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Preface

The proceedings contain the papers selected for presentation at the ACNS 2022 satellite
workshops, which were held in parallel with the main conference (the 20th Interna-
tional Conference on Applied Cryptography and Network Security) during June 20-23,
2022. Due to the ongoing COVID-19 crisis, ACNS 2022 was held in Rome, Italy, in a
hybrid mode while the workshops were organized as online events.

In response to this year’s call for workshop proposals, there were eight satellite
workshops, the same as last year. Each workshop provided a forum to address a
specific topic at the forefront of cybersecurity research.

— 4th Workshop on Application Intelligence and Blockchain Security (AIBlock
2022), chaired by Weizhi Meng and Chunhua Su

— 3rd Workshop on Artificial Intelligence in Hardware Security (ATHWS 2022),
chaired by Lejla Batina and Stjepan Picek

— 4th Workshop on Artificial Intelligence and Industrial IoT Security (AIoTS 2022),
chaired by Sridhar Adepu and Cristina Alcaraz

— 2nd Workshop on Critical Infrastructure and Manufacturing System Security
(CIMSS 2022), chaired by Chenglu Jin and Saman Zonouz

— 4th Workshop on Cloud Security and Privacy (Cloud S&P 2022), chaired by
Suryadipta Majumdar and Cong Wang

— 3rd Workshop on Secure Cryptographic Implementation (SCI 2022), chaired by
Jingqiang Lin and Jun Shao

— 3rd Workshop on Security in Mobile Technologies (SecMT 2022), chaired by
Eleonora Losiouk and Yury Zhauniarovich

— 4th Workshop on Security in Machine Learning and its Applications (SiMLA
2022), chaired by Sudipta Chattopadhyay

This year, we received a total of 52 submissions. Each workshop had its own
Program Committee (PC) in charge of the review process. These papers were evaluated
on the basis of their significance, novelty, and technical quality. The review process
was double-blind. In the end, 31 papers were selected for presentation at the eight
workshops, with an acceptance rate of 60%.

ACNS also gave the best workshop paper award. The winning papers were selected
among the nominated candidate papers from each workshop. The following two papers
shared the ACNS 2022 Best Workshop Paper Award. They will also receive the
monetary prize sponsored by Frontiers.

— Yuanyuan Zhou and Francois-Xavier Standaert. “S-box Pooling: Towards More
Efficient Side-Channel Security Evaluations” from the AIHWS workshop

— Thijs Heijligenberg, Oualid Lkhaouni, and Katharina Kohls. “Leaky Blinders:
Information Leakage in Mobile VPNs” from the SecMT workshop
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This year Frontiers specifically sponsored a best AloTS workshop paper award. The
program chairs of the AIoTS workshop selected the following paper for the award.

— Alessandro Visintin, Flavio Toffalini, Eleonora Losiouk, Mauro Conti, and Jianying
Zhou. “HolA: Holistic and Autonomous Attestation for IoT Networks”

Besides the regular papers presented at the workshops, there were 14 invited talks.

— “Towards Decentralized Privacy-Preserving Application Intelligence” by S.
M. Chow (Chinese University of Hong Kong, Hong Kong SAR, China) at the
AlBlock workshop

— “Homomorphic Computing: Achieving the Pinnacle of Data Privacy” by Rosario
Cammarota (Intel, USA) and “A Fault Can Do Wonders: On Advanced Fault
Attacks on Protection Mechanisms, Post-Quantum Cryptography and Deep
Learning” by Shivam Bhasin (NTU, Singapore) at the AIHWS workshop

— “Fusing Al and Design to Protect Critical Infrastructure” by Aditya P. Mathur
(SUTD, Singapore) and “Trustworthy Al for Securing CPS” by Tingting Li (Cardiff
University, UK) at the AIoTS workshop

— “Oh What a Tangled Web We Weave - Securing ICS Networks” by Nils Ole
Tippenhauer (CISPA, Germany) and “Urban Water Infrastructure: Challenges and
Smart Solutions” by Zoran Kapelan (TU Delft, The Netherlands) at the CIMSS
workshop

— “Notions of Security and Trust in Virtualized Infrastructures” by Vijay
Varadharajan (University of Newcastle, Australia) and “Vulnerability Detection for
Emerging Technologies” by Paria Shirani (Toronto Metropolitan University,
Canada) at the Cloud S&P workshop

— “Hey... it’s a PDF. What can go wrong?” by Christian Mainka and Vladislav
Mladenov (Ruhr University Bochum, Germany) at the SCI workshop

— “Trust, But Verify: A Longitudinal Analysis of Android OEM Compliance and
Customization” by Simone Aonzo (EURECOM, France) and “From the Analysis of
Mobile Apps to the Analysis of the Mobile Ecosystem” by Antonio Bianchi
(Purdue University, USA) at the SecMT workshop

— “Towards Trustworthy AI” by Jun Sun (SMU, Singapore) at the SIMLA workshop

There was also a poster session chaired by Emiliano Casalicchio. Five posters were
included in the proceedings in the form of extended abstracts.

The ACNS 2022 workshops were made possible by the joint efforts of many
individuals and organizations. We sincerely thank the authors of all submissions. We
are grateful to the program chairs and PC members of each workshop for their great
effort in providing professional reviews and interesting feedback to authors in a tight
time schedule. We thank all the external reviewers for assisting the PC in their par-
ticular areas of expertise. We are grateful to Frontiers for sponsoring the workshops.
We also thank General Chairs Mauro Conti and Angelo Spognardi and the organizing
team members of the main conference as well as each workshop for their help in
various aspects.

Last but not least, we thank everyone else, speakers, session chairs, and attendees
for their contribution to the success of the ACNS 2022 workshops. We are glad to see
the workshops have become an important part of ACNS and provide a stimulating
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platform to discuss open problems at the forefront of cybersecurity research. We would
expect that in-person workshops will return in 2023.

June 2022 Jianying Zhou
ACNS 2022 Workshop Chair
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Universal Physical Adversarial Attack
via Background Image

Yidan Xu', Juan Wang', Yuanzhang Li!, Yajie Wang?, Zixuan Xu!,
and Dianxin Wang! ™)

1 School of Computer Science and Technology, Beijing Institute of Technology,
Beijing, China
{xuyidan,wangjuan99,popular,xuzixuan,dianxinw}@bit.edu.cn
2 School of Cyberspace Science and Technology, Beijing Institute of Technology,
Beijing, China
wangyajiel9@bit.edu.cn

Abstract. Recently, adversarial attacks against object detectors have
become research hotspots in academia. However, digital adversarial
attacks need to generate adversarial perturbation on digital images in
a “pixel-wise” way, which is challenging to deploy accurately in the real
world. Physical adversarial attacks usually need to paste the adversarial
patches on the surface of target objects one by one, which is not suitable
for objects with complex shapes and is challenging to deploy in prac-
tice. In this paper, we propose a universal background adversarial attack
method for deep learning object detection, which puts the target objects
on the universal background image and changes the local pixel infor-
mation around the target objects so that the object detectors cannot
recognize the target objects. This method takes the form of a univer-
sal background image for the physical adversarial attack and is easy to
deploy in the real world. It can use a single universal background image
to attack different classes of target objects simultaneously and has good
robustness under different angles and distances. Extensive experiments
have shown that the universal background attack can successfully attack
two object detection models, YOLO v3 and Faster R-CNN, with average
success rates of 74.9% and 67.8% with varying distances from 15cm to
60 cm and angels from —90° to 90° in the physical world.

Keywords: Physical adversarial attack + Object detection -
Adversarial examples

1 Introduction

In recent years, deep neural networks(DNNs) have shown excellent performance
in various computer vision tasks, such as image classification, object detection,
and image segmentation [7,8,11,14,15]. However, it has been demonstrated that
DNNs are vulnerable to adversarial examples [19]. Adversarial examples are
maliciously crafted perturbations that are imperceptible to human observers

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Zhou et al. (Eds.): ACNS 2022 Workshops, LNCS 13285, pp. 3-14, 2022.
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but can mislead the target model and can even be generalized to the real world.
Therefore, the existence of adversarial examples poses great security risks to the
deployment of DNN-based systems in the real world, which makes adversarial
examples become research hotspots in current academia.

Adversarial attacks can be divided into digital attacks and physical attacks
according to whether the pixel values of an image can be directly modified. For
digital adversarial attacks, the attackers can directly modify the pixel values of a
digital image and input the modified digital adversarial examples into the target
model to attack. However, physical adversarial attacks cannot directly modify
the pixel values of an image. The attackers can only generate physical adversarial
examples in the real world and then input them into the target model to attack
after cameras capture the physical adversarial examples. In this paper, we focus
on the physical attack, which is more challenging and meaningful in practical
application because the physical adversarial examples in the real world need to
face light, angle, distance, and other changes and easily lose effect.

Previous works focus on generating adversarial patches [2,17,20] to perform
the adversarial attack. They train in the digital world to generate adversarial
patches and then print them and paste them into the target object to attack tar-
get models. However, these patch-based methods generate adversarial patches in
a “pixel-wise” way, which is challenging to deploy accurately in the real world. In
addition, they need to modify the target object itself. When attacking multiple
targets, they need to generate the adversarial patch for each category or even
each target object and then paste the adversarial patch on the surface of target
objects one by one. Recent research [22] has proposed a non-contact adversarial
patch that can hide all objects of a specific class without touching the target
object by pasting a carefully constructed translucent patch on the camera lens.
However, in the actual attack, it is usually difficult for the attacker to contact
and modify the imaging lens, and the attack can only be targeted at a spe-
cific category, rather than using a single adversarial patch to attack different
categories of target objects.

In this paper, we study the universal physical adversarial attack, which can
attack different kinds of objects in the real world. Inspired by the implicit use
of context information by object detectors in reasoning, we propose a universal
background physical adversarial attack method, which can generate a universal
background image with the specific pattern, affect the detection of the target
object placed on it, and make it hidden or misclassified by the target model.
The universal background image proposed in this paper is easy to deploy in the
physical world, can attack different kinds of target objects simultaneously, and
has good robustness under the transformation of different angles and distances.

Our contributions are listed as follows:

— We propose a new physical adversarial attack method based on the back-
ground image, which can generate a universal background image with a spe-
cific pattern and affect the prediction of the target object detector by mod-
ifying the local contexts surrounding the target object. The attack method
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is easy to deploy in the physical world and has good robustness under the
transformation of different angles and distances.

— We realize a universal attack against object detectors in the real world for the
first time, which can affect the detection of all objects belonging to various
categories by using only a single universal background image.

2 Background and Related Work

2.1 Object Detection

Object detection is the primary task of computer vision and one of the most
essential and challenging branches in the computer vision field. Existing object
detection models can generally be divided into two categories: the one-stage
models represented by the SSD [11] and YOLO [14] models and the two-stage
models represented by Faster R-CNN [15]. The one-stage models can infer the
location and classification result of target objects simultaneously, while the two-
stage models are a two-step reasoning process. In the first stage, the two-stage
models utilize the region proposal network(RPN) to choose the possible candi-
date areas of the objects. And in the second stage, the possible candidate areas
are pooled and converted to a fixed size, and then features are extracted from
each candidate box for classification. Although the detection speed of two-stage
models is slower than that of one-stage models, the detection accuracy of two-
stage models is generally higher.

2.2 Physical Adversarial Attacks

Kurakin et al. [9] verified for the first time that digital adversarial examples were
still adversarial after being extended to the physical world by directly printing
digital adversarial examples on paper and then collecting them with a camera
and inputting them into the target model for test. However, such adversarial
examples were not robust in the physical world. Since the physical adversar-
ial examples will undergo a series of unknown transformations in the physical
world, such as angle, distance, and illumination, which will affect the attack per-
formance of the physical adversarial examples, the physical adversarial attack
methods usually pay more attention to the robustness of the adversarial exam-
ples in the physical world. The adversarial patch is the most common physical
adversarial attack method, first proposed in paper [2] to attack image classi-
fiers. Eykholt et al. [5]aimed at the image classification model in the automatic
driving scene, taking stop signs as the target objects and realizing the phys-
ical adversarial attack by printing some black and white stickers and pasting
them on stop signs. To improve the robustness of physical adversarial attacks,
Athalye et al. [1] proposed a general EoT framework for image classification,
adding various physical transformations to the generation process of adversarial
examples and using 3D printing technology to reproduce adversarial examples in
the physical world, realizing robust physical attack at different viewpoints. Xu
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et al. [20] proposed Adversarial T-shirt, a robust physical adversarial example
for evading person detectors even if it suffers from deformation due to a mov-
ing person’s pose change. This method uses TPS interpolation to model fabric
deformation to ensure that the adversarial patch does not lose effect due to fab-
ric deformation when printed onto the T-shirt, thus hiding the specific person
wearing the T-shirt with the adversarial pattern. Subsequently, Eykholt et al.
[17] extended the method against image classification in [5] to object detection.
This method minimizes the detection score of the object detector to make the
detection score lower than the detection threshold so that the target object can
not be successfully detected. Moreover, to maintain the adversarial robustness
in the physical world, they added an alignment function to the loss function to
process the adversarial examples and used smooth loss and non-printable loss
to generate physical adversarial examples with smooth perturbation. Zhao et
al. [21] further proposed a new method to attack the target object at the early
hidden layer and generate adversarial examples with a reasonable semantic back-
ground to generate more effective adversarial examples. However, these works
generate adversarial examples in a “pixel-wise” way that is difficult to deploy
precisely in the real world.

2.3 Adversarial Attacks Using Contextual Information

Many previous works [3,6,13,18] have demonstrated that exploiting contextual
information can improve object detection performance. Inspired by this, some
recent works [10,12,16] have attacked the object detector by exploiting contex-
tual information to generate adversarial patches that do not overlap with any
objects of interest in the scene. These methods consider modifying global con-
textual information to attack object detectors and place the printed adversarial
patch in the scene to hide all objects in the scene. But in the real world, when
the detection distance changes, the position and the size of the adversarial patch
in the scene will also change, limiting the application of the attack. DNN-based
object detection models usually use the interior features of candidate regions to
classify. In this paper, we consider modifying the local surrounding contextual
information of the object, which can maintain effectiveness even when the posi-
tion and the size of the adversarial patch change. Meanwhile, this method can
also attack the object detection models that only use local context surrounding
a proposal region.

3 Method

In this paper, we aim to generate a universal background image with a specific
pattern to attack object detectors in the physical world, which can interfere with
the detection of all categories of target objects placed on it, making them hidden
or misclassified by the object detector when deployed in a specific background
area in the physical world.

Existing patch-based methods are not suitable for the target objects with
complex shapes and are challenging to deploy accurately in the physical world.
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Therefore, we propose a universal background adversarial attack method, mak-
ing it easy to deploy in the physical world. Since the circle is an axisymmetric
pattern with rotation invariance, the specific pattern composed of concentric
circles of different widths is adopted to design a universal background image.
This symmetrical pattern helps to keep the background image robust in differ-
ent angle and distance transformations in the physical world. In generating a
universal background image, we constrain the pixel value in each concentric ring
to be the same, and optimize the ring width as wide as possible to facilitate
the deployment of the universal background image in the physical world. The
universal background image and attack schematic diagram are shown in Fig. 1:

We initialize the universal background image with r concentric rings with
a width of 1 pixel. Since the universal background image cannot be directly
optimized like the pixel-level perturbation, we adopt a method similar to [4] to
optimize the perturbation vector P with length r and then fill the vector values
in the perturbation vector P into the rings of concentric rings to obtain the
universal background image.

3.1 Objective Function

To ensure that the background image has good attack performance and repro-
ducibility in the physical world, we carefully design a loss function to optimize
the universal background image. The loss function consists of adversarial loss,
width loss, and non-printable loss.

Adversarial Loss. Let {(x): x — {Plgijplﬁzsa bk}le denote an object detector,
which takes an image € R“™™ as input and outputs the prediction vectors
of K bounding boxes, where p’;bj is the probability that the k-th bounding box
contains an object, p¥,. is a probability vector over C classes for the object in
the k-th bounding box, and a bounding box b* = [z y* w* h*¥] denotes the
position of the k-th bounding box.

Input the adversarial example 2% into the target detector f(x), and the
adversarial loss attacks the mean of the product of the detection score and
classification score in all the bounding boxes containing target category C, and
the formula is as follows:

K
1
Lagy = i Z(plocbjaPICCZSEC) (1)

i=1

Width Loss. We use the L1 norm of the difference between adjacent vector
values of the perturbation vector P to optimize the ring width. Compared with
other norms, the L1 norm tends to generate sparse solutions, which helps to
optimize the difference between adjacent vectors to 0, so that adjacent concentric
rings have the same pixel value, thus connecting into wider rings, reducing the



8 Y. Xu et al.

Fig. 1. The universal background image and attack schematics. Top: the left column is
the result of instance segmentation, and the right column is the universal background
image generated on YOLO v3 model. Middle: the left column is the clean image, and the
right column is the adversarial example obtained by placing the universal background
image under the target object cat. Bottom: the left column is the detection result of
the clean image, where the target object cat is normally detected with high confidence
of 0.84, and the right column is the detection result of the adversarial example, where
the target object cat is misclassified as a frisbee.

number of rings, and thus alleviating the deployment difficulty of the physical
world. The formula of ring width loss is as follows:

Luian = Y, |Piy1 — P)| (2)

=1
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Non-printable Loss. We use a non-printable loss to mitigate the difference
between the printer’s gamut and the digital world’s. We generate the universal
background image in the physical world by printing. Since the colors produced by
most printers do not fully cover the entire RGB color space, the colors produced
by printers are somewhat different from the colors in the digital world. So we
refer to related work and use NPS(non-printability score) as part of the objective
function to deal with this constraint. The formula is as follows:

r

Lyps = Z H |sigmoid(P;) — p'| (3)

i=1p'eW

where W is a set of printable colors (RGB triples).
Finally, we have a total objective function consisting of three components:

Ltotal = Ladv + )\1 . Lwidth + )\2 . ans (4)

where \; and Ao are hyperparameters that balance the loss terms. During the
training, we set A1 to 0.01 and A5 to 5.

3.2 The Generation of the Universal Background Image

We first randomly initialize the perturbation vector P ~ N(0,1) to be normally
distributed. Then we use the image data set of the target category C for training
to optimize the perturbation vector P. In the process of optimization, to make
the value of the perturbation vector P within the effective range [0, 1], we use
the sigmoid function © (x) = ﬁ to process the perturbation vector P, and
obtain ©(P). Then, the values of ©(P) are successively filled into the ring so that
all pixel values in the same ring are consistent with the corresponding values of
©O(P) to obtain the universal background image of this round. In each iteration,
we place the universal background image under the target object in clean image
x to get the adversarial example %% then input it into the target detector, and
calculate the loss function according to formula 4. Finally, we use the MI-FGSM
method to update the perturbation vector P. MI-FGSM is a common black-box
attack method, which can generate more transferable adversarial samples by
introducing momentum to stabilize the update direction. Since the optimization
variable in this paper is perturbation vector P, the updating formula of MI-
FGSM is as follows:

vthotal

Wy Ll 221 = F @ stonlgen) - O)
ptitota

Ji+1 = K- Gi
where p and « are both set to 1.
During the placement of adversarial examples, we follow the following steps:

— We firstly perform instance segmentation for all objects in the clean image
X.

)
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— Then we find all target objects classified as C and scale the universal back-
ground image randomly to 1-1.5 times the size of the corresponding detection
bounding box to enhance the robustness of attacking objects of different sizes.
Then the universal background image is placed under the target objects to
attack. The center of the universal background image is aligned with the
center of the detection bounding box. If the universal background image has
been added to the current background and the overlap rate exceeds 80%, the
universal background image will not be added to this position.

— Finally, we place the universal background images successively under the
target objects in the clean image x, and restore all the objects to their original
positions according to the previous instance segmentation results to obtain
the modified adversarial example X%,

4 Experiments

We evaluate our proposed universal background image in the physical world to
prove its effectiveness.

4.1 Experiment Setup

We chose the first-stage model representing YOLO v3 and the second-stage
model representing Faster R-CNN as target models and generate the universal
background images in the digital world, respectively. We use the COCO training
set for training. We randomly selected ten categories from COCQ’s 80 categories
for training and randomly selected 100 photos from each training category, a total
of 1000 photos. Then, we used Epson 14160 color printer and glossy photo paper
to print the generated universal background images, fixed in 600*600 pixels. In
the physical world, we select airplane, elephant, horse, and sheep as four different
categories of attack objects to verify the universal attack effect, among which
only airplane is the category used in training. To evaluate the attack effect of
the universal background image at different distances and angles, we divided the
distance between 15cm and 60 cm into three areas, with 15cm as an interval,
and used the built-in camera of Galaxy S9 to shoot 10s videos at 0°, +30°,
+60°, and +90° respectively. YOLO v3 model and Faster R-CNN model were
used for detection. In this paper, we use random Gaussian noise background
images for comparison to evaluate attack success rates at different distances and
angles. In this paper, attack success is defined as the target object being hidden
or misclassified by the target detector. The success rate of physical attack is
Fsuce = Nsuee/Ntotar, where Nyigiqr stands for all frames in the video, and Ny
stands for the frame number of a successful attack.

We use imagegquss to represent random Gaussian noise background image,
imageyoroys to represent universal background image trained on YOLO v3
model, and imagepasterr—c NN tO represent universal background image trained
on Faster R-CNN model.



Universal Physical Adversarial Attack via Background Image 11

Figure 2 and Fig. 3 respectively show the success rate of attacking the YOLO
V3 model and the Faster R-CNN model with three universal background images
at different distances and angles. The darker the background color in the region,
the higher the success rate of attack.

-
Sem 5cm 60w  60cn  A5em d0ca  I5cm I5m 30cm 5m  60cm
® ©

Fig. 2. The universal physical attack success rate of attacking YOLO v3 model at
different angles and distances.

imagonn o

®

Fig. 3. The universal physical attack success rate of attacking Faster R-CNN model at
different angles and distances.

4.2 Attack Success Rate

Compared with the direct application of imagegqauss, using imageyorovrs and
imagepgsterr—cNN to attack YOLO V3 model and Faster R-CNN model have
better attack effects. The average attack success rate can be increased by more
than 20%. It shows that our optimization method further finds a universal back-
ground image with a better attack effect on the baseline.

4.3 The Effect of Angle and Distance

The results show that the greater the angle and distance, the more success-
ful the attack. However, at different distances and angles, the universal back-
ground images proposed by us all be effective, which indicates that the universal
background images are still robust in the physical world even without physical
transformation.

4.4 The Effect of Target Model

The success rate of using background images generated by different training
models to attack the same target model is very close, which indicates that the
universal background image proposed by us will have excellent attack perfor-
mance even if the training model and attack model are different. As can be seen
from Fig. 2 and Fig. 3, the YOLO v3 model, as a first-stage model, relies more on
contexts in prediction, so the attack success rate is higher than Faster R-CNN,
a two-stage model.
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4.5 Visualized Results

Figure 4 shows the visualized results of the physical attack. Due to the limited
perturbation space, the universal background image tends to make the target
object misclassified rather than hidden. We believe that the model will recognize
the universal background image and the object placed on it as a whole in the
prediction, and the universal background image itself looks similar to the frisbee
class, so it will introduce new features so that the original object category is
affected and misclassified.

Clean image +IMageGauss +imageyoro v3 +iMageFrasier R-CNN
Jp—— —#7 -

airplane
object: airplane
coeﬁidené}e3 0.81
horse
object: horse object: dO® objE!ct’—dug'ﬁ1sbE!e'sm'ﬂ:vva'rd—J object: dog —TTISbe
confidence: 0.82 confidence: 0.6 confidence: 0.72.0.41.0.31 confidence: 0.59, 044
elephant
object: elephant object: NG object: frisbex object: dog
confidence: 0.80 confidence: No confidence: 0.61 conﬁdence
sheep

object: sheep object: dog object: frisbee object: teddy bear
confidence: 0.64 confidence: 0.57 confidence: 0.48 confidence: 0.44

Fig. 4. Visualization of physical attack results.

5 Conclusion

In this paper, we propose a universal background adversarial attack method
against object detectors, which can use a single universal background image to
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attack different types of target objects by modifying the local contexts around
them. Unlike previous patch-based attack methods, which generate perturba-
tions in a “pixel-wise” way, our method generates a universal background image
with the specific pattern, which is much easier to deploy in the real world than
“pixel-level” patches and has good robustness at different angles and distances.
Extensive experiments have shown that our proposed method can achieve excel-
lent performance against two object detection models, YOLO v3 and Faster
R-CNN, with average success rates of 74.9% and 67.8% with varying distances
from 15 cm to 60 cm and angels from —90° to 90° in physical world attacks. Com-
pared with random Gaussian noise background attack, the universal background
with a specific pattern proposed in this paper has a better adversarial attack
effect. Although the proposed universal background physical adversarial attack
has excellent performance, as a new type of physical adversarial attack, our work
still needs to be improved, and there is still a lot of room for improvement, such
as further research on the automatic generation of background patterns, to find
more adversarial and robust background image. In the future, we will continue
to study the automatic optimization method of background images to get more
effective adversarial examples.
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Abstract. Blockchain allows clients to query and verify any trans-
actions, which requires the clients to maintain the entire blockchain
database locally. This approach is inadvisable because the blockchain
database is an append-only ledger and incurs significant maintenance
overhead. Very recently, blockchain light client has attracted consider-
able concerns, which relies on a third party (i.e., a full node) to perform
query processing and verification. However, the dishonest full node may
return an incorrect and incomplete result of the query requests. There-
fore, it remains a challenging issue to achieve secure, efficient, and rich
verifiable queries for light clients. In this paper, we propose an efficient
verifiable Boolean range query scheme for light clients on the blockchain
database. Firstly, we design a new authenticated data structure, poly-
nomial commitment BT-tree (PCB-tree), which efficiently ensures the
correctness and completeness of Boolean range queries for blockchain
light clients. Secondly, we provide a tunable trade-off between query
time and communication overhead by autonomously setting the fanout
size of the PCB-tree. Moreover, our scheme can support batch processing
to reduce query complexity and proof size. Finally, security analysis and
performance evaluation show that our proposed scheme is secure and
practical.

Keywords: Blockchain database - Light clients + Verifiable boolean
range query - Data integrity

1 Introduction

Blockchain, as a revolutionary technology [10], has aroused widespread attention
and research in various fields, such as smart contract platform, decentralized
storage, and supply chain traceability. Meanwhile, with the popularization of
blockchain technology in the finance and supply chain, the people’s demand for
efficient and various queries of data stored in a blockchain database has become
more and more urgent. For illustration, a user, Bob, wants to query the data
about his consumption in the last month that satisfy the following Boolean range
conditions, such as “[2021-11-01, 2021-12-01]” and “sender = Bob V receiver
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= Bob”, where V represents Boolean logical operator OR. The result will be
faithfully returned if the query is conducted in the traditional centralized systems
with a trusted party. From the security perspective, if the client downloads the
complete blockchain duplication as a full node, it can query and validate the
integrity of transactions locally. However, The appended-only and immutable
properties of blockchains result in the data increases with the generation of
new blocks, which requires a large amount of storage and network overhead [7].
In the past two years, the data on the Ethereum blockchain has been growing
linearly with a slope of roughly 0.424 GB/Day is significantly faster than Bitcoin,
which exceeds the capability of most query clients. To address above concern,
most blockchain systems introduce the light client (e.g., Simplified Payment
Verification [10] and Light Ethereum Subprotocol [18]), which can download only
the valid block header from the longest chain to verify whether the current block
contains the interested transactions without the complete blockchain dataset.

However, the light client that stores only block header information will raise
the following concerns when querying transactions:

— The integrity of query result: The light client relies on the query service
provided by the full node. If the full node is untrusted, it probably returns fake
or partial results to light clients [3], or it will obtain the privacy information of
light clients by capturing some sensitive request [8,13]. Therefore, the security
of current blockchain queries is still a crucial issue.

— The query efficiency: The increasing growth of blockchain brings heavy
overhead for developers to access transactions on the blockchain. Meanwhile,
the current blockchain system only supports single-type queries and has low
query efficiency. Therefore, it is necessary to implement a blockchain query
system with high efficiency and rich query functionalities for light clients.

There are some attempts to implement verifiable queries of blockchain for
the light client. The state-of-the-art schemes either utilize the trusted execution
environment or authenticated data structure to ensure the integrity of query
results. Therefore, it is of great significance to design a new structure that guar-
antees the correctness and completeness of the query results and reduces the
communication and verification costs.

1.1 Contributions

In this paper, we focus on verifiable Boolean and range queries. Motivated by the
above observations, we propose an efficient and verifiable Boolean range query
scheme for light clients on the blockchain database. To evaluate our design, we
implement the prototype system and conducted multiple experiments based on
it. Our main contributions can be summarized as follows:

— We propose a new authenticated data structure, polynomial commitment BT-
tree (PCB-tree), that supports the Boolean and range queries.

— We provide an adjustable trade-off between query time and communication
overhead by autonomously setting the fanout size of the PCB-tree. Mean-
while, our scheme can support batch processing to reduce the proof size and
verification time.
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— We prove the security of the scheme in theory and implement a prototype
system to evaluate the performance of our proposed scheme. The experiment
results demonstrate that our scheme is efficient in terms of query, verification
and communication overheads.

1.2 Related Work

In this section, we briefly review the related works on verifiable query processing
over traditional outsourced databases and blockchain.

Verifiable Query Processing over Traditional Database. There are some
verifiable query works that have been studied in outsourced databases. The cur-
rent verifiable query is divided into two categories: circuit-based Verifiable Com-
putation (VC) technique and Authenticated Data Structure (ADS). However,
the VC-based scheme overhead is very high and sometimes impractical [11]. In
comparison, the ADS-based approach is generally more efficient. The Merkle
Hash Tree (MHT) is a significant component in verifiable query schemes and
is extended to different types of databases, including Merkle B-tree (MB-tree)
for relational data [6] and Merkle R-tree (MR-tree) for spatial data [20]. How-
ever, these works are more for the outsourced databases and insufficient for the
blockchain case.

Verifiable Query Processing over Blockchain. Simplified Payment Verifi-
cation (SPV) protocol! is the first light client protocol proposed in the Bitcoin
paper [10]. It can use Merkle proof to verify whether the blockchain network
accepts a transaction. However, the costs of verification and storage increase lin-
early with the growth of the blockchain. Some verifiable query works have been
studied in blockchain systems to ensure the integrity of the query results. Xu
et al. [19] present an accumulator-based ADS and implement a verifiable query
framework, called vChain, that alleviates the storage and computing costs of the
light client. However, the public key size of the accumulator is linear to the largest
multiset size, and the large proof size leads to an expensive communication over-
head for the light client. Shao et al. [16] utilize the Trusted Execution Environ-
ment (TEE) to achieve an authentication range query scheme for blockchain,
but it does not discuss potential side-channel attacks against TEE. Zhu et al.
[23] put forward a verifiable aggregate queries scheme based on the accumulator
that supports multiple selection predicates. However, it uses the same accumu-
lator as vChain and does not solve the linear overhead problem. Meanwhile, the
construction cost of ADS is expensive since different query dimensions require
different ADSs. Zhang et al. [21,22] utilize MB-tree structure and cryptographic
accumulator to present a gas-efficient scheme for hybrid-storage blockchains.
However, its index maintenance cost remains relatively expensive, and the query
process is complicated. LineageChain [15] leverages a novel skip list index to
achieve efficient provenance query processing and stores provenance information

! The concepts of payment verification and transaction verification are different in the
blockchain.
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Fig. 1. Blockchain data structure

in a Merkle tree. Therefore, LineageChain only ensures the correctness of the
query results, but not completeness.

2 Preliminaries

2.1 Blockchain Data Structure

From the perspective of data structure, blocks in blockchain mainly contain two
parts: block header and block body. As shown in Fig.1, all transactions are
recorded in each block and organized a MHT built on top of them. The block
header contains: (1) parentHash, which is the hash of the previous block; (2)
timestamp, which is the time of block creation; (3) number, which is block height;
(4) tzHash, which is the root hash of MHT; (5) difficulty, which is the difficulty
coefficient of mined blocks; (6) nonce, which is the random number constructed
by the miners to solve Proof of Work (PoW) protocol problem. Other miners
can append it to the blockchain after verifying the nonce of the new block.

2.2 Bt-Tree

Bt-tree [4] is a multi-branch sort tree structure that can improve the search
efficiency of range queries. The numerical range query process of Bt-tree is
described as follows:

— One starts the query from the root node. If the lower bound of the range
query matches the current non-leaf node, it then searches its subtree.

— When traversing to a leaf node, one adds the corresponding record into the
results set if the lower bound element is found, then continue to search back-
wards through the pointer relationship between nodes until the upper bound
is found at the end of the query.
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2.3 Constant Size Polynomial Commitment

A polynomial commitment scheme allows one to commit a polynomial with a
short proof while keeping it hidden from others. The verifier can confirm the
claimed statement of the committed polynomial. Kate, Zaverucha and Goldberg
[5] first present polynomial commitment scheme (KZG commitments) as the
following:

Setup(1*,t) generates an appropriate algebraic structure G and a public-
private key pair (PK,SK) to commit to a polynomial of degree < t.
Commit(PK, p(z)) generates a commitment C to a polynomial p(x) using
the public key PK.

CreateWitness(PK, p(x), z) generates a witness w for the evaluation p(z) of
p(z) at the index z.

VerifyEval(PK,C, z, p(z),w) verifies that p(z) is indeed the evaluation at the
index z of the polynomial committed in C.

CreateWitnessBatch(PK, p(x), S) generates the batched witness wg for the
value p(i), where i € S.

VerifyEvalBatch(PK,C, S, r(x),ws) verifies the correctness of the witness
returned by CreateWitnessBatch algorithm.

3 Problem Statement

In this section, we describe the system model and threat model of our scheme.

3.1 System Model

We propose a verifiable query scheme on blockchain database. Figure 2 depicts
the four entities in our system framework:
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Table 1. Data formal definition

tXsa | b Vi | W,

tzy | 2021-05-12 |5 | {addrl, addr2}
tze | 2021-05-21| 35 | {addr3, addr2}
tzs | 2021-04-28 | 20 | {addr5, addrl}
txy | 2021-05-21 | 80 | {addr4, addrl}
txs | 2021-05-22 | 56 | {addr6, addr8}
trs | 2021-05-19 | 90 | {addr3, addrl}
tey | 2021-04-22 | 10 | {addr3, addrl}

— Blockchain Network: A network of untrusted nodes collectively maintains
the blockchain data and guarantees stored data is immutable. We assume our
system is based on an account-based blockchain.

— Full Node: A full node downloads complete duplication of the
blockchain database and can independently verify the correctness of any
block /transaction [1]. Also, the full node can provide payment services for
others, such as query or Application Programming Interface (API) services.

— Light Client: A light client only stores block headers and verifies transac-
tions relying on full nodes. It generally runs on resource-constrained devices.

— Miner: A miner? competes to create new blocks by a consensus algorithm
(e.g., PoW algorithm) and appends it to the blockchain network.

In our system, when a light client wants to retrieve existing transaction data,
the light client firstly synchronizes all newer block headers from the longest chain
and connects to one of the full node servers to send query requests in which the
client is interested. The miners are responsible for organizing all transactions
within the block to construct the PCB-tree and appending root commitment
to the block header to replace the traditional root hash. The full node provides
rich queries for light clients and returns both query results and the corresponding
proofs using our ADS structure. After that, the clients use the Verification Object
(VO) to verify the correctness and completeness of returned results.

As shown in Table1, the transaction data tz; is defined as triple elements
(t;, Vi, W;), where t; is the transaction timestamp, V; is a transaction value that
represents one numerical attribute, and W; is a set attribute that contains the
address information of the sender and receiver. Each block contains multiple
transaction data objects {tx1,txs, - -+, tx, }. Light clients want to query all trans-
actions that match the query request in a period. In this paper, we consider
mainly the rich Boolean range queries based on the time window. Specifically, a
Boolean range query is defined as follows: ¢ = ([ts, t], [vi, vu],¥), where ¢, and
te is the start and end time of a time window, v; and v, represent the lower and
upper bound of the transaction query range, and v is a Boolean query such as
addrlA(addr2vaddr3). For example, the light client may request a specific query
g = ([2021 — 05,2021 — 06], [10, 40], sender = addrl A receiver = addr2) to find
all the matched transactions.

2 Miners can be full nodes or light nodes.
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3.2 Threat Model and Assumptions

In our scheme, we assume the blockchain network is strong and does not con-
sider some attacks against blockchain, e.g., Eclipse attack, and Sybil attack.
We believe that light clients are honestly reliable and randomly connect to one
of the full nodes from the blockchain network to perform the query operation.
Furthermore, driven by economic interests, we assume the miners are honest to
faithfully execute our ADS structure, which will not lead to some underlying
system security vulnerabilities. Meanwhile, we think no particular relationship
between miners and full nodes. The full nodes are untrusted and regarded as
potential adversaries. On the one hand, the full nodes can obtain some sensitive
information (e.g., account address and transaction information) by the queries
of clients, which will result in the disclosure of user privacy [3,8]. On the other
hand, the full nodes may return incorrect or incomplete query results to reduce
the query expense [19]. Hence, the query results from the full nodes need to be
validated to satisfy the following criteria:

— Correctness. The result data tuples indeed exist in the blockchain databases,
and they have not been tampered with in any way. Meanwhile, as the results,
they should satisfy the query conditions.

— Completeness. No satisfactory results have been omitted by the full nodes,
either intentionally or unintentionally.

— Lightweightness. The results should have lower storage costs and commu-
nication overhead for lightweight clients than that of current schemes.

4 Polynomial Commitment BT-Tree

4.1 Overview

The MHT is usually constructed for each block to authenticate transaction data
in the original blockchain. However, this naive method has the following short-
comings. Firstly, the MHT supports only efficient membership queries instead
of providing non-membership proofs. Secondly, the proofs of MHT can hardly
be aggregated effectively, resulting in serious communication overhead and inef-
ficient verification. To deal with the drawbacks above, we propose a novel ADS
structure illuminated by [6] and [17], PCB-tree, which ensures the integrity of
light client queries and avoids the problem of large public key parameters and
proofs.

4.2 PCB-Tree Structure on Blockchain

For simplicity, we combine the polynomial commitment and Bt-tree to imple-
ment a PCB-tree supporting constant size intra-node proof and more effi-
cient queries than MHT. Denote (k;,tx;) the key-value pair of PCB-tree leaf
node, where k; represents the numerical attribute (e.g., transferred transaction’s
amount), tz; is the corresponding transaction data. In the B¥-tree index, the
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Fig. 3. The ADS structure on a block

overflow page is commonly used to deal with duplicate keys [14]. For the conve-
nience of description, we assume there are no duplicate keys in the context.

Figure 3 shows a block structure with PCB-tree. The block header consists of
the following elements: parentHash, timestamp, number, pcbCommit, difficulty,
nonce, where pcbCommit is the root commitment of PCB-tree to replace the
original trHash (Fig.1). In the PCB-tree, each tree node has four fields: the
minimum and maximum key (denoted by [min, maz]), the node commitment
value (denoted by C), the polynomial (denoted by p(x)), and the transactions set
of each node (denoted by S). Let LagrangelInterpolation(-) be a function to find
a polynomial, ‘||’ be the string concatenation, hash(-) be Keccak-256 algorithm,
respectively. The fields of a node are described as follows:

- S = [(k1,v1),-.., (kp,vp)], where b denotes the number of key-value pairs in
each node, k; is the index. For the leaf node, v; represents a transaction hash
such that v; = hash(tx;). For the non-leaf node, v; represents a commitment
value C; of its child node.

— ki = hash(k; || ), S" = [(k,v1), ..., (kj,vs)]. To account for the sorted order
of the keys and the position binding relation within the nodes, we transform
the k; to k.

— p(z) represents a polynomial for key-value pairs in each node such that
p(k.) = v;. It can be done with the Lagrange interpolation formula or Horner’s
method.

— C = Commit(PK, p(x)), where PK is the public key generated in Setup(-)
algorithm in advance.

— Attr represents attributes set for each node. For the leaf node, it is a set of
transaction attributes, including the boundary keys information, the address
information and so on. For the non-leaf node, Attr,, = Attr;, U...U Attry,,
where [, ...,[, are the children of node n.

Algorithm 1 describes the ADS construction procedure, and the PCB-tree is
built based on the transaction objects of the block in a bottom-up fashion. First,
the miner parses each transaction tx; in transaction set T' into the formal we
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Algorithm 1: ADS Construction (by the miner)

Input: Public key PK, Transactions set T’
Output: root commitment pcbCommit

1 Initialize a new PCB-tree; 17 repeat
2 Parse T into key-value pairs Listiz «— 18 for i=1 to l/f do // non-leaf node
{(k1,tz1,attr1), -, (kn,txn, attrn)}; 19 for j=1 to f do

3 Sort Listiy according to the k;; 20 kj — kitj;

4 Number of leaf node I — n/f; 21 v «— Cy;

5 for i=1 tol do // leaf node 22 Attr; «— Attry;

6 // entries of each node; 23 end

7 for j=1 to f do 24 Si<—[(k17v1)7--‘ 7(kfvvf)];

8 kj — kiyj; 25 Attr; — [Attry,-- -, Attry];

o v; «— hash(tz;t;); 26 Ci,p(x); —

10 Attrj — attriyj; nodeUpdate(S;, node;);

11 end 27 Insert (Ci,p(x);, Si, Attr;) to @

12 Si — [(k1,v1),-- -, (kg,vp)]; 28 -th PCB-tree node;

13 Attry «— [Attry, - - -, Attry]; 20 end

14 Ci,p(z); «— nodeUpdate(S;,node;); 30 l—1/f;

15 Insert (Ci, p(2);, Si, Attr;) to i-th 31 until all transactions is completed;
PCB-tree node; 32 Store root commitment pcbCommit in

16 end block header;

defined. Next, the miner inserts each transaction data to the leaf node of PCB-
tree and updates the commitment value C and polynomial p(x) for each node.
This process is repeated until all transactions are inserted. Finally, after the tree
construction is finished, the root commitment of the PCB-tree will be written
in the block header as pchCommit. The node update algorithm nodeUpdate()
aims to update the value of commitment and polynomial for inserted node.
We first build the binding relationship between the numerical attribute k; and
position 7, then calculate the polynomial by the Lagrange interpolation formula
for the node and its corresponding commitment value. The procedure is described
in Algorithm 2.

Algorithm 2: PCB-tree Node Update Algorithm

1 Function nodeUpdate (S, curr):
Input: The key-value pairs of node S, The updated node curr
Output: The commitment C, The polynomial p(x)

for i=1 to S.size do
| ki — hash(k; || i);
end
S [(k/lv Ul)? T (k/Sﬁizea US.size)];

p(z) «— Lagrangelnterpolation(S');
C — Commit(PK, p(x));
return C, p(x);

N o ok W N




24 J. Gong et al.

Our PCB-tree leverages the feature of BT-tree to improve the efficiency of
range queries and reduce the I/O operation times of node queries. The query
efficiency of our PCB-tree is higher than MHT. In this paper, the size of pub-
lic key PK grows linearly with the branching factor f of the PCB-tree, rather
than the largest transaction set size. It can be adjusted flexibly to make the
trade-off between query efficiency and communication overhead. Meanwhile, the
public-private key pair of KZG commitments can be generated by executing the
Distributed Key Generation (DKG) protocol [12], and the PK can be shared to
a bulletin board which can be generated once and then reused.

5 The Proposed Construction

For ease of illustration, we first focus on the range query in each block. We then
extend it to the Boolean query and ensure the integrity of its results. Finally,
to enhance the performance of the query service, we discuss batch processing on
multiple query objects. Based on our designed PCB-tree, we explain the proof
generation and verification for the range query.

5.1 Verifiable Range Query Processing

In the verifiable query phase, when the light client triggers a query request, the
full node parses the query firstly and returns the correct results R and proofs
VO according to Algorithm 3. Then, the light client updates the newest block
headers periodically and verifies the integrity of the results through VO. Next,
we will focus on the range query processing on numerical attribute V; for the
full node.

In the full node, the range query is executed in a top-down way that is similar
to the range query of the BT-tree. Algorithm 3 shows a range query ¢ = [I,u] on
a single block. When [ equals u, the range query is a point query. First, the full
node can process a query from the root node. If the query condition does not
intersect with the attribute of the current node, it means its subtree does not
contribute to the query result. In this case, the full node will generate the proof
for the root node as the VO, and the procedure is terminated. Otherwise, keep
exploring its subtree. During the search process, if the keyword on the non-leaf
node is equal to the given value, it only adds the corresponding proof to VO
and does not terminate until the real data in leaf nodes are found. The leaf node
of the PCB-tree organizes a sequence list, and we can traverse backward from
the first leaf node found. The query algorithm of PCB-tree RangeQuery/() is
described in Algorithm 5 (See Appendix A), which recursively queries each level
of nodes. To improve the query efficiency of internal nodes, we use an efficient
localization algorithm getPos(). It mainly utilizes the idea of binary search to
locate the query path quickly, and we use the bit vector to denote which keys
are the points on the search path in each node. For example, the (0, 1, 1, 0)
means that the second and third positions of the current node are retrieved.
Algorithm 6 shows the localization procedure in detail (See Appendix A).
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Algorithm 3: Range Query Processing (by full node)

Input: PCB-tree root, Range query condition g = [, u]
Output: Query Results R, Verification Object VO
Initialize two empty set R, VO;
if root.[min,maz] matches ¢ then
‘ RangeQuery(root, I, u, R, VO);
else
R = (;
num < root.keyNum, p(z) < root.p(z);
wmin = CreateWitness(PK, p(x), ko);
add <O, (k‘o,vo), wmm> to VO;
Wmaz = CreateWitness(PK, p(x), knum);
add (num, (knum, Vnum); Wmaz) to VO;
end
return (R, VO)

© 00N O A W N
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For example, consider a range query ¢ = [19,40] as shown in Fig. 3. The full
node traverses the keyword index from the root node to the leaf nodes, and adds
the matched transaction to R. Finally, the results are {[(3, 20, tx3), (1, 35, tx4)]}.
In this case, the full node needs to return the membership of the query results
and the non-membership of the greatest and smallest elements in the range,
e.g., 19,40. The VO returned by the full node includes {[(1,(20,Cn1),wr1),
<2» (5676]\’2)7 wr2>]v [[<27 (107 Ul?)vw12>v <3’ (207 U13)’ w13>]7 [< L, (35v v21)7w21>7 <27 (
56, v22), wa2)]]}, where w;; is the witness for the elements in the j-th position of
the i-th node and is generated by invoking CreateWitness(-) algorithm.

Algorithm 4 describes the steps of result verification on the light client. The
verification process is on the client-side from top to bottom. At first, the light
client downloads all block headers from the blockchain to fetch the root commit-
ment against the pcbCommit and leverages the polynomial commitment prim-
itive VerifyEval(-) algorithm to check the correctness of the search path ele-
ments. The binding relationship between data and position in each node ensures
the completeness of query results. The validated commitment for each entry in
the parent node needs to be used to verify the correctness of their child nodes.
In the leaf node, the user uses the function hash(:) to compute v; = hash(tx;)
according to R, then invoke VerifyEval(-) algorithm to prove the correctness of
returned result.

5.2 Extension to Verifiable Boolean Query

The previous section mainly discusses the range queries on the numerical
attribute V;. In real-life scenarios, the query client may consider the keyword
queries on the set attributes W;. The Boolean query on the set attributes
is supported in our PCB-tree by the field Attr. In the non-leaf nodes, the
attribute set of the parent node is the union of the attribute sets of all its
child nodes. Therefore, when the full node receives a Boolean query condition
q = {addr1A(addr3V addrd)}, it firstly parses the query into two parts: {addrl}
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Algorithm 4: Results Verification (by the light client)

Input: Query results R, Verification object VO, Query condition ¢
Output: The verification result: 1 or 0

1 Interpret R and VO as a list of (i, k;, ta;) and (i, (ki,v:), ws), respectively;
2 vCommit « root commitment PcbCommit;

3 for each level in VO do

4 vo — (i, (ki,vs), wi);

5 Check the k; is in the query range g;

6

7

8

9

Verify the i-th entry of current node is correct via the vCommit and vo;
vCommit «— vy
if current node is leaf and k; matches q then

value < hash(tz;) according to the R;

10 Check the value is equal the v; of the VO;
11 end
12 end

and {addr3, addr4}. In this paper, the Boolean query is represented by a Boolean
function in Conjunctive Normal Form (CNF), which is a list of AND or OR
operators. The full node starts the query from the root node and compare query
condition one by one with the set attribute Attr in each node. However, this
way is not efficient. In order to speed up the query, we introduce Bloom Filter
(BF) into PCB-tree. Bloom filter is a long binary vector and a series of random
mapping functions, and it can be used to test whether an element is a member
of a set fastly. When constructing the index of PCB-tree, we need to create a
BF bit vector for each node attribute, which means each BF represents a set
attribute W;, and the BF of non-leaf nodes denote the union of BFs in its child
nodes. Therefore, when the system starts traversing from the PCB-tree root
node, BF is used to determine whether the subtrees of current node have the
query attributes.

In the range query, v; is the hash of transactions tz;, and it is seen as an
authenticator of the transactions. Based on polynomial commitment, we guaran-
tee the integrity of numerical attribute query results. In order to guarantee the
integrity of the Boolean query, we need to build a binding relationship between
numerical attributes, set attributes and transactions. Hence, v; needs to be trans-
formed into a tamper-proof digest value, such as hash value, v; = hash(tz; || W5).
We take v; as the value in the key-value pair (k;,v;) in the leaf node for Boolean
range queries.

Remark 1. In order to further reduce the communication overhead, it is neces-
sary for supporting batch operations. The primitive CreateWitnessBatch(-)
introduced in Sect. 2.3, which can aggregate multiple query points in the same
polynomial commitment. We can aggregate the proof for multiple query points
under the same node when executing range query. For example, the full node
can return an aggregated proof w2 = CreateWitnessBatch(PK, p(x)n»,
[(20,Cn1), (56,Cn2) ]) for two points under the root node (1, (20,Cn1),w,1) and
(2, (56,CNn2),wr2). The light client can apply VerifyEvalBatch(:) to process
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batch verification. Boneh et al. [2] proposes two polynomial commitment schemes
which can open proof for multiple points and polynomials at the same time. We
can also leverage this enhanced polynomial commitment scheme to aggregate
different node in the PCB-tree which will further reduce the VO size.

5.3 Security Analysis

In this paper, we give a formal definition and analyze the security of our proposed
scheme. Note that the polynomial commitment scheme is secure [5].

Definition 1 (Security). A verifiable Boolean range query scheme is secure if
the success probability of any polynomial-time adversaries in the following exper-
iment is negligible:

— Run the ADS generation algorithm and send all transactions {tx1,...,tx,}
i a block to the adversary;
— The adversary outputs the query q, the result R, and the VO.

The above definition indicates that malicious full node forges an incorrect
or incomplete result is negligible. Next, we will prove that our proposed scheme
indeed satisfies the desired security requirements.

Theorem 1. Our proposed verifiable Boolean range query scheme based on
PCB-tree can guarantee the correctness and completeness of query result as
defined in Definition 1.

Proof. The verifiable query processing should guarantee that the returned results
are correct and complete. We prove this theorem by contradiction as follows:

(1) Correctness of query results. The returned results R contain a transaction
to* such that tz* ¢ {tx;}_; and pass the verification. The client will vali-
date the integrity of the transaction with respect to the PcbCommit stored
in the blockchain. Therefore, the forge is impossible because the polyno-
mial commitment scheme and the underlying consensus mechanism of the
blockchain are secure.

(2) Completeness of query results. There exists a transaction tzy that satis-
fies the query condition ¢, but not in the result set R. Now suppose there
is a missing transaction tzy. In our proposed PCB-tree, all transactions
are stored in the leaf nodes after being sorted according to the numeri-
cal attribute k;, and we build the binding relationship between k; and the
indexed position ¢ for commitment. During query processing, the full node
requires two additional boundary objects for non-membership proofs for
query objects, falling immediately to the left and the right of tx,;. Mean-
while, the light verifier syncs the latest block headers from the blockchain
network. The missing object txry must fall under one polynomial witness
value in the VO. Thus, our proposed scheme is secure.
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6 Performance Evaluation

This section describes the performance evaluation of our verifiable query scheme.
We deploy all experiments on a personal laptop computer with AMD R7 4800H
CPU @ 2.90GHz, 24 GB RAM, and run a single thread to simulate the pro-
cessing of the full node and the light client. In the experiments, we retrieve the
Ethereum databases via a blockchain infrastructure, e.g., Infura3. The codes of
query processing and verification programs are written in Python and Golang
based on the Bt-tree structure and the KZG commitments®.

6.1 Experiment Setting

We describe the detailed experiment configuration. The PCB-tree is built based
on the real transaction dataset from Ethereum blockchain. It contains 1,000
blocks with 96,287 transactions, and each transaction is defined as (timestamp,
value, from, to), where the timestamp is the query period, value is the amount
of transaction transferred, from and to are the addresses of sender and receiver
respectively.
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To evaluate the entire system’s performance, we perform four sets of exper-
iments. Firstly, we evaluate the setup cost of ADS construction for the miner.
Then, we evaluate the query processing cost of the full node and compare it with
the GCA2-tree [23] which implements a verifiable query scheme using the same
accumulator as vChain [19]. Finally, we measure the result verification cost on
the light client and the size of the VO.

6.2 Experiment Evaluation
Setup Cost. We start with evaluating the construction time of PCB-tree on
the miner-side. From Fig.4, we can learn that the construction time increases

3 https://infura.io/.
4 https://github.com/protolambda/go-kzg.
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Table 2. Time cost of proof

Fanout | Single process Batch process (max)
Generation | Verification | Generation | Verification
2 0.515 ms 2.451 ms 0.514 ms 2.688 ms
10 0.609 ms 2.728 ms 0.717 ms 5.548 ms
20 1.385 ms 2.813 ms 4.97 ms 13.477 ms
30 2.281 ms 3.027 ms 17.086 ms | 28.986 ms
50 7.839 ms 7.109 ms 78.115 ms | 96.106 ms
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Fig. 6. Range query performance of full node

linearly when the number of transactions in a block grows, and as the fanout
increases, the construction overhead becomes more expensive, but this ADS
construction operation does not affect the performance of blockchain. On the
one hand, the current block generation rate of Ethereum is 15s/block, and the
average number of transactions per block does not exceed 400. Therefore, the
miner can do the construction and mining processes in parallel. On the other
hand, the experiment is run a personal computer with a single thread, which is
impractical for the miner. Moreover, our PCB-tree ensures the integrity of query
results, which is crucial for the verifiable query scheme.

Query Performance. We first test the performance of range queries from dif-
ferent dimensions as shown in Fig.6 and compare the time cost of queries with
the scheme in [23]. Figure6(a) illustrates the range query performance of full
nodes when the number of transactions in a block increases. The full node
query performance contains two parties: results query time and proof genera-
tion time. It can be seen that the cost of queries increases only linearly with
enlarging the transactions number. Meanwhile, its query time increases as the
fanout increases. Compared with the single operation, proofs batch aggregation
will degrade quickly the query time, where nil-PCB-tree represents that batch
processing is not used. In theoretical analysis, the complexity of the range query
is approximate O(logsn). However, it is also necessary to generate proofs for the
corresponding results during the query process, which is expensive and is the
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Table 3. Comparison of proof size

Scheme Commitment |[VO format One VO size Public parameters|Batch
size operation

Merkle 32 Hash 10 - 32 = 320 — N

Tree [9]

MB-Tree [6] |32 Hash 3-9-32=2864 — N

vChain [19] |32 hash, 7y, Attr, Digest|10 - 288 = 2880 64 - 1000 = 64000|Y

PCB-Tree |64 Tpep, Attr 3. (64 + 64) = 384/64 - 10 = 640 Y

(this work)

Note: We use a 256-bit group and BN256 elliptical curve for class groups at 128-bit security. We
assume the number of transactions is n = 1000, the size of attribute messages is 256-bit (An ‘Attr’
field consists of 2 elements) and 256-bit hashes. We assume the fanout f = 10 for PCB-tree and
MB-tree and the path height of Merkle tree is 10.
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Fig. 7. Communication cost

primary cost of the full node. Furthermore, with the increase of fanout, the time
of proof generation and verification increases which account for the increment of
query time. The time cost of proof is shown in Table 2.

We repeat the above experiment while fixing the transactions number to 500
in a block and varying the range of queries. Figure 6(b) shows the changing trend
of query time when the range of query increases. As the range of queries, the
leaf proof number becomes longer, which accounts for the linear increase in our
systems. Figure6(c) shows the query performance at different block numbers.
Each block contains 500 transactions and fixes the range of queries to 15. Since
we mainly consider the performance of a single block in this paper, we will
execute the single block query algorithm recursively for different blocks.

VO Size. Next, we measure the communication cost between the full node and
the light client. Firstly, we theoretically analyze the storage cost of commit-
ments, proof, and public parameters of various schemes, as shown in Table 3.
Our public key parameters and VO size are small compared to scheme [19]. In
our schemes, the proofs for non-leaf and leaf nodes are (k;,c;,m;) and (k;,m;)
respectively. The batch proofs for non-leaf and leaf nodes are (m(k;, ¢;), r(k), m;)
and (m(k;),r(k),m;) respectively, where m is the number of elements aggre-
gated, (k) is the remainder of the polynomial division and the size is 32 bytes.
To alleviate communication overhead, we can only send x-axis coordinates of the
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elliptic curve points and add additional one-bit messages to record the positive
and negative. In this case, the proof size would only be 32 bytes.

Figure 7(a) illustrates the VO size with increasing numbers of transactions.
It can be seen that the VO size grows linearly with the number of transactions.
However, the order of magnitude of our VO size is KB, and the scheme [23] is
MB. Figure 7(b) and 7(c) shows the VO size with varying query range. The trans-
actions number is fixed to 500 at per block, and the fanout of Fig. 7(c) is 20. We
observe that the VO size is small when the tree fanout is small. Meanwhile, the
proof aggregation will reduce quickly the communication overhead transferred
from the full node to the light client. In contrast, without batch processing, the
VO size increases linearly at least 3x. Therefore, based on Fig. 6 and Fig. 7, we
conclude that our scheme makes a trade-off between query efficiency and VO
size.

Verification Cost. Finally, we evaluate the verification cost at the light client
with the number of transactions queried. We mainly discuss the cost of proof
verification in this experiment because it is a major overhead for the client.
Figure 5 demonstrates that the verification time grows linearly with the trans-
actions number, and the verification time of scheme [23] is a stable horizontal
line. However, we discover that the clients generally query transactions they are
interested in the recent period, and the experiment shows that when the num-
bers of transactions that are interested <800, the client verification efficiency of
our scheme is better than scheme [23].

7 Conclusion

In this paper, we study the problem of verifiable query processing and pro-
pose an efficient and verifiable Boolean range query scheme for light clients on
blockchain databases. Firstly, we developed a novel authenticated data structure,
polynomial commitment BT-tree (PCB-tree). Based on that, we achieve efficient
integrity and correctness verification of Boolean and range queries for blockchain
light clients. Secondly, our scheme provides a tunable trade-off between query
time and communication overhead by autonomously setting the fanout size of the
PCB-tree. Thirdly, our scheme can further support batch processing to reduce
VO size and verification time. Finally, security analysis and experiment have
substantiated that our scheme is secure and efficient.
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A Pseudo Codes of the PCB-Tree Algorithms

Algorithms 5 and 6 respectively show the query processing of the PCB-tree
introduced in Sect. 5.

Algorithm 5: Range Query w.r.t. PCB-tree
1 Function RangeQuery (curr, I, u, R, VO):

Input: Current node curr, Lower bound I/, Upper bound u, Results
set R, Verification object VO

2 if curr is not leaf then

3 left = getPos(curr, 1);

4 right = getPos(curr, u);

5 p(xz) — curr.p(x);

6 if left == right then

7 wieft = CreateWitness(PK, p(z), kiert);

8 add (left, (kleftavleft)a wleft> to VO;

9 RangeQuery (curr.childreneys, I, u, R, VO);
10 else

11 for i=left to right; i += 1 do

12 w; = CreateWitness(PK, p(z), k;);

13 add (i, (k;,v;), wi) to VO;

14 end

15 MAT = CUTTe . MAT;

16 RangeQuery (curr.childrenes, I, maz, R, VO);
17 MIN = CUTTright . TN,

18 RangeQuery (curr.children,igh, min, u, R, VO);
19 end
20 else
21 left = getPos(curr, 1);
22 while curr is not None do
23 p(x) — curr.p(zx);
24 for i — left to curr.size() do
25 if curr.keysfi] > u then
26 break;
27 add (i, curr.keysli], tz;) to R;
28 w; = CreateWitness(PK, p(z), k;);
29 add (i, (ki,v:), w;) to VO;
30 end
31 if curr.next is not None then
32 curr = curr.next;
33 left = 0;
34 end
35 end
36 end
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Algorithm 6: Position Search Algorithm

1 Function getPos(curr, key):

Input: The current node curr, The search key key
Output: The position index z
2 count < curr.keyNum,;
3 z «— -1;
4 if count # 0 then
// binary search
5 lo <+ 0;
6 hi « entries;
7 while z < 0 do
8 mid — (lo+hi) // 2;
9 diff — key-curr keys[mid];
10 if diff < 0 then
11 if key-curr.keys/mid-1] > 0 then
12 ‘ z «— mad;
13 else
14 ‘ Z — -2;
15 end
16 else
17 if key-curr.keys/mid+1] < 0 then
18 ‘ z «— mid+1;
19 else
20 ‘ z — -3;
21 end
22 end
23 if z == —2 then
24 lo < 0;
25 hi «— mid-1;
26 else if z == -3 then
27 lo «— mid+1;
28 hi « hi;
29 end
30 else
31 z — -1;
32 end
33 return z;
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Abstract. The impact of COVID-19, shortage of chips and external fac-
tors has made a flurry demand, increased costs and significant delays in
supply chains despite technological advancements in the supply chain
management process. The blockchain technology is constantly being
explored and attracts supply chains in adopting them to allow businesses
to scale rapidly. In our work, we identify gaps between existing blockchain
implementations and cybersecurity standards. We introduce a framework
and show how we can implement secure and trusted blockchains onto the
supply chains.

Keywords: Blockchain - Standards + Supply chains

1 Introduction

The advent of blockchains, arguably made popular by cryptocurrencies, brings
the benefit of decentralization that attract supply chains in adopting them. In
this paper, we identify directions on where and how to implement blockchains
onto the supply chains. There is a current lack of literature to provide governance
to bridge cybersecurity standards and the use of blockchain technology in supply
chains. Even though current cybersecurity standards exist, such gaps in bridg-
ing blockchains and the supply chains pose a problem in trust for widespread
adoption.

Firstly, both information (IT) and operational technology (OT) are treated as
2 separate entities in supply chains; causing friction for data in motion between
these networks. Secondly, the proliferation of blockchains has enabled smarter
and innovative ways to communicate; but with the lack of interoperability. With
rapid advances and push for digital consumption in the cloud, our work aims
to introduce an agnostic and guiding framework to bridge gaps in cybersecurity
standards, provide convergence for IT and OT systems, and for various stake-
holders in the supply process to move quicker towards the adoption of blockchain
technology in supply chains.

Currently a blockchain is implemented on top of a supply chain and has lim-
ited consideration for cybersecurity standards and difficulty to integrate OT pro-
cesses, which are usually air-gapped and separate from IT systems. As smart con-
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tracts increase in functionality and become more sophisticated, threats against
them only continue to escalate.

In this paper, we first provide a background in the current state of supply
chains and existing cybersecurity standards. Secondly, we introduce an architec-
ture which supply chains can follow in order to understand how a blockchain
can be applied on top of a supply chain through a 3-layer mapping process.
Thirdly, we provide a survey of existing threats. Lastly, we explore challenges
and directions for future work.

2 Background

2.1 Current State of Supply Chains

It is of no doubt that the impact of COVID-19, shortage of chips and external
factors has made a flurry demand, increased costs and significant delays in sup-
ply chains [16,30,32]. Despite technological advancements in the supply chain
management process, supply chains still operate a centralized model to achieve
competitive advantage and prevents quick transfer of information between dif-
ferent supply chains [56].

Horizontal Integration using Blockchain Technology

Stakeholders

IT/OT Integration

Fig. 1. Horizontal /vertical scaling in a typical supply chain

As supply chains modernize towards Industry 4.0 (i4.0), Operational Tech-
nology (OT) or Industrial Control Systems (ICS) plays a crucial link in manag-
ing machines in a supply chain. As shown in Fig. 1, rapid horizontal scaling in
supply chains is needed to allow integration and better optimized flow of data
and products from suppliers and vendors. This also enables fast adaptation of
information across different stakeholders in the supply chain. Thus, avoiding the
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bullwhip effect, reducing the time needed for response and increased resilience in
this process. [57] Data from actuators or sensors are typically located at the edge
which are managed or connected to PLCs (Programmable Logic Controllers) and
are controlled by SCADA (Supervisory Control and Data Acquisition) systems.
These systems require an always uptime with high availability with minimal
disruptions to business continuity.

With increasing use of Internet-of-Things (IoT) devices in the supply chain
(even for use in the military [23]), the current state of such systems are no longer
restrained or isolated and have achieved some level of connectivity or interfaced
with other systems in the network. Even though the blockchain is secure, it is
of essence that these systems not only remain connected but are also resilient
against unintended behaviour or cyber attacks to ensure that data can remain
trusted.

2.2 Cybersecurity Standards

As of writing, there are several published standards to guide and audit organi-
zations to implement systems securely. Table 1 shows a quick survey of existing
standards which serve to protect IT and/or OT systems.

Table 1. Comparison between existing cybersecurity standards

Standard Description IT | OT

ISO 27001 [17] Security management by the International Organization for v
Standardization. Generic requirements for establishing,
implementing, maintaining and continually improving an
information security management system within the context of
the organization

CCM v4 [4] Published by the Cloud Security Alliance. Composed of 197 v
control objectives that are structured in 17 domains covering all
key aspects of cloud technology

IEC 62443 [8] Published by the International Electrotechnical Commission. v
Addresses cybersecurity threats and vulnerabilities in TACS
ETSI [10] Standards, articles and publications for the EU written by the v |V

European Telecommunications Standards Institute in
conjunction with European Union Agency for Cybersecurity [73]

NIST SP 800-53 [37] | Catalog of security and privacy controls for information systems | v | v
and organizations published by the National Institute of
Standards and Technology to protect organizational operations
and assets, individuals, other organizations, and the countries
from a diverse set of threats and risks, including hostile attacks,
human errors, natural disasters, structural failures, foreign

intelligence entities, and privacy risks

The above shows a non-exhaustive list of standards for supply chains to
follow and may not be sufficient as they do have other standards not only to
increase consumers confidence, but to abide to legislatory concerns. In recent
literature, evolving blockchain standards such as the ISO/TC 307 or the IEEE
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SA P241x series have been published or are still undergoing research and have
yet to consider OT systems as part of the ecosystem [18,61].

3 Related Work

The most current contributions in the literature are comprehensive and cover
both the blockchain technology and the supply chain management in good detail
[2,53,78]. Deployment of blockchains in supply chains promotes transparency,
traceability and scalability. However, implementations such as [15,33] rely on a
permissioned blockchain model and do not reveal an open implementation or
model how to build a trusted blockchain on top of supply chains. As highlighted
by [53], the most crucial challenge to be addressed is to authenticate on-chain
data with its physical counterpart, which can be rapidly adopted through stan-
dardization. In [78], it describes each of the individual blockchain as frameworks
to address concerns in specific supply chains, citing security concerns in consen-
sus and popular usage of IoT devices.

They also lack an emphasis to secure the supply chain management process
with the use of cybersecurity standards, given that key OT processes in the
supply chain still operate in an air-gapped or isolated environment. While the
state-of-the-art does indeed share current and existing blockchain implementa-
tions for different supply chains, they may adopt and implement blockchains
which are closed-source and not follow standardization.

4 Framework

4.1 Overview

We introduce SuppliedTrust, an agnostic framework for supply chains which we
identify issues, risk and problems by applying a 3-layer mapping process as
shown in Fig. 2. The 3 layers are: Governance, Supply Chain and the Blockchain
layers. Firstly, the Governance layer, consists of merging IT/OT operations by
identifying standards relevant to their specific domains in the supply chain. Sec-
ondly, the Supply Chain layer, consists of the various stakeholders which form
the individual or part of the consortium of the blockchain network. Lastly, the
Blockchain layer, consists of the specific domains of the blockchain technologies
that is to be applied on top of the Supply Chain layer.

4.2 Governance Layer

The Governance layer consists of 2 domains, split into information technology
and operational technology.
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Fig. 2. Supplied Trust architecture

Standards. By using established standards such as the ISO 27001 and ISA
62443, they provide guiding principles for a secure implementation of IT and
OT infrastructure respectively. However, these are not sufficient as we move
towards a connected world. Other existing standards such as the NIST and the
Cloud Controls Matrix (CCM) currently do not consider an implementation of
a blockchain on top of this secured process. Despite the release of v4, CCM
currently considers the Shared Security Responsibility Model (SSRM) as a par-
tial gap for ISO 27001 and only considers a permissioned blockchain, Hyperledger
Fabric, for deployment [2,4]. As such, we presently identified it as a gap to enable
secure and trusted exchange of information between the blockchain and the sup-
ply chain. As shown in Fig. 3, transactional data from Supply Chain X can trans-
verse within its trusted environment (Txgc, ), but there is a concern on how data
should be handled within its OT network (Txo7(sc,)), When it leaves the supply
chain into the cloud (Tx¢(s¢,)) for commits into the blockchain (Txpc(sc,)),
and eventual consumption by Supply Chain Y (Rx¢(sc,) and Rxsc, ).

Cloud-Based Services. As cloud-based services become more popular than
ever, BaaS (Blockchain-as-a-Service) are presently the easiest solutions to inte-
grate blockchains into supply chains. Thus, supply chains can leverage on cloud
services to run their blockchain nodes and feed data into the network.
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Fig. 3. Simplified OT/IT integration on a supply chain with a blockchain.
Txor(scg) : OT data from Supply Chain X
Txr7(scy) ¢ IT data from Supply Chain X
Txsc, : Transmitted transactional data from Supply Chain X
Txc(sc,) + Transmitted transactional data from Supply Chain X transversing into the cloud
Txpc(sc,) : Transmitted transactional data from Supply Chain X committed into the blockchain
Rxc(sc,) + Received transactional data from Supply Chain X retrieved from the cloud
Rxsc, : Received transactional data from Supply Chain X

4.3 Supply Chain Layer

The Supply Chain layer consists of the various stakeholders, their roles and
responsibilities in the blockchain.

Stakeholders. In a typical supply chain, various stakeholders may include sup-
pliers, sub-suppliers, vendors, its customers (via sales) and last but not least,
the manufacturer themselves. Compared to centralized cryptocurrency exchange
where the Know Your Customer (KYC) process is mandatory [39], every individ-
ual stakeholder in a supply chain are already known and well-defined. However,
their interests within the supply chain management may differ since each of the
individual parties may wish to gain benefits (e.g. oracle information, monetary
or rewards) from joining the blockchain. An example is given in Table 2.
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Table 2. Stakeholders and their motivations leveraging on blockchain technology.

Stakeholders Roles & Responsibilities ‘ Motivation

Suppliers/Sub-Suppliers | procurement & provision of raw and unfinished| v | v | vV |V |V |V |V |V | V
materials

Vendors direct purchaser of finished & unfinished products,| v | v | vV |V |V |V |V | V | V
provision of goods & services

Manufacturers supply & meet demands of consumers, provisionof | v | v | vV |V |V |V |V |V | V
finished goods

Marketers bridges gap between trends and demand from con- v vV
sumers

Distributors purchaser of finished products and to meet demand | v/ | v/ | v vV v v

& support consumers

Sales identifying & educating prospective consumers v v
while supporting existing consumers

Consumers participate to obtain benefits (e.g. data sharing) v VIV
while ensuring check & balance in the network

AM Asset Management - automated tracking and management of physical/digital assets

AP Agset Protection - secure physical/digital assets

bp Digital Payments - acceptance of digital currencies

P Tntellectual Property - secure and traceable copyrighted or patented assets

LL Legal - automated processing of rules and regulations

SC€ Smart Contracts - automated execution of code between parties

Su Sustainability - automated collection/reporting of environmental and/or financial functions
TR Tracking - traceability of physical/digital assets

TO Tokenization - non-fungible tokens, representation of physical/digital assets

4.4 Blockchain Layer

The Blockchain layer consists of 3 domains, split into applications, contracts and
consensus (Fig.2) with a dotted line indicating horizontal data flow traversing
different stakeholders (regardless of direction) in the Supply Chain layer.

Applications. Decentralized applications (Dapps) or Web3, provides a front-
end interface for users to interact with the blockchain.

As shown in Fig. 4, these frontend applications provide its users (or any of
its stakeholders in the supply chain) an always uptime, decentralized control
and benefits, thanks to JavaScript Object Notation Remote Procedure Calls
(JSON-RPC) by a suitable provider, which eliminates the need for backend ser-
vices. Developers can take advantage of such application programming interfaces
(APIs) to interact directly with the blockchain. However, blockchains are inca-
pable of storing large amounts of digital or physical information on-chain as this
requires the use of an off-chain storage, notably decentralized storages.

Contracts. Smart contracts within the blockchain ecosystem plays a significant
and important role in enabling fully automated supply chains. Not only rules are
well-defined between various parties listed in the smart contract, but they also
define the conditions required to provide information and/or monetary transfer
[80]. This greatly speeds up the process of information transfer without the need
of an intermediary.
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Fig. 4. A Web3 implementation in Ethereum

More recently so, smart contracts have been made popular via their repre-
sentation of digital assets via the use of non-fungible tokens (NFTs) which could
provide a possible use case for supply chains [64]. Widely perceived to be a dig-
ital representation of an artwork, NFTs have shaken the world tagged with a
perceived value, then auctioned or sold onto a marketplace such as OpenSea or
Rarible [6,35,79]. However, NFTs themselves should not simply be tagged with
a value, as it name implies ‘non-fungible’; which then can be a representation of
an asset stored digitally in the virtual space. According to the ERC-721 specifi-
cations, smart contracts written in Solidity for Ethereum contains optional fields
for its metadata extension.

As highlighted in the Applications domain (see Fig.2, under Blockchain
layer), any asset that is pointing to an off-chain resource may prove troublesome
if tokenURI (line 15 in Listing 1) ceases to exist or a collision if another asset
(e.g. non-uniqueness or identical) does indeed exist. To combat this, the use of
decentralized domains or storages is a natural fit. However, current decentralized
file storage solutions are partially suitable for use with supply chains.

As depicted in Table 3, supply chains may not be able to adopt some of the
decentralized file storages for their usage due to lack of confidentiality, privacy
or file persistence [44]. A commercial solution, CargoX, uses Polygon and the
InterPlanetary File System (IPFS) as their part of their process [38]. However,
recent research and tracking in NFT's prior to their indicated release does show
that privacy in IPFS may not be guaranteed and may result being compromised
[21,47].
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Listing 1. NFT Metadata Extensions [83]
1 /// @title ERC-721 Non-Fungible Token Standard, optional metadata exztension

2 /// @dev See https://eips.ethereum.orq/EIPS/eip-721
3 /// Note: the ERC-165 tidentifier for this interface is Ox5b5e139f.
4 interface ERC721Metadata /* 4s ERC721 */ {
5 /// @notice A descriptive mame for a collection of NFTs in this contract
6 function name() external view returns (string _name);
7
8 /// @notice An abbreviated name for NFTs in this contract
9 function symbol() external view returns (string _symbol);
10
11 /// @notice A distinct Uniform Resource Identifier (URI) for a given asset.
12 /// @dev Throws if ‘_tokenId‘ is mot a valid NFT. URIs are defined in RFC
13 /// 3986. The URI may point to a JSON file that conforms to the "ERC721
14 /// Metadata JSON Schema.
15 function tokenURI(uint256 _tokenId) external view returns (string);
16}
Table 3. Decentralized file storage solutions.
System Features File persistence Data Contracts
retention
BitTorrent [1]|Efficient file distribution achieving |Not guaranteed
pareto efficiency
IPFS [41] Decentralized web storage by Not guaranteed
providing content addressing and
pinning
Swarm [31] |Incentive-based decentralized storage| Not guaranteed
platform
Safe [62] Autonomous private-guaranteed Public guaranteed, |v
social network by providing unused |private deletable
computing resources
Storj [14] Decentralized private-guaranteed Determined lifetime, | v
cloud storage deletable
Arweave [52] |Archival decentralized storage Blockweave v v [11]
Siacoin [28] |Decentralized storage platform Private guaranteed |v v [5]

Consensus. Consensus are mechanisms which allow a blockchain to reach a
certain finality to a common decision before committing transactions onto the
block. This is crucial as once they are committed onto the block, they cannot
be reversed once they are written onto the chain. For different parties to inter-
operate, the choice of a blockchain will determine different set of infrastructure
requirements. Some examples of consensus include:

1. Proof-of-Work (PoW). Nakamoto introduced PoW as network timestamps
transactions by hashing them into an ongoing chain of hashes, forming an
immutable ledger [68]. Parties first gossip in the network whenever a new
transaction is performed. Used by Bitcoin and Ethereum.
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2. Proof-of-Stake (PoS). PoS was first introduced by Peercoin (PPCoin in
August 2012) with the term ‘coin age’ [59]. A timestamp field is added into
each transaction to determine the age of the currency held by the user. As
such, each transaction is tracked by how long has the currency be held; the
longer the age, the larger the influence a user has on the transaction. Used
by Algorand and Cardano.

3. Practical Byzantine Fault Tolerance (PBFT). Termed by Castro and Liskov,

PBFT works by assuming no more than n users are faulty [43]. Used by

Hyperledger Fabric and Tendermint.

As there are many evolving consensus algorithms (and its variants) which a
supply chain may decide to commit finality of their transactions, no specific con-
sensus is an one-size-fit-all and must be specifically tailored for different supply
chains. Besides, interoperability is also a concern when communicating between
different blockchains in supply chains. Despite current progress (no particular
order) in Chainlink, Cosmos and Polkadot, these blockchains provide cross-chain
bridges or a relayer to attempt to communicate with other blockchains, but
require information to be off-loaded, then human or oracle-validated before it
can be transferred to the destination chain [3,13,24].

4.5 TUse Cases

Our proposed framework can be applied in supply chains where IT/OT inte-
gration is yet to be achieved or partially achieved, as formatted data needs
to be secured and fed for other stakeholders in the blockchain. An example
would be the validation of claims or features in the manufacture of products
for eventual consumption by consumers. Following our proposed framework (via
the use of cybersecurity standards and understanding the blockchain layer) not
only ensures a secure implementation in both the IT/OT environment, but also
maintains the trust needed between stakeholders across the blockchain.

5 Threats

An architecture would not be complete without considering the threats and risks
should a blockchain be deployed on top of a supply chain. In this section, we
perform a study of existing vulnerabilities and attacks which will need to run a
trusted blockchain on a supply chain.

5.1 Web3 Vulnerabilities

Dapps or Web3 are no different from its current iteration of its Web2 counter-
part. It continues to utilize the existing networking stack and protocols (e.g.
DNS, TCP/IP, UDP) and suffers from the usual web vulnerabilities which were
present since the 15¢ generation of the web [76]. According to the OWASP Top
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10:2021, the most notable risks from web applications are: 1) broken access
controls, 2) cryptographic failures, 3) injection, 4) insecure design, 5) security
misconfiguration, 6) vulnerable and outdated components, 7) identification and
authentication failures, 8) software and data integrity failures, 9) security logging
and monitoring failures and 10) server-side request forgery [22].

This can be clearly seen from the given Web3 implementation given in Fig. 4,
where the frontend, provider and APIs provides such avenues of attacks to occur.
Although the use of Ethereum Name Service (ENS) or Unstoppable Domains
can alleviate centralization issues as per compared to DNS, it does not solve
the problem of fraudulent or malicious links (e.g. domain or typo-squatting) and
introduces new problems introduced by smart contracts [34,84].

5.2 Smart Contract Attacks

Poorly written code in smart contracts can cause bugs or attackers to sim-
ply exploit or bypass functions. Based on the Common Weakness Enumeration
(CWE) database, the Smart Contract Weakness Classification (SWC) registry
has recorded a total of 136 vulnerabilities affecting Ethereum smart contracts,
with reentrancy as the most critical [29,69].

The use of automated checking of smart contracts tools ease developers from
their workload and prevent wastage of time to determine detection of false pos-
itives. Tools such as MythX [20] (a commercial solution spun off from Mythril
[12]) and Slither [51], when used in combination, detected a total of 42/115 (37%)
vulnerabilities and provides the best trade-off between accuracy and execution
costs [49]. Besides, not all tools are proven to be easy to configure and may be
complex to use [65]. According to [72], while such vulnerable contracts may not
be exploitable in practice, it empathizes the need for best coding practices and
manual auditing of source code [26,46,82].

Even though such attacks is confined mainly by Ethereum-based smart con-
tracts, large-scale exploits such as The Decentralized Autonomous Organization
(TheDAO) attack [81] and the Parity Wallet hack [71] were key examples of reen-
trancy and access control issues has been well-researched and documented [60].

NFT Legitimacy. NFT legitimacy can be backed by supply chains based
on their branding and relationship perceived by consumers. They can present
themselves as authorities and arbiters of legitimacy [40]. However, NFTs merely
presents a proof of ownership on their respective blockchain and lack standards
to ensure that the correctness of the JSON metadata stored off-chain (as shown
in Listing 1) [19].

5.3 Consensus Attacks

Supply chains wishing to integrate a blockchain into their process must under-
stand the risks of having insufficient parties and/or having too much influence
or control over the network. Some well-explored consensus attacks are shown in
Table 4.
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Table 4. Common consensus attacks on PoW, PoS and PBFT protocols.

Attack Method PoW |PoS |PBFT
Selfish mining [50,70,75] Withholds solved block and creates a fork v

Time desynchronization [7]|Slowing down or speeding up perceived network time v

33% [42,75] Hashing power v
Eclipse [54,67] Partitions network, isolates and usurp control of a node v v

Long range [45] Forking chain from a specific block v v

Double spending [55] Creation of two or more conflicting blocks with same height|v v

51% [45,75] Hashing power v v v
DDoS [74] Flooding network with extreme traffic v v v
Sybil [48,55] Corrupt network by forming fake identities v v |V

6 Challenges

Despite growing threats, several challenges also exist in overcoming barriers for
the adoption of blockchains in businesses, specifically discovering use cases for
supply chains.

6.1 Layer-1 Solutioning

Shared Security Responsibility Model. As explained in Sect.4.2, BaaS
poses a significant problem if supply chains select a single cloud-based provider,
which defeats the very property of blockchains; decentralization. On top of that,
SSRMs differ between different cloud-based providers and risk profiling must
be carried out to determine if supply chains can accept failures when utilizing
blockchains in the cloud [27,58,63].

Smart Contracts. As depicted in Fig. 4, smart contracts are a key-enabler
in automating processes within a blockchain. However, it requires a definite
solution and is difficult to code in accordance to current regulatory obligations,
governance or standards that needs interpretability by humans. Besides, other
blockchains such as Hyperledger Fabric or Solana utilize different programming
languages, namely Chaincode and Rust respectively, which introduces different
attack vectors [9,36].

6.2 Layer-2 Solutioning

Layer-2 provides scalability for blockchains via rollups and will greatly allow the
horizontal scaling between stakeholders in the supply chain [25,77]. The concept
of rollups is to execute resource-intensive transactions off-chain, then submit
transactional data to Layer-1 for confirmations by agreements. As minimum
data is required to be computed on-chain, rollups are seen as an effective way
to scale blockchains.

They are classified into three solutions; 1) optimistic rollups, 2) ZK-rollups
(Zero-Knowledge), and 3) validium. The difference among these variants is the
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methodology and format of security proofs posted to Layer-1 for processing.
Similar to other scaling solutions, rollups suffers from inherent several short-
comings. For instance, the waiting period in optimistic rollups causes delays due
to the design of fraud proof challenges. The complexity of proof generation and
verification may result in slow adoption of ZK-rollups. Validium seems to be
promising by combining the first two solutions. However, generating a proof still
requires high availability of off-chain data at any given time.

6.3 IT/OT Integration

While this paper considers both IT and OT integration of the supply chain,
building a blockchain on top of these existing systems pose a huge challenge
for legacy or traditional industries which may not be technologically competent
or ready to migrate to a fully digitalized process [66]. Not to mention, there
is a need to consider that the software lifecycle for OT is significantly delayed
and differ from their IT counterparts. Different countries may adopt different
standards to protect their assets and resources due to legislatory concerns.

7 Conclusion

We identified gaps in cybersecurity standards to implement trusted blockchains
in supply chains. By defining clear and distinct roles and responsibilities for each
of the stakeholders in the supply chain, they partake an endeavour on maintain-
ing trust between blockchains and yet remain accountable. Supply chains can
quickly implement a blockchain to ensure a secure and trusted environment by
identifying potential threats and adopting Supplied Trust. These will form the
basis for shaping blockchains to be much more secure, should ever an implemen-
tation be integrated with a supply chain.
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Abstract. Recent works have shown that deep learning models are
highly vulnerable to adversarial examples, limiting the application of
deep learning in security-critical systems. This paper aims to interpret
the vulnerability of deep learning models to adversarial examples. We
propose adversarial distillation to illustrate that adversarial examples
are generalizable data features. Deep learning models are vulnerable to
adversarial examples because models do not learn this data distribu-
tion. More specifically, we obtain adversarial features by introducing a
generation and extraction mechanism. The generation mechanism gen-
erates adversarial examples, which mislead the source model trained on
the original clean samples. The extraction term removes the original
features and selects valid and generalizable adversarial features. Valu-
able adversarial features guide the model to learn the data distribution
of adversarial examples and realize the model’s generalization on the
adversarial dataset. Extensive experimental evaluations have proved the
excellent generalization performance of the adversarial distillation model.
Compared with the normally trained model, the mAP has increased by
2.17% on their respective test sets, while the mAP on the opponent’s test
set is very low. The experimental results further prove that adversarial
examples are also generalizable data features, which obeys a different
data distribution from the clean data. Understanding why deep learning
models are not robust to adversarial samples is helpful to attain inter-
pretable and robust deep learning models. Robust models are essential
for users to trust models and interact with the models, which can pro-
mote the application of deep learning in security-sensitive systems.
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Fig. 1. A conceptual diagram of our framework. The paper adopts the MTOG attack
to generate adversarial examples to make an object detector fabricate many bounding
boxes. Adversarial features are extracted from these bounding boxes to construct a
new dataset, called the adversarial dataset. By training an object detection model on
the adversarial dataset, we obtain an adversarial distillation model.

1 Introduction

Recent works have shown that deep learning models are vulnerable to adver-
sarial examples [1,27], which imperceptibly perturbed natural inputs to induce
DNN models to make erroneous predictions. Previous work tried to explain this
phenomenon from multiple perspectives, [2,24] interpret the existence of adver-
sarial examples from the standpoint of theoretical models, and [8,18,25] focus on
the demonstration based on high-dimensions quantities. However, these theories
often fail to capture the behavior we observe in practice fully. More broadly, pre-
vious work in the field tends to treat adversarial examples as aberrations caused
by the high dimensional nature of the input space or statistical fluctuations in
the training data [8,10,27]. [13] propose a new perspective on adversarial exam-
ples. They demonstrate that adversarial examples are not bugs but features in
image classification. Still, there are no explanations for adversarial examples in
more complex computer vision tasks, such as object detection.

In this paper, we commit to interpreting the vulnerability of deep learning
object detection models to adversarial examples, inspired by [13]. We illustrate
that adversarial examples are classification features and localization features.
Object detectors are vulnerable to adversarial examples because they do not
learn the data distribution of adversarial examples. Object detectors tend to
exploit any available features to localize the position of objects and classify
them to a specific class, even those features that seem inexplicable to humans.
We demonstrate that object detection models can learn valuable features on
adversarial examples and be generalized to the whole data distribution, just like
benign examples.

To corroborate our hypothesis, we propose adversarial distillation. Given an
object detection model trained on the benign training set, we improve the TOG
attack [6] to generate adversarial examples and design an extracting adversarial
features module to construct an adversarial dataset. The inputs of this dataset
are nearly identical to the originals, but all appear incorrectly localized and
labeled. They are associated with their new ground truth (not the originals)
only through small adversarial perturbations (and hence utilize only adversarial
features). We train the adversarial distilled model on this adversarial dataset
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and evaluate the performance of this model both on the adversarial test set
and the original test set. Experimental results have shown that the adversarial
distilled model yields well generalization despite the lack of predictive human-
visible information, which indicates that adversarial examples are features sat-
isfying a specific data distribution but different from the distribution of benign
data. We consider one class object detection dataset because this type of dataset
has a simple category, and the model trained on the dataset can better focus
on localization features. We further choose the SAR ship detection dataset [29]
as the original dataset and implement adversarial distillation on this dataset. In
summary, we make the following contributions:

e We train an object detection model on the SAR ship dataset, which obtains
a great mAP. Simultaneously, We craft adversarial examples to attack this
model and effectively decrease the mAP.

e We establish experiments to illustrate that adversarial examples are not vul-
nerabilities but well-generalizable features satisfying a specific data distribu-
tion.

The rest of this paper is organized as follows. In Sect. 2, we briefly review the
related backgrounds. We present the detail of the framework in Sect. 3. Section 4
reports all experimental results. Finally, we summarize the conclusion in Sect. 5.

2 Related Works

2.1 Interpretable Adversarial Examples

[13] propose a novel explanation for the existence of adversarial examples. The
standard training method can learn both useful robust and non-robust features
in their work. The non-robust features are beneficial to generalization but very
sensitive, which makes classifiers vulnerable to adversarial examples. The sen-
sitivity of non-robust features should be understood as their small changes will
significantly change the model’s predictions. The useful, robust feature is the
common feature with certain interpretability, such as cat ears and cat tail in
cat classification. When performing formal training based on robust features
and non-robust features, respectively, classifiers can obtain good accuracy on
the standard test set. Classifiers with different structures trained on different
datasets of the same distribution may learn similar non-robust features, which
makes the adversarial examples transferable. [13] validates the hypothesis by
extracting the image classification dataset into roust features and non-robust
features and use the Gaussian distribution as an example.

2.2 Object Detection

Object detection is one of significant computer vision tasks, which detects the
class and location of objects in digital images [9,15,21]. In object detection,
we take YOLOv3 [22] as an example. Given an input image x, the model first
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generates a great number of S candidate bounding boxes B(z) = {61,...,05}
where 6, = (b;E , bf, b;”,bi’, C;,pi) represents a candidate centered at coordinates

(bl ,bi’) and (b, ") is width and height of the candidate. The objectness score
C; € [0,1] denotes whether the candidate contains an object, and a K-class
probability vector p; = (p},p?, ..., pX) estimates the class of the corresponding
candidate. The detection process usually divides the input x into grids with
different scales, and each grid cell generates plenty of candidate bounding boxes
based on the anchors and localizes the object centered at the cell. The candidates
with low prediction confidence are excluded via applying confidence threshold,
and those with high overlapping are removed by non-maximum suppression. The
remaining candidates constitute the final detection result O(x)

For training an object detector, each object o; in a training sample (z, O) is
allocated to one of the S bounding boxes according to the center coordinates and
the amount of overlapping with the anchors. O = {0;]1; = 1,1 <i < S} is aset of
objects in ground truth where 1; = 1 if the i-th bounding box is responsible for an
object and 0 otherwise, o; = (b%,bY,b¥, b1, p;) with p; = (p}, p?, ...,pX) and p§ =
1 if the class of o; is ¢. Training a DNN model often begins with initializing the
parameters of the model randomly and updating parameters slowly via taking
the derivative of the loss function L concerning parameters 6 on a mini-batch of
input-output pairs {(z,0)} with the following equation until convergence:

Ot41 = 0; — aVy, L(z,0;0), (1)

where « is the learning rate. The loss function of a deep object detection network
is divided into three parts, each part corresponds to describing the existence,
locality, and category of a detected object. The objectness score C; can be learned
by minimizing the binary cross-entropy lpcg:

i=1
obijH leBcElc)]

19)
—
[\
~

=1
Lnoob;(x,0;0) =Y [1 = Lilpce(0,C5),
S

The spatial locality is learned by minimizing the squared error lgg:

i=1

Lioe(,050) = Y Lills (2, &) + lsu(yi, 9:)
S

T lsp (VW W) + Lo (VI /1)

The K-class probabilities p; is optimized by minimizing the binary cross-
entropy:

3)

i=1
Lprob(2,0:0) =31, 3" lpep(f,pf) (4)
S
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Therefore, the deep object detection network can be optimized by the linear
combination of the above loss functions:

L(1'7 O; 9) = Lobj (x, O; 9) + )\noobjLnoobj ({L‘7 O; 6‘) (5)
+ )\locLloc(x; O; 0) + Lprob(xa Oa 9)7
Synthetic Aperture Radar (SAR) [12,14] is a high-resolution imaging radar
that can generate high-resolution two-dimensional images of range and azimuth
via reflecting the emitted electromagnetic wave onto the target. For SAR can
provide high-resolution images in all weather conditions, SAR images have been
widely used for complex object detection and recognition tasks, such as ship
object detection. With the widespread application of SAR in ship detection [28§],
some large-scale datasets have emerged, such as SSDD [14], OpenSARShip [12]
and SAR ship dataset [29].

2.3 Adversarial Examples

Adversarial examples are first found in image classification task [23], an adver-
sarial example z’ is crafted by adding imperceptible perturbations to a clean
input z, making the target model output incorrect predictions [4,10,16,17,19].
The process of generating an adversarial example can be defined as

min ||’ — x|, s.t0(z') #O(x), (6)

where p represents the distance metric, which can be the Ly, Ls and L., norm.

Adversarial examples also exist in object detection task [3,26,30]. TOG
attack is a family of adversarial attacks on object detection, including object-
vanishing attack, object-fabrication attack, object-mislabeling attack and untar-
geted attack [6,7]. We take the untargeted attack as an example to introduce
the TOG attack. TOG attack fixes the model parameters and initializes with a
clean image (i.e., x, = x), iteratively updating the adversarial example with the
following equation:

L(a}, O(2):0) = Lopj(a}, O(2):0) + Luoot; (2}, O(x); 6)

I A ! A (7)
+ Lloc(xt,O(a:);G) + Lp?'ob(xtvo(x)§9)a

i1 = Ly, [z) + al (Vo L}, O(x);0))] (8)

where I, [-] is the projection onto a hypersphere with a radius € centered at
in L, norm, I is a sign function.

2.4 Distillation

[11] initially propose a distillation method to reduce a large model (the teacher)
to a smaller distillation model (the student), thereby improving accuracy on the
test set and speeding up the rate of the student predicting hard labels (ground
truth). At a high level, the working principle of distillation can be summarized
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into three steps: one is to train the teacher on the training set in a standard way.
The second is to use the teacher to label each instance on the training set with
soft labels (the output vector of the teacher). For example, the hard label on an
image of a dog indicates that it is classified as a dog. At the same time, the soft
label describes that it is a dog with 76% probability, a cat with 22% probability,
and a cow with 0.2% probability. The third is to train the distillation model on
the soft labels from the teacher instead of the hard labels from the training set.
Distillation is exploited in multiple domains [5,20].

3 Methodology

3.1 Definitions

We consider object detection with one class (K = 1 in Sect. 2.2), where input-
output pairs (z,0) € X x {(b%,bY,b%, b, p¢)} are sampled from a data distribu-
tion D. Following the definition of [13], we define a function f to represents an
object detector. Additionally, we define f; as a localization function and f. as a
classification function.

e ~vy—valuable localization features: For an input x, we call a localization feature
f1 y—valuable (y > 0) if it is correlated with the ground-truth bounding boxes
in expectation, that is if

E(e,0)~p[B(2) - fi(x)] = 7, (9)

where B(xz) = {(b7, b}, by’ ") }.
e p—valuable classification features: For an input x, we call a classification
feature f. p—valuable (p > 0) if it is correlated with the ground-truth label

in expectation, that is if

E.0)~ple- fe(x)] > p. (10)

e Valuable adversarial features: When the input is 2/, we define y—valuable
adversarial localization feature and p—valuable adversarial classification fea-
ture satisfying Eq. 9 and Eq. 10, respectively.

3.2 Framework

In this work, we elaborate on adversarial distillation for interpreting that adver-
sarial examples are the features satisfying a specific data distribution. A con-
ceptual description of these experiments can be found in Fig. 1. We construct
an adversarial dataset where the input-output association is based on valuable
adversarial features. We show that this dataset suffices to train an object detec-
tor with good performance on the adversarial test set. Still, poor performance
on the original test set results from the gap between original and adversarial
distribution.
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A B C D E

Fig. 2. An example in Sect.3.3. A is the adversarial example generated by MTOG;
B, C and D are the intermediate images selected after Score, K-means and IOGT,
respectively; E is the final result selected after NMS.

3.3 Extracting Adversarial Features

We construct a dataset where the input-output association is based on valuable
adversarial features, including localization and classification. To accomplish this,
we modify each input-output pair (z, O) as follows. We integrate momentum into
TOG attack [6] (MTOG) to generate the corresponding adversarial examples on
original datasets so that the original object detector f can detect many objects
which do not exist in human eyes. We then extract adversarial features via
selecting these forged bounding boxes according to the following steps.

Given an adversarial example 2/, (1) Score: we discard bounding boxes
with scores below the threshold to ensure adversarial classification features
p—valuable; (2) K-means: we analyze the range of original ground-truth bound-
ing boxes by k-means clustering algorithm and remove the bounding boxes that
exceed this range to a certain threshold; (3) IOGT: we design the IOGT method
to discard those bounding boxes intersecting with the original ground truth,
which ensures that the selected bounding boxes do not include original localiza-
tion features. IOGT can be formulated as

_ BNGT

IOGT(B) ar (11)

where GT represents all original ground-truth bounding boxes {(b%,b?, b, b},
B represents the candidate bounding box; (4) NMS: we exploit non-maximum
suppression to ensure that the forged bounding boxes do not intersect, mak-
ing the generated localization features not duplicated. The remaining bounding
boxes are aligned as O’ to form the new input-output pair (z/,0’). Finally,
the resulting input-output pairs make up the new dataset, named adversarial
dataset. The whole process is described in Algorithm 1, and Fig.2 shows an

example of processing by the extracting adversarial feature module.

3.4 Adversarial Distillation

We elaborate on adversarial distillation for interpreting that adversarial exam-
ples are the features satisfying a specific data distribution. A conceptual descrip-
tion of these experiments can be found in Fig. 1. We first train an object detection
model (the teacher) on the original dataset. Then, we use the MTOG attack to
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Algorithm 1 Extracting adversarial features

Input: An object detector f; an adversarial example 2’ and ground truth O; Threshold
for score, k-means, IOGT and NMS

Output: Adversarial ground truth O’

1: Input 2’ to f and obtain B(z') = {61,...,6n}, 6; = (b%,bY, b2, b, C;, P );

2: temp; = temps = [ ]

3: for é; in B(z') do

4: if p; > score then

5: continue

6: end if

7. if (131”7 ZA)?) not in k-means then
8: continue

9: end if

10:  if TOGT(bZ,bY,b¥,b") # 0 then
11: continue

12: Add 6; into templ

13: end if

14: end for

15: temp2 = NMS(templ)
16: O’ = temp?2
17: return O’

generate adversarial examples against the teacher and obtain the correspond-
ing outputs of the teacher. We next use Sect.3.3 to craft adversarial ground
truth, thus making the adversarial dataset. Finally, we train the distilled model
(the student) on the adversarial training set from the teacher rather than on
the original training set. We find that the distilled model performs well on the
adversarial test set, which indicates that adversarial examples are features sat-
isfying a specific data distribution. Meanwhile, the student performs poorly on
the original test set, which indicates that the gap between the adversarial and
original data distribution results in poor generalization.

4 Experiments

4.1 Setup

Datasets. We select SAR ship detection dataset consisting 43,819 ship chips [29].
We randomly allocate the training set, validation set, and test set according to
the ratio of 7: 2: 1. Meanwhile, we do the same operation on the corresponding
adversarial dataset.

MTOG Attack. The maximum perturbation € is set to 8 with pixel value in
[0,255]. The number of iterations 7' is 20, the step size is 2 and the decay factor u
is 1.0. We set the coefficient A = 0.2 empirically in order to reduce the proportion
of Lyoopj in L.
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Benign Benign GT MTOG Adv Result Select

Fig. 3. Some random samples from the original SAR Ship dataset and the correspond-
ing adversarial examples.

Extracting Adversarial Features. We set the threshold of the classification score
of each candidate bounding box in the output of the model to 0.5 in order to
ensure adversarial classification features p—valuable. We set the range of k-means
clustering to [5, 104]. And the bounding box threshold of both IOU in NMS and
IOGT is set to 0 to remove the intersecting bounding boxes.

Adversarial Distillation. We train three Yolov3-Mobilenet' models on the SAR
ship detection dataset and its corresponding adversarial dataset, respectively.
For each model, we divide the training process into two steps. At the first step,
Adam optimization is used with a learning rate of 0.001 and a batch size of 16,
and training epochs are 30. In the second step, the learning rate is 0.0001, the
batch size is 16, and the training epochs are 20. After models are trained, we test
these models on the original test set and adversarial test set. We evaluate the
performance of models by mean Average Precision (mAP), and the threshold of
IOU is set to 0.5. Our experiments are conducted on an Intel(R) Xeon(R) CPU
E5-2620 v4 @ 2.10 GHz CPU, a GPU of NVIDIA GeForce RTX 2080 Ti with
11 GB, and 32 GB of memory.

4.2 Generating Adversarial Examples

Figure3 shows test SAR images (left) with the detection results made by
YOLOv3-Mobilenet on benign (the “Benign GT” column), the corresponding
adversarial examples (the “MTOG” column) generated by MTOG attacks with
the detection results made by YOLOv3-Mobilenet (the “Adv Result” column),
and the adversarial example selected by Sect. 3.3 (the “SELECT” column).

! https://github.com/Adamdad /keras-YOLOv3-mobilenet.
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Table 1. The average number of bounding boxes in extracting adversarial features
module. “Ori” and “Adv” represent the average bounding boxes of original images and
adversarial examples, respectively. “Score”; “K-means”, “IOGT”, and “NMS” are defined
in Sect. 3.3.

Training | Validation | Test
Ori 1.363 1.347 1.352
Adv 13.393 | 13.359 13.520
Adv-+Score 12.436 12.580 12.402
Adv+Score+K-means 10.840 |10.954 10.789
Adv-+Score+K-means+IOGT 10.343 | 10.452 10.289
Adv+Score+K-means+IOGT+NMS | 8.528 8.557 8.490

Table 2. The mAP (%) of original object detector (Ori-model) and adversarial object
detector (Adv-model) on the original test set (Ori-test) and adversarial test set (Adv-
test), respectively.

Ori-test | Adv-test | Adv-GT-test
Ori-model | 86.34 83.45 0.12
Adv-model | 1.19 88.51 -

From Fig. 3, we can observe that the MTOG attack fools the object detector
to give many invisible objects (bounding boxes), most with high confidence and
some with low confidence. After MTOG, the mAP of the detector drops to
0.12%, the results are shown in Table2. However, some bounding boxes with
natural objects still exist, some bounding boxes intersect together, and the aspect
ratio of some bounding boxes does not match the k-means clustering result.
After extracting adversarial features, we remove those bounding boxes with low
confidence or intersect with ground truth or the aspect ratio not in k-means
clustering. We keep the one with the highest confidence for the intersecting
bounding boxes.

Table1 shows the average number of bounding boxes after each step in
Sect. 3.3. In Table1, MTOG adversarial attack craft plenty of bounding boxes
compared to original images. We follow the steps described in Sect. 3.3 to remove
useless bounding boxes. We take the training set as an example. After an adver-
sarial attack, the average number of bounding boxes increases from 1.363 to
13.393. After Score, it drops to 12.436. After K-means, it decreases by 1.596.
Finally, the average number of bounding boxes is 8.528.

4.3 Evaluation on Adversarial Distillation

We report in Table 2 the mAP of original object detector (Ori-model) and adver-
sarial object detector (Adv-model) on the original test set (Ori-test), adversarial
test set (Adv-test) and the test set with adversarial examples and the ground
truth (Adv-GT-test), respectively.
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In the first column of Table2, the data (86.34%) represents the result of
training on the original dataset and evaluation on the original dataset. This
data shows that YOLOv3-Mobilenet performs well on the SAR ship dataset.
The data (1.19%) represents the result of training on the adversarial dataset
and evaluation on the original dataset, which indicates that the gap between
the adversarial and original data distribution results in poor generalization. The
data (83.45%) in Table 2 is the mAP of original models evaluated on the adver-
sarial dataset and 0.12% shows the MTOG attack successfully attack the original
model. The data (88.51%) indicates that adversarial examples are features satis-
fying a specific data distribution, just like the original dataset. It further explains
that adversarial examples are not bugs, but features, some of which are indeed
valuable for localization and classification in object detection.

5 Conclusion

This paper proposes a new perspective on adversarial examples that are not aber-
rations but features satisfying a specific data distribution. In object detection,
adversarial examples contain classification features and localization features.
These features are helpful for models to generalize. We support this hypoth-
esis by performing adversarial distillation, which constructs adversarial datasets
on the teacher and trains the adversarial object detector on these datasets. We
select ship detection in SAR images as an original dataset for its category is
simple, and the model can better focus on localization features. We introduce
the MTOG attack to generate adversarial examples to provide a basis for con-
structing an adversarial dataset. The experiment results show that adversarial
examples are generalizable features that satisfy a specific data distribution. The
model trained on the adversarial training set generalizes well on the adversarial
test set. We hope that our findings can help researchers better understand the
black-box deep learning models, thereby contributing to the deep development
and extensive application of deep learning models.
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Abstract. Smart contract is a piece of program code running on the
blockchain, which aims to realize trusted transactions without third par-
ties. In recent years, smart contract vulnerabilities emerge one after
another, resulting in huge economic losses. Machine learning technology
is widely used in smart contract vulnerability detection. It is common
that model training in machine learning often requires a large amount of
labeled data while the unlabeled data in the current field is very rich and
acquiring labels is extremely difficult. As a result, it takes a lot of man-
power and time to label a vulnerability, and it is challenging to perform
effective smart contract vulnerability detection. To tackle this problem,
we propose BwdBAL, a novel framework for smart contract vulnerability
detection that combines Bayesian Active Learning (BAL) and a back-
ward noise removal method. We use BAL to remove the impact of model
uncertainty on uncertainty sampling in active learning. During the back-
ward process, we clean up the noise in the labeled dataset to reduce the
negative influence on the classification model. We evaluate BwdBAL on
8 vulnerabilities about 4929 smart contracts with four performance indi-
cators. The experimental results show that BwdBAL outperforms two
baseline methods: conventional machine learning-enabled classification
method and one-way active learning method.

Keywords: Smart contract - Vulnerability detection + Active
learning - Uncertainty measure + Backward learning

1 Introduction

Blockchain is a new type of distributed system, which is widely applied in finance,
supply chain, logistics security, and other fields [1-4]. Its one of the key compo-
nents is smart contract which is a programmable code on the blockchain that
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aims to realize trusted transactions without a third party. The number of smart
contracts has been growing rapidly since Ethereum is released that the first
open-source blockchain on which smart contracts can be deployed. A blockchain
industry media in US Cointegraph [5] one is a company committed to ana-
lyzing blockchain ecology whose statistical results showed that the number of
smart contracts deployed in the Ethereum system reached more than 1,971,000
in March 2020. Torres et al. [6], analyzed all smart contracts and transactions
on Ethereum from 2015 to 2020. Their survey shows that the number of smart
contracts attacked has not decreased in recent years. It is vulnerable to mali-
cious attacks since the smart contract manages high-value virtual tokens and
is immutable. Once attacked, it will cause huge economic losses. Therefore, the
research on smart contract security has attracted much attention.

Smart contracts are designed and programmed by developers to realize the
management activities of digital assets. Once the smart contract is deployed
on the blockchain, it cannot be updated, and the vulnerability of the smart
contract is inevitable. Timely detecting smart contracts vulnerabilities before
deploying and calling smart contracts are critical for smart contracts quality
assurance. Since vulnerability detection aims to effectively find vulnerabilities by
using detection technology before they are exploited, it can help smart contract
developers or testers focus on vulnerability-prone modules.

Traditional techniques based on static analysis, program verification, sym-
bolic execution, and fuzzy testing have been studied a lot. These methods are
mainly inspired by static and dynamic detection methods, such as static detec-
tion methods based on static analysis [7,8] and program verification method [9-
11]. In the dynamic detection method, Loi et al. [12] based on dynamic symbols
and Jiang et al. [13] based on fuzzing test. These tools can effectively detect smart
contract vulnerabilities. In recent years, smart contract vulnerability detection
method-based machine learning has also been widely studied. Machine learn-
ing methods significantly improve the efficiency of smart contract vulnerability
detection. However the existing research still has some limitations: (1) machine
learning methods often need enough training samples while most of the real data
are unlabeled furthermore it requires a lot of manpower and time to label; (2)
most research tools use the existing detection tools to mark, but the existing
detection tools have a large false-positive rate and false-negative rate, which
will reduce the accuracy of the training model; (3) some of these existing tools
require specific defect patterns or specification rules defined by experts.

In order to address the above problems, Yu et al. [14] proposed using active
learning to improve vulnerability inspection efficiency. Active learning selects
modules from unlabeled samples to query labels from experts through a sam-
pling strategy. The newly queried samples are merged into the labeled data set
to update the training classifier, and the labeled sample size is continuously
expanded through a cyclic iterative query. Active learning greatly reduces the
time and cost of manually labeling data since not all data need annotation.
And active learning is widely applied in image classification, text classification,
defect detection and other fields [15-19]. However, the work [14] still has several
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limitations (to be described detailly in the next subsection), which inspired our
approach.

1.1 Motivation

The most important component of active learning is sampling strategy and the
key goal of active learning is how to select the most representative and informa-
tive candidate instances to achieve better efficiency with the least labeling cost
[20]. The uncertainty measure based active learning method used in [14] has
the limitation that only according to the prediction results of SVM, uncertainty
sampling shall be carried out first, and then certainty sampling shall be carried
out. This process only relies on SVM prediction results and does not consider
the uncertainty of the model itself. Thus, the selected candidate sample is not
a sample with higher uncertainty. In this paper, we use the Bayesian model to
select more informative instances for labeling. When selecting labeled samples,
this framework considers the uncertainty of the model itself, uses MC dropout
[21] method to quantify the uncertainty of the model, and then comprehensively
calculates the uncertainty of the samples.

The training set of machine learning needs humans to label in an unselective
way, which leads to the need for a lot of marking. How to make human labor more
efficient is a key point of research. In order to improve the accuracy of manual
marking and reduce the impact of human errors, paper [9] proposed relabeling
instances that are inconsistent results between manual marking and model pre-
diction. The main limitation of this method is that it will increase human effort
in active learning and does not consider whether the labeled dataset can have a
positive impact on the model performance, namely, the labeled dataset is noisy.
The noises are caused by incorrectly labeled instances or outliers of correctly
labeled instances. So that they may produce a negative impact on the model.
To tackle this issue, in this paper, we exploit a backward noise removal method,
which explores labeled datasets to detect suspiciously unreliable instances. The
performance of the model will degrade due to noisy instances. To eliminate the
negative effects of noises, these noisy instances need to be processed by with-
drawal from labeled datasets and re-sampling from the unlabeled datasets for
labeling.

To sum up, in this paper, we propose BwdBAL, a novel framework for vulner-
ability classification for smart contracts that leverages the two mentioned-above
methods: Bayesian Active Learning and backward noise removal method. Our
framework consists of two major stages: forward learning and backward learning.
In the first stage, BwdBAL exploits forward active learning to select some more
informative sol files from the unlabeled dataset for querying their labels and
then incorporates them with the current labeled dataset to construct a training
set. This process is forward learning. In the second stage, BwdBAL utilizes a
backward noise removal method to detect and process suspiciously unreliable
instances by exploring labeled datasets for improving the generalization ability
of the model. Finally, active learning is a circular process until the target effect
is reached.
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1.2 Contribution
In summary, we make the following contributions:

— We apply an active learning-based framework to classify smart contract vul-
nerability. We propose a novel framework BwdBAL to address an important
issue in smart contract vulnerability detection: the lack of labeled data. Dif-
ferent from the traditional smart contracts vulnerability detection model,
BwdBAL based on active learning learns by querying tags from Oracle and
continuously selects more informative instances through query strategies for
human oracle. Our framework can identify more vulnerabilities, even if there
are only a small number of labeled datasets.

— The noises of the labeled dataset are caused by incorrectly labeled instances
or outliers of correctly labeled instances. We utilize a backward noise removal
method to detect and process suspiciously unreliable instances by exploring
labeled datasets for improving the generalization ability of the model.

— We evaluate BwdBAL on 8 vulnerabilities about 4929 smart contracts with
four performance indicators. The experimental results show that BwdBAL
outperforms the baseline methods, and the uncertainty sampling strategy
outperforms the other four sampling strategies.

The rest of the paper is organized as follows: Sect.2 presents Research on
smart contract vulnerability detection and active learning. Section 3 described
our methodology. Section 4 investigates the detail of experiment designs as well
as their results. Finally, we provide our conclusions and future work directions
in Sect. 5.

2 Related Work

2.1 Smart Contract Vulnerability Detection

Smart contract security has received a lot of attention, and massive research
on smart contract vulnerability detection has emerged in recent years. Those
approaches are mainly divided into two groups: traditional technology and
machine learning technology. a) Traditional technology, which mostly uses the
artificial definition of rules or patterns related to smart contract vulnerabilities,
then applies traditional methods such as static analysis, symbolic execution, or
fuzzy testing to detect vulnerabilities. b) Machine learning technology, which
extracts the corresponding features of smart contracts, and then trains the clas-
sification model based on a machine learning algorithm to detect vulnerabilities.

Traditional Technology. Early work on smart contract vulnerability detection
by employing static analysis, symbolic execution, or fuzzy testing. Smart con-
tract vulnerability detection based on static analysis method is mainly through
control flow analysis. Smartcheck [7] and Slither [8] analyzes syntax of smart
contract source code from control flow graph. Different from the former Vandal
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[22] analyzes semantics from smart contract bytecode to detect vulnerability.
Another stream of work relies on symbolic execution. Oyente [12] is the first
work on security analysis of smart contracts. It uses dynamic symbolic execu-
tion technology to detect security vulnerabilities. Orisis [23] is a static analysis
framework based on symbol execution and taint analysis, which mainly focuses
on integer overflow vulnerability detection for Ethereum. In addition, there are
some work based on Fuzzy testing. Contractfuzzer [13] generates fuzzing inputs
based on the ABI specifications of smart contracts, defines test oracles to detect
security vulnerabilities, which is the first work based fuzzy testing. Liu et al.
[24]presented a fuzzing-based analyzer to automatically detect reentrancy bugs
in Ethereum smart contracts. Traditional methods heavily rely on fixed expert
rules or patterns, leading to low accuracy and poor scalability.

Machine Learning Technology. Most of the previous works in smart contract
vulnerability detection are supervised, i.e., they use known vulnerabilities to
train a classifier for detecting vulnerabilities. Those methods focus on smart
contract source code, bytecode, or opcode. Then they extract features from AST
(Abstract Syntax Tree) or CFG (Control Flow Graph). The two types of features
they use for detecting smart contract vulnerabilities are smart contract security
metrics and text mining features:

(1) Smart contract security metrics: Kevin et al. [25] used the Goal Question
Metric (GQM) approach to find 15 security code metrics that can be applied
to smart contract development. Momeni et al. [26] extracted 17 features that
represented the complexity of the code from ASTs for supervised binary
classifiers training and detecting. Their model predicted a number of major
software vulnerabilities with an average accuracy of 95%.

(2) Text mining features: Most research has combined different language mod-
els to extract features from data related to smart contracts. Liao et al. [27]
presented SoliAudit which uses machine learning and fuzz testing for smart
contract vulnerability assessment. They attempted two different methods
to extract features from the preprocessed opcode sequence: n-gram with
term frequency-inverse document frequency and word2vec. Qian et al. [28]
proposed contract snippet representations for smart contracts and used
word2vec to extract features from contract snippet for Reentrancy wvul-
nerability detection with a deep learning model. Ashizawa et al. [29] pro-
posed Eth2Vec, a machine-learning-based static analysis tool for vulnerabil-
ity detection in smart contracts. Eth2Vec could automate feature extraction
for each contract by leveraging the neural networks-based PV-DM model.
Mi et al. [30] proposed a framework for automating vulnerability detection
in smart contracts with deep learning. They applied the CFG to get the
sequence reflected the program execution semantics from bytecode and the
n-gram model to form a features vector.
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2.2 Active Learning

The most important component of active learning is sampling strategy, how to
select the most representative and informative candidate instances to achieve
better efficiency with the least labeling cost [20]. In order to alleviate the uncer-
tainty of the machine learning model, this uncertainty will affect the uncertainty
evaluation when selecting candidate label instance in active learning, [31-33]
combined with the Bayesian model to comprehensively consider the uncertainty
of the classification model for uncertainty sampling. To minimize the impact
of human error, the previous researchers [34,35] estimate the label reliability or
expertise level of labelers and then delete error-like answers, [36] requires labelers
to relabel error-like labeled instances which can improve learning performance
to some extent.

At present, a lot of research work has applied active learning for defect pre-
diction. Luo et al. [37] proposed a two-stage active learning framework combining
a clustering technique and support vector machine. Li et al. [38] proposed an
active semi-supervised learning method to select the most helpful modules. Lu
et al. [39] proposed an adaptively defect prediction framework combining super-
vised learning and active learning. Lu et al. [40] proposed active learning as a
way to automate the development of models which improve the performance of
defect prediction between successive releases. Zhou et al. [15] propose a two-phase
framework that combines Hybrid Active Learning and Kernel PCA (HALKP) to
select some informative and representative unlabeled modules from the current
version for querying their labels and to extract representative features by embed-
ding the original data of two versions into a high-dimension space. However, all
these methods are applied to defect prediction.

Due to the limitation of their method as mentioned in this paper in Sect. 1.1,
we employ a two-way active learning framework to select the more informative
candidate instances and remove the noise of the labeled dataset.

3 The Proposed Method

3.1 Overview

Figure 1 depicts the overview of our smart contract vulnerability detection frame-
work based on Bayesian Active Learning with backward noise removal method.
Our framework is mainly divided into two parts: the forward learning process
uses a Bayesian neural network and the backward learning process eliminates
the noise in the labeled set by exploring it. Here our process to smart contract
vulnerability detection goes through multiple steps. First, give an original smart
contract, data cleaning is necessary such as removing blank lines, irrelevant com-
ments, and non-ASCII characters. We then parse each cleaned smart contract
into a sequence of code tokens, which are embedded into feature vector repre-
sentations. Second, each cycle of active learning consists of two stages: forward
learning and backward learning. In the first stage, we attempt to feed the fea-
ture vectors of labeled data to train the classifier. BwdBAL exploits BAL to
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select some more informative sol files from the unlabeled datasets for querying
their labels and then incorporates them with the current labeled dataset to con-
struct a new training set. This process is forward learning. In the second stage,
BwdBAL utilizes a backward noise removal method to detect and process sus-
piciously unreliable instances by exploring labeled datasets for improving the
generalization ability of the model. Finally, active learning is a circular process
until the target effect is reached.

Feature extraction
AST & TBCNN

TANEDZ/A\NP/

Vectors

Fig. 1. Overview of the proposed smart contract vulnerability detection method.

3.2 Feature Extraction

This section explains the process of creating a feature matrix for all smart con-
tracts. Before extracting the feature vector, it is necessary to clean the source
code of the smart contract (i.e., removing the blank lines and comments). Then
we use the infercode [30] tool to extract the feature vector of smart contact
source code. Infercode constructs AST's and then utilizes the TBCNN technique
to generate numeric values for features in smart contracts. For each AST this tool
identifies a set of subtrees, and all the subtrees are accumulated into a vocabu-
lary of subtrees. Then an AST is fed into a Tree-Based CNN (TBCNN) encoder
to produce a code vector v;. The steps of feature extraction are as follows:

(1) By traversing the AST, this tool selects a subtree whose root node is of type
expr-stmt, decl-stmt, expr, condition. In addition, the tool also considers
nodes that represent a single keyword, such as if, for, while. These nodes
can be viewed as subtrees of size 1.

(2) After obtaining subtrees the tool uses it to learn source code encoders
under the self-supervision mechanism (TBCNN). There are some differences
between infercode’s TBCNN and the original design itself. It builds in node
initialization embedding with textual information not only just type infor-
mation, and original TBCNN’s dynamic node pooling is replaced with an
attention mechanism to include node embedding.
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Since the subtree in ASTs is regarded as the label represented by the train-
ing code without any manual marking work or expensive graphics construction
overhead, we can extract the features of smart contract code more efficiently and
conveniently using infercode.

3.3 Active Learning with Uncertainty Measure

The goal of active learning in the task of smart contract vulnerability detec-
tion is to create a classification model by selecting the most information sample
to expand the labeled dataset. There are many strategies in active learning to
select samples such as uncertainty sampling, query-by-committee, error reduc-
tion, density-weighted methods, and so on. These strategies are very different in
the way of selecting the most informative samples. Uncertainty sampling is the
most commonly used sampling method. From the perspective of machine learn-
ing, the uncertainty sampling strategy selects the samples that are the most
uncertain sample of the model from the unlabeled set. That is, the model can-
not determine its label, and the output probability of the model is close to 0.5.
The classification model based on Bayesian active learning is P(.).

Py |, L) = / P(y* |2, w) P(w|L)dw (1)

where L = {x, y} denotes training data; w is the distribution of model parameters
and y={0, 1} denotes labels set. In our case, where y=1 represents smart
contract including one or more vulnerabilities and y =0 represents it without
vulnerability.

Since the prior distribution P(w|L) is difficult to calculate, function q(w|6)
controlled by a set of parameters 8 = (p, o) approximate the posteriori distribu-
tion P(y*|z*, D). The parameters § = (u, o) are normal distribution. The p and
o are mean value and standard deviation of distribution; KL divergence is used
to optimize the distance between function q(.) and P(w|L), and the following
results are obtained:

. . q(w]0)
0* =arg min Eq(w|o) [Zog( {P(

Llo)P() ’] @

The function of minimization of KL divergence is transformed into solving the
maximization function EIBO(.) and the transformed function is:

ELBO(q) = E[log(P(w))] + E [log(P(L|w))] — E[log(g(w]6))] 3)

The uncertainty assessment method is as follows: The uncertainty measure
function H(.) of sample & is defined as its conditional entropy given the label
variable y:

H(ylz) = =Y P(ylai, 00)logP(ylz:,01) (4)
yey

where 6p denotes the classification model 6 trained on the data D; P(y|a;, 0p)
denotes probability calculated by this model.
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Alogrithm 1. Backward Bayesian Active Learning

input: The labeled source code of smart contract L; The unlabeled sourcecode of smart contract
U; The probabilistic classifier 6

Output: Three Indicators of classifier 6

1: function FORwARDAL(L, U, 6)

2: repeat

3: for z; € U do

4: Select instance z; according to Eq(1)
5: Query the label yg; of x;

6: Remove z; from U(U/=U—;zi,), u=U";
T Merge (2,y:) into L(L'=L+(z;,y;)), L=L'
8: L,U = BackwardAL(L,0)

9: Train the classifier model 6 based on L
10: end for

11: until Meeting the stop criterion

12: return The result of three indicators

13: end function
14: function BACKWARDAL(L, U, )
15: for z; € L do

16: Select x41,242 from L according to Eq(5) and Eq(6)
17: end for
18: Select z, from U according to Eq(7)

19: Query the label y,. of x,
!
20:  Remove {(za1,ya1),(zaz2,ya2)} from L(L =L-{(za1,ya1),(xd2,Ya2)})
!
21: Merge (z,,yr) into L(L =L+ (z,,y,))
22:  L=L’
23: return L,U
24: end function

3.4 Active Learning with Backward Noise Removing

There is a problem that labeled dataset does not always have a positive impact on
the model performance. Namely, the labeled dataset may be noisy. The noises are
caused by incorrectly labeled instances or outliers of correctly labeled instances.
So that they may produce a negative impact on the model. To tackle this issue,
in this paper, we exploit a backward noise removal method, which explores
labeled datasets to detect suspiciously unreliable instances. The performance
of the model will degrade due to noisy instances. As shown in Algorithm 1, to
eliminate the negative effects of noises, these noisy instances need to be pro-
cessed by withdrawal from labeled datasets and re-sampling from the unlabeled
datasets for labeling. The former withdrawal operation refers to selecting the
samples with the least influence on the model which will be deleted from the
labeled set by deleting samples or changing their labels one by one from the
labeled set and then calculating the information entropy. Formula 2 x:ﬂ is the
selected sample by deleting; Formula 3 x;l2 is the selected sample by changing
its label. The latter re-sampling operation to select the sample furthest from the
deleted sample in the former operation. Formula 4 x; is the selected sample that
will be sent to an oracle.

T = argmin > (Hy"a"5 05, ,))) )
el
, st Pilw;0p, (o) X X pucy HW 12" 0L @.0)

T — aTg min
42 i 1-— P(yi‘x§ HL\(w,y;))

(6)
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@, = max /(z — 2;)2(y — yi)? (7)

zeU
where H(.) stands for definition formula of information entropy; 6 L\ (z,y) denotes

the labeled data set with a certain labeled instance (x, y;) excluded and 07,(z,y,)
represents the labeled data set with instance x label changed from y; to y;.

4 Experiment

4.1 Experiment Set and Benchmark Detaset

The experiment uses 10-fold cross-validation to carry out experiments. Each
experiment performs random division on the dataset. 30% of the dataset is used
as test data, and the other data is used as training data to prevent data overlap
between test and training data. A certain ratio of data is extracted from the
training data for manual labeling. In this experiment, the ratio of the initial
labeled data is 5%. The initial training dataset is used to train the classification
model, and the remaining training data is used as an unlabeled sample pool.
In the active learning stage, although there is a cost for querying labels if this
process can make vulnerability prediction more effective and improve software
quality, the cost is acceptable as long as we control the number of queries to a
small amount, usually, less than 20% of the total number of unlabeled sample
[40]. In this work, we select four thresholds, i.e., 5%, 10%, 15%, 20%. In practice,
the label of candidate unlabeled instances is determined by domain experts. In
this work, we endow them with the ground truth labels from the benchmark
dataset to simulate the process of human inspectors checking source code files,
as in work [14,15].

We conduct extensive experiments on 4929 smart contracts containing 8 types
of vulnerability. The NCC Group organization [41] proposed the Decentralized
Application Security Project (DASP) TOP10 [42]. We chose to detect 8 vulnera-
bilities included in DASP TOP10, which are listed in Table 1. To collect enough
data, we use three data sets including Smartbugs [43], SoliAudit-benchmark [44]
and SolidiFi-benchmark [45]. First, we collect basic malicious smart contracts
from Smartbugs. Then we collect more smart contracts as the final experimental
dataset to build and evaluate our framework for smart contract vulnerability
classification from two other data sets. Duplicated and blank contracts were fil-
tered out according to their source code. Finally, Table 1 shows the information
of the final experimental dataset. In this work, we label a smart contract as 1 if
it contains one or more vulnerabilities. Otherwise, we label it as 0.

4.2 Performance Indicators

We measure the performance of BwdBAL with four indicators, namely accuracy,
precision, recall, and F-measure, which are widely used in smart contract vul-
nerability detection [26-28,30]. Accuracy is the most common metric employed
in machine learning evaluations. Because of the imbalance of our dataset (the
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Table 1. Descriptive statistics for smart contract vulnerability types grouping.

Vulnerability type | #Smart contracts | Containing types

BlockTimestamp 452 Time manipulation, bad randomness
CallDepth 403 Unchecked low level calls

Overflow 898 Arithmetic

Reentrancy 552 Reentrancy

TimeDep 1085 Time manipulation, bad randomness
TOD 937 Front running

TxOrigin 149 Access control

Underflow 453 Arithmetic

All 4929 -

proportion of vulnerable smart contracts is very small), we could not use only
one metric for evaluation. Therefore, we also use other metrics. The four indi-
cators can be derived from a confusion matrix shown in Table 2 and defined as
the following formulas.

Table 2. Confusion matrix.

Predicted as Predicted as
vulnerability non-vulnerability
Actual vulnerability TP FN
Actual non-vulnerability | FP TN

(1) Accuracy: Accuracy is the proportion of correctly predicted samples in the
total samples, with the value range of [0,1]. The value is larger, the prediction
ability of the model is better.

(TP+TN) (8)

(TP+FP+TN + FN)

(2) Precision: Precision is the proportion of correct prediction in the positive
samples predicted by the classifier, with the range of [0,1]. The value is
larger, the prediction ability of the model is better.

TP

—_ 9

(TP+ FP) )

(3) Recall: The recall is the proportion of the correct positive samples predicted

by the classifier in all positive samples, with the range of [0,1]. The value is
larger, the prediction ability of the model is better.

- (10)
recall = TP+ FN)

accuracy =

precision =



BwdBAL: Vulnerability Detection for Smart Contract 77

4.3 Experimental Results

RQ1: How effective is BwdBAL compared with some other algorithms?

Method: As mentioned above, our smart contract vulnerability classification
framework BwdBAL consist of two stages: forward learning stage for selecting
some more informative sol files from unlabeled dataset and backward learn-
ing stage for removing noise data from labeled dataset. This question investi-
gates whether our framework is better than other two methods, including the
method that only uses machine learning no active learning (LogisticRegression),
the method that only use active learning but only forward active learning stage

(AL).

Results: Table 3 shows the change in the value of the indicator when the labeled
sample ratios are 5%, 10%, 15%, and 20%. The experimental results of BwdBAL
are in bold. As to each algorithm, we repeat experiments 10 times to calculate
the average. It can note that using active learning with less manual labeling has
better performance than not using active learning. When the number of queries
is only 5%, the active learning method is more effective, and the accuracy of all
two models is basically about 50%. In addition, the accuracy of BwdBAL is basi-
cally higher than that of one-way active learning. Particularly in overflow, the
accuracy and recall of active learning are higher than that of LogisticRegression.
Our method is 68%, 50.2%; one-way active learning is 47.7%, 29.9%; LogisticRe-
gression is 38.9%, 8.9%. As the number of queries increases, the performance of
all models is gradually improving. Since the proportion of the maximum number
of queries is set to 20%, we will analyze the results more detailly below. When the
number of queries is 20%, the accuracy of the active learning method is higher
than 80%, while the accuracy of the LogisticRegression method is slightly lower,
only less than 80%. And in terms of CallDepth, Overflow, Reentrancy, TOD,
and TxOrigin vulnerability, the accuracy of our two-way active learning method
is slightly higher than that of the one-way active learning method. However,
for BlockTimestamp, TImeDep, and Uunderflow vulnerability, the accuracy of
our framework is not as high as that of the latter method. The one-way active
learning is 89.1%, 75.4%, 88.7%, and ours is 89%, 74.2%, 87.6%. Especially for
Txorigin vulnerability, the accuracy of BwdBAL can reach 96.3%. Although the
precision value of the model is not very high, in general, the performance of
our two-way active learning framework (BwdBAL) is better than the other two
baseline methods with the less labeled datasets.

RQ2: How do different sampling strategies of active learning affect the perfor-
mance of BwdAL4Sc?

Method: We compare BwdAL4Sc with the following five baseline approaches
(1) Random: randomly select a query instance, (2) QBC [46]: select instances
using query-by-committee, (3) Density [47]: select instances with taking into
account the information of unmarked samples, (4) EER [48]: select instances
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with making the loss function reduce the most by adding one sample, and (5)
Unc: select instances with the lowest uncertainty.

Results: Figure2 shows the classification recall of different active learning
approaches with a varied number of queries. In order to more intuitively see
the experimental results, we use a line chart to describe the changes of the recall
of different sampling strategies with different samples labeled proportions. It
can be concluded from their plots that BwdBAL can achieve higher performance
using uncertainty strategy than the other four strategies. When the percentage
of labeled samples is less than 10%, the effect of uncertainty sampling strategy
is not as good as Density and EER. However, with the increase in the number
of queries, the uncertainty sampling strategy can achieve better performance.
When the percentage of labeled samples is less than 10%, QBC has the high-
est recall at BlockTimestamp. For CallDepth random and QBC have a better
performance when the percentage of labeled samples is less than 15%. For Over-
flow and Reentrancy, when the percentage of labeled samples is less than 15%,
Density has a higher recall than other strategies. In terms of TimeDep, Den-
sity, QBC, Random, and EER have similar recall as a whole. For TxOrigin and
Underflow, when the percentage of labeled samples is less than 15%, QBC has
a higher recall than other strategies.

Table 3. The Detailed Results for BwdBAL and other two baseline method with
different ratio of number of queries.

Data Algorithm Number of queries (percentage of unlabeled data)
5% 10% 15% 20%
a p r a p r a p r a p r
BlockTimestamp | LogisticRegression | 0.274 | 0.119 | 0.056 | 0.311 | 0.129 | 0.134 | 0.513 | 0.314 | 0.497 | 0.721 | 0.491 | 0.435
ActiveLearning 0.286 | 0.396 | 0.266 | 0.529 | 0.482 | 0.321 | 0.534 | 0.534 | 0.467 | 0.891 | 0.421 | 0.659
BwdBAL 0.333]0.254 | 0.223 | 0.545 | 0.546 | 0.560 | 0.551 | 0.651 | 0.618 | 0.890 | 0.517 | 0.730
CallDepth LogisticRegression | 0.305 | 0.202 | 0.104 | 0.481 | 0.317 | 0.344 | 0.688 | 0.360 | 0.509 | 0.748 | 0.443 | 0.501
ActiveLearning 0.488 | 0.085 | 0.267 | 0.490 | 0.520 | 0.425 | 0.697 | 0.444 | 0.593 | 0.805 | 0.525 | 0.679
BwdBAL 0.543 | 0.554 | 0.310 | 0.553 | 0.566 | 0.488 | 0.663 | 0.582 | 0.682 | 0.808 | 0.586 | 0.843
Overflow LogisticRegression | 0.389 | 0.225 | 0.089 | 0.414 | 0.213 | 0.158 | 0.497 | 0.292 | 0.598 | 0.696 | 0.694 | 0.797
ActiveLearning 0.47710.141]0.299 | 0.637 | 0.438 | 0.593 | 0.586 | 0.558 | 0.671 | 0.783 | 0.693 | 0.809
BwdBAL 0.680 | 0.518 | 0.502 | 0.682 | 0.624 | 0.656 | 0.681 | 0.722 | 0.767 | 0.784 | 0.722 | 0.845
Reentrancy LogisticRegression | 0.658 | 0.375 | 0.288 | 0.665 | 0.400 | 0.441 | 0.666 | 0.425 | 0.394 | 0.826 | 0.841 | 0.601
ActiveLearning 0.617|0.396 | 0.258 | 0.622 | 0.671 | 0.416 | 0.626 | 0.441 | 0.415 | 0.877| 0.616 | 0.786
BwdBAL 0.618 0.462 | 0.290 | 0.635 | 0.690 | 0.458 | 0.639 | 0.694 | 0.504 | 0.880 | 0.701 | 0.810
TimeDep LogisticRegression | 0.509 | 0.233 | 0.144 | 0.539 | 0.367 | 0.354 | 0.665 | 0.384 | 0.288 | 0.667 | 0.661 | 0.501
ActiveLearning 0.505 | 0.223 | 0.245 | 0.533 | 0.456 | 0.389 | 0.519 | 0.354 | 0.546 | 0.754 | 0.589 | 0.817
BwdBAL 0.573]0.373]0.288 | 0.588 | 0.590 | 0.472 | 0.592 | 0.598 | 0.678 | 0.742| 0.613 | 0.826
TOD LogisticRegression | 0.559 | 0.240 | 0.110 | 0.500 | 0.269 | 0.254 | 0.577 | 0.405 | 0.311 | 0.673 | 0.574 | 0.464
ActiveLearning 0.651|0.196 | 0.289 | 0.648 | 0.601 | 0.393 | 0.467 | 0.554 | 0.486 | 0.779 | 0.793 | 0.608
BwdBAL 0.533]0.339 ] 0.287 | 0.543 | 0.557 | 0.474 | 0.546 | 0.553 | 0.594 | 0.781 | 0.662 | 0.823
TxOrigin LogisticRegression | 0.412 ] 0.090 | 0.050 | 0.554 | 0.524 | 0.175 | 0.515 | 0.245 | 0.581 | 0.915 | 0.593 | 0.625
ActiveLearning 0.503 0.130 | 0.248 | 0.466 | 0.537 | 0.240 | 0.723 | 0.375 | 0.499 | 0.962 | 0.240 | 0.755
BwdBAL 0.406 | 0.206 | 0.258 | 0.507 | 0.507 | 0.366 | 0.607 | 0.508 | 0.546 | 0.963 | 0.709 | 0.799
Underflow LogisticRegression | 0.603 | 0.106 | 0.030 | 0.605 | 0.114 | 0.062 | 0.610 | 0.388 | 0.181 | 0.751 | 0.610 | 0.643
ActiveLearning 0.373]0.388]0.139 | 0.401 | 0.459 | 0.220 | 0.615 | 0.462 | 0.539 | 0.887 | 0.620 | 0.701
BwdBAL 0.564 | 0.465 | 0.213 | 0.577 | 0.580 | 0.363 | 0.591 | 0.594 | 0.541 | 0.876 | 0.592 | 0.849
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5 Conclusion and Future Work

In this work, we proposed a novel framework using bidirectional active learn-
ing for smart contract vulnerabilities detection tasks. Our framework consists
of two major stages: forward learning and backward learning. In the first stage,
BwdBAL exploits uncertainty sampling strategy to select some more informative
sol files from the unlabeled datasets for querying their labels and then incorpo-
rates them with the current labeled dataset to construct a training set. This
process is forward learning. In the second stage, BwdBAL utilizes a backward
noise removal method to detect and process suspiciously unreliable instances by
exploring labeled datasets for improving the generalization ability of the model.
Finally, active learning is a circular process until the target effect is reached.
The experimental results show that BwdBAL outperforms the baseline meth-
ods, and the uncertainty sampling strategy outperforms the other four sampling
strategies.

Besides, it needs to point out that our current work is limited to smart con-
tract vulnerabilities detection tasks. We choose the pool-based active learning
process, so the backward active learning process takes a long time. In order to
shorten the running time, we plan to exploit stream-based active learning in our
future work. Furthermore, this framework (BwdBAL) suffers from the low pre-
cision problem. In order to increase the precision, we consider adopting different
feature extraction methods for different types of vulnerabilities to improve the
prediction model. Moreover, we also hope that there will be more breakthroughs
in this area in the future.
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