rings, thus leading to 22%
power saving for RDL with ring filters. For coupler based RDL, functions AB and AB′
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lead to 61%power saving, while functionsA+BandA+B′ result in 50%power saving.
While in all the abovementioned functions two rings are bypassed and calibration power
of ring filters are saved, however turning off laser for functions of AB and AB′ leads
to extra saving. XOR and XNOR involve the use of all rings. Therefore due to the
higher laser power needed to compensate loss induced by PCM, RDL with ring filters
leads to slight power increase of (+0.2%). For coupler based RDL calibration power
saving of ring filters outperforms the laser power overhead and results in 29% power
saving. Therefore while RDL with ring filters leads to 19% average power saving, 53%
is obtained for coupler based RDL.

The results demonstrate that using PCM to bypass ring resonators not needed to
modulate data lead to significant improvement in the power efficiency. While PCM
leads to saving in both implementations of proposed RDLs, keeping laser off for some
functions and saving the calibration power of ring filters result in extra saving for coupler
based RDL.

While we investigated the use of PCM on the reconfigurable directed logic archi-
tecture, we believe that the same approach could be applied to other computing archi-
tecture such as OLUT or to reconfigurable nanophotonic interconnects, which we will
investigate in our future work.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A B AB AB' A+B A+B' xnor xor

  w PCM + ring filters w PCM + coupler

Fig. 7. Normalized power of ring filter based and coupler based RDLs wrt RDL in [10]

5.4 Power Saving Analysis of Coupler Based RDL

In this section we investigate the impact of MRR calibration power and laser efficiency
on power saving of coupler based RDL. For this purpose, we consider laser efficiencies
of 10% and 25% and we focus the study on functions A + B and XOR, as illustrated
in Fig. 8 and Fig. 9. We assume MRR calibration power ranging from 1 mW to 10 mW
for pass/block mode, which corresponds to the power consumption needed to detune
the rings from the signal wavelength. We also consider MRR calibration power for
block/pass and pass/pass modes to be respectively 0.2 mw below and 3 mw above the
caliobration power for pass/block mode.
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The implementation of A + B with coupler based RDL considering 25% laser effi-
ciency is more power efficient for all considered MRR calibration power, as shown on
Fig. 8. However, for 10% laser efficiency, the proposed implementation is power effi-
cient from 6 mW. Implementation of A + B on coupler based RDL involves saving the
calibration power of four filter rings and two modulating rings. However, the PCM also
involves laser power overhead. Therefore the architecture is more power efficient when
laser efficiency is 25% or MRR calibration power is greater than 6 mW.
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Fig. 8. Total power consumption for A + B considering laser efficiencies of 10% and 25%

Figure 9 shows the implementation of XOR on both RDLs. Coupler based RDL
is more power efficient from 2 mW and 9 mW for laser efficiencies of 25% and 10%
respectively. Since XOR involves the use of all modulating rings, the coupler based RDL
is less efficient for implementation of this function compared with A + B. However
considering laser efficiency of 25% makes coupler based RDL a more power efficient
candidate for implementation of functions for calibration power ranging from 2 mW to
10 mW.

5.5 Reconfiguration Power

We evaluate the impact of state change of PCM elements according to the architecture
reconfiguration frequency. For this purpose, we assume a 2nj [13] energy consumption
to change the state of a PCM element. We assume a minimum reconfiguration period
of 100 ns since, according to [18], the amorphization and crystallization times are in
the range of ps to ns. To obtain reconfiguration power two scenarios are considered.
First we assume all PCMs are reset between each reconfiguration which leads to the
worst case. In second scenario we take into account the actual number of PCMs that
change state between each possible reconfiguration. For this purpose we assume that
architecture is initially configured for a function then we consider its reconfiguration
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Fig. 9. Total power consumption for XOR considering laser efficiencies of 10% and 25%

Table 6. Number of PCMs state changes for each reconfiguration

Function after reconfiguration

Function
before

reconfiguration

A B AB AB' A+B A+B' xnor xor
A - 2 2 2 1 1 3 3
B 2 - 2 2 3 3 3 3

AB 2 2 - 0 3 3 1 1
AB' 2 2 0 - 3 3 1 1
A+B 1 2 3 3 - 0 4 4
A+B' 1 2 3 3 0 - 4 4
xnor 2 2 1 1 4 4 - 0
xor 2 2 1 1 4 4 0 -

to all other functions and obtain the number of PCMs that must change state for each
reconfiguration as summarized in Table 6.

Figure 10 illustrates an example in which the initial function is A+B. Reconfiguring
the architecture for A + B′ does not require any PCM state change. Only ring tuning
on lower waveguide changes from λ to λ−�λ. However implementing XOR requires
four of PCMs to be reset and all rings to be tuned. To obtain reconfiguration power we
consider the average of all PCM reconfiguration listed in Table 6.

While average power consumption of all functions for RDL in [10] is 107 mW, the
power consumption for PCM based RDL with ring filters and with coupler is 87.3 mW
and 51mW respectively. Here we investigate the impact of the reconfiguration frequency
on total power consumption. Figure 11 illustrates the power consumption for each recon-
figuration scenario for two implementation of PCM based RDLs. Both coupler based
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Fig. 10. Reconfiguration of architecture to A + B′ and XOR considering the initial function of
A + B

RDL and ring filter based RDLs are most power efficient when no reconfiguration is
required. The higher the reconfiguration frequency the higher the power consumption.
Ring filter based RDL is power efficient up to 1.7 MHz and 5 MHz for worst case and
actual scenarios respectively and coupler based RDL is power efficient up to 4.7 MHz
and 14MHz for corresponding scenarios respectively. This demonstrates that taking into
account the current state of PCMs is needed to efficiently reconfigure the architecture.
This is especially important when the architecture is extended to process large numbers
of inputs, as discussed in the following.
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5.6 Toward Large Scale Architectures

In this section, we study the usage of the architecture to enable the processing of multi
operand functions. From the coupler based architecture, which is the most energy effi-
cient design, we define architecture illustrated in Fig. 12. It is essentially composed of
two cascaded cores which are interconnected using waveguides linking upper and lower
branches of DC3 and DC9 to DC4 and DC10. The other two branches are used to sum
the output signals and transmit the results to a photodetector. Therefore, different opti-
cal connection between the cores are obtained depending on the PCM configurations.
In following we show how sum of products for four operands can be achieved using
proposed architecture. We also discuss the limits of the architecture and introduce future
works.

C1 C2 C3

C7 C8 C9

Data

laser1

OE1

C4 C5 C6

C10 C11 C12

OE2

laser2

laser3

laser4

Data

DataData

Data Data Data Data

Fig. 12. Architecture for processing multi operand functions

Figure 13 illustrates the implementation of ABCD+EFGH. Both ABCD and EFGH
are implemented through configuring all cells in pass/block mode. In order to transmit
the signal from first core to the second one, both DC3 and DC9 are configured in cr state.
This allows to avoid turning on the laser3 and laser4. Signals transmitting from lower
and upper waveguides propagate to the OE of second core through configuring DC6 and
DC12 in am state. Therefore the sum of products are obtained.

Fig. 13. Implementation of ABCD + EFGH

Although the cascading of computing cores using PCM based directional couplers
appear promising, the architectures suffer from several limitations. For instance, the
implementation of multi-input XOR cannot be achieved since it requires crossing of
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data between the cores. While using electro-optical solutions would solve the issue, the
use of electronics would also considerably limit the advantages of the such architectures.
Hence, topologies involving heterogeneous and specialized cores [17, 23] are probably
needed. Another challenge remains the losses induces by PCM material; while we have
shown that crossing relatively small number (<10) of PCM based directional couplers
doesn’t have a significant impact on the required laser power, the power consumption
of large circuits involving hundreds or thousands of PCM may be dominated by static
power. This will call for synthesis tools enabling the mapping of functions to minimize
the crossing of PCMs [24]. Finally, as already previously discussed, PCM suffers from
a limited endurance and high reconfiguration time. This will call for synthesis tools able
to map the application while taking into account the current PCM state to minimize
changes of states.

6 Conclusion

In this chapter, we investigate two implementations of non-volatile PCM based RDL
defined as ring filter based RDL and coupler based RDL. Both involve the use of PCM
to bypass unused microring resonator. Ring filter based RDL includes MRR to direct
WDM signal to horizontal waveguide and to direct the modulated signal to the pho-
todetector where OE conversion occurs. In coupler based RDL lasers are placed on
each waveguide allowing to turn it off when signal is not used. The modulated signals
of waveguides are merged through coupler. Bypassing MRRs in ring filter based RDL
leads to 19% of saving in power consumption compared with baseline. Coupler based
RDL results in 53% saving due to the reduced MRR calibration power of ring filters
in addition to bypassing of non-modulating rings. We also investigate the impact of
the PCM reconfiguration frequency on total power consumption considering two recon-
figuration scenarios. Results show that as the reconfiguration frequency is decreased
the architectures are more power efficient. Considering current state of PCM leads to
reduced number of required PCM reconfiguration which leads to actual assumption
of the reconfiguration power. We also investigated the cascading of the architecture to
enable multi operand function. The architecture is extended to involve the AND of multi
operands without opto-electronic conversion. The drawback however is its limitation in
implementing XOR, which requires the electrical connection between cores which we
intend to investigate in more details in future.
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Abstract. True Random Number Generators (TRNGs) are essential
primitives in any cryptographic system. They provide the foundation to
secure authorization and authentication. This work proposes a generator
that exploits the metastability effect of cross-coupled logic gates, as found
in SR latches. Based on emerging reconfigurable transistor technology,
a random number generator design has been proposed that doubles the
throughput, compared to a similar standard CMOS design, by exploiting
transistor-level reconfiguration. The proposed design is superior in terms
of the number of transistors per block, power consumption and in critical
path delay with respect to its CMOS counterpart. Random Number bit
sequence are generated by operating the given design at three operat-
ing frequencies of 10MHz, 100 MHz and 200 MHz. Firstly, the Shannon
entropy for the generated bit sequence is measured, and then the gener-
ated bit sequence are subjected to statistical evaluation using the NIST
benchmark suite. The P ′ values for the NIST benchmarks is above the
accepted threshold, which underlines the assumption that the designed
circuit produces the random numbers based on the metastability effect.

Keywords: Reconfigurable field effect transistor (RFET) · True
Random Number Generator (TRNG) · Metastability · NIST
benchmark suite · Von-Neumann extraction

1 Introduction

Hardware security is an area of prime concern in the current era of Internet of
Things (IoT) owing to the growing security threats and adversarial vulnerabili-
ties to embedded devices [1]. To this end, reliable and secure hardware primitives
are required to be interfaced with low-cost and resource-constrained embedded
devices for secure communication, identification or authorization and privacy
protection. These security primitives can manage digital keys, perform encryp-
tion and decryption for digital signatures, strong authentication and various
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other cryptographic functions [32]. Generating secrets is a cornerstone of cryp-
tographic applications [1,10,18,38], whose randomness, as a measure of unpre-
dictability, is the defining property of a secure secret key.

Random Number Generators. (RNGs) produce uniformly distributed sets of
numbers for secret keys. There are two kinds of RNGs: True Random Number
Generators (TRNGs) and Deterministic Random Number Generators (DRNGs).
Hardware-based TRNGs extract the noise from chaotic physical processes in
the form of an unpredictable sequence of bits (e.g., thermal noise, flicker noise,
clock-jitter, metastable states, power supply fluctuations) [1,18,40]. On the other
hand, DRNGs use one or more inputs known as ‘seeds’ and are used in generat-
ing ‘pseudo random numbers.’ These numbers are generated using deterministic
algorithms and satisfy every requirement posed by random numbers. However,
the only drawback is that these sequences can easily be retraced if the seed
is known. Hence, to make DRNGs truly random, the seeds must be generated
from some TRNG. A TRNG comprises of three main components: 1) an entropy
source, like the one proposed in this work. It is used to generate unpredictable
and independent values. 2) A conditioning component, which is usually optional.
It is used to reduce the bias in the random outputs. 3) A health test, which checks
for the failure of the entropy source [60].

There are various places where a TRNG can be used, including provid-
ing security against existing adversarial attacks, such as spoofing and cloning,
because of their ability to generate unique secret keys [1]. They are also used
as initialization vectors, random masks, challenges and nonces in side-channel
attack countermeasures [14]. To guarantee a high level of random output, a com-
promise in terms of speed, power and area is generally considered [28]. However,
TRNGs which are to be installed in embedded devices have certain criterion
to fulfil. They need to be area and power efficient and should utilize existing
hardware elements such as logic gates for random number generation [8,47,60].
Hence, it is imperative to explore emerging nanotechnology-based solutions.

Recent developments in emerging technologies have opened up new avenues
to bring security from the technology side within the hardware system [2,41,48,
67]. Various emerging technologies have been explored in works such as [5,35,40,
65] which cater for random number generations with low power requirements.

Runtime reconfigurable technologies form an interesting class of such emerg-
ing devices. Transistors based on these technologies (such as silicon [6,17] or
germanium [55,62] nanowires) show electrical symmetry and can be reconfigured
between p- and n-type behavior at runtime. Due to their transistor-level recon-
figuration, devices made of such nanotechnologies are often termed as Reconfig-
urable FETs (RFETs). RFETs can encapsulate more logic and functionality into
a smaller area and are able to achieve reduced power consumption and higher
speed during their operation [34,40,44,50,74]. Due to their extended functional-
ity, they have shown great potential for hardware security applications, particu-
larly in the domain of logic locking and layout camouflaging [2,3,5,45,50,50].

In this work, a TRNG design based on RFETs that is referred as Emerg-
ing Nanotechnology - based Double - Throughput True Random Number Gener-
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ator (END-TRUE) is proposed. It introduces a bistable device/circuit respon-
sible for generating random numbers. The occurrence of a metastable state in
any bistable circuit is unavoidable. There are three static equilibrium points in
the proposed circuit, two of which are stable (bistable) and known as accurate
output states, while the third point is known to be the metastable state. The
metastable state, in simple terms, can be defined as a state where the output of
the circuit is unpredictable. The output can settle down to either of the two stable
states (the bistable states). The proposed TRNG consists of a metastable RFET-
based SR latch and a dual-edge triggered True-Single Phased Clock D-Flip Flop
(TSPC DFF). Conventionally, each random bit generated using metastability-
based TRNGs is a result of two cross-coupled elements entering into a metastable
state at the rising (or falling) edge of an input clock signal. This implies that
each clock period translates to one random bit at the output, thereby making
the throughput of the TRNG equal to the input clock frequency. However, in
this design, the property of transistor-level reconfigurability allows to have both
cross-coupled NAND and NOR operations in a single clock cycle, which are trig-
gered into metastable states at the rising and falling clock edges respectively,
thereby generating two random bits per clock cycle. However, when the design
is fabricated, it introduces some device variations which influences the outcome
of the TRNG. As this mismatch increases, the 50-50 probability of resolving the
output to two different stable states gets unbalanced [39].

The proposed TRNG is able to generate random numbers achieving double-
throughput over a similar architecture of a TRNG using CMOS technology
(which would need additional hardware components for reconfiguration). This
work also shows that the END-TRUE is more efficient in terms of area (60% sav-
ing in number of transistors), delay (77.3% reduction) and power consumption
(94.5% lower leakage power and 70.7% lower dynamic power) over its CMOS
counterpart.

The present work is an extension of an earlier work [1]. Compared to the pre-
vious work, this work contains a detailed experimental evaluation and discusses
PVT robustness in the case of RFETs, which is integral to any TRNG design.

Contributions: Major contributions of this work are as follows:

– Use of a Verilog-A model from a predictive RFETs design kit [13], to propose
a Minority-based SR latch which allows reconfiguration between a NAND
and NOR-based SR latch. This is essential to achieve double throughput and
forms the core for the proposed TRNG.

– An improved design for a reconfigurable dual edge-triggered TSPC D-flip flop
using RFETs based on TSPC logic. This allows random number generation
at both edges of the clock.

– It has been demonstrated the runtime reconfigurability of RFETs can be
exploited to design the double-throughput TRNG (END-TRUE) using less
hardware than its CMOS counterpart. The proposed design is better in terms
of transistor count, power consumption and critical path delay.



178 S. Rai et al.

– It has been further shown that the raw random bit sequence obtained from the
TRNG, upon post-processing using Von-Neumann extraction have sufficient
entropy to pass the statistical tests.

Experimental evaluation over NIST benchmark suite [49] at three different
frequencies – 10 MHz, 100 MHz and 200 MHz, demonstrate that the proposed
END-TRUE returns raw bit sequence with high values of Shannon entropy.

The remainder of the chapter is organised as follows: Sect. 2 presents the fun-
damentals of RFET device operation and RFET-based circuits. It also describes
various kinds of TRNGs with an emphasis on metastability-based TRNGs.
Section 3 deals with the circuit design of the reconfigurable dual edge-triggered
D-flip flop followed by the proposed design. Section 4 begins with the simula-
tion results using the proposed design and presents a comparison between the
END-TRUE and its equivalent CMOS counterpart on the basis of number of
transistors, power consumption and critical path delay. It culminates with the
results of various statistical tests carried out on the raw bitstreams generated
from END-TRUE. Section 5 involves analysis of the test results along with assess-
ment of the impact of post-processing (using Von-Neumann extraction) on the
raw bit sequences from the END-TRUE. Some consideration on the impact of
process, voltage and temperature (PVT) variations on the TRNG functionality
are given. Finally, Sect. 6 presents the conclusions to this chapter.

2 Background

2.1 Reconfigurable FETs

Reconfigurable transistor functionality has been demonstrated on a variety of
materials such as 1D silicon [6,17] or germanium nanowires [55,62], carbon nan-
otubes [72], graphene nanoribbons [15], or by planar 2-D devices based on mate-
rials such as MoTe2 [36] or graphene p-n junctions [57]. More recently also the
integration into an existing fully depleted silicon on insulator 22nm technology
was demonstrated [52]. This chapter focuses on nanowire-based RFETs since it
is one of the most actively researched emerging technologies having Verilog-A
models [13] as well a first physical synthesis flow [43] available.

Reconfigurable nanowire-based transistors, unlike conventional CMOS based
transistors, feature two types of gate terminals, a Program Gate (PG) and a
Control Gate (CG). The PG is used to reconfigure the channel between p-type
and n-type by selectively suppressing the injection of one type of charge carrier.
Whereas the CG receives a voltage input to the FET and modulates the flow of
the other type of carrier [34,44,74]. This is shown in (Fig. 1). Figure 1a shows
how an RFET logically encapsulates both PMOS and NMOS together [42]. The
electrical symmetry in I-V characteristics for nanowire transistors for both p-
and n-type behavior can be seen in Fig. 1d [47]. This electrical symmetry is
necessary while realizing complementary circuits.
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Fig. 1. (a) Transistor level-equivalent model of the RFET showing how it encapsulates
both p- and n-type behavior. The runtime-reconfigurability is represented by the MUX.;
(b) All-around Three-Independent Gate FET (TIGFET) with the control gate (A) and
program gates (P) marked [6]; (c) multi-gate RFET with inputs A, B and C, and a
program signal P [44]. It shows how the channel resistance is reduced as compared to
a series of conventional CMOS transistors; (d) Ambipolar transfer characteristics for
SiNW RFET [47]. Bold lines corresponds to the high-Vt operation and dotted lines
corresponds to the low-Vt operation.

As shown in Fig. 2, to switch the device into an n-type FET, VPG should be
larger than 0, whereas to convert the device into p-type FET, VPG should be
below 0. When VCG is equal to 0, then both the FETs are switched off because of
the barrier induced by the opposing potential of CG and PG. On the other hand,
when VCG is above 0, it allows the conduction of current through tunneling in
an n-type FET, and when VCG is below 0, p-type FET switches ON. A small
amount of thermionic emission also contributes to the overall IDS current flowing
through the RFET. This tunneling and thermionic current is possible because
of the strong band bending which takes place at the source contact leading to
injection of electrons and holes from the metal to the semiconductor through
the thinned barrier respectively.

RFET can also exist is multi-independent gated form. The authors in [17,74]
have shown that multi-independent-gate RFETs allow merging of two or more
series transistors in CMOS technology into a single RFET as shown in Fig. 1c.
RFETs having two or more inputs on a single channel in a wired-AND [54] con-
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Fig. 2. Working principle of a reconfigurable FET [46]

figuration operates with a virtually lower channel resistance per input (Fig. 1c)
thereby dramatically reducing transistor count in digital circuits as well as the
parasitics and delays. This is due to the presence of Schottky barrier in the
on-state of the RFETs [61]. This helps to design compact digital circuits with
added functionalities [44].

2.2 RFET-Based Logic Gates

In this work, an RFET variant with Three Independent Gates has been used to
design digital circuits. The devices is thus often called TIGFET in literature.
A typical layout having a single-input configuration with CG (input A) in the
middle of the channel and the program signal (P ) is used to alter between
p-channel (P = ‘0’) and n-channel (P = ‘1’) behaviour is shown in Fig. 1b.
Figure 3a shows an extension of the TIGFETs for two inputs. If one chooses to
operate a TIGFET as shown in Fig. 3a, then there are 8 possible configurations
in which it could be operated. Out of these possible 8 configurations, only 6 are
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Fig. 3. (a) N-MOS and P-MOS transistor level equivalent models for TIGFETs in dual-
threshold voltage configuration; (b)A configurable MIN gate behaving as a NAND gate
when P = ‘1’ and NOR gate when P = ‘0’ (c) XOR gate

useful to us. These 6 configurations are (assume, VDS = VDD): 1) ON state:
When the VPGS (voltage of program gate at the source) = VPGD (voltage of
program gate at the drain) = VCG (voltage of control gate present in the middle).
When this condition is applied on the RFET, one of the Schottky barriers is very
thin, allowing the tunneling of the majority charge carriers. 2) OFF state: This
state occurs when VPGD = VPGS and VCG has opposite biasing to the polarity
gates. In this state, there is still a small number of charge carriers that can cross
the barrier. 3) Low-leakage OFF state: This state occurs when VPGS = S and
VPGD = D. This condition creates a thick enough barrier across the channel,
which is sufficient enough to prevent the tunneling at both ends. The unused
states must be avoided while implementing the RFET in the circuit. This could
be done by fixing the VPGS = 0 (VPGD = 1) for p-RFET (n-RFET) as shown
in the Fig. 3a or by using VPGD = VPGS [74].

The authors in [74] have shown that it is a dual-threshold voltage config-
uration wherein, input G1 has lower threshold voltage (LVT) and input G2
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has higher threshold voltage (HVT) (corresponding to lower leakage current).
This feature of configuring threshold in RFETs is used later for the TSPC-based
DFF as discussed in Sect. 3.3. The dual-threshold feature helps in improving the
leakage power of the circuit. Leakage power is a critical issue in the present-day
circuits. It comprises around 30% - 50% of the current SoC power consumption.
Low Vt devices are used in the paths that are critical, in order to meet the tim-
ing constraints while high Vt devices which have low leakage are used in slack
paths [74].

Note - In the world of CMOS technology, implementation of multi-Vt devices
is a bit difficult task. CMOS devices require an extra technological step which
increases the cost of fabrication and affect the regularity of the layout. Another
method which can help in decreasing the leakage power in the CMOS technology
is by employing adaptive body biasing. But it adds a separate overhead in terms
of area consumption by additional circuits and routing resources, thus RFET
are supposed to shown an advantage over standard CMOS technology in this
regard as well.

Figure 3b presents the configuration of a configurable MIN gate that is shown
to behave both as a two-input NAND gate (P = ‘1’) and NOR gate (P = ‘0’) [44].
Switching between NAND and NOR occurs because of the interchange in the
functionality between the pull-up and the pull-down part of the circuit. This hap-
pens when the value of P is modified. In RFET technology, NAND and NOR
gates, thus, can be built with equal performance owing to the electrical symme-
try of the underlying devices. This helps in simplifying timing constraints [44].
Similarly, an RFET-based 2-input XOR is shown in Fig. 3c [6].

2.3 Types of TRNGs

True Random Number Generators. (TRNGs) produce unpredictable numbers
that originate from some stochastic physical phenomenon [33]. There have been
various works on TRNGs in CMOS technology. There are three kinds of TRNG
architectures - TRNGs that attribute a logic value to noise (aka. noise-based
TRNGs), TRNGs that attribute a time value to noise (aka. jitter-based TRNGs)
and metastability-based TRNGs that exploit the random outcome of transient
metastable behavior [1].

Noise-Based TRNG. Noise-based TRNGs involve direct amplification of a
noise source (e.g., thermal noise), followed by quantization or digitization using
a comparator to produce random output [4,20]. However, noise-based TRNGs
are difficult to interface with highly dense digital ASICs owing to the presence
of thermal analog sensors and amplifiers [1,12].

Jitter-Based TRNG. Jitter-based TRNGs amplify the frequency noise, called
jitter, of voltage-controlled oscillators (VCOs) [56,64,70], free-running oscilla-
tors (FROs) [12] and ring oscillators. Ring-oscillator based TRNGs have been
shown to have resilience to temperature fluctuations [56,64]. However, factors
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that affect oscillator-based TRNGs include high power consumption, aging and
frequency injection attacks that can result in loss of entropy [12,30].

Metastability-Based TRNG. Metastability-based TRNGs use metastable
circuits [16,19,24,31,59,60,63] to generate random numbers. They use cross-
coupled elements (for ex. cross-coupled NAND gates in SR latch or cross-coupled
inverters) to amplify random noise and generate random bits. The cross-coupled
elements are biased precisely to attain a metastable state, which is eventually
resolved to a stable random state. Any kind of unbalance/asymmetry in the
circuit would cause the output of the TRNG to be biased [12]. Metastability-
based TRNGs are well-suited for interfacing with embedded devices due to their
small-scale and low power consumption and they have been shown to be robust
against temperature and supply voltage variations [60].

3 Design of the TRNG Using RFETs

The potential of using transistor-level reconfiguration in RFETs to develop com-
pact and power-efficient circuits with less parasitics motivates to employ them
for the END-TRUE design. The aim of this work is to double the throughput
of generation of random binary sequences by exploiting the feature of runtime
reconfigurability in Minority (MIN) gates based on RFETs. The present section
details about the components of the proposed metastability-based TRNG.

3.1 Metastability in SR Latch

The TRNGs employ the metastable state attained by cross-coupled elements as
a source of randomness. Figure 4 shows a NAND gate based SR latch unit which
initially rests in a ground state when the input clock (A) has a value of ‘0’, i.e. the
outputs (B and C) of the unit are ‘1’. At the rising clock edge of the input clock,
the output of the latch begins to race and temporarily enters into a metastable
state. However, due to the random noise, the metastability is resolved and the
latch eventually generates a random bit sampled using a positive-edge triggered
D-flip flop at the output. Again, at the falling clock edge, the output of the latch
resets itself to its ground state and the phenomenon is repeated with each clock
cycle. Hence, the throughput of the TRNG is equal to the input clock frequency.
The raw bit sequence generated at the output for each clock cycle would only
be unbiased or perfectly random if driving capabilities of the two NAND gates
are same.

3.2 Minority Gate-Based SR Latch for END-TRUE

In the present work, the metastability-based TRNG is designed using reconfig-
urable MIN gates (Fig. 3b). Figure 5 shows a single SR latch unit consisting of
two cross-coupled MIN gates and two buffers. Two clock signals (clk Program
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Fig. 4. An SR latch unit for the TRNG in [16] with two cross-coupled NAND gates
and two buffers

and clk IN) with the same time period T are fed into the unit, clk IN being
a time-delayed version of clk Program, delayed by td satisfying the condition
td < T/2. In the first half-period of clk Program (clk Program = ‘1’), the
MIN gates behave as NAND gates and the rising edge of the clk IN signal
occurs (when clk IN = ‘0’), the outputs of both the gates are ‘1’ (ground state).
Post the transition in clk IN signal, the outputs begin to race and temporarily
enter into metastability. However, owing to the random noise, the output ‘OUT’
stabilises in order to generate a random bit (‘0’ or ‘1’). Similarly, in the second
half-period of clk Program (clk Program = ‘0’), the MIN gates behave as NOR
gates and the falling edge of the clk IN signal occurs. This time in the ground
state the outputs of both the gates are ‘0’ and metastability is attained at the
‘1’→ ‘0’ transition of clk IN signal, which eventually results in another random
bit. Thus, in one complete clock cycle, two random bits are generated implying
that the throughput of the SR latch unit is twice the input clock frequency.

3.3 Dual Edge-Triggered TSPC-Based D-Flip Flop

In this section, a compact design of a dual-edge triggered TSPC-based D-flip
flop using RFETs (Fig. 6) is proposed that is employed in the TRNG design.
At the transistor level, flip flops require the clock signal directly and inverted.
This poses challenges to the clock-tree synthesis [58]. However, TSPC-based D-
flip flops require only a single clock signal [73]. This, along with the dynamic
logic of TSPC-based design, leads to compactness and faster response [22]. Thus,
TSPC-based D-flip flop can be used for high speed applications efficiently [58].

The authors in [58] proposed a design of a positive edge-triggered TSPC-
based D-flip flop using RFETs that has been shown to have a reduced transistor
count and area compared to its CMOS counterpart [73]. Furthermore, since in
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the design of the flip flop, each pull-up and pull-down path consists of a single
transistor, the parasitics are further reduced, thereby improving the speed of the
flip flop [58,74].

This work exploits the runtime reconfigurability feature of RFETs to make
the TSPC-based D-flip flop proposed in [58] dual-edge triggered. This can be
done by using a program signal (P ) instead of the power-rails as shown in Fig. 6.
If P = ‘1’, the upper four transistors encircled in red provide the pull-up path
while the lower four transistors encircled in blue provide the pull-down path. In
this case, the flip flop samples data at the rising edge of the clock and hence,
behaves as a positive edge-triggered flip flop. Conversely, if P = ‘0’, the pull-
up and pull-down paths get interchanged and the flip flop samples data at the
falling clock-edge. This way it behaves as a negative edge-triggered flip flop.
Dual-threshold voltage design style as shown in Fig. 3a has been adopted (for
three transistors encircled in purple) to make the design compact and reduce
leakage power consumption.

Thus, the same circuit of the flip flop can be reconfigured into both positive
and negative edge-triggered functionalities based on the program signal during
runtime. However, the same TSPC-based design of a D-flip flop in CMOS tech-
nology [73] cannot be reconfigured as both positive and negative edge-triggered
and it also uses a higher number of transistors (11 transistors) with respect to
the proposed design in this work using RFETs (8 transistors). To the best of
the author’s knowledge, none of the earlier works have explored a TRNG design
using device-level reconfigurability offered by reconfigurable emerging nanotech-
nologies.
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3.4 XOR-ing the Outputs

For the purpose of simulation, the outputs of the two SR latch units are XOR-ed
and its results are fed into a dual edge-triggered TSPC-based D-flip flop (Fig. 6).
Compact implementation of MIN gates (Fig. 3b), XOR gate (Fig. 3c) and the
proposed TSPC-based D-flip flop has been carried out using dual-threshold-
voltage design style that makes the design area-efficient with improved speed
and reduced leakage power consumption [74].

It has been mathematically proven in [7,65] that by XOR-ing outputs from
multiple TRNGs (in this case, the SR latch units), the randomness (entropy) of
the resultant output sequence can be increased and the TRNG becomes more
robust against PVT variations.

Let the ith TRNG produce a probabilistic output signal (bitstream) for which
probability of obtaining bit ‘1’ is equal to pi. In the ideal scenario, the value of
pi should be equal to 0.5 for an unbiased binary sequence (perfectly random).
Let the probability deviation from the ideal value be defined as αi = |0.5− pi|,
αi ε [0, 0.5]. If two such probabilistic output signals are combined by the XOR
gate, then the resultant probabilistic signal can be given as -

pXOR = p1(1 − p2) + p2(1 − p1) = 0.5 ± 2α1α2 (1)

For n such probabilistic signals, Eq. (1) becomes-

pXOR = 0.5 ± 2n−1α1α2...αn (2)

The deviation of the resultant output signal from the ideal value is, therefore,
given as-

αXOR = 2n−1α1α2...αn (3)
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with αXOR ε [0, 0.5]. Smaller the value of αXOR, higher the randomness in the
output signal. Furthermore, αXOR ≤ min{α1, α2, ..., αn}. This implies that by
XOR-ing the output signals of multiple TRNGs, randomness (entropy) in the
resulting signal can be improved.

3.5 Analysis of Randomness

The cross-coupled MIN gates in the SR latch unit (Fig. 5) are analogous to two
cross-coupled inverters (such as in an SRAM cell) that are powered-ON when
the input clock makes a ‘0’ → ’1’ transition for clk Program = ‘1’ or when it
makes a ‘1’ → ‘0’ transition for clk Program = ‘0’. ‘B’ and ‘D’ are respectively
the inputs to Gate-2 and Gate-1 while, ‘A’ and ‘C’ are respectively the outputs
of Gate-1 and Gate-2. The corresponding butterfly-curve in the Voltage-Transfer
Characteristic (VTC) for the SR latch unit is shown in Fig. 7. It can be clearly
seen that point ‘X’, which is the point of metastability, lies on the identity line
(shown in green). This means that both stable states demarcated by points ‘Y ’
and ‘Z’ are equally preferred, when the MIN gates in the latch have similar
drive capabilities. Eventually, the latch attains either state ‘Y ’ or ‘Z’ due to
noise, thereby producing a random bit at the output (OUT). Thus the SR latch
unit in END-TRUE generates a random bit when triggered into a metastable
state.
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Figure 8 shows the complete circuit for the END-TRUE based on RFETs
with all the components. In the next sub-section END-TRUE has been compared
with an equivalent CMOS-based design.

3.6 Comparison with CMOS-Based Design

Table 1. A comparison between RFET-based SR latch unit and its CMOS equivalent
on no. of transistors

RFET SR latch No. of transistors CMOS SR latch No. of transistors

MIN gate 6 NAND gate 8

Buffer 8 NOR gate 8

– – Buffer 16

– – 2 × 1 MUX 14

TOTAL (RFET) 14 TOTAL (CMOS) 46

It has been shown that the transistor-level reconfigurability in RFETs helps to
double random bit generation rate per clock cycle in case of the END-TRUE,
thereby achieving double-throughput. For the same functionality to be imple-
mented in CMOS technology, the SR latch unit consists of two cross-coupled
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Fig. 9. An SR latch unit for the CMOS equivalent of the END-TRUE

NAND gates, two cross-coupled NOR gates, four buffers and one 2 × 1 MUX as
shown in Fig. 9. In this case clk Select is fed into the select line of the multi-
plexer and clk Select and clk IN are clock signals having the same time period
T , the latter being a td time-delayed version of the former satisfying the condi-
tion td < T/2. In one clock cycle of clk Select, two random bits are generated
at the output ‘OUT’ - one corresponding to the metastability of NAND-based
SR latch in one half cycle (clk Select = ‘0’) and the other corresponding to the
metastability of NOR-based SR latch in the other half cycle (clk Select = ‘1’).
This way a throughput equal to twice the input clock frequency is obtained at
the cost of additional hardware and greater number of transistors with respect
to the RFET-based implementation.

A tabular comparison of the number of transistors for implementation of the
RFET based SR latch unit and its CMOS equivalent is presented in Table 1. It
can be observed that there is 69.6% saving in transistor count by using RFET
technology.

4 Experiments

4.1 Experimental Setup

The simulation of the END-TRUE has been carried out in Cadence Virtu-
oso. The Verilog-A model for the RFET in three-independent gate configura-
tion (TIGFET) from [13] was used during the circuit-level simulations. This
model has been adapted to incorporate flicker and white noise parameters. Fur-
thermore, according to the current-drive capability of vertically-stacked SiNW
technology, it has been assumed that there are four nanowires per stack of
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Fig. 10. Transient waveforms on operating the END-TRUE at 100 MHz clock frequency
with the ground states and metastable states marked for a clock cycle. Smaller glitches
in the Out signal appear since the same clk Program is also fed to configure the
proposed TSPC D-flip flop as negative or positive edge-triggered. Larger glitches appear
during the switching transience of the D-flip flop during data sampling.

TIGFET [13,34,74]. It is to be noted that the main focus in this work is to
demonstrate how transistor-level reconfigurability can be used for random num-
ber generation at increased throughput and hence [13] has been used for the
experimental simulations. Verilog-A models for other ambipolar devices with
different performance parameters and model characteristics are orthogonal to
this work and can be used as well.

4.2 Simulation and Results

For the circuit shown in Fig. 8, the transient waveforms for the input and output
signals are shown in Fig. 10. All the analyses have been done for a supply volt-
age of 1.0 V. Here, all the clock signals viz., clk Program, clk IN and clk FF
operate at a frequency of 100 MHz. Also, clk IN and clk FF are time-delayed
versions of clk Program, delayed by 1ns and 3ns respectively. A transient anal-
ysis has been performed using the embedded transient noise feature in Virtuoso
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Spectre Circuit Simulator and obtain random bits at the ‘OUT’ node after every
5 ns. The ground states (G.S.) and metastable states (M.S.) attained by the
TRNG in a clock cycle have been marked in Fig. 10. It can be noted that the
throughput is equal to 200 Mbps which is twice the input clock frequency of
100 MHz.

In the corresponding CMOS-based implementation (designed for double-
throughput) of the END-TRUE, operating at supply voltage of 1.0 V, PTM
16 nm low power based CMOS model has been used for the simulation of the
MOSFETs [69]. In this case, clk Select and clk IN signals operate at 100 MHz
whereas, the clk FF signal, that samples data entering into the positive-edge
triggered D-flip flop, operates at 200 MHz ( Fig. 8). Random bits having a
throughput of 200 Mbps has been obtained at the ‘OUT’ node.

The above procedure is repeated for a higher clock frequency of 200 MHz and
a lower frequency of 10 MHz in case of the END-TRUE and the output raw bit
sequences are recorded.

4.3 Comparison with the Equivalent CMOS-Based TRNG

Table 2 and Table 3 present a comparison between the simulated END-
TRUE and its CMOS counterpart (both for double-throughput). It can be seen
that there is 60% saving in the number of transistors by employing an RFET
based design. Furthermore, Table 3 shows a comparison between one SR latch
unit for the END-TRUE and its CMOS counterpart on the basis of power con-
sumption and delay operating at a clock frequency of 100 MHz. A 94.5% reduc-
tion in leakage power, 70.7% reduction in dynamic power and 77.3% reduction
in critical path delay has been observed in case of the SR latch unit based on
RFETs with respect to its CMOS equivalent.

Table 2. Comparison of the number of transistors, to realize END-TRUE and its
CMOS equivalent.

No. of transistors RFET model CMOS model

SR latch unit 14 46

2-input XOR 4 8

TSPC-based D-flip flop 8 11

TOTAL 26 65

4.4 Statistical Evaluation of the Generated Bit Sequence

By performing a transient analysis in the Spectre simulator, 110,000 bits has been
generated as output from the END-TRUE for the clock frequencies of 10 MHz,
100 MHz and 200 MHz respectively. The statistical tests are performed on the
random bits generated.
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Table 3. Comparison of power consumption and delay of an RFET-based SR latch
unit and its CMOS equivalent.

SR latch unit Leakage power (nW) Dynamic power (nW) Delay (ps)

END-TRUE 16.85 79.65 206

CMOS equivalent 308.25 271.5 909

In order to carry out thorough statistical evaluation and owing to the com-
plexity of the simulations due to large number of parameters, high precision and
a bulk of simulated and stored data points, two types of analysis are carried
out– Firstly, 110 sequences of 1000 bits each are formed from the overall 110,000
bits for each frequency of operation and are subjected to various statistical eval-
uations. This is required to evaluate the randomness in smaller chunks of the
bit patterns. Secondly, statistical analysis is performed by consolidating all the
110 sequences, thereby forming a 110,000-bits long sequence each for the clock
frequencies of 10 MHz, 100 MHz and 200 MHz. This is necessary to carry out
evaluation for the complete sequence.

For the simulation model as proposed in Sect. 3.2, that is used to extract
entropy from the END-TRUE, the output bit sequence can be assumed to be
i.i.d. (independent and identically distributed). It is because before the occur-
rence of a metastability event, either at the rising or at the falling clock edge, the
output node ‘OUT’ of the TRNG attains a ground state in which it resets itself
before generating another random bit. Hence, the model does not involve corre-
lation between two consecutive bits generated at ‘OUT’ due to the metastability
event.

Shannon Entropy as a Measure for Randomness. Entropy is defined as the
average amount of information produced by a stochastic source of data [65]. The
amount of randomness in the outcome of an experiment can be measured using
a metric called Shannon entropy. For an i.i.d. binary sequence that takes values
from a finite set X{0, 1} with a probability distribution function p : X → [0, 1],
the Shannon entropy per bit (H) is given as:

H = −ΣxiεX p(xi) log2 p(xi) (4)

For an uniformly distributed (unbiased) sequence of bits for which p(0) = p(1)
= 0.5, the Shannon entropy per bit is equal to 1.0 which is the maximum value.
If the output bit sequence from the TRNG is strongly biased, i.e. one bit appears
more frequently than the other, then the Shannon entropy deviates significantly
from its maximum value, indicating that the given bit sequence is less random
and more deterministic.

Figure 11 shows the variation in the Shannon entropy per bit for each 1000
bit-long output sequence when the END-TRUE operates at various clock fre-
quencies. It can be clearly observed that the Shannon entropy for most of the
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(a) (b)
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Fig. 11. Plots showing variation in Shannon entropy with the 110 datasets of 1000 bits
each for frequencies- (a) 10 MHz, (b) 100 MHz, and (c) 200MHz

sequences is very close to 1.0, indicating that the raw bit sequences are uni-
formly distributed. This, however, does not imply deeming the bit sequence as
random. It is to be noted that uniform distribution of bits is a necessary but
not a sufficient condition to assess randomness and hence evaluation over NIST
benchmark suite has been carried out in this work.

NIST benchmark suite (SP800-22 rev. 1a) for statistical evaluation of
randomness [49] The National Institute of Standards and Technology (NIST)
test suite is used to evaluate the randomness of the binary sequences generated
at the output of a TRNG. This benchmark suite is commonly used to evaluate
both hardware and software-based RNGs and indicates whether the bitstream
is likely to come from a uniform i.i.d. [23,49]. The test suite consists of several
benchmarks that are run on all the binary sequences and a value, p-value corre-
sponding to each sequence per benchmark is generated. An RNG is said to pass a
benchmark if the p-value is greater than a particular threshold, which is termed
as a ‘success’ for that specific benchmark. Subsequently, for each benchmark in
the suite, two metrics are defined namely, success rate and P’-value. The suc-
cess rate for a benchmark is the proportion of the binary sequences passing the
benchmark, while the P’-value quantifies the uniformity in the distribution of all
the p-values for a benchmark in the suite. The P’-value is a number between 0
and 1. An RNG is said to pass a benchmark if the success rate and the P’-value
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are greater than a threshold [49]. Only those benchmark are performed from the
suite which can be run on the generated number of bits (110,000).1

Table 4. Results of the NIST benchmark suite for the END-TRUEusing 110 sequences
of 1000 bits each. The threshold for P’-value is 0.0001 and for success rate is 105/110
= 0.954 [23,40]. (Failed benchmark results have been highlighted in red)

Benchmark name 10MHz 100MHz 200MHz

Success rate P’-value Success rate P’-value Success rate P’-value

Monobit Frequency 0.991 0.2238 0.964 0.0052 1.0 0.7757

Block frequency 0.982 0.0004 0.936 3.19E-12 0.918 1.08E-10

Runs 1.0 0.7399 1.0 0.6276 0.973 0.3807

Longest run 1.0 0.5159 1.0 0.5899 1.0 0.1431

DFT 0.991 7.99E-18 0.973 5.04E-14 0.991 2.25E-20

Overlap template matching 0.964 0.0004 0.945 0.0020 0.964 2.02E-07

Non-overlap template matching 0.991 0.0064 1.0 0.3218 1.0 0.6655

Cumulative sum - 1 0.991 0.1359 0.973 0.0002 1.0 0.5526

Cumulative sum - 2 1.0 0.2820 0.945 6.66E-05 1.0 0.5159

Serial - 1 0.991 0.7216 0.954 0.0011 0.973 0.0027

Serial - 2 0.982 0.3654 0.991 0.9230 0.973 0.1506

Approximate entropy 0.991 0.8421 0.964 0.0597 0.982 0.0083

Binary matrix rank 1.0 0.2949 0.991 0.0885 0.982 0.2346

5 Results and Discussion

Table 4 shows the NIST benchmark results (success rates and P’-values) for
the 110 raw bit sequences generated from the END-TRUE operating at clock
frequencies of 10 MHz, 100 MHz and 200 MHz. Table 5 shows the NIST bench-
mark results (p-values) and Shannon entropies for the 110,000 bits-long binary
sequence each for the clock frequencies of 10 MHz, 100 MHz and 200 MHz.

It can be observed that when the TRNG operates at a lower frequency of
10 MHz, the success-rate for raw output binary sequence passes all the NIST
benchmarks as shown in Table 4. At higher values of operating frequency or
throughput, only a few benchmarks (in this case, Block frequency, DFT, Overlap
template matching and Cumulative sum - 2 benchmarks) fail from the perspec-
tive of success rate and/or P’-value. However, the observed success rates for the
failed benchmarks are still more than 90% for all the binary sequences tested.
Moreover, even without post-processing the raw output bit sequences, it can be
observed that the Monobit Frequency benchmark is passed for both higher and
lower frequencies of operation. It implies that the number of ‘0’s and ‘1’s pro-
duced by the TRNG are approximately equal as would be expected for a truly
random sequence [49]. It is important to note here that the Monobit Frequency
benchmark is compulsory to pass as other subsequent benchmarks in the NIST
suite depend on it [49].
1 This is because the remaining benchmarks in the suite (Maurer’s Universal statis-
tical, Linear, Radom excursion tests) require more than 107 bits for evaluation and
it would amount to an unfeasible time duration to generate the bits using simula-
tion [40] for a TCAD-based verilog-A model for RFETs [13].
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Table 5. P-values for the NIST benchmarks with the binary sequences of 110,000 bits
from the END-TRUE taken altogether (without post-processing). The threshold for
P-value is 0.01 for a benchmark to pass [49]. (Failed benchmark results have been
highlighted in red)

Benchmark name 10MHz 100 MHz 200 MHz

Monobit Frequency 0.59 0.21 0.51

Block frequency 0.01 7.32E-05 0.57

Runs 6.15E-08 1.33E-10 6.78E-07

Longest run 0.11 0.68 0.51

DFT 0.72 0.27 0.23

Overlap template matching 0.02 0.46 0.02

Non-overlap template matching 0.42 0.03 0.32

Cumulative sum - 1 0.39 0.25 0.35

Cumulative sum - 2 0.64 0.12 0.67

Serial - 1 6.44E-07 1.23E-17 1.76E-17

Serial - 2 0.08 0.01 0.02

Approximate entropy 9.19E-07 5.69E-17 5.10E-17

Binary matrix rank 0.68 0.35 0.06

Shannon Entropy 0.9999980685 0.9999896832 0.9999972186

Table 6. P-values for the NIST benchmarks after Von-Neumann post-processing of
the raw binary sequence of 110,000 bits from the END-TRUE. The threshold for P-
value is 0.01 for a benchmark to pass [49]. (Failed benchmark results have been
highlighted in red)

Test name 10MHz 100 MHz 200 MHz

Monobit Frequency 0.95 0.46 0.63

Block frequency 0.11 0.75 0.47

Runs 0.87 0.00025 0.04

Longest run 0.39 0.91 0.25

DFT 0.46 0.16 0.26

Overlap template matching 0.25 0.19 0.03

Non-overlap template matching 0.81 0.16 0.998

Cumulative sum - 1 0.44 0.20 0.74

Cumulative sum - 2 0.39 0.72 0.81

Serial - 1 0.59 0.02 0.22

Serial - 2 0.50 0.68 0.28

Approximate entropy 0.60 0.02 0.24

Binary matrix rank 0.31 0.15 0.87

Shannon Entropy 0.9999999011 0.9999854835 0.9999937737
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5.1 Post-processing Unit of a TRNG

On fabrication, it is quite plausible that if our proposed metastability-based
TRNG generates a raw binary sequence at higher speed (higher throughput),
then the sequence has a statistical weakness resulting in a skewed (biased) dis-
tribution of ‘0’s and ‘1’s [1,11]. Statistical weaknesses may also arise from PVT
variations that hamper the source of entropy among other factors. Thus, typ-
ically every metastability-based TRNG has an integration of two units, viz. a
physical source of entropy (in this case, the SR latch units generating the raw
binary sequences) and a post-processing unit that transforms the raw binary
sequences with statistical weaknesses into a sequence which is computationally
tedious to differentiate from a purely random sequence [11,60].

A very commonly used post-processing technique is the Von-Neumann
extraction. This method acts on raw bit streams with statistical weaknesses
and outputs a uniformly distributed and uncorrelated bit stream independent
from the input raw stream however, at the cost of reduced throughput [37].
In this algorithm, the raw bit stream is grouped into non-overlapping pairs of
consecutive bits. For each pair, in case both the bits are equal then the pair is
discarded, otherwise, the first bit in the pair is taken to be the output. Thus, this
algorithm essentially uses two input bits to produce either zero or one output bit.
This algorithm is employed to post-process the raw binary sequences consisting
of the entire set of 110,000 bits from the END-TRUE operating at frequencies of
10 MHz, 100 MHz and 200 MHz. Subsequently, all the NIST benchmarks are run
on the processed output sequences and the corresponding p-values are recorded
in Table 6.

On comparing the data shown in Table 5 and Table 6, a significant improve-
ment in the NIST benchmark results after Von-Neumann processing can be
observed, for all the three frequencies of operation. After Von-Neumann pro-
cessing of the 110,000 bits-long sequence, almost all the NIST benchmarks have
been shown to pass.

XOR-ing the Outputs of Multiple SR Latch Units to Increase Entropy: It has
been mentioned in Sect. 4 that to have a feasible runtime for simulations, the
two outputs of SR latch units has been XOR-ed to generate the output binary
sequence of the END-TRUE. However, as discussed in Sect. 2, the outputs of
multiple SR latch units can be XOR-ed to further increase the entropy of the
output sequence of the END-TRUE and make the device more robust against
PVT variations [65]. For the CMOS-based ASIC implementation of the TRNG
proposed in [60], it has been shown that XOR-ing the outputs of 256 SR latches
can generate a random sequence with sufficient entropy that is able to pass all
the benchmarks in the NIST suite without post-processing. This methodology
can also be employed for the END-TRUE to obtain a bitstream having sufficient
randomness to pass all the benchmarks in the suite. Thus, the optimal number
of SR latch units for the END-TRUE that must be XOR-ed to obtain a random
sequence with entropy high enough to pass all the statistical tests without post-
processing is to be determined when physically implemented in hardware.
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5.2 Considerations on PVT Variations

TRNGs should preferably generate high-quality random numbers even in the
case of an adverse surrounding environment. Unfortunately, TRNGs based on
CMOS and other charge-based technologies are sensitive to the variations of
process conditions, supply voltage, and temperature (PVT). An attackers can
try to evade the secure device by intentionally providing such PVT variations
externally. For example, they can reduce the supply voltage or can put the
embedded device in a freezing environment and thus deteriorating the quality of
random numbers hence degrading the security of the device [60]. An RFET being
CMOS compatible charge-based device is not spared from these variations and
hence can compromise the overall functioning of the TRNG if not optimized
properly. They may also cause an asymmetry in the electrical characteristics,
thus compromising the overall functioning of the reconfigurable circuit. Thus,
PVT variations may cause biases in the output of a TRNG. Therefore, to develop
secure hardware, one should ideally run simulations corresponding to all the
mentioned variations on TRNG and verify the quality of randomness by using
NIST benchmarks.

Unfortunately some the limitations posed by the version of the Verilog-A
RFET table model used in this work does not allow us to provide quantitative
data for our design. To study the effect of voltage variations in the TRNG out-
put, one has to simulate the circuit with the supply voltage variation of VDD

± 10% and collect up to 110,000 data points, and subsequently perform NIST
SP 800-22 tests on those data points. The current version of the model used in
this work is too slow and takes considerable resources and time to collect this
high amount data points. Further, no temperature dependencies or process vari-
ation parameters are integrated into the model. Thus in this work, a qualitative
discussion of the PVT impact on our TRNG application based on some results
from literature has been done. The conclusions given in this section have to be
verified by extensive simulations once better models are available.

Process Variations: The impact of process variation is an important effect
that should be considered while designing a robust circuit. They occur because of
the manufacturing conditions like temperature, concentration levels, etc. These
conditions although extremely well controlled in modern CMOS processes, still
have some unavoidable variations, which manifests as slight variations of device
parameters. It is an unavoidable variation and bound to exist. The main contrib-
utors to the process variations are: Line Edge Roughness (LER) [21,66], Gate
Edge Roughness (GER) [75], Work Function Variation (WFV) [25,27], and Ran-
dom Dopant Fluctuations (RDF) [27]. Threshold voltage and different parasitic
capacitance’s are two of most the significant parameters which get affected in
classical CMOS [51]. Beeing a dopant-free technology, RFETs are expected to
show better performance in terms of RDF. Still, to develop a reliable circuit
using RFETs, process variation estimation is crucial. It is imperative to calcu-
late reliable process corner information and timing variations [26]. Combining
GER, LER, and WFV RFETs have been found to be more vulnerable to process
fluctuations overall than CMOS devices [26]. However, this effect can be mainly
attributed to the high impact of WFV, which is the main contributor in terms of
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process variations for RFET technology reasoned in the metallic source and drain
electrodes. Thus, to yield a good TRNG, special attention must be given to a
highly controlled work function, while mass manufacturing the RFETs [26]. Con-
sidering that most silicon nanowire based RFETs are based on sharp NiSi2/Si
junctions with a quasi-epitaxial relation between both materials, it is reasonable
to assume that this metric can be achieved [68].

Voltage Variations: Supply voltage variations are also a crucial parameter
that is needed to be taken care of. It has been stated that the circuit must at
least support a variation of VDD ± 10% to be known as a reliable device [51].
In terms of RFET designs, it is mainly crucial, that the symmetric behavior
between p- and n-type operation is not lost by the voltage variations. Such
an attack scenario was first tested in [9] on various NAND/NOR logic gate
design variants. In this work, it was described that increasing VDD lead to no
particular differences in the propagation delay values of both configurations. If
the nominal operation voltage has been instead decreased the relative difference
between individual NAND and NOR rise and fall times increased, but stayed
always below 10% difference. A VDD reduction of more than 33% of the initial
supply voltage resulted in malefaction of the circuit.

Temperature Variations: The final parameter to be considered for RFET
based security solutions are temperature variations. It is well known that in
CMOS technology, temperature variation impacts the I-V characteristics of a
transistor. It affects the thermal voltage VT in subthreshold conduction, tran-
sistor threshold voltage Vt as well as the μ, due to higher number of scatter-
ing events at higher temperatures [51]. Thus, typically the off-state currents of
CMOS devices is increased, while the on-state is decreased, leading to lower
on/off ratio at higher temperatures. This is different for RFET devices, which
rely on the thermionic field-emission based injection of carries over the Schottky
junctions at source and drain. With increase in temperature, more carriers are
injected, overshadowing the effect of the lower effective channel mobility. As a
result, both, on- as well as off-current increase with increasing temperature. It is
conceivable, that this behavior makes RFET based circuit solutions more stable
with respect to temperature variations than their CMOS based counterpart.

6 Conclusions

In the present work a metastability-based TRNG design has been proposed
using emerging reconfigurable nanotechnology. This is referred as Emerging Nan-
otechnology -based Double -Throughput True Random Number Generator (END-
TRUE). The transistor-level ambipolarity in RFETs allows us to duplicate cross-
coupled SR latches and hence random bits can be sampled at both the edges of
the clock. The END-TRUE generates a random bit at each half cycle of the input
clock, thereby a throughput of twice the input clock frequency is obtained. This
enables the dual edge-triggered D-flip flop operate at the same clock frequency as
the input clock signal to the TRNG. Using runtime reconfigurability, the TRNG
is shown to use less hardware, be compact in terms of transistor count per block
(60% saving in the transistor count), consume less power (94.5% saving in leakage
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power and 70.7% saving in dynamic power) and has a lower critical path delay
(77.3% reduction in delay) with respect to its equivalent CMOS counterpart.
Statistical evaluations show that the generated bitstream using our proposed
END-TRUE has high values of Shannon entropy as well as successfully passes
the NIST benchmark suite (except one) upon post-processing. The technique of
post-processing is used regardless to mitigate the effects of process variation [1].

The present work demonstrates a viable circuit implementation for emerging
reconfigurable nanotechnology which is a key component in hardware security.
Silicon or germanium nanowire-based RFETs follow similar CMOS-like top-
down fabrication process [29,53] and come in stacked nanowire geometry [71]
and hence are commercially feasible and can complement CMOS technology.
While in the present work, a specific application has been demonstrated, it is
expected that with better device models, better evaluation can be carried out.
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Abstract. The benefits of steep-Subthreshold Swing (SS) devices,
though plentiful at the device-level, have yet to be fully exploited at
the circuit-level. This is evident from a look at the Three-Independent-
Gate Field-Effect Transistor (TIGFET), a device renowned for its abil-
ity for polarity reconfiguration. At the same time, its demonstrated
dynamic control of the subthreshold slope beyond the thermal limit
has only been studied at the device-level. This latter benefit is referred
to as Super-Steep Subthreshold Slope (S4) operation and can lead to
unprecedented gain, which is ideal for use in an amplifier circuit. In this
book chapter, we investigate the impact of S4 operations when design-
ing differential-amplifier circuits while using TIGFET technology. We
demonstrate the benefits of our implementation both from a theoretical
standpoint and through circuit-level analyses. More specifically, we show
that the TIGFET -based amplifier gain is 95.5× better, and that the
gain-bandwidth product is improved by 13.8×, compared to an equiva-
lent MOSFET-based design at the 90 nm node. Besides, we show that
at equivalent gains, the TIGFET-based amplifier decreases the area and
power by 22.8× and 7.2×, respectively, against its MOSFET counter-
part. Further investigations prove that TIGFETs could be used in bio-
sensing application where noise and power consumption are crucial. We
have demonstrated that the use of TIGFETs could improve the thermal
noise of low-power, Low-Noise Amplifiers (LNA) by 83% and the noise
efficiency factor (NEF) by 58%.

Keywords: Low-power analog design · Schottky barrier field-effect
transistors · Steep-subthreshold slope · Three-independent-gate
field-effect transistors

1 Introduction

The ever-increasing signal and data processing performance demand is driven by
the semiconductor industry and its work in scaling down standard technologies
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such as the Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) and
its Fin-variant [1].

One way to characterize a device’s performance is through its Subthreshold
Swing (SS), which refers to the gate-to-source voltage needed to change the drain
current by one order of magnitude [2]. Based on this definition, a small SS value
corresponds to a faster switching speed in the digital domain and defines a large
intrinsic gain in terms of analog benefits. The minimum subthreshold swing
(SSmin) in a MOSFET is limited to approximately 60 mV/decade at room
temperature (300 K) because the carriers follow the Fermi-Dirac distribution,
and their energy is bounded such that only the carriers with enough thermal
energy to exceed the source-channel potential barrier will contribute to the ON-
current (ION ) of the device [3]. Due to this, MOSFETs are limited in their use for
applications requiring fast switching, such as in signal processing applications.

A solution to this MOSFET-limited problem is the use of alternative devices
which are not thermal-conduction-limited. These include tunnel FETs [3], Nano-
Electro-Mechanical FETs [4], Impact-ionization MOSFETs [2], and Feedback
FETs [5]. The alternative device we will consider in this study is not originally
intended as a steep-subthreshold-slope device: Three-Independent-Gate Field-
Effect Transistor (TIGFET) [6]. The TIGFET is best known for its dynamic
channel reconfiguration to n- or p-type that gives it a higher expressive capability
at the circuit-level than a typical transistor, enabling compact and efficient logic
gates [6,7]. This device was also found to be capable of Super-Steep-Subthreshold-
Slope (S4) operation with an SSmin of 3.4 mV/dec and an SSavg of 6.0 mV/dec
over 5 decades of current as demonstrated in [8]. This operation is enabled by an
effective body biasing, which in turn is enabled by a positive feedback process
based on weak impact ionization. By definition, subthreshold swing defines the
gate voltage required to change the drain current by an order of magnitude.

The TIGFET and other steep-subthreshold-slope devices are optimal for use
in analog circuits, as evidenced by the longstanding use of devices in their sub-
threshold region, with applications ranging from biological (such as in cochlear
implants) [9–11] to microcontrollers [12,13], to improved signal acquisition for
ADCs applications [14–16]. Additionally, TIGFET technology can bring ben-
efits in the context of amplifiers. In a regular Common-Source (CS) amplifier
design, one transistor acts as a Voltage-Controlled CS while the other acts as
a resistor, converting the current back to a voltage [16,17]. The value of the
subthreshold swing defines the gain of the amplifier in very low current ampli-
fier designs. Overcoming the thermal conduction limits of regular MOSFETs for
extremely low current amplifier design applications offers new horizons regarding
area reduction, power consumption, and performance improvement. Operation in
the subthreshold region results in low power and high gain, resulting in improved
performance-to-power consumption efficiency. This is facilitated by the diffusion
and tunneling-based carrier movement in the subthreshold limit.

One of the most challenging applications in analog design is biological sens-
ing and implementable electronics. The co-integration of electronics near living
tissue requires rigorous constraints on power consumption [28,29] as thermal
dissipation from the electronics can cause damage to the cells. Brain implant
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electronics also suffer from noise and the general expected input referred noise
of the analog front-end is within 2µVRMS. With the performance increase of
S4 devices, TIGFET devices could potentially provide new standards for Brain-
Computer Interface (BCI). The potential power reduction can greatly increase
the number of interfaceable neurons and the noise reduction can benefit the
measurement quality.

In this book chapter, we extend our previous work [32] and introduce an
amplifier design using TIGFET devices operating in S4 mode and highlight their
benefits compared to standard MOSFET transistors. We study the advantages
of our implementation both from a theoretical perspective and through circuit-
level analyses. In particular, we demonstrate a 95.5× improved gain and a 13.8×
higher Gain-Bandwidth Product (GBP) for our TIGFET design, compared to an
equivalent MOSFET-based design using a 90 nm technology node. Additionally,
we show that at equivalent gains, the TIGFET-based amplifier decreases the area
and power by 22.8× and 7.2×, respectively, against its MOSFET counterpart.
We also show how the use of TIGFET devices in biological sensing applications
could improve the Noise Efficiency Figure (NEF) by 58% and input referred
noise by 83% for the input recording amplifiers.

The remainder of this chapter is as follows: Sect. 2 reviews various SS devices
and TIGFET technology. Section 3 introduces our proposed TIGFET-based
amplifier circuit and provides theoretical gain and bandwidth analyses. Section 4
presents our circuit-level experimental results. Section 5 presents the noise and
performance analysis of a typical bio-sensing TIGFET-based amplifier. Finally,
Sect. 6 concludes this chapter.

2 Technical Background

In this section, we introduce the necessary background behind sub-60 mV/decade
technology, including TIGFET technology and its operations.

2.1 Steep-Subtreshold Devices

Multiple devices have been proposed as candidates to replace MOSFETs with an
ability for sub-60 mV/decade SS operation. These include the tunnel FET that
has been fabricated with OFF-current down to the pA/μm scale and a small SS
of 52.8 mV/dec [3]. These benefits are mostly neutralized by the low ON-current
of approximately 50µA/µm exhibited by TFETs fabricated with large band-gap
semiconductors such as silicon; the massive loss in current drive makes this device
practically unusable for standard designs. Note that the TFET results in an
onset strength (ON-OFF current ratio) that is almost the same as that of a con-
ventional MOSFET. Another alternative device capable of steep-substhreshold
characteristics is the Nano-Electro-Mechanical FET [4]. This device is limited
in operation and device reliability by the mechanical gate with which it realizes
its abrupt SS. Besides, impact-ionization MOSFETs are devices that have been
shown to achieve less than 5 mV/dec SS and high ON-state currents through
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avalanche breakdown, but constantly being operated using this mechanism leads
to reliability issues at the device-level [2]. The Feedback FET has similar benefits
to the impact-ionization MOS device, but it is not CMOS-compatible, requires
initial programming to set the device states, and suffers from reliability problems
[2,3,5].

2.2 The TIGFET as a Standalone Device

200 nm

Source Drain

(a) (b)

Control
Gate

Schottky
Bias

Fig. 1. Schottky-barrier FET: (a) general structure; (b) SEM image of a fabricated
fin-based device [8].

Figure 1(a) depicts the general structrue of a Schottky-barrier FET. Such device
requires a channel made of a semiconductor material, metallic source and drain
contacts, and a minimum of two independent gate electrodes: the Control Gate
(CG) and a polarity gate at the drain (PGD) to act as electrostatic doping means
at the Schottky barrier interfaces [19,20]. Figure 1(b) depicts a Scanning Elec-
tron Microscopy (SEM) of a fabricated fin-based Schottky-barrier device [8]. The
TIGFET is an enhanced Schottky-barrier FET with a CG and two independent
polarity gates: one added at the source (PGS) and another at the drain (PGD)
[19]. The control gate controls whether the device is ON or OFF. The polarity
gate at the drain induces a band-bending opposite to the source band-bending,
suppressing the reverse junction leakage. This allows for device reconfigurabil-
ity between n-type and p-type behaviors after fabrication. Besides, much lower
leakage floor values can be reached due to the Schottky-barrier cutoff provided
by the individually-gated nanojunctions. The dominant carrier is chosen by the
potential on the polarity gate [20]: if the PGs are increased to the supply volt-
age (VDD), the device will be n-type (electron) carrier-dominated, whereas if the
PGs are grounded (0 V), the device will be p-type (hole) carrier-dominated.

Besides its ability for polarity reconfiguration, TIGFETs have demonstrated
two additional operation modes: the dynamic control of the threshold voltage [6]
and the dynamic control of the subthreshold slope beyond the thermal limit [8].
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The latter makes the TIGFET uniquely suited for amplifier applications. This
effect, referred to as S4 operation, is enabled by an effective body biasing that
is permitted by a positive feedback process based on weak impact ionization.

ON

ON
n-type

p-type

1

2

3

3

2

1

GateSBB

SBB: Schottky-Barrier Bias 

SBB

Fig. 2. Energy band diagrams of the TIGFET being operated in steep-subthreshold-
slope during the transition from OFF to ON. The inset diagrams show that impact
ionization and potential wells vanish when the device is ON [8].

When the device is biased in the subthreshold region, the electrons diffuse
from source to drain, and the resulting impact ionization causes the holes to be
collected at the potential minimum in the body, thus raising the body poten-
tial (VBS) and enhancing the electron supply from the source. This body bias-
ing causes the electron concentration and therefore current in the channel to
be much higher than would otherwise be possible in a conventional MOSFET.
The increase in IDS and more impact ionization initiates a positive feedback,
resulting in an abrupt increase in subthreshold current [2,5]. Figure 2 shows a
TIGFET being operated in this steep-subthreshold mode. The benefits reaped
are substantial, as seen in the TIGFET device demonstrated in [8]: SSmin of
3.4 mV/dec, SSavg of 6.0 mV/dec over 5 decades of current, an onset strength
of 107, and an OFF -current of 0.06 pA/µm.
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3 Proposed TIGFET Differential Amplifier

In this section, we start by introducing the differential amplifier based on MOS-
FET and TIGFET devices. We then provide a theoretical comparison of the
gain of MOSFET and TIGFET devices. This serves as the backbone for our
simulation work.

3.1 The Differential Amplifier

The differential pair is the most widely used structure in analog design [16,17],
as it is the input stage of every operational amplifier. The two main reasons for
the widespread use of differential amplifiers are that they mitigate interference
and do not require bypass or coupling capacitors when biasing the amplifier
or coupling amplifier stages together. The performance of the differential pair
depends on the matching between the two sides of the circuit. Figure 3(a) shows
a basic MOSFET-based differential pair.

VG and VCM are the biasing voltages; their values set the operating point of
our amplifier and define the transconductance of the transistors. Itail defines the
DC current going through the transistors and thus also defines the transconduc-
tance. Itail is chosen to set the transistor in the subthreshold region so that IDS

is at approximately 20 nA while VG is set by a Widlar current source [16,17].

3.2 The TIGFET-Based Differential Amplifier

As explained in Sect. 2.2, connecting the polarity gates to VDD configures the top
TIGFETs as n-types, while connecting the polarity gates to GND configures the
bottom devices as p-types. As such, the MOSFET amplifier shown in Fig. 3(a)
can be designed with TIGFET devices, as illustrated in Fig. 3(b). VG, VCM , and
Itail are the same biasing sources as in Fig. 3(a) and have the same impact on the
amplifier performance. However, since the TIGFET operates at a much higher
VDS , the current IDS is lowered to 5 nA to keep the power consumption equal to
the standard MOSFET amplifier. While both MOSFET and TIGFET amplifiers
employ the same schematic, significant gain improvements are expected by using
TIGFET device due to their S4 behavior.

3.3 Theoretical Equations

In this section, we provide theoretical equations for both MOSFET and TIGFET
cases. When considering a 90 nm MOSFET technology with a biasing point of
0.6 V for VDS and 20 nA, discussed in Sect. 3.1, the resistance r0 is defined as
[16,17]:

r0−CMOS =
VDS

IDS
=

0.6V
20 nA

= 30MΩ

The 90 nm CMOS device has a slope of 80 mV/dec around this previous
biasing point. Using the definition of SS, we calculate the transconductance by
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Fig. 3. Transistor-level schematic of a differential pair using: (a) standard MOSFETs;
(b) TIGFETs.

picking an order of magnitude of IDS around its operation point of 20 nA. This
gives us a transconductance of:

gm−CMOS =
ΔID
ΔVGS

=
40nA − 4 nA

80mV
= 0.45µS

Thus, the gain of the differential pair is given by:

AV −CMOS = gm−CMOS · R0−CMOS

=⇒ AV −CMOS = gm−CMOS · (r0−CMOS//r0−CMOS)

=⇒ AV −CMOS = 0.45µS · 15MΩ = 6.75V/V

Based on the fabricated devices of [6], for the TIGFET operating in S4, the
hero device operates at a VDS of 5 V and with an IDS current of 5 nA:

r0−TIG =
VDS

IDS
=

5V
5nA

= 1000MΩ

The transconductance gm of the TIGFET is derived using the same approach
as for the CMOS; we pick an order of magnitude of current around the biasing
point and use the SS definition:
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gm−TIG =
ΔID
ΔVGS

=
10nA − 1 nA

3.4mV
= 2.647µS

Similarly, the gain AV of the amplifier is:

AV −TIG = gm−TIG · R0−TIG

=⇒ AV −TIG = gm−TIG · (r0−TIG//r0−TIG)

=⇒ AV −TIG = 2.647µS · 500MΩ = 1323V/V

The TIGFET exhibits a 196× higher theoretical gain than its MOSFET
counterpart, which is particularly appealing for amplifier designs. This improved
gain will be verified in the experimental results section.

4 Experimental Results

In this section, we demonstrate the benefits of using an S4-TIGFET device when
designing a differential amplifier. First, we describe our experimental method-
ology, and then we compare this proposed design to a conventional MOSFET
implementation using a commercial 90 nm technology.

4.1 Experimental Methodology

To compare the different amplifier designs, we employ a commercial 90 nm tech-
nology node for the MOSFET case. For the TIGFET devices, we consider 100 nm
gate transistors based on fabricated devices from [8]. We study the performances
of differential amplifiers using minimum-sized MOSFET and TIGFET devices
through electrical simulations. Besides, both circuits are biased in the subthresh-
old region with the same power consumption [18]. TIGFETs are modeled using
small-signal models of n-type and p-type transistors, as shown in Fig. 4. DC
characteristics such as the transconductance (gm) and intrinsic capacitances are
extracted from [8]. Note that the S4 behavior was demonstrated for both n-type
and p-type [8]. As this small-signal model is originally meant to describe MOS-
FETs, the three TIGFET gate capacitances are assumed to be equivalent as
a large single one. The goal of our paper being to showcase a new application
for TIGFET technology thanks to their S4 behavior, we believe that this still
provides a first good approximation for our study. This model provides accurate
performance analysis for small signal AC operations. Large-signal information
has not been included for distortion analysis. In a second study, we compare the
area and power of both designs while achieving the same gain.
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Fig. 4. Small signal model of a TIGFET device.

Fig. 5. Frequency responses for differential pairs, considering a 90 nm MOSFET case
and different 100 nm TIGFET configurations.

4.2 Frequency and Gain Comparison for Minimum Sized Devices

Figure 5 shows the magnitude responses of differential pairs using conventional
MOSFET devices and using TIGFET devices under different configurations.
The first TIGFET configuration (TIGFET-5V-3.4mV/dec) we studied uses the
experimental hero device TIGFET S4 value reported in [19]. This configuration
is not easily comparable to the others due to the large VDS biasing voltage of
5 V; this would not be fair as the amplifier would require a VDD of 10 V. How-
ever, it results in the best performance due to having an SSmin of 3.4 mV/dec.
The voltage gain and bandwidth are 62.4 dB, and 6.5 MHz, respectively, as
shown in the red plot in Fig. 5. The low bandwidth is a result of the low current
used in the design. The second TIGFET configuration (TIGFET-2V-5mV/dec)
uses the hero TCAD-predicted device characteristics and biases the device with
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VDS = 2 V and reaches 5 mV/dec of subthreshold slope [8]. As VDD is reduced,
the amplifier can be powered with 5 V. As expected, the gain suffered from
the 5 mV/dec slope and is only 57.1 dB, though the current can be increased to
match the power consumption of the TIGFET-5V-3.4mV/dec case while achiev-
ing a 8.1 MHz bandwidth. The last TIGFET configuration studied (TIGFET-
2V-54mV/dec) uses the lower-performance S4 device from [19] with a measured
SS of 54 mV/dec. As shown in Fig. 5, the gain is decreased to 30.1 dB. In com-
parison, the MOSFET (MOSFET-0.6V-80mV/dec) suffers in performance due
to its thermally-limited SS and only achieves a gain of 17.5 dB. MOSFETs can,
however, operate at 1.2 V with higher current and achieve better bandwidth than
the TIGFET cases (55.6 MHz). Table 1 summarizes the results of all four cases.

Table 1. Performance results for MOSFET- and TIGFET-based amplifiers.

Gain (V/V) Bandwidth (MHz) GBP (GHz)

MOSFET-0.6V-80mV/dec 7.5 55.6 0.42

TIGFET-5V-3.4mV/dec 1318.3 6.5 8.57

TIGFET-2V-54mV/dec 32.0 16.2 0.52

TIGFET-2V-5mV/dec 716.1 8.1 5.80

Comparison∗ +95.5× −6.9× +13.8×
∗When comparing the TIGFET-2V-5mV/dec case against the MOSFET-
0.6V-80mV/dec case.

The TIGFET-2V-5mV/dec results in a 95.5× better gain and a 13.8× higher
GBP than the MOSFET case. Besides, even the worst TIGFET case (TIGFET-
2V-54mV/dec) still achieves a larger gain when biased in the subthreshold than
its MOSFET counterpart.

4.3 Area and Power Comparisons

Our second study aims at comparing the area of a TIGFET-based amplifier and a
MOSFET-based amplifier of the same performance [16,21]. TIGFET devices are
generally larger than MOSFET devices at the same node due to their additional
polarity gates. However, to get the same gain from the MOSFET amplifier,
a cascoded version of the differential pair shown in Fig. 6 must be used, and
requires additional transistors [16,17,22].

This architecture keeps the power consumption low using only 2 branches,
similar to the original amplifier in Fig. 3. However, the extra added common-gate
transistors are required to increase the gain of the MOSFET-based amplifier to
57 dB to match the TIGFET performance. Both MOSFET- and TIGFET-based
amplifiers are shown in Fig. 7(a) and (b), respectively. For a fair comparison, the
TIGFET amplifier layout is drawn from fully-custom TIGFETs designed using
a commercial 90 nm Process Design Kit (PDK) and both designs were verified
using the same Design Rule Check (DRC) rules. The MOSFET-based amplifier
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Fig. 6. Schematic of a MOSFET-based cascoded differential pair.
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Fig. 7. Layouts of differential amplifiers achieving a same gain of 57 dB: (a) MOSFET-
based; (b) TIGFET-based.

has a total area of 595.36 µm2. In comparison, the TIGFET-based amplifier area
is 26.04 µm2, a 22.8× reduction compared to the MOSFET case, as shown in
Table 2.
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Table 2. Performance results of MOSFET- and TIGFET-based amplifiers, at the same
gain of 57 dB.

90 nm MOSFET 100 nm TIGFET TIGFET Benefits

Area (µm2) 595.36 26.04 −22.8×
Power (nW) 360 50 −7.2×

The significant area reduction is due to the TIGFET S4 intrinsic gain being
significantly higher compared to a conventional MOSFET gain, as explained in
Sect. 2. As a result, the TIGFET devices do not need to employ larger sizes to
reach a gain of 57 dB, as in the MOSFET case. Besides, the TIGFET-based
amplifier reduces the power consumption by 7.2× compared to the MOSFET
implementation. This is because the TIGFET implementation employs smaller
devices while achieving the same performance than its MOSFET counterpart.

5 The Benefits of TIGFETs in Biosensing Applications

In this section, we first introduce the concept of bio-sensing and typical design
constraints. We then compare a typical CMOS amplifier for bio-sensing applica-
tions with its TIGFET-based counterpart and conclude about the potential of
TIGFETs for such bio-sensing applications.

5.1 Brain Computer Interfaces Requirements

Neuronal activity can be recorded in-vivo through an implanted neural elec-
trode array. The useful information from such electrodes typically consists of
two different types of signals, as shown in Fig. 8. The first and most common
type is the Extracellular Neural Action Potential (ENAP), referred to as spikes
and shown in Fig. 8a. Spikes are “short” and biphasic pulses that typically last
between 100µs and 1 ms with peak amplitude of tens of μV to tens of mV .
They are the results of firing a neuron in the region near the electrode and the
signal of interest is within 500–5,000 Hz. The second type of signal is called a
Local Field Potential (LFP), shown in Fig. 8b which is a very slow oscillation of
<200 Hz up to 5 mV peak amplitude. This signal is the result of many neurons
firing in the same large area and affects the “DC” potential of this wide area
of tissue. Typically, state-of-the-art bio-sensing ASICs dedicate fewer channels
to record LFPs while most of the channels record neuron spikes. LFP recording
channels require a 0.1–250 Hz bandwidth and ENAP recording channels require
a 300–10,000 Hz bandwidth. Recording high quality signals typically constrains
the input referred noise, and commercial state-of-the-art ASICs limit the max-
imum input referred noise on the analog front-end to <3µVrms, with a 10 kHz
bandwidth and a 12bits resolution ADC. In a nutshell, brain machine interfaces
are low-frequency monitoring system with rigid requirements on noise.

We have introduced the recording requirements of the BCIs and their
expected performance in term of bandwidth and input referred noise. These
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(b) Typical low frequency signal from the field potential induced
by the firing of surrounding neurons.

Fig. 8. Typical signals recorded from bio-sensing electronics: a) High-frequency spikes;
b)Low-frequency LFP.

BCIs are also subject to very challenging constraints regarding thermal dissi-
pation, and thus power consumption. All BCI devices require either continuous
or transient transcutaneous power delivery, and this power dissipates as heat or
radiates as electromagnetic radiation. As the implanted device is recording or
stimulating, it is dissipating heat into the tissue; the magnitude of this tempera-
ture difference is critically important to the safety of the surrounding cells. The
recommended specific absorption rate (SAR) for human tissue is 1.6 W/kg for
radiation in the 3 kHz to 300 GHz spectrum [28]. The standard limits of a 2 ◦C
temperature increase, of 40 mW/cm2 heat flux are valid for most tissues in the
body and is reasonable targeted thermal power dissipation value for BCI [29].
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Fig. 9. Simplified noise model for low and moderate operation frequencies of the MOS-
FET.

As discussed previously, BCI are low-frequency acquisition systems
(<10 kHz) that have strict constraints on power consumption and input referred
noise. In order to understand why the TIGFETs could benefit such applications,
it is worth mentioning how noise in a MOSFET is determined. For low and
moderate frequencies, which is the case for a 10 kHz low-noise amplifier for con-
ditioning the neuron activity, the simplified noise model of the MOSFET shown
in Fig. 9 can be used, assuming a large channel device [16] with:

V 2
i (f) = 4kT (

2
3
)

1
gm

+
K

WLCoxf

The term 4kT (23 ) 1
gm

is the thermal noise of the device and K
WLCoxf

is the
flicker noise or 1/f noise. The thermal noise is purely dependant on the transcon-
ductance gm of the device while the flicker noise is inversely proportional with the
size of the device; this means that a larger device will have a smaller flicker noise,
thus we can use the large channel approximation. K is a process dependent fac-
tor and widely varies for different devices in the same process. For low frequency
applications, the flicker noise tends to be more of a concern and designers tend to
increase the size of the input stage as much as is reasonable in order to keep the
input referred noise low. However, some BCI [23] have shown that thermal and
inband noise actually dominates the total input referred noise to almost 50%.
To cover this issue, it is possible to increase the transconductance of the input
device, at the expense of increased power consumption since gm = Id

n·Vt
(in sub-

threshold), which is not compatible with BCI applications because of the thermal
dissipation requirements. Another solution is to use different semiconductors to
overcome this device limitation. Section 3.3 shows that the TIGFET transcon-
ductance is equal to 2.64µS compared to the 0.45µS of the regular CMOS, for
the same low biasing current. Thermal noise would be reduced by approximately
5× and would greatly benefit any kind of low-power LNA in a brain-computer
interface circuit. This increase in gm is, generally, very interesting for any kind
of low-power, low-noise application [32].

5.2 Typical Analog Front-End for Neuronal Recording

Figure 10 presents an example of the high-level architecture for a typical brain
computer interface. The electrodes connected to the neurons are interfaced by
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Fig. 10. Typical block diagram of a multi-channel, integrated brain-computer interface.

single channels in parallel through a line capacitor to filter DC signal and allow
the spikes to pass through [23,27,31]. The low-noise amplifier is the first stage
which interfaces the signals and great care must be taken in its design. This first
stage must be designed to keep the input referred noise down to 2µV. Signals
are then filtered to detect either the spikes or the low-frequency LFP. Most BCI
[23,30] then use a multiplexer to digitize an array of channels. The output is pro-
cessed by a controller and sent to an FPGA or μ-controller through low-power
wireless communication. The LNA is the first stage of the acquisition front-end
and its noise performance affects the overall acquisition system performance.
Since the main trade-off in designing a BCI is between noise and power dissi-
pation, we often use the noise efficiency factor (NEF) [24] or power efficiency
factor to estimate the ability of a design to get a certain level of noise for a given
power consumption.

NEF is defined as:

NEF = Vni,rms

√
2 · Itot

πUT 4kT · BW

where Itot is the current used by the low-noise amplifier, BW is the −3 dB
bandwidth of the pass-band filter, and Vni,rms is the input referred noise of the
amplifier.

Based on state-of-the-art literature, the current-reuse low-noise amplifier
topology is the best-in-class for having the lowest NEF [25].

A typical first-stage current reuse topology [26] is shown in Fig. 11. As this
topology is well-known for being very efficient in terms of NEF, we will discuss
its noise performance, its power consumption, and its NEF equation. We will
also provide some insights on how a TIGFET-based current reuse compares to
a standard MOSFET in the next Section. [26] shows that the input referred
noise of a single-ended current reuse topology is half the power of a regular
single-ended differential pair (when gmn = gmp):

V 2
in,n =

8kT

3(gmn + gmp)
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The output current noise [26] of the circuit shown in Fig. 11 is defined by:

i2o,noise =
16kT

3
· (gmn + gmp)

This value is valid for any type of device used in the design. The input referred
thermal noise can then be determined by dividing the output current noise by
the gain of the first-stage. This leads to:

V 2
in,therm =

V 2
out,therm

A2
v

=
i2o,noise · R2

o

(gmn + gmp)2 · R2
o

V 2
in,therm =

16kT

3(gmn + gmp)

Ibias

Ibias

Vin1 Vo1 Vo2 Vin2

Fig. 11. Typical current-reuse input stage for the LNA.

5.3 Comparison Results

Using the previous equations for the NEF and the input referred thermal noise,
and the performance of the TIGFET from Sect. 3.3 and Sect. 4, we can estimate
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the TIGFET noise level relatively to the MOSFET topology in Fig. 11. The input
referred thermal noise of the current reuse stage is a function of the transcon-
ductance of the devices and we can derive the thermal noise improvement using
the derived transconductance of the device from Sect. 3.3.

100 · V 2
in,therm−TIG − V 2

in,therm−CMOS

V 2
in,therm−CMOS

= 100 · gm−TIG − gm−CMOS

gm−CMOS
= −83%

Considering the TIGFET gm of 2.64µS and the CMOS gm of 0.45µS leads
to a calculated reduction of 83% in input referred thermal noise which is linearly
linked to the improvement in transconductance of the device.

The NEF comparison is more complex because it is both a function of the
current consumption and the input referred noise. We can either suppose: 1) two
LNAs with the same power consumption but different input referred noise which
also leads to a −83% improvement since the NEF linearly depends of noise,
or: 2) having two LNAs with the same input noise and compare their power
consumption. Since gm = Id

n·Vt
is a function of Id, the CMOS LNA’s supply

current must be gm−TIG

gm−CMOS
= 5.8× bigger for having the same input referred

noise. This leads to an increase in NEF of:

100 · NEFTIG − NEFCMOS

NEFCMOS
=

√
2 · Itot−TIG − √

2 · Itot−CMOS√
2 · Itot−CMOS

= 100 ·
√

1
5.8

− 1 = −58%

This comparison in NEF and input referred noise does not take the flicker
noise into account but it is worth discussing flicker noise in more depth. Flicker
noise in a MOSFET is defined as:

V 2
i (f) =

K

WLCoxf

Flicker noise is inversely proportional to the device size and BCI interfaces use
extremely large devices to mitigate the effect of flicker noise. Flicker noise is also
decreased by using low currents which is the case in BCI interfaces with thermal
limitations. While it may be obvious that, for low-frequencies applications, flicker
noise is the dominant source of noise, post-silicon experimental results have often
shown that flicker noise is not significant in this application [23,27]. [27] shows
that in their design, flicker noise contributes to 0.1µVrms of the total 2.2µVrms,
a contribution of only 4.5%. For this purpose, this study did not include the
effect of flicker noise on BCI.

It is also complex to compare the flicker noise of a CMOS device and a
new emerging device because of different K constant terms that depend on how
the devices are fabricated. An emerging device is most likely to suffer from a
bad K because of the lack of maturity in the device. A TIGFET’s Super-Steep-
Subthreshold-Slope abilities rely on a positive feedback during impact ionization
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and this effect can influence the noise of the device. It is therefore important to
mitigate the noise improvements that TIGFETs ideally show, as it is more likely
to be higher that what we derived in this chapter.

6 Conclusion

In this book chapter, we have shown the benefits of S4 devices at a cir-
cuit level. While MOSFET devices are limited by their SS of 60 mV/dec,
the TIGFET shows SS as low as 3.4 mV/dec. TIGFET-based amplifiers show
great performance when biased in their subthreshold region, where they can
benefit from their steep slope and high gain. In particular, we showed that
a regular differential-pair using TIGFET devices improved the gain by 95.5×
and increased the GBP by 13.8×. Besides, we showed that porting the same-
performance MOSFET-based amplifier to TIGFET devices reduced the area
and power by 22.8× and 7.2×, respectively. This demonstrates that TIGFETs
are great devices for high-performance analog applications, where power con-
sumption and cost are crucial. Additionally, this work paves new paths in the
extremely low-power and low-noise analog domain for S4-devices in general, and
TIGFETs in particular, with an 83% reduction in input referred noise and a
53% expected improvement in NEF.
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Abstract. Phase change memory (PCM) device associated with Ovonic Thresh-
old Switch (OTS) selector is a proven solution to fill the gap between DRAM and
mass storage. This technology also has the potential to be embedded in a high-end
microcontroller. However, programming and reading phases efficiency is directly
linked to the selector’s leakage current and the sneak-path management. To tackle
this challenge, we propose in this paper, a new sense amplifier able to generate
an auto-reference taking into account leakage current of unselected cells, includ-
ing a regulation loop to compensate voltage drop due to reading current sensing.
This auto-referenced sense, built on the charge-sharing principle, is designed on a
28 nm FDSOI technology and validated through extensive Monte-Carlo and cor-
ner cases simulations. Layout and post-layout simulation results are also provided.
From the simulation results, our sense amplifier is demonstrated to be robust for
an ultra-large range of sneak-path current and consequently for a large range of
memory array size, suitable for embedded memory in high-end microcontroller.

Keywords: PCM · OTS · Non-volatile memory sensing · Sneak-path
compensation

1 Introduction

The evolution of edge computing, with AI and data-intensive treatment, exacerbates the
requirement in terms of performances and memory capacity on edge devices, such as
the high-end Micro Controller Unit (MCU) [1–5]. In this context, high-density memory
based on emerging concept could replace current solutions such as 1.5T NOR Flash
memory or 1T1R Phase Change Memory (PCM) [6–12]. In this context, to decrease
drastically the bit cell footprint, a back-end selector solution could be adopted. Doing
so, this new embedded solution could rely on themostmature back-endmemory solution
namely Phase Change Memory. The PCM which material phase modifications directly
affect its resistance (1R) value can be associated with Ovonic Threshold Switch (OTS)

© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
V. Grimblatt et al. (Eds.): VLSI-SoC 2021, IFIP AICT 661, pp. 225–243, 2022.
https://doi.org/10.1007/978-3-031-16818-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16818-5_11&domain=pdf
https://doi.org/10.1007/978-3-031-16818-5_11


226 J. Gasquez et al.

selector (1S) [13–18], in order to form an 1S1R bit cell. However, due to process com-
patibility in an embedded context, OTS may require specific adjustments [19]. Beyond
the well-known feature of PCM cells already demonstrated in the literature, i.e. a large
resistance ratio of 103, a low variability thanks to a bulk phase change (crystalline and
amorphous state) compared to the filamentary resistive memory, a mature process, and a
large endurance 109 [9–12], the performances of memory with OTS as selector is mainly
driven by the OTS selectivity. Regarding the OTS selectivity feature, numerous papers
have reported very different performances [14, 20, 21], with selectivity ranging from
103 to 107.

The impact of the selectivity of the OTS at array level is characterized by the level
of the leakage current sum due to the unselected cells during the programming and the
reading operations. Thus to compensate for the impact of this leakage, defined also as
sneak-path current, some circuits design techniques have been already proposed:

• The first technique proposed to limit the sneak-path current impact is based on well-
chosen biasing conditions applied on the unselected row and column in the memory
array. These techniques are namely V/2 and V/3 biasing solutions [22, 23];

• The second technique is based on sneak-path current measurement during a first pre-
programming or pre-reading phase in order to adapt the biasing voltage to compensate
for the amount of sneak current [24, 25];

• The third technique consists in collecting a mean sneak current coming from a
compensation port and add it from a reference [26] during the operation.

As shown, compensation schemes are must-have solutions when dealing with
crossbar array, but to the best of our knowledge, sensing circuit solution with auto-
compensation of the leaky current and autoregulation of the row and column biasing has
never been proposed at circuit level targeting a large range of OTS selectivity. In this
context, the main contributions of this paper are as follows:

• we introduce, for the first time, an auto-referenced sense amplifier for PCM associated
with OTS, where sensing reference is self-adapted to the leakage level. (Sects. 2 &
3);

• we also introduce a regulation loop to dynamically change the biasing conditions of
the lines in the array depending on the sneak-path current but also on the reading
current through the selected cell. (Sects. 2 & 3);

• we carry out functional (Sect. 3) and extensive Monte-Carlo simulations taking into
account global and local variability, as well as corner cases of process, voltage and
temperature (PVT), to demonstrate the robustness of our solution for a large range of
OTS selectivity (Sect. 4);

• we evaluate the circuit area on a 28 nm FDSOI technology from STMicroelectronics
and propose a layout of the solution together with post-layout simulations in order to
assess the robustness of the solution against parasitic elements (Sect. 5).

Compared to our previous publication [27], the area estimation of the solution in an
advanced 28 nm FDSOI node is given together with post-layout simulation results. We
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point out that the area of the proposed solution is dominated by the regulation loop, that
is constrained by middle voltage, large load and fast response time.

2 Proposed Sensing Solution Overview

In array consisting of 1S1R bit cell, as presented in the introduction, using a half bias
(V/2) strategy during a read operation, the cells sharing the same column and the same
row as the accessed cell are half biased, inducing sneak-path currents. The consequence
is twofold:

• The column sneak-current adds an extra-current to the one crossing the accessed cell
with the risk of blurring the cell read current;

• The row sneak-current uses extra-current than the one needed to read the cell with a
risk of drop-out of the read voltage V.

Fig. 1. Global architecture scheme, including LDO to generate V andV/2 voltages regulated from
our sense amplifier regulation loop

Both sneak-path currents of course depend on OTS selectivity as well as array size,
these two parameters are being linked. Consequently, any sensing solution developed
for 1S1R array should be able to:

• Compensate the sneak-path current to solely isolate the contribution of the read current
crossing the accessed cell;



228 J. Gasquez et al.

• Regulate the applied read voltage V on the selected lines and V/2 on the unselected
lines to compensate for large read current due to sneak-path and read current above
the OTS selector’s hold current [24].

Our proposition follows these two requirements. First of all, as illustrated in Fig. 1,
knowing the read voltage to be applied on the array, we use a regulator loop inside the
sense amplifier solution to compensate the read voltage drop due to the current sensing,
which is dependent on the accessed PCM cell state (HRS or LRS) but also of the sneak-
path current amplitude. The principle is to add to the read voltageVREAD and respectively
VREAD/2, the voltage drop in the sense amplifier in order to have constant voltage, V and
respectively V/2, applied to the array.

Fig. 2. 1S1R array with 2 references rows, illustrating also row sneak path and column sneak
path during bit cell selection.

In a second time, we also introduce two references rows as depicted in Fig. 2. The two
reference rows exhibit 1S1R cells with for each column a PCM in HRS and one in LRS.
The main idea is to sense, prior to the selected cell of a given column, both references
cells sharing the selected column. Doing so, we preserve the sneak-path current context,
and we are able to generate a voltage reference that cancels the sneak-path current.

The reference generation is built using the charge sharing principle, in three func-
tional phases. During the first phase, the sense input capacitor is charged using the LRS
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1S1R reference cell resulting in a capacitor-voltage given in (1).

VIN = (ILRS + Isneak) ∗ T

C
(1)

With T the charging time, C the sense input capacitor, ILRS the current through the LRS
1S1R cell reference, and Isneak the sneak path current of the selected column.

During the second phase, the input capacitor is further charged using the HRS 1S1R
reference cell, resulting in a new capacitor-voltage given by:

VIN = (ILRS + Isneak + IHRS + Isneak) ∗ T

C
(2)

With IHRS the current through the HRS 1S1R cell reference.
In the third phase, a charge sharing process occurs, using a reference capacitor equal

to the input capacitor C. Doing so, the reference voltage is given by:

VREF = ( ILRS+IHRS
2 + Isneak) ∗ T

C
(3)

Thus when reading the selected cell, the input capacitor voltage is determined by:

VIN = (ICELL + Isneak) ∗ T

C
(4)

And knowing thatC and T are the same in (3) and (4), it is straightforward to see, that
the sneak current is compensated and that ICELL (the selected cell current) is compared
solely to ILRS+IHRS

2 .
It is also important to note that any temperature drift in the 1S1R cell might be

compensated by this self-reference generation.

3 Sense Amplifier Circuit Description

3.1 Circuit Description

The full scheme of our new self-referenced sensing solution is illustrated in Fig. 3. It is
composed mainly of three blocks:

• The regulation block (Fig. 3a), which is mainly composed of two current mirrors
generating the reference voltages V and V/2, used as input for the LDOs biasing the
array rows and columns, from respectively the inputs VREAD and VREAD/2;

• The capacitor block (Fig. 3b), which exhibits the input capacitorCIN and the reference
capacitor CREF both equal to the same value C. They are used for auto-reference
generation through charge-sharing;

• The comparator block (Fig. 3c), which is built with a StrongARM comparator [28]
followed by an RS latch to produce the sense output DATA_OUT.



230 J. Gasquez et al.

Fig. 3. Schematic of the proposed sense circuit with three main blocks: (a) the regulation block,
(b) the capacitor block and (c) the comparator block.

Regulation block: Ideal biasing voltages for a read operation, that should be applied
to the selected cell and unselected rows and columns are noted respectively VREAD and
VREAD/2 on the Fig. 3.c. However, to ensure a constant read voltage and a constant
inhibition, these voltages (VREAD and VREAD/2) have to be regulated depending on
the amount of current flowing into the input branch of the sense amplifier during a read
operation. Indeed, dependingon the selected cell state and the sneakpath contribution, the
potentialVM ismore or less increasing, reducing the applied potential on the selected cell
to VREAD-VM and on unselected rows and columns to VREAD/2-VM . It is thus mandatory
to add the corresponding potential VM to the ideal biasing voltages VREAD and VREAD/2.
In doing so, the LDOs reference voltages (see Fig. 1) are respectively set to V = VM

+ VREAD and V/2 = VM + VREAD/2. Consequently, the resulting potential differences
on the selected cell and on the unselected rows and columns, become respectively VM

+ VREAD-VM = VREAD and VM + VREAD/2-VM = VREAD/2. To achieve this task, a
copy of the VM potential is performed through current mirrors composed of transistors
P10, P11, and P12. N13, and N14 act as active charges to add respectively VM to VREAD

and VREAD/2. Please note, that N12 safeguards N11 from high swing voltage and needs
adequate biasing for quick regulation.
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Capacitors block: The principle of current acquisition is based on the voltage dis-
charge of the input capacitorCIN through a currentmirror composed ofN2 andN4. Thus,
prior to any current acquisition, CIN is charged to VDD1 through P1 by pooling down
signal RSTIN . In a similar way, before any reference voltage generation, through sharing
activation (signal SHARE = ‘1’), CREF is charged to VDD1 through P4 by pooling down
signal RSTREF . A pull-down transistor N3 is added to ensure that N4 is cut-off during
two current acquisition phases in order to do not disturb the voltage stored on CIN . The
sharing between CIN and CREF is ensured by an analog switch (N5, P5) controlled by
the signal SHARE (active high).

Comparator block: The comparator block is designedwith a StrongARMcomparator
followed by an RS latch. This block compares the two input voltages VCIN and VCREF

to generate the digital output. This comparator works in two distinct phases. In the first
phase, all the internal nodes of the structure are pre-charged to VDD1 through P8 and
P9 when the signal SA_EN is grounded. During a second phase (signal SA_EN = ‘1’),
the pre-charge transistors are inhibited and the foot transistor is activated. Depending on
the voltages VCIN and VCREF the StrongARM internal latch capture either a ‘0’ or a ‘1’.
This digital output, available on OUT + and its complement OUT-, is then memorized
in the RS latch.

3.2 Functional Validation

The proposed solution has been designed using a 28 nm FDSOI technology from STMi-
croelectronics, using two different supply voltages: low VDD1 equal to 1.0 V and middle
voltage VDD2 equal to 5.5 V.

Figure 4 illustrates the self-reference generation followed by a read operation on an
HRS cell and a read operation on an LRS cell. The self-reference generation takes three
phases, whereas any successive read operations take two phases each. Please note, that
to ease the representation all addressing changes, row selection, and column multiplexer
activation, have been set here to 1 ns as for the sense circuit internal signal change. Of
course, addressing timing varies accordingly to the array size and the memory controller
feature, when the sense amplifier is embedded in a full memory chip. It is also important
to note that; even if the reference generation principle remains similar to the one presented
in Sect. 2, we proceed with capacitor discharge and not charge to minimize current copy
circuitry.

Self-reference generation: During the 1st phase, the sense amplifier is disconnected
from the memory array, accordingly the signal PD is activated and the reset signals
(RSTIN and RSTREF ) are activated with a low value to charge both capacitors to VDD1,
doing so both capacitor voltages are initialized and VIN = VREF = VDD1. Please note
that the signal PD is activated, whenever the sense circuit is disconnected from the
array. After this 1st phase, the self-reference generation process starts with the selection
of first the LRS cell reference and after with the selection of the HRS cell reference,
during this complete process, the signal SHARE is activated, thus the discharge occurs
simultaneously on both CIN and CREF . With this strategy, the charge sharing between
both capacitors is realized during the acquisition. Thus, during the 2nd phase, the sense
amplifier is connected to the memory array (PD is disabled) and both capacitors are



232 J. Gasquez et al.

discharged following (5):

VIN = VREF = VDD1 − (ILRS + Isneak) ∗ T

2.C
(5)

It is also important to notice that since the read current ILRS plus the sneak-path
current Isneak are absorbed by the structure, the potential VM rises and has to be added
to the regulated voltagesV andV/2. After the second phase, the sense is first disconnected
from the array, the HRS cell reference is addressed, and when the signals are stabilized
in the memory array, the sense amplifier is again connected, here also with the SHARE
signal activated. During this 3rd phase, here also with regulated loop activated, both
capacitors are again discharged, thus the resulting voltages on the capacitors can be
expressed following (6):

VIN = VREF = VDD1 − (ILRS + IHRS + 2.Isneak) ∗ T

2.C
(6)

This process, similarly to the principle described in Sect. 2, creates a reference
voltage image of the mean of the ILRS and IHRS including the sneak path current of the
acceded column Isneak . It is interesting to note that the self-reference generation takes
three phases, after that, only the input capacitor will have to be charged to VDD1 and
discharge accordingly to the state of the cell to be read, in two phases. Another advantage
of this self-referencing scheme is that after a reference generation and until the leakage
current of theMOS (P4, P5, N7, and N5) degrades the voltage referenceVREF , numerous
reading phases can be performed on the cells of the same column in burst mode, before
refreshing the reference voltage.

Read operation: Before any read operation, it is mandatory to disable the SHARE
signal and to reset the input capacitor by activating the RSTIN signal. Doing so during
the 1st phase of a read operation the voltage VIN is again initialized to VDD1. In the
2nd phase of the read operation, the sense amplifier is connected to the memory array
and the input capacitor is discharged by the read current, accordingly to the state of the
addressed cell, while considering the sneak path current Isneak . Depending on the state of
the addressed cell, the voltage VIN is above (HRS) or below (LRS) the voltage reference
VREF . The comparator is then activated latching the output on the two internal nodes
OUT + and OUT-. Please note, that the regulation process is also active during the read
operation 2nd phase.
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Fig. 4. Simulation of the proposed sense operation, with the self-reference generation (Reset both
capacitors & reference generation), followed by the sensing of a cell in a HRS (reset in and read)
VIN > VREF and OUT + = 0 and respectively of a LRS cell (reset in and read) VIN < VREF
and OUT + = 1.0 V. Regulated signal are also represented during all phases.

4 Sense Amplifier Validation

4.1 Sense Robustness Versus Variability

The sizing of our new sense amplifier is defined to target, 10 μA of sneak path current,
corresponding to the OTS characteristics reported in [29] and considering a 1Mb array.
The simulation timings are the ones presented in Fig. 4. First of all, the energy consump-
tion of the sense amplifier has been extracted from simulations in nominal case, per
block and per operation (self-reference generation, HRS, and LRS cell read), as shown
in Table 1. As expected, since a large current is involved during reference generation
and LRS read, these operations are the most consuming. The regulation loop is the main
contributor, whereas the consumption of the two other blocks remains below the tens of
fJ.
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Fig. 5. Equivalent resistance distribution and gaussian fit, used to simulate OTS and PCM vari-
ability with (a) OTS in off state during the read operation of a PCM in HRS state and, (b) OTS in
on state during the read operation of a PCM in LRS state
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Fig. 6. Margin window distribution including gaussian fit, with (a) VIN_HRS - VREF for a read
operation on a PCM HRS and (b) VREF - VIN_LRS for a read operation on a PCM LRS.

Then, to analyze the robustness of our sense solution, we first run an extensive set
of simulations to take into account Process – Voltage – Temperature variations. Voltage
variations are classically set to –10%, nominal, and + 10% of the VDD1 defining 3
corner cases: 0.9 V, 1 V, and 1.1 V. The operating temperature variations are also defined
with 3 corner cases: –55° C, 27° C, and 125° C. So, the validation of our sense solution
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Table 1. Sense amplifier energy consumption

Blocks Operations

Ref. Generation HRS cell read LRS cell read

Regulation 1.465 pJ 384 fJ 1.28 pJ

Capacitors 16.6 fJ 1.05 fJ 15.2 fJ

Comparator 0.052 fJ 0.3 fJ 0.68 fJ

Total 1.48 pJ 385.4 fJ 1.3 pJ

is performed against this set of 9 corner cases. For the process variations, we consider
global as well as the local source of variability at –3σ/ + 3σ, including mismatch on
the typical process corner, considering the implementation of common centroid and
inter-digitized layout in order to reduce the mismatch between capacitor and StrongArm
comparator. For all simulated voltage and temperature corners, 1000 runs are performed
to take into account the process variations. Regarding the OTS and PCM variability
[30], we have extracted dispersion reported in [29] for the OTS and in [31] for the PCM
respectively. From these extractions and knowing that during a read operation on a PCM
in LRS with OTS-on and a PCM in HRS with OTS-off, we have considered a Gaussian
distribution whose mean value is 9.93 k� and standard deviation is equal to 470 � and
another Gaussian distribution whose mean value is 15 M� and standard deviation is
equal to 1.78 M�, respectively (Fig. 5).

Figure 6.a reports the margin window (VIN −VREF ) between the input capacitor volt-
ageVIN and the reference capacitor voltageVREF , consideringour 9Voltage-Temperature
corners and with 1000 Monte Carlo runs for each corner, in the case of a read opera-
tion on a PCM HRS (noted VIN_HRS ). Respectively, Fig. 6b reports the margin window
(VREF − VIN ) in the same conditions, but for a read operation on a PCM LRS (noted
VIN_LRS ). Both margin windows exhibit a positive value of 65 mV and 44 mV, validating
the robustness of our sense solution. This robustness strongly relies on the auto-reference
generation, compensating even worst-case variations.

4.2 Sense Robustness Versus OTS Characteristics and Array Size

Keeping the same sizing and timing constraints, the proposed sense solution is evaluated
versus different levels of sneak-path current to assess the robustness of the design with
different OTS selector characteristics and different array sizes. The evaluated conditions
are reported in Table 2 with for each pair of OTS selector characteristic/array size, the
corresponding theoretical sneak-path current.

Please note, that sneak-path currents above 1mAare discarded as non-realistic values
in memory chip design-space exploration (noted NA in Table 2). The sneak path current
is calculated as follow:

Isneak =
∑n−1

row=0
Isneak[i] (7)

with Isneak[i] a single cell sneak-current when the OTS is biased at V/2 and n is the
number of rows in the array.
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Table 2. Sneak Path Current ISNEAK

Isneak[i] (A) at V/2 n×n array size

10 kb 1 Mb 100 Mb 3.2 Gb

OTS from [20]: 10 pA 10 nA 100 nA 1μ A 6 μA

OTS from [28]: 1 nA 1 μA 10 μA 100 μA 600 μA

OTS from [21]: 50 nA 50 μA 500 μA NA NA

Fig. 7. Input voltage VIN (corresponding to the read of a PCM HRS and respectively a PCM
LRS) and voltage reference VREF evolution versus the identified conditions given Table 2 for
various OTS selector characteristic and array size.

The simulation results for a typical case are reported in Fig. 7with theVIN voltage for
a read operation on a PCM inHRS (notedVIN_HRS ), respectively on a PCM inLRS (noted
VIN_LRS ), and the VREF voltage versus the sneak-path current given Table 2. One can
first notice that the auto-reference generation technique is efficient for a broad range of
sneak-path current. Actually, for sneak-path current ranging up to 600μA, the reference
voltage level is well balanced in between the LRS voltage level and the HRS voltage
level. However, due to the sizing of the capacitor block (Fig. 3.b), when the input current
overcomes a given limit (around a few hundreds ofμA), one can observe two effects. The
first one is a too large potential capacitor-discharge, with possibly VIN andVREF close to
the NMOS threshold voltages (noted as operating limit in Fig. 7), with a direct impact
on the comparator response time and an over-sensibility to mismatch. The second effect
is a nonlinear discharge of the capacitor due to the polarization regime change of the
transistor N4, however since the reference is auto-generated, this effect remains partially
compensated. Thus depending on selector characteristics as well as array size, careful
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sizing of the capacitors CIN andCREF . Has to be adopted. Finally, it is worth noting, that
using body bias options, the threshold of the MOS at the inputs of the comparator can be
trimmed to enhance the sense robustness to large sneak-path current for a given sizing.

Fig. 8. Fail results (shmoo plot) of the PVT simulation of the proposed sensing circuit for various
sneak-path currents.

4.3 Overall Sense Robustness

Finally, our sense amplifier is benchmarked on various sneak-path current for the 9 pre-
defined corners with Monte Carlo simulations (1000 runs) to include process variations.
Figure 8 presents a shmoo plot of the pass/fail sensing results considering the corners
cases and the process variation versus different sneak path current values. The first errors
occur for a sneak-path current of 400 μA for the most severe voltage corner case. The
errors are mainly due to the low voltage corner (0.9 V) since this corner reduces the
dynamic across the capacitor, leading to 17% of reading errors. For extreme sneak-path
current the solution exhibits errors, whatever the corner, meaning that the CIN andCREF

sizing is not sufficient to deal with the extreme amount of sneak-path current. Besides,
for this high sneak path, the errors are mainly due to voltage corner (0.9 V) together
with low temperature corner. For all other cases representing a large range of sneak-
currents including the targeted one (10 μA), due to the auto-reference generation, our
new sensing solution has clearly demonstrated its robustness.

5 Sense Amplifier - Layout Evaluation

Figure 9 represents the full layout of the complete solution, including two blocks
designed with thin transistors, namely the capacitor block and the comparator block,
and a middle voltage block for regulation, designed with thick transistors. The overall
area is 28.1μmby 65.2μm, whereas if we do not consider the middle voltage regulation
block, the area is limited to 7.78 μm by 9.67 μm.
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Fig. 9. Layout of the proposed sense solution,with a detailed viewof the capacitor and comparator
blocks. The regulation block dominates the overall area due to required fast response time and
middle voltage devices.

Thus, it appears that the regulation block dominates the area of the solution, with
94.5% of the complete area. The sizing of the regulation block is constrained by middle
voltage compatibility, together with important output load and fast response time (ns
range). The remaining 5.5%aremainly dominated byCIN andCREF sizing, that account
for 4.6% of the total area. The layout of CIN and CREF is realized with a common-
centroid approach since both capacitors have to be strictly equivalent [32] to avoid any
offset at the input of the comparator.
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Fig. 10. Post-Layout simulation results for the best and worst corner-cases, normalized to the
typical corner-case for ideal scheme (pre-layout) and extracted netlist (post-layout), when reading
a LRS cell and a HRS cell

To further assess the robustness of the proposed sensing solution, post-layout sim-
ulations are realized. The sizing of the entire circuit is performed to be fully compliant
with a leakage current of 10 μA. Thus, post-layout simulations have been performed for
such a current, considering three corner-cases as reported Table 3.

Table 3. Post-Layout simulation for a leakage current of 10 μA – corner-cases definition

Corner-cases Simulation conditions

Process Temperature (°C) Voltage (V)

Worst TT -55 0.9

Typical TT 27 1.0

Best TT 125 1.1

The simulation results are given for the three corner-cases, comparing the ideal (pre-
layout) and post-layout simulations. The Fig. 10 presents the percentage of variation,
normalized versus the typical case, for the worst and best cases, considering ideal and
post-layout simulation results. The results are expressed considering the read margin
variation in percent (difference between VIN and VREF) for a read operation on a LRS
cell and respectively on a HRS cell. As depicted Fig. 10, the percent of read margin
reduction is around 9% considering the worst corner-case, whatever the resistance state
(HRS or LRS) for ideal and post-layout simulation. For the best corner-case, here also
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ideal and post-layout simulation results show the same trend with an increase of the read
margin versus the typical case, of 7% (ideal) and 9% (post-layout) considering the HRS
cell and of 26% for both considering the LRS cell. To summarize, similar results are
obtained for ideal and post-layout simulation, assessing the robustness of our layouted
sensing solution versus corner cases study.

6 Conclusion

In this work, we propose for the first time a sense amplifier suitable for OTS selector and
PCM memory. The main advantage of our sensing solution, is to generate, just when
necessary, a self-reference that takes into account the sneak-path current. Thanks to this
self-reference generation, the leakage current during the read operation of a 1S1R cell
is fully compensated. Moreover, we also introduce a regulation loop to apply a constant
reading voltage on the selected cell whatever the sensing current. It is worth to note that
this regulation loop is the main contributor (94,5%) of the overall area. Finally, we have
demonstrated the exceptional robustness of our approach through extensive corner cases
and Monte-Carlo simulations, including post-layout simulations, and thus for a broad
range of sneak path current, corresponding to various OTS features and/or memory array
size. This new sensing solution opens theway to a robust OTS selector and PCMmemory
reading operation in high-end microcontroller products.
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Abstract. Convolutional Neural Network (CNN) is widely acknowl-
edged as an effective machine learning model for various detection and
recognition tasks. However, CNN often requires a significant amount of
hardware resources and is high in its power consumption. This hinders
the widespread deployment of CNN model in embedded systems and
wearable devices. Therefore, stochastic computing (SC) which leverages
the power-accuracy trade-off, began to gain popularity in various neu-
ral network (NN) implementations. This paper presents an improved SC
multiply-and-accumulate (MAC) unit that can be utilized as convolu-
tion engines in CNN. The proposed SC-MAC is operated using deter-
ministic sequence and the design achieves latency and power reductions
through parallelism and split mechanism optimizations. Furthermore, we
also introduce decoder-based Stochastic Number Generator (SNG) that
is capable of generating uncorrelated and segmented stochastic number
(SN) without using random sources. The proposed deterministic and split
SC-MAC is synthesized using typical libraries of UMC 40 nm technol-
ogy for detailed hardware evaluation. The functionality of the presented
SC-MAC is also verified in CNN using the MNIST dataset. Overall, our
SC-MAC is proven to achieve higher power efficiency (GMACS/mW)
and lower in energy consumption (pJ/MAC) as compared to the related
works.

Keywords: Stochastic Computing (SC) · Stochastic Number
Generator (SNG) · multiply-and-accumulate (MAC) · Shared
segmented/split design · Convolution engine

1 Introduction

In recent years, Convolutional Neural Network (CNN) has emerged as one
of the most promising artificial neural networks and has been deployed in a
wide range of machine learning applications such as image/video classification
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[4,14], speech recognition [25] and natural language processing [8]. Software-
based CNN/DCNN usually requires high-performance computer (with acceler-
ators such as GPUs) to process excessive and intensive computations at a very
high processing speed.

The core operation in CNN/DNN computational layer is the convolution
function that involves multiplication and accumulation of the receptive field
and a set of filters/kernels. Due to the excessive amount of multiply-accumulate
(MAC) functions, CNN has rather high implementation cost. With that, MAC
unit is also known as system’s bottleneck as its design’s characteristic fundamen-
tally determines the system’s overall area, power and performance [31]. Hence,
researchers have placed great emphasis on MAC design optimization techniques,
so as to enable neural network (NN) deployment in resource-constrained embed-
ded systems. Instead of exploring new optimization techniques in binary arith-
metic computing, this study focuses on the non-conventional computing domain,
which is Stochastic Computing (SC) for CNN implementation.

In the recent decade, SC has appeared to be a popular solution for hardware
implementation of NN. SC is a form of approximation computing that substitutes
complex mathematical operations with simple logic gates. The biggest advantage
of employing SC is that the resultant circuitry has significantly smaller hardware
footage compared to their binary fixed point counterparts [6,18]. Besides, SC is
also proven capable to outperform conventional computing in terms of fault
tolerance [23]. It is further reported that DSP and NN in their nature are able
to work relatively well using SC, provided its internal computations are able
to attain a certain level of accuracy [23,31]. However, the typical approach for
binary-to-stochastic domain conversion is rather costly as it requires random
number generators (RNGs). Not only that, in order to minimize the conversion
error due to the random fluctuations, the required length of the bit-streams
is increased exponentially with respect to its binary resolution n. As a result,
stochastic bit-stream is larger than 22n bits [13].

This paper is an extended version of an earlier publication of ours [29], where
we provide further descriptions and analysis of our SC-MAC design. To this end,
we highlight the following contribution aspects of this work:

– We present a decoder-based stochastic number generator (SNG) that pro-
duces deterministic and highly uncorrelated stochastic number (SN). Preci-
sion progression of the SNs that are generated from both the positive and
negative binary numbers are analyzed. Results proved that our SNG achieves
lower representation error and requires smaller resolution bit.

– We address the main challenges in the conventional non-deterministic SC in
achieving low latency and high accuracy multiplication. We further demon-
strate that SC multiplication using our SNG is free from random fluctuation
and accuracy loss due to data correlation.

– We incorporate parallelism and split mechanism in our SC-MAC unit in order
to reduce the computational latency. The implementation of both of the opti-
mization techniques is discussed in detail and we further elaborate the inte-
gration of approximate parallel counter (APC) in our SC-MAC design.
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– Our design’s implementation cost and its performance are evaluated using
40 nm process while the computational accuracy is validated in CNN using
MNIST dataset.

The rest of the paper is organized as follows. Section 2 briefly introduces the
background concepts of stochastic computing (SC) that are used in the rest of the
chapter. Section 3 highlights the challenges and the problems in the conventional
non-deterministic SNG design. Section 4 describes our new decoder-based SNG
design and its analysis results are presented as well. Section 5 elaborates our
new SC-MAC solution that is optimized with parallelism and split mechanism.
Section 6 summarizes the overall performance analysis and the benchmarks with
related works. Finally, the conclusions are drawn in Sect. 7.

2 Theory of Stochastic Computation

Stochastic computing (SC) is a form of non-conventional computation where
the computational data is represented as a result of continuous time stochastic
process [9]. This section describes the preliminaries of SC that will be used
throughout this chapter.

2.1 Architecture of Stochastic Computing (SC)

The general architecture of Stochastic Computing (SC) is illustrated in Fig. 1.
The architecture is comprised of stochastic number generator (SNG) that con-
verts (or randomized) binary values into stochastic bit-streams. Meanwhile, the
arithmetic functions (i.e. multiplication, addition/subtraction and many more)
are implemented as stochastic computational elements (SCE) by using simple
logic gates. The final outputs of SCE are converted (or de-randomized) back to
the binary representation. This conversion is performed through counting the
total number of non-zero bits in the stochastic bit-stream. Further descriptions
of the SC components are elaborated in the following subsections.

Fig. 1. Stochastic computing architecture that comprises of stochastic number gen-
erator (SNG), stochastic computing elements (SCE) and de-randomizer. The SCE is
performed in SC domain where its inputs and outputs are represented in stochastic
numbers (SN).
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2.2 Stochastic Number (SN)

The computational data (i.e. Stochastic Number (SN)) is encoded in the
form of digitized probability which is defined by the number of non-zero bits
in the bit-stream. In other words, the SN value is associated with the ratio of
total bit-1s to the total bit number [23]. SN represents computational data in
two different formats: unipolar and bipolar representations [9]. Using unipolar
representation, the values are bound within the internal 0 ≤ s ≤ 1, while using
bipolar representation, the values are extended to −1 ≤ s ≤ 1.

With P (S = 1) is the probability of non-zero bits in bit-stream S, both
the unipolar (UR) and bipolar (BR) representations are derived using Eq. 1
[9,28]. For example, in Fig. 2, bit-stream S of 24 = 16 bits has 13 bit-1. In
unipolar representation, bit-stream S is equivalent to UR = P (S = 1) = 0.625.
Meanwhile, in bipolar representation, the same bit-stream will be interpreted as
BR = 0.8125.

UR = P (S = 1)

BR = 2
(
P (S = 1) − 1

2

)
(1)

Fig. 2. Stochastic Number (SN) generated in serial, S = 13/16 representing 0.625 in
unipolar representation and 0.8125 in bipolar representation.

Note that stochastic representation is not defined based on the position of
any particular bit in the bit-stream S [28]. Instead, it is based on the proba-
bility of total bit-1s at arbitrary position. As SC utilizes non-positional number
representation, it is less susceptible towards errors that are caused by bit-flip.
Meanwhile, in the conventional 2’s complement computation, single bit-flip on
the higher-order bit will lead to significant error. As all the bits in the SN bit-
stream carry equal significance, single bit-flip in a long bit-stream will only cause
a minor deviation in its binary representation.

2.3 Binary-Stochastic Data Conversion

There are two types of converters (refer Fig. 3) that are required in SC archi-
tecture, which is the randomizer or generally known as the stochastic number
generator (SNG), and the de-randomizer or simply known as counter.

SNG performs binary to stochastic conversion and it is typically designed
using random source and comparator. The conversion is based on the compar-
ison between the binary data and the values from the random source (refer
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Fig. 3 (i)). If the binary input is larger than the random value, output bit-1 will
be generated, otherwise output bit-0 will be generated. Linear Feedback Shift
Register (LFSR) is one of the common choices for (pseudo) random number
generator [12]. A k-bit LFSR is able to generate a total of 2k − 1 unique k-bit
outputs. Therefore, comparing the binary input X (of k-bit) with the LFSR out-
put sequence will generate SN bit-stream of 2k−1 bits. The generated bit-stream
contains a total of X − 1 bit-1s which the SN of binary input X is represented
as X

2k
[12].

On the other hand, converting the SN back to the binary data is simply
calculating the total bit-1s in the bit-stream. This can be easily implemented
using counter such as shown in Fig. 3 (ii). Following the nature of this stochastic
representation, the subsequent SC arithmetic can be implemented using simple
logic circuits [2,23] which will be explained next.

Fig. 3. Computational data conversion. (i) Randomizer/SNG: From binary data to
stochastic representation (ii) De-randomizer/counter: From stochastic representation
back to binary data.

2.4 Stochastic Computing Elements (SCE)

Multiplication in SC can be effectively implemented using single logical gate.
Assuming the input to the multiplication, X1 and X2 are uncorrelated, the
derivation of its output Y , is given in Eq. 2. With that, as depicted in Fig. 4, the
logical AND gate and logical XNOR gate are used as a SC multiplier in unipolar
and bipolar representation respectively.

y = P (Y )
= P (X1) · P (X2) + (1 − P (X1)) · (1 − P (X2)) (2)
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Fig. 4. Stochastic Multiplier for (i) unipolar and (ii) bipolar representations.

Addition in SC is performed in a scaled manner such that the output is
probability value within the range [0, 1]. To be exact, SC addition requires a
constant scale, S, such that the sum (Y ) of two inputs X1 and X2, is defined as
Eq. 3.

y = P (Y )
= P (S)P (X1) + (1 − P (S))(P (X2))
= SX1 + (1 − S)X2 (3)

Thus, multiplexer with conditional select line S, set as P (S) = 1
2 can be used to

realize the scaled addition of two stochastic bit-streams in digital circuit.
Subtraction in SC is essentially the same as the SC addition but with one

of the input is inverted (using logical NOT gate). Both the stochastic scaled
adder and scaled subtractor are shown in Fig. 5.

Fig. 5. Stochastic scaled adder/substractor for (i) unipolar and (ii) bipolar represen-
tations.

3 Challenges in Conventional (Non-deterministic)
Stochastic Computing (SC)

Though SC is a favourable alternative to binary computing, we have identified
two main drawbacks in the computation, which also serve as the main motiva-
tions of this study. First, the stochastic number generator (SNG) incurs
the major overhead in the entire SC system. To be exact, conventional SNG
that utilizes random sources consumed up to 80% of the overall computational
cost [3]. For instance, the LFSR-based SNG that is commonly used for binary-
to-stochastic conversion (refer to Sect. 2), has high power dissipation per area as
compared to the SC element such as the logical AND or XNOR gates.
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Following this, several works either designed compact random source (such
as RNG) for SNG [11] or proposed random source sharing between the SNGs
in order to reduce the overall hardware area cost [16,20]. However, it is worth
a note that the latter approach causes correlation between the input SN bit-
streams [20]. This leads to the second challenge in SC circuit design, which the
correlation between the SN bit-streams will degrade the overall com-
putational accuracy. In other words, correlation in the input data tends to
alter the expected outcome of the stochastic logic and this is evident in stochas-
tic multiplication. One of the potential scenarios is to multiply stochastic inputs
that are directly inverse of each other and this produces the output Z as zero
instead of the product PxPy.

The technical implication of data correlation in SC context is reported in [1,
22]. The works proved that SC multiplication which involves logical AND/XNOR
gates will suffer from accuracy degradation when the inputs are correlated. On
the other hand, the study further reported that such output discrepancy does not
happen when correlated or uncorrelated input data are used in the multiplexer.
Therefore, stochastic scaled addition/subtraction naturally is not affected. This
analysis is also summarized using the examples given in Fig. 6.

Fig. 6. Analysis of SCE with correlation data. (Left) Stochastic multiplication (i) using
uncorrelated inputs and produces accurate/expected result and (ii) using correlated
inputs and produces inaccurate/unexpected results. (Right) Stochastic addition with
accurate/expected result using (iii) uncorrelated inputs and (iv) correlated inputs.

Based on the discussion above, it is evident that uncorrelated SN generation
is essential to obtain high accuracy computation in SC multiplication, as well
as SC-MAC. This also implies that random source is not necessarily needed for
SNG. Therefore, this study focuses on non-conventional SC approach where the
computations are performed on deterministic sequences.

4 New Lightweight and Deterministic SNG Design

In this work, we presented a new SNG that overcomes the drawbacks in the
conventional design (refer to Sect. 3). The new SNG is lightweight, and pro-
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duces deterministic and uncorrelated SN without the need of random sources
(PRNG/RNG). Detailed description of our design and its analysis results are
elaborated in the following subsections.

4.1 Decoder-Based and Deterministic SNG

The main concept of the proposed SNG is using binary data to produce a pri-
mary k-bit pattern which can be repeated p times to generate the deterministic
SN bit-stream. An example of the generated SN bit-stream is shown in Fig. 7.
Furthermore, both the parameters p and k can be configured in a way that the
SN fulfills the required precision and correlation levels in the SC system.

Fig. 7. Deterministic SN examples (i) For X = 0.40, 2/5 is repeated 4 times to generate
bit-stream that comprises of 40% bit-1 and 60% bit-0. (ii) For Y = 0.75, 3/4 is repeated
5 times to generate bit-stream that comprises of 75% bit-1 and 25% bit-0.

The core design of this SNG is the k-bit pattern generator, which we imple-
mented using n-to-2n decoder. With that, the decoder’s output is concatenated
p times to produce SN bit-stream of k × p bit length. The design is low in
hardware cost and high in efficiency because the SN bit-stream can be gener-
ated instantaneously within a clock cycle. The proposed decoder-based SNG and
its comparison with the conventional SNG and the existing deterministic SNGs
(using source/wave generator) are illustrated in Fig. 8.

In addition to the design complexity, we also analyzed the precision progres-
sion of the generated SN in representing the positive and the negative binary
numbers. As our deterministic SNG does not utilize random source, the gener-
ated SN is free from random fluctuations. Besides, with our SNG, highly accurate
SN can be attained with smaller resolution bit. As presented in Fig. 9, conven-
tional SNG (using random source) requires at least 216 bits to accurately repre-
sent bipolar real number in the intervals of [0, 1] and [−1, 0]. On the other hand,
our proposed SNG requires only 26 bits to sufficiently represent the same bipolar
numbers (refer Fig. 10).
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Fig. 8. (Top) SNG designs from prior works. The deterministic SNG design is reported
[13] .(Bottom) The proposed decoder-based SNG: SNG conversion for 8-bits input, X,
to deterministic SN output of 28-bits with (p = 16) segments and each segment is
(k = 16) bit-length. Note that the parameters p and k can be configured according to
the application’s requirements.

Fig. 9. Stochastic values derived using conventional (non-deterministic) SNG across a
range of 2n precision bits. It is shown that at least 216 bits is required to represent
both (i) positive and (ii) negative values in SN without error.
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Fig. 10. Stochastic values derived using proposed (deterministic) SNG across a range
of 2n precision bits. It is shown that 26 bits is sufficient to represent both (i) positive
and (ii) negative values in SN without error.

4.2 Stochastic Multiplication Using Decoder-Based SNG

Since the proposed SNG produces deterministic bit-stream which is comprised of
p repetitions of k-bit pattern, we configure these parameters to generate uncorre-
lated SNs for stochastic multiplications. Given u/x is represented in x-bits with
u number of bit-1 and the remaining x − u bits are zeros. Similarly, given v/y
is represented in y-bits with v number of bit-1 and the remaining y − v bits are
zeros. Assuming both bit-streams are repeated to S-bit length, the stochastic
multiplication of (u/x) × (v/y) can be computed correctly if S is the least com-
mon multiple (LCM) number of x and y and that x and y are relatively prime
[21].

As an example, the generated SN using the proposed SNG for input X and
Y are shown in Fig. 11 and are contrasted with the conventional random SNs.
In Fig. 11 (ii), the input x = 2/5 is repeated 3 times while the input y = 2/3 is
repeated 5 times to produce bit-streams of 15-bit (i.e. LCM(5, 3)). As a result,
multiplying (AND) both the bit-streams produces the same result as the con-
ventional stochastic multiplication in Fig. 11 (i). This example demonstrates the
generated deterministic SNs are uncorrelated and are feasible for SC multiplica-
tion.

We further analyzed the distribution of the output obtained from SC mul-
tiplication across a range of different j-bit resolution. In this analysis, SC mul-
tiplication is performed using SNs of the same value 0.6 (i.e. 0.6 × 0.6) that is
represented using bit-streams of 2j length with j varies from 5 to 10 bits. The
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Fig. 11. SC unipolar multiplication (logical AND operation) of two input sequences,
X and Y , which are generated in two different probabilistic representations; (i) random
stochastic sequence (ii) uncorrelated and segmented stochastic sequence. The example
shows that sequences in (ii) that are generated by the proposed SNG can be used to
perform multiplication in the same way as the conventional random sequence in (i).

computation is experimented using SNs generated from (i) Conventional SNG,
(ii) SNG [16] and (iii) Proposed SNG. The outcome of the SC multiplication
using various precision bits is shown in Fig. 12.

In this figure, the accuracy of SC multiplication is reflected in terms of the
mean, max and min values where the expected value is 0.6 × 0.6 = 0.36. From
the observation in Fig. 12 (iii), multiplication using deterministic and uncorre-
lated SNs produces output that is free from random fluctuation resultant from
PRNG/RNG. With that, the output is always consistent and hence, the max and
min values are the same as the median value for all the precision bit. Therefore,
our SNG in (iii) has outperformed (i) and (ii) in terms of the quality of the gen-
erated SN bit-streams. In addition to that, we further extended the experiment
to using random inputs to perform SC multiplication. The average errors with
respect to the range of precision bits are summarized in Fig. 12 (iv). For j = 10
bits, the observed error from the multiplication is less than 3%. This analysis
has proven that our proposed SNG ensures both the SC representation accuracy
and multiplication accuracy.

4.3 Near Zero Bipolar Representation Analysis

We further evaluate the accuracy of the proposed SNG in converting the near
zero binary value to SC bipolar representation. For SC bipolar encoding, it is
known that near-zero values tend to generate large random errors and this will
affect the accuracy in SC multiplication [15]. In CNN/DNN architecture, the
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Fig. 12. Accuracy of SC unipolar multiplication (logical AND operation) using inputs
0.6 derived from (i) Conventional SNG (ii) SNG reported in [16] and (iii) Proposed
SNG. The expected value is 0.36. (iv) Average error ratio for 100 runs with random
inputs.

synaptic weights are often initialized to normally distributed random numbers.
At the same time, the weights value are aggregated towards zero (due to L1-,
L2-regularization) so as to give penalties to non-zero parameters as a means to
prevent over-fitting [10]. Thus, deploying SC for CNN/DNN applications can be
challenging where the majority kernel weights are near-zero values. In this case,
using deterministic SN which is highly consistent (without random fluctuation)
will be a better alternative.

In this analysis, the representation accuracy for zero and near-zero values
using deterministic SN (from our SNG) as compared to the conventional random
SN is shown in Fig. 13. First, the accuracy obtained from zero values encoding
in SC bipolar representation using a range of precision bit is shown in Fig. 13
(i). The result shows that it requires more than 216 bits to achieve error free SC
encoding for zero binary value. On the other hand, our deterministic approach
only requires 24 bits to accurately represent zero value. Next, we analyzed the
approximation error obtained for near zero values (x ∈ [−0.02, 0.02]) in SC
bipolar representation. Based on the result in Fig. 13 (ii), conventional bipolar
representation has significant higher approximation error for near zero values.
The error is observed to be higher at the value is closer towards zero.
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Fig. 13. Error analysis in SC bipolar representation for (i) zero value (ii) near zero
values. The analysis results show that the proposed SNG is able to produce SN with
lower error.

4.4 Hardware Area and Power Analysis

In this subsection, we present the analysis of the hardware cost (area resource and
power consumption) of the proposed SNG. The synthesis result of the existing
designs and our SNG are summarized in Table 1. The results show that our SNG
has the lowest power consumption and is the most lightweight (area) compared
to both the conventional and the other deterministic-based SNGs.

5 New SC-MAC Solution for Convolution Engine

In the previous section, we presented a new SNG design that generates uncorre-
lated and deterministic SN which (i) is free from random fluctuation errors and
(ii) achieves high bipolar representation accuracy. Following this, we propose a
new SC-MAC design for convolution engine that computes under deterministic
stochastic logic. We further incorporated parallelism and split SC mechanism in
order to achieve energy reduction and power efficiency improvement. Detailed
description of the proposed SC-MAC design will be explained in the following
subsections.
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Table 1. Hardware area and power for various SNG designs for 2 parallel inputs of
8-bits resolution, synthesized using 40 nm process node at nominal voltage.

SNG Area Power Remarks

Work [23] 357.14 366.62 LFSR and comparator

Work [3] 263.90 470.91 Analog-stochastic Converter

Work [30] 211.75 210.17 Error cancellation (ECPCC)

Work [21] 237.04 395.06 PWM (deterministic)

327.46 NA Relative prime (deterministic)

Work [13] 436.61 NA Rotation (deterministic)

327.46 NA Clock divider (deterministic)

This work 173.71 4.2 Split SC and decoder (deterministic)

5.1 Parallel and Split SC Computation

Conventional SC often suffers from long computational latency due to SNG that
is operated in a serial manner. On the other hand, the decoder-based SNG pre-
sented in this work enables the SN bit-stream to be generated instantaneously
(refer to Sect. 4). With that, the overall SC performance is no longer constrained
by the stochastic input generation rate. Subsequently, speed improvement tech-
niques are feasible to be incorporated in our SC-MAC design effectively.

First, parallelism technique can be employed in order to reduce the total
execution cycles. Using this approach, bit-parallel processing is incorporated
in the SC-MAC operation such that L-bit sequence is partitioned into L/r
sequences of r bits. This way, all of the L/r sequences can be processed in
parallel as shown in the example in Fig. 14. This figure shows that the 16-bit
input is partitioned into four of 4-bit sequences which can be processed simul-
taneously. Therefore, for our SC-MAC implementation, we have chosen r = 32
such that the inputs to the SC-MAC with L = 256 can be completed in 8 cycles.
In each cycle, the r-XNOR can be processed simultaneously and followed by
accumulation, which will be discussed in the next subsection.

Second, split SC mechanism can be incorporated to effectively reduce the
SN bit-length. We introduced split SC-MAC architecture where the N bits fixed-
point binary data is split into k parts prior to the computation. Therefore, the
resulting SN is represented as k times of 2N/k bit-streams (instead of a single
2N bit-stream). This results in computation speedup by a factor of k. Similar
approach was presented in [7] but the work reviewed that their design incurred
higher area and power consumption as compared to the original SC architecture.
Furthermore, the design also required additional SNGs to generate parallel bit-
streams and this leads to hardware cost overheads.

In this study, we implemented split stochastic processing with k = 2 such that
the binary inputs are divided into 2 equal segments (refer Fig. 16). In the context
of convolution, given two fixed point binary input to the SC-MAC are input
feature X, and kernel weights W , these inputs are divided as X = {XH ,XL} and
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Fig. 14. Bit-parallelism of r = 4 for SC-MAC function. This example shows the input
sequence of 16-bits that are partitioned into shorter sequences (r = 4).

W = {WH ,WL}. With that the SNG converts the segments XH ,XL,WH ,WL

to SN bit-streams prior to MAC operations.

5.2 Optimized Bipolar SC Multiplication and Addition

The overall architecture of our split SC-MAC architecture as the core compu-
tation for convolution engine is depicted in Fig. 15. An example is provided in
the figure to explain the computation. The bipolar SC multiplication and SC
addition for the MAC operation in our design are explained in the following.

SC Multiplication: While the conventional bipolar SC multiplication is
described in Sect. 2, the split bipolar SC multiplication used in this work
is described in Eq. 4 (also refer to Fig. 16). Note that in Eq. 4, the term
Pr(Xlo) · Pr(Whi) is intentionally excluded from the original dot-product terms
(i.e. Pr(Xlo) ·Pr(Wlo), Pr(Xlo) ·Pr(Whi), Pr(Xhi) ·Pr(Wlo), Pr(Xhi) ·Pr(Whi)).
For the input feature X, its MSB carries larger significance over its LSB and
meanwhile, the kernel weights values are often very small and hence its LSB
is more significant compared than its MSB. Therefore, for split SC-MAC, this
dot-product term can be omitted in order to reduce the computation complexity.

The split bipolar SC multiplication requires XNOR for dot-product (·) and
the term {Pr(Xhi) + Pr(Xlo)} is simply a bit concatenation. Furthermore, the
dot-product is performed using 32 XNORs executed in parallel.
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Fig. 15. Architecture of the proposed split SC-MAC. SNG is performed on the LSB
and MSB of both the 8-bits input feature (X) and the kernel weight (W ). SNGs
generate deterministic SN of 256-bits using segments of 16-bits (×15) and 15-bits (×16)
respectively. The parallel SC-MAC can be referred to Fig. 14 with r = 32. The output
is converted back via bit-shifting and addition.

Fig. 16. Split SC and deterministic bipolar multiplication (using XNOR) for input
X = {XH , XL} and W = {WH ,WL}. The bipolar multiplication is as derived in Eq. 4.
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Pr(X) = {Pr(Xhi), Pr(Xlo)}
Pr(W ) = {Pr(Whi), Pr(Wlo)}

Pr(Z) = Pr(X) · Pr(W )
= {Pr(Xhi) · Pr(Whi), Pr(Wlo) · [Pr(Xhi) + Pr(Xlo)]} (4)

SC Addition: Stochastic representation values are kept within the probability
interval of either [0, 1] or [−1, 1] for unipolar and bipolar format respectively.
Therefore, a typical SC addition/subtraction is implemented using multiplexer
(with fixed select-and-scale) in order to keep the output value within the interval
(see Fig. 17). Given an example where SC-MAC is used as a convolution engine
for grayscale images with a filter of N × N kernel size, there are two potential
problems that can be identified. First, there will be an inevitable precision lost
as the output can only be scaled up to the closest factor of �log2(N ×N)�. Fur-
thermore, the accuracy will be affected due to the loss of n− 1 information [19].
Second, if there are several zero value operands throughout the MAC computa-
tion, using a multiplexer with constant selector as the SC scaled-adder will end
up over scaling in the accumulated output.

Fig. 17. Conventional SC fixed scaled adders for 4-operands.

With that, using a parallel counter (see Fig. 18 (i)) will guarantee accurate
accumulation but it is consisted of array of full adders (FA). FA uses binary adder
logic circuit and hence it is relatively high in hardware cost [17,19]. Therefore,
in this study, we utilize Approximate Parallel Counter (APC) [17] which has
reduced number of FA components (see Fig. 18 (ii)). The computation fulfils the
same counting function but using less area and power consumption compared to
the parallel counter. However, there is a slight trade-off in the accuracy, which is
acceptable for approximation computing such as SC. Unlike multiplexers, APC
enables us to have the flexibility to scale the accumulated values (i.e. count-and-
scale) which the factor can be fine-tuned to suit different applications. Not only
that, since the output of the APC is already in binary domain, the stochastic-
to-binary conversion/de-randomizer is no longer needed.
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Fig. 18. Converter/De-randomizer to convert SN bit-stream to binary number using
counter [17]. The example shown is to convert 16-bit SN to 4-bit binary using (i)
Approximate Parallel Counter (ii) Parallel counter.

6 Experimental Result and Analysis

In this section, we discuss the evaluation result of our proposed SC-MAC unit
in terms of its functionality as convolution engine, as well as its performance in
hardware implementation. In doing so, our SC-MAC is integrated in CNN and
the network’s accuracy performance in MNIST classification is analyzed. There-
fore, a total of 70, 000 MNIST data samples with each is 28 × 28 of handwritten
digit images in grayscale are used for classification. The CNN topology used in
our test case is as the following.

The first hidden layer is a Convolution layer that has 32 filters and all of the
filters have 3 × 3 sliding window with a stride of 1. This is followed by a Max
pooling layer with pool size of 2×2. Regularization layer (Dropout) is configured
to randomly exclude 25% of the neurons in the layer to avoid over-fitting. This
is followed by a Flatten layer that converts 2D convolution matrix data to 1D
data, which will then be connected to Fully Connected layer. Dropout layer of
30% is used after that and finally, the output layer has 10 neuron for 10 classes.
Using the proposed SC-MAC in the Convolution layer, the accuracy obtained
from MNIST classification is 98.2%.

Furthermore, we benchmark our SC-MAC design with the existing works
in terms of power efficiency (TOPS/W) and energy per operation (pJ/MAC).
For comprehensive hardware analysis, our design is synthesized using typical
libraries of UMC 40 nm technology. In Table 2, the works presented in [26] and
[27] are the only work besides ours that implemented SC-MAC without using
random sources.

The work in [26] presented a new SC multiplication algorithm which is also
known as vectorized multiplication (BISC-MVM). In this design, the SNG uti-
lized a finite state machine (FSM) and a multiplexer to generate deterministic SN
with bit shuffling pattern. The work is further extended to the implementation in
Fully Connected layer and has successfully achieved performance improvement
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[27]. The study performed quantitative analysis that is inclusive of the end-to-
end SC computation only. In addition, the work in [15] proposed LFSR-based
SNG and the SNGs are effectively shared in the parallel computation. Despite
the fact that the proposed SNG sharing approach does not lead to data corre-
lation, the generated SNs may be susceptible towards random fluctuation error.
In addition to that, the reported accuracy is lower compared to our work.

With this study, we have further proven the feasibility of utilizing determinis-
tic sequence for SC. The presented bipolar decoder-based SNG is able to generate
deterministic and uncorrelated SN which attains high precision progression with
shorter bit-length compared to the conventional SNG. The generated SN bit-
stream is free from random fluctuations error for both the zero and near-zero
bipolar representation. Furthermore, our SNG is the most compact in size and
has the lowest power consumption compared to the existing deterministic SNG
in digital domain [13,21]. As the SN is generated instantaneously in our design,
this enable further latency reduction through parallelism and split mechanism in
our SC-MAC design. Overall, our proposed SC-MAC design attained the highest
power efficiency (12.5 GMACS/mW or 25TOPS/W) and the lowest energy per
MAC operation (80 fJ/MAC) as compared to the prior arts.

7 Conclusion

In summary, we presented a power-efficient deterministic SC-MAC unit, that is
suitable to be deployed as a lightweight convolution engine. This SC-MAC uti-
lizes decoder-based SNG that is capable of generating deterministic and uncorre-
lated SN bit-streams without using random source. Furthermore, the new SNG
requires significantly shorter bit-length to accurately encode bipolar SN without
random fluctuation. As the SNs are generated instantaneously, the subsequent
computation latency can be reduced effectively and this leads to energy savings
in the proposed SC-MAC. Our work incorporated parallelism and split mecha-
nism in the presented SC-MAC unit in order to improve the power efficiency of
the design without incurring excessive cost. We further demonstrated the pro-
posed SC-MAC as convolution engine in CNN and its functionality is tested in
MNIST classification. The experimental results proved that our deterministic
SC-MAC surpasses the existing designs in terms of GMACS/W and fJ/MAC
metrics.
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