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Abstract. A Bilinear pairing on an elliptic curve defined over a finite
field provides an attractive prospect for designing cryptographic schemes
with various functionalities. An elliptic curve over which a computation-
ally efficient bilinear pairing can be defined is called a “pairing-friendly
curve”. Finding families of pairing-friendly curves with sufficient antici-
pated bit security has attracted significant research attention. For exam-
ple, the Barreto-Neahrig (BN) and Barreto-Lynn-Scott (BLS) curves,
are existing curves of this type. However, there is a need for alternatives
to back up these already evaluated curves. In 2020 Guillevic, Masson,
and Thomé (GMT) proposed pairing-friendly curves with embedding
degrees 5 to 8 range. GMTk denotes curves with an embedding degree
k. A composite k is preferred from the efficiency viewpoint. However,
to the best of the GMT6 and GMT8 curves have been reported in the
literature. In this paper, novel field-towering methods using two types of
extension method and constructions are developed. These methods are
applied to efficiently implement and analyze the bilinear pairings based
on the GMT6 curve over a 672-bit prime field and the GMT8 curve over
a 542-bit prime field. The pairing-computation times of our developed
software evaluated using an Intel Core i7-8700 (@4.3 GHz Turbo Boost
on) is computer are 0.987 ms and 1.12 ms for GMT6-672 and GMT8-542,
respectively indicating the practicality of these curves.

Keywords: Software implementations · Bilinear pairings · Type-I
AOPF

1 Introduction

A Bilinear pairing (hereafter simply “pairing”) over an elliptic curve is valu-
able for implementing advanced cryptography, such as aggregate signatures [1],
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homomorphic encryption [2], etc. One of the recent innovative protocols based
on pairing is the zero-knowledge succinct noninteractive argument of knowledge
(zk-SNARKs) [3]. Pairing is a nondegenerate bilinear map obtained from the
direct product of two additive groups G1 and G2, resulting in a multiplicative
group G3. The groups G1 and G2 are generally subgroups obtained from elliptic
curve groups E(Fp) and E(Fpk), where E, p, and k denote an elliptic curve,
field characteristic, and embedding degree, respectively. Pairings constructed
over elliptic curves require different properties and security levels depending on
the particular application. Therefore, the investigation of new curves of efficient
pairing computation (called “pairing-friendly” curves) constitutes a significant
research area. The Barreto-Naehrig (BN) curves [5], Barreto-Lynn-Scott curves
(BLS) [6], and Kachisa-Schaefer-Scott (KSS) curves are the most well-known
families of pairing-friendly curves, which have been widely studied as efficient
candidates for 128-bit level security pairings. Besides, there is an attack reported
in [7] improves the number field sieve algorithm in discrete-logarithm problems
in extension fields and affects the security level of many pairing-friendly curves.
Hence, the parameters of pairing-friendly curves are forced to be replaced with
their parameters for 128-bit security levels with enough margin. This parameter
replacement has been studied only for a short period since the year 2016, after
it the performance and security assessment for the well-known curves appear
vague. In 2020, Guillevic, Masson, and Thomé (GMT) [8] proposed new curves
generated by a modified Cocks-Pinch method. These curves satisfy the 128-bit
level security against the attack mentioned in [7]. We refer to the paper [8] as
“the GMT paper”. Moreover, we denote the curves with k = 6, 8 proposed in [8]
as the GMT6 and GMT8 curves, respectively. The GMT paper presented algo-
rithms for fast pairing calculation. A simple model estimates the computational
timings of pairing computation over the GMT6 and GMT8, where both results
are 1.5 ms using an Intel Core i7-8700@3.2GHz computer. Although the results
reported in the GMT paper are promising, to the best of our knowledge, there is
no study on rigorous software implementation for these curves. For this purpose,
this paper aims to provide the first and efficient software implementation of the
GMT curves with a detailed cost analysis.

Our Contributions. The following three main contributions are present in
this paper. First, two types of efficient field towering methods for the GMT6
and GMT8 curves with the type-I all-one polynomial field (AOPF) [11] and the
optimal extension field (OEF) [12] are proposed. These fields are used as the
first subextension fields for fast paring calculation. Furthermore, the number
of arithmetic operations of the proposed extension field towering is investigated
and a new GMT8 curve parameter optimized for our extension fields is provided.
Second, an unique detailed cost at the algorithm level is provided for implement-
ing Miller’s algorithm [4] with twists [13], and the required cost is reevaluated
using an accurate expression. Moreover, the polynomials suggested by the GMT
paper are reviewed for calculating the fast final exponentiation calculation and
revised for efficiently calculating the orders of both curves. Finally, the exper-
imental results obtained from the implemented software regarding the pairings
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over the GMT6 and GMT8 curves based on the proposed constructions are pre-
sented. The software implementations, which are based on the crypto library [14]
and the GNU MP library (GMP) version 6.2.1, give rise to pairing computation
of the GMT6 and GMT8 curves in 0.987 ms and 1.12 ms, respectively, using
an i7-8700 (@4.3GHz Turbo Boost enabled) computer without using the lazy
reduction technique.

Related Research Works. Lavice et al. [9] proposed a small-area pairing-
computation architecture using the FPGA for the updated 128-bit level pairing-
friendly curves. They also proposed an attractive formula for calculating the
squaring in the quadratic cyclotomic subgroup. We adopt this suggested squar-
ing method employed in the quadratic cyclotomic subgroup and use it in our
proposed tower of extension fields to reduce the calculation cost.

Notation. In this paper, a multiplication, squaring, and inversion cost in Fpk is
denoted as mk, sk, and ik, respectively. The symbol ak denotes an addition cost
in Fpk , where it is assumed that subtraction, left-shift, and right-shift costs in
Fpk are identical to ak. m is used with m1, and s1 summarizes the total cost of
m1 + s1 in Fp. To distinguish parameters with different characteristics with the
same embedding degree, each curve parameter is given a different designation
using a bit length of characteristic p as the suffix, such as the GMT8-544 and
GMT8-542.

2 Preliminaries

The GMT curves with embedding degrees k = 6, 8 and ate pairing over the GMT
curves are reviewed in this section.

2.1 Guillevic-Masson-Thomé (GMT) Curves with Embedding
Degrees 6 and 8

Guillevic, Masson, and Thomé [8] proposed pairing-friendly elliptic curves based
on the Cocks-Pinch algorithm with embedding degrees k = 5, 6, 7, 8. The curves
with even embedding degrees k = 6 and 8 (GMT6 and GMT8) are capable of
calculating pairing efficiently. The parameters of the GMT curves (field char-
acteristic p(u), order r(u), and Frobenius trace t(u) with coefficient ht, hy) are
given by the following polynomials, where the integer parameters u, hy, ht ∈ Z

are selected as p and r are prime numbers. The complex multiplication (CM)
discriminant of the GMT6 curve is D = 3 with elliptic curve E : y2 = x3 + b
where x, y ∈ Fp6 with non-zero coefficient b ∈ Fp. The ρ-value= log(p)/log(r) of
GMT6 is 2.63. For GMT8 curve, the CM discriminant is D = 4 with the elliptic
curve E : y2 = x3 + ax where x, y ∈ Fp8 with the nonzero coefficient a ∈ Fp. For
k = 8, the obtained GMT8-542 curve has a slightly better ρ-value= 2.12 than
the GMT6 curve.
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Algorithm 1. Ate pairing over the GMT6 and GMT8 curves using a 2-NAF
loop parameter expression
Require: T , P ∈ G1, Q ∈ G2

Ensure: fT,Q(P ) ∈ F
∗
pk

1 f ← 1, R ← Q
2: for i = �log2(T )� − 1 down to 0 do
3: λ ← lR,R(P ), R ← 2R � //DBLLine
4: f ← f2 · λ � //UPDATE1
5: if T [i] = 1 then
6: λ ← lR,Q(P ), R ← R + Q � //ADDLine
7: f ← f · λ � //UPDATE2
8: if T [i] = −1 then
9: λ ← lR,−Q(P ), R ← R − Q � //ADDLine
10: f ← f · λ � //UPDATE2
11: f ← f (pk−1)/r

12: return f

The number of rational points on the elliptic curve E over the finite field Fp

is expressed as #E(Fp) = p+1−t according to the Hasse’s theorem. The elliptic
curve E also forms an additive group in the extension field E(Fpk), where k is
the embedding degree of the curve. The order of E(Fpk) is #E(Fpk) = pk+1−tk,
where tk = αk + βk and α and β are complex conjugate numbers. The r-torsion
subgroup of E, which is defined as E[r] := {P |P ∈ E, [r]P = O} has two
unique subgroups of order r. These subgroups are useful for efficient pairing
computation. Let the πp be Frobenius endomorphism and the first subgroup
G1 = E[r] ∩ ker(πp − [1]) ⊂ E(Fp)[r], which is defined over Fp. The second
subgroup G2 = E[r] ∩ ker(πp − [p]) ⊂ E(Fpk)[r], which is defined over Fpk . The
subgroup order r satisfies the condition r|(pk −1), r|#E(Fp), r2|#E(Fpk) which
are important for pairing computation optimization.

2.2 Ate Pairing over the GMT6 and GMT8 Curves

Let G3 be a multiplicative subgroup defined as

G3 = Fpk [r] (1)

where k is the embedding degree of the pairing-friendly curve. For three Abelian
groups G1,G2,G3, an ate pairing aT can be defined as follows:

aT : G2 × G1 → G3, (2)

(Q,P ) �→ (fT,Q(P ))(p
k−1)/r (3)

where T = u − 1 and fT,Q is a rational function with a divisor div(fT,Q) =
T (Q) − ([T ]Q) − (T − 1)(O). Ate pairing for the GMT6 and GMT8 curves is
calculated by using Algorithm 1.
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In Algorithm 1, the calculation steps 1 to 10 are identified as Miller’s algo-
rithm, where steps 2 to 10 are particularly called Miller’s loop. Steps 3, 6 and
9 describe the calculations of the rational functions lR,R, lR,Q together with the
elliptic curve doubling (ECD) and elliptic curve addition (ECA) calculations. We
call the calculations of lR,R together with the ECD as DBLLine. Similarly, we
call the calculations of and lR,Q together with the ECA as ADDLine. UPDATE1
and UPDATE2 are “sparse” multiplications in Fpk with less computational load
than the standard multiplication in Fpk .

The input T = u − 1 is expressed in a nonadjacent form (NAF), which
represents integers in certain conditions as three value types of 1, 0, −1, rather
than a binary form for efficient pairing calculating. Miller’s algorithm is also
known as an algorithm capable of using a 2-NAF since the inversion operation
lR,−Q(P ) can be easily calculated in this case.

Step 11 is known as the final exponentiation, the details of the final exponen-
tiation calculation for the GMT6 and GMT8 curves are described in Sect. 5.2.

2.3 Ate Pairings over GMT Curves with Twists

The GMT6 curve with the CM discriminant D = 3 and input Q ∈ G2 used for
ate paring over the elliptic curve E : y2 = x3+b known as having an isomorphism
ψ. The isomorphism ψ projects the subgroup G2 ⊂ E(Fp6) to a same order
subgroup G

′
2 ⊂ E′(Fp) where the sextic twist E′ : y2 = x3 + b/z, z ∈ Fp. Since

two subgroups have the same information, the required cost heavy arithmetics
in Fp6 can be replaced by the simple calculations in Fp. The isomorphism ψ from
the twisted curve to the original curve can be defined as follows:

ψ : E′ → E, (4)

Q′(x, y) �→ Q(xz−1/3, yz−1/2) (5)

With assuming that both P ∈ G1 ⊂ E(Fp) and Q ∈ G
′
2 ⊂ E′(Fp), the twisted

ate pairing for the GMT6 curve can be computed as follows:

aT : G′
2 × G1 → G3, (6)

(Q′, P ) �→ (fT,ψ(Q′)(P ))(p
6−1)/r (7)

In this case, the ADDLine and DBLLine can be computed in Fp.

The GMT8 curve E : y2 = x3 + ax with a CM discriminant D = 4 has a
different type of twist called “quartic twist”. The map ϕ from the twisted elliptic
curve E′ to the original curve E is defined as follows:

ϕ : E′ → E, (8)

Q′(x, y) �→ Q(xz−1/2, yz−3/4) (9)

where z ∈ Fp2 is a quadratic non-residue in Fp, x4 − z ∈ Fp2 [x] is irreducible,
the twisted curve E′ : y2 = x3 + ax/z, and Q′ ∈ G

′
2 ⊂ E′(Fp2). Similar to
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the GMT6 curve, ate pairing with the quartic twist for the GMT8 curve can be
computed as follows:

aT : G′
2 × G1 → G3, (10)

(Q′, P ) �→ (fT,ϕ(Q′)(P ))(p
8−1)/r (11)

In this case, the GMT8 curves with embedding degree 8 can compute the
ADDLine and DBLLine functions of ate pairing in Fp2 arithmetics. Even though
the twist maps reduce the number of arithmetic operations in the pairing, the
total cost of Miller’s algorithm depends on other elements, such as the Miller’s
loop parameter T and the coordinate system. Furthermore, optimizing the final
exponentiation calculation and not only Miller’s algorithm (for example, factor-
izing the polynomial (pk − 1)/r (k = 6, 8) and performing fast squaring in the
extension fields), is also a key component for fast pairing computations.

3 Review of Extension Field Classes

For fast pairing computation, the efficiency of the multiplication over the exten-
sion fields heavily decides it’s efficiency. To construct an extension field, first the
primitive root c of f(x) is preferred to choose from the twist curve parameter z
[13]. Second, the primitive root of f(x) is preferred to be as simple as possible
(for example c = 2). These constraints make impose a difficulty to find efficient
irreducible polynomials for pairing. A tower of extension fields that have nested
structures is proposed based on [10]. In this section, the existing classes of prac-
tical extension fields are initially reviewed and then the candidates for the tower
of fields available for the GMT curves are indicated.

3.1 Optimal Extension Fields

Bailey and Paar [12] introduced the following formal definition for constructing
extension fields consisting of a polynomial basis:

Definition 1 (Optimal extension fields, OEFs). OEFs are the extension
fields satisfying the following three properties.

1. Characteristic: A pseudo-Mersenne prime number p of the form p = 2l ± c,
where l, c ∈ Z.

2. Modular Polynomial: An irreducible binomial xm − s, where s ∈ Fp and
m is the extension degree.

3. Basis: A set {1, ω, ω2, ..., ωm−1}, where ω is a primitive root of the modular
polynomial.

Although the characteristic p is a pseudo-Mersenne prime number in the
OEF definition, it is known that an OEF is actually capable of general prime
numbers. An OEF has several fast multiplication algorithms for different degrees
m, such as Karatsuba method [19], the Karatsuba-like method [20], and Toom-
Cook method [21]. Specifically m = 2 and s = −1 constitute the most important
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variant, where the squaring computation in Fp2 requires only two multiplications
in Fp, using the Karatsuba method. We call this technique “Karatsuba complex
method,” which is a famous and standard technique for accelerating pairing
calculation.

3.2 All-One Polynomial Extension Fields

Unlike an extension field such as the polynomial based OEF described above, a
special extension with a Gaussian normal basis was introduced by Nogami et al.
[11]. This field is called all-one polynomial field (AOPF). Later Nekado et al.
extended its definition and classified several types of AOPFs, such as type-I X
[18] and type-II X [15,17]. The definition of Type-I AOPF is given as follows:

Definition 2 (Type-I All-one polynominal Fields). Type-I AOPFs are
the extension fields satisfying the following three properties.

1. Characteristic: A pseudo-Mersenne prime number p of the form p = 2l ± c,
where l, c ∈ Z.

2. Modular Polynomial: An all-one irreducible polynomial (xm+1−1)/(x−1),
where s ∈ Fp and m + 1 is a prime number.

3. Basis: A pseudo basis {ω, ω2, , ω3..., ωm} is equivalent to the normal basis
{ω, ωp, ωp2

, ..., ωpm−1} where ω is a primitive root of the modular polynomial.

Although the characteristic p is a pseudo-Mersenne prime number in the Defi-
nition 2, it is known that an AOPF is actually capable of general prime num-
bers. An efficient way to calculate the multiplication in an AOPF is to use the
cyclic vector multiplication algorithm (CVMA), which is more efficient than the
multiplication in an OEF. According to Nekado et al. [18], the squaring in the
quadratic type-I AOPF: Fp2 = Fp[ω]/(ω2 + ω + 1) only requires two multiplica-
tions in Fp as follows:

α = (a0, a1), α2 = β = (b0, b1), (12)
b0 = {−a1(a0 − a1) + a0}, b1 = {−a0(a0 − a1) − a1} (13)

where α, β ∈ Fp2 and a0, a1, b0, b1 ∈ Fp. Unlike the OEF, the type-I AOPF has
much constraints. For example, m + 1 must be a prime number, which restricts
the degree of AOPF extension to an even number only. Furthermore, since the
degree of type-II AOPF, the squaring in Fp2 requires three multiplications in Fp,
which is less efficient compared with the type-I AOPF or the adapted z = s = −1
OEF in Karatsuba complex method. In addition, if the probability of a general
prime number to construct a degree-2 type-I AOPF is at most 50%. Still, the 2
m cost squaring, the quadratic extension field of both OEF with s = −1 and
type-I AOPF are still good candidates for a fast pairing calculation.
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4 Proposal of Efficient GMT6 and GMT8 Curve
Parameters and Their Field-Towering Schemes

As described in Sect. 3, building an efficient tower of an extension field with twist
capability has a few constraints regarding the selection of the polynomial prim-
itive root. Although the field towering system reduces the degree of irreducible
polynomials to be explored, finding the curve parameters with an efficient com-
putation cost is still complicated. In this section, the parameter selection for
both GMT6 and GMT8 curves is described, and new curve parameters and
tower construction methods for efficient pairing computation over GMT curves
are proposed.

4.1 GMT6 Curve Parameters and Towers

The GMT paper [8] suggests the use of parameters for the GMT6 curve, as
shown in Table 1. These parameters are denoted as GMT6-672. The GMT paper
suggests the direct sextic extension using the irreducible polynomial x6 − s, s =
2 ∈ Fp for the pairing computation over GMT6-672. Since 2 is a quadratic non-
residue (QNR) and a cubic non-residue (CNR) in Fp, the twist parameter z
can be equivalent to z = 2. In this work, a field towering scheme τ1 based on
the extension proposed in the GMT paper was derived, as shown in Table 3.
However, we found that the suggested τ1 cost 2 extra addition in Fp2 squaring
compare to z = s = −1; therefore, the arithmetic costs in τ1 is not the best for
pairing calculation.

We propose a new variant of field towering scheme τ2 for efficient pairing
computation over the GMT6 curve using both the sextic twist and Karatsuba
complex techniques. −1 is not CNR in Fp. Therefore, we had to find an alterna-
tive, QNR and CNR elements in Fp for the twist parameter z without changing
the entire tower construction. Using numerical experiments, we found that the
element −4 ∈ Fp satisfies the requirements. The cost estimations presented in
Table 3 show that the extension field construction τ2 exhibits less Fp addition
costs in Fp6 than τ1.

4.2 GMT8 Curve Parameters and Towers

The GMT8-544 curve proposed in [8] with the extension Field Fp8 = Fp[x]/(x8−
5) which only capable with OEF and Type-II AOPF. We present an alternative
characteristic p for the GMT8 curve with both OEF and Type-I AOPF construc-
tion available which can achieve flexible and efficient implementation. To find
such a characteristic, we focus on finding a prime number available with either
the Karatsuba complex or type-I AOPF. According to the GMT paper [24], the
2-NAF weight of some parameters is required for efficient computation over the
GMT8-544 curves as follows:

u : 2-naf weight ≤ 5, hy : 2-naf weight ≤ 7, ht : 2-naf weight ≤ 4 (14)
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Table 1. GMT6-672 parameters [8]

Param 2-NAF
weights

Bit
length

Value

u 2 128 0xefffffffffffffe00000000000000000

ht 1 – -1

hy 4 – 0xffbbffffffffffffc020

p – 672 0x9401ff90f28bffb0c610fb10bf9e0fefd59211629a7991
563c5e468d43ec9cfe1549fd59c20ab5b9a7cda7f27a0067
b8303eeb4b31555cf4f24050ed155555cd7fa7a5f8aaaaaa
ad47ede1a6aaaaaaaab69e6dcb

In the GMT paper, the evaluated security level of the proposed GMT8-544
curve is 131-bits. We investigated for new parameters which satisfies approxi-
mately the 128-bit security level by focusing the characteristic search in the 525
- 544 bit range. Looking for only the characteristic satisfying the condition above
for quadratic type-I AOPF and OEF construction could be obtained. The param-
eters found are denoted as GMT8-542; these are presented in Table 2. The sub-
group security and twist subgroup security of our GMT8-542 are the same with
original GMT8-544; G1,G2 subgroup-security are confirmed, the twist-subgroup
is not secure.

Compared to the original GMT8-544 curve, hy in the proposed curve has
2 more weights in the 2-NAF. A part from this disadvantage, the proposed
GMT8-542 parameters are available only with the type-I AOPF, and 1/3 cost
reduction is achieved for the squaring operation in the extension fields. Based on
the extension proposed in the GMT paper, we derived a field-towering scheme τ3
as shown in Table 3. In this case, the element 3 is a QNR in Fp, and the square
root of 3 in Fp2 is also a QNR element which makes the quartic twist available
for this tower.

We propose a more efficient towering scheme τ4, where the first subextension
field Fp2 is constructed using the type-I AOPF method. A simple QNR element
(1,−1) ∈ Fp2 for the second and third stage OEFs is selected. Since (1,−1) is
QNR, the quartic twist is also available in τ4. Two towers of extension fields
and their arithmetic costs for each curve are summarized in Table 3. The newly
proposed towers τ2 and τ4 exhibit less number of arithmetic operations for the
squaring and the cyclotomic subgroup squaring in Fp2 , Fp6 , and Fp8 .

The final exponentiation raising power of (pk − 1)/r is heavily dependent on
the squaring cost in Fpk . We can use two strategies to accelerate the final expo-
nentiation: compressed squaring introduced by Karabina [25] and cyclotomic
subgroup squaring [9,26]. Both algorithms are efficient compared with the reg-
ular squaring in the extension fields; however, the compressed squaring requires
inversion operation in Fp, which could be the bottleneck of pairing computation.

In Table 3, the scyclo
k is represented by the square in the cyclotomic subgroup

of extension field Fpk . scyclo
k represents the cost of the cyclotomic subgroups
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Table 2. GMT8-542 parameters

Param 2-NAF
weights

Bit
length

Value

u 4 64 0xffc0000004020002

ht 1 – -1

hy 6 – 0x7452

p – 542 0x347111bfc75e57d130de7be68437c8d75455d209459d42
1455023bee14df9fe75aa4734686ca3d08c1fa594100d794
21d56c53899ee0f066fad9eb45b0985dbdbba2dcc1

squaring in Fpk . The cyclotomic subgroup squaring equation for τ1 and τ2 was
adopted from [26, Sect. 3.2]. For τ3, we adopt the cyclotomic subgroup squaring
equation from [26, Sect. 3] was adopted, whereas for τ4, the equation from a
recent work [9] was selected to prevent the multiplication with (ω2+ω)−1 in the
Fp4 multiplication.

5 Implementation of Ate Pairing over the GMT6
and GMT8 Curves

In this section, the details of the proposed pairing implementation are presented.
Among the proposed towers of the extension fields, τ2 and τ4 are the best con-
structions for the GMT6 and GMT8 curves, respectively. This section provides
a detailed calculation of pairing cost based on these towers.

5.1 Implementation of Miller’s Algorithm

In previous studies, many sophisticated techniques were proposed to improve the
performance of Miller’s algorithm. For example, the optimal coordinate system
depends on the type of the underlying elliptic curves. Base on the GMT paper
[8, Table 5], the homogeneous projective coordinate system (weight[1:1])) for the
GMT6-672 curve was adopted. This system was proposed by Costello et al. in
[23] and later modified in [22, Section 5].

For the proposed GMT8-542 curve, the Miller’s algorithm with the projective
coordinate system (weight[1:2]) was adopted. This is also suggested by Costello
et al. in [22, Sect. 4]. As a Miller’s loop parameter, the GMT6-672 has 129-bit
T = u − 1 with a 2-NAF weight of 2, whereas the GMT8-542 curve has a 65-bit
T = u − 1 with a 2-NAF weight = 4. The cost of the implemented functions
in Miller’s loop based on the τ2 and τ4 field-towering schemes is summarized in
Table 4.

In Table 4, the column “Call” indicates the number of function calls per
Miller’s algorithm execution. Since DBLLine does not require UPDATE1 in the
first loop of Miller’s algorithm, UPDATE1 has one less call than DBLLine. Two
ADDLine functions are denoted “ADDLine” and “ADDLine′” in Table 4. Due to
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3i1 and 1m1 precomputation, ADDLine in Miller’s loop can be replaced with
“ADDLine′”. Although the pairings and applications employ “ADDLine′”, the
only functional with constant P , Q is the subgroup generator of G1 and G

′
2.

Thus, pairings without restricting any of the application functionalities were
implemented.

5.2 Implementation of Final Exponentiation

In the second part of pairing calculation, the result of Miller’s algorithm is raised
to the power of (pk − 1)/r. This is also known as final exponentiation (pk − 1)/r
can be separated into two parts; the easy part and the hard part. The complexity
of the final exponentiation largely depends on the curve parameters, especially
the polynomials of characteristic p(u), order r(u), and Frobenius trace t(u).

Table 3. Arithmetic calculation costs in the tower of the extension fields

Curve and tower Extension fields Operation m1 s1 a1 i1 Note

GMT6, τ1
E(Fp) : y2 = x3 − 1

E′(Fp) : y2 = x3 − v−6

F
p2 : Fp[i]/(i

2 − 2) m2 3 0 6 0

s2 2 0 5 0

F
p6 : F

p2 [v]/(v3 − i),

where i2 = 2

m6 18 0 76 0

s6 12 0 47 0

s
cyclo
6 6 0 37 0 [26] Sect. 3.2

f6 4 0 0 0

i6 35 1 102 1

GMT6, τ2
E(Fp) : y2 = x3 − 1

E′(Fp) : y2 = x3 − v6

F
p2 : Fp[i]/(i

2 + 1) m2 3 0 5 0

s2 2 0 3 0

F
p6 : F

p2 [v]/(v3 − 2i),

where i2 = −1

m6 18 0 64 0

s6 12 0 41 0

s
cyclo
6 6 0 29 0 [26] Sect. 3.2

f6 4 0 0 0

i6 36 1 80 1

GMT8, τ3
E : y2 = x3 + x

E′(F
p2 ) : y2 = x3 + ix

F
p2 : Fp[i]/(i

2 − 3) m2 3 0 7 0

s2 2 0 5 0

F
p4 : F

p2 [v]/(v2 − i) m4 9 0 33 0

s4 6 0 25 0

F
p8 : F

p4 [g]/(g2 − v),

where i2 = 3

m8 27 0 121 0

s8 18 0 93 0

s
cyclo
8 12 0 69 0 [26] Sect. 3.1

f8 6 0 0 0

i8 46 1 169 1

GMT8, τ4
E : y2 = x3 + x

E′(F
p2 ) : y2 = x3 + v2x

F
p2 : Fp[ω]/(ω2 + ω + 1) m2 3 0 4 0

s2 2 0 3 0 Type-I AOPF

F
p4 : F

p2 [v]/(v2 − (ω2 +ω)) m4 9 0 26 0

s4 6 0 21 0

F
p8 : F

p4 [g]/(g2 − v),
where (1, −1) ∈ F

p2

ω + ωp = 1

m8 27 0 102 0

s8 18 0 83 0

s
cyclo
8 12 0 66 0 [9] Sect 3.3

f8 9 0 12 0

i8 49 0 132 1
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Using the following equation, the GMT curves feature a very unique and efficient
construction [8]:

t′ ≡ ui + 1 ≡ p + 1 (mod r), (i = 1) (15)

j =
p + 1 − t′

r
, (16)

GMT6-672 Final Exponentiation
As mentioned above, the final exponentiation can be separated into two parts
such as follows:

p6 − 1
r

= (p3 − 1)(p + 1) × (p2 − p + 1)
r

(17)

The easy part (p3 −1)(p+1) requires two Frobenius endomorphism calculations
f6 for p and p3. The Frobenius endomorphism for the raised power of pk/2 does
not require any multiplication when k is even. Moreover, as shown in Table 3,
the OEF nested tower of the extension field only requires 4 m for the Frobenius
endomorphism fk.

For the hard part, using the replacement technique given in (17) and (18)
where c = j (where Φ6(x) is the 6-th cyclotomic polynomial), (p2−p+1)

r can be
broken down to:

Φ6(t′ − 1)
r

+ (p + t′ − 2)c = 1 + (p + t′ − 2)c (18)

The hard part can be multiplied by a small integer, which does not change
the bilinear pairing integrity. In this case, a multiplication by 3 is recommended,
so that the polynomial 3c does not have any fraction terms, such as

3(1 + (p + t′ − 2)c) = 3 + 3c(p + u − 1) (19)

Table 4. Cost of miller’s loop in τ2 and τ4

Curve: tower Function m1 s1 Total m Call

GMT6-672: τ2 DBLLine 4 7 11 m 128

UPDATE1 25 0 25 m 127

ADDLine 13 2 15 m 2

ADDLine′ 12 2 14 m 0

UPDATE2 13 0 13 m 2

Miller’s loop 3739 900 4639 m 1

GMT8-542: τ4 DBLLine 26 0 26 m 64

UPDATE1 42 0 42 m 63

ADDLine 44 0 44 m 4

ADDLine′ 41 0 41 m 0

UPDATE2 24 0 24 m 4

Miller’s loop 4582 0 4582 m 1
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However, bilinearity could not be achieved using (19) with the polynomial 3c
provided in Sect. 5.2 (3) of the GMT paper. Thus, our version of 3c was recal-
culated and corrected as follows:

3c = ((1 + 3w + 9w2)(u − 1) + (6w + 9w2))(u − 1) + 9w + 9w2, (20)

where w = hy/2. We propose an efficient calculation order for 3c, which is shown
in Table 5. However, we realize Nanjo et al. [16] already proposed the same
equation in their paper’s TABLE IX. The final exponentiation costs using the
above 3c calculation based on τ2 are summarized in Table 7. Compare with the
original GMT672 final exponentiation hard part, our calculation order reduced
4m6 and s6.

GMT8-542 Final Exponentiation
Similar to the GMT6-672 curve, the power of the GMT8-542 final exponentiation
can also be divided into two parts as follows:

p8 − 1
r

= (p4 − 1) × (p4 + 1)
r

(21)

In this case the easy part (p4 − 1) only requires 1 m6 and 1 i6. Using again the
replacement technique given in (17) and (18) with parameter u′ = u − 1. The
hard part of GMT8-542 can be broken down as follows:

(p4 + 1)
r

=
Φ8(t′ − 1)

r
+ d(p+ t′ − 1)(p+(t′ − 1)2) = 1+ d(p+u)(p2 +u2) (22)

Table 5. Calculation of the raised power of GMT6-672 hard part-3c

Computation Term computed Cost

Input: M ∈ Fp6 , w, u′ ∈ Fp

Output: M3c ∈ Fp6

Temp. var: t0, t1, t2

t0 ← Mw Mw cw

t1 ← t02 M2w scyclo
6

t0 ← t0t1 M3w m6

t1 ← t0M M3w+1 m6

t1 ← t1w M3w2+w cw

t2 ← t12 M6w2+2w scyclo
6

t1 ← t2t1 M9w2+3w m6

t2 ← t1t0 M9w2+6w m6

t1 ← t1M M9w2+3w+1 m6

t1 ← t1u′
M(9w2+3w+1)u′

cu′

t1 ← t1t2 M(9w2+3w+1)u′+9w2+6w m6

t1 ← t1u′
M((9w2+3w+1)u′+9w2+6w)u′

cu′

t1 ← t1t2 M((9w2+3w+1)u′+9w2+6w)u′+9w2+6w m6

t0 ← t1t0 M((9w2+3w+1)u′+9w2+6w)u′+9w2+9w m6

return t0
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According to the GMT paper, thr hard part of embedding degree 8 is multiplied
by 4 as follows:

4 + 4d(p + u)(p2 + u2) (23)

Similar to the GMT6-672, 4d was recalculated and corrected as follows:

4d = ((((4n2 + 1)u − 4n)u + 4n + 1)u − 4)u + 4n2, (24)

where n = hy. We propose an efficient calculation algorithm for 4d, as shown in
Table 6. The total calculation costs of the final exponentiation are summarized
in Table 7. Compare with the original GMT672 final exponentiation hard part,
our calculation order increased 2s6 reduced 5m6.

6 Implementation Results

To confirm the efficiency of the proposed methods, all the towers shown in Table 3
were implemented for ate pairing cost and speed comparison. The software devel-
oped computes bilinear pairings based on the algorithms introduced in Sect. 2.3.
In this section, the features of the software libraries used are initially introduced.
Furthermore, the pairing implementation results with detailed calculation costs
are presented.

Table 6. Calculation of the raised power of GMT8-542 hard part-4d

Computation Term computed Cost

Input: M ∈ Fp8 , u, n ∈ Fp

Output: M4d ∈ Fp8

Temp. var: t0, t1, t2, t3

t0 ← M2 M2 scyclo
8

t0 ← t0
2 M4 scyclo

8

t1 ← t0
n M4n cn

t2 ← t1
n M4n2

cn

t3 ← t2M M4n2+1 m8

t3 ← t3
u M (4n2+1)u cu

t3 ← t3t1
−1 M (4n2+1)u−4n m8

t3 ← t3
u M ((4n2+1)u−4n)u cu

t3 ← t3t1 M ((4n2+1)u−4n)u+4n m8

t3 ← t3M M ((4n2+1)u−4n)u+4n+1 m8

t3 ← t3
u M (((4n2+1)u−4n)u+4n+1)u cu

t3 ← t3t0
−1 M (((4n2+1)u−4n)u+4n+1)u−4 m8

t3 ← t3
u M ((((4n2+1)u−4n)u+4n+1)u−4)u cu

t0 ← t3t2 M ((((4n2+1)u−4n)u+4n+1)u−4)u+4n2
m8

return t0
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6.1 Multi-precision Libraries and Implementation Features

As mentioned above, two libraries (mcl [14] and GMP) are used, which are
combined in this work. mcl is a library for pairing-based cryptography, mainly
supporting the optimal ate pairing over BN curves and BLS12-381 curves. This
library is available on almost all x32 and x64 architecture available platforms.
The implementation conducted in this work mainly uses the mpn function group
of the GNU multiple precision (GMP) Library called by the C++ language,
although some core operations such as multiplication, modulo, addition and bit
shift are replaced by mcl functions. The multiplication in Fp is performed using
the Montgomery multiplication techniques.

6.2 Pairing Benchmark Results

Miller’s algorithm and final exponentiation costs are summarized in Table 8. It
can be observed that the proposed towers τ2 and τ4 exhibit lower costs than τ1
and τ3 by applying all the techniques previously described. Specifically, compared
with τ1 and τ2, they are addition almost 6% more efficient because of the addition
cost reduced Karatsuba complex method. Although, τ4 exhibits an approximate
2% higher costs due to the specially of type-I AOPF but it has lower addition
in total. The implementation results are presented in Table 9. The program was
compiled using the Clang++12 with the compile option -Ofast -march=native.
The benchmarks were obtained using an i7-8700 (base clock 3.2GHz, boost
4.3GHz) computer.

Table 7. τ2 and τ4 final exponentiation costs.

Curve: tower Part m6 scyclo
6 fk f2

k i6 cu cu−1
a cw

a cn
a Total m

GMT6-672 : τ2 Easy 2 0 1 0 1 0 0 0 0 77 m
Hard (without 3c) 4 1 1 0 0 1 0 0 0 886 m
3c 8 2 0 0 0 0 2 2 0 2892 m
Total 14 3 2 0 1 1 2 2 0 3855 m

GMT8-542 : τ4 Easy 1 0 0 0 1 0 0 0 0 76 m
Hard (without 4d) 3 2 1 1 0 3 0 0 0 2748 m
4d 6 2 0 0 0 4 0 0 2 4320 m
Total 10 4 1 1 1 7 0 0 2 7144 m

aGMT6-672:τ2, the costs for the raised power of u, u − 1 and w are cu = 804 m ,
cu−1 = 822 m , cw = 546 m respectively. For the GMT8-542:τ4 case the costs for raised
power of u and n are cu = 876 m, cn = 315 m respectively.

Table 8. Pairing total costs

Tower Miller’s algorithm cost Final Exponentiation cost Total Pairing cost

τ1 4902 m 3854 m +i1 8774 m +i1

τ2 4639 m 3855 m +i1 8494 m +i1

τ3 4310 m 7135 m +i1 11445 m +i1

τ4 4582 m 7144 m +i1 11726 m +i1
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Table 9. Implementation results obtained using an i7-8700 CPU (3.2GHz Turbo Boost
off, 4.3GHz on) computer compared with the GMT paper estimation results

Curve Tower MP library Miller’s
algorithm [μs]

Final
exponentiation [μs]

Pairing [μs] Turbo
Boost

GMT6-672 τ1 mcl 772 722 1494 Off
mcl 539 503 1042 On

τ2 mcl 721 693 1410 Off
mcl 505 481 987 On

– RELIC
(estimation)

800 700 1500 Off

GMT8-542 τ3 mcl 589 1050 1639 Off
mcl 411 731 1142 On

τ4 mcl 569 1050 1616 Off
mcl 398 730 1120 On

GMT8-544 – RELIC
(estimation)

600 900 1500 Off

The proposed pairing computation over the GMT6-672 and GMT8-542
curves is achieved in 0.99 and 1.12 ms, respectively, with Turbo Boost enabled.
The construction of tower τ2 is 5.2% faster than τ1. Moreover, the construction
of tower τ4 is 2% faster than that of τ3 due to the addition reduction. It is also
observed that τ4 has this feature which does not require any squaring in Fp,
which is an interesting result. A comparison with the GMT paper estimation
results is also provided. A comparison between our implementation result and
the GMT paper estimation results is provided in Table 9.

Our implementation results are Benchmarked in the same environment as
the GMT paper estimation results. It is observed that the GMT6-672 curve with
tower τ2, our results are achieved faster by approximately 6% than the GMT
paper estimation results. For the GMT8-542 curve with tower τ4, our results are
achieved by 0.116 ms slower than the GMT paper estimation results.

7 Conclusion and Future Work

The following results can be concluded:

1. After reviewing the GMT6 and GMT8 curve parameters and classes of the
existed extension fields, two different types of towers for newly emerged
pairing-friendly curves were proposed. Since the GMT6 curve original char-
acteristic is considered sufficiently efficient, a unique and efficient tower con-
struction consisting of nested OEF was proposed. This scheme is suitable to
the minimal addition karatsuba complex method. For the GMT8 curve, the
existed parameters cannot achieve the best performance. Thus, we reexplored
the characteristic and proposed a new set of parameters with only 2 less bits
suitable with the type-I AOPF.

2. To the best of the authors’ knowledge, complete and efficient software imple-
mentations of pairings for the GMT6 and GMT8 curves have not been
reported. The cost of the recommended Miller’s algorithm with a twist on
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the available rational functions of pairings was presented. For the final expo-
nentiation, the polynomials were recalculated, and the costs for both curves
were re-evaluated. The implementation results suggested that the GMT6 and
GMT8 curves are excellent and efficient candidates for 128-bit security pairing
applications.
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