
Towards Interpreting Vulnerability
of Object Detection Models
via Adversarial Distillation

Yaoyuan Zhang1, Yu-an Tan2, Mingfeng Lu3, Lu Liu2, Quanxing Zhang1,
Yuanzhang Li1, and Dianxin Wang1(B)

1 School of Computer Science and Technology, Beijing Institute of Technology,
Beijing 100081, China

{yaoyuan,zhangqx,popular,dianxinw}@bit.edu.cn
2 School of Cyberspace Science and Technology, Beijing Institute of Technology,

Beijing 100081, China
{tan2008,liulu}@bit.edu.cn

3 School of Information and Electronics, Beijing Institute of Technology,
Beijing 100081, China

lumingfeng@bit.edu.cn

Abstract. Recent works have shown that deep learning models are
highly vulnerable to adversarial examples, limiting the application of
deep learning in security-critical systems. This paper aims to interpret
the vulnerability of deep learning models to adversarial examples. We
propose adversarial distillation to illustrate that adversarial examples
are generalizable data features. Deep learning models are vulnerable to
adversarial examples because models do not learn this data distribu-
tion. More specifically, we obtain adversarial features by introducing a
generation and extraction mechanism. The generation mechanism gen-
erates adversarial examples, which mislead the source model trained on
the original clean samples. The extraction term removes the original
features and selects valid and generalizable adversarial features. Valu-
able adversarial features guide the model to learn the data distribution
of adversarial examples and realize the model’s generalization on the
adversarial dataset. Extensive experimental evaluations have proved the
excellent generalization performance of the adversarial distillation model.
Compared with the normally trained model, the mAP has increased by
2.17% on their respective test sets, while the mAP on the opponent’s test
set is very low. The experimental results further prove that adversarial
examples are also generalizable data features, which obeys a different
data distribution from the clean data. Understanding why deep learning
models are not robust to adversarial samples is helpful to attain inter-
pretable and robust deep learning models. Robust models are essential
for users to trust models and interact with the models, which can pro-
mote the application of deep learning in security-sensitive systems.

Keywords: Adversarial examples · Interpretability · Object
detection · Deep learning

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Zhou et al. (Eds.): ACNS 2022 Workshops, LNCS 13285, pp. 53–65, 2022.
https://doi.org/10.1007/978-3-031-16815-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16815-4_4&domain=pdf
https://doi.org/10.1007/978-3-031-16815-4_4


54 Y. Zhang et al.

Fig. 1. A conceptual diagram of our framework. The paper adopts the MTOG attack
to generate adversarial examples to make an object detector fabricate many bounding
boxes. Adversarial features are extracted from these bounding boxes to construct a
new dataset, called the adversarial dataset. By training an object detection model on
the adversarial dataset, we obtain an adversarial distillation model.

1 Introduction

Recent works have shown that deep learning models are vulnerable to adver-
sarial examples [1,27], which imperceptibly perturbed natural inputs to induce
DNN models to make erroneous predictions. Previous work tried to explain this
phenomenon from multiple perspectives, [2,24] interpret the existence of adver-
sarial examples from the standpoint of theoretical models, and [8,18,25] focus on
the demonstration based on high-dimensions quantities. However, these theories
often fail to capture the behavior we observe in practice fully. More broadly, pre-
vious work in the field tends to treat adversarial examples as aberrations caused
by the high dimensional nature of the input space or statistical fluctuations in
the training data [8,10,27]. [13] propose a new perspective on adversarial exam-
ples. They demonstrate that adversarial examples are not bugs but features in
image classification. Still, there are no explanations for adversarial examples in
more complex computer vision tasks, such as object detection.

In this paper, we commit to interpreting the vulnerability of deep learning
object detection models to adversarial examples, inspired by [13]. We illustrate
that adversarial examples are classification features and localization features.
Object detectors are vulnerable to adversarial examples because they do not
learn the data distribution of adversarial examples. Object detectors tend to
exploit any available features to localize the position of objects and classify
them to a specific class, even those features that seem inexplicable to humans.
We demonstrate that object detection models can learn valuable features on
adversarial examples and be generalized to the whole data distribution, just like
benign examples.

To corroborate our hypothesis, we propose adversarial distillation. Given an
object detection model trained on the benign training set, we improve the TOG
attack [6] to generate adversarial examples and design an extracting adversarial
features module to construct an adversarial dataset. The inputs of this dataset
are nearly identical to the originals, but all appear incorrectly localized and
labeled. They are associated with their new ground truth (not the originals)
only through small adversarial perturbations (and hence utilize only adversarial
features). We train the adversarial distilled model on this adversarial dataset



Interpreting Vulnerability of Models via Adversarial Distillation 55

and evaluate the performance of this model both on the adversarial test set
and the original test set. Experimental results have shown that the adversarial
distilled model yields well generalization despite the lack of predictive human-
visible information, which indicates that adversarial examples are features sat-
isfying a specific data distribution but different from the distribution of benign
data. We consider one class object detection dataset because this type of dataset
has a simple category, and the model trained on the dataset can better focus
on localization features. We further choose the SAR ship detection dataset [29]
as the original dataset and implement adversarial distillation on this dataset. In
summary, we make the following contributions:

• We train an object detection model on the SAR ship dataset, which obtains
a great mAP. Simultaneously, We craft adversarial examples to attack this
model and effectively decrease the mAP.

• We establish experiments to illustrate that adversarial examples are not vul-
nerabilities but well-generalizable features satisfying a specific data distribu-
tion.

The rest of this paper is organized as follows. In Sect. 2, we briefly review the
related backgrounds. We present the detail of the framework in Sect. 3. Section 4
reports all experimental results. Finally, we summarize the conclusion in Sect. 5.

2 Related Works

2.1 Interpretable Adversarial Examples

[13] propose a novel explanation for the existence of adversarial examples. The
standard training method can learn both useful robust and non-robust features
in their work. The non-robust features are beneficial to generalization but very
sensitive, which makes classifiers vulnerable to adversarial examples. The sen-
sitivity of non-robust features should be understood as their small changes will
significantly change the model’s predictions. The useful, robust feature is the
common feature with certain interpretability, such as cat ears and cat tail in
cat classification. When performing formal training based on robust features
and non-robust features, respectively, classifiers can obtain good accuracy on
the standard test set. Classifiers with different structures trained on different
datasets of the same distribution may learn similar non-robust features, which
makes the adversarial examples transferable. [13] validates the hypothesis by
extracting the image classification dataset into roust features and non-robust
features and use the Gaussian distribution as an example.

2.2 Object Detection

Object detection is one of significant computer vision tasks, which detects the
class and location of objects in digital images [9,15,21]. In object detection,
we take YOLOv3 [22] as an example. Given an input image x, the model first



56 Y. Zhang et al.

generates a great number of S candidate bounding boxes B̂(x) = {ô1, ..., ôS}
where ôi = (b̂x

i , b̂y
i , b̂w

i , b̂h
i , Ĉi, p̂i) represents a candidate centered at coordinates

(b̂x
i , b̂y

i ), and (b̂w
i , b̂h

i ) is width and height of the candidate. The objectness score
Ĉi ∈ [0, 1] denotes whether the candidate contains an object, and a K-class
probability vector p̂i = (p̂1i , p̂

2
i , ..., p̂

K
i ) estimates the class of the corresponding

candidate. The detection process usually divides the input x into grids with
different scales, and each grid cell generates plenty of candidate bounding boxes
based on the anchors and localizes the object centered at the cell. The candidates
with low prediction confidence are excluded via applying confidence threshold,
and those with high overlapping are removed by non-maximum suppression. The
remaining candidates constitute the final detection result Ô(x).

For training an object detector, each object oi in a training sample (x,O) is
allocated to one of the S bounding boxes according to the center coordinates and
the amount of overlapping with the anchors. O = {oi|1i = 1, 1 ≤ i ≤ S} is a set of
objects in ground truth where 1i = 1 if the i-th bounding box is responsible for an
object and 0 otherwise, oi = (bx

i , by
i , bw

i , bh
i , pi) with pi = (p1i , p

2
i , ..., p

K
i ) and pc

i =
1 if the class of oi is c. Training a DNN model often begins with initializing the
parameters of the model randomly and updating parameters slowly via taking
the derivative of the loss function L concerning parameters θ on a mini-batch of
input-output pairs {(x,O)} with the following equation until convergence:

θt+1 = θt − α∇θt
L(x,O; θ), (1)

where α is the learning rate. The loss function of a deep object detection network
is divided into three parts, each part corresponds to describing the existence,
locality, and category of a detected object. The objectness score Ĉi can be learned
by minimizing the binary cross-entropy lBCE :

Lobj(x,O; θ) =
i=1∑

S

[1ilBCE(1, Ĉi)]

Lnoobj(x,O; θ) =
i=1∑

S

[1 − 1ilBCE(0, Ĉi)],

(2)

The spatial locality is learned by minimizing the squared error lSE :

Lloc(x,O; θ) =
i=1∑

S

1i[lSE(xi, x̂i) + lSE(yi, ŷi)

+ lSE(
√

Wi,

√
Ŵi) + lSE(

√
Wi,

√
Ŵi)]

(3)

The K-class probabilities p̂i is optimized by minimizing the binary cross-
entropy:

Lprob(x,O; θ) =
i=1∑

S

1i

∑

c∈classes

lBCE(pc
i , p̂

c
i ) (4)



Interpreting Vulnerability of Models via Adversarial Distillation 57

Therefore, the deep object detection network can be optimized by the linear
combination of the above loss functions:

L(x,O; θ) = Lobj(x,O; θ) + λnoobjLnoobj(x,O; θ)
+ λlocLloc(x,O; θ) + Lprob(x,O; θ),

(5)

Synthetic Aperture Radar (SAR) [12,14] is a high-resolution imaging radar
that can generate high-resolution two-dimensional images of range and azimuth
via reflecting the emitted electromagnetic wave onto the target. For SAR can
provide high-resolution images in all weather conditions, SAR images have been
widely used for complex object detection and recognition tasks, such as ship
object detection. With the widespread application of SAR in ship detection [28],
some large-scale datasets have emerged, such as SSDD [14], OpenSARShip [12]
and SAR ship dataset [29].

2.3 Adversarial Examples

Adversarial examples are first found in image classification task [23], an adver-
sarial example x′ is crafted by adding imperceptible perturbations to a clean
input x, making the target model output incorrect predictions [4,10,16,17,19].
The process of generating an adversarial example can be defined as

min ‖ x′ − x ‖p s.t.Ô(x′) �= Ô(x), (6)

where p represents the distance metric, which can be the L0, L2 and L∞ norm.
Adversarial examples also exist in object detection task [3,26,30]. TOG

attack is a family of adversarial attacks on object detection, including object-
vanishing attack, object-fabrication attack, object-mislabeling attack and untar-
geted attack [6,7]. We take the untargeted attack as an example to introduce
the TOG attack. TOG attack fixes the model parameters and initializes with a
clean image (i.e., x′

0 = x), iteratively updating the adversarial example with the
following equation:

L(x′
t, Ô(x); θ) = Lobj(x′

t, Ô(x); θ) + Lnoobj(x′
t, Ô(x); θ)

+ Lloc(x′
t, Ô(x); θ) + Lprob(x′

t, Ô(x); θ),
(7)

x′
t+1 = Πx,ε[x′

t + αΓ (∇x′
t
L(x′

t, Ô(x); θ))] (8)

where Πx,ε[·] is the projection onto a hypersphere with a radius ε centered at x
in Lp norm, Γ is a sign function.

2.4 Distillation

[11] initially propose a distillation method to reduce a large model (the teacher)
to a smaller distillation model (the student), thereby improving accuracy on the
test set and speeding up the rate of the student predicting hard labels (ground
truth). At a high level, the working principle of distillation can be summarized



58 Y. Zhang et al.

into three steps: one is to train the teacher on the training set in a standard way.
The second is to use the teacher to label each instance on the training set with
soft labels (the output vector of the teacher). For example, the hard label on an
image of a dog indicates that it is classified as a dog. At the same time, the soft
label describes that it is a dog with 76% probability, a cat with 22% probability,
and a cow with 0.2% probability. The third is to train the distillation model on
the soft labels from the teacher instead of the hard labels from the training set.
Distillation is exploited in multiple domains [5,20].

3 Methodology

3.1 Definitions

We consider object detection with one class (K = 1 in Sect. 2.2), where input-
output pairs (x,O) ∈ X ×{(bx

i , by
i , bw

i , bh
i , pc

i )} are sampled from a data distribu-
tion D. Following the definition of [13], we define a function f to represents an
object detector. Additionally, we define fl as a localization function and fc as a
classification function.

• γ−valuable localization features: For an input x, we call a localization feature
fl γ−valuable (γ > 0) if it is correlated with the ground-truth bounding boxes
in expectation, that is if

E(x,O)∼D[B(x) · fl(x)] ≥ γ, (9)

where B(x) = {(bx
i , by

i , bw
i , bh

i )}.
• ρ−valuable classification features: For an input x, we call a classification

feature fc ρ−valuable (ρ > 0) if it is correlated with the ground-truth label
in expectation, that is if

E(x,O)∼D[c · fc(x)] ≥ ρ. (10)

• Valuable adversarial features: When the input is x′, we define γ−valuable
adversarial localization feature and ρ−valuable adversarial classification fea-
ture satisfying Eq. 9 and Eq. 10, respectively.

3.2 Framework

In this work, we elaborate on adversarial distillation for interpreting that adver-
sarial examples are the features satisfying a specific data distribution. A con-
ceptual description of these experiments can be found in Fig. 1. We construct
an adversarial dataset where the input-output association is based on valuable
adversarial features. We show that this dataset suffices to train an object detec-
tor with good performance on the adversarial test set. Still, poor performance
on the original test set results from the gap between original and adversarial
distribution.



Interpreting Vulnerability of Models via Adversarial Distillation 59

Fig. 2. An example in Sect. 3.3. A is the adversarial example generated by MTOG;
B, C and D are the intermediate images selected after Score, K-means and IOGT,
respectively; E is the final result selected after NMS.

3.3 Extracting Adversarial Features

We construct a dataset where the input-output association is based on valuable
adversarial features, including localization and classification. To accomplish this,
we modify each input-output pair (x,O) as follows. We integrate momentum into
TOG attack [6] (MTOG) to generate the corresponding adversarial examples on
original datasets so that the original object detector f can detect many objects
which do not exist in human eyes. We then extract adversarial features via
selecting these forged bounding boxes according to the following steps.

Given an adversarial example x′, (1) Score: we discard bounding boxes
with scores below the threshold to ensure adversarial classification features
ρ−valuable; (2) K-means: we analyze the range of original ground-truth bound-
ing boxes by k-means clustering algorithm and remove the bounding boxes that
exceed this range to a certain threshold; (3) IOGT: we design the IOGT method
to discard those bounding boxes intersecting with the original ground truth,
which ensures that the selected bounding boxes do not include original localiza-
tion features. IOGT can be formulated as

IOGT (B) =
B ∩ GT

GT
, (11)

where GT represents all original ground-truth bounding boxes {(bx
i , by

i , bw
i , bh

i )},
B represents the candidate bounding box; (4) NMS: we exploit non-maximum
suppression to ensure that the forged bounding boxes do not intersect, mak-
ing the generated localization features not duplicated. The remaining bounding
boxes are aligned as O′ to form the new input-output pair (x′, O′). Finally,
the resulting input-output pairs make up the new dataset, named adversarial
dataset. The whole process is described in Algorithm 1, and Fig. 2 shows an
example of processing by the extracting adversarial feature module.

3.4 Adversarial Distillation

We elaborate on adversarial distillation for interpreting that adversarial exam-
ples are the features satisfying a specific data distribution. A conceptual descrip-
tion of these experiments can be found in Fig. 1. We first train an object detection
model (the teacher) on the original dataset. Then, we use the MTOG attack to



60 Y. Zhang et al.

Algorithm 1 Extracting adversarial features
Input: An object detector f ; an adversarial example x′ and ground truth O; Threshold
for score, k-means, IOGT and NMS
Output: Adversarial ground truth O′

1: Input x′ to f and obtain B̂(x′) = {ô1, ..., ôn}, ôi = (b̂xi , b̂
y
i , b̂

w
i , b̂

h
i , Ĉi, p̂i);

2: temp1 = temp2 = [ ]
3: for ôi in B̂(x′) do
4: if p̂i > score then
5: continue
6: end if
7: if (b̂wi , b̂

h
i ) not in k-means then

8: continue
9: end if

10: if IOGT(b̂xi , b̂
y
i , b̂

w
i , b̂

h
i ) �= 0 then

11: continue
12: Add ôi into temp1
13: end if
14: end for
15: temp2 = NMS(temp1)
16: O′ = temp2
17: return O′

generate adversarial examples against the teacher and obtain the correspond-
ing outputs of the teacher. We next use Sect. 3.3 to craft adversarial ground
truth, thus making the adversarial dataset. Finally, we train the distilled model
(the student) on the adversarial training set from the teacher rather than on
the original training set. We find that the distilled model performs well on the
adversarial test set, which indicates that adversarial examples are features sat-
isfying a specific data distribution. Meanwhile, the student performs poorly on
the original test set, which indicates that the gap between the adversarial and
original data distribution results in poor generalization.

4 Experiments

4.1 Setup

Datasets. We select SAR ship detection dataset consisting 43,819 ship chips [29].
We randomly allocate the training set, validation set, and test set according to
the ratio of 7: 2: 1. Meanwhile, we do the same operation on the corresponding
adversarial dataset.

MTOG Attack. The maximum perturbation ε is set to 8 with pixel value in
[0,255]. The number of iterations T is 20, the step size is 2 and the decay factor μ
is 1.0. We set the coefficient λ = 0.2 empirically in order to reduce the proportion
of Lnoobj in L.



Interpreting Vulnerability of Models via Adversarial Distillation 61

Fig. 3. Some random samples from the original SAR Ship dataset and the correspond-
ing adversarial examples.

Extracting Adversarial Features. We set the threshold of the classification score
of each candidate bounding box in the output of the model to 0.5 in order to
ensure adversarial classification features ρ−valuable. We set the range of k-means
clustering to [5, 104]. And the bounding box threshold of both IOU in NMS and
IOGT is set to 0 to remove the intersecting bounding boxes.

Adversarial Distillation. We train three Yolov3-Mobilenet1 models on the SAR
ship detection dataset and its corresponding adversarial dataset, respectively.
For each model, we divide the training process into two steps. At the first step,
Adam optimization is used with a learning rate of 0.001 and a batch size of 16,
and training epochs are 30. In the second step, the learning rate is 0.0001, the
batch size is 16, and the training epochs are 20. After models are trained, we test
these models on the original test set and adversarial test set. We evaluate the
performance of models by mean Average Precision (mAP), and the threshold of
IOU is set to 0.5. Our experiments are conducted on an Intel(R) Xeon(R) CPU
E5-2620 v4 @ 2.10 GHz CPU, a GPU of NVIDIA GeForce RTX 2080 Ti with
11 GB, and 32GB of memory.

4.2 Generating Adversarial Examples

Figure 3 shows test SAR images (left) with the detection results made by
YOLOv3-Mobilenet on benign (the “Benign GT” column), the corresponding
adversarial examples (the “MTOG” column) generated by MTOG attacks with
the detection results made by YOLOv3-Mobilenet (the “Adv Result” column),
and the adversarial example selected by Sect. 3.3 (the “SELECT” column).

1 https://github.com/Adamdad/keras-YOLOv3-mobilenet.

https://github.com/Adamdad/keras-YOLOv3-mobilenet


62 Y. Zhang et al.

Table 1. The average number of bounding boxes in extracting adversarial features
module. “Ori” and “Adv” represent the average bounding boxes of original images and
adversarial examples, respectively. “Score”, “K-means”, “IOGT”, and “NMS” are defined
in Sect. 3.3.

Training Validation Test

Ori 1.363 1.347 1.352
Adv 13.393 13.359 13.520
Adv+Score 12.436 12.580 12.402
Adv+Score+K-means 10.840 10.954 10.789
Adv+Score+K-means+IOGT 10.343 10.452 10.289
Adv+Score+K-means+IOGT+NMS 8.528 8.557 8.490

Table 2. The mAP (%) of original object detector (Ori-model) and adversarial object
detector (Adv-model) on the original test set (Ori-test) and adversarial test set (Adv-
test), respectively.

Ori-test Adv-test Adv-GT-test

Ori-model 86.34 83.45 0.12
Adv-model 1.19 88.51 –

From Fig. 3, we can observe that the MTOG attack fools the object detector
to give many invisible objects (bounding boxes), most with high confidence and
some with low confidence. After MTOG, the mAP of the detector drops to
0.12%, the results are shown in Table 2. However, some bounding boxes with
natural objects still exist, some bounding boxes intersect together, and the aspect
ratio of some bounding boxes does not match the k-means clustering result.
After extracting adversarial features, we remove those bounding boxes with low
confidence or intersect with ground truth or the aspect ratio not in k-means
clustering. We keep the one with the highest confidence for the intersecting
bounding boxes.

Table 1 shows the average number of bounding boxes after each step in
Sect. 3.3. In Table 1, MTOG adversarial attack craft plenty of bounding boxes
compared to original images. We follow the steps described in Sect. 3.3 to remove
useless bounding boxes. We take the training set as an example. After an adver-
sarial attack, the average number of bounding boxes increases from 1.363 to
13.393. After Score, it drops to 12.436. After K-means, it decreases by 1.596.
Finally, the average number of bounding boxes is 8.528.

4.3 Evaluation on Adversarial Distillation

We report in Table 2 the mAP of original object detector (Ori-model) and adver-
sarial object detector (Adv-model) on the original test set (Ori-test), adversarial
test set (Adv-test) and the test set with adversarial examples and the ground
truth (Adv-GT-test), respectively.



Interpreting Vulnerability of Models via Adversarial Distillation 63

In the first column of Table 2, the data (86.34%) represents the result of
training on the original dataset and evaluation on the original dataset. This
data shows that YOLOv3-Mobilenet performs well on the SAR ship dataset.
The data (1.19%) represents the result of training on the adversarial dataset
and evaluation on the original dataset, which indicates that the gap between
the adversarial and original data distribution results in poor generalization. The
data (83.45%) in Table 2 is the mAP of original models evaluated on the adver-
sarial dataset and 0.12% shows the MTOG attack successfully attack the original
model. The data (88.51%) indicates that adversarial examples are features satis-
fying a specific data distribution, just like the original dataset. It further explains
that adversarial examples are not bugs, but features, some of which are indeed
valuable for localization and classification in object detection.

5 Conclusion

This paper proposes a new perspective on adversarial examples that are not aber-
rations but features satisfying a specific data distribution. In object detection,
adversarial examples contain classification features and localization features.
These features are helpful for models to generalize. We support this hypoth-
esis by performing adversarial distillation, which constructs adversarial datasets
on the teacher and trains the adversarial object detector on these datasets. We
select ship detection in SAR images as an original dataset for its category is
simple, and the model can better focus on localization features. We introduce
the MTOG attack to generate adversarial examples to provide a basis for con-
structing an adversarial dataset. The experiment results show that adversarial
examples are generalizable features that satisfy a specific data distribution. The
model trained on the adversarial training set generalizes well on the adversarial
test set. We hope that our findings can help researchers better understand the
black-box deep learning models, thereby contributing to the deep development
and extensive application of deep learning models.

Acknowledgements. This work was supported by the National Natural Science
Foundation of China under Grant (No. 61876019, 62072037, U1936218).

References

1. Biggio, B., et al.: Evasion attacks against machine learning at test time. In: Bloc-
keel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS
(LNAI), vol. 8190, pp. 387–402. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40994-3_25

2. Bubeck, S., Lee, Y.T., Price, E., Razenshteyn, I.: Adversarial examples from com-
putational constraints. In: International Conference on Machine Learning, pp. 831–
840. PMLR (2019)

3. Carlini, N., Wagner, D.: Adversarial examples are not easily detected: bypassing
ten detection methods. In: Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security, pp. 3–14 (2017)

https://doi.org/10.1007/978-3-642-40994-3_25
https://doi.org/10.1007/978-3-642-40994-3_25


64 Y. Zhang et al.

4. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
IEEE Symposium on Security and Privacy, pp. 39–57 (2017)

5. Cheng, X., Rao, Z., Chen, Y., Zhang, Q.: Explaining knowledge distillation by
quantifying the knowledge. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 12925–12935 (2020)

6. Chow, K.H., Liu, L., Gursoy, M.E., Truex, S., Wei, W., Wu, Y.: TOG: targeted
adversarial objectness gradient attacks on real-time object detection systems. arXiv
preprint arXiv:2004.04320 (2020)

7. Chow, K.-H., Liu, L., Gursoy, M.E., Truex, S., Wei, W., Wu, Y.: Understand-
ing object detection through an adversarial lens. In: Chen, L., Li, N., Liang, K.,
Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12309, pp. 460–481. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-59013-0_23

8. Gilmer, J., et al.: Adversarial spheres. arXiv preprint arXiv:1801.02774 (2018)
9. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-

rate object detection and semantic segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

10. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: International Conference on Learning Representations (2015)

11. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
Comput. Sci. 14(7), 38–39 (2015)

12. Huang, L., et al.: OpenSARShip: a dataset dedicated to sentinel-1 ship interpreta-
tion. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 11(1), 195–208 (2017)

13. Ilyas, A., Santurkar, S., Engstrom, L., Tran, B., Madry, A.: Adversarial examples
are not bugs, they are features. In: Annual Conference on Neural Information
Processing Systems (2019)

14. Li, J., Qu, C., Shao, J.: Ship detection in SAR images based on an improved
faster R-CNN. In: 2017 SAR in Big Data Era: Models, Methods and Applications
(BIGSARDATA), pp. 1–6. IEEE (2017)

15. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0_2

16. Liu, Y., Chen, X., Liu, C., Song, D.: Delving into transferable adversarial examples
and black-box attacks. In: International Conference on Learning Representations
(2017)

17. Mądry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. Stat 1050, 9 (2017)

18. Mahloujifar, S., Diochnos, D.I., Mahmoody, M.: The curse of concentration in
robust learning: Evasion and poisoning attacks from concentration of measure. In:
AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 4536–4543 (2019)

19. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Prac-
tical black-box attacks against deep learning systems using adversarial examples.
arXiv preprint arXiv:1602.02697 (2016)

20. Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense to
adversarial perturbations against deep neural networks. In: 2016 IEEE Symposium
on Security and Privacy (SP), pp. 582–597. IEEE (2016)

21. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 779–788 (2016)

22. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint
arXiv:1804.02767 (2018)

http://arxiv.org/abs/2004.04320
https://doi.org/10.1007/978-3-030-59013-0_23
http://arxiv.org/abs/1801.02774
https://doi.org/10.1007/978-3-319-46448-0_2
http://arxiv.org/abs/1602.02697
http://arxiv.org/abs/1804.02767


Interpreting Vulnerability of Models via Adversarial Distillation 65

23. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211–252 (2015)

24. Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K., Madry, A.: Adversarially robust
generalization requires more data. Advances Neural Inf. Process. Syst. (2018)

25. Shafahi, A., Huang, W.R., Studer, C., Feizi, S., Goldstein, T.: Are adversarial
examples inevitable? In: International Conference on Learning Representations
(2018)

26. Song, D., et al.: Physical adversarial examples for object detectors. In: 12th
USENIX Workshop on Offensive Technologies (WOOT 2018) (2018)

27. Szegedy, C., et al.: Intriguing properties of neural networks. In: International Con-
ference on Learning Representations (2014)

28. Wang, Y., Wang, C., Zhang, H.: Combining a single shot multibox detector with
transfer learning for ship detection using sentinel-1 SAR images. Remote Sens.
Lett. 9(8), 780–788 (2018)

29. Wang, Y., Wang, C., Zhang, H., Dong, Y., Wei, S.: A SAR dataset of ship detection
for deep learning under complex backgrounds. Remote Sens. 11(7), 765 (2019)

30. Wei, X., Liang, S., Chen, N., Cao, X.: Transferable adversarial attacks for image
and video object detection. arXiv preprint arXiv:1811.12641 (2018)

http://arxiv.org/abs/1811.12641

	Towards Interpreting Vulnerability of Object Detection Models via Adversarial Distillation
	1 Introduction
	2 Related Works
	2.1 Interpretable Adversarial Examples
	2.2 Object Detection
	2.3 Adversarial Examples
	2.4 Distillation

	3 Methodology
	3.1 Definitions
	3.2 Framework
	3.3 Extracting Adversarial Features
	3.4 Adversarial Distillation

	4 Experiments
	4.1 Setup
	4.2 Generating Adversarial Examples
	4.3 Evaluation on Adversarial Distillation

	5 Conclusion
	References




