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Preface

The proceedings contain the papers selected for presentation at the ACNS 2022 satellite
workshops, which were held in parallel with the main conference (the 20th Interna-
tional Conference on Applied Cryptography and Network Security) during June 20–23,
2022. Due to the ongoing COVID-19 crisis, ACNS 2022 was held in Rome, Italy, in a
hybrid mode while the workshops were organized as online events.

In response to this year’s call for workshop proposals, there were eight satellite
workshops, the same as last year. Each workshop provided a forum to address a
specific topic at the forefront of cybersecurity research.

– 4th Workshop on Application Intelligence and Blockchain Security (AIBlock
2022), chaired by Weizhi Meng and Chunhua Su

– 3rd Workshop on Artificial Intelligence in Hardware Security (AIHWS 2022),
chaired by Lejla Batina and Stjepan Picek

– 4th Workshop on Artificial Intelligence and Industrial IoT Security (AIoTS 2022),
chaired by Sridhar Adepu and Cristina Alcaraz

– 2nd Workshop on Critical Infrastructure and Manufacturing System Security
(CIMSS 2022), chaired by Chenglu Jin and Saman Zonouz

– 4th Workshop on Cloud Security and Privacy (Cloud S&P 2022), chaired by
Suryadipta Majumdar and Cong Wang

– 3rd Workshop on Secure Cryptographic Implementation (SCI 2022), chaired by
Jingqiang Lin and Jun Shao

– 3rd Workshop on Security in Mobile Technologies (SecMT 2022), chaired by
Eleonora Losiouk and Yury Zhauniarovich

– 4th Workshop on Security in Machine Learning and its Applications (SiMLA
2022), chaired by Sudipta Chattopadhyay

This year, we received a total of 52 submissions. Each workshop had its own
Program Committee (PC) in charge of the review process. These papers were evaluated
on the basis of their significance, novelty, and technical quality. The review process
was double-blind. In the end, 31 papers were selected for presentation at the eight
workshops, with an acceptance rate of 60%.

ACNS also gave the best workshop paper award. The winning papers were selected
among the nominated candidate papers from each workshop. The following two papers
shared the ACNS 2022 Best Workshop Paper Award. They will also receive the
monetary prize sponsored by Frontiers.

– Yuanyuan Zhou and Francois-Xavier Standaert. “S-box Pooling: Towards More
Efficient Side-Channel Security Evaluations” from the AIHWS workshop

– Thijs Heijligenberg, Oualid Lkhaouni, and Katharina Kohls. “Leaky Blinders:
Information Leakage in Mobile VPNs” from the SecMT workshop



This year Frontiers specifically sponsored a best AIoTS workshop paper award. The
program chairs of the AIoTS workshop selected the following paper for the award.

– Alessandro Visintin, Flavio Toffalini, Eleonora Losiouk, Mauro Conti, and Jianying
Zhou. “HolA: Holistic and Autonomous Attestation for IoT Networks”

Besides the regular papers presented at the workshops, there were 14 invited talks.

– “Towards Decentralized Privacy-Preserving Application Intelligence” by S.
M. Chow (Chinese University of Hong Kong, Hong Kong SAR, China) at the
AIBlock workshop

– “Homomorphic Computing: Achieving the Pinnacle of Data Privacy” by Rosario
Cammarota (Intel, USA) and “A Fault Can Do Wonders: On Advanced Fault
Attacks on Protection Mechanisms, Post-Quantum Cryptography and Deep
Learning” by Shivam Bhasin (NTU, Singapore) at the AIHWS workshop

– “Fusing AI and Design to Protect Critical Infrastructure” by Aditya P. Mathur
(SUTD, Singapore) and “Trustworthy AI for Securing CPS” by Tingting Li (Cardiff
University, UK) at the AIoTS workshop

– “Oh What a Tangled Web We Weave - Securing ICS Networks” by Nils Ole
Tippenhauer (CISPA, Germany) and “Urban Water Infrastructure: Challenges and
Smart Solutions” by Zoran Kapelan (TU Delft, The Netherlands) at the CIMSS
workshop

– “Notions of Security and Trust in Virtualized Infrastructures” by Vijay
Varadharajan (University of Newcastle, Australia) and “Vulnerability Detection for
Emerging Technologies” by Paria Shirani (Toronto Metropolitan University,
Canada) at the Cloud S&P workshop

– “Hey... it’s a PDF. What can go wrong?” by Christian Mainka and Vladislav
Mladenov (Ruhr University Bochum, Germany) at the SCI workshop

– “Trust, But Verify: A Longitudinal Analysis of Android OEM Compliance and
Customization” by Simone Aonzo (EURECOM, France) and “From the Analysis of
Mobile Apps to the Analysis of the Mobile Ecosystem” by Antonio Bianchi
(Purdue University, USA) at the SecMT workshop

– “Towards Trustworthy AI” by Jun Sun (SMU, Singapore) at the SiMLA workshop

There was also a poster session chaired by Emiliano Casalicchio. Five posters were
included in the proceedings in the form of extended abstracts.

The ACNS 2022 workshops were made possible by the joint efforts of many
individuals and organizations. We sincerely thank the authors of all submissions. We
are grateful to the program chairs and PC members of each workshop for their great
effort in providing professional reviews and interesting feedback to authors in a tight
time schedule. We thank all the external reviewers for assisting the PC in their par-
ticular areas of expertise. We are grateful to Frontiers for sponsoring the workshops.
We also thank General Chairs Mauro Conti and Angelo Spognardi and the organizing
team members of the main conference as well as each workshop for their help in
various aspects.

Last but not least, we thank everyone else, speakers, session chairs, and attendees
for their contribution to the success of the ACNS 2022 workshops. We are glad to see
the workshops have become an important part of ACNS and provide a stimulating
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platform to discuss open problems at the forefront of cybersecurity research. We would
expect that in-person workshops will return in 2023.

June 2022 Jianying Zhou
ACNS 2022 Workshop Chair
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Universal Physical Adversarial Attack
via Background Image

Yidan Xu1, Juan Wang1, Yuanzhang Li1, Yajie Wang2, Zixuan Xu1,
and Dianxin Wang1(B)
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Abstract. Recently, adversarial attacks against object detectors have
become research hotspots in academia. However, digital adversarial
attacks need to generate adversarial perturbation on digital images in
a “pixel-wise” way, which is challenging to deploy accurately in the real
world. Physical adversarial attacks usually need to paste the adversarial
patches on the surface of target objects one by one, which is not suitable
for objects with complex shapes and is challenging to deploy in prac-
tice. In this paper, we propose a universal background adversarial attack
method for deep learning object detection, which puts the target objects
on the universal background image and changes the local pixel infor-
mation around the target objects so that the object detectors cannot
recognize the target objects. This method takes the form of a univer-
sal background image for the physical adversarial attack and is easy to
deploy in the real world. It can use a single universal background image
to attack different classes of target objects simultaneously and has good
robustness under different angles and distances. Extensive experiments
have shown that the universal background attack can successfully attack
two object detection models, YOLO v3 and Faster R-CNN, with average
success rates of 74.9% and 67.8% with varying distances from 15 cm to
60 cm and angels from −90◦ to 90◦ in the physical world.

Keywords: Physical adversarial attack · Object detection ·
Adversarial examples

1 Introduction

In recent years, deep neural networks(DNNs) have shown excellent performance
in various computer vision tasks, such as image classification, object detection,
and image segmentation [7,8,11,14,15]. However, it has been demonstrated that
DNNs are vulnerable to adversarial examples [19]. Adversarial examples are
maliciously crafted perturbations that are imperceptible to human observers
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Zhou et al. (Eds.): ACNS 2022 Workshops, LNCS 13285, pp. 3–14, 2022.
https://doi.org/10.1007/978-3-031-16815-4_1
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but can mislead the target model and can even be generalized to the real world.
Therefore, the existence of adversarial examples poses great security risks to the
deployment of DNN-based systems in the real world, which makes adversarial
examples become research hotspots in current academia.

Adversarial attacks can be divided into digital attacks and physical attacks
according to whether the pixel values of an image can be directly modified. For
digital adversarial attacks, the attackers can directly modify the pixel values of a
digital image and input the modified digital adversarial examples into the target
model to attack. However, physical adversarial attacks cannot directly modify
the pixel values of an image. The attackers can only generate physical adversarial
examples in the real world and then input them into the target model to attack
after cameras capture the physical adversarial examples. In this paper, we focus
on the physical attack, which is more challenging and meaningful in practical
application because the physical adversarial examples in the real world need to
face light, angle, distance, and other changes and easily lose effect.

Previous works focus on generating adversarial patches [2,17,20] to perform
the adversarial attack. They train in the digital world to generate adversarial
patches and then print them and paste them into the target object to attack tar-
get models. However, these patch-based methods generate adversarial patches in
a “pixel-wise” way, which is challenging to deploy accurately in the real world. In
addition, they need to modify the target object itself. When attacking multiple
targets, they need to generate the adversarial patch for each category or even
each target object and then paste the adversarial patch on the surface of target
objects one by one. Recent research [22] has proposed a non-contact adversarial
patch that can hide all objects of a specific class without touching the target
object by pasting a carefully constructed translucent patch on the camera lens.
However, in the actual attack, it is usually difficult for the attacker to contact
and modify the imaging lens, and the attack can only be targeted at a spe-
cific category, rather than using a single adversarial patch to attack different
categories of target objects.

In this paper, we study the universal physical adversarial attack, which can
attack different kinds of objects in the real world. Inspired by the implicit use
of context information by object detectors in reasoning, we propose a universal
background physical adversarial attack method, which can generate a universal
background image with the specific pattern, affect the detection of the target
object placed on it, and make it hidden or misclassified by the target model.
The universal background image proposed in this paper is easy to deploy in the
physical world, can attack different kinds of target objects simultaneously, and
has good robustness under the transformation of different angles and distances.

Our contributions are listed as follows:

– We propose a new physical adversarial attack method based on the back-
ground image, which can generate a universal background image with a spe-
cific pattern and affect the prediction of the target object detector by mod-
ifying the local contexts surrounding the target object. The attack method
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is easy to deploy in the physical world and has good robustness under the
transformation of different angles and distances.

– We realize a universal attack against object detectors in the real world for the
first time, which can affect the detection of all objects belonging to various
categories by using only a single universal background image.

2 Background and Related Work

2.1 Object Detection

Object detection is the primary task of computer vision and one of the most
essential and challenging branches in the computer vision field. Existing object
detection models can generally be divided into two categories: the one-stage
models represented by the SSD [11] and YOLO [14] models and the two-stage
models represented by Faster R-CNN [15]. The one-stage models can infer the
location and classification result of target objects simultaneously, while the two-
stage models are a two-step reasoning process. In the first stage, the two-stage
models utilize the region proposal network(RPN) to choose the possible candi-
date areas of the objects. And in the second stage, the possible candidate areas
are pooled and converted to a fixed size, and then features are extracted from
each candidate box for classification. Although the detection speed of two-stage
models is slower than that of one-stage models, the detection accuracy of two-
stage models is generally higher.

2.2 Physical Adversarial Attacks

Kurakin et al. [9] verified for the first time that digital adversarial examples were
still adversarial after being extended to the physical world by directly printing
digital adversarial examples on paper and then collecting them with a camera
and inputting them into the target model for test. However, such adversarial
examples were not robust in the physical world. Since the physical adversar-
ial examples will undergo a series of unknown transformations in the physical
world, such as angle, distance, and illumination, which will affect the attack per-
formance of the physical adversarial examples, the physical adversarial attack
methods usually pay more attention to the robustness of the adversarial exam-
ples in the physical world. The adversarial patch is the most common physical
adversarial attack method, first proposed in paper [2] to attack image classi-
fiers. Eykholt et al. [5]aimed at the image classification model in the automatic
driving scene, taking stop signs as the target objects and realizing the phys-
ical adversarial attack by printing some black and white stickers and pasting
them on stop signs. To improve the robustness of physical adversarial attacks,
Athalye et al. [1] proposed a general EoT framework for image classification,
adding various physical transformations to the generation process of adversarial
examples and using 3D printing technology to reproduce adversarial examples in
the physical world, realizing robust physical attack at different viewpoints. Xu
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et al. [20] proposed Adversarial T-shirt, a robust physical adversarial example
for evading person detectors even if it suffers from deformation due to a mov-
ing person’s pose change. This method uses TPS interpolation to model fabric
deformation to ensure that the adversarial patch does not lose effect due to fab-
ric deformation when printed onto the T-shirt, thus hiding the specific person
wearing the T-shirt with the adversarial pattern. Subsequently, Eykholt et al.
[17] extended the method against image classification in [5] to object detection.
This method minimizes the detection score of the object detector to make the
detection score lower than the detection threshold so that the target object can
not be successfully detected. Moreover, to maintain the adversarial robustness
in the physical world, they added an alignment function to the loss function to
process the adversarial examples and used smooth loss and non-printable loss
to generate physical adversarial examples with smooth perturbation. Zhao et
al. [21] further proposed a new method to attack the target object at the early
hidden layer and generate adversarial examples with a reasonable semantic back-
ground to generate more effective adversarial examples. However, these works
generate adversarial examples in a “pixel-wise” way that is difficult to deploy
precisely in the real world.

2.3 Adversarial Attacks Using Contextual Information

Many previous works [3,6,13,18] have demonstrated that exploiting contextual
information can improve object detection performance. Inspired by this, some
recent works [10,12,16] have attacked the object detector by exploiting contex-
tual information to generate adversarial patches that do not overlap with any
objects of interest in the scene. These methods consider modifying global con-
textual information to attack object detectors and place the printed adversarial
patch in the scene to hide all objects in the scene. But in the real world, when
the detection distance changes, the position and the size of the adversarial patch
in the scene will also change, limiting the application of the attack. DNN-based
object detection models usually use the interior features of candidate regions to
classify. In this paper, we consider modifying the local surrounding contextual
information of the object, which can maintain effectiveness even when the posi-
tion and the size of the adversarial patch change. Meanwhile, this method can
also attack the object detection models that only use local context surrounding
a proposal region.

3 Method

In this paper, we aim to generate a universal background image with a specific
pattern to attack object detectors in the physical world, which can interfere with
the detection of all categories of target objects placed on it, making them hidden
or misclassified by the object detector when deployed in a specific background
area in the physical world.

Existing patch-based methods are not suitable for the target objects with
complex shapes and are challenging to deploy accurately in the physical world.
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Therefore, we propose a universal background adversarial attack method, mak-
ing it easy to deploy in the physical world. Since the circle is an axisymmetric
pattern with rotation invariance, the specific pattern composed of concentric
circles of different widths is adopted to design a universal background image.
This symmetrical pattern helps to keep the background image robust in differ-
ent angle and distance transformations in the physical world. In generating a
universal background image, we constrain the pixel value in each concentric ring
to be the same, and optimize the ring width as wide as possible to facilitate
the deployment of the universal background image in the physical world. The
universal background image and attack schematic diagram are shown in Fig. 1:

We initialize the universal background image with r concentric rings with
a width of 1 pixel. Since the universal background image cannot be directly
optimized like the pixel-level perturbation, we adopt a method similar to [4] to
optimize the perturbation vector P with length r and then fill the vector values
in the perturbation vector P into the rings of concentric rings to obtain the
universal background image.

3.1 Objective Function

To ensure that the background image has good attack performance and repro-
ducibility in the physical world, we carefully design a loss function to optimize
the universal background image. The loss function consists of adversarial loss,
width loss, and non-printable loss.

Adversarial Loss. Let f(x): x → {pkobj , p
k
cls, b

k}Kk=1 denote an object detector,
which takes an image x ∈ Rc,h,w as input and outputs the prediction vectors
of K bounding boxes, where pkobj is the probability that the k-th bounding box
contains an object, pkcls is a probability vector over C classes for the object in
the k-th bounding box, and a bounding box bk = [xk, yk, wk, hk] denotes the
position of the k-th bounding box.

Input the adversarial example xadv into the target detector f(x), and the
adversarial loss attacks the mean of the product of the detection score and
classification score in all the bounding boxes containing target category C, and
the formula is as follows:

Ladv =
1
K

K∑

i=1

(pkobj , p
k
cls∈C) (1)

Width Loss. We use the L1 norm of the difference between adjacent vector
values of the perturbation vector P to optimize the ring width. Compared with
other norms, the L1 norm tends to generate sparse solutions, which helps to
optimize the difference between adjacent vectors to 0, so that adjacent concentric
rings have the same pixel value, thus connecting into wider rings, reducing the
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Fig. 1. The universal background image and attack schematics. Top: the left column is
the result of instance segmentation, and the right column is the universal background
image generated on YOLO v3 model. Middle: the left column is the clean image, and the
right column is the adversarial example obtained by placing the universal background
image under the target object cat. Bottom: the left column is the detection result of
the clean image, where the target object cat is normally detected with high confidence
of 0.84, and the right column is the detection result of the adversarial example, where
the target object cat is misclassified as a frisbee.

number of rings, and thus alleviating the deployment difficulty of the physical
world. The formula of ring width loss is as follows:

Lwidth =
r∑

i=1

|Pi+1 − Pi| (2)
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Non-printable Loss. We use a non-printable loss to mitigate the difference
between the printer’s gamut and the digital world’s. We generate the universal
background image in the physical world by printing. Since the colors produced by
most printers do not fully cover the entire RGB color space, the colors produced
by printers are somewhat different from the colors in the digital world. So we
refer to related work and use NPS(non-printability score) as part of the objective
function to deal with this constraint. The formula is as follows:

Lnps =
r∑

i=1

∏

p′∈W

|sigmoid(Pi) − p′| (3)

where W is a set of printable colors (RGB triples).
Finally, we have a total objective function consisting of three components:

Ltotal = Ladv + λ1 · Lwidth + λ2 · Lnps (4)

where λ1 and λ2 are hyperparameters that balance the loss terms. During the
training, we set λ1 to 0.01 and λ2 to 5.

3.2 The Generation of the Universal Background Image

We first randomly initialize the perturbation vector P ∼ N(0, 1) to be normally
distributed. Then we use the image data set of the target category C for training
to optimize the perturbation vector P. In the process of optimization, to make
the value of the perturbation vector P within the effective range [0, 1], we use
the sigmoid function Θ (x) = 1

(1+ex) to process the perturbation vector P, and
obtain Θ(P ). Then, the values of Θ(P ) are successively filled into the ring so that
all pixel values in the same ring are consistent with the corresponding values of
Θ(P ) to obtain the universal background image of this round. In each iteration,
we place the universal background image under the target object in clean image
x to get the adversarial example xadv, then input it into the target detector, and
calculate the loss function according to formula 4. Finally, we use the MI-FGSM
method to update the perturbation vector P. MI-FGSM is a common black-box
attack method, which can generate more transferable adversarial samples by
introducing momentum to stabilize the update direction. Since the optimization
variable in this paper is perturbation vector P, the updating formula of MI-
FGSM is as follows:

gi+1 = μ · gi +
∇pLtotal

||∇pLtotal||1 , Pi+1 = Pi + α · sign(gi+1) (5)

where μ and α are both set to 1.
During the placement of adversarial examples, we follow the following steps:

– We firstly perform instance segmentation for all objects in the clean image
X;



10 Y. Xu et al.

– Then we find all target objects classified as C and scale the universal back-
ground image randomly to 1–1.5 times the size of the corresponding detection
bounding box to enhance the robustness of attacking objects of different sizes.
Then the universal background image is placed under the target objects to
attack. The center of the universal background image is aligned with the
center of the detection bounding box. If the universal background image has
been added to the current background and the overlap rate exceeds 80%, the
universal background image will not be added to this position.

– Finally, we place the universal background images successively under the
target objects in the clean image x, and restore all the objects to their original
positions according to the previous instance segmentation results to obtain
the modified adversarial example Xadv.

4 Experiments

We evaluate our proposed universal background image in the physical world to
prove its effectiveness.

4.1 Experiment Setup

We chose the first-stage model representing YOLO v3 and the second-stage
model representing Faster R-CNN as target models and generate the universal
background images in the digital world, respectively. We use the COCO training
set for training. We randomly selected ten categories from COCO’s 80 categories
for training and randomly selected 100 photos from each training category, a total
of 1000 photos. Then, we used Epson L4160 color printer and glossy photo paper
to print the generated universal background images, fixed in 600*600 pixels. In
the physical world, we select airplane, elephant, horse, and sheep as four different
categories of attack objects to verify the universal attack effect, among which
only airplane is the category used in training. To evaluate the attack effect of
the universal background image at different distances and angles, we divided the
distance between 15 cm and 60 cm into three areas, with 15 cm as an interval,
and used the built-in camera of Galaxy S9 to shoot 10s videos at 0◦, ±30◦,
±60◦, and ±90◦ respectively. YOLO v3 model and Faster R-CNN model were
used for detection. In this paper, we use random Gaussian noise background
images for comparison to evaluate attack success rates at different distances and
angles. In this paper, attack success is defined as the target object being hidden
or misclassified by the target detector. The success rate of physical attack is
fsucc = Nsucc/Ntotal, where Ntotal stands for all frames in the video, and Nsucc

stands for the frame number of a successful attack.
We use imageGauss to represent random Gaussian noise background image,

imageY OLOv3 to represent universal background image trained on YOLO v3
model, and imageFasterR−CNN to represent universal background image trained
on Faster R-CNN model.
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Figure 2 and Fig. 3 respectively show the success rate of attacking the YOLO
V3 model and the Faster R-CNN model with three universal background images
at different distances and angles. The darker the background color in the region,
the higher the success rate of attack.

Fig. 2. The universal physical attack success rate of attacking YOLO v3 model at
different angles and distances.

Fig. 3. The universal physical attack success rate of attacking Faster R-CNN model at
different angles and distances.

4.2 Attack Success Rate

Compared with the direct application of imageGauss, using imageY OLOv3 and
imageFasterR−CNN to attack YOLO V3 model and Faster R-CNN model have
better attack effects. The average attack success rate can be increased by more
than 20%. It shows that our optimization method further finds a universal back-
ground image with a better attack effect on the baseline.

4.3 The Effect of Angle and Distance

The results show that the greater the angle and distance, the more success-
ful the attack. However, at different distances and angles, the universal back-
ground images proposed by us all be effective, which indicates that the universal
background images are still robust in the physical world even without physical
transformation.

4.4 The Effect of Target Model

The success rate of using background images generated by different training
models to attack the same target model is very close, which indicates that the
universal background image proposed by us will have excellent attack perfor-
mance even if the training model and attack model are different. As can be seen
from Fig. 2 and Fig. 3, the YOLO v3 model, as a first-stage model, relies more on
contexts in prediction, so the attack success rate is higher than Faster R-CNN,
a two-stage model.
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4.5 Visualized Results

Figure 4 shows the visualized results of the physical attack. Due to the limited
perturbation space, the universal background image tends to make the target
object misclassified rather than hidden. We believe that the model will recognize
the universal background image and the object placed on it as a whole in the
prediction, and the universal background image itself looks similar to the frisbee
class, so it will introduce new features so that the original object category is
affected and misclassified.

Fig. 4. Visualization of physical attack results.

5 Conclusion

In this paper, we propose a universal background adversarial attack method
against object detectors, which can use a single universal background image to
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attack different types of target objects by modifying the local contexts around
them. Unlike previous patch-based attack methods, which generate perturba-
tions in a “pixel-wise” way, our method generates a universal background image
with the specific pattern, which is much easier to deploy in the real world than
“pixel-level” patches and has good robustness at different angles and distances.
Extensive experiments have shown that our proposed method can achieve excel-
lent performance against two object detection models, YOLO v3 and Faster
R-CNN, with average success rates of 74.9% and 67.8% with varying distances
from 15 cm to 60 cm and angels from −90◦ to 90◦ in physical world attacks. Com-
pared with random Gaussian noise background attack, the universal background
with a specific pattern proposed in this paper has a better adversarial attack
effect. Although the proposed universal background physical adversarial attack
has excellent performance, as a new type of physical adversarial attack, our work
still needs to be improved, and there is still a lot of room for improvement, such
as further research on the automatic generation of background patterns, to find
more adversarial and robust background image. In the future, we will continue
to study the automatic optimization method of background images to get more
effective adversarial examples.
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Abstract. Blockchain allows clients to query and verify any trans-
actions, which requires the clients to maintain the entire blockchain
database locally. This approach is inadvisable because the blockchain
database is an append-only ledger and incurs significant maintenance
overhead. Very recently, blockchain light client has attracted consider-
able concerns, which relies on a third party (i.e., a full node) to perform
query processing and verification. However, the dishonest full node may
return an incorrect and incomplete result of the query requests. There-
fore, it remains a challenging issue to achieve secure, efficient, and rich
verifiable queries for light clients. In this paper, we propose an efficient
verifiable Boolean range query scheme for light clients on the blockchain
database. Firstly, we design a new authenticated data structure, poly-
nomial commitment B+-tree (PCB-tree), which efficiently ensures the
correctness and completeness of Boolean range queries for blockchain
light clients. Secondly, we provide a tunable trade-off between query
time and communication overhead by autonomously setting the fanout
size of the PCB-tree. Moreover, our scheme can support batch processing
to reduce query complexity and proof size. Finally, security analysis and
performance evaluation show that our proposed scheme is secure and
practical.

Keywords: Blockchain database · Light clients · Verifiable boolean
range query · Data integrity

1 Introduction

Blockchain, as a revolutionary technology [10], has aroused widespread attention
and research in various fields, such as smart contract platform, decentralized
storage, and supply chain traceability. Meanwhile, with the popularization of
blockchain technology in the finance and supply chain, the people’s demand for
efficient and various queries of data stored in a blockchain database has become
more and more urgent. For illustration, a user, Bob, wants to query the data
about his consumption in the last month that satisfy the following Boolean range
conditions, such as “[2021-11-01, 2021-12-01]” and “sender = Bob ∨ receiver
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= Bob”, where ∨ represents Boolean logical operator OR. The result will be
faithfully returned if the query is conducted in the traditional centralized systems
with a trusted party. From the security perspective, if the client downloads the
complete blockchain duplication as a full node, it can query and validate the
integrity of transactions locally. However, The appended-only and immutable
properties of blockchains result in the data increases with the generation of
new blocks, which requires a large amount of storage and network overhead [7].
In the past two years, the data on the Ethereum blockchain has been growing
linearly with a slope of roughly 0.424 GB/Day is significantly faster than Bitcoin,
which exceeds the capability of most query clients. To address above concern,
most blockchain systems introduce the light client (e.g., Simplified Payment
Verification [10] and Light Ethereum Subprotocol [18]), which can download only
the valid block header from the longest chain to verify whether the current block
contains the interested transactions without the complete blockchain dataset.

However, the light client that stores only block header information will raise
the following concerns when querying transactions:

– The integrity of query result: The light client relies on the query service
provided by the full node. If the full node is untrusted, it probably returns fake
or partial results to light clients [3], or it will obtain the privacy information of
light clients by capturing some sensitive request [8,13]. Therefore, the security
of current blockchain queries is still a crucial issue.

– The query efficiency: The increasing growth of blockchain brings heavy
overhead for developers to access transactions on the blockchain. Meanwhile,
the current blockchain system only supports single-type queries and has low
query efficiency. Therefore, it is necessary to implement a blockchain query
system with high efficiency and rich query functionalities for light clients.

There are some attempts to implement verifiable queries of blockchain for
the light client. The state-of-the-art schemes either utilize the trusted execution
environment or authenticated data structure to ensure the integrity of query
results. Therefore, it is of great significance to design a new structure that guar-
antees the correctness and completeness of the query results and reduces the
communication and verification costs.

1.1 Contributions

In this paper, we focus on verifiable Boolean and range queries. Motivated by the
above observations, we propose an efficient and verifiable Boolean range query
scheme for light clients on the blockchain database. To evaluate our design, we
implement the prototype system and conducted multiple experiments based on
it. Our main contributions can be summarized as follows:

– We propose a new authenticated data structure, polynomial commitment B+-
tree (PCB-tree), that supports the Boolean and range queries.

– We provide an adjustable trade-off between query time and communication
overhead by autonomously setting the fanout size of the PCB-tree. Mean-
while, our scheme can support batch processing to reduce the proof size and
verification time.
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– We prove the security of the scheme in theory and implement a prototype
system to evaluate the performance of our proposed scheme. The experiment
results demonstrate that our scheme is efficient in terms of query, verification
and communication overheads.

1.2 Related Work

In this section, we briefly review the related works on verifiable query processing
over traditional outsourced databases and blockchain.

Verifiable Query Processing over Traditional Database. There are some
verifiable query works that have been studied in outsourced databases. The cur-
rent verifiable query is divided into two categories: circuit-based Verifiable Com-
putation (VC) technique and Authenticated Data Structure (ADS). However,
the VC-based scheme overhead is very high and sometimes impractical [11]. In
comparison, the ADS-based approach is generally more efficient. The Merkle
Hash Tree (MHT) is a significant component in verifiable query schemes and
is extended to different types of databases, including Merkle B-tree (MB-tree)
for relational data [6] and Merkle R-tree (MR-tree) for spatial data [20]. How-
ever, these works are more for the outsourced databases and insufficient for the
blockchain case.

Verifiable Query Processing over Blockchain. Simplified Payment Verifi-
cation (SPV) protocol1 is the first light client protocol proposed in the Bitcoin
paper [10]. It can use Merkle proof to verify whether the blockchain network
accepts a transaction. However, the costs of verification and storage increase lin-
early with the growth of the blockchain. Some verifiable query works have been
studied in blockchain systems to ensure the integrity of the query results. Xu
et al. [19] present an accumulator-based ADS and implement a verifiable query
framework, called vChain, that alleviates the storage and computing costs of the
light client. However, the public key size of the accumulator is linear to the largest
multiset size, and the large proof size leads to an expensive communication over-
head for the light client. Shao et al. [16] utilize the Trusted Execution Environ-
ment (TEE) to achieve an authentication range query scheme for blockchain,
but it does not discuss potential side-channel attacks against TEE. Zhu et al.
[23] put forward a verifiable aggregate queries scheme based on the accumulator
that supports multiple selection predicates. However, it uses the same accumu-
lator as vChain and does not solve the linear overhead problem. Meanwhile, the
construction cost of ADS is expensive since different query dimensions require
different ADSs. Zhang et al. [21,22] utilize MB-tree structure and cryptographic
accumulator to present a gas-efficient scheme for hybrid-storage blockchains.
However, its index maintenance cost remains relatively expensive, and the query
process is complicated. LineageChain [15] leverages a novel skip list index to
achieve efficient provenance query processing and stores provenance information

1 The concepts of payment verification and transaction verification are different in the
blockchain.
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Fig. 1. Blockchain data structure

in a Merkle tree. Therefore, LineageChain only ensures the correctness of the
query results, but not completeness.

2 Preliminaries

2.1 Blockchain Data Structure

From the perspective of data structure, blocks in blockchain mainly contain two
parts: block header and block body. As shown in Fig. 1, all transactions are
recorded in each block and organized a MHT built on top of them. The block
header contains: (1) parentHash, which is the hash of the previous block; (2)
timestamp, which is the time of block creation; (3) number, which is block height;
(4) txHash, which is the root hash of MHT; (5) difficulty, which is the difficulty
coefficient of mined blocks; (6) nonce, which is the random number constructed
by the miners to solve Proof of Work (PoW) protocol problem. Other miners
can append it to the blockchain after verifying the nonce of the new block.

2.2 B+-Tree

B+-tree [4] is a multi-branch sort tree structure that can improve the search
efficiency of range queries. The numerical range query process of B+-tree is
described as follows:

– One starts the query from the root node. If the lower bound of the range
query matches the current non-leaf node, it then searches its subtree.

– When traversing to a leaf node, one adds the corresponding record into the
results set if the lower bound element is found, then continue to search back-
wards through the pointer relationship between nodes until the upper bound
is found at the end of the query.
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Fig. 2. Our system architecture

2.3 Constant Size Polynomial Commitment

A polynomial commitment scheme allows one to commit a polynomial with a
short proof while keeping it hidden from others. The verifier can confirm the
claimed statement of the committed polynomial. Kate, Zaverucha and Goldberg
[5] first present polynomial commitment scheme (KZG commitments) as the
following:

– Setup(1λ, t) generates an appropriate algebraic structure G and a public-
private key pair 〈PK,SK〉 to commit to a polynomial of degree ≤ t.

– Commit(PK, p(x)) generates a commitment C to a polynomial p(x) using
the public key PK.

– CreateWitness(PK, p(x), z) generates a witness ω for the evaluation p(z) of
p(x) at the index z.

– VerifyEval(PK, C, z, p(z), ω) verifies that p(z) is indeed the evaluation at the
index z of the polynomial committed in C.

– CreateWitnessBatch(PK, p(x), S) generates the batched witness ωS for the
value p(i), where i ∈ S.

– VerifyEvalBatch(PK, C, S, r(x), ωS) verifies the correctness of the witness
returned by CreateWitnessBatch algorithm.

3 Problem Statement

In this section, we describe the system model and threat model of our scheme.

3.1 System Model

We propose a verifiable query scheme on blockchain database. Figure 2 depicts
the four entities in our system framework:
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Table 1. Data formal definition

txid ti Vi Wi

tx1 2021-05-12 5 {addr1, addr2}
tx2 2021-05-21 35 {addr3, addr2}
tx3 2021-04-28 20 {addr5, addr1}
tx4 2021-05-21 80 {addr4, addr1}
tx5 2021-05-22 56 {addr6, addr8}
tx6 2021-05-19 90 {addr3, addr1}
tx7 2021-04-22 10 {addr3, addr1}

– Blockchain Network: A network of untrusted nodes collectively maintains
the blockchain data and guarantees stored data is immutable. We assume our
system is based on an account-based blockchain.

– Full Node: A full node downloads complete duplication of the
blockchain database and can independently verify the correctness of any
block/transaction [1]. Also, the full node can provide payment services for
others, such as query or Application Programming Interface (API) services.

– Light Client: A light client only stores block headers and verifies transac-
tions relying on full nodes. It generally runs on resource-constrained devices.

– Miner: A miner2 competes to create new blocks by a consensus algorithm
(e.g., PoW algorithm) and appends it to the blockchain network.

In our system, when a light client wants to retrieve existing transaction data,
the light client firstly synchronizes all newer block headers from the longest chain
and connects to one of the full node servers to send query requests in which the
client is interested. The miners are responsible for organizing all transactions
within the block to construct the PCB-tree and appending root commitment
to the block header to replace the traditional root hash. The full node provides
rich queries for light clients and returns both query results and the corresponding
proofs using our ADS structure. After that, the clients use the Verification Object
(VO) to verify the correctness and completeness of returned results.

As shown in Table 1, the transaction data txi is defined as triple elements
〈ti, Vi,Wi〉, where ti is the transaction timestamp, Vi is a transaction value that
represents one numerical attribute, and Wi is a set attribute that contains the
address information of the sender and receiver. Each block contains multiple
transaction data objects {tx1, tx2, · · · , txn}. Light clients want to query all trans-
actions that match the query request in a period. In this paper, we consider
mainly the rich Boolean range queries based on the time window. Specifically, a
Boolean range query is defined as follows: q = 〈[ts, te], [vl, vu], γ〉, where ts and
te is the start and end time of a time window, vl and vu represent the lower and
upper bound of the transaction query range, and γ is a Boolean query such as
addr1∧(addr2∨addr3). For example, the light client may request a specific query
q = 〈[2021 − 05, 2021 − 06], [10, 40], sender = addr1 ∧ receiver = addr2〉 to find
all the matched transactions.
2 Miners can be full nodes or light nodes.
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3.2 Threat Model and Assumptions

In our scheme, we assume the blockchain network is strong and does not con-
sider some attacks against blockchain, e.g., Eclipse attack, and Sybil attack.
We believe that light clients are honestly reliable and randomly connect to one
of the full nodes from the blockchain network to perform the query operation.
Furthermore, driven by economic interests, we assume the miners are honest to
faithfully execute our ADS structure, which will not lead to some underlying
system security vulnerabilities. Meanwhile, we think no particular relationship
between miners and full nodes. The full nodes are untrusted and regarded as
potential adversaries. On the one hand, the full nodes can obtain some sensitive
information (e.g., account address and transaction information) by the queries
of clients, which will result in the disclosure of user privacy [3,8]. On the other
hand, the full nodes may return incorrect or incomplete query results to reduce
the query expense [19]. Hence, the query results from the full nodes need to be
validated to satisfy the following criteria:

– Correctness. The result data tuples indeed exist in the blockchain databases,
and they have not been tampered with in any way. Meanwhile, as the results,
they should satisfy the query conditions.

– Completeness. No satisfactory results have been omitted by the full nodes,
either intentionally or unintentionally.

– Lightweightness. The results should have lower storage costs and commu-
nication overhead for lightweight clients than that of current schemes.

4 Polynomial Commitment B+-Tree

4.1 Overview

The MHT is usually constructed for each block to authenticate transaction data
in the original blockchain. However, this naive method has the following short-
comings. Firstly, the MHT supports only efficient membership queries instead
of providing non-membership proofs. Secondly, the proofs of MHT can hardly
be aggregated effectively, resulting in serious communication overhead and inef-
ficient verification. To deal with the drawbacks above, we propose a novel ADS
structure illuminated by [6] and [17], PCB-tree, which ensures the integrity of
light client queries and avoids the problem of large public key parameters and
proofs.

4.2 PCB-Tree Structure on Blockchain

For simplicity, we combine the polynomial commitment and B+-tree to imple-
ment a PCB-tree supporting constant size intra-node proof and more effi-
cient queries than MHT. Denote (ki, txi) the key-value pair of PCB-tree leaf
node, where ki represents the numerical attribute (e.g., transferred transaction’s
amount), txi is the corresponding transaction data. In the B+-tree index, the
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Fig. 3. The ADS structure on a block

overflow page is commonly used to deal with duplicate keys [14]. For the conve-
nience of description, we assume there are no duplicate keys in the context.

Figure 3 shows a block structure with PCB-tree. The block header consists of
the following elements: parentHash, timestamp, number, pcbCommit, difficulty,
nonce, where pcbCommit is the root commitment of PCB-tree to replace the
original txHash (Fig. 1). In the PCB-tree, each tree node has four fields: the
minimum and maximum key (denoted by [min, max]), the node commitment
value (denoted by C), the polynomial (denoted by p(x)), and the transactions set
of each node (denoted by S). Let LagrangeInterpolation(·) be a function to find
a polynomial, ‘‖’ be the string concatenation, hash(·) be Keccak-256 algorithm,
respectively. The fields of a node are described as follows:

– S = [(k1, v1), . . . , (kb, vb)], where b denotes the number of key-value pairs in
each node, ki is the index. For the leaf node, vi represents a transaction hash
such that vi = hash(txi). For the non-leaf node, vi represents a commitment
value Ci of its child node.

– k′
i = hash(ki ‖ i), S′ = [(k′

1, v1), . . . , (k
′
b, vb)]. To account for the sorted order

of the keys and the position binding relation within the nodes, we transform
the ki to k′

i.
– p(x) represents a polynomial for key-value pairs in each node such that

p(k′
i) = vi. It can be done with the Lagrange interpolation formula or Horner’s

method.
– C = Commit(PK, p(x)), where PK is the public key generated in Setup(·)

algorithm in advance.
– Attr represents attributes set for each node. For the leaf node, it is a set of

transaction attributes, including the boundary keys information, the address
information and so on. For the non-leaf node, Attrn = Attrl1 ∪ . . . ∪ Attrlb ,
where l1, . . . , lb are the children of node n.

Algorithm 1 describes the ADS construction procedure, and the PCB-tree is
built based on the transaction objects of the block in a bottom-up fashion. First,
the miner parses each transaction txi in transaction set T into the formal we
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Algorithm 1: ADS Construction (by the miner)
Input: Public key PK, Transactions set T
Output: root commitment pcbCommit

1 Initialize a new PCB-tree;

2 Parse T into key-value pairs Listtx ←
{(k1, tx1, attr1), · · · , (kn, txn, attrn)};

3 Sort Listtx according to the ki;
4 Number of leaf node l ← n/f ;
5 for i=1 to l do // leaf node

6 // entries of each node;

7 for j=1 to f do

8 kj ← ki+j ;

9 vj ← hash(txi+j);
10 Attrj ← attri+j ;

11 end
12 Si ← [(k1, v1), · · · , (kf , vf )];

13 Attri ← [Attr1, · · · , Attrf ];

14 Ci, p(x)i ← nodeUpdate(Si, nodei);
15 Insert 〈Ci, p(x)i, Si, Attri〉 to i-th

PCB-tree node;

16 end

17 repeat

18 for i=1 to l/f do // non-leaf node

19 for j=1 to f do

20 kj ← ki+j ;
21 vj ← Cl;
22 Attrj ← Attrl;

23 end
24 Si ← [(k1, v1), · · · , (kf , vf )];

25 Attri ← [Attr1, · · · , Attrf ];
26 Ci, p(x)i ←

nodeUpdate(Si, nodei);
27 Insert 〈Ci, p(x)i, Si, Attri〉 to i
28 -th PCB-tree node;

29 end
30 l ← l/f ;

31 until all transactions is completed ;

32 Store root commitment pcbCommit in
block header;

defined. Next, the miner inserts each transaction data to the leaf node of PCB-
tree and updates the commitment value C and polynomial p(x) for each node.
This process is repeated until all transactions are inserted. Finally, after the tree
construction is finished, the root commitment of the PCB-tree will be written
in the block header as pcbCommit. The node update algorithm nodeUpdate()
aims to update the value of commitment and polynomial for inserted node.
We first build the binding relationship between the numerical attribute ki and
position i, then calculate the polynomial by the Lagrange interpolation formula
for the node and its corresponding commitment value. The procedure is described
in Algorithm 2.

Algorithm 2: PCB-tree Node Update Algorithm
1 Function nodeUpdate(S, curr):

Input: The key-value pairs of node S, The updated node curr
Output: The commitment C, The polynomial p(x)

2 for i=1 to S.size do
3 k′

i ← hash(ki ‖ i);
4 end
5 S′ ← [(k′

1, v1), · · · , (k′
S.size, vS.size)];

6 p(x) ← LagrangeInterpolation(S′);
7 C ← Commit(PK, p(x));
8 return C, p(x);
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Our PCB-tree leverages the feature of B+-tree to improve the efficiency of
range queries and reduce the I/O operation times of node queries. The query
efficiency of our PCB-tree is higher than MHT. In this paper, the size of pub-
lic key PK grows linearly with the branching factor f of the PCB-tree, rather
than the largest transaction set size. It can be adjusted flexibly to make the
trade-off between query efficiency and communication overhead. Meanwhile, the
public-private key pair of KZG commitments can be generated by executing the
Distributed Key Generation (DKG) protocol [12], and the PK can be shared to
a bulletin board which can be generated once and then reused.

5 The Proposed Construction

For ease of illustration, we first focus on the range query in each block. We then
extend it to the Boolean query and ensure the integrity of its results. Finally,
to enhance the performance of the query service, we discuss batch processing on
multiple query objects. Based on our designed PCB-tree, we explain the proof
generation and verification for the range query.

5.1 Verifiable Range Query Processing

In the verifiable query phase, when the light client triggers a query request, the
full node parses the query firstly and returns the correct results R and proofs
VO according to Algorithm 3. Then, the light client updates the newest block
headers periodically and verifies the integrity of the results through VO. Next,
we will focus on the range query processing on numerical attribute Vi for the
full node.

In the full node, the range query is executed in a top-down way that is similar
to the range query of the B+-tree. Algorithm 3 shows a range query q = [l, u] on
a single block. When l equals u, the range query is a point query. First, the full
node can process a query from the root node. If the query condition does not
intersect with the attribute of the current node, it means its subtree does not
contribute to the query result. In this case, the full node will generate the proof
for the root node as the VO, and the procedure is terminated. Otherwise, keep
exploring its subtree. During the search process, if the keyword on the non-leaf
node is equal to the given value, it only adds the corresponding proof to VO
and does not terminate until the real data in leaf nodes are found. The leaf node
of the PCB-tree organizes a sequence list, and we can traverse backward from
the first leaf node found. The query algorithm of PCB-tree RangeQuery() is
described in Algorithm 5 (See Appendix A), which recursively queries each level
of nodes. To improve the query efficiency of internal nodes, we use an efficient
localization algorithm getPos(). It mainly utilizes the idea of binary search to
locate the query path quickly, and we use the bit vector to denote which keys
are the points on the search path in each node. For example, the 〈0, 1, 1, 0〉
means that the second and third positions of the current node are retrieved.
Algorithm 6 shows the localization procedure in detail (See Appendix A).
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Algorithm 3: Range Query Processing (by full node)
Input: PCB-tree root, Range query condition q = [l, u]
Output: Query Results R, Verification Object VO

1 Initialize two empty set R, VO ;
2 if root.[min,max] matches q then
3 RangeQuery(root, l, u, R, VO);
4 else
5 R = ∅;
6 num ← root.keyNum, p(x) ← root.p(x);
7 ωmin = CreateWitness(PK, p(x), k0);
8 add 〈0, (k0, v0), ωmin〉 to VO ;
9 ωmax = CreateWitness(PK, p(x), knum);

10 add 〈num, (knum, vnum), ωmax〉 to VO ;

11 end
12 return 〈R,VO〉

For example, consider a range query q = [19, 40] as shown in Fig. 3. The full
node traverses the keyword index from the root node to the leaf nodes, and adds
the matched transaction to R. Finally, the results are {[(3, 20, tx3), (1, 35, tx4)]}.
In this case, the full node needs to return the membership of the query results
and the non-membership of the greatest and smallest elements in the range,
e.g., 19,40. The VO returned by the full node includes {[〈1, (20, CN1), ωr1〉,
〈2, (56, CN2), ωr2〉], [[〈2, (10, v12), ω12〉, 〈3, (20, v13), ω13〉], [〈 1, (35, v21), ω21〉, 〈2, (
56, v22), ω22〉]]}, where ωij is the witness for the elements in the j-th position of
the i-th node and is generated by invoking CreateWitness(·) algorithm.

Algorithm 4 describes the steps of result verification on the light client. The
verification process is on the client-side from top to bottom. At first, the light
client downloads all block headers from the blockchain to fetch the root commit-
ment against the pcbCommit and leverages the polynomial commitment prim-
itive VerifyEval(·) algorithm to check the correctness of the search path ele-
ments. The binding relationship between data and position in each node ensures
the completeness of query results. The validated commitment for each entry in
the parent node needs to be used to verify the correctness of their child nodes.
In the leaf node, the user uses the function hash(·) to compute vi = hash(txi)
according to R, then invoke VerifyEval(·) algorithm to prove the correctness of
returned result.

5.2 Extension to Verifiable Boolean Query

The previous section mainly discusses the range queries on the numerical
attribute Vi. In real-life scenarios, the query client may consider the keyword
queries on the set attributes Wi. The Boolean query on the set attributes
is supported in our PCB-tree by the field Attr. In the non-leaf nodes, the
attribute set of the parent node is the union of the attribute sets of all its
child nodes. Therefore, when the full node receives a Boolean query condition
q = {addr1∧(addr3∨addr4)}, it firstly parses the query into two parts: {addr1}
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Algorithm 4: Results Verification (by the light client)
Input: Query results R, Verification object VO, Query condition q
Output: The verification result: 1 or 0

1 Interpret R and VO as a list of 〈i, ki, txi〉 and 〈i, (ki, vi), ωi〉, respectively;
2 vCommit ← root commitment PcbCommit;
3 for each level in VO do
4 vo ← 〈i, (ki, vi), ωi〉;
5 Check the ki is in the query range q;
6 Verify the i-th entry of current node is correct via the vCommit and vo;
7 vCommit ← vi;
8 if current node is leaf and ki matches q then
9 value ← hash(txi) according to the R;

10 Check the value is equal the vi of the VO ;

11 end

12 end

and {addr3, addr4}. In this paper, the Boolean query is represented by a Boolean
function in Conjunctive Normal Form (CNF), which is a list of AND or OR
operators. The full node starts the query from the root node and compare query
condition one by one with the set attribute Attr in each node. However, this
way is not efficient. In order to speed up the query, we introduce Bloom Filter
(BF) into PCB-tree. Bloom filter is a long binary vector and a series of random
mapping functions, and it can be used to test whether an element is a member
of a set fastly. When constructing the index of PCB-tree, we need to create a
BF bit vector for each node attribute, which means each BF represents a set
attribute Wi, and the BF of non-leaf nodes denote the union of BFs in its child
nodes. Therefore, when the system starts traversing from the PCB-tree root
node, BF is used to determine whether the subtrees of current node have the
query attributes.

In the range query, vi is the hash of transactions txi, and it is seen as an
authenticator of the transactions. Based on polynomial commitment, we guaran-
tee the integrity of numerical attribute query results. In order to guarantee the
integrity of the Boolean query, we need to build a binding relationship between
numerical attributes, set attributes and transactions. Hence, vi needs to be trans-
formed into a tamper-proof digest value, such as hash value, vi = hash(txi ‖ Wi).
We take vi as the value in the key-value pair (ki, vi) in the leaf node for Boolean
range queries.

Remark 1. In order to further reduce the communication overhead, it is neces-
sary for supporting batch operations. The primitive CreateWitnessBatch(·)
introduced in Sect. 2.3, which can aggregate multiple query points in the same
polynomial commitment. We can aggregate the proof for multiple query points
under the same node when executing range query. For example, the full node
can return an aggregated proof ωr1,r2 = CreateWitnessBatch(PK, p(x)Nr,
[(20, CN1), (56, CN2) ]) for two points under the root node 〈1, (20, CN1), ωr1〉 and
〈2, (56, CN2), ωr2〉. The light client can apply VerifyEvalBatch(·) to process
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batch verification. Boneh et al. [2] proposes two polynomial commitment schemes
which can open proof for multiple points and polynomials at the same time. We
can also leverage this enhanced polynomial commitment scheme to aggregate
different node in the PCB-tree which will further reduce the VO size.

5.3 Security Analysis

In this paper, we give a formal definition and analyze the security of our proposed
scheme. Note that the polynomial commitment scheme is secure [5].

Definition 1 (Security). A verifiable Boolean range query scheme is secure if
the success probability of any polynomial-time adversaries in the following exper-
iment is negligible:

– Run the ADS generation algorithm and send all transactions {tx1, . . . , txn}
in a block to the adversary;

– The adversary outputs the query q, the result R, and the VO.

The above definition indicates that malicious full node forges an incorrect
or incomplete result is negligible. Next, we will prove that our proposed scheme
indeed satisfies the desired security requirements.

Theorem 1. Our proposed verifiable Boolean range query scheme based on
PCB-tree can guarantee the correctness and completeness of query result as
defined in Definition 1.

Proof. The verifiable query processing should guarantee that the returned results
are correct and complete. We prove this theorem by contradiction as follows:

(1) Correctness of query results. The returned results R contain a transaction
tx∗ such that tx∗ /∈ {txi}n

i=1 and pass the verification. The client will vali-
date the integrity of the transaction with respect to the PcbCommit stored
in the blockchain. Therefore, the forge is impossible because the polyno-
mial commitment scheme and the underlying consensus mechanism of the
blockchain are secure.

(2) Completeness of query results. There exists a transaction txd that satis-
fies the query condition q, but not in the result set R. Now suppose there
is a missing transaction txd. In our proposed PCB-tree, all transactions
are stored in the leaf nodes after being sorted according to the numeri-
cal attribute ki, and we build the binding relationship between ki and the
indexed position i for commitment. During query processing, the full node
requires two additional boundary objects for non-membership proofs for
query objects, falling immediately to the left and the right of txd. Mean-
while, the light verifier syncs the latest block headers from the blockchain
network. The missing object txd must fall under one polynomial witness
value in the VO. Thus, our proposed scheme is secure.
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6 Performance Evaluation

This section describes the performance evaluation of our verifiable query scheme.
We deploy all experiments on a personal laptop computer with AMD R7 4800H
CPU @ 2.90 GHz, 24 GB RAM, and run a single thread to simulate the pro-
cessing of the full node and the light client. In the experiments, we retrieve the
Ethereum databases via a blockchain infrastructure, e.g., Infura3. The codes of
query processing and verification programs are written in Python and Golang
based on the B+-tree structure and the KZG commitments4.

6.1 Experiment Setting

We describe the detailed experiment configuration. The PCB-tree is built based
on the real transaction dataset from Ethereum blockchain. It contains 1,000
blocks with 96,287 transactions, and each transaction is defined as 〈timestamp,
value, from, to〉, where the timestamp is the query period, value is the amount
of transaction transferred, from and to are the addresses of sender and receiver
respectively.

Fig. 4. Setup cost of miner Fig. 5. Verification cost of light client

To evaluate the entire system’s performance, we perform four sets of exper-
iments. Firstly, we evaluate the setup cost of ADS construction for the miner.
Then, we evaluate the query processing cost of the full node and compare it with
the GCA2-tree [23] which implements a verifiable query scheme using the same
accumulator as vChain [19]. Finally, we measure the result verification cost on
the light client and the size of the VO.

6.2 Experiment Evaluation

Setup Cost. We start with evaluating the construction time of PCB-tree on
the miner-side. From Fig. 4, we can learn that the construction time increases
3 https://infura.io/.
4 https://github.com/protolambda/go-kzg.

https://infura.io/
https://github.com/protolambda/go-kzg
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Table 2. Time cost of proof

Fanout Single process Batch process (max)

Generation Verification Generation Verification

2 0.515 ms 2.451 ms 0.514 ms 2.688 ms

10 0.609 ms 2.728 ms 0.717 ms 5.548 ms

20 1.385 ms 2.813 ms 4.97 ms 13.477 ms

30 2.281 ms 3.027 ms 17.086 ms 28.986 ms

50 7.839 ms 7.109 ms 78.115 ms 96.106 ms

Fig. 6. Range query performance of full node

linearly when the number of transactions in a block grows, and as the fanout
increases, the construction overhead becomes more expensive, but this ADS
construction operation does not affect the performance of blockchain. On the
one hand, the current block generation rate of Ethereum is 15s/block, and the
average number of transactions per block does not exceed 400. Therefore, the
miner can do the construction and mining processes in parallel. On the other
hand, the experiment is run a personal computer with a single thread, which is
impractical for the miner. Moreover, our PCB-tree ensures the integrity of query
results, which is crucial for the verifiable query scheme.

Query Performance. We first test the performance of range queries from dif-
ferent dimensions as shown in Fig. 6 and compare the time cost of queries with
the scheme in [23]. Figure 6(a) illustrates the range query performance of full
nodes when the number of transactions in a block increases. The full node
query performance contains two parties: results query time and proof genera-
tion time. It can be seen that the cost of queries increases only linearly with
enlarging the transactions number. Meanwhile, its query time increases as the
fanout increases. Compared with the single operation, proofs batch aggregation
will degrade quickly the query time, where nil-PCB-tree represents that batch
processing is not used. In theoretical analysis, the complexity of the range query
is approximate O(logfn). However, it is also necessary to generate proofs for the
corresponding results during the query process, which is expensive and is the
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Table 3. Comparison of proof size

Scheme Commitment

size

VO format One VO size Public parameters Batch

operation

Merkle

Tree [9]

32 Hash 10 · 32 = 320 – N

MB-Tree [6] 32 Hash 3 · 9 · 32 = 864 – N

vChain [19] 32 hash,πv , Attr, Digest 10 · 288 = 2880 64 · 1000 = 64000 Y

PCB-Tree

(this work)

64 πpcb, Attr 3 · (64 + 64) = 384 64 · 10 = 640 Y

Note: We use a 256-bit group and BN256 elliptical curve for class groups at 128-bit security. We

assume the number of transactions is n = 1000, the size of attribute messages is 256-bit (An ‘Attr’

field consists of 2 elements) and 256-bit hashes. We assume the fanout f = 10 for PCB-tree and

MB-tree and the path height of Merkle tree is 10.

Fig. 7. Communication cost

primary cost of the full node. Furthermore, with the increase of fanout, the time
of proof generation and verification increases which account for the increment of
query time. The time cost of proof is shown in Table 2.

We repeat the above experiment while fixing the transactions number to 500
in a block and varying the range of queries. Figure 6(b) shows the changing trend
of query time when the range of query increases. As the range of queries, the
leaf proof number becomes longer, which accounts for the linear increase in our
systems. Figure 6(c) shows the query performance at different block numbers.
Each block contains 500 transactions and fixes the range of queries to 15. Since
we mainly consider the performance of a single block in this paper, we will
execute the single block query algorithm recursively for different blocks.

VO Size. Next, we measure the communication cost between the full node and
the light client. Firstly, we theoretically analyze the storage cost of commit-
ments, proof, and public parameters of various schemes, as shown in Table 3.
Our public key parameters and VO size are small compared to scheme [19]. In
our schemes, the proofs for non-leaf and leaf nodes are 〈ki, ci, πi〉 and 〈ki, πi〉
respectively. The batch proofs for non-leaf and leaf nodes are 〈m(ki, ci), r(k), πi〉
and 〈m(ki), r(k), πi〉 respectively, where m is the number of elements aggre-
gated, r(k) is the remainder of the polynomial division and the size is 32 bytes.
To alleviate communication overhead, we can only send x-axis coordinates of the
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elliptic curve points and add additional one-bit messages to record the positive
and negative. In this case, the proof size would only be 32 bytes.

Figure 7(a) illustrates the VO size with increasing numbers of transactions.
It can be seen that the VO size grows linearly with the number of transactions.
However, the order of magnitude of our VO size is KB, and the scheme [23] is
MB. Figure 7(b) and 7(c) shows the VO size with varying query range. The trans-
actions number is fixed to 500 at per block, and the fanout of Fig. 7(c) is 20. We
observe that the VO size is small when the tree fanout is small. Meanwhile, the
proof aggregation will reduce quickly the communication overhead transferred
from the full node to the light client. In contrast, without batch processing, the
VO size increases linearly at least 3×. Therefore, based on Fig. 6 and Fig. 7, we
conclude that our scheme makes a trade-off between query efficiency and VO
size.

Verification Cost. Finally, we evaluate the verification cost at the light client
with the number of transactions queried. We mainly discuss the cost of proof
verification in this experiment because it is a major overhead for the client.
Figure 5 demonstrates that the verification time grows linearly with the trans-
actions number, and the verification time of scheme [23] is a stable horizontal
line. However, we discover that the clients generally query transactions they are
interested in the recent period, and the experiment shows that when the num-
bers of transactions that are interested ≤800, the client verification efficiency of
our scheme is better than scheme [23].

7 Conclusion

In this paper, we study the problem of verifiable query processing and pro-
pose an efficient and verifiable Boolean range query scheme for light clients on
blockchain databases. Firstly, we developed a novel authenticated data structure,
polynomial commitment B+-tree (PCB-tree). Based on that, we achieve efficient
integrity and correctness verification of Boolean and range queries for blockchain
light clients. Secondly, our scheme provides a tunable trade-off between query
time and communication overhead by autonomously setting the fanout size of the
PCB-tree. Thirdly, our scheme can further support batch processing to reduce
VO size and verification time. Finally, security analysis and experiment have
substantiated that our scheme is secure and efficient.
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A Pseudo Codes of the PCB-Tree Algorithms

Algorithms 5 and 6 respectively show the query processing of the PCB-tree
introduced in Sect. 5.

Algorithm 5: Range Query w.r.t. PCB-tree
1 Function RangeQuery(curr, l, u, R, VO):

Input: Current node curr, Lower bound l, Upper bound u, Results
set R, Verification object VO

2 if curr is not leaf then
3 left = getPos(curr, l);
4 right = getPos(curr, u);
5 p(x) ← curr.p(x);
6 if left == right then
7 ωleft = CreateWitness(PK, p(x), kleft);
8 add 〈left, (kleft, vleft), ωleft〉 to VO ;
9 RangeQuery(curr.childrenleft, l, u, R, VO);

10 else
11 for i=left to right; i += 1 do
12 ωi = CreateWitness(PK, p(x), ki);
13 add 〈i, (ki, vi), ωi〉 to VO ;
14 end
15 max = currleft.max;
16 RangeQuery(curr.childrenleft, l, max, R, VO);
17 min = currright.min;
18 RangeQuery(curr.childrenright, min, u, R, VO);
19 end
20 else
21 left = getPos(curr, l);
22 while curr is not None do
23 p(x) ← curr.p(x);
24 for i ← left to curr.size() do
25 if curr.keys[i] > u then
26 break;
27 add 〈i, curr.keys[i], txi〉 to R;
28 ωi = CreateWitness(PK, p(x), ki);
29 add 〈i, (ki, vi), ωi〉 to VO ;
30 end
31 if curr.next is not None then
32 curr = curr.next;
33 left = 0;
34 end
35 end
36 end
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Algorithm 6: Position Search Algorithm
1 Function getPos(curr, key):

Input: The current node curr, The search key key
Output: The position index z

2 count ← curr.keyNum;
3 z ← -1;
4 if count �= 0 then

// binary search

5 lo ← 0;
6 hi ← entries;
7 while z < 0 do
8 mid ← (lo+hi) // 2;
9 diff ← key-curr.keys[mid];

10 if diff ≤ 0 then
11 if key-curr.keys[mid-1] > 0 then
12 z ← mid;
13 else
14 z ← -2;
15 end

16 else
17 if key-curr.keys[mid+1] ≤ 0 then
18 z ← mid+1;
19 else
20 z ← -3;
21 end

22 end
23 if z == −2 then
24 lo ← 0;
25 hi ← mid-1;

26 else if z == -3 then
27 lo ← mid+1;
28 hi ← hi;

29 end

30 else
31 z ← -1;
32 end
33 return z;
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Abstract. The impact of COVID-19, shortage of chips and external fac-
tors has made a flurry demand, increased costs and significant delays in
supply chains despite technological advancements in the supply chain
management process. The blockchain technology is constantly being
explored and attracts supply chains in adopting them to allow businesses
to scale rapidly. In our work, we identify gaps between existing blockchain
implementations and cybersecurity standards. We introduce a framework
and show how we can implement secure and trusted blockchains onto the
supply chains.

Keywords: Blockchain · Standards · Supply chains

1 Introduction

The advent of blockchains, arguably made popular by cryptocurrencies, brings
the benefit of decentralization that attract supply chains in adopting them. In
this paper, we identify directions on where and how to implement blockchains
onto the supply chains. There is a current lack of literature to provide governance
to bridge cybersecurity standards and the use of blockchain technology in supply
chains. Even though current cybersecurity standards exist, such gaps in bridg-
ing blockchains and the supply chains pose a problem in trust for widespread
adoption.

Firstly, both information (IT) and operational technology (OT) are treated as
2 separate entities in supply chains; causing friction for data in motion between
these networks. Secondly, the proliferation of blockchains has enabled smarter
and innovative ways to communicate; but with the lack of interoperability. With
rapid advances and push for digital consumption in the cloud, our work aims
to introduce an agnostic and guiding framework to bridge gaps in cybersecurity
standards, provide convergence for IT and OT systems, and for various stake-
holders in the supply process to move quicker towards the adoption of blockchain
technology in supply chains.

Currently a blockchain is implemented on top of a supply chain and has lim-
ited consideration for cybersecurity standards and difficulty to integrate OT pro-
cesses, which are usually air-gapped and separate from IT systems. As smart con-
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Zhou et al. (Eds.): ACNS 2022 Workshops, LNCS 13285, pp. 36–52, 2022.
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tracts increase in functionality and become more sophisticated, threats against
them only continue to escalate.

In this paper, we first provide a background in the current state of supply
chains and existing cybersecurity standards. Secondly, we introduce an architec-
ture which supply chains can follow in order to understand how a blockchain
can be applied on top of a supply chain through a 3-layer mapping process.
Thirdly, we provide a survey of existing threats. Lastly, we explore challenges
and directions for future work.

2 Background

2.1 Current State of Supply Chains

It is of no doubt that the impact of COVID-19, shortage of chips and external
factors has made a flurry demand, increased costs and significant delays in sup-
ply chains [16,30,32]. Despite technological advancements in the supply chain
management process, supply chains still operate a centralized model to achieve
competitive advantage and prevents quick transfer of information between dif-
ferent supply chains [56].

Fig. 1. Horizontal/vertical scaling in a typical supply chain

As supply chains modernize towards Industry 4.0 (i4.0), Operational Tech-
nology (OT) or Industrial Control Systems (ICS) plays a crucial link in manag-
ing machines in a supply chain. As shown in Fig. 1, rapid horizontal scaling in
supply chains is needed to allow integration and better optimized flow of data
and products from suppliers and vendors. This also enables fast adaptation of
information across different stakeholders in the supply chain. Thus, avoiding the
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bullwhip effect, reducing the time needed for response and increased resilience in
this process. [57] Data from actuators or sensors are typically located at the edge
which are managed or connected to PLCs (Programmable Logic Controllers) and
are controlled by SCADA (Supervisory Control and Data Acquisition) systems.
These systems require an always uptime with high availability with minimal
disruptions to business continuity.

With increasing use of Internet-of-Things (IoT) devices in the supply chain
(even for use in the military [23]), the current state of such systems are no longer
restrained or isolated and have achieved some level of connectivity or interfaced
with other systems in the network. Even though the blockchain is secure, it is
of essence that these systems not only remain connected but are also resilient
against unintended behaviour or cyber attacks to ensure that data can remain
trusted.

2.2 Cybersecurity Standards

As of writing, there are several published standards to guide and audit organi-
zations to implement systems securely. Table 1 shows a quick survey of existing
standards which serve to protect IT and/or OT systems.

Table 1. Comparison between existing cybersecurity standards

Standard Description IT OT

ISO 27001 [17] Security management by the International Organization for

Standardization. Generic requirements for establishing,

implementing, maintaining and continually improving an

information security management system within the context of

the organization

�

CCM v4 [4] Published by the Cloud Security Alliance. Composed of 197

control objectives that are structured in 17 domains covering all

key aspects of cloud technology

�

IEC 62443 [8] Published by the International Electrotechnical Commission.

Addresses cybersecurity threats and vulnerabilities in IACS

�

ETSI [10] Standards, articles and publications for the EU written by the

European Telecommunications Standards Institute in

conjunction with European Union Agency for Cybersecurity [73]

� �

NIST SP 800-53 [37] Catalog of security and privacy controls for information systems

and organizations published by the National Institute of

Standards and Technology to protect organizational operations

and assets, individuals, other organizations, and the countries

from a diverse set of threats and risks, including hostile attacks,

human errors, natural disasters, structural failures, foreign

intelligence entities, and privacy risks

� �

The above shows a non-exhaustive list of standards for supply chains to
follow and may not be sufficient as they do have other standards not only to
increase consumers confidence, but to abide to legislatory concerns. In recent
literature, evolving blockchain standards such as the ISO/TC 307 or the IEEE
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SA P241x series have been published or are still undergoing research and have
yet to consider OT systems as part of the ecosystem [18,61].

3 Related Work

The most current contributions in the literature are comprehensive and cover
both the blockchain technology and the supply chain management in good detail
[2,53,78]. Deployment of blockchains in supply chains promotes transparency,
traceability and scalability. However, implementations such as [15,33] rely on a
permissioned blockchain model and do not reveal an open implementation or
model how to build a trusted blockchain on top of supply chains. As highlighted
by [53], the most crucial challenge to be addressed is to authenticate on-chain
data with its physical counterpart, which can be rapidly adopted through stan-
dardization. In [78], it describes each of the individual blockchain as frameworks
to address concerns in specific supply chains, citing security concerns in consen-
sus and popular usage of IoT devices.

They also lack an emphasis to secure the supply chain management process
with the use of cybersecurity standards, given that key OT processes in the
supply chain still operate in an air-gapped or isolated environment. While the
state-of-the-art does indeed share current and existing blockchain implementa-
tions for different supply chains, they may adopt and implement blockchains
which are closed-source and not follow standardization.

4 Framework

4.1 Overview

We introduce SuppliedTrust, an agnostic framework for supply chains which we
identify issues, risk and problems by applying a 3-layer mapping process as
shown in Fig. 2. The 3 layers are: Governance, Supply Chain and the Blockchain
layers. Firstly, the Governance layer, consists of merging IT/OT operations by
identifying standards relevant to their specific domains in the supply chain. Sec-
ondly, the Supply Chain layer, consists of the various stakeholders which form
the individual or part of the consortium of the blockchain network. Lastly, the
Blockchain layer, consists of the specific domains of the blockchain technologies
that is to be applied on top of the Supply Chain layer.

4.2 Governance Layer

The Governance layer consists of 2 domains, split into information technology
and operational technology.
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Fig. 2. SuppliedTrust architecture

Standards. By using established standards such as the ISO 27001 and ISA
62443, they provide guiding principles for a secure implementation of IT and
OT infrastructure respectively. However, these are not sufficient as we move
towards a connected world. Other existing standards such as the NIST and the
Cloud Controls Matrix (CCM) currently do not consider an implementation of
a blockchain on top of this secured process. Despite the release of v4, CCM
currently considers the Shared Security Responsibility Model (SSRM) as a par-
tial gap for ISO 27001 and only considers a permissioned blockchain, Hyperledger
Fabric, for deployment [2,4]. As such, we presently identified it as a gap to enable
secure and trusted exchange of information between the blockchain and the sup-
ply chain. As shown in Fig. 3, transactional data from Supply Chain X can trans-
verse within its trusted environment (TxSCx

), but there is a concern on how data
should be handled within its OT network (TxOT (SCx)), when it leaves the supply
chain into the cloud (TxC(SCx)) for commits into the blockchain (TxBC(SCx)),
and eventual consumption by Supply Chain Y (RxC(SCx) and RxSCx

).

Cloud-Based Services. As cloud-based services become more popular than
ever, BaaS (Blockchain-as-a-Service) are presently the easiest solutions to inte-
grate blockchains into supply chains. Thus, supply chains can leverage on cloud
services to run their blockchain nodes and feed data into the network.
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Fig. 3. Simplified OT/IT integration on a supply chain with a blockchain.
TxOT (SCx) : OT data from Supply Chain X

TxIT (SCx) : IT data from Supply Chain X

TxSCx : Transmitted transactional data from Supply Chain X

TxC(SCx) : Transmitted transactional data from Supply Chain X transversing into the cloud

TxBC(SCx) : Transmitted transactional data from Supply Chain X committed into the blockchain

RxC(SCx) : Received transactional data from Supply Chain X retrieved from the cloud

RxSCx : Received transactional data from Supply Chain X

4.3 Supply Chain Layer

The Supply Chain layer consists of the various stakeholders, their roles and
responsibilities in the blockchain.

Stakeholders. In a typical supply chain, various stakeholders may include sup-
pliers, sub-suppliers, vendors, its customers (via sales) and last but not least,
the manufacturer themselves. Compared to centralized cryptocurrency exchange
where the Know Your Customer (KYC) process is mandatory [39], every individ-
ual stakeholder in a supply chain are already known and well-defined. However,
their interests within the supply chain management may differ since each of the
individual parties may wish to gain benefits (e.g. oracle information, monetary
or rewards) from joining the blockchain. An example is given in Table 2.
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Table 2. Stakeholders and their motivations leveraging on blockchain technology.

Stakeholders Roles & Responsibilities Motivation

AM AP DP IP LL SC SU TR TO

Suppliers/Sub-Suppliers procurement & provision of raw and unfinished
materials

� � � � � � � � �

Vendors direct purchaser of finished & unfinished products,
provision of goods & services

� � � � � � � � �

Manufacturers supply & meet demands of consumers, provision of
finished goods

� � � � � � � � �

Marketers bridges gap between trends and demand from con-
sumers

� � �

Distributors purchaser of finished products and to meet demand
& support consumers

� � � � � � �

Sales identifying & educating prospective consumers
while supporting existing consumers

� �

Consumers participate to obtain benefits (e.g. data sharing)
while ensuring check & balance in the network

� � � �

AM Asset Management - automated tracking and management of physical/digital assets
AP Asset Protection - secure physical/digital assets
DP Digital Payments - acceptance of digital currencies
IP Intellectual Property - secure and traceable copyrighted or patented assets
LL Legal - automated processing of rules and regulations
SC Smart Contracts - automated execution of code between parties
SU Sustainability - automated collection/reporting of environmental and/or financial functions
TR Tracking - traceability of physical/digital assets
TO Tokenization - non-fungible tokens, representation of physical/digital assets

4.4 Blockchain Layer

The Blockchain layer consists of 3 domains, split into applications, contracts and
consensus (Fig. 2) with a dotted line indicating horizontal data flow traversing
different stakeholders (regardless of direction) in the Supply Chain layer.

Applications. Decentralized applications (Dapps) or Web3, provides a front-
end interface for users to interact with the blockchain.

As shown in Fig. 4, these frontend applications provide its users (or any of
its stakeholders in the supply chain) an always uptime, decentralized control
and benefits, thanks to JavaScript Object Notation Remote Procedure Calls
(JSON-RPC) by a suitable provider, which eliminates the need for backend ser-
vices. Developers can take advantage of such application programming interfaces
(APIs) to interact directly with the blockchain. However, blockchains are inca-
pable of storing large amounts of digital or physical information on-chain as this
requires the use of an off-chain storage, notably decentralized storages.

Contracts. Smart contracts within the blockchain ecosystem plays a significant
and important role in enabling fully automated supply chains. Not only rules are
well-defined between various parties listed in the smart contract, but they also
define the conditions required to provide information and/or monetary transfer
[80]. This greatly speeds up the process of information transfer without the need
of an intermediary.
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Fig. 4. A Web3 implementation in Ethereum

More recently so, smart contracts have been made popular via their repre-
sentation of digital assets via the use of non-fungible tokens (NFTs) which could
provide a possible use case for supply chains [64]. Widely perceived to be a dig-
ital representation of an artwork, NFTs have shaken the world tagged with a
perceived value, then auctioned or sold onto a marketplace such as OpenSea or
Rarible [6,35,79]. However, NFTs themselves should not simply be tagged with
a value, as it name implies ‘non-fungible’, which then can be a representation of
an asset stored digitally in the virtual space. According to the ERC-721 specifi-
cations, smart contracts written in Solidity for Ethereum contains optional fields
for its metadata extension.

As highlighted in the Applications domain (see Fig. 2, under Blockchain
layer), any asset that is pointing to an off-chain resource may prove troublesome
if tokenURI (line 15 in Listing 1) ceases to exist or a collision if another asset
(e.g. non-uniqueness or identical) does indeed exist. To combat this, the use of
decentralized domains or storages is a natural fit. However, current decentralized
file storage solutions are partially suitable for use with supply chains.

As depicted in Table 3, supply chains may not be able to adopt some of the
decentralized file storages for their usage due to lack of confidentiality, privacy
or file persistence [44]. A commercial solution, CargoX, uses Polygon and the
InterPlanetary File System (IPFS) as their part of their process [38]. However,
recent research and tracking in NFTs prior to their indicated release does show
that privacy in IPFS may not be guaranteed and may result being compromised
[21,47].
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Listing 1. NFT Metadata Extensions [83]
1 /// @title ERC-721 Non-Fungible Token Standard, optional metadata extension

2 /// @dev See https://eips.ethereum.org/EIPS/eip-721

3 /// Note: the ERC-165 identifier for this interface is 0x5b5e139f.

4 interface ERC721Metadata /* is ERC721 */ {

5 /// @notice A descriptive name for a collection of NFTs in this contract

6 function name() external view returns (string _name);

7

8 /// @notice An abbreviated name for NFTs in this contract

9 function symbol() external view returns (string _symbol);

10

11 /// @notice A distinct Uniform Resource Identifier (URI) for a given asset.

12 /// @dev Throws if ‘_tokenId‘ is not a valid NFT. URIs are defined in RFC

13 /// 3986. The URI may point to a JSON file that conforms to the "ERC721

14 /// Metadata JSON Schema".

15 function tokenURI(uint256 _tokenId) external view returns (string);

16 }

Table 3. Decentralized file storage solutions.

System Features File persistence Data

retention

Contracts

BitTorrent [1] Efficient file distribution achieving

pareto efficiency

Not guaranteed

IPFS [41] Decentralized web storage by

providing content addressing and

pinning

Not guaranteed

Swarm [31] Incentive-based decentralized storage

platform

Not guaranteed

Safe [62] Autonomous private-guaranteed

social network by providing unused

computing resources

Public guaranteed,

private deletable

�

Storj [14] Decentralized private-guaranteed

cloud storage

Determined lifetime,

deletable

�

Arweave [52] Archival decentralized storage Blockweave � � [11]

Siacoin [28] Decentralized storage platform Private guaranteed � � [5]

Consensus. Consensus are mechanisms which allow a blockchain to reach a
certain finality to a common decision before committing transactions onto the
block. This is crucial as once they are committed onto the block, they cannot
be reversed once they are written onto the chain. For different parties to inter-
operate, the choice of a blockchain will determine different set of infrastructure
requirements. Some examples of consensus include:

1. Proof-of-Work (PoW). Nakamoto introduced PoW as network timestamps
transactions by hashing them into an ongoing chain of hashes, forming an
immutable ledger [68]. Parties first gossip in the network whenever a new
transaction is performed. Used by Bitcoin and Ethereum.
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2. Proof-of-Stake (PoS). PoS was first introduced by Peercoin (PPCoin in
August 2012) with the term ‘coin age’ [59]. A timestamp field is added into
each transaction to determine the age of the currency held by the user. As
such, each transaction is tracked by how long has the currency be held; the
longer the age, the larger the influence a user has on the transaction. Used
by Algorand and Cardano.

3. Practical Byzantine Fault Tolerance (PBFT). Termed by Castro and Liskov,

PBFT works by assuming no more than
n− 1

3
users are faulty [43]. Used by

Hyperledger Fabric and Tendermint.

As there are many evolving consensus algorithms (and its variants) which a
supply chain may decide to commit finality of their transactions, no specific con-
sensus is an one-size-fit-all and must be specifically tailored for different supply
chains. Besides, interoperability is also a concern when communicating between
different blockchains in supply chains. Despite current progress (no particular
order) in Chainlink, Cosmos and Polkadot, these blockchains provide cross-chain
bridges or a relayer to attempt to communicate with other blockchains, but
require information to be off-loaded, then human or oracle-validated before it
can be transferred to the destination chain [3,13,24].

4.5 Use Cases

Our proposed framework can be applied in supply chains where IT/OT inte-
gration is yet to be achieved or partially achieved, as formatted data needs
to be secured and fed for other stakeholders in the blockchain. An example
would be the validation of claims or features in the manufacture of products
for eventual consumption by consumers. Following our proposed framework (via
the use of cybersecurity standards and understanding the blockchain layer) not
only ensures a secure implementation in both the IT/OT environment, but also
maintains the trust needed between stakeholders across the blockchain.

5 Threats

An architecture would not be complete without considering the threats and risks
should a blockchain be deployed on top of a supply chain. In this section, we
perform a study of existing vulnerabilities and attacks which will need to run a
trusted blockchain on a supply chain.

5.1 Web3 Vulnerabilities

Dapps or Web3 are no different from its current iteration of its Web2 counter-
part. It continues to utilize the existing networking stack and protocols (e.g.
DNS, TCP/IP, UDP) and suffers from the usual web vulnerabilities which were
present since the 1st generation of the web [76]. According to the OWASP Top
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10:2021, the most notable risks from web applications are: 1) broken access
controls, 2) cryptographic failures, 3) injection, 4) insecure design, 5) security
misconfiguration, 6) vulnerable and outdated components, 7) identification and
authentication failures, 8) software and data integrity failures, 9) security logging
and monitoring failures and 10) server-side request forgery [22].

This can be clearly seen from the given Web3 implementation given in Fig. 4,
where the frontend, provider and APIs provides such avenues of attacks to occur.
Although the use of Ethereum Name Service (ENS) or Unstoppable Domains
can alleviate centralization issues as per compared to DNS, it does not solve
the problem of fraudulent or malicious links (e.g. domain or typo-squatting) and
introduces new problems introduced by smart contracts [34,84].

5.2 Smart Contract Attacks

Poorly written code in smart contracts can cause bugs or attackers to sim-
ply exploit or bypass functions. Based on the Common Weakness Enumeration
(CWE) database, the Smart Contract Weakness Classification (SWC) registry
has recorded a total of 136 vulnerabilities affecting Ethereum smart contracts,
with reentrancy as the most critical [29,69].

The use of automated checking of smart contracts tools ease developers from
their workload and prevent wastage of time to determine detection of false pos-
itives. Tools such as MythX [20] (a commercial solution spun off from Mythril
[12]) and Slither [51], when used in combination, detected a total of 42/115 (37%)
vulnerabilities and provides the best trade-off between accuracy and execution
costs [49]. Besides, not all tools are proven to be easy to configure and may be
complex to use [65]. According to [72], while such vulnerable contracts may not
be exploitable in practice, it empathizes the need for best coding practices and
manual auditing of source code [26,46,82].

Even though such attacks is confined mainly by Ethereum-based smart con-
tracts, large-scale exploits such as The Decentralized Autonomous Organization
(TheDAO) attack [81] and the Parity Wallet hack [71] were key examples of reen-
trancy and access control issues has been well-researched and documented [60].

NFT Legitimacy. NFT legitimacy can be backed by supply chains based
on their branding and relationship perceived by consumers. They can present
themselves as authorities and arbiters of legitimacy [40]. However, NFTs merely
presents a proof of ownership on their respective blockchain and lack standards
to ensure that the correctness of the JSON metadata stored off-chain (as shown
in Listing 1) [19].

5.3 Consensus Attacks

Supply chains wishing to integrate a blockchain into their process must under-
stand the risks of having insufficient parties and/or having too much influence
or control over the network. Some well-explored consensus attacks are shown in
Table 4.
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Table 4. Common consensus attacks on PoW, PoS and PBFT protocols.

Attack Method PoW PoS PBFT

Selfish mining [50,70,75] Withholds solved block and creates a fork �
Time desynchronization [7] Slowing down or speeding up perceived network time �
33% [42,75] Hashing power �
Eclipse [54,67] Partitions network, isolates and usurp control of a node � �
Long range [45] Forking chain from a specific block � �
Double spending [55] Creation of two or more conflicting blocks with same height � �
51% [45,75] Hashing power � � �
DDoS [74] Flooding network with extreme traffic � � �
Sybil [48,55] Corrupt network by forming fake identities � � �

6 Challenges

Despite growing threats, several challenges also exist in overcoming barriers for
the adoption of blockchains in businesses, specifically discovering use cases for
supply chains.

6.1 Layer-1 Solutioning

Shared Security Responsibility Model. As explained in Sect. 4.2, BaaS
poses a significant problem if supply chains select a single cloud-based provider,
which defeats the very property of blockchains; decentralization. On top of that,
SSRMs differ between different cloud-based providers and risk profiling must
be carried out to determine if supply chains can accept failures when utilizing
blockchains in the cloud [27,58,63].

Smart Contracts. As depicted in Fig. 4, smart contracts are a key-enabler
in automating processes within a blockchain. However, it requires a definite
solution and is difficult to code in accordance to current regulatory obligations,
governance or standards that needs interpretability by humans. Besides, other
blockchains such as Hyperledger Fabric or Solana utilize different programming
languages, namely Chaincode and Rust respectively, which introduces different
attack vectors [9,36].

6.2 Layer-2 Solutioning

Layer-2 provides scalability for blockchains via rollups and will greatly allow the
horizontal scaling between stakeholders in the supply chain [25,77]. The concept
of rollups is to execute resource-intensive transactions off-chain, then submit
transactional data to Layer-1 for confirmations by agreements. As minimum
data is required to be computed on-chain, rollups are seen as an effective way
to scale blockchains.

They are classified into three solutions; 1) optimistic rollups, 2) ZK-rollups
(Zero-Knowledge), and 3) validium. The difference among these variants is the
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methodology and format of security proofs posted to Layer-1 for processing.
Similar to other scaling solutions, rollups suffers from inherent several short-
comings. For instance, the waiting period in optimistic rollups causes delays due
to the design of fraud proof challenges. The complexity of proof generation and
verification may result in slow adoption of ZK-rollups. Validium seems to be
promising by combining the first two solutions. However, generating a proof still
requires high availability of off-chain data at any given time.

6.3 IT/OT Integration

While this paper considers both IT and OT integration of the supply chain,
building a blockchain on top of these existing systems pose a huge challenge
for legacy or traditional industries which may not be technologically competent
or ready to migrate to a fully digitalized process [66]. Not to mention, there
is a need to consider that the software lifecycle for OT is significantly delayed
and differ from their IT counterparts. Different countries may adopt different
standards to protect their assets and resources due to legislatory concerns.

7 Conclusion

We identified gaps in cybersecurity standards to implement trusted blockchains
in supply chains. By defining clear and distinct roles and responsibilities for each
of the stakeholders in the supply chain, they partake an endeavour on maintain-
ing trust between blockchains and yet remain accountable. Supply chains can
quickly implement a blockchain to ensure a secure and trusted environment by
identifying potential threats and adopting SuppliedTrust. These will form the
basis for shaping blockchains to be much more secure, should ever an implemen-
tation be integrated with a supply chain.
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Abstract. Recent works have shown that deep learning models are
highly vulnerable to adversarial examples, limiting the application of
deep learning in security-critical systems. This paper aims to interpret
the vulnerability of deep learning models to adversarial examples. We
propose adversarial distillation to illustrate that adversarial examples
are generalizable data features. Deep learning models are vulnerable to
adversarial examples because models do not learn this data distribu-
tion. More specifically, we obtain adversarial features by introducing a
generation and extraction mechanism. The generation mechanism gen-
erates adversarial examples, which mislead the source model trained on
the original clean samples. The extraction term removes the original
features and selects valid and generalizable adversarial features. Valu-
able adversarial features guide the model to learn the data distribution
of adversarial examples and realize the model’s generalization on the
adversarial dataset. Extensive experimental evaluations have proved the
excellent generalization performance of the adversarial distillation model.
Compared with the normally trained model, the mAP has increased by
2.17% on their respective test sets, while the mAP on the opponent’s test
set is very low. The experimental results further prove that adversarial
examples are also generalizable data features, which obeys a different
data distribution from the clean data. Understanding why deep learning
models are not robust to adversarial samples is helpful to attain inter-
pretable and robust deep learning models. Robust models are essential
for users to trust models and interact with the models, which can pro-
mote the application of deep learning in security-sensitive systems.
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Fig. 1. A conceptual diagram of our framework. The paper adopts the MTOG attack
to generate adversarial examples to make an object detector fabricate many bounding
boxes. Adversarial features are extracted from these bounding boxes to construct a
new dataset, called the adversarial dataset. By training an object detection model on
the adversarial dataset, we obtain an adversarial distillation model.

1 Introduction

Recent works have shown that deep learning models are vulnerable to adver-
sarial examples [1,27], which imperceptibly perturbed natural inputs to induce
DNN models to make erroneous predictions. Previous work tried to explain this
phenomenon from multiple perspectives, [2,24] interpret the existence of adver-
sarial examples from the standpoint of theoretical models, and [8,18,25] focus on
the demonstration based on high-dimensions quantities. However, these theories
often fail to capture the behavior we observe in practice fully. More broadly, pre-
vious work in the field tends to treat adversarial examples as aberrations caused
by the high dimensional nature of the input space or statistical fluctuations in
the training data [8,10,27]. [13] propose a new perspective on adversarial exam-
ples. They demonstrate that adversarial examples are not bugs but features in
image classification. Still, there are no explanations for adversarial examples in
more complex computer vision tasks, such as object detection.

In this paper, we commit to interpreting the vulnerability of deep learning
object detection models to adversarial examples, inspired by [13]. We illustrate
that adversarial examples are classification features and localization features.
Object detectors are vulnerable to adversarial examples because they do not
learn the data distribution of adversarial examples. Object detectors tend to
exploit any available features to localize the position of objects and classify
them to a specific class, even those features that seem inexplicable to humans.
We demonstrate that object detection models can learn valuable features on
adversarial examples and be generalized to the whole data distribution, just like
benign examples.

To corroborate our hypothesis, we propose adversarial distillation. Given an
object detection model trained on the benign training set, we improve the TOG
attack [6] to generate adversarial examples and design an extracting adversarial
features module to construct an adversarial dataset. The inputs of this dataset
are nearly identical to the originals, but all appear incorrectly localized and
labeled. They are associated with their new ground truth (not the originals)
only through small adversarial perturbations (and hence utilize only adversarial
features). We train the adversarial distilled model on this adversarial dataset
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and evaluate the performance of this model both on the adversarial test set
and the original test set. Experimental results have shown that the adversarial
distilled model yields well generalization despite the lack of predictive human-
visible information, which indicates that adversarial examples are features sat-
isfying a specific data distribution but different from the distribution of benign
data. We consider one class object detection dataset because this type of dataset
has a simple category, and the model trained on the dataset can better focus
on localization features. We further choose the SAR ship detection dataset [29]
as the original dataset and implement adversarial distillation on this dataset. In
summary, we make the following contributions:

• We train an object detection model on the SAR ship dataset, which obtains
a great mAP. Simultaneously, We craft adversarial examples to attack this
model and effectively decrease the mAP.

• We establish experiments to illustrate that adversarial examples are not vul-
nerabilities but well-generalizable features satisfying a specific data distribu-
tion.

The rest of this paper is organized as follows. In Sect. 2, we briefly review the
related backgrounds. We present the detail of the framework in Sect. 3. Section 4
reports all experimental results. Finally, we summarize the conclusion in Sect. 5.

2 Related Works

2.1 Interpretable Adversarial Examples

[13] propose a novel explanation for the existence of adversarial examples. The
standard training method can learn both useful robust and non-robust features
in their work. The non-robust features are beneficial to generalization but very
sensitive, which makes classifiers vulnerable to adversarial examples. The sen-
sitivity of non-robust features should be understood as their small changes will
significantly change the model’s predictions. The useful, robust feature is the
common feature with certain interpretability, such as cat ears and cat tail in
cat classification. When performing formal training based on robust features
and non-robust features, respectively, classifiers can obtain good accuracy on
the standard test set. Classifiers with different structures trained on different
datasets of the same distribution may learn similar non-robust features, which
makes the adversarial examples transferable. [13] validates the hypothesis by
extracting the image classification dataset into roust features and non-robust
features and use the Gaussian distribution as an example.

2.2 Object Detection

Object detection is one of significant computer vision tasks, which detects the
class and location of objects in digital images [9,15,21]. In object detection,
we take YOLOv3 [22] as an example. Given an input image x, the model first
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generates a great number of S candidate bounding boxes B̂(x) = {ô1, ..., ôS}
where ôi = (b̂x

i , b̂y
i , b̂w

i , b̂h
i , Ĉi, p̂i) represents a candidate centered at coordinates

(b̂x
i , b̂y

i ), and (b̂w
i , b̂h

i ) is width and height of the candidate. The objectness score
Ĉi ∈ [0, 1] denotes whether the candidate contains an object, and a K-class
probability vector p̂i = (p̂1i , p̂

2
i , ..., p̂

K
i ) estimates the class of the corresponding

candidate. The detection process usually divides the input x into grids with
different scales, and each grid cell generates plenty of candidate bounding boxes
based on the anchors and localizes the object centered at the cell. The candidates
with low prediction confidence are excluded via applying confidence threshold,
and those with high overlapping are removed by non-maximum suppression. The
remaining candidates constitute the final detection result Ô(x).

For training an object detector, each object oi in a training sample (x,O) is
allocated to one of the S bounding boxes according to the center coordinates and
the amount of overlapping with the anchors. O = {oi|1i = 1, 1 ≤ i ≤ S} is a set of
objects in ground truth where 1i = 1 if the i-th bounding box is responsible for an
object and 0 otherwise, oi = (bx

i , by
i , bw

i , bh
i , pi) with pi = (p1i , p

2
i , ..., p

K
i ) and pc

i =
1 if the class of oi is c. Training a DNN model often begins with initializing the
parameters of the model randomly and updating parameters slowly via taking
the derivative of the loss function L concerning parameters θ on a mini-batch of
input-output pairs {(x,O)} with the following equation until convergence:

θt+1 = θt − α∇θt
L(x,O; θ), (1)

where α is the learning rate. The loss function of a deep object detection network
is divided into three parts, each part corresponds to describing the existence,
locality, and category of a detected object. The objectness score Ĉi can be learned
by minimizing the binary cross-entropy lBCE :

Lobj(x,O; θ) =
i=1∑

S

[1ilBCE(1, Ĉi)]

Lnoobj(x,O; θ) =
i=1∑

S

[1 − 1ilBCE(0, Ĉi)],

(2)

The spatial locality is learned by minimizing the squared error lSE :

Lloc(x,O; θ) =
i=1∑

S

1i[lSE(xi, x̂i) + lSE(yi, ŷi)

+ lSE(
√

Wi,

√
Ŵi) + lSE(

√
Wi,

√
Ŵi)]

(3)

The K-class probabilities p̂i is optimized by minimizing the binary cross-
entropy:

Lprob(x,O; θ) =
i=1∑

S

1i

∑

c∈classes

lBCE(pc
i , p̂

c
i ) (4)
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Therefore, the deep object detection network can be optimized by the linear
combination of the above loss functions:

L(x,O; θ) = Lobj(x,O; θ) + λnoobjLnoobj(x,O; θ)
+ λlocLloc(x,O; θ) + Lprob(x,O; θ),

(5)

Synthetic Aperture Radar (SAR) [12,14] is a high-resolution imaging radar
that can generate high-resolution two-dimensional images of range and azimuth
via reflecting the emitted electromagnetic wave onto the target. For SAR can
provide high-resolution images in all weather conditions, SAR images have been
widely used for complex object detection and recognition tasks, such as ship
object detection. With the widespread application of SAR in ship detection [28],
some large-scale datasets have emerged, such as SSDD [14], OpenSARShip [12]
and SAR ship dataset [29].

2.3 Adversarial Examples

Adversarial examples are first found in image classification task [23], an adver-
sarial example x′ is crafted by adding imperceptible perturbations to a clean
input x, making the target model output incorrect predictions [4,10,16,17,19].
The process of generating an adversarial example can be defined as

min ‖ x′ − x ‖p s.t.Ô(x′) �= Ô(x), (6)

where p represents the distance metric, which can be the L0, L2 and L∞ norm.
Adversarial examples also exist in object detection task [3,26,30]. TOG

attack is a family of adversarial attacks on object detection, including object-
vanishing attack, object-fabrication attack, object-mislabeling attack and untar-
geted attack [6,7]. We take the untargeted attack as an example to introduce
the TOG attack. TOG attack fixes the model parameters and initializes with a
clean image (i.e., x′

0 = x), iteratively updating the adversarial example with the
following equation:

L(x′
t, Ô(x); θ) = Lobj(x′

t, Ô(x); θ) + Lnoobj(x′
t, Ô(x); θ)

+ Lloc(x′
t, Ô(x); θ) + Lprob(x′

t, Ô(x); θ),
(7)

x′
t+1 = Πx,ε[x′

t + αΓ (∇x′
t
L(x′

t, Ô(x); θ))] (8)

where Πx,ε[·] is the projection onto a hypersphere with a radius ε centered at x
in Lp norm, Γ is a sign function.

2.4 Distillation

[11] initially propose a distillation method to reduce a large model (the teacher)
to a smaller distillation model (the student), thereby improving accuracy on the
test set and speeding up the rate of the student predicting hard labels (ground
truth). At a high level, the working principle of distillation can be summarized
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into three steps: one is to train the teacher on the training set in a standard way.
The second is to use the teacher to label each instance on the training set with
soft labels (the output vector of the teacher). For example, the hard label on an
image of a dog indicates that it is classified as a dog. At the same time, the soft
label describes that it is a dog with 76% probability, a cat with 22% probability,
and a cow with 0.2% probability. The third is to train the distillation model on
the soft labels from the teacher instead of the hard labels from the training set.
Distillation is exploited in multiple domains [5,20].

3 Methodology

3.1 Definitions

We consider object detection with one class (K = 1 in Sect. 2.2), where input-
output pairs (x,O) ∈ X ×{(bx

i , by
i , bw

i , bh
i , pc

i )} are sampled from a data distribu-
tion D. Following the definition of [13], we define a function f to represents an
object detector. Additionally, we define fl as a localization function and fc as a
classification function.

• γ−valuable localization features: For an input x, we call a localization feature
fl γ−valuable (γ > 0) if it is correlated with the ground-truth bounding boxes
in expectation, that is if

E(x,O)∼D[B(x) · fl(x)] ≥ γ, (9)

where B(x) = {(bx
i , by

i , bw
i , bh

i )}.
• ρ−valuable classification features: For an input x, we call a classification

feature fc ρ−valuable (ρ > 0) if it is correlated with the ground-truth label
in expectation, that is if

E(x,O)∼D[c · fc(x)] ≥ ρ. (10)

• Valuable adversarial features: When the input is x′, we define γ−valuable
adversarial localization feature and ρ−valuable adversarial classification fea-
ture satisfying Eq. 9 and Eq. 10, respectively.

3.2 Framework

In this work, we elaborate on adversarial distillation for interpreting that adver-
sarial examples are the features satisfying a specific data distribution. A con-
ceptual description of these experiments can be found in Fig. 1. We construct
an adversarial dataset where the input-output association is based on valuable
adversarial features. We show that this dataset suffices to train an object detec-
tor with good performance on the adversarial test set. Still, poor performance
on the original test set results from the gap between original and adversarial
distribution.
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Fig. 2. An example in Sect. 3.3. A is the adversarial example generated by MTOG;
B, C and D are the intermediate images selected after Score, K-means and IOGT,
respectively; E is the final result selected after NMS.

3.3 Extracting Adversarial Features

We construct a dataset where the input-output association is based on valuable
adversarial features, including localization and classification. To accomplish this,
we modify each input-output pair (x,O) as follows. We integrate momentum into
TOG attack [6] (MTOG) to generate the corresponding adversarial examples on
original datasets so that the original object detector f can detect many objects
which do not exist in human eyes. We then extract adversarial features via
selecting these forged bounding boxes according to the following steps.

Given an adversarial example x′, (1) Score: we discard bounding boxes
with scores below the threshold to ensure adversarial classification features
ρ−valuable; (2) K-means: we analyze the range of original ground-truth bound-
ing boxes by k-means clustering algorithm and remove the bounding boxes that
exceed this range to a certain threshold; (3) IOGT: we design the IOGT method
to discard those bounding boxes intersecting with the original ground truth,
which ensures that the selected bounding boxes do not include original localiza-
tion features. IOGT can be formulated as

IOGT (B) =
B ∩ GT

GT
, (11)

where GT represents all original ground-truth bounding boxes {(bx
i , by

i , bw
i , bh

i )},
B represents the candidate bounding box; (4) NMS: we exploit non-maximum
suppression to ensure that the forged bounding boxes do not intersect, mak-
ing the generated localization features not duplicated. The remaining bounding
boxes are aligned as O′ to form the new input-output pair (x′, O′). Finally,
the resulting input-output pairs make up the new dataset, named adversarial
dataset. The whole process is described in Algorithm 1, and Fig. 2 shows an
example of processing by the extracting adversarial feature module.

3.4 Adversarial Distillation

We elaborate on adversarial distillation for interpreting that adversarial exam-
ples are the features satisfying a specific data distribution. A conceptual descrip-
tion of these experiments can be found in Fig. 1. We first train an object detection
model (the teacher) on the original dataset. Then, we use the MTOG attack to
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Algorithm 1 Extracting adversarial features
Input: An object detector f ; an adversarial example x′ and ground truth O; Threshold
for score, k-means, IOGT and NMS
Output: Adversarial ground truth O′

1: Input x′ to f and obtain B̂(x′) = {ô1, ..., ôn}, ôi = (b̂xi , b̂
y
i , b̂

w
i , b̂

h
i , Ĉi, p̂i);

2: temp1 = temp2 = [ ]
3: for ôi in B̂(x′) do
4: if p̂i > score then
5: continue
6: end if
7: if (b̂wi , b̂

h
i ) not in k-means then

8: continue
9: end if

10: if IOGT(b̂xi , b̂
y
i , b̂

w
i , b̂

h
i ) �= 0 then

11: continue
12: Add ôi into temp1
13: end if
14: end for
15: temp2 = NMS(temp1)
16: O′ = temp2
17: return O′

generate adversarial examples against the teacher and obtain the correspond-
ing outputs of the teacher. We next use Sect. 3.3 to craft adversarial ground
truth, thus making the adversarial dataset. Finally, we train the distilled model
(the student) on the adversarial training set from the teacher rather than on
the original training set. We find that the distilled model performs well on the
adversarial test set, which indicates that adversarial examples are features sat-
isfying a specific data distribution. Meanwhile, the student performs poorly on
the original test set, which indicates that the gap between the adversarial and
original data distribution results in poor generalization.

4 Experiments

4.1 Setup

Datasets. We select SAR ship detection dataset consisting 43,819 ship chips [29].
We randomly allocate the training set, validation set, and test set according to
the ratio of 7: 2: 1. Meanwhile, we do the same operation on the corresponding
adversarial dataset.

MTOG Attack. The maximum perturbation ε is set to 8 with pixel value in
[0,255]. The number of iterations T is 20, the step size is 2 and the decay factor μ
is 1.0. We set the coefficient λ = 0.2 empirically in order to reduce the proportion
of Lnoobj in L.



Interpreting Vulnerability of Models via Adversarial Distillation 61

Fig. 3. Some random samples from the original SAR Ship dataset and the correspond-
ing adversarial examples.

Extracting Adversarial Features. We set the threshold of the classification score
of each candidate bounding box in the output of the model to 0.5 in order to
ensure adversarial classification features ρ−valuable. We set the range of k-means
clustering to [5, 104]. And the bounding box threshold of both IOU in NMS and
IOGT is set to 0 to remove the intersecting bounding boxes.

Adversarial Distillation. We train three Yolov3-Mobilenet1 models on the SAR
ship detection dataset and its corresponding adversarial dataset, respectively.
For each model, we divide the training process into two steps. At the first step,
Adam optimization is used with a learning rate of 0.001 and a batch size of 16,
and training epochs are 30. In the second step, the learning rate is 0.0001, the
batch size is 16, and the training epochs are 20. After models are trained, we test
these models on the original test set and adversarial test set. We evaluate the
performance of models by mean Average Precision (mAP), and the threshold of
IOU is set to 0.5. Our experiments are conducted on an Intel(R) Xeon(R) CPU
E5-2620 v4 @ 2.10 GHz CPU, a GPU of NVIDIA GeForce RTX 2080 Ti with
11 GB, and 32GB of memory.

4.2 Generating Adversarial Examples

Figure 3 shows test SAR images (left) with the detection results made by
YOLOv3-Mobilenet on benign (the “Benign GT” column), the corresponding
adversarial examples (the “MTOG” column) generated by MTOG attacks with
the detection results made by YOLOv3-Mobilenet (the “Adv Result” column),
and the adversarial example selected by Sect. 3.3 (the “SELECT” column).

1 https://github.com/Adamdad/keras-YOLOv3-mobilenet.

https://github.com/Adamdad/keras-YOLOv3-mobilenet
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Table 1. The average number of bounding boxes in extracting adversarial features
module. “Ori” and “Adv” represent the average bounding boxes of original images and
adversarial examples, respectively. “Score”, “K-means”, “IOGT”, and “NMS” are defined
in Sect. 3.3.

Training Validation Test

Ori 1.363 1.347 1.352
Adv 13.393 13.359 13.520
Adv+Score 12.436 12.580 12.402
Adv+Score+K-means 10.840 10.954 10.789
Adv+Score+K-means+IOGT 10.343 10.452 10.289
Adv+Score+K-means+IOGT+NMS 8.528 8.557 8.490

Table 2. The mAP (%) of original object detector (Ori-model) and adversarial object
detector (Adv-model) on the original test set (Ori-test) and adversarial test set (Adv-
test), respectively.

Ori-test Adv-test Adv-GT-test

Ori-model 86.34 83.45 0.12
Adv-model 1.19 88.51 –

From Fig. 3, we can observe that the MTOG attack fools the object detector
to give many invisible objects (bounding boxes), most with high confidence and
some with low confidence. After MTOG, the mAP of the detector drops to
0.12%, the results are shown in Table 2. However, some bounding boxes with
natural objects still exist, some bounding boxes intersect together, and the aspect
ratio of some bounding boxes does not match the k-means clustering result.
After extracting adversarial features, we remove those bounding boxes with low
confidence or intersect with ground truth or the aspect ratio not in k-means
clustering. We keep the one with the highest confidence for the intersecting
bounding boxes.

Table 1 shows the average number of bounding boxes after each step in
Sect. 3.3. In Table 1, MTOG adversarial attack craft plenty of bounding boxes
compared to original images. We follow the steps described in Sect. 3.3 to remove
useless bounding boxes. We take the training set as an example. After an adver-
sarial attack, the average number of bounding boxes increases from 1.363 to
13.393. After Score, it drops to 12.436. After K-means, it decreases by 1.596.
Finally, the average number of bounding boxes is 8.528.

4.3 Evaluation on Adversarial Distillation

We report in Table 2 the mAP of original object detector (Ori-model) and adver-
sarial object detector (Adv-model) on the original test set (Ori-test), adversarial
test set (Adv-test) and the test set with adversarial examples and the ground
truth (Adv-GT-test), respectively.
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In the first column of Table 2, the data (86.34%) represents the result of
training on the original dataset and evaluation on the original dataset. This
data shows that YOLOv3-Mobilenet performs well on the SAR ship dataset.
The data (1.19%) represents the result of training on the adversarial dataset
and evaluation on the original dataset, which indicates that the gap between
the adversarial and original data distribution results in poor generalization. The
data (83.45%) in Table 2 is the mAP of original models evaluated on the adver-
sarial dataset and 0.12% shows the MTOG attack successfully attack the original
model. The data (88.51%) indicates that adversarial examples are features satis-
fying a specific data distribution, just like the original dataset. It further explains
that adversarial examples are not bugs, but features, some of which are indeed
valuable for localization and classification in object detection.

5 Conclusion

This paper proposes a new perspective on adversarial examples that are not aber-
rations but features satisfying a specific data distribution. In object detection,
adversarial examples contain classification features and localization features.
These features are helpful for models to generalize. We support this hypoth-
esis by performing adversarial distillation, which constructs adversarial datasets
on the teacher and trains the adversarial object detector on these datasets. We
select ship detection in SAR images as an original dataset for its category is
simple, and the model can better focus on localization features. We introduce
the MTOG attack to generate adversarial examples to provide a basis for con-
structing an adversarial dataset. The experiment results show that adversarial
examples are generalizable features that satisfy a specific data distribution. The
model trained on the adversarial training set generalizes well on the adversarial
test set. We hope that our findings can help researchers better understand the
black-box deep learning models, thereby contributing to the deep development
and extensive application of deep learning models.

Acknowledgements. This work was supported by the National Natural Science
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Abstract. Smart contract is a piece of program code running on the
blockchain, which aims to realize trusted transactions without third par-
ties. In recent years, smart contract vulnerabilities emerge one after
another, resulting in huge economic losses. Machine learning technology
is widely used in smart contract vulnerability detection. It is common
that model training in machine learning often requires a large amount of
labeled data while the unlabeled data in the current field is very rich and
acquiring labels is extremely difficult. As a result, it takes a lot of man-
power and time to label a vulnerability, and it is challenging to perform
effective smart contract vulnerability detection. To tackle this problem,
we propose BwdBAL, a novel framework for smart contract vulnerability
detection that combines Bayesian Active Learning (BAL) and a back-
ward noise removal method. We use BAL to remove the impact of model
uncertainty on uncertainty sampling in active learning. During the back-
ward process, we clean up the noise in the labeled dataset to reduce the
negative influence on the classification model. We evaluate BwdBAL on
8 vulnerabilities about 4929 smart contracts with four performance indi-
cators. The experimental results show that BwdBAL outperforms two
baseline methods: conventional machine learning-enabled classification
method and one-way active learning method.

Keywords: Smart contract · Vulnerability detection · Active
learning · Uncertainty measure · Backward learning

1 Introduction

Blockchain is a new type of distributed system, which is widely applied in finance,
supply chain, logistics security, and other fields [1–4]. Its one of the key compo-
nents is smart contract which is a programmable code on the blockchain that
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aims to realize trusted transactions without a third party. The number of smart
contracts has been growing rapidly since Ethereum is released that the first
open-source blockchain on which smart contracts can be deployed. A blockchain
industry media in US Cointegraph [5] one is a company committed to ana-
lyzing blockchain ecology whose statistical results showed that the number of
smart contracts deployed in the Ethereum system reached more than 1,971,000
in March 2020. Torres et al. [6], analyzed all smart contracts and transactions
on Ethereum from 2015 to 2020. Their survey shows that the number of smart
contracts attacked has not decreased in recent years. It is vulnerable to mali-
cious attacks since the smart contract manages high-value virtual tokens and
is immutable. Once attacked, it will cause huge economic losses. Therefore, the
research on smart contract security has attracted much attention.

Smart contracts are designed and programmed by developers to realize the
management activities of digital assets. Once the smart contract is deployed
on the blockchain, it cannot be updated, and the vulnerability of the smart
contract is inevitable. Timely detecting smart contracts vulnerabilities before
deploying and calling smart contracts are critical for smart contracts quality
assurance. Since vulnerability detection aims to effectively find vulnerabilities by
using detection technology before they are exploited, it can help smart contract
developers or testers focus on vulnerability-prone modules.

Traditional techniques based on static analysis, program verification, sym-
bolic execution, and fuzzy testing have been studied a lot. These methods are
mainly inspired by static and dynamic detection methods, such as static detec-
tion methods based on static analysis [7,8] and program verification method [9–
11]. In the dynamic detection method, Loi et al. [12] based on dynamic symbols
and Jiang et al. [13] based on fuzzing test. These tools can effectively detect smart
contract vulnerabilities. In recent years, smart contract vulnerability detection
method-based machine learning has also been widely studied. Machine learn-
ing methods significantly improve the efficiency of smart contract vulnerability
detection. However the existing research still has some limitations: (1) machine
learning methods often need enough training samples while most of the real data
are unlabeled furthermore it requires a lot of manpower and time to label; (2)
most research tools use the existing detection tools to mark, but the existing
detection tools have a large false-positive rate and false-negative rate, which
will reduce the accuracy of the training model; (3) some of these existing tools
require specific defect patterns or specification rules defined by experts.

In order to address the above problems, Yu et al. [14] proposed using active
learning to improve vulnerability inspection efficiency. Active learning selects
modules from unlabeled samples to query labels from experts through a sam-
pling strategy. The newly queried samples are merged into the labeled data set
to update the training classifier, and the labeled sample size is continuously
expanded through a cyclic iterative query. Active learning greatly reduces the
time and cost of manually labeling data since not all data need annotation.
And active learning is widely applied in image classification, text classification,
defect detection and other fields [15–19]. However, the work [14] still has several
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limitations (to be described detailly in the next subsection), which inspired our
approach.

1.1 Motivation

The most important component of active learning is sampling strategy and the
key goal of active learning is how to select the most representative and informa-
tive candidate instances to achieve better efficiency with the least labeling cost
[20]. The uncertainty measure based active learning method used in [14] has
the limitation that only according to the prediction results of SVM, uncertainty
sampling shall be carried out first, and then certainty sampling shall be carried
out. This process only relies on SVM prediction results and does not consider
the uncertainty of the model itself. Thus, the selected candidate sample is not
a sample with higher uncertainty. In this paper, we use the Bayesian model to
select more informative instances for labeling. When selecting labeled samples,
this framework considers the uncertainty of the model itself, uses MC dropout
[21] method to quantify the uncertainty of the model, and then comprehensively
calculates the uncertainty of the samples.

The training set of machine learning needs humans to label in an unselective
way, which leads to the need for a lot of marking. How to make human labor more
efficient is a key point of research. In order to improve the accuracy of manual
marking and reduce the impact of human errors, paper [9] proposed relabeling
instances that are inconsistent results between manual marking and model pre-
diction. The main limitation of this method is that it will increase human effort
in active learning and does not consider whether the labeled dataset can have a
positive impact on the model performance, namely, the labeled dataset is noisy.
The noises are caused by incorrectly labeled instances or outliers of correctly
labeled instances. So that they may produce a negative impact on the model.
To tackle this issue, in this paper, we exploit a backward noise removal method,
which explores labeled datasets to detect suspiciously unreliable instances. The
performance of the model will degrade due to noisy instances. To eliminate the
negative effects of noises, these noisy instances need to be processed by with-
drawal from labeled datasets and re-sampling from the unlabeled datasets for
labeling.

To sum up, in this paper, we propose BwdBAL, a novel framework for vulner-
ability classification for smart contracts that leverages the two mentioned-above
methods: Bayesian Active Learning and backward noise removal method. Our
framework consists of two major stages: forward learning and backward learning.
In the first stage, BwdBAL exploits forward active learning to select some more
informative sol files from the unlabeled dataset for querying their labels and
then incorporates them with the current labeled dataset to construct a training
set. This process is forward learning. In the second stage, BwdBAL utilizes a
backward noise removal method to detect and process suspiciously unreliable
instances by exploring labeled datasets for improving the generalization ability
of the model. Finally, active learning is a circular process until the target effect
is reached.
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1.2 Contribution

In summary, we make the following contributions:

– We apply an active learning-based framework to classify smart contract vul-
nerability. We propose a novel framework BwdBAL to address an important
issue in smart contract vulnerability detection: the lack of labeled data. Dif-
ferent from the traditional smart contracts vulnerability detection model,
BwdBAL based on active learning learns by querying tags from Oracle and
continuously selects more informative instances through query strategies for
human oracle. Our framework can identify more vulnerabilities, even if there
are only a small number of labeled datasets.

– The noises of the labeled dataset are caused by incorrectly labeled instances
or outliers of correctly labeled instances. We utilize a backward noise removal
method to detect and process suspiciously unreliable instances by exploring
labeled datasets for improving the generalization ability of the model.

– We evaluate BwdBAL on 8 vulnerabilities about 4929 smart contracts with
four performance indicators. The experimental results show that BwdBAL
outperforms the baseline methods, and the uncertainty sampling strategy
outperforms the other four sampling strategies.

The rest of the paper is organized as follows: Sect. 2 presents Research on
smart contract vulnerability detection and active learning. Section 3 described
our methodology. Section 4 investigates the detail of experiment designs as well
as their results. Finally, we provide our conclusions and future work directions
in Sect. 5.

2 Related Work

2.1 Smart Contract Vulnerability Detection

Smart contract security has received a lot of attention, and massive research
on smart contract vulnerability detection has emerged in recent years. Those
approaches are mainly divided into two groups: traditional technology and
machine learning technology. a) Traditional technology, which mostly uses the
artificial definition of rules or patterns related to smart contract vulnerabilities,
then applies traditional methods such as static analysis, symbolic execution, or
fuzzy testing to detect vulnerabilities. b) Machine learning technology, which
extracts the corresponding features of smart contracts, and then trains the clas-
sification model based on a machine learning algorithm to detect vulnerabilities.

Traditional Technology. Early work on smart contract vulnerability detection
by employing static analysis, symbolic execution, or fuzzy testing. Smart con-
tract vulnerability detection based on static analysis method is mainly through
control flow analysis. Smartcheck [7] and Slither [8] analyzes syntax of smart
contract source code from control flow graph. Different from the former Vandal
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[22] analyzes semantics from smart contract bytecode to detect vulnerability.
Another stream of work relies on symbolic execution. Oyente [12] is the first
work on security analysis of smart contracts. It uses dynamic symbolic execu-
tion technology to detect security vulnerabilities. Orisis [23] is a static analysis
framework based on symbol execution and taint analysis, which mainly focuses
on integer overflow vulnerability detection for Ethereum. In addition, there are
some work based on Fuzzy testing. Contractfuzzer [13] generates fuzzing inputs
based on the ABI specifications of smart contracts, defines test oracles to detect
security vulnerabilities, which is the first work based fuzzy testing. Liu et al.
[24]presented a fuzzing-based analyzer to automatically detect reentrancy bugs
in Ethereum smart contracts. Traditional methods heavily rely on fixed expert
rules or patterns, leading to low accuracy and poor scalability.

Machine Learning Technology. Most of the previous works in smart contract
vulnerability detection are supervised, i.e., they use known vulnerabilities to
train a classifier for detecting vulnerabilities. Those methods focus on smart
contract source code, bytecode, or opcode. Then they extract features from AST
(Abstract Syntax Tree) or CFG (Control Flow Graph). The two types of features
they use for detecting smart contract vulnerabilities are smart contract security
metrics and text mining features:

(1) Smart contract security metrics: Kevin et al. [25] used the Goal Question
Metric (GQM) approach to find 15 security code metrics that can be applied
to smart contract development. Momeni et al. [26] extracted 17 features that
represented the complexity of the code from ASTs for supervised binary
classifiers training and detecting. Their model predicted a number of major
software vulnerabilities with an average accuracy of 95%.

(2) Text mining features: Most research has combined different language mod-
els to extract features from data related to smart contracts. Liao et al. [27]
presented SoliAudit which uses machine learning and fuzz testing for smart
contract vulnerability assessment. They attempted two different methods
to extract features from the preprocessed opcode sequence: n-gram with
term frequency-inverse document frequency and word2vec. Qian et al. [28]
proposed contract snippet representations for smart contracts and used
word2vec to extract features from contract snippet for Reentrancy vul-
nerability detection with a deep learning model. Ashizawa et al. [29] pro-
posed Eth2Vec, a machine-learning-based static analysis tool for vulnerabil-
ity detection in smart contracts. Eth2Vec could automate feature extraction
for each contract by leveraging the neural networks-based PV-DM model.
Mi et al. [30] proposed a framework for automating vulnerability detection
in smart contracts with deep learning. They applied the CFG to get the
sequence reflected the program execution semantics from bytecode and the
n-gram model to form a features vector.
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2.2 Active Learning

The most important component of active learning is sampling strategy, how to
select the most representative and informative candidate instances to achieve
better efficiency with the least labeling cost [20]. In order to alleviate the uncer-
tainty of the machine learning model, this uncertainty will affect the uncertainty
evaluation when selecting candidate label instance in active learning, [31–33]
combined with the Bayesian model to comprehensively consider the uncertainty
of the classification model for uncertainty sampling. To minimize the impact
of human error, the previous researchers [34,35] estimate the label reliability or
expertise level of labelers and then delete error-like answers, [36] requires labelers
to relabel error-like labeled instances which can improve learning performance
to some extent.

At present, a lot of research work has applied active learning for defect pre-
diction. Luo et al. [37] proposed a two-stage active learning framework combining
a clustering technique and support vector machine. Li et al. [38] proposed an
active semi-supervised learning method to select the most helpful modules. Lu
et al. [39] proposed an adaptively defect prediction framework combining super-
vised learning and active learning. Lu et al. [40] proposed active learning as a
way to automate the development of models which improve the performance of
defect prediction between successive releases. Zhou et al. [15] propose a two-phase
framework that combines Hybrid Active Learning and Kernel PCA (HALKP) to
select some informative and representative unlabeled modules from the current
version for querying their labels and to extract representative features by embed-
ding the original data of two versions into a high-dimension space. However, all
these methods are applied to defect prediction.

Due to the limitation of their method as mentioned in this paper in Sect. 1.1,
we employ a two-way active learning framework to select the more informative
candidate instances and remove the noise of the labeled dataset.

3 The Proposed Method

3.1 Overview

Figure 1 depicts the overview of our smart contract vulnerability detection frame-
work based on Bayesian Active Learning with backward noise removal method.
Our framework is mainly divided into two parts: the forward learning process
uses a Bayesian neural network and the backward learning process eliminates
the noise in the labeled set by exploring it. Here our process to smart contract
vulnerability detection goes through multiple steps. First, give an original smart
contract, data cleaning is necessary such as removing blank lines, irrelevant com-
ments, and non-ASCII characters. We then parse each cleaned smart contract
into a sequence of code tokens, which are embedded into feature vector repre-
sentations. Second, each cycle of active learning consists of two stages: forward
learning and backward learning. In the first stage, we attempt to feed the fea-
ture vectors of labeled data to train the classifier. BwdBAL exploits BAL to
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select some more informative sol files from the unlabeled datasets for querying
their labels and then incorporates them with the current labeled dataset to con-
struct a new training set. This process is forward learning. In the second stage,
BwdBAL utilizes a backward noise removal method to detect and process sus-
piciously unreliable instances by exploring labeled datasets for improving the
generalization ability of the model. Finally, active learning is a circular process
until the target effect is reached.

Fig. 1. Overview of the proposed smart contract vulnerability detection method.

3.2 Feature Extraction

This section explains the process of creating a feature matrix for all smart con-
tracts. Before extracting the feature vector, it is necessary to clean the source
code of the smart contract (i.e., removing the blank lines and comments). Then
we use the infercode [30] tool to extract the feature vector of smart contact
source code. Infercode constructs ASTs and then utilizes the TBCNN technique
to generate numeric values for features in smart contracts. For each AST this tool
identifies a set of subtrees, and all the subtrees are accumulated into a vocabu-
lary of subtrees. Then an AST is fed into a Tree-Based CNN (TBCNN) encoder
to produce a code vector −→vi . The steps of feature extraction are as follows:

(1) By traversing the AST, this tool selects a subtree whose root node is of type
expr-stmt, decl-stmt, expr, condition. In addition, the tool also considers
nodes that represent a single keyword, such as if, for, while. These nodes
can be viewed as subtrees of size 1.

(2) After obtaining subtrees the tool uses it to learn source code encoders
under the self-supervision mechanism (TBCNN). There are some differences
between infercode’s TBCNN and the original design itself. It builds in node
initialization embedding with textual information not only just type infor-
mation, and original TBCNN’s dynamic node pooling is replaced with an
attention mechanism to include node embedding.
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Since the subtree in ASTs is regarded as the label represented by the train-
ing code without any manual marking work or expensive graphics construction
overhead, we can extract the features of smart contract code more efficiently and
conveniently using infercode.

3.3 Active Learning with Uncertainty Measure

The goal of active learning in the task of smart contract vulnerability detec-
tion is to create a classification model by selecting the most information sample
to expand the labeled dataset. There are many strategies in active learning to
select samples such as uncertainty sampling, query-by-committee, error reduc-
tion, density-weighted methods, and so on. These strategies are very different in
the way of selecting the most informative samples. Uncertainty sampling is the
most commonly used sampling method. From the perspective of machine learn-
ing, the uncertainty sampling strategy selects the samples that are the most
uncertain sample of the model from the unlabeled set. That is, the model can-
not determine its label, and the output probability of the model is close to 0.5.
The classification model based on Bayesian active learning is P(.).

P (y∗|x∗, L) =
∫

P (y∗|x∗, ω)P (ω|L)dω (1)

where L = {x, y} denotes training data; ω is the distribution of model parameters
and y = {0, 1} denotes labels set. In our case, where y = 1 represents smart
contract including one or more vulnerabilities and y= 0 represents it without
vulnerability.

Since the prior distribution P(ω|L) is difficult to calculate, function q(ω|θ)
controlled by a set of parameters θ = (μ, σ) approximate the posteriori distribu-
tion P(y∗|x∗, D). The parameters θ = (μ, σ) are normal distribution. The μ and
σ are mean value and standard deviation of distribution; KL divergence is used
to optimize the distance between function q(.) and P(ω|L), and the following
results are obtained:

θ∗ = arg min
θ

Eq(ω|θ)

[
log(

[
q(ω|θ)

P (L|ω)P (ω)

]
)
]

(2)

The function of minimization of KL divergence is transformed into solving the
maximization function ElBO(.) and the transformed function is:

ELBO(q) = E [log(P (ω))] + E [log(P (L|ω))] − E [log(q(ω|θ))] (3)

The uncertainty assessment method is as follows: The uncertainty measure
function H(.) of sample �xi is defined as its conditional entropy given the label
variable y:

H(y|x) = −
∑
y∈Y

P (y|xi, θL)logP (y|xi, θL) (4)

where θD denotes the classification model θ trained on the data D; P(y|xi, θD)
denotes probability calculated by this model.
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Alogrithm 1. Backward Bayesian Active Learning
input: The labeled source code of smart contract L; The unlabeled sourcecode of smart contract

U ; The probabilistic classifier θ
Output: Three Indicators of classifier θ
1: function ForwardAL(L, U, θ)
2: repeat
3: for xi ∈ U do
4: Select instance xi according to Eq(1)
5: Query the label yxi of xi

6: Remove xi from U(U
′
=U-xi), U=U

′
;

7: Merge (xi,yi) into L(L
′
=L+(xi,yi)), L=L

′

8: L, U = BackwardAL(L,θ)
9: Train the classifier model θ based on L
10: end for
11: until Meeting the stop criterion
12: return The result of three indicators
13: end function
14: function BackwardAL(L, U, θ)
15: for xi ∈ L do
16: Select xd1,xd2 from L according to Eq(5) and Eq(6)
17: end for
18: Select xr from U according to Eq(7)
19: Query the label yr of xr

20: Remove {(xd1,yd1),(xd2,yd2)} from L(L
′
=L-{(xd1,yd1),(xd2,yd2)})

21: Merge (xr,yr) into L(L
′
=L+(xr,yr))

22: L=L
′

23: return L, U
24: end function

3.4 Active Learning with Backward Noise Removing

There is a problem that labeled dataset does not always have a positive impact on
the model performance. Namely, the labeled dataset may be noisy. The noises are
caused by incorrectly labeled instances or outliers of correctly labeled instances.
So that they may produce a negative impact on the model. To tackle this issue,
in this paper, we exploit a backward noise removal method, which explores
labeled datasets to detect suspiciously unreliable instances. The performance
of the model will degrade due to noisy instances. As shown in Algorithm 1, to
eliminate the negative effects of noises, these noisy instances need to be pro-
cessed by withdrawal from labeled datasets and re-sampling from the unlabeled
datasets for labeling. The former withdrawal operation refers to selecting the
samples with the least influence on the model which will be deleted from the
labeled set by deleting samples or changing their labels one by one from the
labeled set and then calculating the information entropy. Formula 2 x

′
d1 is the

selected sample by deleting; Formula 3 x
′
d2 is the selected sample by changing

its label. The latter re-sampling operation to select the sample furthest from the
deleted sample in the former operation. Formula 4 x

′
r is the selected sample that

will be sent to an oracle.

x
′
d1 = arg min

x∈L

∑
xu∈U

(H(yu|xu; θL\(x,y
′
i)

)) (5)

x
′
d2 = arg min

x∈L

∑
i�=i

′ P (yi|x; θL\(x,y
′
i)

) × ∑
xu∈U

H(yu|xu; θL|(x,yi))

1 − P (yi|x; θL\(x,y
′
i)

)
(6)
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x
′
r = max

x∈U

√
(x − xi)2(y − yi)2 (7)

where H(.) stands for definition formula of information entropy; θL\(x,y
′
i)

denotes

the labeled data set with a certain labeled instance (x, y
′
i) excluded and θL|(x,yi)

represents the labeled data set with instance x label changed from y
′
i to yi.

4 Experiment

4.1 Experiment Set and Benchmark Detaset

The experiment uses 10-fold cross-validation to carry out experiments. Each
experiment performs random division on the dataset. 30% of the dataset is used
as test data, and the other data is used as training data to prevent data overlap
between test and training data. A certain ratio of data is extracted from the
training data for manual labeling. In this experiment, the ratio of the initial
labeled data is 5%. The initial training dataset is used to train the classification
model, and the remaining training data is used as an unlabeled sample pool.
In the active learning stage, although there is a cost for querying labels if this
process can make vulnerability prediction more effective and improve software
quality, the cost is acceptable as long as we control the number of queries to a
small amount, usually, less than 20% of the total number of unlabeled sample
[40]. In this work, we select four thresholds, i.e., 5%, 10%, 15%, 20%. In practice,
the label of candidate unlabeled instances is determined by domain experts. In
this work, we endow them with the ground truth labels from the benchmark
dataset to simulate the process of human inspectors checking source code files,
as in work [14,15].

We conduct extensive experiments on 4929 smart contracts containing 8 types
of vulnerability. The NCC Group organization [41] proposed the Decentralized
Application Security Project (DASP) TOP10 [42]. We chose to detect 8 vulnera-
bilities included in DASP TOP10, which are listed in Table 1. To collect enough
data, we use three data sets including Smartbugs [43], SoliAudit-benchmark [44]
and SolidiFi-benchmark [45]. First, we collect basic malicious smart contracts
from Smartbugs. Then we collect more smart contracts as the final experimental
dataset to build and evaluate our framework for smart contract vulnerability
classification from two other data sets. Duplicated and blank contracts were fil-
tered out according to their source code. Finally, Table 1 shows the information
of the final experimental dataset. In this work, we label a smart contract as 1 if
it contains one or more vulnerabilities. Otherwise, we label it as 0.

4.2 Performance Indicators

We measure the performance of BwdBAL with four indicators, namely accuracy,
precision, recall, and F-measure, which are widely used in smart contract vul-
nerability detection [26–28,30]. Accuracy is the most common metric employed
in machine learning evaluations. Because of the imbalance of our dataset (the
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Table 1. Descriptive statistics for smart contract vulnerability types grouping.

Vulnerability type #Smart contracts Containing types

BlockTimestamp 452 Time manipulation, bad randomness

CallDepth 403 Unchecked low level calls

Overflow 898 Arithmetic

Reentrancy 552 Reentrancy

TimeDep 1085 Time manipulation, bad randomness

TOD 937 Front running

TxOrigin 149 Access control

Underflow 453 Arithmetic

All 4929 -

proportion of vulnerable smart contracts is very small), we could not use only
one metric for evaluation. Therefore, we also use other metrics. The four indi-
cators can be derived from a confusion matrix shown in Table 2 and defined as
the following formulas.

Table 2. Confusion matrix.

Predicted as
vulnerability

Predicted as
non-vulnerability

Actual vulnerability TP FN

Actual non-vulnerability FP TN

(1) Accuracy: Accuracy is the proportion of correctly predicted samples in the
total samples, with the value range of [0,1]. The value is larger, the prediction
ability of the model is better.

accuracy =
(TP + TN)

(TP + FP + TN + FN)
(8)

(2) Precision: Precision is the proportion of correct prediction in the positive
samples predicted by the classifier, with the range of [0,1]. The value is
larger, the prediction ability of the model is better.

precision =
TP

(TP + FP )
(9)

(3) Recall: The recall is the proportion of the correct positive samples predicted
by the classifier in all positive samples, with the range of [0,1]. The value is
larger, the prediction ability of the model is better.

recall =
TP

(TP + FN)
(10)
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4.3 Experimental Results

RQ1: How effective is BwdBAL compared with some other algorithms?

Method: As mentioned above, our smart contract vulnerability classification
framework BwdBAL consist of two stages: forward learning stage for selecting
some more informative sol files from unlabeled dataset and backward learn-
ing stage for removing noise data from labeled dataset. This question investi-
gates whether our framework is better than other two methods, including the
method that only uses machine learning no active learning (LogisticRegression),
the method that only use active learning but only forward active learning stage
(AL).

Results: Table 3 shows the change in the value of the indicator when the labeled
sample ratios are 5%, 10%, 15%, and 20%. The experimental results of BwdBAL
are in bold. As to each algorithm, we repeat experiments 10 times to calculate
the average. It can note that using active learning with less manual labeling has
better performance than not using active learning. When the number of queries
is only 5%, the active learning method is more effective, and the accuracy of all
two models is basically about 50%. In addition, the accuracy of BwdBAL is basi-
cally higher than that of one-way active learning. Particularly in overflow, the
accuracy and recall of active learning are higher than that of LogisticRegression.
Our method is 68%, 50.2%; one-way active learning is 47.7%, 29.9%; LogisticRe-
gression is 38.9%, 8.9%. As the number of queries increases, the performance of
all models is gradually improving. Since the proportion of the maximum number
of queries is set to 20%, we will analyze the results more detailly below. When the
number of queries is 20%, the accuracy of the active learning method is higher
than 80%, while the accuracy of the LogisticRegression method is slightly lower,
only less than 80%. And in terms of CallDepth, Overflow, Reentrancy, TOD,
and TxOrigin vulnerability, the accuracy of our two-way active learning method
is slightly higher than that of the one-way active learning method. However,
for BlockTimestamp, TImeDep, and Uunderflow vulnerability, the accuracy of
our framework is not as high as that of the latter method. The one-way active
learning is 89.1%, 75.4%, 88.7%, and ours is 89%, 74.2%, 87.6%. Especially for
Txorigin vulnerability, the accuracy of BwdBAL can reach 96.3%. Although the
precision value of the model is not very high, in general, the performance of
our two-way active learning framework (BwdBAL) is better than the other two
baseline methods with the less labeled datasets.

RQ2: How do different sampling strategies of active learning affect the perfor-
mance of BwdAL4Sc?

Method: We compare BwdAL4Sc with the following five baseline approaches
(1) Random: randomly select a query instance, (2) QBC [46]: select instances
using query-by-committee, (3) Density [47]: select instances with taking into
account the information of unmarked samples, (4) EER [48]: select instances



78 J. Zhang et al.

with making the loss function reduce the most by adding one sample, and (5)
Unc: select instances with the lowest uncertainty.

Results: Figure 2 shows the classification recall of different active learning
approaches with a varied number of queries. In order to more intuitively see
the experimental results, we use a line chart to describe the changes of the recall
of different sampling strategies with different samples labeled proportions. It
can be concluded from their plots that BwdBAL can achieve higher performance
using uncertainty strategy than the other four strategies. When the percentage
of labeled samples is less than 10%, the effect of uncertainty sampling strategy
is not as good as Density and EER. However, with the increase in the number
of queries, the uncertainty sampling strategy can achieve better performance.
When the percentage of labeled samples is less than 10%, QBC has the high-
est recall at BlockTimestamp. For CallDepth random and QBC have a better
performance when the percentage of labeled samples is less than 15%. For Over-
flow and Reentrancy, when the percentage of labeled samples is less than 15%,
Density has a higher recall than other strategies. In terms of TimeDep, Den-
sity, QBC, Random, and EER have similar recall as a whole. For TxOrigin and
Underflow, when the percentage of labeled samples is less than 15%, QBC has
a higher recall than other strategies.

Table 3. The Detailed Results for BwdBAL and other two baseline method with
different ratio of number of queries.

Data Algorithm Number of queries (percentage of unlabeled data)

5% 10% 15% 20%

a p r a p r a p r a p r

BlockTimestamp LogisticRegression 0.274 0.119 0.056 0.311 0.129 0.134 0.513 0.314 0.497 0.721 0.491 0.435

ActiveLearning 0.286 0.396 0.266 0.529 0.482 0.321 0.534 0.534 0.467 0.891 0.421 0.659

BwdBAL 0.333 0.254 0.223 0.545 0.546 0.560 0.551 0.651 0.618 0.890 0.517 0.730

CallDepth LogisticRegression 0.305 0.202 0.104 0.481 0.317 0.344 0.688 0.360 0.509 0.748 0.443 0.501

ActiveLearning 0.488 0.085 0.267 0.490 0.520 0.425 0.697 0.444 0.593 0.805 0.525 0.679

BwdBAL 0.543 0.554 0.310 0.553 0.566 0.488 0.663 0.582 0.682 0.808 0.586 0.843

Overflow LogisticRegression 0.389 0.225 0.089 0.414 0.213 0.158 0.497 0.292 0.598 0.696 0.694 0.797

ActiveLearning 0.477 0.141 0.299 0.637 0.438 0.593 0.586 0.558 0.671 0.783 0.693 0.809

BwdBAL 0.680 0.518 0.502 0.682 0.624 0.656 0.681 0.722 0.767 0.784 0.722 0.845

Reentrancy LogisticRegression 0.658 0.375 0.288 0.665 0.400 0.441 0.666 0.425 0.394 0.826 0.841 0.601

ActiveLearning 0.617 0.396 0.258 0.622 0.671 0.416 0.626 0.441 0.415 0.877 0.616 0.786

BwdBAL 0.618 0.462 0.290 0.635 0.690 0.458 0.639 0.694 0.504 0.880 0.701 0.810

TimeDep LogisticRegression 0.509 0.233 0.144 0.539 0.367 0.354 0.665 0.384 0.288 0.667 0.661 0.501

ActiveLearning 0.505 0.223 0.245 0.533 0.456 0.389 0.519 0.354 0.546 0.754 0.589 0.817

BwdBAL 0.573 0.373 0.288 0.588 0.590 0.472 0.592 0.598 0.678 0.742 0.613 0.826

TOD LogisticRegression 0.559 0.240 0.110 0.500 0.269 0.254 0.577 0.405 0.311 0.673 0.574 0.464

ActiveLearning 0.651 0.196 0.289 0.648 0.601 0.393 0.467 0.554 0.486 0.779 0.793 0.608

BwdBAL 0.533 0.339 0.287 0.543 0.557 0.474 0.546 0.553 0.594 0.781 0.662 0.823

TxOrigin LogisticRegression 0.412 0.090 0.050 0.554 0.524 0.175 0.515 0.245 0.581 0.915 0.593 0.625

ActiveLearning 0.503 0.130 0.248 0.466 0.537 0.240 0.723 0.375 0.499 0.962 0.240 0.755

BwdBAL 0.406 0.206 0.258 0.507 0.507 0.366 0.607 0.508 0.546 0.963 0.709 0.799

Underflow LogisticRegression 0.603 0.106 0.030 0.605 0.114 0.062 0.610 0.388 0.181 0.751 0.610 0.643

ActiveLearning 0.373 0.388 0.139 0.401 0.459 0.220 0.615 0.462 0.539 0.887 0.620 0.701

BwdBAL 0.564 0.465 0.213 0.577 0.580 0.363 0.591 0.594 0.541 0.876 0.592 0.849
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Fig. 2. Compare on recall
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5 Conclusion and Future Work

In this work, we proposed a novel framework using bidirectional active learn-
ing for smart contract vulnerabilities detection tasks. Our framework consists
of two major stages: forward learning and backward learning. In the first stage,
BwdBAL exploits uncertainty sampling strategy to select some more informative
sol files from the unlabeled datasets for querying their labels and then incorpo-
rates them with the current labeled dataset to construct a training set. This
process is forward learning. In the second stage, BwdBAL utilizes a backward
noise removal method to detect and process suspiciously unreliable instances by
exploring labeled datasets for improving the generalization ability of the model.
Finally, active learning is a circular process until the target effect is reached.
The experimental results show that BwdBAL outperforms the baseline meth-
ods, and the uncertainty sampling strategy outperforms the other four sampling
strategies.

Besides, it needs to point out that our current work is limited to smart con-
tract vulnerabilities detection tasks. We choose the pool-based active learning
process, so the backward active learning process takes a long time. In order to
shorten the running time, we plan to exploit stream-based active learning in our
future work. Furthermore, this framework (BwdBAL) suffers from the low pre-
cision problem. In order to increase the precision, we consider adopting different
feature extraction methods for different types of vulnerabilities to improve the
prediction model. Moreover, we also hope that there will be more breakthroughs
in this area in the future.
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Abstract. With the growth of maintenance market scale of automobile manu-
facturing enterprises, simple information technology is not enough to solve the
problem of uneven resource allocation and low customer satisfaction in mainte-
nance chain services. To solve this problem, this paper abstracts the automotive
maintenance collaborative service into amulti-agent collaborativemodel based on
the decentralized partially observable Markov decision progress (Dec-POMDP).
Based on this model, a multi-agent deep reinforcement learning algorithm based
on collaborative willingness network (CWN-MADRL) is presented. The algo-
rithm uses a value decomposition basedMADRL framework, adds a collaborative
willingness network based on the original action value network of the agent, and
uses the attention mechanism to improve the impact of the collaboration between
agents on the action decision-making,while saving computing resources. The eval-
uation results show that, our CWN-MADRLalgorithm can converge quickly, learn
effective task recommendation strategies, and achieve better system performance
compared with other benchmark algorithms.

Keywords: Equipment manufacturing · Maintenance collaborative service ·
Multi-agent · Deep reinforcement learning · Value decomposition

1 Introduction

Manufacturing service industry is a manufacturing-oriented service industry. Its devel-
opment helps to accelerate the transformation of manufacturing industry and upgrade
the position of Chinese manufacturing enterprises in the industrial chain [1]. Product
service is a new growth point of output value and profit of manufacturing enterprises.
Product maintenance, as the main component of product service, is an important part of
manufacturing-oriented service industry [2].

In recent years, the development of automobile industry has stimulated the rapid
growth of automobile maintenance market. According to the white paper on China’s
auto aftermarket in 2020, the scale of China’s auto maintenance market is expected to
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reach 1.74 trillion yuan in 2025. It can be seen that the automobile maintenance indus-
try will be the most important part of the automobile market for a long time in the
future. With the further expansion of the output value in this industry, all kinds of auto-
mobile maintenance service providers enter the automobile aftermarket. Maintenance
chain enterprises have become an important part of the automobile maintenance mar-
ket because of their advantages such as resource integration, fast response speed and
transparent price.

At present, the information technology still is the important means of supporting
resource integration and efficiency improvement in maintenance chain enterprises, but
it is not enough to solve the problems of unbalanced resource allocation, poor service
coordination and low customer satisfaction because of the low personnel quality and the
low level of information technology in this industry. With the increasing popularity of
industrial Internet [3], big data, artificial intelligence and other new generation informa-
tion technologies in the manufacturing field, intelligent manufacturing system has more
functions of cognition and learning compared with its previous generation [4]. It makes
it possible to automatically realize the distributed resource aggregation and the rational
resource allocation in automobile maintenance chain services, in order to alleviate the
imbalance between resource supply and resource demand in some regions.

Based on the above problems, this paper proposes a task recommendation strategy
in multi-agent cooperation scenario based on deep reinforcement learning with value
decomposition. In this scenario, multiple automobile maintenance stations cooperate
with each other to complete the maintenance task in maintenance chain enterprises. This
task recommendation strategy can automatically realize the adaptive adjustment of the
maintenance tasks among multiple maintenance stations with the goal of minimizing
maintenance time and maintenance cost and improving customer satisfaction, so as to
achieve the effective utilization of maintenance resources among multiple stations.

The main contributions are summarized as follows:

1) Aiming at the problems of inefficient resource allocation and low customer satis-
faction in the automobile maintenance market, this paper proposes a maintenance
collaborative service model based on the decentralized partially observable Markov
decision progress to solve the optimization problem of multi-agent joint action in
the maintenance chain service scenario.

2) Based on the proposed maintenance collaborative service model, a task recommen-
dation strategy using multi-agent deep reinforcement learning (MADRL) is pro-
posed. This strategy uses a new network framework ofMADRL, inwhich each agent
has two network modules: action estimation network and collaborative willingness
network. To improve the impact of agent cooperation on action decision-making,
the attention mechanism is used in collaborative willingness network, while saving
computing resources.

The rest of this article is arranged as follows: Sect. 2 briefly introduces the related
works about automobile after-sales collaborative service and multi-agent deep rein-
forcement learning. Section 3 discusses the system model for automobile maintenance
collaborative service. Next, a task recommendation strategy using MADRL is proposed
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in Sect. 4 and the detail algorithm implementation is presented. Section 5 gives the
implementation results and the analysis. Section 6 gives the conclusion.

2 Research Background

2.1 Automobile After-Sales Collaborative Service

At present, there are few research on service collaboration in the field of auto after-sales
service, mainly focusing on the research of business process and the construction of
after-sales service information system. For example, workflow technology is used to
study the business process in the field of automotive collaborative after-sales service [5,
6]. The automotive collaborative after-sales service system based on Service-Oriented
Architecture (SOA) is designed to abstract the processes involved in various businesses
of after-sales service into the reusable services and the key technologies of SOA, web
service and business process choreography is analyzed in detail [7, 8]. According to
the dynamic scalability requirements of the architecture of industrial chain collaborative
work platform, some scholars [9, 10] use software component technology to construct the
model of automobile industry chain collaborative service platform based on the concepts
of business decomposition, business modeling and component abstraction. In the field
of maintenance service, there are some research about the fault prediction of specific
equipment.Yang et al. [11] established aGreymodel based on similar information fusion,
used historical samples for similarity matching, applied the Grey model to predict the
future degradation trajectory, and obtained the remaining service life of engine. Yi Fei
et al. [12] studied the fault pattern recognition method based on Hidden Markov model,
and used the model to convert the signal characteristics of weak change into the log
likelihood probability with large change to effectively identify the fault pattern. Zhou
Chilean [13] proposed a prediction method of fault and remaining life based on HMM
model. The experiential results show the fault prediction method are effective.

2.2 Multi-agent Deep Reinforcement Learning

Multi-agent cooperation refers to the cooperation among multiple agents to complete a
task under the condition of limited time and limited resources. Deep reinforcement learn-
ing (DRL) as a deep learning method, it continuously interacts with the environment and
improves its own strategies according to the feedback to maximize the expected reward
by the deep neural network. Therefore, the Multi agent deep reinforcement learning
(MADRL) formed by their integration has become an important research direction in
the field of AI. At the present, there are two main types of MADRL algorithms.

(1) Algorithm based on value function
This kind of algorithm can be regarded as the most basic work of multi-agent deep
reinforcement learning. Its core method is to use neural network to continuously
approximate the value function. After fitting the value function, you can output the
estimated action value Q or state value V only by inputting the relevant information
of the agent, and then select the strategy according to the value function, which is
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applied to discrete action space. DQN is an algorithm based on value function, and it
has many improved versions [14–16]. VDN [17, 18] is a joint q-network algorithm,
which is used to learn the local model of each agent. This joint Q-network is
obtained by accumulating the independent Q values of all agents. QMIX [19] is
an improvement of VDN algorithm, but it uses a network called mixing network
to nonlinearly combine the independent Q values of each agent. Good results have
been obtained in the experiment, but how to train the network better is still a problem
in research. QTRAN [20, 21] is an algorithm to further optimize QMIX and VDN
algorithms. it is very difficult to approach the joint Q-value function directly with
the depth network, so QTRAN first obtains the joint Q-value function with the
VDN method as the estimation function of the real joint Q-value function, and
then minimizes the gap between the local Q-value function and the joint Q-value
function.

(2) Algorithm based on Actor-Critic
Value function is difficult to deal with a series of problems caused by non-stationary
environment in complex scenes. The Actor-Critic based algorithm learns the critic
network through centralized learning, but learns its own independent actor network
(also called strategy network) through discrete learning. It has good scalability and
can solve the problem of non-stationary environment. It is often used in continu-
ous action space. Asynchronous advantage Actor-Critical (A3C) algorithm is an
algorithm based on Actor-Critical (AC) framework, which provides asynchronous
training by opening up multiple parallel environments. The Soft Actor-Critical
(SAC) [22, 23] algorithm is based on the maximum entropy reinforcement learn-
ing framework. Unlike other algorithms that maximize the cumulative expected
reward, SAC maximizes the entropy regularized reward. The multi-agent deep
deterministic policy gradient algorithm (MADDPG) proposed by Lowe R. [24]
is an extended algorithm under the actor critic framework. MADDPG is a DDPG
algorithm in multi-agent environment. The algorithm sets up an independent critic
network and actor network for each agent, as well as an independent reward mech-
anism. In this way, MADDPG algorithm can be extended to related multi-agent
problems in different environments. The COMA algorithm proposed by Foerster J
[25] uses the idea of counterfactual baseline to solve the credit allocation problem
in multi-agent system. COMA algorithm adopts a joint critic network to calculate
the difference between the comprehensive reward obtained by each agent through
decision-making according to the actor network and the expectation of the agent’s
action value function Q. This difference is called its own advantage function, and
the expectation of the action value function Q is called the counterfactual baseline.

3 System Model

This section mainly introduces the system model proposed in this paper. In the main-
tenance chain enterprise of a brand of automobile in a large and medium-sized city,
there are N maintenance service stations X = {x1, x2, · · · , xN} distributed in different
regions of the city cooperate to complete the customer’s automobile maintenance ser-
vice, as shown in Fig. 1, in which each node represents one maintenance service station
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xi(i = 1 · · ·N ) and they are equal in the automobile cooperative maintenance service
model. In order to achieve efficient handling of maintenance tasks within the city and
to improve customer satisfaction, a single maintenance service station will not blindly
limit customers’ maintenance tasks to this site. It will decide whether to complete a
maintenance task locally or to recommend it to other service stations according to its
own auto parts inventory and the maintenance capacity. For example, the car connected
by the red curve in Fig. 1 represents themaintenance task recommended to other stations.
Assuming that the decision result of the ith maintenance service station xi at the time step
t is dj

i (t), then d
j
i (t) ∈ {0, 1}, and j ∈ {0, 1, 2, 3… N}. Specifically, dj

i (t) = 0 indicates

the task is done in local service station, dj
i (t) = 1 indicates that the task is recommended

to the jth service station, and the decision result meets the following restrictions:

Fig. 1. Automobile cooperative maintenance service model (ACMSM)

∑N

j=0
dji(t) = 1 (1)

Whether it is repaired locally or recommended to other service stations, there are
two main factors affecting customer satisfaction, one is maintenance time and the other
is maintenance cost. Generally, automobile maintenance mainly includes the repair and
replacement of auto parts. Both of them need to spend maintenance time and bear
maintenance cost. The difference between them is that the repair operation does not
include the material cost of auto parts while replacement operation does. For the same
maintenance task, whether it is finished locally or is recommended to other service
stations, the maintenance operations of auto parts are the same. Therefore, in order to
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simplify the system model, we assume that the maintenance task is only to replace the
damaged parts. The auto parts covered by automobilemaintenance services are complex,
including tires, oils, maintenance, brake pads, wipers, filters, lights, batteries, engines,
screws, general security, large and small assemblies, tools, etc. In order to simplify the
system model, we divide the auto parts into four categories: maintenance parts (engine
oil and filter element), vulnerable parts (tire and battery), repair parts (engine and starter)
and accident parts (stamping parts and condenser) according to the different replacement
frequency of auto parts. In addition, it is assumed that the vector Ki = (ki1, ki2, ki3, ki4)
represents the number of four types of auto parts to be maintained at the ith service
station, where kij ∈ {0, 1, 2… m} and kij = 0 represents that the jth type of auto parts
does not need to be maintained at the ith service station, and kij = m represents that the
number of the jth type of auto parts to be maintained is m.

Below, we will describe the quantitative expression of maintenance time and
maintenance cost required to perform maintenance tasks at different service stations.

3.1 Local Maintenance

At the time step t for the ith service station, if the maintenance task are decided to be
performed in the local station, themaintenance service timeTL

i is the sumofmaintenance
time and diagnosis time and other time, It can be quantitatively described as

TL
i =

∑4
m=1 k

m
i wm

fi
+ σi (2)

where, kmi represents the number of the mth type of auto parts be maintained at the ith

service station, wm represents the workload required to maintain the mth type of auto
parts, and f i represents the maintenance capacity that can be allocated in the ith service
station, σi represents the sum of maintenance preparation time, maintenance diagnosis
time and equipment commissioning time of the ith service station.

When the maintenance task is performed in the local station, the maintenance cost
consists of the sum of man-hour cost and material cost, which is quantitatively described
as

CL
i = (

∑4
m=1 k

m
i wm

fi
+ σi)q +

∑4

m=1
kmi em (3)

where q is the average man-hour cost of the maintenance service station and em is the
average price of the mth type of auto parts.

3.2 Recommending to Other Maintenance Service Stations

When the maintenance task is recommended to the jth service station by the ith service
station, the maintenance service time T j

i will include the time when the task transfers
from the ith service station to the jth service station, and the sum of the maintenance
time, diagnosis time and other time of the jth service station, which will be described as

T j
i = Dij

s
+

∑4
m=1 k

m
i wm

fj
+ σj (4)
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where Dij is the location distance between the ith service station and the jth service
station, s is the average speed, and f j is the maintenance capacity that can be allocated
by the jth service station.

When the maintenance task is recommended to the jth service station, the main-
tenance cost still includes man-hour cost and material cost, which is quantitatively
described as

Cj
i =

(∑4
m=1 k

m
i wm

fj
+ σj

)
q +

∑4

m=1
kmi em (5)

No matter whether the maintenance task is finished locally or is recommended to
other service stations, at the time step t, the ith service station may need to perform
the multiple maintenance tasks simultaneously. Therefore, the allocatable maintenance
capacity and the number of auto parts needed in the ith service station needs to meet the
following conditions:

∑
t
d j
i (t)fi ≤ Fi

∑
i∈N dj

i (t)Ki(t) ≤ Ki

(6)

whereFj represents themaximummaintenance capacity andKi represents themaximum
of auto parts in the ith service station.

3.3 Joint Optimization Problem

In order to make full use of the human resources of the automobile maintenance chain
enterprise and try to reduce the system maintenance overhead to improve customer sat-
isfaction, the optimization problem of automobile after-sales collaborative maintenance
service discussed in this paper can be described as realizing the optimization solution of
system maintenance overhead through the reasonable selection of maintenance decision
dj
i (t). The system cost consists ofmaintenance time andmaintenance cost. At the tth time
step, the maintenance time of the system can be expressed as T(t) = ∑N

i=1(ρiTi(t)), and
the maintenance cost can be expressed as C(t) = ∑N

i=1(ρiCi(t)), in which ρi represents
the task arrival rate. When the ith service station performs maintenance tasks locally,
Ti(t) = TL

i andCi(t) = CL
i . When the ith service station recommends tasks to other ser-

vice stations, Ti(t) = Tj
iandCi(t) = Cj

i. Since the dimensions of maintenance time and
maintenance cost are different, they need to be treated without dimension. As a result,
the cost function of the system is expressed as:

cost(t) = β
T(t)

TE + (1 − β)
C(t)

CE (7)

where β and 1 − β respectively represent the system’s preference for the maintenance
time and the maintenance cost. The β value can be adjusted to meet the sensitivity of
system for time or cost. TEandCE respectively represents the sum of maintenance time
of all service stations and the sum of maintenance cost of all service stations when all
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tasks are performed locally in one time step. Finally, the optimization problem of system
maintenance overhead will be defined as the following joint optimization formula:

lim
τ→∞

1

τ
min

∑τ

t=1
cost(t)

s.t. C1 : dji(t) ∈ {0, 1} (i, j) ∈ N, t

C2 :
∑N

j=0
dji(t) = 1

C3 : 0 ≤ fi ≤ Fi

C4 :
∑

i∈N dji(t)fi ≤ Fi

C5 : 0 ≤ Ki(t) ≤ Ki

C6:
∑

i∈N dji(t)Ki(t) ≤ Ki (8)

Among these constraints, C1 indicates that there are two situations in themaintenance
decision of the maintenance service station. C2 indicates that the service station i can
only recommend a task to one other service station at most. C3 and C4 ensure that the
sum of maintenance capacity assigned the maintenance tasks at each service station is
less than the maximum of maintenance capacity in the service station.C5 and C6 ensure
that the sum of auto parts required by the maintenance tasks at each service station is
less than the maximum of auto parts in the service station.

In this joint optimization problem, multiple service stations make maintenance deci-
sions in the distributed way. At the time step t, the maintenance service station observes
its individual state and some global environment states, such as the number of auto
parts required by the maintenance task, the assignable maintenance capacity, and the
location distance from other service stations, and generates an action where to perform
maintenance tasks, and then affect the available number of auto parts and the assignable
maintenance capacity in the whole system, and will receive a system reward. Finally, the
service station will reach a new state. This process can be described by the decentralized
partially observable Markov decision progress (Dec-POMDP).

4 Dynamic Task Recommending Algorithm Based on MADRL

4.1 Dec-POMDP Formulation

Asmentioned in the above section, the optimization problem of automobile collaborative
maintenance service can be described by a Dec-POMDP. The process can be abstracted
as an 8-tuple (A, S, U, F, R, O, Z,γ).

A = {1, 2,…, N} represents a finite set of agents. In the scenario of automobile
collaborative maintenance service, the maintenance service station is abstracted as an
agent.

S represents a collection of environmental states, S = {s1(t), s2(t), · · · , sN (t)}. For
each service station m, its own state at the time step t is sm(t) ∈ S and sm(t) can
be described as: sm(t) = (dm(t),Km(t), fm(t),Dm(t)), where dm(t) is the maintenance
decision, Km(t) is the required number of auto parts for the maintenance task at time
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t and it is also a vector, Km(t) = (km1(t), km2(t), km3(t), km4(t)), in which each com-
ponent represents the required number of each type of auto parts. fm(t) is the assigned
maintenance capacity,Dm(t) is the location distance between themth service station and
other service stations. These data is provided by the information management system of
the maintenance chain enterprise.

U represents the joint action space and the actions of all agents at the time step t are
represented as (μ1(t),μ2(t), ...μN(t)) ∈ U, in which μm(t) ∈ {0, 1, 2, ...N } represents
the actions executed by the mth service station at time t. When μm(t) = 0, it means
the task is finished in the local service station. When μm(t) = j, it means the task is
recommended to the jth service station.

F is a state transition function that is the function of all agents transferring to the
new state after performing the actions in the current state, which is represented as F: S
× U- > S. Assuming that the state transition function of each agent is represented as
fm(t), there is fm(t) = P(sm(t + 1)|sm(t), μm(t)).

R means a set of the system rewords. Each agent can obtain the system reward
rm(t) after it perform the action μm(t) according to the current state sm(t), in which
rm(t) ∈ R. rm(t) comprises the maintenance time reward rm,T (t) and the maintenance
cost reward rm,C(t), and it is expressed as rm(t) = β ∗ rm,T (t) + (1 − β) ∗ rm,C(t),
where rm,T (t) = (T j

m − TL
m)/TL

m. rm,T (t) is the ratio of the time difference between two

maintenance strategies. Similarly, rm,C(t) = (Cj
m − CL

m)/CL
m represents the ratio of the

cost difference between two maintenance strategies.
Whenμm(t)=0,which represents themaintenance task is done in local service station,

there is rm,T (t) = (T 0
m −TL

m)/TL
m = 0, rm,C(t) = (C0

m −CL
m)/CL

m=0, and rm(t)=0; When
μm(t)=j,which represents themaintenance task is recommended to the jth service station,
rm(t) will be a non-zero real value. If the maintenance time in local service station is
lower than that in other service stations, rm,T (t) is a positive reward; otherwise, rm,T (t)
is a negative reward. Similarly, if the maintenance cost in local service station is lower
than that in other service stations, rm,C(t) is a positive reward; otherwise, rm,C(t) is a
negative reward.

Obviously, the overall reward of the system can be decomposed into the sum of the
rewards obtained by each agent. Bymaximizing the long term cumulative reward Rm(τ),
we can find out the optimal task recommendation strategy for each service station that
minimizes the system maintenance overhead, i.e.,

maxRm(τ) = max
∑τ

t=1
γtrm(t) (9)

γ Is the attenuation coefficient, which is usually set to a number less than 1.
O represents the set of joint observations

and O = {o1(t), o2(t), · · · , oN (t)}, inwhichom(t) is the state that each service
station m can observe at the time step t and it is described as om(t) =
(sm(t), sm1(t), sm2(t), · · · , smn(t)) where sm(t) represents the own state of the mth ser-
vice station and smj(t)(j = {1, 2, · · · n}andn < N) represents the state of the jth station
adjacent to the mth station.

Z represents the observation probability function.
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4.2 Proposed CWN-MADRL Algorithm

When one service station cooperates with other service stations to complete a mainte-
nance task and makes the maintenance decision, it will consider not only its own state,
but also the state of other service stations. In addition, the location distance between any
two service stations varies, so one service station may pay different attention to other
service stations. This different attention to peers will lead to different collaborative will-
ingness between two service stations. Finally, this collaborative willingness will affect
the maintenance strategy and the action made by the service station. For example, the
service station will change from the action A to the action B because of influence of the
collaborative willingness of adjacent station.

Based on this assumption, this paper proposes a multi-agent deep reinforcement
learning algorithm based on collaborative willingness network (CWN-MADRL) to
solve the optimization problem of automobile collaborative maintenance service. CWN-
MADRL is an improved algorithm based on QMIX algorithm and it has three types of
networks, one is called act estimation network, one is called collaborative willingness
network, and the last one ismixing network of joint action value function. Each agent has
an act estimation network to generate the value estimation of the action, a collaborative
willingness network to generate the collaborative willingness of the agent. The mixing
network combine the actions of all agents to learn a joint action value function. CWN-
MADRL algorithm adopts off-policy to update the parameters of these network, so the
historical experiences comprising the state, action, reward, and next state as the training
data will be recorded in the replay buffer. Next, we present the detailed CWN-MADRL
architecture and the learning process ( as shown in Fig. 2).

Act Estimation Network

The act estimation network
∼
Qi of each agent i is is used to learn the act estimation

function
∼
Qi (τ i, μi

t), in which τ i is defined as the action-observation history. Its inputs
are the current individual observation oit and the actionμi

t−1 at the previous time step t-1,
as shown in Fig. 3, and its output represents the value estimation of the agent executing
a certain action. hitandh

i
t−1 Represents the hidden state in the current time step t and that

in the previous time step t-1 respectively, and they are in the GRU network. Each MLP
represents the fully connected network, and the activation function is ReLU.

Collaborative Willingness Network
The cooperation intention networkCi of each agent i is used to learn the cooperation

willingness function Ci(oit) which indicates the willingness of the agent to cooperate
with other peer agents. Its input is the observation oit at the time step t and it consists of the
partial environmental state observed by the agent i (including the state of other adjacent
agents) and the individual state of the agent i. The structure of cooperation willingness
network is shown in Fig. 4, in which the multi-head attention network is used to process
the information of adjacent agents and further capture the relationship between the agent i
and its adjacent agents. Here, we use a four-head attention network. Each head focuses on
the connection between the agent i and its adjacent agent j, representing the willingness
value of the agent j participating in cooperation with the agent i. Then the output of each
head are connected to be calculated.
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Fig. 2. The overall CWN-MADRL architecture

Fig. 3. Structure of act estimation network
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Fig. 4. Structure of collaborative willingness network

headj : gj = softmax

(
ei · eTj√

dk

)
e′
j(i 
= j)

mutli − head : g = concat{head1, · · · , headn}
(10)

In the above formulas, ei represents the query vector and ei = f(oit), ej represents

the key vector and ej = f(ojt), e
′
j represents the value vector and e

′
j = f

(
ojt

)
. There are

first four adjacent agents j selected from the agents closer to agent i.
Mixing Network
The mixing network is a feed forward neural network that is used to learn a joint

action value functionQtotal(τ, μ). Its structure is shown in Fig. 5 and it is the same as
the structure of mixing network in QMIX algorithm [19]. The network input Qi(τ it , μ

i
t)

is the individual action value of each agent i at the time step t. The network output is the
joint action value Qtotal(τt, μt) at the time step t. This network is constructed by super
network [26] which is used to generate the weight parameter of the mixing network. The
advantage of super network is it has less weight parameters and faster training time.W1

and W2 represent the generated weight parameters.
Parameter Update
In reinforcement learning, temporal-difference learning (TD learning) can directly

learns from the historical experience without knowing the environmentmodel. The value
function of the current state can be updated based on the estimated values of other states.
The update rules can be expressed as follows:

Q(st, at) ← Q(st, at) + αδt (11)

where α ∈ (0, 1) is the learning step, t is the time step, and δt is the TD error at time
t. The common methods to calculate the TD error are Q-learning [27], Sarsa [28] and
Expected Sarsa [29]. Thesemethods can be extended to n-stepmethods and they can also
be combined with λ-return. The λ-return can average n-step return by using different
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Fig. 5. Structure of mixing network[46]

n, and can balance between the sampling variance and the estimation deviation [30] by
adjusting λ value.

Agent decision-making is continuous, so we can use a long decision sequence as a
whole to estimate the impact of the current decision on the future decisions, that is, we
can take the data at the current time step and that at the next N steps from replay buffer
for learning policy. The action value function Qi can be used to evaluate the current

decisions and Qi = ∼
Qi +Ci. The joint action value function Qtotal consists of individual

action value functions Qi, so updating Qtotal can train the parameters in Qi end to end.
We use the off-policy TD control algorithmQ-learning to update the mixing network

parameters, because the our CWN-MADRL algorithm is trained in the centralized way
and it is executed in the decentralized way. Although the Q-learning algorithm based on
n-step return can reduce the deviation when updating the target, it will bring the high
variance[85]. Therefore, we adopt λ- return to solve this problem. As a result, the action
value function in the Q-learning algorithm combining λ- return and n-step return can be
expressed as:

Gλ
t = (1 − λ)

∑∞
n−1

λn−1Gt:t+n

Gt:t+n =
n−1∑

k=0

γ krt+k+1 + γ nmax
μ

Q(τt+n, μ)
(12)

where λ ∈[0, 1] is the parameter to adjust the average degree.When λ= 1, it degenerates
to Monte Carlo method. When λ= 0, it degenerates to one-step TD method. In other
words, the largerλ is, the longer historical experiences need to be considered;The smaller
λ is, the shorter historical experiences are. Using the above formula, the TD target can
be calculated to realize the agent’s processing of the whole historical experiences.
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After adding λ- return into the update rules of TD learning, the update rules of joint
action value function can be derived as follows:

Qtotal(τ, μ) ← Qtotal(τ, μ) +
∑min(t+n,T )−1

k=t
(λγ )k−1δk

δk = rk+1 + γ max
μ

Qall(τk+1, μ) − Qtotal(τk , μk)
(13)

4.3 Algorithm Training

The proposed CWN-MADRL algorithm is trained in the centralized way. The training
data comes from the historical experiences stored in the replay buffer. Multiply agents
can act in parallel to obtain their action evaluation value Qt , and they can select the
appropriate actionsμt based on ε-greedy policy according to the global state at the initial
time and the individual observation value of each agent. By executing these actions, each
agent can get the individual observation value at the next time step, the global state and
the reward value at the current time step, so {S(t),μ(t),R(t)andS(t + 1)} can be stored
into the replay buffer. In the training stage, the historical experiences are sampled from
the replay buffer and the mixing network uses them to calculate the loss function of the
system, and finally the parameters of all networks are updated end-to-end byminimizing
the following loss function.

L(ψ) =
∑b

i=1

∑T−1

t=1
[(ytotali,t − Qtotal(τi,t,μi,t;ψ))

2] (14)

where the TD target is ytotali,t = Gλ
t , G

λ
t is calculated by the target mixing network with

the parameter
−, b is the batch size of samples from the replay buffer. T is the max time
step in each episode. In Algorithm 1, we outline the pseudocode for the implementation
of CWN-MADRL.
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5 Experimental Analysis

In this section, some experiments are performed to verify the performance of CWN-
MADRL with simulated experimental scenarios, run with TensorFlowGPU-1.14.0 and
Python-3.7 on a desktop powered by Intel Xeon W2245 and NVIDIA Titan RTX.

5.1 Experimental Setup and Comparison Algorithm

The parameters involved in the system overhead calculation in the automobile coop-
erative maintenance service model (ACMSM) are shown in Table 1, and the super
parameters of CWN-MADRL algorithm are shown in Table 2.

Table 1. Key parameters of ACMSM

Parameter Value

Number of Service Stations (N) 10–20

Total maintenance capacity of the ith service station (Fi) 24–40 working hours

Average allocatable maintenance capacity per task of the ith service
station (f i)

1–3 working hours

Maximum of 4 types of auto parts (Ki) (300, 200, 100, 40)

Average maintenance workload of four types of auto parts (W = (w1,
w2, w3, w4))

(0.5, 1, 3, 5)

Average material cost of four types of auto parts (E = (e1, e2, e3, e4)) (50, 200, 2000, 5000)

Hourly maintenance cost of service station (k) 100

Distance between two service stations (Dij) 10–100 km

Average moving speed between two service stations (s) 30 km/h

To verify the effectiveness of CWN-MADRL, we compare it with the following
benchmark algorithms.

Independent Q-learning (IQL): an algorithm in which each agent execute the
exploitation action and the exploration action only according to its own reward function,
and it does not consider the relationship with other agents;

MixtureQ-learning (QMIX): an algorithm inwhich all agents share amixing network
whose gradient can be directly transmitted backward to each agent’s individual network;

Value-Decomposition Networks (VDN): an algorithm in which the global value
is simply decomposed into the sum of individual action value of each agent, and the
parameters in the global value network is updated by TD algorithm.

5.2 Comparison of Algorithm Performance

Reward is the metric used to measure the effectiveness of DRL-based algorithms.
Figure 6 shows the normalized system reward trend of our CWN-MADRL compared
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Table 2. Key parameters of CWN-MADRL

Parameter Value

Number of episode (M) 10000

Learning rate (ρ) 0.0001

Discount factor (γ) 0.95

Max size of replay buffer (d) 5000

Batch size (b) 32

The head number of multi-head attention network (h) 4

ε value 1 − ∑M
m=0

1−0.05
M m

λ return (λ) 0.8

with IQL, QMIX and VDN. MADRL-RA and DQN. It can be seen that the CWN-
MADRL algorithm has the best performance and the faster convergence speed. The
performance of VDN algorithm is better than QMIX algorithm, because in the scenario
of collaborative maintenance service, the relationship between the global action evalua-
tion value Qtotal and the individual action evaluation value Qi of each agent is relatively
simple, and Qtotal can be approximated by calculating the cumulative sum of multiple
Qi. The performance of IQL algorithm is the worst, and it is difficult to converge to
the stable state. It may be because the agent in IQL does not consider the cooperation
with other agents. CWN-MADRL algorithm is an improved QMIX algorithm, in which
the cooperation willingness network in each agent is added and the parameters of the
mixing network are updated by using the TD algorithm combined with λ-return and
n-step return. The experimental results show that these improvements are effective and
beneficial.

Figure 7 shows the relationship between the task arrival rate (ρm) and the average
system overhead. We find that the higher the task arrival rate results in the higher the
average system overhead. Specifically, when the task arrival rate reaches more than 60%,
the system cost increases significantly. The reason is that with the increase of reached
workload, the processing capacity of the local maintenance service station can no longer
meet the customer’s service request and It is necessary to recommend the maintenance
task to other service stations.

At this time, the task migration time will account for a certain proportion of the sys-
tem cost, so the average system cost will increase. When the task arrival rate continues
to increase, the service station that accept the recommended task may recommend the
maintenance task to another service station due to the imminent depletion of resources,
which further aggravates the average system cost. Importantly, compared with other
benchmark algorithms, CWN-MADRL algorithm can learn the better task recommen-
dation policy and it has the lower average system cost because it considers the global
environment information and the cooperationwillingness of other service stations. Com-
pared with IRL, QMIX and VDN algorithms, the system overhead is reduced by 39.1%,
15.6% and 9.4% respectively.
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Fig. 6. Average system reward trend of different algorithms
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6 Conclusion

Aiming at the maintenance collaborative service scenario of automobile maintenance
chain enterprises in large and medium-sized cities, this paper proposes a service col-
laboration model based on Dec-POMDP. In addition, a multi-agent depth reinforcement
learning algorithm based on collaborative willingness network is designed to solve the
optimization problem of multi-agent joint action. The algorithm adopts MADRL frame-
work based on value decomposition. For each agent network, a collaborative willingness
network module is added in it, except that the original action value evaluation network
module, and the attention mechanism is used to improve the impact of cooperation
among agents on action decision-making, while saving computing resources. Simula-
tion results show that the our proposed CWN-MADRL algorithm can realize effective
task recommendation strategy and effectively reduce the system overhead.
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Abstract. With recent cyber security attacks, “border defense” secu-
rity protection mechanism has been repeatedly infiltrated breakthrough,
and the “border defense” security protection mechanism has often pen-
etrated and broken through, and the “borderless” security defense idea
of “Never Trust, Always Verify” – Zero Trust was proposed . The device
application sandbox deployment model is one of the four essential zero
trust architecture device deployment models. Isolation sandboxes isolate
trusted applications from potential threats. The isolation of the applica-
tion sandbox directly affects the security of trusted applications. Given
the security risks such as sandbox escape in the sandbox application, we
propose a hybrid isolation model based on access behavior (AB-HIM)
and give the formal definition and security characteristics of the model.
The model dynamically determines the security identity of the subject
according to the access behavior and controls the access operation of the
application sandbox. Therefore, the sandbox meets the characteristics
of autonomous security, domain isolation, and integrity, ensuring that
the system is always in an isolated safe state and easy to use. Finally,
zero trust architecture device application sandboxing deployment envi-
ronment based on containers and Linux security module implements the
security model. And aiming at the same container escape vulnerabil-
ity, we make security comparison experiments. The experimental results
show that the security model proposed in this paper effectively enhances
the security of the device application sandboxing deployment model in
zero trust architecture.

Keywords: Zero trust architecture · Device application sandboxing ·
Isolation mechanism · Access control model

1 Introduction

Significant cyber security [8] incidents have occurred frequently in recent years.
Advanced Persistent Threat [6,20] continues at a high level in cyber threats.
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The original traditional network security defense mechanism based on the idea
of “border defense” has been repeatedly breached by infiltration. Once the iso-
lation mechanism [30] between the internal and external networks is breached,
attackers quickly gain control of the internal network and steal confidential data.
At the same time, with the continuous development of emerging technologies
such as cloud computing, big data, and the Internet of Things, corporate net-
work architecture is changing from “boundary” to “boundless”. The traditional
security boundary protection concept is slowly withdrawing from the stage. The
security, universality, and authority of “border defense” are significantly chal-
lenged. Accordingly, the chief analyst of Forrester formally proposed the concept
of “Zero Trust” in 2010 [10]. Zero trust breaks “border defense” of the tradi-
tional defense concepts and no longer simply uses clear boundaries to determine
whether to trust network entities. The core concept of Zero Trust is “Never
Trust, Always Verify”. When Zero trust emerged, it was so popular that the
US Department of Defense (DoD) successively invested significant defense bud-
gets in advancing the implementation of DoD Zero trust deployments [16,22].
An increasing number of outstanding international companies have also begun
deploying networks that implement zero trust architecture. Research institu-
tions have also successively released technical standards of zero trust. All of
these symbolize zero trust opening a new network security defense mode. The
National Institute of Standards and Technology (NIST) published 800-207 Zero
Trust Architecture in August 2020 [22]. This publication expounds on the log-
ical components of Zero Trust architecture and four typical deployment mod-
els. In particular, the fourth standard deployment model is device application
sandboxing (Fig. 1). This deployment model utilizes isolated areas to run appli-
cations or processes, and the isolated areas are collectively named application
sandboxes. Virtual machines, containers, or other methods are usually used as

Fig. 1. Device application sandboxing deployment in zero trust architecture [22]
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the implementation option of application sandboxes. Isolated regions [23] pro-
tect the security of application programs on the device. The device application
sandboxing model is widely deployed in practical applications. The advantage
of this deployment model is to isolate trusted applications from other applica-
tions on the device. Although the vulnerabilities existing in equipment assets
fail to be scanned promptly. Host-hidden malware hardly attacks applications
that are running in isolation sandboxes. However, if malware damages the isola-
tion mechanism between sandboxes, significant security threats will infect trust
applications running in the sandboxes. In addition, the trust applications run-
ning in different sandboxes have the requirement of communication with each
other. The sandboxes occur cross-reading and cross-writing data for informa-
tion exchange. Once one of the sandboxes is implanted with viruses, malicious
attackers own the privilege to attack other trusted sandboxes as a springboard.

This paper proposes a security access control mechanism [7,25] to enhance
application sandbox isolation, aiming at the security risks of weak isolation in
the device application sandboxing model. The security access control mecha-
nism controls the access behavior of the application sandbox to the resources
and data of the system and manages the privilege operation of the applica-
tion sandbox based on the minimum privilege principle to promote the isolation
of the application sandbox. The security access control mechanism takes the
hybrid isolation model based on access behavior identification as the core. It
regards the running application and sandbox as a complete system entity as the
minimum granularity for implementing access control. The advantages of the
security access control mechanism are following: a) We enhance the isolation
between the application sandboxes when they exchange the information flow. b)
We control the information flow between the application sandboxes according to
the security policy to ensure that the data in the application sandboxes are not
leaked, added, deleted, and tampered with. Focusing on the three independent
and closely related objectives of information security - confidentiality, integrity,
and availability, we formally define the security model and prove its security.
Simultaneously, we implemented the function of the application sandbox based
on the container and analyzed its security and performance. In summary, we
make the following contributions:

• We propose an isolation enhancement solution to ensure the security of the
device application sandboxing deployment model of the proxy device of Zero
Trust Architecture.

• We propose a hybrid isolation model based on access behavior labels, which
enhances the logical isolation between application sandboxes and provides a
high degree of flexibility and practicality to facilitate experimentation with
system security practice.

• We implement a prototype isolation enhanced sandbox for device application
sandboxing deployment model by using Docker and corroborate the security
and effectiveness of the hybrid isolation model based on access behavior label
by reproducing the vulnerabilities.
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Table 1. Comparison of access control model

S/Nsecurity

model

Protection

objects

Security attributesSecurity features Security policy contents

1 Bell-

LaPadula

[2,15]

Information

of system

Confidentiality 1. A computer access

control model that

simulates military security

policies

1. Discretionary security

policy: use the access

control matrix

representation, the

elements of the matrix

indicates the access

authority of user to object

2. The first strictly

formalized security model

2. Mandatory security

policy: security level is

defined for each subject

and object, security level is

composed of confidentiality

and scope, and there is a

dominant relationship

betweensecurity levels

3. Reading up and writing

down

2 Biba [3,18] Data Integrity Multi-level access control

model, with full levels

assigned to each subject

and object

1. Writing up and reading

down

2. Information flow is

always from high security

level to low security level

3 Clark-Wilson

[27,28]

Commercial

data

Integrity Focused on meeting the

security needs of business

applications and often used

in banking systems to

ensure data integrity, this

model is slightly more

complex and tailored to

modern data storage

technologies

1.The system accepts

“UDI” and converts it to

“CDI”

2. “CDI” can only be

changed by “TP”

3. TP ensures the integrity

of CDI

4. IVP owns “CDI”

4 Chinese-wall

[4,11]

Information

of

customers

integrity 1. Security model applied

in MSS

1. Each subject has a

username and belongs to a

group or has a role

2. Application in

organizations where exist

conflict of interest

2. Each object has an

access controllist that

limits the access of subject

3. User flags are checked

each time access occurs

based on access control lists

to control their access

rights

5 Discretionary

access

control

[19,26]

Specified

objects

– Allow the owner of an

object to set the protection

policy for that object

–

2 Related Work

2.1 Sandbox Security

M. Ali Babar et al. [1] analyzed the isolation mechanisms provided by three con-
tainer engines, i.e. Docker, LXD, and Rkt. Thanh Bui et al. [5] briefly compared
the security of hardware-based virtualization technology (e.g. XEN) and OS-level
virtualization technology (i.e. container mechanism) from the system architec-
ture level. Reshetova et al. [21] theoretically analyzed the security of several OS-
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level virtualization solutions, including FreeBSD Jails, Linux-V Server, Solaris
Zones, OpenVZ, LxC and Cells etc. What’s more, Some researchers [12,17] also
evaluated container security using potential vulnerabilities against specific con-
tainer mechanisms such as Docker. For example, A. Martin et al. [13] did a
vulnerability-oriented [29] risk analysis of the container, classifying the vulner-
abilities into five categories, performing a vulnerability assessment according to
the security architecture, and using cases of Docker. A Mouat et al. [17] sorted the
vulnerabilities of container platforms into kernel exploits, DoS, container break-
outs, poisoned images, compromising secrets. Z. Jian et al. [9] summarized two
models to achieve Docker container escape, proposed a defense tool by inspecting
the status of namespaces, and evaluated the tool with 11 CVE vulnerabilities.
Due to the small number of exploits reported in the vulnerability databases such
as CVE and NVD, it was challenging to provide a persuasive security evalua-
tion on container mechanisms. However, most of these works addressed sandbox
security from the system architecture or designed principle level without form-
ing information flow control through the security model. So those work hardly
enhanced sandbox security through the quantitative method, but more through
the qualitative approach. In this paper, we propose an access control model for
the sandbox to improve isolation, ensuring that the trusted application in the
sandbox is protected from untrusted programs or code.

2.2 Access Control Model

Es-Salhi et al. [24] proposed a new access control model for integrated ICS sys-
tems based on Domain and Type Enforcement (DTE). This new model allowed
defining and applying enforced access controls for ICS timing requirements.
Access controls definition was based on a high-level language that ICS adminis-
trators could use easily use. This paper also proposed an initial generic ruleset
based on the ISA95 functional model. This generic ruleset simplified the deploy-
ment of DTE access controls and provided an excellent introduction to the DTE
concepts for administrators. AI-Mawee et al. [14] proposed a recommendation-
based trust model, called Admonita, for data integrity that applied to any struc-
tured data in a system and provided a measure of trust to applications. Admonita
incorporated subjective logic to maintain the trustworthiness of data and appli-
cations in a system. Oleshchuck [19] proposed a trust-enhanced data integrity
model that was based on the Biba integrity model using subjective logic. In
his model, he reformulated the rules of the Biba integrity model in terms of
trust and proposed how to combine Role- Based Access Control RBAC with
the introduced integrity model. The Chinese Wall model was introduced by
Brewer and Nash [4] in 1989. The Chinese Wall model assumed impenetrable
Chinese Walls among company data sets so that no conflict of interest occurred
on the same side of the wall. According to the model, subjects were only granted
access to data that did not conflict with other data they possessed. However,
those models cared more about access control policy or theoretical security, less
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caring about access behavior and security practices. In this paper, we propose a
hybrid isolation model based on access behavior based on the DTE model and
the security thought of Biba and the Chinese wall model, which determines the
trust level of the object according to the access behavior of subjects in practice
more accessible.

The comparison of common access control models is shown in Table 1.

Fig. 2. Threat model for device application sandboxing deployment in zero trust archi-
tecture

3 Motivation and Threat Model

This section first identifies the attack surface of device application sandboxing
deployment in zero trust architecture and then discusses the threat model of the
AB-HIM model.

3.1 Attack Surface

Sandbox provides a security mechanism for separate applications, which runs in
a highly controlled environment. Sandbox is often used to test unverified pro-
grams that may contain a virus or other malicious code without allowing the
software to harm the host device. But sandbox is used to protect the trusted
application from untrusted programs or code for device application sandboxing
deployment in zero trust architecture. However, all applications running in the
sandbox scenes depend on the isolation of the sandbox. Figure 2 depicts the
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typical architecture of device application sandboxing deployment in zero trust
architecture and its attack surface. In device application sandboxing deployment,
sandboxes are usually managed by the management tools via over-powerful priv-
ileged interfaces. They could be arbitrarily inspected and tampered with by not
only the kernel but also the management tools in a host. That leads to com-
promising trusted sandbox easily by malicious applications which can access
privileged interfaces (e.g., attack surface). What’s more, in a virtual machine or
container, an image is a prepackaged software template containing the configura-
tions files that are used to create a sandbox. Thus, these images are fundamental
for the overall security of the sandbox. Malicious users can store pictures con-
taining malicious code into public repositories compromising sandbox security
mechanisms and breaking the isolation between sandboxes, thereby deluding the
policy enforcement point into thinking the untrust app is trusted.

3.2 Assumptions and Threat Models

To the study’rigor, we make the following assumptions for device application
sandboxing deployment mode of zero trust architecture:

(1) The application sandbox mentioned in this paper mainly refers to the
system-level sandbox, such as containers, virtual machines, etc., rather than
the browser sandbox.

(2) The underlying kernel of the application sandbox is trusted, and other parts
are not trusted.

(3) The minimum granularity of security access control is the application sand-
box and other processes running in parallel with the application.

(4) The security purpose of security access control is mainly to ensure isolation
between application sandbox without considering system confidentiality.

4 Hybrid Isolation Model Based on Access Behavior

To enhance the isolation of sandbox under the condition of limited interoper-
ability, just as Fig. 3 shows, this paper proposes a hybrid isolation model based
on access behavior (hybrid isolation model based on access behavior, AB-HIM)
based on the domain isolation model DTE, combined with the security thought
of integrity security model Biba and Chinese Wall. In this model, subjects are
classified into corresponding security domains according to their functionality.
They corresponding trust level is determined according to their credibility. The
type of object (such as configuration files, executable files, etc.) is determined
according to the object’s attributes. The trust level of the object depends on the
trust level of the subject (application sandbox) that first visited the object, if
and only if the business domain where the subject is located has access to the
type of the object. The access of the subject to the object doesn’t produce low
trust. Only when the level of information flows to a high level of trust, the sub-
ject’s access to the object is allowed. The AB-HIM model ensures the integrity
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of the application sandbox and data files, thereby enhancing sandbox isolation
while dynamically determining the trust level of the object based on the initial
access behavior of the subject, ensuring flexibility and practicality of the model.

Fig. 3. Schematic diagram of AB-HIM

4.1 Security Objectives

According to system security requirements and security design principles, the
model has three security goals:

(1) Application sandbox only accesses objects consistent with their functional
requirements.

(2) Application sandbox only has the minimum privilege to complete its func-
tion.

(3) Information flow cannot be generated between application sandboxes from
high-security level to low-security level.

4.2 Definitions

Definition 1. The subject is denoted as S = {s1, s2, s3, · · ·}, which includes
application sandbox, system process and sandbox management process, etc. The
object is denoted as O = {o1, o2, o3, · · ·}, and include entities such as files,
directories, sandbox images, and applications. Access operations are denoted as
P = {r,w, a, e}, which refer to operations such as reading, writing, adding, and
executing respectively. Furthermore, two special access operations are denoted as
P ′ = {create,del}, which are object creation operations and deletion operations.
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Definition 2. The security domains are denoted as D = {d1,d2,d3, · · ·}, indi-
cating the security domain identification of the subject. The system divides the
subject into multiple security domains (such as authentication domain, busi-
ness domain, etc.) based on the identification. The type notation is denoted as
T = {t1, t2, t3, · · ·}, which is used to identify the type of the object (such as
executable files, directory files, configuration files, etc.). The domain type table
is denoted as , which indicates the access authority of the domain to the type.
The users are denoted as U = {u1, u2, u3, · · ·}, indicating that the users exist on
the system.

Definition 3. The trust level, denoted as C = {c1, c2, c3, · · ·}, is a partial-order
set that identifies the trust level of the subject and object. The relationship
between trust levels is expressed as a dominance relationship, denoted as ci � cj ,
indicating that the trust level of ci is higher or equal to the trust level of cj . The
trust level of the subject is generally determined by the actual trustworthiness
metric of the subject, while the trust level of an object is determined by its
initial trust level or the trust level of the subject who first accesses the object.

Definition 4. Security label, donated as L, is used to characterize the security
context of security attributes of the subject and object. The security label of the
subject is denoted as Ls = (d, c, u), d denotes the security domain to which the
subject belongs, c denotes the trust level of the subject, and u denotes the user
to which the subject belongs, acl denotes the access control list of the object.

Definition 5. The system state space, denoted as V = (A,U,DT,L), is used
to describe the access control state of the system A = S × O × P , which rep-
resents the current set of allowed access to the system. The access decision set
is denoted as W = {allow, deny, ?}, allow represents access control request,
deny represents rejecting the current access control request, and ? represents an
unjudged exception.

Definition 6. The AB-HIM model system is denoted as
∑

= v0, V,R × W,F ,
v0 is the initial state, V is the spatial state, R × W represents the request input
set and decision output set in the current state. F represents the state transition
function, it is the transition rule between states.

4.3 Security Characteristics

To describe whether a system state is in an isolated and safe condition, the
following security characteristics are defined.

(1) Autonomous security. For the system state v, ∀a ∈ v.A, s ∈ a.S, o ∈ a.O,
∀p ∈ a.P and uk = U(s), uh = U(o), lo = Lo(o), all make (uk, uh, p) ∈ lo · acl
to be true, then the state v satisfies the autonomous security.
(2) Domain isolation feature. For the system state v, ∀a ∈ v.A, s ∈ a.S,
o ∈ a.O, ∀p ∈ a.P , di = D(s) and tj = T (o), all make p ∈ v.DTij to be true,
then the state v satisfies the isolation characteristic.
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(3) Integrity characteristics. For the system state v,∀a ∈ v.A,s ∈ a.S,o ∈
a.O,p ∈ a.P and ls = Ls(s), when p ∈ {w}, lo = Ls(o), ff ls.c�lo.c∧lo.c�ls.c is
established; when p ∈ {a}, ff ls.c�lo.c is established; when p ∈ {r, e},fflo.c�ls.c
is established. When the above conditions are met, the system state v is said to
meet the confidentiality characteristics.

A system state is isolated and secure if and only if it satisfies both the
autonomous security, domain isolation, and integrity properties.

4.4 Security Level Management

AB-HIM model implements access control for system entities based on the secu-
rity label of system entities. Security attributes such as security domains, types,
users, and access control lists in the security label are determined when the sub-
ject and object are created. Except for the interference of the security adminis-
trator, the security attributes, as mentioned above, will not change during the
access process of the subject and object. Still, the trust level will vary according
to the access behavior of the subject and object. Currently, the security level
of most multi-level security models determines the security level of the subject
and object when they are created, remaining unchanged during the entire oper-
ation. It is difficult to adapt to the inherent requirements of system dynamic
operation safety and makes the model less flexible and practicable. It is not
easy to popularize and use the model (such as the multi-level security module
of SELinux). It isn’t easy to achieve the security goal of protecting the sys-
tem. Because of the above problems, in the AB-HIM model, the trust level of
the subject is determined according to its business function, permission require-
ment, and risk assessment. And the highest trust level (initial trust level) of the
object is determined by automatic methods such as virus detection and vulner-
ability assessment. At the same time, the trust level of the object is associated
with the trust level of the subject. The final trust level of the object depends
on its initial trust level and the trust level of the subject who first accesses the
object. This makes the model meet the dynamic security requirements, realize
more strict integrity protection and ensure the practicability of the model. The
change of the trust level of the subject and the object in the whole life cycle
is shown in Fig. 4. It mainly includes three stages, the initialization stage, the
access stage, and the transfer stage.

(1) Initialization stage: When the subject is created, according to the secu-
rity domain to which the subject belongs, combined with the authority of the
subject requirements and risk assessment results, the subject is given the level of
trust Cs−init that the subject should have. In creating the object, through auto-
matic methods such as file source screening, virus detection, and vulnerability
assessment, the trust of the object is comprehensively evaluated, and the high-
est trust level Co−max can be obtained to ensure flexibility and practicability.
Objects transfer trust level only when they are accessed.
(2) Access stage: From the creation of the object to the scene before the
subject accesses it for the first time, the trust level of the object Co−max remains
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unchanged, and the trust level of the subject Cs−init remains unchanged. When
the subject accesses the object for the first time, if it is authorized to access it,
the trust level of the object is assigned to the trust level of the subject, that is
Co = Cs. If it is not authorized, the trust level of the object remains unchanged.
When the subject does not access the object for the first time, the trust level of
the object remains unchanged. Objects transfer trust levels only when they are
accessed.
(3) Transition stage: System administrators change the trust level of the cor-
responding subject and object in the system according to the system operation
requirements. The security management process must have the appropriate priv-
ileges. At the same time, the following trust level transfer rules must be satisfied
for the subject-object trust level transfer under the model security objectives.

1© Transition Rule of Subject Trust Level: For the subject s, the current
trust level is Cs, and the trust level after the Transition C ′

s must satisfy Cs �C ′
s.

2© Transition Rule of Object Trust Level: For the object o, the current
trust level is Co. If the access operation of the subject to the object is writing or
adding, the transferred trust level C ′

o must satisfy C ′
o�Co. If the access operation

of the subject to the object is reading, the trust level after the transition C ′
o must

satisfy C ′
o = Co.

Fig. 4. Trust level transition of object during access

In the security label management of the AB-HIM model and the trust level
management, the access control list, privilege management, and ownership are
all maintained by the system administrators. Without violating the security
objectives of the model, the administrator decides the decision-making matters
and some privileged operation authorization within the scope of autonomous
access control to ensure the practicability of the model.
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4.5 Security State Transition Rules

When the subject in the system accesses the object, the system’s state may
change. This paper establishes the corresponding state transition rules to ensure
that the system is safe before and after state transition.

(1) Read access state transition rules
When system state V = (S × O × P,U,DT,L) is accessed by request (S,O, r),
the following rules are required: s ∈ S, o ∈ O, and uk = U(s), uh = U(o),
ls = Ls(s), lo = Lo(o), di = D(s), tj = T (o).

(s, o, r) ⇒
⎧
⎨

⎩

(uk, uh, r) ∈ lo.acl ∧ r ∈ V.DTij ∧ ls.c � lo.c, allow;
((uk, uh, r) /∈ lo.acl ∨ r /∈ V.DTij ∨ ls.c � �lo.c), deny;

other conditions, ?.

(2) Write access state transition rules
When system state V = (S × O × P,U,DT,L) is accessed by request (S,O,w),
the following rules are required: s ∈ S, o ∈ O,and uk = U(s), uh = U(o),
ls = Ls(s), lo = Lo(o), di = D(s), tj = T (o).

(s, o, w) ⇒
⎧
⎨

⎩

(uk, uh, w) ∈ lo.acl ∧ w ∈ V.DTij ∧ ls.c � lo.c, allow;
(uk, uh, w) /∈ lo.acl ∨ w /∈ V.DTij ∨ ls.c � �lo.c, deny;

other conditions, ?.

(3) Append access state transition rules
When system state V = (S × O × P,U,DT,L) is accessed by request (S,O, a),
the following rules are required: s ∈ S, o ∈ O, and uk = U(s), uh = U(o),
ls = Ls(s), lo = Lo(o), di = D(s), tj = T (o).

(s, o, a) ⇒
⎧
⎨

⎩

(uk, uh, a) ∈ lo.acl ∧ a ∈ V.DTij ∧ lo.c � ls.c, allow;
(uk, uh, a) /∈ lo.acl ∨ a /∈ V.DTij ∨ lo.c � �ls.c, deny;

other conditions, ?.

(4) Execute access state transition rules
When system state V = (S × O × P,U,DT,L) is accessed by request (S,O, e),
the following rules are required: s ∈ S, o ∈ O, and uk = U(s), uh = U(o),
ls = Ls(s), lo = Lo(o), di = D(s), tj = T (o).

(s, o, e) ⇒
⎧
⎨

⎩

(uk, uh, e) ∈ lo.acl ∧ e ∈ V.DTij ∧ ls.c � lo.c, allow;
(uk, uh, e) /∈ lo.acl ∨ e /∈ V.DTij ∨ ls.c � �lo.c, deny;

other conditions, ?.

5 Security Analysis

Theorem 1: Security Preservability of system state transition rule. If
the system state V = (S × O × P,U,DT,L) is safe, then the system state is also
safe after a state transition according to any AB-HIM model state fitting rule.
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Contradiction: If the system state is safe, it must satisfy autonomous security,
domain isolation characteristics, and integrity characteristics simultaneously.

Firstly, it is proved that the system state transformation rule is secure under
the read access state transformation rule. Assuming that the system cannot enter
a secure state under read access rule, the system state V ′ is not insecure. Then
there must be a read access operation (S,O, r) that converts the security state
V into an unsafe state V ′. It can be seen from the read access state transition
rules (uk, uh, r) /∈ lo.acl, (uk, uh, r) ∈ lo

′.acl,or r /∈ v.DTij , r ∈ v′.DTij ,or ls.c �
�lo.c, ls

′.c � lo
′.c, that all of them are established. The state satisfies autonomous

controllability, isolation and confidentiality at the same time, that is, it is a safe
state.

When the state transition rule is the write access state transition rule, the
additional access state transition rule, and the execution access state transition
rule, the proof method such as the read access state transition rule will not be
repeated. In summary, we can know that the security retention theorem of the
system state transition rule holds.

Theorem 2: Secure Preservability of Trust Level Transferring Rule.
For any trust level transferring rules in the AB-HIM model, the information
flow from low trust level to high trust level is not generated when the rules are
processed.

Proof: Using the contradiction method proves that after the trust level trans-
ferring is carried out according to the model’s two trust level transferring rules,
the system will not generate an information flow from low trust level to high
trust level.

(1) Assuming that the system generates the flow of information from low trust
level to high trust level when the system performs trust level transferring
according to the subject trust level transferring rules. The Flow of informa-
tion from low trust level object O1 to high trust level object O2 is generated.
The subject first accesses the low trust level object O1 with a read operation.
The subject writes or appends the read information to O2. According to the
model state transition rules, the trust level of the subject before transferring
is not higher than the trust level of O1, the trust level after the trust level
transferring is not lower than the trust level of O2. Therefore, the trust level
of the subject increases after the trust level transfers. Still, according to the
subject trust level transferring rule, the trust level of the transferred subject
should decrease. It contradicts the conclusion derived from the hypothesis.
Therefore, we conclude that the subject trust level transferring rule has
security retention.

(2) Assuming that the system generates the flow of information from low trust
level to high trust level when the system performs trust level transferring
according to the object trust level transferring rule. The information flow
from low trust subject S1 to high trust subject S2 is generated. Then, sub-
jects S1 with low trust level access object O by writing or adding operations.
According to the model state transition rules, the trust level of the object
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before the trust level transferring is not higher than the trust level of S1.
After the trust level transferring is not lower than the trust level of S2.
Therefore, after the object is transferred to the security level, the trust level
increases. However, according to the transferring rule of the object trust
level, when the access operation before the transferring of the object trust
level is written or added, the object trust level must be reduced, which con-
tradicts the conclusion deduced according to the hypothesis. At the same
time, if the access operation before transferring of the trust level of the
object is read, the trust level of the object becomes higher after the trans-
ferring of trust level. However, the object’s essential attributes of have not
changed, which does not conform to the actual situation of the system. And
the subject that has unable to read their contents now own privileges to read
their data, violating the security goals of the system. In consequence, when
the access operation before the object trust level transferring is read opera-
tion, the security level of the object only remains unchanged after the trust
level transferring. Therefore the trust level transferring rule of the object
has security retention.

In summary, it can be concluded that the trust level transfer rule of the model
satisfies the security retention of the trust level transfer rule, which means that
the theorem holds.

6 Experiment

We implement a deployment environment based on CentOS and the container
solution Docker for the device application sandboxing deployment model in zero-
trust architecture and implement the AB-HIM model based on the Linux Secu-
rity Module (LSM). At the same time, aiming at the Docker container escape
vulnerability, we confirm that AB-HIM is safe and effective by comparing the
success of vulnerability exploitation before and after enabling the AB-HIM secu-
rity model.

6.1 Prototype

In the AB-HIM model prototype, the main subjects are containers, system pro-
cesses,andserviceprocesses,dividedintosystemdomains,agentcontainerdomains,
application container domains, application domains, and so on. Subjects are
denoted as {system d, zt container d, app container d, app d, ...}. The subject is
expressedinan8-bit integer.Theobjectsaremainlyapplicationimages,documents,
directories, sockets, configuration files, and executables, divided into proxy images,
application images, configuration files, executables, log files, shared files, and so on.
Objects are denoted as {zt image t, app image t, config t, exec t, socket t, ...}.
The object is expressed in an 8-bit integer. The trust level is classified
as untrustworthy, low-trustworthy, trusted, and high-trustworthy, denoted as
{Untrust, Low Trust, T rust,High Trust}. The trust level is expressed in 8-
bit characters. The security policy format of the AB-HIM model prototype is
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{domin, type, op}, and the prototype is implemented in the form of a domain-type
table with a cross-linked data structure, which is used to determine domain-to-
type access operations. The prototype of the AB-HIM model is a Linux kernel
security module that enhances container isolation based on the open-source code
of SELinux and the autonomous access control mechanism of Linux, according to
the security characteristics, security label management, and state transition rules
of the AB-HIM model. All above expressions are summarized in Table 2, Table 3,
and Table 4.

Table 2. The domain of subjects

Subject Denotes Expression

System management system d 8-bit

Agent container zt container d 8-bit

Application container app container d 8-bit

Application app d 8-bit

Table 3. The type of objects

Object Denotes Expression

Proxy images zt image t 8-bit

Application images app image t 8-bit

Configuration files config t 8-bit

Executables exec t 8-bit

Log filesshared files socket t 8-bit

Table 4. The trust level

Trust level Mark as Expression

Untrustworthy Untrust 8-bit

Low-trustworthy Low Trust 8-bit

Trusted Trust 8-bit

High-trustworthy High Trust 8-bit

6.2 Security Evaluation

In this paper, we focus on the Docker container escape vulnerability CVE-2020-
15257 to test whether the exploit is successful with or without AB-HIM to con-
firm the practicality and feasibility of the AB-HIM model. The software environ-
ment of the experiment is shown in Table 5, and the CVE-2020–15257 vulnera-
bility exploitation schematic is just shown in Fig. 7. The result of the container



Hybrid Isolation Model for Device Application Sandboxing Deployment 119

escape attack at docker is shown in Fig. 5, which protects without the AB-HIM
security Model. While the result of the container escape attack at docker is shown
in Fig. 6, which is protected by AB-HIM security Model. The experiment result
shows that AB-HIM effectively defends against the container escape vulnerabil-
ity CVE-2020-15257 and confirms the effectiveness of the AB-HIM model. We
compare AB-HIM and Container-SELinux in terms of security policy size, access
control granularity, flexibility, security attributes, and simplicity. The result is
shown in Table 7.

Table 5. The version of software in experiment

OS CentOS 7

docker-ce version 19.03.10

Docker-ce-cli version 19.03.10

Container.io version 1.3.7

Security Module AB-HIM

Docker Images Ubuntu:18.04

Fig. 5. The result of exploiting CVE-2020-15257 without AB-HIM

Fig. 6. The result of exploiting CVE-2020-15257 with AB-HIM
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Fig. 7. CVE-2020-15257 Vulnerability exploitation schematic

Table 6. Hardware configuration in performance experiment

Memory 4GB

CPU 4x Intel R© CoreTM i7-7700 CPU @3.60 GHz

NIC Intel R© Ethernet Connection (5) 1219-LM

Table 7. The result of AB-HIM and sVirt through contrastive analysis

Security module Policy magnitude Control granularity Flexibility Security attributes Simplicity

AB-HIM Hundreds Container High Integrity Good

Container-SElinux Thousands Container Low Confidentiality So-so

6.3 Performance Evaluation

In order to analyze the performance overhead of the AB-HIM model in terms of
access control, data-intensive and network-intensive test procedures are mainly
selected for performing experiments. In order to analyze the performance over-
head brought by the access control of the AB-HIM model, data-intensive and
network-intensive test programs are mainly selected for performing experiments.
Based on fio and netperf benchmark tools, this paper tests the performance of the
container with AB-HIM model, SELinux, and without mandatory access control
model. The hardware configuration is shown in Table 6, and the software envi-
ronment is shown in Table 5. The results of the network-intensive performance
experiments are shown in Fig. 8. The results of the data-intensive performance
experiments are shown in Fig. 9. The experimental results show that the AB-
HIM security module has less impact on network and disk access performance
than Container-SELinux.



Hybrid Isolation Model for Device Application Sandboxing Deployment 121

Fig. 8. The result of benchmarking of network with different security module

Fig. 9. The result of benchmarking of disk access with different security module

7 Conclusion

Aiming at the isolation problems such as the escape of the sandbox of the zero
trust architecture device application sandboxing deployment mode, we design
hybrid isolation model based on access behavior label (AB-HIM) model based
on the DTE model and the security thought of Biba and Chinese wall model.
The model determines the object’s trust level according to the subject’s access
behavior, prevents the flow of information flow from the low trust level to the
high trust level, and ensures the flexibility and availability of the model while
ensuring the isolation and credibility of the system. We introduce the definition of
the model in detail and prove its security characteristics. Finally, we implement
a prototype of the model based on SELinux and do the comparative experiment.
The experiment results show that the model is safe and effective to ensure the
isolation of the sandboxes.
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Abstract. We investigate the influence of clock frequency on the suc-
cess rate of a fault injection attack. In particular, we examine the success
rate of voltage and electromagnetic fault attacks for varying clock fre-
quencies. Using three different tests that cover different components of
a System-on-Chip, we perform fault injection while its CPU operates at
different clock frequencies. Our results show that the attack’s success
rate increases with an increase in clock frequency for both voltage and
EM fault injection attacks. As the technology advances push the clock
frequency further, these results can help assess the impact of fault injec-
tion attacks more accurately and develop appropriate countermeasures
to address them.

Keywords: RISC-V · System-on-chip · Voltage and electromagnetic
fault injection

1 Introduction

Fault Injection (FI) attacks have been used to attack cryptographic implemen-
tations for over two decades. It is now well known that both symmetric and
asymmetric cryptosystems are vulnerable to Differential Fault Analysis (DFA)
attacks [7–9,15]. However, breaking cryptographic implementations is just one
of the many possibilities for FI attacks. They have been frequently used to break
the security of smart cards and embedded devices [10,25–27]. FI attacks have
been successfully used to break secure boot, e.g., bypassing the authentication
of the code stored in flash memory, allowing attackers to run their code on the
device. Further, FI has been used for privilege escalation or to extract firmware
from the device.

Previous Work. Boneh, DeMillo, and Lipton demonstrated how faults induced
in hardware could be exploited to recover the secret key used in RSA [9]. In this
attack, a fault is injected while the device performs an RSA operation, leading
to incorrect output. Given several incorrect outputs and the correct output,
recovering the secret key used with a DFA attack is possible. Similar attacks have
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Zhou et al. (Eds.): ACNS 2022 Workshops, LNCS 13285, pp. 127–145, 2022.
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been later proposed for other public, and symmetric-key algorithms [1,2,7,8,15].
A survey of these successful fault attacks can be found in [5].

Moreover, existing published results use FI to break the non-cryptographic
security mechanisms. In [26], Timmers, Spruyt, and Witteman showed that FI
could be used to load attacker-controlled data into the Program Counter (PC)
register in an ARM 32-bit platform, allowing an attacker to gain runtime control
of the device by setting the PC to an address where the attacker’s payload is
stored. In [20], the authors performed FI on the instruction cache of ARMv7-M
architectures and modified the control flow of a program. Cui and Housley used
FI to corrupt the data stored in DRAM, thereby breaking the secure boot of
an embedded device [11]. A laser FI attack has been successfully used to break
the secure boot of a smartphone in [27]. In [25], FI has been successfully used
to escalate the privileges in Linux from user mode to kernel mode. Recently, FI
has also been used to extract the firmware from several commercial devices [10].

Contributions. Unlike smart cards, many embedded systems in use today are
implemented using multi-core System-on-Chips (SoCs) that are complex and
host CPUs that run at hundreds of MHz to few GHz. Most of these SoCs can
operate at different frequencies, and they often provide an option to config-
ure their frequency externally or internally. Moreover, some SoCs start booting
directly from an external clock that is relatively slow and switch to PLL (Phase
Locked Loop) sometime during the boot flow. This switch leads to a natural
question: does the FI’s attack success rate depend on the operating frequency?

The success rate of an FI test is defined as the number of successful faults
divided by the number of total attempts. So, naturally, as the success rate
increases, the effort required to perform a successful attack decreases. Although
dependency between the EM pulse voltage and the clock frequency along with
success rate was briefly discussed in [18] within the context of FPGA, to the best
of our knowledge, no extensive study examined the relationship between the clock
frequency and the success rate of an FI attack. In this work, we address this gap
for Voltage FI (VFI) and ElectroMagnetic FI (EMFI) within the context of an
SoC. We use SiFive’s HiFive1 development board for our experiments, which
houses the FE310-G000 chip, the first commercially available RISC-V SoC.

Organization. The rest of the paper is organized as follows. We provide a brief
introduction to different FI attacks and fault models in Sect. 2. Next, we describe
the three different test applications used in our testing in Sect. 3. The hardware
and the software tools used for the experiments are listed in Sect. 4. The results
from our experiments for both VFI and EMFI on HiFive1 are presented in Sect. 5.
We provide possible reasons for the observed behaviour in Sect. 6. Finally, we
conclude the paper in Sect. 7.

2 Preliminaries

Fault injection attacks are a class of physical attacks that try to actively modify
the intended behavior of the device in order to bypass its security. Faults can
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be injected into the targeted device through different means, e.g., varying the
supply voltage or the clock speed, or using electromagnetic emissions or laser
beams [4]. In this section, we describe the common techniques used to inject
faults. We also recall various fault models from the literature.

Clock Fault Injection. A fault is injected by tampering with the target’s clock
signal [3]. For example, the target is supplied with a clock signal higher than its
operating frequency for a short period reducing the length of a single clock cycle.
Thus, it may cause setup time constraint violations [28] changing the program’s
control flow, which could result in breaking a security mechanism.

Voltage Fault Injection. A fault is injected by changing the target’s supply
voltage [28]. This change is applied when the targeted operation is executed,
making it possible to induce the desired effect in the device. As shown in [28],
voltage fault injection causes setup time violations like the clock fault injection.

Electromagnetic Fault Injection. A fault is injected by applying a transient
or a harmonic EM pulse [6,12,17]. A fault injection probe consisting of a coil
generates such pulses after a high voltage pulse is applied to the coil, inducing
eddy currents into the chip. These eddy currents cause faulty behavior that could
be used to break a security mechanism.

Optical Fault Injection. A fault is injected into the target device with the help
of a light pulse [24]. The applied light pulse induces a photo-electric current in the
device, causing faults in the computations. The light pulse can be generated using
a low-cost camera flashlight, but often this is not precise. For higher precision,
a laser beam is used to induce the desired light pulse.

Fault Models. The behavior of a device can be affected in various ways due
to fault injection attacks. These attacks can influence both the CPU’s execution
unit and the static components that store data and instructions like the registers
and the caches [25]. In general, it is difficult to determine the exact reason behind
a successful fault injection attack. Therefore, we use high-level fault models
that describe the effect of faults on the device’s behavior on the instruction set
architecture level [26]. Commonly used fault models include:

– Instruction Manipulation: The fault modifies the instruction, leading to
unexpected behavior. For example, a bit flip in the opcode field of an instruc-
tion converts a subtraction operation into an addition.

– Instruction Skipping: This is a special case of instruction manipulation
that results in a modified instruction that has no impact on the device’s
behavior. This can happen, for example, when the operands of the modified
instruction have been changed to something that is not used later by the
program or when a branch instruction has been changed to a nop, i.e., no
operation.

– Memory Corruption: The fault affects the values loaded from a register
or memory, which can cause unexpected effects on the program execution.
This can happen when the data loaded to a register from the data cache
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is corrupted. Alternatively, when the data read from the main memory is
corrupted, the data or instruction cache stores the corrupted value.

3 Test Applications

In this section, we propose three test applications that aim to capture the effects
of faults on different SoC components. These tests are based on the characteri-
zation test presented in [26] and intend to cover the effect of faults on an SoC
more extensively. At a high level, a fault can modify the instructions being exe-
cuted or the data being processed through a single or multiple bit flips. Such
modifications can occur in any SoC component, like the CPU or the memory, or
during data exchange. We aim to cover different scenarios where a fault could
modify the data or instructions.

Our tests are designed to cover the effects on various SoC components. We
implemented them in assembly to fully control what is being executed on the
CPU and avoid any undesired effects caused by compiler optimizations. We show
these tests in Listing 1.1, Listing 1.2, and Listing 1.3 in an assembly-like pseudo-
code that can be easily translated into any Instruction Set Architecture (ISA).
In all these tests, we use two general-purpose registers named t0 and t1. Their
names come from the temporary registers defined in RISC-V but all ISAs have
such registers.

3.1 Register-Based Loop

In the register-based loop, we only use the CPU registers to implement a loop.
We use two counters: one that goes up and the other goes down. These counters
are initialized to 0 (t0 register) and n (t1 register), respectively. The test consists
of a loop that increments and decrements t0 and t1, respectively, in steps of 1,
until t1 becomes 0. The rest of the registers are initialized with a known fixed
value (e.g., 0xdeadbeef) to monitor if the fault modified the source or destination
registers in an instruction. The test uses only two registers to store the counters,
and hence the data cache will not be used. Additionally, as the code size is small,
it should most likely fit in the instruction cache.

A successful fault is identified by checking the value of the registers at the
end of the loop. In some cases, the registers t0 and t1 do not hold the values n
and zero due to the injected fault. Alternatively, the fault could also affect the
value in the unused registers.

1 # Push a known value to a l l the r e g i s t e r s
2 # N: the number o f r e g i s t e r s in the ISA
3 ( t2 , . . . , tN) ← 0 xdeadbeef
4 t0 ← 0
5 t1 ← n
6 r e g l o op :
7 t0 ← t0 + 1
8 t1 ← t1 - 1
9 i f t1 > 0 then goto r e g l oop

Listing 1.1. Register based test
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3.2 Memory-Based Loop

The memory-based loop is similar to the register-based loop but the counters
are loaded/saved from/to the memory (using load and store instructions) in
every iteration. Again, the loop ends when t1 is 0 (Listing 1.2). After the first
load, a copy of the data is kept in the data cache, and hence faults would only
affect the data cache and its transfers inside the loop. The loop code should fit
in the instruction cache due to its size. We also initialize all the unused registers
to a fixed value to track any corruptions in their contents or verify whether a
different register was used in a loop iteration due to the fault. A successful fault
is determined by examining the registers and comparing their values with the
expected ones.

1 # Push a known value to a l l the r e g i s t e r s
2 # N: the number o f r e g i s t e r s in the ISA
3 ( t2 , . . . , tN) ← 0 xdeadbeef
4 t0 ← 0
5 s tack [ sp - 4 ] ← t0
6 t1 ← n
7 s tack [ sp - 8 ] ← t1
8 mem loop :
9 t0 ← s tack [ sp - 4 ]

10 t1 ← s tack [ sp - 8 ]
11 t0 ← t0 + 1
12 t1 ← t1 - 1
13 s tack [ sp - 4 ] ← t0
14 s tack [ sp - 8 ] ← t1
15 i f t1 > 0 then goto mem loop

Listing 1.2. Memory based test

3.3 Unrolled Loop

In this test, we implement a fully unrolled loop. We use one up-counter (t0)
initialized to 0, that is incremented n times through an unrolled loop. Similar
to the other two tests, we also initialize all the unused registers to a fixed value.

In general, this test can be used in two different ways according to the loop’s
number of increment instructions. First, if a small n is used, the program can fully
fit in the instruction cache, which results in no cache misses during the execution of
the test. As a result, only transfers between the instruction cache and the CPU are
affected. This way, it is possible to pinpoint the sensitivity of the instruction cache
and the corresponding bus to FI attacks. On the other hand, if a large n is used and
the program cannot fit in the instruction cache, there will be instruction cache misses
during the execution of the test, which results in loading the instructions from the
main memory. The CPU to main memory bus’s sensitivity to FI attacks could also be
determined in such cases.

1 # Push a known value to a l l the r e g i s t e r s
2 # N: the number o f r e g i s t e r s in the ISA
3 ( t1 , . . . , tN) ← 0 xdeadbeef
4 t0 ← 0
5 t0 ← t0 + 1
6 t0 ← t0 + 1
7 t0 ← t0 + 1
8 . . .
9 t0 ← t0 + 1

Listing 1.3. Unrolled loop
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A successful fault is detected when the value in t0 is not equal to n or when the
value in any of the unused registers is corrupted.

4 Setup

Performing automatic execution of FI attacks requires both hardware and software
tools. In this section, we describe the tools used for our experiments. We also briefly
discuss the characteristics of the target used for the experiments.

4.1 Target of Evaluation

Our target is the FE310-G000 (fabricated in TSMC CL018G 180 nm [22]) which is
included in the development board HiFive1. FE310-G000’s maximum supported fre-
quency is 320MHz and the CPU requires 1.8 V or 3.3 V supply voltage to operate [21].
We did not decap the chip due to its thin package as was also described in [14]. The
tests presented in Sect. 3 are implemented as part of a user-defined program that runs
on bare-metal (without an operating system), as described in Subsect. 4.3.

4.2 Hardware Tools

During our experiments, various faults (also referred to as attempts in this paper) are
injected into the device in order to identify suitable parameters for success. For that
reason, a fully automated setup has been created using commercially available tools
from Riscure [19]. We used the following hardware tools for testing:

– Glitch Generator: An FPGA based workbench that can be programmed to inter-
act with embedded devices. The “brain” of this device consists of two finite state
machines (up to 255 states each), which are responsible for the correct generation
of every signal that is needed for our experiments. To handle inputs/outputs, the
device consists of 32 GPIO pins that can interact with the target. We use this
device to generate the glitch used for the fault injection. The Glitch Generator
consists of six analog voltage outputs, and it can also provide the input voltage for
small embedded devices.

– Glitch Amplifier: This analog device is used in conjunction with the Glitch
Generator. It is used to generate sharper and more accurate voltage glitches that
are essential in voltage fault injection attacks.

– EMFI Transient Probe: The Glitch Generator controls this device. It generates
an electromagnetic pulse lasting for 50 ns after the Glitch Generator triggers it.
The probe is made of a copper winding around a ferrite core, and its tip is a flat
circle with a diameter of 1.5 mm.

4.3 Software Tools

We implemented a simple bare-metal application in C and RISC-V assembly that runs
on the FE310-G000 chip. This application accepts messages from the PC through the
UART interface and runs one of the three characterization tests described in Sect. 3.
The message from the UART determines which test should run every time. Right before
the test starts, a GPIO pin is set to high, and the same pin is set to low when the test
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Table 1. The list of commands used to communicate with the board

Command Functionality

“#1” Run the register based loop (test 1)

“#2” Run the memory based loop (test 2)

“#3” Run the unrolled loop (test 3)

“#4” Enable the PLL at 320 MHz (fast EMFI configuration)

“#5” Disable the PLL and use 16MHz (slow configuration)

“#6” Enable the PLL at 90 MHz (medium configuration)

“#7” Enable the PLL at 240 MHz (fast VFI configuration)

(a) EMFI Setup (b) VFI setup

Fig. 1. Setups used for the experiments.

ends. This pin is used in the synchronization between the Glitch Generator and the
target device. The application can alter the chip’s operating frequency dynamically
by enabling or disabling the PLL. We used three clock configurations to investigate
the effect of different operating frequencies on both VFI’s and EMFI’s attack success
rate. The first configuration operates at 16 MHz (slow configuration) and does not use
the PLL clock generator. However, the medium and the fast configurations use the
PLL. The medium configuration operates at 90 MHz. The fast configuration operates
at 320 MHz and 240MHz for the EMFI and the VFI, respectively. We had to operate
the device slightly slower than the maximum allowed frequency for VFI due to the
instabilities introduced after the board was modified (see Subsect. 4.5). In Table 1, we
show a summary of the protocol used between the PC and the board.

4.4 EMFI Setup

Our experimental setup used for the EMFI is shown in Fig. 1a. The target board is
powered using an external power supply. A Python script that runs in the PC controls
the target through the UART interface and configures the state machine inside the
Glitch Generator through a user-friendly API. This state machine consists of one state
that produces the glitch when the trigger is generated from the target device. We
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(a) HiFive1 CPU schematic [23]
(b) Power cuts in HiFive1 for ef-
fective voltage fault injection

Fig. 2. HiFive1 CPU schematic and applied modifications.

program the target with our test application as we described in Subsect. 4.3. A jumper
wire drives the trigger signal from the target’s GPIO to the Glitch Generator. The
Glitch Generator produces another trigger that is driven to the EMFI Transient Probe.
The EMFI Transient Probe generates an EM pulse, which may or may not affect the
target. The Transient Probe is attached to a CNC (Computer Numerical Control)
machine that acts as a movable XYZ stage helping in accurate positioning above the
target device. After the application finishes its execution, the device replies back to
the PC, and the results are saved to an SQLite database. If no reply has been received
after a specific amount of time, the target is reset by the Glitch Generator using the
target’s reset pin. We used an FTDI chip for the communication between the PC and
the target.

4.5 VFI Setup

In Fig. 2a, the schematic that describes the circuit around the FE310-G000 chip in the
HiFive1 development board is shown [23]. We see that pins 6, 30, and 46 are used for the
CPU’s power supply. To create a stable power supply line that is not affected by small
variations in the input voltage, some filter capacitors are connected directly to these
pins. To increase the effectiveness of the VFI, the glitch should be applied directly to
the CPU without having to pass through the filter circuit. Therefore, we modified the
HiFive1 board used for our experiments. The applied power cuts are shown in Fig. 2b.
In particular, pins 6, 30, and 46 are cut from the rest of the circuit and soldered to
an external pin so that it is possible to connect them to a 1.8 V power supply directly
(VDD Core in the Fig. 2b).

The experimental setup we used for VFI is shown in Fig. 1b. For this experiment,
the development board was powered from an external power supply at 5V. The power
cuts isolated the SoC from the rest of the board, and hence we powered it separately. In
particular, we connected the Glitch Amplifier directly to the external pin that powers it.
When there is no glitch, the output of the Glitch Amplifier is set at 1.8 V, as suggested
in [21]. We verified that the chip correctly operated in this setup even though the filter
capacitors have been removed. Like the EMFI, the target generates a trigger when the
application starts. The trigger is then driven to the Glitch Generator. Next, the Glitch
Generator produces the glitch, which is fed to the Glitch Amplifier. The glitch drops
the Vin to a random value smaller than 1.8 V (from 1.0 V to 1.6 V) for a short time.
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We chose a broad range of values for the glitch to investigate the chip’s behavior under
various circumstances. When we need to perform an attack, we can narrow this range
and use values that yield a high probability of a successful attack. A Python script
controlled this process, and an FTDI chip was used for the communication between
the PC and the target.

4.6 Results Classification

The output from a fault injection attempt is categorized as follows:

– Expected: The test has completed its execution and the expected results (e.g., t0
= n and t1 = 0) were sent back to the PC.

– Crash/Mute: The impact of the glitch was strong, and the target crashed, or
there was no reply from the target before the timeout expired. In this case, the
glitch either affects the execution path and the application cannot continue or
causes the target to reset.

– Successful: The counter values (t0 and t1) returned to the PC were different
from the expected (t0 �= n or t1 �= 0). Therefore, the injected fault produced an
undesirable effect on the program execution without causing a crash.

Note that the success rate of an experiment is defined as the number of successful
attempts divided by the total number of attempts.

5 Experimental Results

To investigate how clock frequency affects FI success rate, we performed VFI and
EMFI experiments while the CPU was clocked at different frequencies. In this section,
we present the results from these experiments.

Parameter Space. The glitch applied in every fault injection attempt is fully defined
through a set of configurable parameters. These parameters form the parameter space
for the experiment, and they are different for every type of FI attack.

5.1 EMFI

The effectiveness of the EMFI depends on the location of the probe. Thus, we need
to identify the location that gives the maximum success rate. For that reason, we
performed a scan over the 6 × 6 mm chip’s package [21] in a two-dimensional grid of
points. On every point in the grid, we performed multiple FI attempts for statistical
analysis. In general, the grid’s density (distance between different points) depends on
the size of the chip and its package and the transient probe tip’s area. When the probe
tip is small, a dense grid can be used. On the other hand, when the probe tip is large,
a sparse grid should be used. If the grid remains dense even with a large tip, every
EMFI experiment can affect multiple points in the grid, introducing redundancy in
the results. We used an 8 × 8 grid of 64 points for our scan, which resulted in a step
of 0.75 mm. The diameter of our probe tip is 1.5 mm, and such a step is reasonable
to avoid interference between different grid points. The grid’s origin (X = 0, Y = 0)
corresponds to the lowest left corner of the chip’s resin package (see FE310-G000 pinout
in [21]).

The parameter space for the EMFI consists of the following:
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– Glitch power: The EM pulse’s amplitude as a percentage of the Transient Probe’s
maximum supported power. The maximum supported power corresponds to a 470V
pulse. We saw that values above 80% resulted in many resets and below 40% seemed
ineffective. For that reason, we used values between 40% and 80% of the maximum
power.

– Glitch delay: The time between the trigger and the glitch. This should not be
larger than the whole duration of the test that runs on the CPU. There was no
need for exact timing in our experiments as they were loops and our aim was to
draw a sensitivity map. Thus, the delay used was a random value between the 35%
and 65% of each test’s execution time. As expected, the exact ranges are different
for every test and every clock frequency.

– X: The X coordinate (in micrometers) of the grid point.
– Y: The Y coordinate (in micrometers) of the grid point.

We scanned the whole chip package in this experiment. At each point, we performed
a number of attempts with varying glitch delay and glitch power, both of which were
selected randomly from the above predefined ranges. We set n equal to 10000 (0x2710).
The results of this experiment are summarized in Fig. 3, Fig. 4, and Fig. 5. In these
graphs, the x and y axes show the X and Y co-ordinates of the grid point, respectively.
The green color represents expected results, the yellow color crashes/mutes, and the
red successful results (see Subsect. 4.6). We add a small random value (0–400 µm) to
each experiment’s X and Y coordinates so that they are not plotted on top of each
other.

We see from Fig. 3 and Fig. 4 that for the slow (16 MHz) and the medium (90 MHz)
clock configurations, successful glitches occurred only in the unrolled loop (List-
ing 1.3). These glitches occurred around the pins that communicate with the SPI
flash memory (see F310-G000 pinout in [21]). The unrolled loop (Listing 1.3) con-
sists of 10000 additions, and it requires an instruction cache of 10000 instructions ∗
4 bytes per instruction = 40000 ≈ 39 KiB. However, FE310-G000 has only a 16KiB
instruction cache. Thus, our faults were most likely affecting the instruction transfers
from the flash. On the other hand, the code perfectly fits in the instruction cache
when the number of loop iterations is small, i.e., 300. In this case, no successful glitch
appeared around the region where we observed successful glitches previously. After the
first iteration of the loop, the code is copied into the instruction cache, and there is
no more interaction with the SPI flash memory. We saw no successful glitches in that
case (slow and medium clock configurations), and we concluded that transfers from the
instruction cache to the CPU were robust in these experiments.

In Table 2, we summarize some of the observed successful attempts. For all the suc-
cessful attempts in the unrolled loop test, the returned value is less than the expected
10000 (0x2710). If the returned counter value is close to 0x2710, it is safe to conclude
that some add instructions were skipped due to the fault. This happened when t0 is
0x2700, 0x2708, and 0x270f for 16MHz, 90 MHz, and 320 MHz, respectively. In the
remaining cases (i.e., 0x256e, 0x26c2, 0x2660), there is a significant difference between
the returned and the expected values, so we cannot assume that only a few instruc-
tions were skipped. Even though the glitch lasts for 0.8, 4.5, and 16 cycles for the slow,
medium, and fast clock configurations, the returned values differ by 418, 88, and 176
from the expected value. In [14], it was verified that an EMFI attack could affect mul-
tiple instructions at once. However, the probability of this effect dropped significantly
for more than six instructions. Thus, in all these cases, some instructions were altered
completely. Such alterations require multiple bit-flips for each altered instruction that
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Fig. 3. EMFI results of all three tests at 16 MHz (PLL bypassed).

Fig. 4. EMFI results of all three tests at 90 MHz (PLL enabled).

is not aligned with the state-of-the-art fault models like the sampling [18] or the charge-
based [16]. Additionally, the successful attempts in this area were not increased as the
operating frequency increased, which contradicts the charge-based fault model [16].
We concluded that this behavior was possible due to the retrieval of instructions from
the external SPI flash. Therefore, these errors were not of particular interest for this
work because the external SPI flash is unprotected in this board, and an attacker could
directly attack it.

The other two tests have successful faults only when the chip operates at 320MHz,
verifying the charge-based fault model [16]. In particular, we conclude that the branch
instruction can be skipped in the register-based test, as one of the results was (t0, t1)
= (7190, 2810) = (0x1c16, 0xafa). In that case, everything was run as expected until
the branch instruction because t0 + t1 = 10000. Additionally, in two cases a result
larger than 10000 was saved in t0 (0x2e20 and 0x29ef), but the loop exited normally
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Fig. 5. EMFI results of all three tests at 320 MHz (PLL enabled).

(i.e., t1 = 0). This indicates that the immediate values of the additions can be altered
(instruction manipulation) because the significant difference from 10000 cannot be
explained by a few instruction skips even if our glitch lasts for 16 clock cycles.

For the memory-based loop, we observed all possible faults when the chip operated
at 320MHz. In the first case ((t0, t1) = (0x270f, 0x0)), one addition was skipped.
In the second case ((t0, t1) = (0x62f, 0x20e1)), the branch instruction was skipped
because t0 + t1 = 0x2710 and t1 �= 0. The third case ((t0, t1) = (0x31fe, 0)) shows
that the constant added or subtracted has been manipulated and changed to a com-
pletely different value. Furthermore, memory corruption can also be seen when (t0,
t1) = (0xdeadde040, 0). In this case, during the loop’s execution, the contents of a
register with the value 0xdeadbeef were saved in the stack. This value was retrieved in
the next loop iteration. Then, the execution of the loop continued normally for 8529
(0xdeade040 - 0xdeadbeef) iterations until t1 was set to zero. From Fig. 5, we infer that
it is easier to induce successful faults when the target operates at the highest possible
frequency. Among the three tests, the memory-based loop (Listing 1.2) has produced
a higher percentage of successful faults because memory operations (i.e., loads and
stores) are highly vulnerable to faults. Additionally, we practically verified that each
program behaves differently under the same EMFI attacks highlighting the need for a
profiling phase before targeting an application. Such a profiling phase could define the
susceptibility of different assembly instructions to EMFI.

5.2 VFI

For an effective Voltage fault injection, we have removed the chip’s filter capacitors
(see Subsect. 4.5). The CPU was powered directly from the Glitch Generator. Its
supply voltage should be 1.8 V (±10%) to function normally. For the glitch, the input
voltage was dropped for a small amount of time, different for every clock configuration.

The parameter space for the VFI consists of the following:

– glitch voltage: The voltage provided to the target during the glitch. This voltage
takes values from 1 V to 1.6 V.
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Table 2. Output from some of the successful faults in EMFI

Frequency Test t0 t1 Comment

16MHz Register based loop – – –

Memory based loop – – –

Unrolled loop 0x256e – Instruction manipulation (add)

0x2700 – Instruction skipping (add)

90MHz Register based loop – – –

Memory based loop – – –

Unrolled loop 0x26c2 – Instruction manipulation

0x2708 – Instruction skipping (add)

320MHz Register based loop 0x1c16 0xafa Instruction skipping (branch)

0x2e20 0x0 Instruction manipulation (add)

0x29ef 0x0 Instruction manipulation (add)

Memory based loop 0x270f 0x0 Instruction skipping (add)

0x62f 0x20e1 Instruction skipping (branch)

0x31fe 0x0 Instruction manipulation (add)

0xdeade040 0x0 Memory corruption

Unrolled loop 0x2660 – Instruction manipulation

0x270f – Instruction skipping (add)

– glitch length: The amount of time that the glitch (voltage drop) is applied to the
target. In our experiments, this takes up to a small number of clock cycles.

– glitch delay: The amount of time between the trigger and the glitch. It should
be smaller than the total execution time of the test that runs on the CPU. Similar
to the EMFI experiments, the delay used was a random value from 35% to 65% of
the test’s execution time.

In our experiments, we varied all three parameters for each attempt. The values for
these parameters were chosen randomly from the allowed ranges. Similar to the EMFI,
we chose n equal to 10000 (0x2710). We show the results from the VFI experiment
in Figs. 6, 7 and 8 for the slow, medium, and fast clock, respectively. The X-axis shows
the glitch voltage in volts and the Y-axis shows the glitch length in nanoseconds. Here,
the expected results, crashes/mutes, and successful results are marked in green, yellow,
and red, respectively (Subsect. 4.6). The highest frequency that the application could
run normally, when no glitch is applied, is 240 MHz due to the instabilities that we
mentioned in Subsect. 4.5.

Our experiments show that the largest number of successful glitches appear in
the fast clock configuration (240 MHz), and the smallest number of successful glitches
appear when the circuit operates at 16MHz. In [28], it was shown that VFI increases
signal propagation delays creating timing constraint violations. Such violations become
easier when the circuit operates in a higher clock frequency due to the decreased clock
period.

In Table 3, we show some of the observed successful attempts. Their classification
is based on the analysis we presented in Subsect. 4.6. When the clock operated at
16MHz, we see that the branch instruction can be skipped in both the register-based
loop and the memory-based loop. Here, we got (t0, t1) = (0x1a5, 0x256b) for the
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Fig. 6. VFI results of all three tests at 16 MHz (PLL bypassed).

Fig. 7. VFI results of all three tests at 90 MHz (PLL enabled).

register based loop and (t0, t1) = (0x1182, 0x158e) and (t0, t1) = (0x1adb, 0x1adc)
for the memory-based loop. In the second case for the memory-based loop, t0 + t1 �=
0x2710, meaning that apart from the branch skipping, one more operation (add/sub)
was also manipulated. Instruction manipulation was possible in both the register-based
loop ((t0, t1) = (0x25b6, 0)) and the unrolled loop (t0 = 0x26e0). Furthermore, the
add instruction was also successfully skipped both in the memory-based loop ((t0, t1)
= (0x270f, 0)) and in the unrolled loop (t0 = 0x270f).

Similarly, when the clock operated at 90MHz various faults have been observed.
The branch instruction was successfully skipped for both the register-based loop ((t0,
t1) = (0xeb2, 0x185e)), and the memory-based loop ((t0, t1) = (0xc37, 0x19d9), (t0,
t1) = (0x608, 0x2109), (t0, t1) = (0xa3d, 0xdeadbeee)). Apart from branch skipping,
we also observed memory corruption for the memory-based loop ((t0, t1) = (0xa3d,
0xdeadbee)). Here, after the wrong value was loaded in t1, the subtraction was per-
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Fig. 8. VFI results of all three tests at 240MHz (PLL enabled).

formed and then the branch was skipped. In one case, both the sub and the branch
instructions have been skipped ((t0, t1) = (0x608, 0x2109)) because the sum is 0x2711
and t0 �= 0. The rest of the experiments (register-based: (t0, t1) = (0x2700, 0), memory-
based: (t0, t1) = (0x270e, 0), unrolled: t0 = 0x2f0f, t0 = 0x2711) indicate some kind
of instruction manipulation in the constants that were added or subtracted.

When the clock operated at 240MHz, similar results have been observed. In this fre-
quency, there were multiple cases of branch skipping (register-based: (t0, t1) = (0xb85,
0xdeadbeed), (t0, t1) = (0x5f0, 0x2120), memory-based: (0xada, 0x1c36), (t0, t1) =
(0xcaa, 0xdeadbeee)). There were also multiple examples of memory corruption for
both the register-based loop ((t0, t1) = (0xb85, 0xdeadbeed)) and the memory-based
loop ((t0, t1) = (0xdeadce5f, 0), (t0, t1) = (0xcaa, 0xdeadbeee)). For one of these
cases (memory-based: (t0, t1) = (0xdeadce5f, 0)), the wrong value was loaded to t0
and the loop continued normally for 0xdeadce5f - 0xdeadbeef = 0xf70 iterations before
it stopped. In the other two cases, the predefined value, i.e., 0xdeadbeef was loaded
to t1, and the sub instruction decreased t1 by 1 (normal execution) or 2 (instruction
manipulation), and the branch instruction was skipped in the same loop iteration. In
one case for the register-based loop, we got (t0, t1) = (0x2711, 0). This happened
either because one addition was manipulated and a 2 was added instead of 1, or one
subtraction was skipped and thus, the loop was executed for 1 more iteration. The
rest of the experiments are either instruction manipulations (memory-based: (t0, t1)
= (0x1c0f, 0), unrolled: t0 = 0x2720, t0 = 0x181c) or addition skipping (unrolled: t0
= 0x270f).

6 Discussion

In this section, we present possible explanations for the observed results. The observed
results are compatible with earlier analyses of the effects of FI on digital integrated
circuits. VFI causes timing constraint violations [28], which in turn cause computation
faults. The timing constraints essentially dictate that the time taken by a circuit to
process data must be lower than the clock period of the target for it to function
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Table 3. Output from some of the successful faults in VFI

Frequency Test t0 t1 Comment

16MHz Register based loop 0x1a5 0x256b Instruction skipping (branch)

0x25b6 0x0 Instruction manipulation (add)

Memory based loop 0x1182 0x158e Instruction skipping (branch)

0x270f 0x0 Instruction skipping (add)

0x1adb 0x1adc Instruction manipulation (add) + instruction

skipping (branch)

Unrolled loop 0x270f – Instruction skipping (add)

0x26e0 – Instruction manipulation (add) or instruction

skipping (add)

90MHz Register based loop 0x2700 0x0 Instruction manipulation (add)

0xeb2 0x185e Instruction skipping (branch)

0x4b38 0x0 Instruction manipulation (add)

Memory based loop 0x270e 0x0 Instruction skipping (add) or instruction

manipulation (sub or add)

0x608 0x2109 Instruction skipping (sub + branch)

0xa3d 0xdeadbeee Memory corruption + instruction skipping

(branch)

0xc37 0x19d9 Instruction skipping (branch)

Unrolled loop 0x2f0f – Instruction manipulation (add)

0x2711 – Instruction manipulation (add)

240MHz Register based loop 0x2711 0x0 Instruction manipulation (add) or instruction

skipping (sub)

0xb85 0xdeadbeed Memory corruption + instruction skipping

(branch)

0x5f0 0x2120 Instruction skipping (branch)

Memory based loop 0x1c0f 0x0 Instruction manipulation (add or sub)

0xada 0x1c36 Instruction skipping (branch)

0xdeadce5f 0x0 Memory corruption

0xcaa 0xdeadbeee Memory corruption + instruction skipping

(branch)

Unrolled loop 0x2720 – Instruction manipulation (add)

0x181c – Instruction manipulation (add) or instruction

skipping (add)

0x270f – Instruction skipping (add)

correctly. So, by increasing the data processing time using FI, it is possible to violate
the above constraint and induce faults in the computation. As the operating frequency
of the target increases, the clock period decreases. Hence, it is relatively easier to violate
the setup time constraint, thereby increasing the success rate of VFI.

In EMFI, we did not see only timing faults, but we also observed bit sets, resets, and
flips, meaning that our experiments are aligned with the charge-based fault model [14]
instead of the sampling fault model [18]. The sampling fault model [18] states that
the susceptibility windows of the DFFs are independent of the operating frequency,
but the distance of these windows decreases as the clock period gets smaller [13]. As
a result, one could claim that a glitch injected randomly during the execution of a
program has a higher probability of causing a successful fault when the chip operates
at a high frequency. However, the fact that we were able to successfully inject faults
(not related to the SPI flash) only when the chip operated at 320 MHz suggests that
the charge-based fault model is more accurate in this case.
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In theory, the same success rate can be achieved when the target operates at a lower
frequency, e.g., by inducing more powerful voltage glitches or EM pulses. However,
the power of glitches cannot arbitrarily be increased in practice without causing the
target to reset. This behavior was also observed in our experiments: when the target
was running at 240MHz (VFI), we could get many successful faults, where glitch
duration was less than 800 ns (see Fig. 8). However, we needed to increase the glitch
duration for the slower clock speeds, i.e., 2000 ns and 12000 ns for 90 MHz and 16 MHz
respectively (see Fig. 7 and Fig. 6). Such longer glitches inevitably make the target
dysfunctional, leading to more resets, as seen from these results. To conclude, when
the target operating frequency is low, the success rate decreases due to more resets
caused by the increased glitch power. This might also explain the higher success rate
when the operating frequency is higher.

7 Conclusion

Many embedded systems in use today are implemented using multi-core SoCs that are
complex and host CPUs that run at hundreds of MHz to few GHz. The security of
these devices faces different challenges compared to other simple devices like smart
cards. In this paper, we investigated the effect of clock frequency on the success rate
of VFI and EMFI on such SoCs. To determine the effect of faults more holistically,
we developed three test applications that target different components of the SoC. We
performed both VFI and EMFI on a RISC-V-based SoC while it was executing our
tests. The experimental results showed that the probability of success for fault injection
attacks increases as the clock frequency increases. We saw this behavior in both VFI
and EMFI. Finally, we provided theoretical justification for the observed results.
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Abstract. Nowadays, profiled attacks are the standard penetration
tests for security evaluations. Often the security evaluators have to per-
form profiled attacks on each S-box to quantify the security strength
of the target symmetric cryptographic algorithm implementations more
accurately. The required time to conduct such profiled attacks is very
long due to the number of profiling traces (for many certification bodies,
at least 1,000,000 are mandated). It is getting even more time-consuming
after introducing deep learning profiled attacks. Furthermore, some cer-
tification bodies instruct up to 5,000,000 or 10,000,000 profiling traces
because modern embedded secure IC products have more and more coun-
termeasures against side-channel attacks. It is a challenge to simultane-
ously decrease the number of required profiling traces and the required
profiling time while retaining the attack performance for profiled attacks.
In this work, we propose a simple yet remarkably effective pooling app-
roach to address this problem for security evaluations. That is, pooling
over the S-boxes to build a large profiling set and perform the profiling
on this large set once. Intensive experiments are conducted with this
pooling approach using different profiling tools (template attack and its
pooled variant, stochastic model and deep learning) on three different
AES implementations (a sequential S-box software AES implementation
without masking, a sequential S-box software AES implementation with
first-order masking and a parallel S-box hardware AES implementation
with first-order masking). The experimental results have shown that the
proposed pooling approach can lead to similar attack performance while
decreasing both the required number of profiling traces and the required
profiling time by a factor of 8 or even 16.

1 Introduction

1.1 The Context of This Work

In Kocher’s seminal work [8], Side-Channel Attacks (SCA) were proposed to
extract secret keys of cryptographic algorithms implementations via the timing
side channel. Since then, SCA have drawn plenties of attention in the commu-
nity. On the one hand, it is extended to different side channels, e.g., power
consumption [9], electromagnetic radiation [13]. On the other hand, different
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Zhou et al. (Eds.): ACNS 2022 Workshops, LNCS 13285, pp. 146–164, 2022.
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distinguishers and new approaches are also adapted to SCA. Amongst them,
profiled attacks are considered the most powerful SCA after Chari et al. pub-
lished the novel template attacks [2]. Various research works have focused on
improving profiled attacks from different perspectives, e.g., for efficiency pur-
poses [3,14], or portability and robustness. It is worth noting that there are two
types of profiled attacks depending on what we are profiling, either profiling the
key itself or profiling some intermediate data that depends on it (e.g., S-box
output). Generally speaking, profiling the key directly is more studied in the
asymmetric cases, profiling key-dependent values (e.g., S-box output) is more
studied in the symmetric cases, and key transportation is rarely studied (though
applies in all cases).

Concretely, SCA are a pillar for security evaluations of information secu-
rity products1, and profiled attacks are a de facto standard penetration test
for cryptographic algorithms. For security evaluations, based on the rating pol-
icy to gain so-called AVA_VAN.5 security assurance2, such a standard profiled
attacks-based penetration test typically costs 3 to 4 weeks in total for an experi-
enced security evaluator. It is grey-box testing although the security evaluators
often can get access to the detailed design information (hardware and/or soft-
ware) of the implemented symmetric algorithms being evaluated. The outline of
time division (in total 3 to 4 weeks) for such a standard profiled attacks-based
penetration test starting from scratch is below:

– Stage 1 (1–2 weeks): Understand the target implementation and narrow
down the target interval as much as possible through SPA (Simple Power
Analysis)/SEMA (Simple ElectroMagnetic Analysis) and CPA (Correlation
Power Analysis)/CEMA (Correlation ElectroMagnetic Analysis) (or simi-
lar techniques). It also includes the scripting time of the measurement and
measurement/analysis time. It is vital to narrow down the target interval
as much as possible because the sampling rate for measuring EM (Electro-
Magnetic Radiation) traces can be very high (5GHz to 10GHz). Hence, the
number of sample points within the interesting interval can be the bottleneck
of the subsequent profiled attacks. Another critical step in this stage is to
choose the appropriate EM signal after surface scans of the chip. It is easier
when the location of the symmetric algorithm co-processor is known to the
evaluators, but if it is not known, this task can become very time-consuming.

– Stage 2 (0.5–1week): Measure at least 1,000,000 (recently some certification
bodies demand 5,000,000 or up to 10,000,000 because of more and more secu-
rity countermeasures in the modern secure microcontrollers) profiling traces
and at least 150,000 attack traces (50,000 for each of 3 different attack keys).

– Stage 3 (1–1.5 weeks): Preprocess the measured traces (e.g., align them [17])
and conduct template and deep learning profiled attacks on all S-boxes (e.g.,
16 in the AES case) in an attempt to recover those three different attack keys
(3 sets of attack traces as mentioned in Stage 2). It also includes the reporting

1 https://www.sogis.eu/uk/supporting_doc_en.html.
2 https://www.sogis.eu/documents/cc/domains/sc/JIL-Application-of-Attack-

Potential-to-Smartcards-v3-1.pdf.

https://www.sogis.eu/uk/supporting_doc_en.html
https://www.sogis.eu/documents/cc/domains/sc/JIL-Application-of-Attack-Potential-to-Smartcards-v3-1.pdf
https://www.sogis.eu/documents/cc/domains/sc/JIL-Application-of-Attack-Potential-to-Smartcards-v3-1.pdf
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time. More precisely, due to the implemented countermeasures such as jitters
and random delays, often the evaluators have to re-synchronize (align) the
traces step by step to get closer and closer to where the S-box operations are
supposed to take place [17]. It commonly costs 1 or 2 days considering the
number of traces and the number of sample points of every trace. Afterwards,
the evaluators need to perform both template and deep learning attacks on
each S-box one by one. Currently, the best practice is to execute profiling
and attacking on each S-box one by one [4]. It naturally requires lots of time
taking into account the number of sample points (normally a few thousand
sample points for one S-box considering the EM traces) and the amount of the
traces. With deep learning evaluations now being mandated by certification
bodies, this issue further amplifies. Because usually, compared to the classical
template attacks, the training of the neural networks requires much more time
owing to the many hyperparameters to be tuned.

1.2 Problem to Be Addressed

To simplify the task of the evaluators, there is not much we can do consid-
ering Stage 1 and Stage 2. Also, we cannot skip or shorten the necessary re-
synchronization preprocessing for Stage 3 [17]. One may argue that deep learning
profiled attacks can be effective to tackle this, however, re-synchronization pre-
processing makes deep learning attacks more efficient from security evaluation
perspective according to [17] and the same target implementations are consid-
ered in this work. Hence, the only option left is to find a more efficient way to
decrease both the number of required profiling traces and the required profiling
time while preserving the attack performance. Somewhat surprisingly, there have
been limited attempts to characterize and improve such practical challenges. In
this work, therefore, we aim to study it for popular profiled distinguishers and
various target implementations.

1.3 Our Contribution

The general idea of our work is S-box pooling. It is to first reconstruct a larger
set of profiling traces by pooling the profiling traces corresponding to each S-box.
The second step is to execute profiling only once on this new profiling traces set.
Finally, it is to attack all the S-boxes to disclose all the subkeys (e.g., 16 in the
AES case) using the attack traces.

Our contributions in this context are twofold: First, from a data complexity
point of view, the proposed S-box pooling approach can decrease the required
amount of profiling traces by a factor of 8 or 16 while preserving the attack
performance as shown in Table 2. In other words, the evaluators can measure
eight or even sixteen times fewer profiling traces during Stage 2. The extra benefit
will be reducing the preprocessing time of Stage 3 because 8 or 16 times fewer
traces need to be re-synchronized. Second, from the time complexity perspective,
the proposed S-box pooling approach can decrease the required profiling time
by a factor of 8 or 16 (considering the AES case) while preserving the attack
performance.
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1.4 Related Work

We note that a recent and independent work investigated a similar technique
(S-box pooling, which they denote as cross-subkey training) from a different
perspective [6]. Namely, their focus is to improve the attack performances when
the number of profiling traces is overly limited. They use the accuracy metric
while we use the guessing entropy metric for attack performance comparison.
In their work, only deep learning profiled attacks are considered so accuracy
could be a suitable metric. They have observed significant accuracy improve-
ment with cross-subkey training compared to the case where the amount of
profiling traces is overly limited. It can be explained by the fact that sufficient
profiling traces are available by using cross-subkey training and all 16 S-boxes
are expected to leak in a very similar way because of the unmasked sequential
software AES S-box implementation. Both factors lead to the better generaliza-
tion of the deep learning model they are using. We relatively aim to optimize the
profiling complexity when this number is sufficient. We also cover more target
devices (they only target an unprotected AES software implementation: we addi-
tionally cover a masked AES software implementation and a masked hardware
one) and distinguishers (they only consider one deep learning distinguisher: we
additionally cover other state-of-the-art profiling tools). Overall, their conclu-
sions are complementary to ours and show that S-box pooling can also improve
attack performances when the number of profiling traces is limited.

1.5 Organization of the Paper

The rest of this paper is organized as follows. Section 2 introduces the necessary
background on profiled attacks used in this work. Then, we describe our proposed
S-box pooling approach and methodology in Sect. 3. Finally, Sect. 4 demonstrates
the effectiveness of this pooling approach based on the intensive experimental
results on three different AES implementations, for different profiling tools.

2 Background

Since Chari et al. have introduced template attacks in their pioneering work [2],
profiled attacks have gradually become the commonly recognized most powerful
side-channel attacks. Profiled attacks consist of two phases, i.e., the profiling
phase and the attack phase. During the profiling phase, an attacker/evaluator
uses a profiling device (and has control of the key or at least knows the key) to
model the leakage characteristic of the target key-dependent sensitive data (typ-
ically the S-box output of symmetric algorithms) with the side-channel traces of
the target implementation. The outcome of the profiling phase is the built leakage
characteristic models for every possible target sensitive data value, e.g., 256 val-
ues of the AES S-box output3. During the attack phase, the attacker/evaluator
3 That is, the identity model is used for labeling as what we do in this work. The

Hamming Weight model can also be used for labeling.
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uses the victim device to measure the side-channel traces of the target implemen-
tation. And then, he/she matches the traces with the previously built leakage
characteristic models of the target sensitive data. For each attack trace, the
adversary calculates the target sensitive data based on the known input and
the guessed key unit (e.g., one key byte). A score is computed for each possible
guessed key unit value (256 possible values for one byte of AES key) per each
trace. In the end, for each hypothesised key unit value, the scores for all the
attack traces are combined using e.g., the maximum likelihood method to get
a combined score of that specific guessed key unit value. The combined score
of each possible hypothesised key unit value is compared to find the highest
one. The hypothesised key unit value with the highest score is considered the
recovered key unit. This attack process is repeated for all key units to reveal the
complete key.

In this work, we use four different state-of-the-art profiled attacks, namely,
template attack (TA) and its pooled variant (TAp), stochastic attack (SA) and
deep learning attack (DL), to experimentally investigate the efficiency of our
proposed pooling profiling traces approach.

2.1 Template Attack

From an information-theoretic viewpoint, TA is believed to be the most powerful
type of SCA [2] when (1) the noise of side-channel traces follows the Gaussian
distribution and (2) an unlimited number of traces are available. It makes use of
a multivariate normal distribution to model the probability density function of
each possible target sensitive data given a leakage observation, so it is parame-
terized as

p(L = l|S = s) =
1

√
(2π)d|σs|

e− 1
2 (l−μs)

�σ−1
s (l−μs)· (1)

In this equation, d is the number of sample points. |σs| denotes the determi-
nant of the covariance matrix and � indicates the transpose. In practice, usually,
some points of interest (POIs) are detected first for dimension reduction purpose.

In the attack phase, the probability p(L = l|K = g) for each key candidate is
set by p(L = l|S = s) given a known input of each attack trace. The classification
of each key guess is then computed based on Bayes’ Theorem as follows:

p(K = g|L = l) =
p(L = l|K = g) · p(K = g)

p(L = l)
· (2)

Based on an assumption that all attack traces are independent, to make use
of all available attack traces for each key guess, a final score of each key guess is
calculated as below:

pg = p(g|L) =

M∏

m=1

p(L = lm|K = g) · p(K = g)

M∏

m=1

p(L = lm)

· (3)
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In practice, the pg is usually calculated using the sum of the log-posterior to
avoid the potential arithmetic underflow problem. The highest pg indicates the
correct key candidate g∗. The pooled variant of the TA, next denoted TAp, is
proposed in [3]. It uses only a single pooled covariance matrix σ to reduce the
profiling complexity, which is dominated by the estimation of the covariance.
The rest is the same as normal TA.

2.2 Stochastic Model Attack

SA [14] relies on linear regression to build the leakage characteristic models of
sensitive data. It assumes that the side-channel leakage observation of the target
sensitive data s at time t consists of two parts lt(s) = ht(s) + Rt, where ht(s)
is the key-dependent part and the latter one is a non-key dependent noise term
with zero mean. Similar to TA, the profiling also contains two parts, the linear
approximation ĥt of ht and the estimation of noise-related covariance matrix
σ. The estimation of ĥt for each time instantiation is done in a chosen suitable
u-dimensional vector subspace Fu;t. In this work, we choose the subspace F9 by
utilizing the bitwise coefficients of the AES S-box output. Afterwards, d1 POIs
are chosen based on the estimated ĥt to compute the covariance matrix σ. The
profiling results in a Gaussian multivariate density f̂ : Rd1 → R.

During the attack phase, we only consider the maximum likelihood principle
to recover the key following [4,14]. More specifically, the correct key guess g∗ is
the one that maximizes:

pg = p(g|L) =
M∏

m=1

f̂ (lt(sm,k) − ĥt(sm,g)). (4)

In this equation, k indicates the unknown correct subkey to be revealed.

2.3 Deep Learning DPA Attack

Different from the above-mentioned classical profiled attacks, DL makes no
assumption of the leakage characteristic. It exploits the features (sample points
with regard to side-channel traces) to classify the labels (sensitive data in the
SCA context) using neural networks (details arrive in Subsect. 4.1). The train-
ing process of neural networks (corresponds to the profiling) aims to construct a
classifier function F (.) : Rd → R

|S|. This function maps the input trace l ∈ Rd to
the output vector p ∈ R|S| of scores. During the training, for each training batch,
the backpropagation method [7] is used to update the trainable parameters of
the neural network model aiming at minimizing the loss, which is calculated to
quantize the classification error over each training batch. In the attack phase, the
built trained model (i.e. F (.) with all the final updated trainable parameters) is
used to classify each attack trace to obtain its score vector p[sm,g]. Afterwards,
the final score vector of each key candidate p[g] is calculated using all the attack
traces (similar to Eq. 3). The key candidate g∗ = argmax p[g] is considered the
right subkey.
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3 Methodology

As discussed in Subsect. 1.2, the problem to be solved in this work is: to simul-
taneously decrease both the required number of profiling traces and the required
profiling time while the performance of the online attack is essentially unchanged.

In the following, we first introduce the proposed S-box pooling approach
and how it resolves this challenge for security evaluators. We then describe the
methodology, which we will use to systematically investigate the soundness of
the proposed pooling approach in a profiled attacks context. It includes the
metric for comparing profiling performance, the metrics used for training neural
networks, the knowledge of POIs assumption, the POI selection approach, and
the choice of parameters for different profiled attacks in our experiments. For
simplicity, we will only discuss the AES case. But the principle can be easily
extended to other symmetric cryptographic algorithms.

3.1 S-box Pooling Profiled Attack

The core idea of this pooling approach is: to extract the profiling traces of each
S-box and to stack the extracted profiling traces for all S-boxes in order to build
a new large set of profiling traces. In theory, this approach is based on improving
the signal-to-noise ratio of the profiling traces by increasing the amount of the
profiling traces. Instead of directly measuring a lot of profiling traces, it is to
gather enough profiling traces by extracting and stacking all available S-box
calculation segments of each side-channel trace. For instance, we measure 1,600
profiling traces of the first round of AES encryption. So we have 1,600 traces
for each S-box. By extracting and stacking then we build a new set of 25,600 (=
16×1,600) profiling traces since there are 16 S-boxes. In the ideal situation where
the S-boxes are leaking according to the same model, this strategy will lead to
a reduction of the number of profiling traces by a factor of 16 (for the AES).
Furthermore, the profiling time will be reduced by the same factor (In this work
we only considered that the same deep learning model is used for performance
comparison with and without S-box pooling.) since only a single model will have
to be built. Of course, in practice, the situation may not be ideal and it is the
goal of our following investigations to clarify the extent to which S-box pooling
is a good trade-off for concretely relevant case studies. For this purpose, we used
the following 4-step method:

1. Step 1: Measure enough profiling traces (the number of profiling traces marked
as Nori) being able to retrieve the AES key, perform TA, TAp, SA and DL
profiled attacks on each S-box separately to recover all 16 subkeys. Make
them the baseline attack performance for later use and comparison.

2. Step 2: Determine the minimum required number of profiling traces (denoted
as Nmin) to achieve similar profiling performance as the baseline using a
binary search algorithm. That is, starting from Nori/2 profiling traces to con-
duct profiled attacks to compare the profiling performance with the baseline
until profiling performance similar to the baseline obtained using Nmin pro-
filing traces.
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3. Step 3: Build four new sets of profiling traces by pooling the profiling traces
of each S-box based on the predefined S-box pooling ratio (labelled as PR)
of 16, 8, 4 and 2 with the determined Nmin, in which the pooling ratio of 16
means pooling Nmin/16 profiling traces of each S-box to build the new set
of profiling traces. Meanwhile, construct another four new sets of profiling
traces without pooling the profiling traces of each S-box, i.e., directly taking
Nmin/PR profiling traces from the original measurement for each S-box.

4. Step 4: For each S-box pooling ratio PR, perform TA, TAp, SA and DL
profiled attacks on each S-box using the new built set of profiling traces
with pooling and using the newly constructed set of profiling traces without
pooling. Note that, with pooling, we only need profiling once. While without
pooling, we need profiling 16 times because we have to execute profiling for
each S-box one by one following the current best practice.

Eventually, compare the profiling performance with and without pooling to
the baseline.

3.2 Knowledge of POIs Assumption

There is an implicit assumption about the knowledge of the POIs to apply this
pooling approach. That is, evaluators can figure out the rough timing interval
of each S-box of one AES round calculation in the side-channel traces. Through
SPA/CPA and SEMA/CEMA as mentioned in Stage 1 in Subsect. 1.1, this is
feasible for most of the evaluated security products in the security evaluation
grey-box testing context. For instance, the evaluators can vary the input length
and/or the key length, perform correlation analyses on the input and output
data, make use of the design information such as the location of the AES co-
processor in the glue logic area or temporarily switch off some countermeasures
like jitters.

Concerning the POI selection for classical profiled attacks TA, TAp and SA,
we use the popular SOST (Sum Of Squared pairwise T-differences) [4] for POI
selection, since typically the masking countermeasure is implemented in the eval-
uated products. It does not require any secret information about the implemen-
tation, and it can be easily, efficiently computed. It is also commonly used by
security evaluators for profiled attacks.

3.3 Metrics and Selection of Parameters

In order to compare the profiling complexity of different tools, information-
theoretic metrics like mutual information (MI) are natural candidates [15]. Yet,
it requires that all the investigated profiling methods give rise to probabilistic
outcomes. In some cases, the tools we consider fairly output scores that do
not directly embed such a probabilistic meaning. Therefore, we will preferably
evaluate our strategy based on the guessing entropy (GE) metric [16]. Note that
both metrics have the same comparative value and are thus equally good for our
purposes (but computing guessing entropy curves is generally more expensive
than estimating information-theoretic metrics).
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Regarding the metrics used to train the neural networks, we use the Negative
Log-Likelihood (NLL) loss function [1] for DL profiled attacks, because it is
proved that minimizing the NLL loss is equivalent to maximizing the Perceived
Information and thus to minimize the online attack complexity, thanks to the
recent work [11].

For SA profiled attack, since we do not precisely know which model is followed
by the target sensitive intermediate data, we choose a linear 9-element basis (the
eight S-box output bits together with a constant), which is the standard choice
for this distinguisher [14].

4 Experimental Results

To confirm the soundness of the proposed pooling approach in security eval-
uations, in this section, we apply the pooling approach to three different rep-
resentatives of AES implementations, from easy to hard. That is, we consider
a sequential S-box software AES without masking, a sequential S-box software
AES with first-order masking [12] and a parallel S-box hardware AES with first-
order masking. The first DUT (Device Under Test) in Subsect. 4.2 represents a
sort of ideal case: all the S-boxes are supposed to leak in almost the same way,
because all the S-boxes are executed sequentially, and no countermeasures are
involved. The aim is to verify how the proposed S-box pooling approach behaves
in an almost ideal leakage context. In Subsect. 4.3, the second DUT is going
further: to investigate how efficient the proposed S-box pooling approach will
be in a more realistic scenario. In this case, because all the S-boxes are still
executed sequentially, there should be no interference regarding leakage charac-
teristics between them. Finally, the third DUT in Subsect. 4.4 is the scenario
closest to the security evaluations, because it is a hardware AES co-processor
implementation with random masking, which is just the case for most modern
evaluated products. In this case, multiple S-boxes are executed in parallel, so
the leakage characteristic of each S-box will be affected by the others being exe-
cuted at the same time. The involved random masking of each S-box will also
introduce more discrepancy in the leakage characteristic given a limited amount
of profiling traces. It is therefore essential to know how much profiling efficiency
the evaluators can gain in this realistic scenario. We label those three DUTs as
DUT1, DUT2 and DUT3 in the rest of this paper.

4.1 Common Settings

For all the three DUTs, we compare the profiling performance with and without
S-box pooling using four different state-of-the-art profiled attacks, namely, TA,
TAp, SA and DL profiled DPA attacks. For each DUT, the same device is used for
the profiling and attacking phase. All these four profiled attacks are implemented
in Python and PyTorch version 1.7.1 with an NVIDIA GTX 1080Ti GPU. The
following common settings are used for all the experiments in this work,
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Table 1. MLP model details

MLP

nb_epoch = 50

batch_size_training = 32

Dense(50, activation=“relu”, input_shape=(nb_samples,))

BatchNormalization()

Dense(100, activation=“relu”)

BatchNormalization()

Dense(256, activation=“softmax”)

compile(loss=‘categorical-crossentropy’, optimizer=‘adadelta’, metrics=[‘accuracy’])

learning_rate_policy = ReduceLROnPlateau(optimizer, ‘min’, factor=0.05, verbose=True)

1. No matter whether the masking countermeasure is present or not, the target
of all profiled attacks in this work is the first round S-box output of AES
encryption. That is, Sbox(p[i]⊕k[i]), in which p denotes a 16-byte AES input
and k corresponds to a 16-byte AES key, with i the index of the S-box.
Note that we focus on the common scenario where the masked randomness is
not given to evaluators. Our conclusions would apply identically in the more
worst-case scenario where this randomness is known for profiling. But the
concrete gains would be less significant (because we expect the profiling task
to be significantly simplified in that case).

2. The used DL neural network model for DL attacks is a published MLP (Multi-
Layer Perceptron) [10]. The structure of this model is simple and shallow,
while it showed pretty good performance for similar DUTs (similar to our
DUT1 and DUT2) in that paper. It also showed great performance for all the
three DUTs in our work. In addition, we use the Adadelta optimizer and adopt
the adaptive learning rate policy ReduceLROnPlateau to gradually decrease
the learning rate (we used the default Adadelta optimizer initial learning rate
of 1.0) with a factor of 0.05 if the training stagnates. We use a batch size of 32
and 50 as the number of epochs for all the DL experiments. All the profiling
traces and attack traces used for DL experiments are normalized using the
StandardScalar function from the Scikit-learn library by removing the mean
and scaling to unit variance. For all the DL experiments, we isolate 15%
profiling traces as a validation set. This is due to the fact that a validation data
set is critical to DL performance as it provides a way to timely detect over-
fitting [5]. We used the trained model with the highest validation accuracy
for the DL attacks. As aforementioned, all the DL experiments utilize the
NLL loss to train the model. The details of the used DL model and the
hyperparameters are described in Table 1.

3. As mentioned in Step 2 of Subsect. 3.1, we need to determine the minimum
number of required profiling traces Nmin for each DUT before the performance
comparison for different profiled attacks. To this end, we use DL attacks to
determine the Nmin for each DUT because only DL attacks can fully recover
all the subkeys for all three DUTs as shown in the eprint version of the paper.
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4.2 Setting #1: An Unmasked Sequential AES S-boxes
Implementation

DUT1 is the ChipWhisperer unmasked software AES with 16 sequential S-boxes.
It is expected that all the 16 S-boxes of this AES implementation leak in the same
way (or with negligible discrepancy) because of the sequential implementation of
the S-box layer without masking. The goal of using this DUT is to verify whether
the proposed pooling approach can achieve similar profiling performance using
16 times fewer profiling traces in such an almost ideal context, which is the
optimum result we are seeking in terms of decreasing the required number of
profiling traces and the required profiling time.

Implementation Settings. This software AES implementation is based on
an 8-bit ATXmega128D4-AU microcontroller. The 16 S-boxes are executed one
by one. A set of 11,000 power consumption traces of 3,000 sample points each
has been measured via the on-board ADC of the ChipWhisperer Lite board for
the experiments. The CPU is running at 7.37MHz and the sampling rate is
29.48MHz. More specifically, 10,000 profiling traces have been measured with
random key data and random input data, 1,000 attack traces have been measured
with a fixed random key and random input data.

Based on the knowledge of POIs assumption discussed in Subsect. 3.2, we
first identify the time intervals of each S-box in the power traces utilizing SPA
and CPA. In the end, we cut 50 sample points (e.g. sample points 110–160 for
S-box 1, 206–256 for S-box 2, ..., 1550–1600 for S-box 16) for each S-box from
the originally measured power traces to build 16 new subsets of traces, where
each new subset corresponds to one S-box. These 16 subsets of traces as a whole
are denoted as nPR_1.

Following our designed methodology in Subsect. 3.1, we first perform TA,
TAp, SA and DL attacks on these 16 new sets of traces as the baseline of attack
performance. This baseline is marked with nPR_1 in the subsequent GE results.
Second, the minimum required number of profiling traces Nmin is determined
using a binary search algorithm. In this case, Nmin is 6,700 based on the DL
attack results as explained in Subsect. 4.1.

Next, we make use of the proposed pooling approach to build four new sets
of profiling traces according to the PR of 16, 8, 4 and 2. They are denoted
as PR_16, PR_8, PR_4 and PR_2 respectively. Also, another four sets of
profiling traces without pooling are constructed by directly taking Nmin/PR
profiling traces for each S-box from the previously built trace sets nPR_1. They
are denoted as nPR_16, nPR_8, nPR_4 and nPR_2 respectively. Similar to
nPR_1, each of nPR_16, nPR_8, nPR_4 and nPR_2 consists of 16 subsets,
and each subset corresponds to one S-box. We then conduct TA, TAp, SA and
DL attacks on PR_16, PR_8, PR_4, PR_2, nPR_16, nPR_8, nPR_4 and
nPR_2.

For the sets with pooling the profiling traces PR_16, PR_8, PR_4 and
PR_2, we only perform profiling once followed by attacking all 16 S-boxes to
retrieve the subkeys. On the contrary, for the sets without pooling the profiling
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traces nPR_16, nPR_8, nPR_4 and nPR_2, we need to perform profiling 16
times, each profiling is for one S-box followed by attacking that single S-box.

Finally, we compare all the conducted profiled attacks results (with and with-
out pooling profiling traces) with the baseline results.

Attack Results. By comparing the aforementioned profiled attacks results with
the baseline GE results as shown in Fig. 1, it is demonstrated that using S-box
pooling can decrease both the number of profiling traces and profiling time by
a factor of 16 considering the DL attack results. For readability, here we only
present the results for 3 different sets, i.e., the baseline GE results (nPR_1,
6,700 profiling traces), the GE results with pooling with PR of 16 (PR_16,
6,700 = 16 × 418 profiling traces) and the GE results without pooling with PR
of 16 (nPR_16, 418 profiling traces). The full comparison is given in the eprint
version of the paper.

Type DL TA TAp SA

nPR˙1

PR˙16

nPR˙16 N/A N/A N/A

Fig. 1. DUT1 guessing entropy results, X-axis: number of attack traces, Y-axis: guess-
ing entropy.

Considering the GE results of different profiled attacks on this DUT in the
same setting (the same PR, with pooling or not), it is worth noting that DL
shows the best attack performance. It suggests that the DL attack has a better
generalization for this DUT. TA and its variant TAp show similar but slightly
worse attack performance while SA shows the worst attack performance for this
DUT, which is in line with the observations in [4]4. For the nPR_16 setting, the
GE results of TA, TAp and SA attacks are not available due to very few profiling

4 It is out of scope because the goal of this work is to verify the efficacy of the proposed
pooling approach in terms of decreasing both the required number of profiling traces
and the required profiling time.
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traces for each class of S-box output, which leads to singular results during the
profiling.

More interestingly, this trend is the same when we consider the impact of
pooling profiling traces. It can be observed that the DL attack performance of
the PR_16 case using pooling is already comparable to the baseline DL attack
performance, while the DL attack performance of the nPR_16 case without using
pooling is way worse than the baseline DL attack performance. The DL attack
performance of the PR_8 case using pooling already outperforms the baseline
DL attack performance. Hence, these GE results show that pooling can decrease
the required number of profiling traces by a factor of 16 without reducing the
attack performance. This is the optimal result one can achieve and it most likely
holds because all 16 S-boxes are leaking in almost the same way. From a time
complexity point of view, using a pooling ratio of 16 means using the same total
amount of profiling traces as the baseline case, while only profiling once in the
pooling case and profiling 16 times in the baseline case. It results in decreasing
the required profiling time by a factor of 16 as well. As mentioned before, this is
an almost ideal case: no masking and sequential S-boxes. Next, we will further
investigate the impact of the masking countermeasure on the performance of the
proposed pooling approach.

4.3 Setting #2: A Masked Sequential AES S-boxes Implementation

DUT2 is the public data set ASCADv1, which contains the traces of a first-
order masked software AES with 14 sequential S-boxes. Because the first two
S-boxes are not masked, only the last 14 masked S-boxes are evaluated in our
experiments. This is still a sequential S-boxes implementation, so it is expected
that those S-boxes will leak in a very similar way.

Implementation Settings. The ASCADv1 data set is based on an implemen-
tation in an 8-bit ATMega8515 microcontroller with a first-order masking coun-
termeasure. 60,000 EM (Electromagnetic Radiation) traces with a fixed AES key
were acquired using an EM coil at a sampling rate of 2GHz, in which 50,000 are
the profiling traces and the remaining 10,000 traces are the attack traces. Each
trace consists of 100,000 sample points.

Based on the knowledge of POIs assumption, we narrowed down the time
intervals of each S-box in the EM traces. In the end, 700 sample points (e.g.,
sample points 45400–46100 for S-box 3, 32910–33610 for S-box 4, ..., 18330–
19030 for S-box 16) for each S-box were cut out from the originally acquired EM
traces to build 14 new subsets of traces. These 14 subsets of traces as a whole
are denoted as nPR_1. TA, TAp, SA and DL attacks are then conducted on
nPR_1 as the baseline of attack performance. The minimum required number
of profiling traces Nmin of 37,000 was found based on the DL attack results.

We further constructed four new sets of profiling traces according to the
PR of 14, 7, 4 and 2. They are denoted as PR_14, PR_7, PR_4 and PR_2
respectively. In addition, their counterparts without S-box pooling, i.e., nPR_14,
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Type DL TA TAp SA

nPR˙1

PR˙14

nPR˙14

Fig. 2. DUT2 guessing entropy results, X-axis: number of attack traces, Y-axis: guess-
ing entropy.

nPR_7, nPR_4 and nPR_2 were constructed as well. TA, TAp, SA and DL
attacks were then performed on these 8 sets of traces and the results are com-
pared with the baseline.

Attack Results. Figure 2 displays our results. For the same reason as in the
previous case, only the results of nPR_1 (37,000 profiling traces), PR_14 (37,000
= 14×2,642 profiling traces) and nPR_14 (2,642 profiling traces) are shown here,
our eprint version of the paper provides the full results. Again, the DL attack
results suggest that using pooling can decrease both the number of profiling
traces and profiling time by a factor of 14.

Our observations regarding the different performances of different profiles
distinguishers are similar to the ones made for DUT1. Namely, the DL attack
shows slightly better results than TA and its variant TAp, while SA shows the
worst performance.

The same trend is also observed with regard to the impact of pooling profil-
ing traces: PR_14 already gives slightly better results than the baseline nPR_1
considering the DL attacks. The results without using pooling are significantly
worse than the baseline ones. In short, from both the data complexity and time
complexity viewpoints, using pooling can decrease the required number of pro-
filing traces and required profiling time by a factor of 14, which is the optimal
result. Most likely all those 14 masked S-boxes leak in a very similar way.

In this sequential masked S-boxes case, using pooling also leads to optimal
attack performance. It further confirms that S-box pooling can be used for pro-
tected implementations in security evaluations. To further assess the impact of
other implementation factors on the performance of the pooling approach, a
very realistic scenario is finally brought into our scope. Namely, many modern
secure microcontrollers have a dedicated AES co-processor, in which random
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masking is adopted and parallel S-boxes are sometimes implemented for per-
formance purpose. Such an implementation will be assessed in our next target
implementation.

4.4 Setting #3: A Masked Parallel AES S-boxes Implementation

DUT3 is a 90 nm secure microcontroller with an AES co-processor, which is
equipped with first-order masked parallel S-boxes, i.e., 4 S-boxes are executed at
the same time. It is expected that the leakage characteristic of each S-box within
a group will be affected by the other 3 S-boxes in the same group being executed
in parallel. Furthermore, this DUT also has other built-in countermeasures such
as hardware and software time jitters, power balancing and power smoothing.

Implementation Settings. A set of 520,000 EM traces of 100,000 sample
points each has been measured via an SGS Brightsight EM coil using a LeCroy
Waverunner 620Zi oscilloscope at a sampling rate of 10GHz. The coil is located
on top of the AES co-processor from the back side of the chip. The operating
frequency of the AES co-processor is 32MHz with variable internal clock enables.
480,000 profiling traces have been measured with random key data and random
input data. 40,000 attack traces have been measured with a fixed random key
and random input data.

In accordance with the knowledge of POIs assumption, using SPA/CPA and
SEMA techniques with the knowledge of the AES co-processor location, the
time intervals of each group of 4 parallel S-boxes were figured out in the EM
traces. For instance, different key lengths and different input lengths were used
to execute the AES encryption to observe the difference they caused in the power
and EM traces. Different numbers of AES rounds could be distinguished in the
EM traces and each round contains 4 groups of EM peaks, with each group
corresponding to the execution of 4 parallel S-boxes. It has to be mentioned
that multiple alignments steps had to be done because the measured EM traces
were heavily misaligned. We used the same re-synchronization method as in [17],
which exploits correlation to align each group of EM peaks in the traces. It is a
3-step procedure.

1. Manually select a searching interval S that contains the operation to be
aligned among all the traces.

2. Manually choose a smaller reference interval RTi
specific to each trace Ti.

3. Within the whole interval S of each trace, search for the segment to be
aligned by computing the Pearson’s correlation between each segment (the
same length as RTi

) and the reference feature RTi
. The right segment is the

one showing the highest correlation within the whole interval S. The trace
is abandoned if the highest correlation is lower than a pre-defined threshold
chosen by the evaluator.

During the measurement campaign, it was not possible to trigger the oscillo-
scope close to the first AES round. Therefore, the EM traces were aligned several
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times to get close to the first AES round step by step, followed by more local
alignments within the first AES round because there are 4 groups of EM peaks
to be aligned one by one. Targeting different time intervals (for both the search-
ing interval and reference interval), we applied this alignment method multiple
times to the EM traces. In general, we chose new intervals when the misalign-
ment was getting larger, and we repeated this process until the target interval
was well aligned. In this way, we can gradually align each group of EM peaks
corresponding to 4 parallel S-boxes being executed.

After all the alignments, 500 sample points for each group of 4 parallel S-
boxes were kept from the original EM traces to build 16 new subsets of traces and
as a whole, they are marked as nPR_1. We used each segment 4 times, targeting
each S-box once. TA, TAp, SA and DL attacks were then conducted on nPR_1 as
the baseline of attack performance. The minimum required number of profiling
traces Nmin of 410,000 was further determined based on the DL attack results.

Similar to previous DUTs, we prepared eight new sets of profiling traces with
or without pooling the profiling traces, i.e., PR_16, PR_8, PR_4 and PR_2
and nPR_16, nPR_8, nPR_4 and nPR_2. We performed TA, TAp, SA and
DL attacks on these 8 sets of traces and compared the results with the baseline.

Attack Results. The comparison of results is shown in Fig. 3. Once again, we
only present the results of nPR_1 (410,000 profiling traces), PR_16 (410,000
= 16× 25,625 profiling traces), PR_8 (820,000 = 16× 51,250 profiling traces)
and nPR_8 (51,250 profiling traces). The full results are provided in the eprint

Type DL TA TAp SA

nPR˙1

PR˙16

PR˙8

nPR˙8

Fig. 3. DUT3 guessing entropy results, X-axis: number of attack traces, Y-axis: guess-
ing entropy.
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Table 2. Summary of the experiments of 3 DUTs

PR Nori Nmin Samples Implementation Data complexity gain Time complexity gain

DUT1 16/8/4/2 10,000 6,700 50 SW sequential 16 (optimal) 16 (optimal)
DUT2 14/7/4/2 50,000 37,000 700 Masked SW sequential 14 (optimal) 14 (optimal)
DUT3 16/8/4/2 480,000 410,000 500 Masked HW parallel �8 (sub-optimal) �8 (sub-optimal)

version of the paper. This time the DL attack results demonstrate that using
pooling can decrease both the number of profiling traces and profiling time by
a factor of at least 8.

Different from the previous two DUTs, the TA and its variant TAp show
better results than DL for all the 5 sets of profiling traces without pooling, i.e.
nPR_16, nPR_8, nPR_4, nPR_2 and the baseline nPR_1. The other way
around is observed if the proposed S-box pooling approach is adopted: DL then
slightly outperforms TA and TAp. Focusing on the pooling cases and the DL
results, using PR of 16 achieves slightly worse results compared to the baseline,
while using PR of 8 leads to better results than the baseline. These observations
put forward that even when evaluating a more challenging (and therefore more
practically relevant) hardware implementation with masking, the S-box pooling
approach remains effective. It does not lead to an optimal factor gain of 16 for
the data and time complexity but still reduces these complexities to a significant
factor 8. This sub-optimal gain is most likely caused by the parallel execution of
4 S-boxes. The leakage model of a single S-box is interfered by other 3 S-boxes
among the same group.

To summarize, taking all the results for all the 3 DUTs as shown in Table 2
into account, it is concluded that, for unmasked and masked sequential S-boxes
implementations, the gain of using pooling can reach the optimal, i.e., decreasing
both the required number of profiling traces and required profiling time by a
factor of 16 (or 14). For the masked parallel S-boxes implementation that we
analyzed, the gain is slightly sub-optimal but still very noticeable for security
evaluators, i.e., decreasing both the required number of profiling traces and
required profiling time by a factor of 8. It confirms S-box pooling can be a useful
new tool for security evaluators.

5 Conclusion

During the security evaluations of symmetric algorithm implementations, usu-
ally, evaluators have to repeat the profiling of each S-box to attack them sepa-
rately. The burden is getting heavier when both classical profiled attacks (such
as template attacks) and deep learning attacks are mandated by the certification
bodies. Additionally, the requested number of profiling traces is also increasing
for some certification bodies due to many countermeasures being implemented
in the evaluated products. Whether there exists a way to perform such profiling
efficiently is, therefore, an important and practically motivated research ques-
tion. To this end, the community so far mostly focused its efforts on improving
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the attack performance targeting one S-box. In this work, we analyze the comple-
mentary approach of trying to decrease the profiling (data and time) complexity
thanks to S-box pooling.

Intensive experiments on three different AES implementations were per-
formed with 108 different configurations. The results demonstrate that, for repre-
sentative unmasked software sequential S-boxes implementation and the masked
software sequential S-boxes implementation, using this S-box pooling approach
can decrease both the required number of profiling traces and required profiling
time by a factor of 16 (or 14), which corresponds to the optimal gain. For the
masked hardware parallel S-boxes implementation that we analyzed, the gain is
still sub-optimal in terms of data complexity and time complexity. Nevertheless,
we can decrease both the required number of profiling traces and required pro-
filing time at least by a factor of 8 in this practically relevant setting. We used
only the first round S-box computations for simplicity, indeed this S-box pooling
can be extended to all S-box computations of all AES rounds. The goal of the
paper is to show that in some practically-relevant contexts, S-box pooling can
lead to significant gains but there are admittedly implementations for which it
may not be applicable, e.g., if the S-boxes leak differently.

We believe these results show that the efficient exploitation of profiling mea-
surements, for example, thanks to S-box pooling, can be a useful addition to
the evaluators’ toolbox. On the one hand, it is easy to adopt and integrate into
existing toolchains. On the other hand, there are contexts in which this simple
optimization can lead to significant gains (remembering that concretely, a factor
16 is highly relevant for evaluation tasks that can take days).
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Abstract. Side-channel attacks (SCA) focus on vulnerabilities caused
by insecure implementations and exploit them to deduce useful infor-
mation about the data being processed or the data itself through leak-
ages obtained from the device. There have been many studies exploiting
these leakages, and most of the state-of-the-art attacks have been shown
to work on AES implementations. The methodology is usually based on
exploiting leakages for the outer rounds, i.e., the first and the last round.
In some cases, due to partial countermeasures or the nature of the device
itself, it might not be possible to attack the outer rounds. In this case,
the attacker needs to resort to attacking the inner rounds.

This work provides a generalization for inner round side-channel
attacks on AES and experimentally validates it with non-profiled and
profiled attacks. We formulate the computation of the hypothesis values
of any byte in the intermediate rounds. The more inner the AES round is,
the higher is the attack complexity in terms of the number of bits to be
guessed for the hypothesis. We discuss the main limitations for obtaining
predictions in inner rounds and, in particular, we compare the perfor-
mance of Correlation Power Analysis (CPA) against deep learning-based
profiled side-channel attacks (DL-SCA). We show that because trained
deep learning models require fewer traces in the attack phase, they also
have fewer complexity limitations to attack inner AES rounds than non-
profiled attacks such as CPA. This paper is the first to propose deep
learning-based profiled attacks on inner rounds of AES to the best of
our knowledge.

1 Introduction

In the past twenty years, much academic and industrial research provided meth-
ods to attack and protect the Advanced Encryption Standard (AES) implemen-
tations. Among these attacks, side-channel analysis (SCA) targets unintentional
leakages from software and hardware implementations. The aim can be twofold:
from the designer’s perspective (the defensive side), a side-channel analysis indi-
cates a potential source of leakages in the implemented algorithm. Additionally,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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the analysis provides important directions to design countermeasures to miti-
gate such attacks. On the other hand, an evaluator (offensive side) is interested
in verifying the worst-case security to advise the manufacturer or certify the
implementation against specific types of SCAs and applications. Besides dif-
ferent perspectives, one must consider different types of side-channel attacks.
One common division is into non-profiled and profiled attacks. New forms of
non-profiled and profiled SCA encounter in AES a suitable target to validate
proposed methods. In this sense, most works concentrate on attacking the first
and last AES (encryption or decryption) rounds, leaving the attacks on inner
rounds out of scope.

The reason stems from the attack complexities and assumptions: attacking
the outer rounds requires a minimal effort in terms of key guessing and the num-
ber of measurements. On the other hand, several design reasons could limit a
side-channel attack application on the outer (i.e., first and last) rounds. Coun-
termeasures (as they add costs overheads to the design) could be applied only
to these outer rounds, leaving inner rounds unprotected. In this case, the only
side-channel attack mitigations are the inherent sources of noise and misalign-
ments. Additionally, it is common to implement several AES rounds within a
single clock cycle for faster encryption or decryption processes, which is a highly
adopted mechanism for hardware-based implementations. This limits the leak-
ages of the AES intermediate bytes that do not coincide with the clock cycles
edges.

The past (and not very recent) literature already proposed various differential
power analysis (DPA) attacks on inner AES rounds. In [11], the authors described
a DPA attack on round 2, requiring the same attack complexity (8 bits) as
attacking round 1 and with an overhead in the required number of measurements
due to the chosen-input nature of the attack. Lu et al. investigated how many
rounds of an AES implementation should be protected to be secure against power
analysis attacks [13]. They provided two main conclusions: attacking the inner
rounds of AES is possible at the cost of increasing the data complexity, and any
attack requiring a DPA on more than 32 bits is considered infeasible.

In this work, we extend the formulation of [13] and provide a theoretical gen-
eralization of such an attack on the inner rounds of AES-128. This generalization
provides the designers with a comprehensive understanding of the complexity of
the attack at each round and the threat profile that the attacker needs to have
to make a successful attack. We assume that inner rounds are not protected
by specific countermeasures (e.g., first-order masking or multiple rounds within
a single clock cycle) but only by inherent noise and misalignment. Under this
assumption, we run both non-profiled attacks (CPA) and profiled attacks (deep
learning-based SCA) and show that deep learning-based SCA reaches signifi-
cantly better attack performance and succeeds in scenarios where CPA does not
indicate a successful key recovery.

Our Contributions.

1. Based on related works, we first analyze the computation of the hypothesis
for any byte in the intermediate rounds for AES-128 in the encryption mode
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with some predefined conditions in mind and use the same to determine the
relative difficulty of such attacks. Due to the non-linear substitutions in each
AES round, targeting any intermediate byte after n S-boxes requires an attack
complexity of 8×n bits. The attack complexity in terms of the number of bits
represents the bit-length of guessed hypothesis. This introduces significant
time and memory overheads to mount such a complex attack.

2. To make our analysis more realistic, we consider potential countermeasures
(such as Gaussian noise and misalignment) to power traces collected from an
unprotected AES.

3. The training phase of a deep learning-based profiled attack on inner rounds is
not affected by the increased attack complexity. Consequently, we show that
the attack phase from the deep learning-based approach is a considerable
improvement over limitations faced by non-profiled CPA due to the added
countermeasures, especially when the attack complexity is higher than 16
bits. In this case, the attacker faces strong time and memory limitations in
processing attack traces.

4. In scenarios when CPA cannot succeed due to implicit countermeasures
(which is a practical case shown in this paper on encryption round 3), a
convolutional neural network-based profiled attack can easily recover the key
even with a very limited number of attack traces.

2 Preliminaries

2.1 Correlation Power Analysis (CPA)

CPA is a statistical method used to correlate the side-channel traces with the
observed leakage [3]. There, an attacker has to perform numerous encryption-
s/decryptions and collect the traces. A hypothesis for each key guess can then
be obtained by using a leakage model. CPA uses Pearson Correlation for differ-
entiating between the modeled and the actual power traces.

2.2 Deep Learning Methodologies

Deep learning-based SCA (DL-SCA) provides an improvement over other pro-
filed attacks such as template attacks [5] in terms of efforts during pre-processing
of traces and effectiveness of the attack. Deep learning methodologies take the
traces along with their labels in the profiling phase across the selected data
points in time, run them through the defined model, and determine the weights
according to the defined criteria such as high accuracy and minimal loss. The
labels here depend on the leakage function and the key hypotheses. The input
layer of the DL model contains the measurements of the traces across the data
points in time, and the output layer contains output nodes for each of the classes
defined by the leakage model. These trained weights are then used in the attack
phase to determine the probabilities of each of the classes given by the interme-
diate value corresponding to each key guess. The key guess having the highest
probability values would indicate the most likely secret key.
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In this work, we use convolutional neural networks (CNNs) to conduct deep
learning-based SCA. We employ CNN with VGG-like architecture as it is a
prominent model used for SCA, see, e.g., [1,10]. The original model was devel-
oped for image classification, where the input signal has multiple input dimen-
sions starting from 2. As SCA has only one spatial dimension considering its data
points in time, the main difference that VGG-like architectures introduce is how
it handles 1-dimension signal on each of its convolution and pooling operations.

2.3 Attack Evaluation Methodology

The most commonly used metric for evaluating the performance of a side-channel
attack is key rank. We use the same for evaluating the performance of the attacks
carried out in this work. An average key rank (denoted guessing entropy) rep-
resents the average number of keys the attacker needs to go through during the
attack to reveal the actual key successfully [20]. As seen in the above sections,
we obtain a posterior distribution of probabilities for each of our defined classes
as the output of the attacks. The key guess contributing the most to the highest
probable predicted class across the attack traces is predicted to be the key byte
being used. Consequently, the output vector that is obtained during the attack
is of the form k = [k0, k1, k2, ..., k|K|−1], where |K| is the size of the keyspace.
These key guesses contained in the vector k are then ordered in the decreasing
order of probability, that is, k0 is the most probable key guess, also known as the
best guess, and k|K|−1 is the least probable key guess. We then check the posi-
tion at which the actual key byte resides in this ordered list, and this position
of the actual key byte is termed the key rank.

3 Related Work

The first and the last rounds, being dependent on a relatively small fraction of
the key, are more vulnerable and are therefore primary targets of side-channel
attacks. As we go into the inner rounds, every intermediate byte would depend
on an increasing number of key bytes due to the diffusion properties of AES,
thereby increasing the data complexity of the attack. The trade-off, therefore,
focuses on protecting the first and the last rounds and leaving other intermediate
rounds unprotected or with very simple countermeasures [7,21]. In some cases of
hardware implementation, it is also possible that multiple rounds are executed
within one clock cycle. This would result in the inner rounds being exposed, i.e.,
it would then be possible to capture traces corresponding to the inner rounds.
In such cases, the hypothesis built for the first round would not correlate to
the captured traces, and the attack would not work. Such cases, along with
the hindrance caused by the partial countermeasures, raise the need to look into
attacks on unprotected or even partially protected inner rounds and understand
the resources that the attacker would need to launch such attacks.

While Jaffe et al. already described a DPA attack after the SubBytes of
round 2 [11], Lu et al. answered an important question about how many rounds
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of an AES implementation should be protected for it to be secure against power
analysis attacks [13]. To this end, they show that it is possible to attack the
inner rounds of AES at the cost of increasing the data complexity of the attack.
They define the feasibility of an attack by the number of bits required to launch
the DPA/CPA and set this threshold to 32 bits. Consequently, any DPA attack
requiring more than 32 bits is considered infeasible and, as such, not investigated.

We extend on the same and formulate a generalization of such an attack on
the inner rounds. We also analyze the feasibility of such generalization.

Many approaches have been developed in SCA, from statistical methods such
as CPA/DPA to template attacks and machine learning-based approaches. While
the former has been studied extensively, attacks based on profiling involving
machine learning and deep learning are still developing. Already studies appear-
ing one decade ago showed that machine learning could be used to mount success-
ful side-channel attacks that are also more effective than template attacks [8,9].
Machine learning methods such as SVM have also been used to defeat masked
implementations, as shown by Lerman et al. [12]. Extending on the same,
Gilmore et al. showed that neural networks could also be used to tackle the mask-
ing countermeasure and are more effective than the other machine learning-based
approaches [6]. However, these implementations depend on a crucial assumption
that the random masks are available to the attacker during the profiling phase,
which as mentioned by [6] is an impractical assumption. As discussed before,
most of the practical and efficient countermeasure implementations involve only
the outer rounds [7,21]. Therefore, we can bypass these countermeasures if we
attack the inner rounds directly, which would also not necessitate having the
random masks used by the target implementation.

Deep learning (more precisely, convolutional neural networks and multilayer
perceptrons) has been successfully used to attack AES implementations, as first
shown by Maghrebi et al. [15]. Next, Cagli et al. showed that convolutional
neural networks could break implementations protected with the jitter coun-
termeasure, especially if the attack is augmented with synthetic data obtained
from data augmentation techniques [4]. Kim et al. discussed the VGG-like archi-
tecture that showed good attack performance for several datasets, where some
were using masking or hiding countermeasures [10]. Benadjila et al. introduced
the ASCAD dataset, which is a dataset used in most of the SCA studies today,
and also investigated the hyperparameter tuning to find architectures leading to
successful attacks [1]. Picek et al. showed that metrics commonly indicating the
performance of machine learning algorithms are not appropriate to assess the
SCA performance [17]. Zaid et al. proposed a methodology to design convolu-
tional neural network architectures that have a small number of trainable param-
eters and that result in efficient attacks [24]. Wouters et al. further discussed the
methodology perspective, providing even smaller neural network architectures
that perform well [23]. Perin et al. explored how deep learning-based SCA gen-
eralized to previously unseen examples and showed that ensembles of random
neural networks could outperform even state-of-the-art neural network archi-
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tectures [16]. Rijsdijk et al. introduced the reinforcement learning approach for
designing neural networks that perform well and are as small as possible [18].

These studies represent only a fraction of works exploring machine learning-
based side-channel attacks, but to the best of our knowledge, none of those works
consider attacking inner rounds of AES.

4 First-Order Non-profiled Attacks on AES Inner Rounds

Lu et al. [13] give five general principles for attacking bytes in the inner rounds
of AES using first and second-order DPA. These principles consider the attack
to be feasible as long as the attack is on less than 32 bits. We focus on the
following two principles listed by [13] that are based on the first-order DPA:

1. Attacking from input: any intermediate byte before the MixColumns opera-
tion of round 3 can be exploited by conducting a first-order DPA attack and
will depend on the part of the plaintext bytes being fixed.

2. Attacking from the output: any intermediate byte resulting from the
AddRoundKey operation of round 7 can be exploited to conduct a first-order
DPA attack and will depend on some of the ciphertext bytes being fixed.
Note: Although Lu et al. [13] consider any byte after the AddRoundKey
operation of round 7, we noticed that it was also possible to attack from out-
put before the AddRoundKey of round 7 while considering single bit DPA
attacks.

In this section, we briefly analyze these attacks and comment on possible
extensions or lack of them.

4.1 Notations

Before describing the attacks, we present the notations that we use in this section.

– Plaintext bytes are denoted by pi, where i is the index of the byte. Similarly,
ciphertext bytes are denoted by ci.

– The output byte of an S-box in any round is denoted by vn
i , where i is the

index of the byte and n indicates the round. For example, v1
0 is the first byte

obtained after the S-box in round 1. Similarly, bytes after the MixColumns
operation are denoted using un

i , while the output bytes of a round, i.e., bytes
after the AddRoundKey are denoted by wn

i .
– The key bytes are denoted by kn

i and the round key they belong to is denoted
by Kn. The initial key would then be {k0

0, k
0
1, ..., k

0
15} ∈ K0, while the last

round key would be {k10
0 , k10

1 , ..., k10
15} ∈ K10

– S-box in round n is denoted as Sn and we denote its application on an input
byte u as Sn(u). The inverse of the S-box is denoted as S−1

n .
– Terms such as γ, δ, θ are used to denote 8-bit constants.
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4.2 On the Attack Feasibility After the S-box at Rounds 2, 3, and 4

The attack on rounds 2 and 3 are presented in Lu et al. [13], and due to space
constraints, we omit them here. Here, we consider attacking a byte immediately
after the S-box in round 4 (S4). Let this be the first byte v4

0 . Let w3
0 denote a

byte obtained after round 3 and u3
0 a byte after the MixColumns of round 3.

Then with k3
0 ∈ K3, we have:

v4
0 = S4(w3

0) and w3
0 = u3

0 ⊕ k3
0. (1)

The byte u3
0 results from MixColumns in round 3 and can be written as:

u3
0 = 02 ∗ v3

0 ⊕ 03 ∗ v3
5 ⊕ 01 ∗ v3

10 ⊕ 01 ∗ v3
15, (2)

where (v3
0 , v

3
5 , v

3
10, v

3
15) are bytes resulting from the S-box operation of this same

round 3. Consider θ = 03 ∗ v3
5 ⊕ 01 ∗ v3

10 ⊕ 01 ∗ v3
15 ⊕ k3

0. Now, using Eq. (2) and
deriving the value of v3

0 from1

v3
0 = S3(02 ∗ S2(02 ∗ S1(p0 ⊕ k0

0) ⊕ δ) ⊕ γ), (3)

we can rewrite the byte v4
0 as:

v4
0 = S4(02 ∗ S3(02 ∗ S2(02 ∗ S1(p0 ⊕ k0

0) ⊕ δ) ⊕ γ) ⊕ θ). (4)

Here, θ depends on (v3
5 , v

3
10, v

3
15). From Eq. (3), it can be observed that each

of these bytes depend on the set (δ, γ, pi), where pi is some plaintext byte not
included in either δ or γ. Combining the plaintext bytes that this set depends
on, it can be concluded that (v3

5 , v
3
10, v

3
15) depend on 16 bytes of plaintext each.

Thus, θ effectively depends on all 16 plaintext bytes. This way, implementing an
attack to recover k0

0 by predicting v4
0 requires fixing the 16 plaintexts for each

side-channel measurement. Also, we would have to guess the variables of the set
(k0

0, δ, γ, θ) in this case, that is, the attack would have to guess 32 bits in order
to find one key byte. Therefore, this turns this statistical DPA attack infeasible
in practice. On the other hand, a profiled attack can still vary k0

0 (and keeping
all remaining key bytes from K0 fixed), which allows collecting profiling traces
with at most 256 different intermediate values for v4

0 . Although the profiling
phase allows larger variability, the attack phase is still restricted to a single
plaintext-key combination.

4.3 Attacking a Byte Before AddRoundKey at Round 7

Since this attack is not presented by Lu et al. [13], we list it here. We formulate
an attack on round 7 from the output in encryption mode, which would require
an adaptive chosen-ciphertext attack. The process is similar to that noticed in
the case of encryption. Attacking the byte u7

0 we have:

u7
0 = k7

0 ⊕ S−1
8 (v8

0), (5)
1 Equation (3) is derived from: v3

0 = S3(02 ∗S2(u0 ⊕ k1
0)⊕ γ) =⇒ v = S3(02 ∗S2(02 ∗

v1
0 ⊕ δ) ⊕ γ).
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where v8
0 is a byte from after S8 and k7

0 ∈ K7. The byte v8
0 affects 4 bytes of the

resultant state after the MixColumns of round 8.
The value v8

0 can be expressed as follows:

v8
0 = 0e ∗ u8

0 ⊕ 0b ∗ u8
1 ⊕ 0d ∗ u8

2 ⊕ 09 ∗ u8
3, (6)

where (u8
0, u

8
1, u

8
2, u

8
3) are bytes from the state after the MixColumns operation

of round 8. These 4 bytes can then be written in terms of another 4 bytes from
after S9. That is, for (v9

0 , v
9
1 , v

9
2 , v

9
3) being bytes after S9 and k8

0, k
8
1, k

8
2, k

8
3 being

bytes of K8, we have:

u8
0 = S−1

9 (v9
0)⊕k8

0, u
8
1 = S−1

9 (v9
1)⊕k8

1, u
8
2 = S−1

9 (v9
2)⊕k8

2, and u8
3 = S−1

9 (v9
3)⊕k8

3.
(7)

Consider 0b ∗ u8
1 ⊕ 0d ∗ u8

2 ⊕ 09 ∗ u8
3 ⊕ k8

0 = γ. Plugging the value of u8
0 into

Eq. (6), and subsequently, the value of v8
0 into Eq. (5), we obtain:

u7
0 = k7

0 ⊕ S−1
8 (0e ∗ S−1

9 (v9
0) ⊕ γ). (8)

Expanding v9
0 , which affects 4 bytes after MixColumns of round 9, we get:

v9
0 = 0e ∗ u9

0 ⊕ 0b ∗ u9
1 ⊕ 0d ∗ u9

2 ⊕ 09 ∗ u9
3, (9)

where u9
0, u

9
1, u

9
2, u

9
3 are the first 4 bytes from after the MixColumns operation

of round 9. Each of these bytes go through the S-box and ShiftRows of round
10 and the last AddRoundKey before giving out ciphertext bytes. Therefore, u9

i

can be represented as:

u9
0 = S−1

10 (c0 ⊕ k10
0 ) ⊕ k9

0, u9
1 = S−1

10 (c13 ⊕ k10
13) ⊕ k9

1,

u9
2 = S−1

10 (c10 ⊕ k10
10) ⊕ k9

2, u9
3 = S−1

10 (c7 ⊕ k10
7 ) ⊕ k9

3,
(10)

where (c0, c7, c10, c13) are ciphertext bytes. Considering 0b ∗ u9
1 ⊕ 0d ∗ u9

2 ⊕ 09 ∗
u9
3 ⊕ k9

0 = δ, we can rewrite Eq. (8) as:

u7
0 = k7

0 ⊕ S−1
8 (0e ∗ S−1

9 (0e ∗ S−1
10 (c0 ⊕ k10

0 ) ⊕ δ) ⊕ γ). (11)

The term δ depends on the bytes u9
1, u

9
2, u

9
3, which in turn depend on one cipher-

text byte each, as seen above. γ depends on (u8
1, u

8
2, u

8
3) which in turn depend on

(v9
1 , v

9
2 , v

9
3) that are similar to v9

0 . We can observe from Eq. (9) that v9
0 would be

affected by four ciphertext bytes, which would actually be the case with v9
1 , v

9
2 ,

and v9
3 as well. We can conclude that γ would depend on 12 ciphertext bytes.

A statistical attack on the S-box in this case, such as DPA, would therefore
include an attack on 32 bits of the set (k7

0, k
10
0 , δ, γ) and require 15 ciphertext

bytes to be constant. An improvement can be achieved here by performing a
bitwise attack such as a single-bit DPA as indicated in [13]. Here, k7

0, being
XORed, would not affect the magnitude of the difference but would only affect
the sign. Performing a single-bit DPA attack and taking the absolute of the
difference would therefore cancel out the influence of k7

0. A similar observation
can be made for CPA attacks as well. This would bring the attack complexity
down to 24 bits as then we would have to attack only (k10

0 , δ, γ).
As we see, based on the analysis of the attacks on round 4, the approach

considered by us is not feasible for further rounds (e.g., round 5).
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5 Experimental Results

5.1 Setup

We use a general setup for capturing the power traces for all of our experiments.
The traces contain power measurements collected from a Piñata development
board2 based on a 32-bit STM32F4 microcontroller with an ARM-based archi-
tecture, running at the clock frequency of 168 MHz. We acquired power traces
from a standard unprotected AES-128 look-up table implementation running on
the target device. The setup consisted of a Riscure current probe3, a Lecroy
Waverunner 610Zi oscilloscope, and a computer to communicate with the equip-
ment and store the acquired traces. The power traces were measured at a sam-
pling frequency of 1GS/sec and consisted of 220 000 samples. We perform power
acquisitions specifically for rounds 2 and 3 and use the chosen plaintext strategy
for the attacks as was discussed in Sect. 4.

For round 2, we need four acquisitions to attack all the key bytes since it
is possible to attack 4 bytes at once. We collect 10 000 traces per acquisition,
with 20% of the traces having a fixed key which is also the target key. We use
Gaussian noise as a test against countermeasure while attacking both rounds 2
and 3. The mean and the standard deviation of the original traces dataset have
been used to generate the Gaussian noise that is added to each trace. That is,
the new traces with the noise were computed as follows,

X∗ = X + N (μx, σ2
x), (12)

where N (μx, σ2
x) is the Gaussian distribution formed using the mean μx and the

variance σ2
x of the original traces X itself. For round 3, we have to perform 16

acquisitions for attacking all key bytes since only one key byte can be attacked
at a time. We collect 3 000 traces per acquisition for round 3, with all the traces
having the fixed target key. The traces collected were misaligned during the time
of acquisition, and we use this misalignment for an additional countermeasure
in this case. That is, we first align the traces and perform the attacks, followed
by attacking the original dataset to compare the results in the presence of mis-
alignment. We employ a standard pattern-based approach to do the alignment.

5.2 The Deep Learning Model Architecture

We use the benchmarked model architecture CNNbest, which has been proven to
outperform other models such as VGG-16 and MLPbest as shown by Benadjila
et al. [1]. The architecture CNNbest contains five convolutional blocks to begin
with, where each block is made up of 1 convolutional layer and one average
pooling layer. Each convolutional layer has filters for each block as (64, 128, 256,
512, 512), the kernel size as 11 (effectively indicating same padding), and uses
ReLU as the activation function. The convolutional blocks are followed by two

2 Piñata Board: https://www.riscure.com/product/pinata-training-target/.
3 Current probe: https://www.riscure.com/product/current-probe.

https://www.riscure.com/product/pinata-training-target/
https://www.riscure.com/product/current-probe
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fully connected layers, each containing 4 096 units. Finally, the output layer uses
Softmax and gives the probabilities for all the classes, which in our case would
be the probabilities for each of the 9 Hamming Weight classes. The model uses
categorical cross-entropy as the loss function, which is the most prominent of
the loss function used in such case scenarios, as has been mentioned in Sect. 2.2.

For hyperparameter tuning, CNNbest works with the RMSprop backpropa-
gation optimizer, a learning rate of 10−5, and trains for 75 or 100 epochs for
a batch size of 200. While we do not change the optimizer and the learning
rate, Benadjila et al. [1] also showed CNNbest has an equally good performance
with 50 epochs as well. We observed that while 50 epochs give better results for
round 3, 100 epochs worked better while attacking a byte at round 2. Further, we
also noticed better performance in the attack phase (w.r.t. the number of traces
taken to guess the correct key byte) when using a smaller batch size, which is
then fixed to be 64 in our experiments. Accordingly, the input layer then has the
shape of (2 960 × 64) where 2 960 is the number of PoIs (or features) selected.
The number of PoIs selected in this case correspond to the traces of the S-box
computation of the third round. Table 1 shows the benchmarked values used for
CNNbest and the values that we consider for this work.

We also test randomized CNN architectures with up to 4 convolutional layers
each having the kernel size ranging from 10 to 20 and a stride of either 5 or 10,
followed by 3 dense layers each having up to 1 000 neurons and a layer weight ini-
tializer randomly picked from (random uniform, glorot uniform, he uniform).
The activation function for all layers was randomly selected from (relu, selu,
elu, and tanh). We observed that most of these random architectures also
showed good results in breaking the inner rounds.

Table 1. Summary of the benchmarked values of the hyperparameters.

Hyperparameters Benchmarked choice Our setup

Training hyperparameters

Epochs Up to 100 50 (R3)/100(R2)

Batch size 200 64

Architecture hyperparameters

Blocks 5 5

CONV layers 1 1

Filters 64 64

Kernel size 11 11

FC layers 2 2

ACT function ReLU ReLU

Pooling layer Average Average

Padding With zeros With zeros
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5.3 Attacking a Byte After Round 2 S-box

To attack a byte after the S-box of round 2, each target byte needs three plaintext
bytes to be fixed in the target dataset, allowing us to target four key bytes with
each acquisition of power traces. For example, to target key bytes (0, 4, 8, 12), we
need to have the other 12 plaintext bytes fixed. Therefore, trace set acquisition is
made accordingly, where these 4 bytes of the plaintext are randomly defined, and
the others remain fixed. An attack to find all the 16 key bytes would therefore
require four such acquisitions in total. We chose to attack the 0th key byte for
showcasing our results. We compute the hypothesis for attacking key byte 0 as:

hyp = HW [S(02 ∗ S(p0 ⊕ k0) ⊕ δ)], (13)

where δ = 03 ∗ S(p5 ⊕ k5) ⊕ 01 ∗ S(p10 ⊕ k10) ⊕ 01 ∗ S(p15 ⊕ k15) ⊕ k1
0. As can

be seen here, we need to keep the plaintext bytes (5, 10, 15) fixed in order to
make the attack possible, and the hypothesis hyp itself depends on only p0 and
k0 of the input trace. For DL-SCA, we label the traces during the profiling phase
using the hypothesis and then guess the bytes (k0, δ) during the attack phase.
We set the hyperparameters as discussed in Sect. 5.2. Training and validation
are done for 7 500 and 500 traces, respectively, and on variable keys that do
not consist of the target key bytes while having the constant plaintext bytes as
0x00 for simplicity. The attack is performed on a set of 2 000 traces with a fixed
key. In the case of DL-SCA, we observe that the attack yields the key after 238
traces, as shown in Fig. 1 when the rank becomes 0. We generalize the term to
rank here since we are guessing another byte apart from the key byte itself, and
therefore, it is of the order 104 denoting roughly the 65 536 possibilities while
guessing 16 bits (216 possibilities). We can then deduce that the attack takes
238 traces to start recognizing the correct trend from profiling, thereby leading
to correct guesses thereafter, which we can see from the drop of the rank to 0.

We then launch CPA on a set of 2 000 traces with a fixed key derived from
the same dataset used above. We first compute the hypothesis for all the 216

guesses and as given in Eq. (13). The correlation is then computed for all the
guesses per trace, and the guess with the highest value is chosen to be the most
likely guess as in any CPA attack. This experiment is then repeated 100 times for
each batch of shuffled traces, and the highest correlation value is then averaged
out, resulting in an average rank for each batch. The results of this attack are
shown in Fig. 1. The average rank achieved by CPA is six after 2 000 traces. As
we notice a decreasing trend in the average ranks, we believe that CPA would
eventually find the key if given more traces during the attack.

Now we add Gaussian noise as described in Sect. 5.1 and observe the per-
formance of the attacks. With the added noise, DL-SCA finds the key after 139
traces as seen in Fig. 2, while CPA does not find the key even with 2 000 traces
despite a downward trend, as visible in Fig. 2. The average rank for CPA is 352
after 2 000 traces while it attempts to recover 16 bits of information.
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Fig. 1. DL-SCA and CPA for key byte 0 after S-box on encryption round 2.

Fig. 2. DL-SCA and CPA for key byte 0 with adding Gaussian Noise.

5.4 Attacking a Byte After Round 3 S-box

Round 3 requires the attacker to acquire a separate trace set per each key byte.
Here we specifically target k0 and we then compute the hypothesis as follows,

hyp = HW [S(02 ∗ S(02 ∗ S(p0 ⊕ k0) ⊕ δ) ⊕ γ)], (14)

where hyp is the 8-bit hypothesis computed for one input trace while p0 and k0
are the first bytes of plaintext and key for that input trace, respectively. Since
this depends on p0, we gather the acquisition set with the first byte as variable
and the rest of the bytes as constant, which we set as 0x00 for simplicity. As
discussed in Sect. 5.1, we first perform the attacks on aligned traces, followed
by attacks on the misaligned ones. For DL-SCA on the aligned set of traces,
since we have only 3 000 traces collected per acquisition in our dataset, we use
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the first 2 000 traces for the profiling phase, the following 500 for validation and
attack the next 500 traces. The model used is as described in Sect. 5.2. As done
for round 2, the label for each trace is computed using Eq. (14) for profiling,
where (δ, γ) can be set to any constant including 0x00. During the attack we
attempt to guess 3 bytes (k0, δ, γ). On performing the attack in this case, we
successfully attain the key byte k0 along with the correct values of δ and γ after
11 traces. The result is shown in Fig. 3 (here too, we generalize the term to rank
since we are guessing 3 bytes in total). Similar to the result seen for round 2, the
rank is of the order 106, indicating the 224 possible guesses (approximately 16
million possibilities) for 24 bits of data. The attack takes just 11 traces to start
recognizing the trend and guessing the correct key.

For CPA, we compute the hypothesis and subsequently the correlation for
all the 224 guesses, similar to what was done for round 2. The result of this
attack is then shown in Fig. 3. The correct key converges towards the highest
correlation value as expected from a successful CPA attack, and the correct
key is obtained after 50 traces and again at 110 traces. Here, we restrict the
computation of key ranks to only 1 experiment instead of 100 as done in the
case of round 2. Therefore, the results for CPA on round 3 are given as a proof
of concept for the attack. This is because of the CPU-intensive operations done
while brute-forcing 24 bits on a standard personal computer. The experiments
were done using Intel Core i9 8-core processor and 16GB RAM. Computation of
hypothesis for 500 traces takes approximately 27 min, followed by an average of
9 min for computing the key rank for each batch of traces. With an increment of
10 traces per batch, completing 1 experiment for all the batches ranging from 10
to 500 traces (50 batches) takes approximately 7.35 h. Multi-processing can be
used to speed up the experiments, but storing 224 possibilities for each trace is
memory intensive, thereby making the use of multiple processes more expensive
(in terms of speed-memory trade-off) for a standard personal computer.

Fig. 3. DL-SCA and CPA on aligned traces for byte 0 after S-box in round 3.
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We now use the misaligned traces to compare the performance of DL-SCA
and CPA in the presence of such an implicit countermeasure. We use the same
DL model (along with the hyperparameters) and the samples interval to perform
DL-SCA on the misaligned traces. The attack reveals the key after ten traces.
The comparison of DL-SCA and CPA on the misaligned traces is shown in Fig. 4.
As expected, a CPA attack fails in this case due to misalignment.

Fig. 4. DL-SCA and CPA on misaligned traces for byte 0 after S-box in round 3.

We further compare the performance of DL-SCA with CPA by adding Gaus-
sian noise to the misaligned traces. The results can be seen in Fig. 5. While
DL-SCA finds the key after 34 traces, CPA is unable to do so even after going
through our entire attack set of 500 traces.

Fig. 5. DL-SCA and CPA on misaligned traces with Gaussian noise added for key byte
0 after S-box in round 3.
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While DL-SCA successfully finds the key in all the above cases, CPA is
successful only when the traces are aligned. The effectiveness of DL-SCA is
further proven when attacking misaligned traces since it succeeds with as few as
ten traces, while CPA is unsuccessful. We can therefore conclude that DL-SCA
outperforms CPA by a significant margin when attacking the inner rounds.

5.5 Attacking a Byte After Round 4 S-box

To attack the byte after the round 4 S-box, we need to guess 32 bits comprising
the set of (k0, δ, γ, θ), as can also be seen from Eq. (4). Although attacking 32
bits is still feasible, the usage of the aforementioned three constants implies that
all the 16 bytes of plaintext and the key need to be fixed for this particular
attack to work. However, profiling using the same plaintexts and the same key
would result in the same labels and consequently would result in the overfitting
of the model.

Fig. 6. DL-SCA on round 4 S-box with different plaintexts used for training and con-
stant one for attacking. A fixed key was used both for profiling and for attack.

Another case scenario would involve profiling using different plaintext but a
constant key. This would mean calculating the exact values of δ, γ, and θ, which
in turn leads to a properly trained model. However, the assumption in the attack
phase while computing the four target bytes is that these 4 bytes are constant
during the profiling as well and, by extension, should ideally have different Ham-
ming Weights as labels than what was computed. As an example, two plaintexts
having the same first byte should have the same label and, therefore, similar
traces. However, since we are using different plaintexts for each trace during
profiling, the training factor that the constants bring in is totally eliminated.
This effectively means that the training phase and the attacking phase are car-
ried out on data that are completely different from each other, thereby rendering
the attack unsuccessful. The results for the same are shown in Fig. 6, and it can
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be observed that the rank never converges to a correct guess and does not show
a decreasing trend either. A similar result was also seen while using the same
plaintext but different keys. This is because the values of δ, γ, and θ not only
depend on the plaintext but also on the keys and the subsequent round keys.
As of now, we conclude that an attack on any byte after the round 4 S-box is
infeasible within the boundaries considered by our work.

6 Conclusions and Future Work

In this work, we proposed general formulations to attack any intermediate byte
in AES encryption mode. Results indicated that attacks on rounds 2 and 3 are
practical besides the increased complexity in the hypothesis guessing (16 and 24
bits, respectively). We demonstrated in practice that because profiled attacks
are less restricted from fixed plaintext limitations in the profiling phase, DL-
SCA can easily succeed in recovering the key in scenarios without or with (noise
and misalignment) countermeasures. On the other hand, non-profiled attacks,
such as CPA, becomes highly constrained by time and memory limitations as
a consequence of the increased complexity to guess intermediates from inner
rounds. As mentioned by several related works, for several targets, DL-SCA
shows easier key recovery in comparison to non-profiled attacks if the profiling
phase is done appropriately. Therefore, as shown in this paper, DL-SCA becomes
a strong candidate to attack (not properly protected) inner rounds from AES.

Moreover, we observed that the results from Sect. 5 have certain limitations.
Most notably, the presented approach fails at attacking further than round 3.
Therefore, the most interesting open question is whether it is possible to attack
rounds between 4 and 6. We believe that this goal should be achievable using
deep learning. The first, more straightforward approach would be to attack both
S-box input and output using multi-label DL [14]. We envision that in this
approach, attacking the Hamming Weight of both intermediates would be the
most efficient. By targeting these two intermediate states at once, the attack
would be able to recover the key in a similar way to [2,19,22]. Note that such
method can be applied even without requiring access to input and output for
AES4.

The second approach would be to attack a combination of S-box input and
output. For example, we envision that it might be sufficient to use an XOR of
S-box input and output as a label. The traces might not be directly leaking that
XOR value, but the neural network might be able to combine S-box input and
output leakages and classify the XORed value correctly, in a similar way to which
neural networks were shown to combine leakages in masked AES traces [12].
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Abstract. The most common application for side-channel attacks is the
extraction of secret information, such as key material, from the imple-
mentation of a cryptographic algorithm. However, using side-channel
information, we can extract other types of information related to the
internal state of a computing device, such as the instructions executed
and the content of registers. We used machine learning to build a side
channel disassembler for the ARM-Cortex M0 architecture, which can
extract the executed instructions from the power traces of the device.
Our disassembler achieves a success rate of 99% under ideal conditions
and 88.2% under realistic conditions when distinguishing between groups
of instructions. We also provide an overview of the lessons learned in rela-
tion to data preparation and noise minimization techniques.

Keywords: Side-channels · Disassembler · Machine-learning

1 Introduction

The extraction of information using side channels is extensively studied in an
adversarial setting, where the target of the attack is the implementation of a
cryptographic algorithm. There are two classes of side-channel attacks. The first
are non-profiled attacks, where the adversary can choose the input data, observe
the encryption output, and monitor the side-channel information. The second is
profiled attacks, where the adversary has access to a clone device to learn the
behavior of the algorithm. Side channel attacks have a long history of success [1]
in extracting key information from power or electromagnetic traces collected
during the execution of a cryptographic algorithm.

However, monitoring the side-channel information of an embedded system
has also been proven to be useful for defense purposes [2]. A side-channel disas-
sembler monitors the control flow of an application at run-time by translating
side-channel information, such as power traces, into assembly code consisting
of instructions and operands. The applications of a side-channel disassembler
are multiple. An example is the detection of security breaches, such as malware
attacks. To detect malware using a side-channel disassembler, the signature infor-
mation of the healthy device at run-time is collected. This information is used to
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verify the integrity of the code running on the device. A flag is raised if a devi-
ation from normal operation mode is detected. Another application is reverse
engineering of the firmware of a target device. Side-channel disassemblers have
been shown to successfully recognize both the opcode and the operands for a
given device and instruction set architecture.

Problem Statement. Translating a power trace into a sequence of instructions
is a challenge. The first challenge is that an instruction is typically executed
once for an execution path, so there is relatively little information to use for
identification. The second challenge is that the power signature of an instruction
is influenced by other instructions in the pipeline [3], changing the side-channel
signature of an instruction. The third challenge is that the implementation of the
microarchitecture of an embedded device is a trade secret, and hidden storage
elements influence the interaction of instructions [4].

Contribution. Building on previous work, we investigate the use of machine
learning models for side-channel disassembly of instructions running on an ARM-
Cortex M0 processor, which is a popular choice for IoT due to its ultralow gate
count. Its side-channel leakage has been extensively studied in the context of
leakage simulators. Unlike side-channel disassemblers which extract the assem-
bly instruction from a power trace, leakage simulators aim to construct the power
trace for a set of assembly instructions. This is the first attempt at modeling
a 32-bit architecture with a 3-stage pipeline; previous work has focused on 8-
bit processors with 2-stage pipelines. 32-bit architectures are more complex and
typically add more components, increasing the difficulty of recognizing instruc-
tions in power traces. Using the information collected from the power traces, we
performed experiments to identify the groups of instructions as suggested in [5]
and individual instructions. Under ideal conditions, our side-channel disassem-
bler reaches a success rate of 99%, while under realistic conditions, we observe
a success rate of 88.2%.

Paper Organization. Section 2 describes the related work. The experimen-
tal setup that we used to validate our results is presented in Sect. 3 and the
datasets we collected are described in Sect. 4. The challenges of selecting mixed-
instruction sequences are described in Sect. 5. Our results are presented in Sect. 6
and conclusions are presented in Sect. 7. The KL-based feature selection proposed
in [6] is discussed in more detail in Sect. A (appendix).

2 Related Work

Side-Channel Disassemblers. Park et al. [6] have created a side-channel dis-
assembler targeting the Atmega 328P microcontroller and report a success rate
of 99.03% in instruction identification. The first step of the disassembler is to
collect power traces. Next, all instructions are divided into groups on the basis
of their operands. Since the microcontroller used has a two-stage pipeline, the
target instruction is preceded and succeeded by a random instruction to fill the
pipeline. After the traces are collected, the difference between each trace and a
reference trace containing only nop’s is computed to remove electrical noise. This
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work is the starting point for the results presented in this paper. We extensively
experimented with the proposed special feature selection and combined it with
several machine learning algorithms. Eisenbarth et al. [7] targets a PIC16F687
microcontroller, running at 1MHz that features a set of 35 instructions (most
are 1 cycle instructions). Their goal is to reconstruct the instructions executed
and their order from a single measurement. They use templates to model the
power consumption of a single instruction. They also use instruction frequency
analysis to determine the probability that instructions appear in a piece of code
and feed this information to the distinguisher function. They report a recogni-
tion rate of 70%. Msgna et al. [8] targets an 8-bit ATMega163 microcontroller,
running at 4MHz, which features a set of 130 instructions. For the experiments,
they only used 39 instructions and report a 100% recognition rate.

Side-Channel Leakage for the ARM-Cortex M0. McCann et al. [5] cre-
ated ELMO, a leakage simulator for the ARM-Cortex M0/M4 family. ELMO is
instruction-accurate, which easily allows the identification of a leaky instruction
in the context of side channels. An exciting feature of ELMO is the support for
sequence dependency. The critical observation is that the power consumption
of different instructions depends on the instructions executed before. Following
a cluster analysis to identify similar instructions (i.e., those that leak informa-
tion in the same way), the authors identified five groups that correspond to the
same processor component. In this work, we use the grouping of instructions
proposed by [5]. In addition, the authors find remarkable consistency in the
data-dependent leakage of different physical boards. Shelton et al. [4] improves
the side channel model of ELMO by capturing interactions that span multi-
ple cycles. ELMO [5] is augmented to account for storage elements, which play
a critical role in the security of masked implementations. A novel feature of
ELMO* [4] is a systematic battery of small code sequences that can be used
to highlight the interaction of instructions through storage elements. The idea
of finding hidden storage elements is generic and could be used for any other
architecture. Bazangani et al. [9] propose a new leakage simulator ABBY, for
the ARM-Cortex M0 architecture based on machine learning. The advantage of
ABBY compared to ELMO is twofold. The first advantage is that no reverse
engineering of the target device is required, and the second is that ABBY can
learn nonlinear leakage models. Arora et al. [3] compare the manufacturing vari-
ability between different physical devices from the same manufacturer. The study
targets an ARM-Cortex M0 architecture and shows that the power trace signa-
ture of a sequence of instructions depends on microarchitecture implementation.
The implication of this work is that the existence of a generic side-channel dis-
assembler, which is identified with high-accuracy instructions on ARM-Cortex
M0 cores produced by different manufacturers, is improbable.

3 Experimental Setup

For training or profiling, power traces are collected from an ARM-Cortex M0
microcontroller, STM32F0 Discovery (STM32F051R8). The CPU is clocked at
8 MHz. To improve the signal-to-noise ratio in the measured power traces, the
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capacitors between VDD and GND are removed, since they reduce the signal-
to-noise ratio in the power traces (Fig. 1a). The oscilloscope is set to 1.25GS,
resulting in 156.25 samples per cycle. The power consumption of the board is
measured using an AC current probe since it ignores the DC component, which
can vary between different measurements. An overview of the setup can be found
in Fig. 1b.

(a)

Current
probe

Battery

USB

Cortex
M0

Oscillo-
scope 

PC

Trigger

Serial

Channel A

-

+

(b)

Fig. 1. Overview of the setup used to collect the traces. (a) Frontal view of the
STM32F030R8 board, where the removed capacitors: C18, C19, C20, C21 are high-
lighted. (b) Schematic overview of the setup used to collect traces.

4 The Datasets

The ARM-Cortex M0 implements the ARMv6-M instruction set, which con-
sists of most of the 16 bit Thumb instructions and some of the 32 bit Thumb-2
instructions. For this project, we select the core instructions relevant for crypto-
graphic operations, similar to [5], who observed that the power consumption of
the selected instructions can be divided into five different groups by performing
a cluster analysis. The resulting groups and instructions are shown in Table 1.

Table 1. Overview of the division of instructions into groups.

Group 1 (ALU) adds, ands, cmp, eors, movs, orrs, subs

Group 2 (SHIFTS) lsls, lsrs, rors

Group 3 (LOADS) ldr, ldrb, ldrh

Group 4 (STORES) str, strb, strh

Group 5 (Multiplications) muls

Since the microcontroller board has a limited amount of memory, the data
sets collected consist of multiple acquisitions. The acquisitions are created from
multiples programs. A program is a sequence of assembly instructions. For our
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adds
random

instruction

target
instruction

random
register

r5 r4

ldr r6

orrs r1 r3

movs r3 r3

adds r0 r3

address 
register

r2

random instruction

random instruction

random instruction

random instruction

target instruction

Fig. 2. Snippet of a program. Note that 10 nops are executed before and after this
fragment to ensure an accurate acquisition.

data sets, a program is constructed as follows: ten nops, two random instruc-
tions, one target instruction followed by two random instructions and ten nop
instructions. An example can be seen in Fig. 2.

The nop instructions do not use operands. The operands used for the other
instructions in program are random values in random registers. Since loads and
stores instructions need an actual memory address to load from and store to,
one register (r6) is reserved for this and filled with an existing memory address.
The other free registers (r0-r5) are filled with new random 32-bit values before
each program is executed.

Three datasets are created for different purposes. To be able to apply the
proposed feature selection in [6], dataset A is created that matches the settings
required for this special feature selection. Dataset B is created for the recognition
of the five instruction groups, and dataset C is created for the recognition of
instructions within the largest instruction group: group 1.

Dataset A contains sixty programs targeting three instructions. Two additional
programs consisting of nop instructions are used as a baseline to remove electrical
noise. The three target instructions are: adds, ands (from group 1) and muls
(group 5). For each target instruction, we generate 20 programs by randomizing
the random instructions. The random instructions are taken from groups 1, 2,
and 5. For each program 300 power traces are acquired, with 6000 samples per
trace. The collection of traces is done in one acquisition campaign.

Dataset B contains a total of 12,500 programs, with target instructions in the
five groups. Each group contains 2,500 programs. The target instruction is ran-
domly selected from all instructions in the group. For each program, 20 traces
are collected, with 6000 samples each. An average is taken over these 20 power
traces to reduce electrical noise. Only 500 programs fit into the memory of the
board, so the data set consists of 25 different acquisitions.

Dataset C contains 17,500 programs targeting instructions from group 1. For
each of the seven target instructions in the group, 2500 programs are created.
For each program, 20 traces are collected with 6000 samples each. To reduce
electrical noise, an average is taken over these 20 power traces. The data set is
collected in 35 acquisition campaigns.



188 J. van Geest and I. Buhan

5 Selecting the Mixed-Instruction Sequence

After acquiring the traces, we want to determine the samples in the trace related
to the assembly code executed. Since the ARM-Cortex M0 has a three-stage
pipeline, we selected three cycles (or the equivalent of 469 samples) since each
of the stages can contribute to the power usage of the target instruction. The
collected traces have 6000 samples, but we do not know at which samples our
assembly is being executed. With our setup, it is not possible to calculate the
time between the trigger and the moment our assembly code starts executing. In
the power traces, we can see the influence of the executed assembly, but since we
have a three-stage pipeline (Fig. 3) we do not know which stage of the pipeline
causes the change in power consumption or which instructions are in the pipeline
at that exact moment.

nop

nopnop

nop nop

nop

Stage 1: 
Fetch

Stage 2:
Decode

Stage 3:
Execute

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

random
instruction

target
instruction

random 1 random 2 target random 3 random 4

random 1 random 2 target random 3 random 4

random 1 random 2 target random 3 random 4

Fig. 3. Executed instructions in the pipeline. The target instruction is expected to
influence the power trace in cycle 3–5.

To select the samples in the power trace corresponding to target instruction,
we explore two techniques. The first is sample-eviction, which works by removing
a window of three cycles from the traces by replacing them with zero values
and then calculating the classification score. By evicting samples at different
intervals in the trace, we expect the lowest score1 to indicate the location of
the most important samples. The second technique is moving-window, where
we calculate the classification score in a moving window of three cycles. The
highest score indicates the three cycles that contain the most useful information
for the machine learning model. For both techniques, we chose to use a Multilayer
Perceptron model as discussed in Subsect. 6.1.

The top graph in Fig. 4 shows a processed power trace where noise and
nop were subtracted to give a better visualization of where random and target
instructions influence the power trace. The middle and bottom graphs in Fig. 4
show the result of the sample-eviction and moving-window technique, respec-
tively. Note that, for both techniques, the score for a given sample is calculated
over the 469-sample window, which starts at that specific sample. The gray lines
are plotted with intervals of one cycle, or 156.25 samples. The starting point of
the cycle is not known, so the lines could be out of phase.

There are different options to interpret the available information. Looking
at the top graph of Fig. 4 there are six cycles clearly influenced by the executed
1 A poor classification score indicates the relevant samples are missing.
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Fig. 4. Power-trace (top) and the applied techniques for selecting the samples to be
used in further analysis (middle and bottom). (color figure online)

assembly. An estimation could be that the pipeline fetch stage uses the least
power, so the six cycles would be cycle 2–7 in Fig. 3. The corresponding cycles
where the target instruction is in the pipeline are marked with black dashed lines
on the top graph of Fig. 4.

In the middle graph Fig. 4, sample-eviction the score is lowest just before
sample 3100 and begins to increase rapidly after that. This could indicate that
the most important cycles are happening before that moment (between the black
dashed lines). Using the moving-window technique, we could use the three cycles
just after the significant increase in the score (between black dashed lines) or
the three-cycle window used to calculate the maximum score (between purple
dashed lines).

These techniques and information do not give a clear location for the most
important samples in the power trace. Since the machine learning algorithm used
will receive a 469 sample input similar to moving-window, we take the maximum
score for moving-window in sample 2780 as a starting point for our experi-
ments. To check whether other samples would contain additional information,
we explore using more than 469 samples as input in Subsect. 6.2.

For the selection of KL divergence-based features, the location of relevant
samples in the trace is followed by the continuous wavelet transform and KL
divergence. In Sect. A (Appendix), this is discussed in more detail.
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6 Experimental Results

6.1 Overview of Algorithms Used for Training and Classification

The machine learning models used are Linear Discriminant Analysis (LDA),
Quadratic Discriminant Analysis (QDA), Multilayer Perceptron (MLP), and
Convolutional Neural Network (CNN). We use LDA and QDA to implement
two of the models used in [6]. The package sklearn.discriminant analysis
is used for Python implementation. MLP and CNN models are often used
for side-channel analysis. The models used are simple and created using the
tensorflow.keras Python package. The details of MLP and CNN can be found
in Table 2 and Table 3.

Table 2. MLP

Layer type Details

Dense units = 200, activation = selu

Dense units = 200, activation = selu

Dense units = 200, activation = selu

Dense units = 200, activation = selu

Dense units = classes, activation = softmax

Table 3. CNN

Layer type Details

Conv filters = 8. kernel size = 20, activation = relu

Flatten

Dense units = 128, activation = relu

Dropout

Dense units = 128, activation = relu

Dense units = classes, activation = softmax

Before computing the MLP and CNN scores, the data have to be normalized
first. This is done using sklearn.preprocessing.StandardScaler. For both
the MLP and CNN models, they are set on 100 epochs, since the accuracy did
not increase for more epochs. For all machine learning models, the scores are
calculated using 5-fold cross-validation.
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6.2 Choosing the Configuration for the Dataset

Most instructions take one cycle to execute; however, all loads and stores take
two cycles. This means that the starting sample of target instruction can change
depending on whether one or both of the two random instructions that precede
the target instruction are load or store. To overcome this problem, while loading
the traces, we check whether load/stores occurs before target instruction and
increase the offset by the right amount of samples if there are. In Table 4 can be
seen that for each of the machine learning models the score increases, for LDA
and QDA there is even a significant improvement when adjusting the offset.

Table 4. Dataset B. Offset vs. none

LDA QDA MLP CNN

Normal offset 65.9% 50.6% 80.4% 79.6%

Adjusted offset 84.4% 70.7% 85.6% 87.8%

When different acquisitions are run, the power traces can be slightly differ-
ent due to variables such as temperature. To check whether this influences the
scores for our dataset, we ran scores for three different configurations. The first
configuration uses only one acquisition file per group, resulting in 500 programs
per group. The second configuration uses the complete datasets with five acqui-
sition files per group, and the training and testing parts are taken randomly. For
the last configuration, the training part consists of 4 acquisition files per group,
and the last file is used for testing. The results for each configuration can be
found in Table 5. Note that for the highlighted cell the QDA calculation warned
that the variables are collinear, so this result should not be considered accurate.
The partial data set performs worse than the complete dataset, so increasing the
number of programs increases the accuracy despite adding multiple acquisition
files. When using configuration 3 the scores are similar to configuration 2, so the
influence of changing environmental variables on different acquisitions seems to
be limited.

Table 5. Dataset B. Machine learning scores for different input configurations.

LDA QDA MLP CNN

Configuration 1: partial dataset 81.0% 31.3% 78.9% 76.9%

Configuration 2: complete shuffled 84.4% 70.7% 85.6% 88.3%

Configuration 3: complete 84.3% 71.0% 85.8% 88.1%

Since we do not have a perfect method for selecting the right samples in
the power traces, we compare different amounts of samples in Table 6. Note that
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again the highlighted cell should not be considered accurate, since its calculation
gave a collinearity warning. 469 samples selected using the sample-eviction and
moving window, 781 samples using the previous selection and the cycle before
and after that, and 3000 samples to ensure that all our assembly is in the selec-
tion. The differences between 469 and 781 samples are relatively small, which
could indicate that our feature selection is close to the actual most important
samples. The two additional instructions covered by the extra samples barely
increase the scores. When taking a large 3000 sample selection, the scores are
close to the other selections or even significantly lower in the case of MLP.

Table 6. Dataset B. Using different amounts of samples.

Samples LDA QDA MLP CNN

3000 84.9% 31.4% 79.6% 88.5%

781 85.4% 67.3% 88.8% 88.8%

469 84.4% 70.7% 87.9% 87.9%

For the next sections, we will use the all the acquisition files in the datasets
with shuffled traces, an adjusted offset and a selection of 469 samples.

6.3 Amount of Traces per Program

In Sect. 4 is indicated that for each program in dataset B and C an average trace
is taken over 20 traces. In Table 7 can be seen what the scores are with different
approaches than averaging. When taking only a single trace, the score drops
significantly. If we use all 20 traces for machine learning, the score increases to
93.7%. However, in this scenario (identical-program) the traces for training and
testing are taken randomly, which means that testing can be done on traces
generated with the same program as some of the traces used for training. When
making the train-test division based on program rather than traces, this problem
is avoided, but the score drops to 77.8% (different-program). This means that
averaging the 20 traces results in the best score (84.7%) for a realistic scenario.

Table 7. Dataset B. Using different methods to divide all traces into training and
testing sets.

Traces per program Method MLP score

1 - 79.5%

20 Identical-program 93.7%

20 Different-program 77.8%

20 Averaged 84.7%
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6.4 Training and Classification for Groups of Instructions

The scores for the classification of different groups are given in Table 8. Note that
the CNN score for the first row is not given since the number of input variables
after the selection of features is too low. The KL-based feature selection can
only be applied to dataset A, for which the scores are very close to random
guessing (50%). However, when we use the same samples for our analysis, the
score increases to 99.9%. This means that there is enough information in the
samples to get an almost perfect classification score, but the KL-based feature
selection cannot extract this information. Possible reasons for this can be found
in Sect. A (appendix). However, this is a best-case scenario (identical-program),
where two instructions from different groups are compared with a data set that
contains power traces in its training and testing set that are based on the same
program. To create a similar but more realistic scenario (different-program) for
dataset B we took only two groups instead of all five in row three (Dataset B
(group 1 vs group 5)), and this still gives a accuracy of 94.5%. When using the
complete dataset, the accuracy drops to a maximum score of 88.2%.

Table 8. Dataset A vs. B groups.

Dataset Feature selection LDA QDA MLP CNN

Dataset A (adds vs muls) Yes [6] 50.3% 50.2% 50.1% -

Dataset A (adds vs muls) No 69.2% 66.8% 99.9% 99.8%

Dataset B (group 1 vs group 5) No 95.4% 77.2% 93.4% 95.4%

Dataset B (all groups) No 84.4% 70.7% 86.4% 88.2%

The confusion matrix in Fig. 5 shows the MLP result for all groups in dataset
B. Since the training and testing data are randomly divided, the expected
amount of traces per group, and therefore the maximum score in the matrix,
is 500. It can be seen that the score is the worst for group 2 (shifts). The loads
and stores can be distinguished best. Although they can be distinguished on
the basis of their two-cycle duration compared to the one-cycle duration of the
other instructions, loads are also not classified as stores or the other way around.

6.5 Training and Classification Results for Individual Instructions

The scores for the classification of different instructions are given in Table 9.
Again, KL-based feature selection can only be applied to dataset A. The scores
for KL-based feature selection are just above random guessing of instructions,
but when machine learning is used on the same traces, the score increases to
99.9% (identical-program). This shows that although KL-based feature selection
performs better for instructions than for groups, there is still a lot of information
in the dataset. Moving to a more realistic scenario (different-program), however,
in dataset C, the machine learning models perform significantly worse than for
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Fig. 5. Confusion matrix groups. Row indicates true label, column indicates predicted
label.

groups with maximum scores of 58.1% for two classes and 25.5% for seven classes.
Note that the expected score for random guessing is 50% and 14.3% for two and
seven classes, respectively.

Table 9. Dataset A vs. C instructions.

Dataset Feature selection LDA QDA MLP CNN

Dataset A (adds vs ands) Yes [6] 56% 55.4% 51.6% 51.8%

Dataset A (adds vs ands) No 88.1% 78.5% 99.9% 99.9%

Dataset C (adds vs ands) No 54.7% 49.8% 58.1% 51.8%

Dataset C (all instructions) No 20.1% 15.5% 25.5% 25.2%

The confusion matrix in Fig. 6 shows an MLP result for all instructions in
dataset C. Since the training and testing data are randomly divided, the expected
amount of traces per instruction and therefore the maximum score in the matrix
is 500. Since the score is significantly lower than the score for groups, the matrix
shows a lot of false positives and false negatives. The only instruction classified
correctly in more than 50% of the cases is orrs.

6.6 Discussion

We use the term identical-program to describe the classification results obtained
when traces of the same program are used to train the model and report the
classification results. We use the term different-program to describe the classifi-
cation results obtained when traces of different programs using the same target
instruction are used to train the model and report the classification results. The
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Fig. 6. Confusion matrix instructions. Row indicates true label, column indicates pre-
dicted label.

different-program setting is more challenging compared to identical-program for
classification, but is also more realistic.

Our side-channel disassembler reached a success rate of 99% in the identical-
program setting, which is in line with most state-of-the-art results reported in
the literature. However, we observe a decrease in the success rate (95.4%) when
using the different program strategy. When we include all five groups, our model
success rate reaches 88.2%.

We observe the same behavior when analyzing results related to instruction
classification. Our side-channel disassembler reached a success rate of 99.9%
in the identical-program setting when used to distinguish between two instruc-
tions (in the same group). The same classification task in the different program
strategy results in a success rate of 58.1%. However, when we include all the
instructions, our model success rate reaches only 25.5%.

7 Conclusions and Future Work

In this work, we present the first side-channel disassembler that targets the
ARM-Cortex M0, a 32-bit microcontroller. Previous side-channel disassemblers
target simple 8-bit architectures. We show that the training and classification
strategies used have a substantial impact on the performance reported in the
model. Under ideal conditions, our side-channel disassembler reaches a success
rate of 99%, while under realistic conditions, we observe a success rate of 88.2%.
To our surprise, the use of sophisticated methods for feature selection did not
prove helpful, and the best results we obtained with unprocessed features. As
a result, creating data sets is a simpler task. The present study only exam-
ined relatively simple deep learning models, which we did not optimize for the
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task. Therefore, we believe that more advanced deep learning architectures can
improve the results.

Acknowledgments. This work received funding in the framework of the NWA Cyber-
security Call with project name PROACT with project number NWA.1215.18.014,
which is (partly) financed by the Netherlands Organisation for Scientific Research
(NWO).

A Discussion KL-Based Feature Selection

In this section, we explain the feature selection method proposed by [6], with
which we experimented extensively. After discussing the method in detail, we go
over possible issues causing the bad performance. The KL-based feature analysis
consists of two steps. The first step is pre-processing using the continuous wavelet
transform, and the second step is feature selection using KL divergence. The
input for KL-based feature selection is (number of traces, number of samples),
resulting in output shape (number of traces, number of features).

A.1 Background

Continuous Wavelet Transform(CWT). is used to transform traces from
the time domain to the time-frequency region. The wavelet used is a stan-
dard Ricker wavelet included in the scipy.signal package. The width used
for the scipy.signal.cwt function is 50. The result is a two-dimensional array
of shapes (50,469). This means that for each power trace, we end up with
50 ∗ 469 = 23450 data points. These data points are used as input for the next
step: feature selection.

KL-Based Feature Selection. Kullback-Leibler (KL) divergence is the sta-
tistical distance between two probability distributions. This means that before
we can use the KL divergence, the acquired data has to be transformed to prob-
ability distributions. This has to be done for each of the 23450 data points in
the processed power traces. When comparing two programs or target instruc-
tions, for each data point the probability distribution is taken over the 300
(program) or 6000 (target instruction) traces. Computing the probability dis-
tributions is done with numpy.histogram using the Freedman-Diaconis rule for
determining the bin width. For the actual KL divergence calculation we use the
scipy.special.kl div function.

The resulting two-dimensional array has the same shape (50,469) as all input
power traces after the CWT. On the basis of the KL-divergence values at each
of the sample points in this array, the features to be used in machine learning
can be selected.

Not-Varying Feature Points. For each target instruction the KL divergence
is computed for each unique combination of its programs. This results in 190
KL divergence arrays. To select points with a low KL divergence value, for each
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of the arrays a list of coordinates (list) is created that includes only the sample
points that have a value below a certain threshold. The not-varying feature points
are selected using Eq. 1.

NV Ptarget = list1 ∩ list2 ∩ · · · ∩ list190 (1)

Distinct Points. Between the different target instructions, the KL is also com-
puted, using all the programs together instead of comparing the programs. For
each of the 23450 sample points in the power traces, the probability distribution
is taken over the 20 ∗ 300 = 6000 power traces. Since there is only one combi-
nation for which the KL divergence has to be computed, the result is just one
array compared to the 190 for not-varying feature points. To avoid collinearity,
only local maximum values are used instead of taking points above a certain
threshold [6]. A list of the sample points that have a local maximum value is
computed; this list is called DPtargetA vs. targetB .

The final result of the selection of features is a combination of not-varying
feature points and distinct points:

feature points = NV PtargetA ∩ NV PtargetB ∩ DPtargetA vs. targetB (2)

The selected points should not vary much when the same target instruction is
executed, but should vary much when different target instructions are executed
and therefore contain much information for classification.

A.2 Results of Feature Selection

The final amount of feature points is determined using Eq. 2. The amount of
not-varying feature points depends on the threshold used, while the amount of
distinct points is fixed. The latter therefore is the limiting factor for the amount
of resulting feature points. The different number of points to compute feature
points for adds vs. muls and adds vs. ands is given in Table 10.

Table 10. Results for KL-based feature selection

Threshold adds vs. muls adds vs. ands

Not-varying feature points 795 1540

Distinct feature points 155 435

Feature points 7 112

LDA score 50.3% 56%

The first point of interest is the low amount of feature points for adds versus
muls, but doubling the KL threshold to 0.8 only increases the amount of feature
points to 8. The low amount of feature points could be an influence for the low
results, however adds vs. ands does not perform much better with 112 feature
points.
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Fig. 7. KL divergence graphs with selected feature points for adds vs. muls. (a) muls

program 1 vs. program 2. (b) adds vs. muls.

When plotting feature points in the KL divergence graphs, one of the possible
causes for the low classification rates can be seen. The not-varying feature points
are selected to be below a certain threshold and therefore should have a low KL
value. This is true for both comparisons, as can be seen in Fig. 7a and Fig. 8a.
However, when looking at distinct points (Fig. 7b and Fig. 8b) the selected feature
points also have a very low KL value, whereas they should have a high KL value.

Fig. 8. KL divergence graphs with selected feature points for adds vs. ands. (a) ands

program 1 vs. program 2. (b) adds vs. ands.
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The low KL values for distinct points are possible because there is no thresh-
old for distinct points to be above. The only requirement is that the selected
points be a local maximum. This does not exclude points with a high KL value,
but they are not present. When comparing these graphs with the results of [6],
we notice that the shape of our figures is different. Whereas the high KL values
for both comparing target instructions and comparing programs with the same
target instruction are located mainly on the higher scales, this is different for
the results in [6]. For their results, the low KL values for comparing different
programs with the same target instruction are located at the same scales as the
high values for comparing different target instructions. The cause of this could
be related to the exact implementation, which the authors of [6] do not specify,
or due to architectural differences between the different microcontrollers.

References

1. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48405-1 25

2. Park, J., Rahman, F., Vassilev, A., Forte, D., Tehranipoor, M.: Leveraging side-
channel information for disassembly and security. J. Emerg. Technol. Comput. Syst.
16(1) (2019). https://doi.org/10.1145/3359621. ISSN 1550-4832

3. Arora, V., Buhan, I., Perin, G., Picek, S.: A tale of two boards: on the influence
of microarchitecture on side-channel leakage. In: Grosso, V., Pöppelmann, T. (eds.)
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Abstract. An artificial intelligence (AI) accelerator is a specialized
hardware accelerator designed to accelerate machine learning applica-
tions. The machine learning applications may require an isolated exe-
cution for the confidentiality of model information and processing data
and the integrity of the application tasks. For example, when critical
applications such as biometrics use machine learning, the applications
are required to execute in a trusted environment isolated not to be com-
promised by the other applications. The isolated execution of a machine
learning application using an AI accelerator is often achieved with a pro-
prietary hardware architecture consisting of dedicated security circuits
for the accelerator. On the other hand, several previous works have pro-
posed using open-source or general-purpose security functions for the
isolation execution to reduce design costs and commonly apply to var-
ious accelerators. This paper proposes an isolated execution method of
AI accelerators using OP-TEE, an open-source Trusted Execution Envi-
ronment (TEE) implementing the Arm TrustZone technology. The con-
tribution is to analyze the security threats of AI accelerators, propose
the countermeasure based on OP-TEE, and evaluate the implementation
of the isolated execution.

Keywords: Trusted execution environment · Arm TrustZone ·
NVDLA · ZynqMPSoC

1 Introduction

An artificial intelligence (AI) accelerator is a high-performance computation
machine for the efficient processing of machine learning applications in terms of
processing speed and memory. Especially machine learning applications imple-
mented on embedded devices use AI accelerators for real-time processing or
power consumption. Many companies are developing a diversity of AI accelera-
tors.

The machine learning applications may require an isolated execution for
security and privacy. For example, machine learning applications that require
reliability, such as biometric authentication, should be executed in a trusted
environment isolated from the other applications. The processing data of such
applications is related to data privacy. In addition, model information, such
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as the network configuration and parameters, can be regarded as the intellec-
tual property of model creators. Moreover, if the model information is revealed,
it is easy to carry out several attacks such as adversarial example attacks [1]
and model inversion attacks [2]. Therefore, several machine learning applica-
tions require the confidentiality of model information and processing data and
the integrity of the application tasks. Recent works have proposed several meth-
ods using trusted execution environments (TEEs) to protect the trained models,
the processing data, and the execution tasks [3–5]. TEEs provide an isolated
environment that malicious software cannot manipulate.

Several machine learning applications using AI accelerators often achieve iso-
lated execution with a proprietary hardware architecture consisting of dedicated
security circuits for the accelerators. For example, according to the Apple Plat-
form Security report [6], the machine learning applications related to security
and privacy, such as Face ID, achieve isolated execution by using a dedicated
secure subsystem (Secure Enclave), which is separated from the main processor.
Only Secure Enclave can access the AI accelerator (Neural Engine) for security
and privacy. In one of the previous works, Hua et al. applied the isolated execu-
tion to an open-source AI accelerator of Xilinx (CHaiDNN [7]) by implementing
a dedicated controller with a specific instruction set around the accelerator [8].

Several previous works have proposed that open-source or general-purpose
security functions are used for the isolation execution of AI accelerators to reduce
design costs and commonly apply to various accelerators. Xie et al. apply the
isolated execution to an open-source AI accelerator (VTA [9]) by using Intel
SGX, a TEE, and plugging in a dedicated security interface circuit to VTA [10].
However, only the VTA and the security interface circuit have been implemented
and evaluated. The paper does not show the implementation and evaluation of
the connection to Intel SGX.

This paper proposes an isolated execution method of AI accelerators using
OP-TEE [11], an open-source TEE implementing the Arm TrustZone technology,
and reports the implementation of the isolated execution. The proposed method
applied the isolated execution to an open-source AI accelerator of NVIDIA
(NVDLA [12]) by mainly using OP-TEE, XMPUs, and XPPUs. The XMPUs and
XPPUs [13] are general-purpose security functions provided by Xilinx on SoC-
FPGAs (Zynq UltraScale+ MPSoC). The paper analyzes the security threats of
AI accelerators and clarifies the scope of the proposed countermeasures using
open-source or general-purpose security functions.

The contributions of this work can be summarized as follows:

– The proposed method provides the isolated execution of AI accelerators based
on open-source and general-purpose security functions (Sect. 3). This paper
focuses on the following topics that previous works have not discussed: the
isolated execution of AI accelerators using OP-TEE and the security functions
in recent SoC-FPGAs.

– The security threats of AI accelerators are analyzed (Sect. 2), and the scope
of the proposed countermeasures is clarified (Sect. 3).

– The experiments show the implementation and evaluation of the proposed
method.
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Fig. 1. System architecture of a typical AI accelerator

2 Security Analysis

This section describes the security threats of AI accelerators. In addition, the
section describes previous works of isolated execution countermeasures against
the threats.

2.1 AI Accelerators

Several machine learning applications use an AI accelerator which has more
computing power than the main processor. In particular, there is a diversity of
AI accelerators for deep learning, such as TPU [14], VTA [9], and NVDLA [12].
Most AI accelerators typically have dedicated instruction sets and compilers. For
example, NVDLA includes register instructions for each functional module and
the corresponding compiler.

Figure 1 shows the system architecture of a typical AI accelerator. The AI
accelerator system consists of a software stack and a hardware stack. The soft-
ware stack consists mainly of a compiler and a driver. The compiler analyzes the
network of a trained model and generates the instruction flow from a dedicated
instruction set to execute the trained model on the AI accelerator. Furthermore,
the compiler converts the parameters of the trained model into a dedicated data
format. The driver sends and receives data with the AI accelerator based on the
model information converted by the compiler. The hardware stack consists pri-
marily of the CPU, DRAM, and AI accelerator. Due to the large size of trained
model parameters, the parameters are often deployed in the off-chip DRAM. The
AI accelerator executes the inference process using instructions from the main
processor and data stored in the DRAM.
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Fig. 2. Attack path to a typical AI accelerator

2.2 Threat Model

The attacker’s goal is to steal model information or compromise the inference
task. For example, model information can be regarded as intellectual property
because it may contain the know-how of the model creator. In addition, when
a biometric authentication uses machine learning, the attacker may bypass the
authentication by compromising the inference task.

An attacker could launch both software and hardware attacks on an AI accel-
erator. Figure 2 shows the paths of each attack on the system architecture of a
typical AI accelerator. Each attack is categorized by reference to the paper [10].
In software, the following attacks are possible.

(1) Direct access to the main memory excluding CPU reserved areas.
(2) Access the AI accelerator via memory-mapped I/O and send commands.
(3) Unauthorized driver API calls or tampering.

This paper assumes that an attacker can compromise the OS or hypervisor to
execute malicious software at the privilege level.

In hardware, the following attacks are possible.

(4) Direct access to the main memory by connecting a malicious device to the
external I/O interface (DMA attacks).

(5) Direct access to the off-chip memory (DRAM) when the off-chip memory is
available.

(6) Access the AI accelerator via a malicious device and send commands.
(7) Eavesdropping on the system and Peripheral Component Interconnect

Express (PCIe) bus.

The CPU and AI accelerator packages themselves are assumed to be trusted here.
The hardware such as memory, storage, and peripherals may be compromised.
Note that side-channel attacks using execution time and memory access patterns
and DoS attacks are outside the scope of this paper.
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2.3 Related Works

Previous works have proposed countermeasures against theft of model informa-
tion and compromising the inference task by executing inference tasks and AI
accelerators in isolated environments. The countermeasures isolate the execution
of inference tasks and AI accelerators from the other tasks so that they protect
the confidentiality of model information and processed data and the integrity of
the inference task. Note that there are also works about the isolated execution
of machine learning applications using GPUs [15–17], but this paper focuses on
the isolated execution of AI-specific hardware.

The isolated execution of AI accelerators is often achieved with a proprietary
hardware architecture consisting of dedicated security circuits for the accelera-
tors. For example, according to the Apple Platform Security report [6], the appli-
cations related to security and privacy with the AI accelerator (Neural Engine),
such as Face ID, achieve isolated execution by using a dedicated secure subsys-
tem (Secure Enclave), which is separated from the main processor. The latest
devices (A14 and M1 or later) further divide the operation of Secure Enclave into
normal and secure modes. The applications related to security and privacy, such
as Face ID, access the Neural Engine in the secure mode. In addition, there is a
mechanism to reset the state of the Neural Engine when the mode is switched so
that both the normal and secure modes can use the Neural Engine. The Secure
Enclave uses memory encryption as well as memory isolation.

In contrast to the isolated execution with proprietary hardware, several previ-
ous works have proposed using open-source or general-purpose security functions
to reduce design costs and commonly apply to various accelerators. Hua et al.
implement a dedicated controller with a specific instruction set around an open-
source AI accelerator of Xilinx (CHaiDNN [7]) for the isolated execution [8]. On
the other hand, Xie et al. use Intel SGX, a TEE, and plug in a dedicated security
interface circuit to access the open-source AI accelerator (VTA [9]) for the iso-
lated execution [10]. TEEs can achieve the isolated execution of AI accelerators
without a dedicated controller with a specific instruction set, as in the method
of Hua et al.

Xie et al. proposed the isolated execution method of AI accelerator with low
design cost by using TEEs. However, its implementation and evaluation are not
well shown. Specifically, only the VTA and the security interface circuit have
been implemented and evaluated. The paper does not show the implementation
and evaluation of the connection to Intel SGX.

Although recent SoC-FPGAs support memory protection units (MPUs) and
TEEs against DMA attacks related to the threat of (4), previous works have not
discussed the application of AI accelerators to isolated execution. For example,
Zynq UltraScale+ MPSoC, an SoC-FPGA of Xilinx, can use the Arm TrustZone
technology. Furthermore, it has the Xilinx Memory Protection Units (XMPUs)
and Xilinx Peripheral Protection Units (XPPUs) to complement the security
functions of the Arm TrustZone technology [13,18].



Towards Isolated AI Accelerators with OP-TEE on SoC-FPGAs 205

Fig. 3. Use case of the isolated execution

3 Proposed Method

This section proposes the isolated execution method of AI accelerators based on
open-source or general-purpose security functions. The proposed method mainly
uses OP-TEE on the Arm TrustZone technology, XMPUs, and XPPUs. First,
the section describes the overview of the proposed method. Next, the compo-
nents: NVDLA, Arm TrustZone, OP-TEE, XMPUs, and XPPUs, are explained.
Finally, the correspondence between threats of (1) to (7) and the security func-
tion of the proposed method is summarized.

3.1 Overview

Figure 3 shows a use case of the isolated execution of AI accelerators. The use
case shows that an embedded device executes a real-time inference with an AI
accelerator using sensor data as input on-site. A cloud server gathers the sensor
data from the embedded device and generates a trained model for the embedded
device. The generated model in the cloud server is fed back to the embedded
device for making it suitable. In such a service, the trained model can be a key
component. The service can be required to protect the trained model from theft.
The use case shows that the encrypted model is securely decrypted and executed
for inference.
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Fig. 4. Overview of the proposed method

Figure 4 shows the overview of the proposed method. In Fig. 4, the proposed
method is applied to NVDLA, an AI accelerator. The security functions mainly
include Arm TrustZone, XMPUs, and XPPUs. The cryptographic circuit, AES-
GCM, is optional. Section 3.3 explains its necessity. The Arm TrustZone iso-
lates applications executed on the CPU. In particular, isolating the driver of
the NVDLA restricts access to the NVDLA. The XMPUs isolate the access to
the DRAM. The XPPUs isolate the access from peripherals. The next section
describes the details of each function.

The execution flow of the proposed method is as follows. First, a deep learn-
ing application is launched from the normal execution environment (the normal
world). The application sends input data and model information (the network
configuration and parameters) to the isolated execution environment (the secure
world) via specific APIs. The model information is encrypted in advance. The
inference program in Secure world decrypts the network configuration and sends
instructions regarding the network configuration to NVDLA via the driver. The
encrypted model parameters are sent to the NVDLA via DRAM. The crypto-
graphic circuit decrypts the model parameters and passes them to the NVDLA.
The NVDLA reads the decrypted model parameters via the cryptographic cir-
cuit according to the commands from the inference program in the secure world.
The inference results are obtained by repeating the above operations between
the inference program in the secure world and NVDLA.
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Fig. 5. Hardware architecture of NVDLA (Small)

3.2 NVDLA

NVDLA is a deep learning accelerator framework that NVIDIA open-sourced
in 2017. The maintenance of the NVDLA project ended in the middle of devel-
opment in 2019. However, the NVDLA has recently attracted attention, with
several companies utilizing it and the release of a product combined with RISC-
V, an open-source CPU.

The hardware of the NVDLA includes Small-NVDLA for IoT devices and
Large-NVDLA for performance-oriented devices. Figure 5 shows the hardware
architecture of the Small-NVDLA. The Small-NVDLA consists of a convolution
core, a single data processor, a planner data processor, a channel data processor,
and Dedicated memory and data reshape engines. The convolution core is an
optimized high-performance convolution engine. The single data processor is
a look-up engine for the activation function. The planar data processor is a
matrix averaging engine for pooling. The channel data processor is a matrix
averaging engine for normalization functions. The dedicated memory and data
reshape engines are acceleration engines for tensor reshape and copy operations.
The data backbone interface (DBBIF) is an AMBA AXI4-compliant interface
for the dedicated memory engines of the NVDLA to access the DRAM. The
configuration space bus (CSB) is an address and data interface to access and
configure the NVDLA register set. The states of the NVDLA, such as operation
completion and error conditions, are asynchronously reported to the CPU that
commands the NVDLA via the external interrupt (IRQ) interface.

The software of NVDLA consists of a compiler and a driver. Figure 6 shows
the software architecture of NVDLA. The compiler converts trained models with
Caffe [19], an open-source deep learning framework, into a Loadable file which is
a proprietary file format of NVDLA. The driver reads the loadable file and sends
the instructions to NVDLA for each layer of the trained model, their scheduling,
and the parameters. The NVDLA project designs the driver to separate the parts
that depend on the implementation platform, making it easy to port to various
execution platforms, including Linux and FreeRTOS.
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Fig. 6. Software architecture of NVDLA

3.3 Arm TrustZone and OP-TEE

The Arm TrustZone technology is a security function that enables a TEE in Arm
Cortex-A/M processors. The Arm TrustZone isolates the computer resources
such as registers, cache, and memory between a normal world and a secure
world. The secure world is an isolated execution environment that is not directly
accessible from the normal world and allows the execution of security-critical
software.

The firmware of the Arm TrustZone (Arm Trusted Firmware) has a secure
monitor. The secure monitor is a system that provides that a context switch is
managed between the normal world and the secure world when a secure monitor
call (SMC) is received to switch each world. The communication between the
normal world and the secure world is only via a specific API.

The Arm TrustZone can also be deployed on SoC-FPGAs with Cortex-A
processors. The Arm TrustZone enables to isolate the access of circuits (PL:
Programmable Logic). In FPGA-SoC of Xilinx, the ARPROT[0]/AWPROT[0]
bits and AXI Interconnect are used to set the isolation function. The master
of the AXI bus sets the ARPROT[0]/AWPROT[0] bits to configure read/write
security settings. The slaves of the AXI bus can be protected by setting to secure
or non-secure. The slaves with the secure setting can only be accessed from the
secure world.

OP-TEE is an open-source TEE that has a secure OS running on the Arm
TrustZone technology. The OP-TEE supports the evaluation board of Zynq
Ultrascale+ MPSoC, which is the SoC-FPGA of Xilinx.

3.4 XMPUs and XPPUs

The memory and peripheral isolation function of the Xilinx Zynq Ultrascale+
MPSoC are described. The isolation function consists of the Xilinx Memory Pro-
tection Units (XMPUs) and the Xilinx Peripheral Protection Units (XPPUs).
Compared to the Arm TrustZone, the XMPUs and XPPUs can precisely config-
ure the isolation in units of AXI bus masters.
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Table 1. Correspondence between threats and the security functions

Security functions Threats

(1) (2) (3) (4) (5) (6) (7)

Arm TrustZone ✓ ✓ ✓ ✓ - ✓ -

XMPUs - ✓ - - ✓ - -

XPPUs - ✓ - ✓ ✓ ✓ -

Parameter encryption ✓ - - ✓ ✓ - ✓

The Xilinx Memory Protection Units (XMPUs) provide memory protection
by isolating memory areas. The XMPUs check whether access to an address is
allowed from a definition of memory areas for memory accesses from AXI bus
masters. The definition of memory areas lists the address range and the AXI bus
masters that are allowed to access the address range. In addition, the configured
memory areas can be isolated into a normal world and a secure world by the Arm
TrustZone support. The memory areas tagged as secure can only be accessed by
authorized secure masters.

Xilinx Peripherals Protection Units (XPPUs) provide peripheral protection
and control registers. The XPPUs define the address areas of peripherals and
control registers and check whether access to the addresses is allowed from AXI
bus masters. In addition, the configured access of peripherals and control reg-
isters can be isolated into the normal world and a secure world by the Arm
TrustZone support.

3.5 Threats and Countermeasures

Table 1 shows the correspondence between the security functions of the proposed
method and the security threats of (1) to (7) in Sect. 2.2.

The threats of (1) to (3) on software can be mainly addressed by the Arm
TrustZone technology. The attacker is assumed to attack from the normal world.

(1) Against the direct access to the main memory excluding CPU reserved areas,
the memory isolation of the Arm TrustZone functionality restricts access
from the normal world to the main memory where the model information
is stored. In addition, model information accessed from the normal world is
encrypted and stored.

(2) Against the access to the AI accelerator via memory-mapped I/O, the mem-
ory isolation of the Arm TrustZone prevents access from the normal world
via memory-mapped I/O is restricted. The XMPUs also restrict access to
the DRAM.

(3) Against the unauthorized driver API calls or tampering with the driver, the
memory isolation of the Arm TrustZone prevents the unauthorized driver
API calls from the normal world. The driver implemented in the secure
world is not tampered with from the normal world.
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The threats of (4) to (7) on hardware can be mainly addressed by XMPUs,
XPPUs, and the cryptographic circuit.

(4) Against the direct access to the main memory by connecting a malicious
device to the external I/O interface, the memory isolation of the Arm Trust-
Zone allows the main memory used by the secure world cannot be accessed.

(5) Against the direct access to the off-chip memory (DRAM) when the off-chip
memory is available, the access to DRAM is restricted by the XMPUs.

(6) Against the access to the AI accelerator via a malicious device, the PL
isolation of the Arm TrustZone allows the unauthorized access is restricted.

(7) Against eavesdropping on the system and PCIe bus, the cryptographic cir-
cuit achieves that model information flowing on the bus is encrypted.

The threats of (4) to (6) are addressed by the peripheral isolation of XPPUs to
prevent DMA attacks. The cryptographic circuit also serves as countermeasures
for (4) to (5) in addition to (7).

The open-source or general-purpose security functions such as the Arm Trust-
Zone, XMPUs, and XPPUs can address the threats of (1) to (6). For the threat
of (7), it is necessary to build the cryptographic circuit to the AI accelerator for
parameter encryption. Compared with previous works, the method proposed by
Hua et al. [8] addresses the threats of (1) to (7) with access control and parame-
ter encryption by a dedicated controller. The method proposed by Xie et al. [10]
addresses the threats of (1) to (7) with Intel SGX and parameter encryption. The
proposed method does not require the design of a dedicated controller as in the
method proposed by Hua et al. On the other hand, the proposed method requires
the implementation of a cryptographic circuit for parameter encryption against
the threat of (7). The proposed method is similar to the method proposed by
Xie et al., however, this paper reveals that the open-source and general-purpose
security functions of the proposed method can address the threats of (1) to
(6). Note that this section does not cover attacks that exploit vulnerabilities in
security functions, side-channel attacks, and denial-of-service attacks.

4 Experiments

This section describes experiments to evaluate the implementation of the pro-
posed method. In the experiments, the overhead of the execution time is evalu-
ated due to the security functions.

4.1 Experimental Setup

The experiments are performed on the ZCU102 [20], a Zynq Ultrascale+ MPSoC
evaluation board. Since the OP-TEE supports the ZCU102, the OP-TEE is
implemented on the Arm TrustZone of the Zynq Ultrascale+ MPSoC. However,
the publicly available code has bugs and parts that are not compatible with the
latest ZCU102. The code of the OP-TEE is modified for the experiments.
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Fig. 7. Hardware block diagram of the implemented NVDLA

Table 2. Trained models in the experiments

Trained models Number of layers Parameter size [MB] Training dataset

LeNet-5 7 0.19 MNIST

Resnet18 18 44 Cifar10

Figure 7 shows the hardware block diagram of the implemented NVDLA.
The NVDLA is implemented to PL on the ZCU102 and connected to the Zynq
Ultrascale+ MPSoC via AXI Interconnect. The clock frequency is 100 MHz. The
DRAM areas used by the NVDLA are restricted to access from the normal world
by the XMPUs configuration of AXI Interconnect. The restricted areas are used
to store instruction data and intermediate values of operations for the NVLDA.
The unrestricted areas are mainly used in the normal world, where the encrypted
model information is stored for the NVDLA. The peripheral used in the normal
world is restricted to access to the secure world by the XPPUs configuration of
AXI Interconnect.

Note that no cryptographic circuit is implemented in this experiment because
it is optional in the proposed method. For the protection of the trained mod-
els, the model information is encrypted by the AES-GCM-128 for confidentiality
and integrity [4]. It is stored in the normal world. In the experiments, the model
information is decrypted by the software in the secure world, not by the crypto-
graphic circuit. In addition, note that the encryption of parameters is decrypted
by the software in the secure world, so it does not protect against eavesdropping
on the system bus and PCIe bus (the threat of (7)).

Figure 8 shows the software stack of the implemented NVDLA. It is necessary
to port the driver to operate the NVDLA. The driver provided by the NVDLA
project can be directly ported to the OS (Petalinux) in the normal world of OP-
TEE. On the other hand, the driver can not be directly ported to the OS in the
secure world, because the OS has minimal functionality and lacks a kernel that
depends on the driver. The driver is configured with separate platform-dependent
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Fig. 8. Software stack of the implemented NVDLA

portions. However, these dependent portions must be developed for the OS of
the secure world. The part of the driver for the secure world is developed by
using a Pseudo Trusted Application (PTA), the implementation method for the
kernel module of the secure world for OP-TEE. The inference application is
implemented as a user Trusted Application (TA). The application in the normal
world launches the TA via the OP-TEE API. Only the application in the secure
world can access the NVDLA.

Table 2 shows trained models in the experiments. The experiments are per-
formed by implementing LeNet-5 [21] and Resnet18 [22] to be accelerated by
NVDLA. The trained model of LeNet-5 is trained to identify the handwrit-
ing sample MNIST [23]. The trained model of Resnet18 is trained to identify
CIFAR10 object images [24]. Each model is generated by Caffe and converted
to a loadable file by the compiler for NVDLA.

4.2 Experimental Results

The overhead of the execution time for inference is evaluated. First, the over-
head of hardware acceleration is evaluated due to the differences between the
normal and secure world. Next, the whole overhead of the inference application
is evaluated, including the overhead of context switching.

A comparison of the execution time of NVDLA is shown in Table 3 and Fig. 9.
The purpose of the comparison is to analyze the overhead which is caused by
each security function, Arm TrustZone, XMPUs, and XPPUs. The execution
time is measured from the launch of the NVDLA driver to the end of the infer-
ence to analyze the impact on hardware acceleration. The overhead of switching
the worlds and parameter encryption is not included in the execution time.
According to the results, there actually is not much of a difference between
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Table 3. Execution time of hardware acceleration in the normal and secure world

Call from Normal world Call from Secure world

without XMPUs & XPPUs with XMPUs & XPPUs

Execution time [ms]

LeNet-5 2.29 2.46 2.63

Resnet18 10.20 10.36 11.53

Fig. 9. Comparison of execution time of hardware acceleration in the normal and secure
world

the accelerations in the normal and secure world on each trained model. More-
over, the overhead of the call from the secure world is negligible. Because the
XMPUs and XPPUs are implemented in hardware. The results show that Arm
TrustZone, XMPUs, and XPPUs have a small impact on the execution time of
hardware acceleration.

Table 4 and Fig. 10 show a comparison of the whole execution time for the
inference application. The results show the whole overhead of the inference
on NVDLA compared to the software implementation on ARM Cortex-A53 of
ZCU102. The execution time is measured from the launch of the application
to the end of the inference. The secure execution uses OP-TEE, XMPUs, and
XPPUs. The parameter encryption includes the decryption of the model param-
eters by the software on the secure execution. The comparison of the implemen-
tation on ARM Cortex-A53 and NVDLA shows that the NVDLA acceleration
improves the processing speed by a factor of 14 for LeNet-5 and by a factor of
35 for Resnet18. There is an overhead of about 4 ms in the secure execution on
each trained model, comparing no countermeasures (the execution in the normal
world) to secure execution. The time of the secure execution includes the over-
head of context switching because the application in the secure world is called
from the normal world. The parameter encryption increases the execution time
for each trained model. The execution time includes the time of decryption for
encrypted model information in the secure world. The overheads are about 20
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Table 4. Execution time of the whole execution time for the inference application

ARM Cortex-A53 NVDLA

LeNet-5 Resnet18 LeNet-5 Resnet18

Execution time [ms]

No countermeasures 32.68 365.69 2.29 10.2

Secure execution 36.85 370.66 6.43 14.32

Parameter encryption 54.31 4351.07 23.81 3993.91

Fig. 10. Comparison of execution time of the whole execution time for the inference
application

ms on LeNet-5 and 4 s on Resnet18. The results show an increase by a factor of
3 to 285 from the execution time of the secure execution. It depends on the size
of the model parameters for the decryption. Therefore, parameter encryption by
the software accounts for the large overhead of the proposed method.

5 Discussion

This section discusses future works for the proposed method, including param-
eter encryption, combined use of AI accelerators, and hardware security.

5.1 Parameter Encryption

The parameter encryption against the threat of (7) requires that the crypto-
graphic circuitry be integrated into an AI accelerator. In the experiments, the
decryption for encrypted parameters is performed by software in the secure
world, the overhead of the execution time is dominant. Therefore, the hardware
implementation of the cryptographic circuit is expected to reduce the overhead.
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5.2 Combined Use of AI Accelerators

AI accelerators could be used in both the normal and secure world. For exam-
ple, devices of Apple divide the operations of an AI accelerator into normal and
secure modes. Each mode can use the AI accelerator [6]. The isolated execution
of AI accelerators is not only on Apple devices. NVIDIA’s latest GPU architec-
ture (H100), announced in 2022, has confidential computing (CC) mode, which
switches to the isolated execution with TEEs by turning the CC mode on and
off.

The proposed method restricts access to the AI accelerator to the secure
world only. Therefore, it is necessary to consider a mechanism to use AI accel-
erators in both the normal and secure world.

5.3 Hardware Security

Side-channel attacks are not covered by the proposed method. On the other hand,
Xu et al. [25] organize the threats and countermeasures against hardware trojans,
side-channel attacks, and fault injection attacks against AI accelerators. Wang et
al. [26] also incorporate side-channel attack countermeasures into AI accelerators.
Therefore, it is necessary to consider such hardware attacks, including the extent
to which countermeasures should be taken.

The proposed method leverages the security functions of hardware support
such as Arm TrustZone, XMPUs, and XPPUs. On the other hand, attacks
against Arm TrustZone, XMPUs, and XPPUs have also been studied [27,28].
The security of Arm TrustZone, XMPUs, and XPPUs should also be evaluated.

6 Conclusion

This paper proposes an isolated execution method based on open-source and
general-purpose security functions for AI accelerators to reduce design costs and
commonly apply to various accelerators. The proposed method mainly uses Arm
TrustZone (OP-TEE), XMPUs, and XPPUs as the open-source and general-
purpose security functions. In the security analysis, the paper showed that open-
source and general-purpose security functions can provide several countermea-
sures, but not to the extent of countermeasures against eavesdropping on the sys-
tem and PCIe bus. In the experiments, the proposed method is implemented by
using OP-TEE and NVDLA, an AI accelerator, on Zynq UltraScale+ MPSoC,
an SoC-FPGA. The experiments show that the execution time of parameter
encryption by the software accounts for the large overhead (up to 285 times
increase) compared to the overhead of Arm TrustZone, XMPUs, and XPPUs in
the proposed method. The overhead of Arm TrustZone, XMPUs, and XPPUs
have a small impact on the execution time of hardware acceleration. Therefore,
AI accelerators require a cryptographic circuit in the case of the countermeasure
against eavesdropping model parameters on the bus and the acceleration of the
parameter encryption.
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Abstract. There is a revived interest in applying machine learning
techniques for side-channel attacks, focusing on utilizing advancements
in deep learning techniques. Most of the recent research work focuses
on using a discriminative-learning-based classifier approach for profiled
attacks, which we henceforth denote as a standard classifier approach.
The standard classifier learns the intermediate target value in the train-
ing phase using a training loss function designed with classification accu-
racy. At the same time, the performance metric used for reporting results
on a real attack dataset is generally key guessing entropy.

Although the standard classifiers are popular, they severely suffer from
low classification accuracy (almost close to random guessing accuracy)
on the attack and validation dataset. This also poses a problem in model
selection with early stopping, and most of the literature does model selec-
tion at some arbitrary number of training epochs. This raises the con-
cern that the standard classifier approach is ill-posed for the side-channel
attack task, and it motivated us to investigate alternative ways of per-
forming a side-channel attack.

This paper will introduce a novel multi-trunk binary classifier
(MTOvC) approach as an alternative to a standard classifier. It exhibits
good validation and attack dataset accuracies, suggesting that the result-
ing loss function is more suitable for the side-channel attack task. More-
over, good validation accuracies allow us to perform sensible model selec-
tion with early stopping in the case of multi-trunk classifiers.

Keywords: Multi-trunk · Low accuracy · Data-augmentation ·
Improve accuracy · Order vs. chaos

1 Introduction

The term side-channel analysis (SCA) in computer security indicates an attack
based on the physical implementation of the algorithm, rather than the weak-
ness in the actual algorithm. In cryptanalysis, side-channel attack aims to recover
the encryption key based on information gained from side channels of the device
performing the cryptographic operations like timing information [12], power con-
sumption [11], thermal radiation, electromagnetic emanations [7,24], and even
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Zhou et al. (Eds.): ACNS 2022 Workshops, LNCS 13285, pp. 218–232, 2022.
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acoustic emanations [8]. When it comes to SCA attack, profiled attacks are the
most popular and powerful within the machine learning community. In the case
of profiled attacks, the evaluators have access to the test device, and they know
about the possible target intermediate values. Using a test device, evaluators first
estimate the conditional distribution associated with each sensitive variable (i.e.,
intermediate value). Then, for SCA attack, the evaluator uses a target device
containing a secret to predict the sensitive variable. Using these predictions over
multiple traces on the target device can bring down the entropy of the secret
and hence attack the device. The first such profiled attack called template-attack
(TA) was introduced in 2002 [5].

The major drawback of TA is its data complexity [6] when dealing with high
dimensional data, and it also needs preprocessing steps like trace alignment.
Recently, machine learning, and more specifically, deep learning techniques, are
gaining quite some traction in the SCA community and are shown to outperform
TA [4,15,23,25]. This can be attributed to auto-feature selection and hierarchi-
cal feature learning capabilities offered by these techniques [3,9,14]. For SCA
attacks, auto-feature selection avoids the need for the point-of-interest selection
step needed for TA. At the same time, multi-layered hierarchical feature learning
allows learning non-linear relationships between features, which is not possible
with TA as it can be thought of as a single-layered network. Furthermore, to
avoid the use of preprocessing steps like trace alignment, and to overcome com-
mon jitter-based countermeasure, convolution neural networks are proving to be
an excellent choice [4,18,25,28]. This is possible as convolution neural networks
are architecturally invariant to shift and distortion, which is made possible by
three core ideas, namely local receptive fields, replicated weights, and spatial or
temporal subsampling [13]. The first core idea, i.e., local receptive field capture
low-level features, which is fed to higher layers to learn more complex features.
The second core idea, replicated weights, allow keeping the parameter count low
while constraining each feature map within a convolution layer to perform the
same operations across the image/signal. And last third core idea, i.e., spatial
or temporal subsampling, which can be used optionally, enables dimensionality
reduction and thus helps in bringing down computational complexity. Finally,
even more recently, there were several works showcasing that point-of-interest
selection before feeding the features into neural networks is not even needed, as
with “raw” features, the attack performance can be even better [16,22].

The common setup among most of the recent publications [4,10,18,19,25,
28] on machine learning-based approaches for the SCA attack is to use some
variant of discriminative classifiers [20,21]. We call this approach as standard
classifier approach. In Sect. 2, we will introduce and highlight some problems
with the standard classifier approach when used for SCA attacks. In Sect. 3, we
introduce our approach, which we call multi-trunk order vs. chaos (MTOvC)
binary classifier, and discuss its possible advantages. Finally, we will close this
paper with results and conclusion in Sects. 4 and 5, respectively.
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2 Standard Classifiers

This section will discuss a typical standard classifier used for side-channel
attacks. In Sect. 2.1, we will formulate and describe the standard classifier archi-
tecture, while in Sect. 2.2, we will describe evaluation of attack phase. This will be
followed by a thought experiment in Sect. 2.3, which will help us to understand
the disadvantages associated with the standard classifier. Finally, in Sect. 2.4,
we will discuss the disadvantages of the standard classifier, which will help us
understand the motivation behind this paper.

2.1 Architecture

A typical standard classifier has stacked neural network layers like convolution,
dense, pooling followed by a final softmax layer [9]. Figure 1 shows such a typ-
ical standard classifier based on discriminative learning [20,21], used for SCA
attacks [4,10,18,19,25,28]. The M training tuples for such a classifier is as fol-
lows: (

t
(label)
i , (label)

)
∀i ∈ {1, ...,M}, (1)

with:

(label) — A target intermediate value defined as label ∈ Z = f(P,K), where P
is some public variable e.g., a plaintext, and K is the part of a secret
key the attacker wants to retrieve. If the target intermediate value is
8 bit, then label can take one of 256 (i.e., 28) values. Notation (label)
is always surrounded by round brackets and can have actual value
instead of variable label e.g. (000), (001), ..., (255).

C — The number of discrete values a (label) can take. This depends on the
leakage model and number of bits in the target intermediate value.

M — The number of side-channel measurements (i.e., traces) used for pro-
filing.

t
(label)
i — The ith out of M side-channel measurement t (i.e., trace) with corre-

sponding target intermediate-value (label).

The goal of such a classifier is to learn an objective function f that maps an
input measurement, i.e., trace, to a discrete output label as given in Equation (2)
below.

f : t(label)i → (label). (2)

2.2 Evaluation

A standard classifier that is trained on M profiling traces as given by the training
tuple in Equation (1) is then fed with A attack traces to obtain a prediction
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Fig. 1. Standard multi-class classifier

vector P of dimension A × C. Then, we compute a sum of log probabilities S
for a given guess key k as follows:

S(k) =
A∑
i=1

log(Pi,y), (3)

with:

A — The number of side-channel measurements (i.e., traces) used for
attack.

Pi,y — Is the probability for the given guess key k and the corresponding
guess label y. Note that the guess label y depends on the choice of a
cryptographic algorithm, the intermediate target value, and the cor-
responding datum (i.e., plaintext or ciphertext).

The computations in Eq. (3) are then repeated for each possible guess key.
These sums of log probabilities (S) are then sorted based on their value. The
position of the secret key k∗ in this sorted array is then the key-rank. Further-
more, it is usual to estimate effort to obtain the secret key k∗ with the guessing
entropy (GE) metric [26]. GE represents the average position of the secret key k∗

(i.e., average key-rank) over multiple experiments. Multiple experiments can be
obtained by taking multiple random subsets of the vector P. In this paper, GE is
estimated over 100 experiments. Finally, we define TGE0 as the number of side-
channel measurements required to reach guessing entropy (GE) equal to zero.
This is the metric that is widely used to report the strength of a side-channel
attack.

2.3 Thought Experiment

Without loss of generality, let us consider an 8-bit target intermediate value. In
this case, the leakage can take one of 256 (28) values if we assume the Identity
leakage model (ID). Similarly, if we assume the Hamming-weight (HW) leakage
model, we have nine possible values and if we assume, let us say, least-significant-
bit (LSB), then we have two possible values. In reality, we do not know the
actual leakage model, and we heuristically assume some leakage model. The
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most popular choice in the side-channel community is to use the Identity leakage
model [4,10,18,19,25,28]. In this section, we introduce a thought experiment on
the impact of the choice of leakage model while performing a side-channel attack
using standard classifiers.
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Fig. 2. Learnable labels vs. ambiguous labels

Assume a toy dataset with sixteen traces, and also assume a 2-bit target inter-
mediate value. This toy dataset is specifically designed to leak the Hamming-
weight of the intermediate value. Figure 2 shows the 2D embedding for such a
dataset. The 2D-embedding is a visual representation of a higher dimensional
trace in a 2D plane for visual inspection. Visualizing such embeddings is a pow-
erful tool to analyze any dataset [17], and one of the most popular choices is
t-SNE [17]. Every point in the figure is a trace, and there are three clusters (in
gray) because we have simulated a Hamming-weight leakage model (hw), which
can take one of three values. If we had used the Identity leakage model (id),
there would have been four clusters; two in case we would have simulated either
the least-significant-bit leakage model (lsb) or the most-significant-bit leakage
model (msb).
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In our toy dataset case, we know what exactly is leaking, but that is not true
with real datasets. Under such circumstances, one can heuristically or, based on
experimentation, use different labeling strategies. For the thought experiment,
we label the traces of the dataset with the following four labeling strategies
corresponding to the leakage models msb, lsb, id, and hw. The labeling is shown
on the left, right, top, and bottom respectively of Fig. 2. One can think of more
labeling strategies, but for our discussion, this will suffice. We use continuous
green lines to indicate that the labels can be learned, while red dashed lines
indicate ambiguous and hence difficult to learn labels. The labels that have a
one-to-one mapping from the leakage cluster (in gray) to the corresponding label
are easy to learn. On the other hand, the labels that are hard to learn, have a
one-to-many relationship between the leakage cluster and the labels.

Table 1. Accuracies for different leakage model assumptions

Dataset Accuracy type id (%) lsb (%) msb (%) hw (%)

2-bit toy dataset Accbase 25 50 50 37.5

Acc 75 75 75 100

8-bit toy dataset Accbase 0.39 50 50 19.63

Acc 3.52 56.25 56.26 100

We can expect a 100% accuracy if the labeling strategy used is the Hamming-
weight (HW) as there is a one-to-one mapping between the leakage clusters and
the labels. However, using the id, lsb, and msb labeling strategies, we can get
50% traces labeled wrongly, and hence we can achieve maximum accuracy of
75%. To test this empirically, we made two toy datasets, one for 2-bit and the
other for 8-bit values, and simulated hw leakage so that there are three and nine
clusters, respectively. Then, we trained a simple MLP (multi-layer perceptron)
neural network with these datasets and recorded the highest validation accuracy
(Acc) observed within a training session in Table 1. One can see that the higher
the number of bits – and hence the number of classes–, the lower the maximum
possible accuracy is. We also provide the baseline-classifier accuracy (Accbase).
Accbase is the accuracy of the tensorflow.estimator.BaselineClassifier
provided in tensorflow software [1]. Note that such classifier ignores input data
and will learn to predict the average value of each label. In short it will predict
the probability distribution of the classes as seen in the labels. These numbers
are more desirable especially in case of class-imbalance.

We can see that we might not be able to learn meaningful information from
some traces because of a wrong choice of labeling strategy. Furthermore, this
phenomenon of low validation and attack dataset accuracies can be observed with
all the networks that use standard classifier-based approach [4,10,18,19,25,28]
indicating that the approach might be ill-posed. Although we might not be able
to get rid of the problem completely, we still present a novel approach called
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multi-trunk order vs. chaos (MTOvC), which has better validation and attack
dataset accuracies and also has improved TGE0 metric under certain conditions,
as will be discussed in Sect. 4.

2.4 Ambiguous Labels and Low Accuracies (Acc)

Based on Sect. 2.3 above, we make some comments on low accuracies and prob-
lems in training with ambiguous labels.

– Given that the validation and attack dataset accuracies of the trained stan-
dard classifiers are low and close to random guessing accuracies, the loss
function based on classification accuracy might be ill-posed for the task at
hand.

– Generally, one can correctly assume that noise is the cause for low accuracies,
but the toy dataset we used to report numbers in Table 1 has no noise, and
with a known leakage model, we can easily achieve 100% accuracy. So, we can
infer that ambiguous labels are also a major cause of low accuracies.

– Irrespective of the low accuracy, neural networks are still capable of succeed-
ing at TGE0 metric [4,10,18,19,25,28]. We argue that this is possible due to
the fraction of traces that have easy to learn labels, as shown in Fig. 2 with
green continuous lines.

– Continuing with the point above, we can also infer that the network is not
learning anything valuable from the remaining fraction of traces that have
hard-to-learn labels, thus reducing the number of useful traces for the attack.

3 Introducing MTOvC classifiers

This section introduces our approach, which we call multi-trunk order vs. chaos
(MTOvC). In Sect. 3.1, we formulate and describe the MTOvC binary classifier
architecture, while in Sect. 3.2, we describe evaluation of attack phase. Finally, in
Sect. 3.3, we discuss the advantages and disadvantages of the MTOvC classifier
in comparison to a standard classifier.

3.1 Architecture

In Fig. 3, we present a simplified diagram of the MTOvC binary classifier archi-
tecture. The network comprises multiple trunks, consisting of stacked neural
network layers like convolution, dense, and optional pooling layers. Then, a con-
catenation layer concatenates the output of all trunks and feeds it to a stack of
dense layers. Unlike standard classifier, the output of our network is a sigmoid
layer with one output: two labels representing order (�) and chaos (�) . A
sigmoid layer or a soft-max layer with two outputs is mathematically equivalent,
but we prefer a sigmoid layer as it reduces the number of trainable parameters by
two in the final dense layer and also reduces overfitting considerably, as observed
during our experimentation.
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Fig. 3. Multi-trunk order vs. chaos (MTOvC) binary classifier

We present hereafter the training tuple that is used to train this network,
i.e., how we feed this network. Note that there are two parts: the first part
corresponds to ordered examples, and the second part to chaos examples. We
extract M∗ examples from the profiling dataset with M traces. Half of the multi-
trunk examples are ordered, and the remaining half is not (chaos examples). In
practice, we shuffle the examples and feed them to the MTOvC network, as can
be seen in the top part of Fig. 3.

((
t
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∗ , t
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∗ , ..., t
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∗

)
, (�)

)
((

t
(label �=000)
∗ , t

(label �=001)
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∗

)
, (�)

) (4)
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with:

Tr — The number of trunks used in MTOvC binary classifier. It is exactly
equal to number of classes C used in standard classifier.

M∗ — The number of multi-trunk examples extracted from profiling dataset
made up of M side channel measurements (i.e., traces). Note that
each training example is made up of Tr traces and there are huge
possible combinations with which we can make such tuples. But you
can limit this number to M∗ to be comparatively very larger than M
let’s say M∗ ≈ M × 10.

t
(label)
∗ — A randomly picked side-channel measurement t (i.e., trace) from

subset of M traces which has target intermediate-value (label). For
ordered examples (label) is same as corresponding trunk while for
chaos examples (label) is not equal to corresponding trunk.

(�) — Label corresponding to multi-trunk example with traces ordered, i.e.,
a trace fed to correct trunk based on its label Although we are using
a special icon for the label in the bracket, in reality, we use float value
1.0 to indicate the ordered-example label. We extract M∗ / 2 such
examples.

(�) — Label corresponding to multi-trunk example with traces unordered,
i.e., a trace fed to a randomly chosen trunk without considering its
label. Although we are using a special icon for the label in the bracket,
in reality, we use float value 0.0 to indicate the chaos-example label.
We extract M∗ / 2 such examples.

The goal of such a classifier is to learn an objective function f that maps an
input multi-trunk example to a corresponding discrete output label, as given in
Equation (5) below.

f :

{(
t
(label=000)
∗ , t

(label=001)
∗ , ..., t

(label=Tr)
∗

) → (�) , if ordered(
t
(label �=000)
∗ , t

(label �=001)
∗ , ..., t

(label �=Tr)
∗

) → (�) , otherwise
(5)

3.2 Evaluation

The evaluation of an attack using a MTOvC binary classifier is similar to a stan-
dard classifier with slight differences, as will be explained below. The MTOvC
classifier is trained on M∗ multi-trunk example tuples that are extracted from
the profiling dataset with M traces, as shown in Equation (4). This trained
classifier is then fed with A∗ multi-trunk example tuples extracted from the
attack dataset with A traces. This network then provides a prediction vector P
of dimension A∗ × 1. Note that the second dimension is one instead of two, as
we are using a sigmoid layer with one output. Using this prediction vector, we
then compute a sum of log probabilities S for a given guess key k as follows:

S(k) =
A∗∑
i=1

log(Pi), (6)
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with:

Pi — The probability for the given guess key k for ith multi-trunk attack
example.

A∗ — The number of multi-trunk examples extracted from attack dataset
made up of A side channel measurements (i.e., traces). Note that each
attack example is made up of Tr traces and there are huge possible
combinations with which we can make such tuples. But you can limit
this number to A∗ to be comparatively very larger than A let’s say
A∗ ≈ A × 10.

The computations in Equation (6) are then repeated for each possible guess
key. These sums of log probabilities (S) are then sorted based on their value.
The position of the secret key k∗ in this sorted array is then the key-rank.
Furthermore, it is usual to estimate effort to obtain the secret key k∗ with
the guessing entropy (GE) metric [26]. GE represents the average position of
the secret key k∗ (i.e., average key-rank) over multiple experiments. In case of
MTOvC classifier, multiple experiments can be obtained by re-computing the
vector P for different subsets of A attack measurements. Similar to standard
classifier for MTOvC classifier, we estimate GE over 100 experiments. Finally,
we define TGE0 as the number of side-channel measurements required to reach
guessing entropy (GE) equal to zero.

3.3 Advantages and Disadvantages over Standard Classifier

We will now summarize some advantages and disadvantages of the MTOvC
classifier.

Advantages

– MTOvC classifier exhibits high accuracy on validation and attack dataset.
This suggests that the resulting loss function of our classifier is more suitable
for the side-channel attack task.

– During training M∗ can be significantly larger than M , as the multi-trunk
dataset is produced with randomly sampling traces for each trunk. The com-
binations of traces that we can sample from all trunks to make a multi-trunk
example are exponentially related to the number of trunks. Similarly, during
attack A∗ can be significantly larger than A. For this paper, we have heuris-
tically set M∗ ≈ M × 10 and A∗ ≈ A × 10. Thus, the multi-trunk dataset
generator offers implicit data augmentation as a by-product.

– MTOvC approach allows training with more than one trace simultaneously
due to its multi-trunk architecture.

Disadvantages

– The computational complexity of the MTOvC binary classifier is linearly
proportional to the number of trunks.
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– The data pipeline for generating multi-trunk datasets is complex and occupies
256 times more memory. We still managed to keep the memory footprint low
by yielding one batch at a time.

– The number of parameters is nearly 256 times more than that of the stan-
dard classifier. This is because we use the same architecture as the standard
classifier and repeat it 256 times per trunk.

– Minimum 256 unique traces are required to see any benefit from the multi-
trunk architecture. With some fake traces per trunk, we can still manage to
attack with traces less than 256, but then the performance is similar to that
of the standard classifier.

4 Results

In Sect. 4.1, we will first introduce public datasets that we have used and the
datasets we have created. Then, in Sect. 4.2, we will discuss results that are
summarized in Table 2.

4.1 Datasets

We consider four datasets for our experiments that will be explained in this
section.

simulated. This dataset is similar to 8-bit toy dataset discussed in Sect. 2.3
with the difference that the number of samples is 33 instead of two. The target
we use is first round S-Box processing on the third byte. We have simulated
the Hamming-weight of the target in actual traces. There is no masking coun-
termeasure implemented for this dataset. The sole purpose of this dataset is to
experiment with our MTOvC architecture quickly. In this dataset, we have added
very small noise, such that the TGE0 metric is less than 256 for the standard
classifier. We use 100000 traces for profiling and 10000 traces for the attack.
Additionally, we use a 90%–10% split for training and validation during the
profiling phase.

simulated-noisy. This dataset is similar to simulated, but the added noise
is larger. The noise added is such that the TGE0 metric should be greater than
256 for the standard classifier. The remaining settings for profiling and attack
datasets are the same as simulated.

ascad-v1-fk. The ASCAD dataset [2] is a widely used dataset, especially with
deep learning techniques. It has measurements protected with masking coun-
termeasure. We use a desync = 0 version that is the traces with no simulated
desynchronization. The original dataset has 100000 samples per trace obtained
for a masked AES implementation running on an 8-bit ATmega8515 smart card.
We use the same settings as provided by [2] with 700 samples that contain infor-
mation on the first round S-Box processing for the third byte. This simplifies the
neural network architecture, limiting the input dimension to 700. Also, note that
we use 50000 traces for profiling, with 90%–10% split for training and validation.
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While for the attack, we use 10000 traces. Furthermore, note that this dataset
uses the same fixed key for profiling and attack datasets.

ascad-v1-vk. This dataset is also from the same authors [2], but it uses ran-
dom keys for the profiling dataset. It has measurements protected with masking
countermeasure. While the target for attack is the same as ascad-v1-fk, the
number of samples is different, i.e., the authors recommend using 1400 samples
per trace. Note that this dataset has 200000 traces for profiling and 100000 for
the attack, but we use 50000 for profiling and 10000 for the attack. Furthermore,
for profiling, we train networks with a 90%–10% split for training and validation.

4.2 Discussion

Table 2 summarizes all our results. For each dataset, we have provided results for
our implementations of standard classifier and MTOvC classifier. All the num-
bers reported use the Identity leakage model, i.e., there are 256 classes in the
case of the standard classifier and 256 trunks in the case of the MTOvC classifier.
While for datasets ascad-v1-fk and ascad-v1-vk, apart from our implemen-
tations, we also provide results for standard classifiers from publications in the
public domain [27,28]. These results are marked with corresponding citations
in column “Model”. Note that our standard classifier implementation for the
dataset ascad-v1-fk is very similar to that of [28], and hence the TGE0 number
is almost the same. But in addition, we also report the Acc metric. Similarly, for
dataset ascad-v1-vk for the standard classifier, we borrow the implementation
from [27] and additionally report the Acc metric.

Table 2. Results for standard and MTOvC classifier

Dataset Model Accbase (%) Acc (%) TGE0

simulated Standard 0.39 3.44 21

MTOvC 50.0 100.0 107

simulated-noisy Standard 0.39 3.21 412

MTOvC 50.0 96.78 272

ascad-v1-fk Standard [28] 0.39 — 191

Standard [27] 0.39 — 160

Standard 0.39 0.71 190

MTOvC 50.0 95.46 174

ascad-v1-vk Standard [28] 0.39 — —

Standard [27] 0.39 — 3144

Standard 0.39 0.64 3121

MTOvC 50.0 91.36 2583

The TGE0 metric we report is a median of over 100 attacks. The Acc reported
is accuracy on the entire attack dataset for corresponding datasets. We also
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provide the baseline-classifier accuracy (Accbase). Accbase is the accuracy of the
tensorflow.estimator.BaselineClassifier provided in tensorflow software
[1]. Note that such classifier ignores input data and will learn to predict the
average value of each label. In short it will predict the probability distribution
of the classes as seen in the labels. These numbers are more desirable especially
in case of class-imbalance.

For the simulated dataset, the standard classifier performs superior to the
MTOvC classifier. As discussed in Sect. 3.3, this is because the MTOvC classifier
has 256 trunks and needs a minimum of 256 attack-dataset traces to take any
advantage of the MTOvC architecture. Nevertheless, due to the artificial noise
added in the simulated-noisy dataset, the standard classifier has deteriorated
from 21 to 412. This gives the MTOvC classifier an advantage and can be seen
in the results. Note that the classification accuracy Acc of MTOvC is superior
to that of the standard classifier.

Finally, we see similar results on real datasets ascad-v1-fk and
ascad-v1-vk. Since the TGE0 metric for ascad-v1-fk dataset is less than 256,
our implementation of MTOvC is similar to the standard classifier. While on
ascad-v1-vk, since the standard classifier takes more than 256 traces, we have
some advantages when using the MTOvC classifier.

5 Conclusion

Our preliminary results on ascad-v1-fk and ascad-v1-vk [2] show that the
performance of the multi-trunk classifier is similar to that of state-of-art stan-
dard classifiers when the considered datasets are relatively easy to attack and
can be attacked with less than 256 traces. With more complex datasets that
cannot be attacked with 256 traces, then we see some advantages when using
the MTOvC classifier. Furthermore, compared to standard classifiers, the results
demonstrate a superior classification accuracy, and we also benefit from implicit
data augmentation offered by the multi-trunk dataset generator. Nevertheless,
when it comes to the MTOvC classifier, as highlighted in Sect. 3.3, there are
some disadvantages like computational complexity, a high number of trainable
parameters needed, and a minimum cap of 256 traces during the attack to see
any benefits. In the future, we plan to investigate further approaches to simplify
the architecture or perform training of trunks in a distributed fashion. Addi-
tionally, we plan to investigate the independent performance of trunks, i.e., how
much each trunk contributes to the attack performance.
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Abstract. Safety-critical Cyber-Physical Systems, such as high-tech
cars, require new risk management approaches to investigate and address
their cybersecurity risks. The current standard for automotive security
ISO/SAE 21434 presents such a framework, which discusses the threats,
the associated risk, and the chosen treatment, which can be risk reduction
through the implementation of a countermeasure or defense. This paper
presents a residual cybersecurity risk management framework aligned
with the ISO/SAE 21434 framework. The proposed approach audits the
applied defenses over the generated attack paths for the identified threats
and associated system components. Flow networks are used to calculate
the reduced or mitigated risk and the remaining risk of the threat in the
presence of the selected countermeasure. The feasibility of the method is
explained using a simple automotive system example.

Keywords: Cybersecurity · ISO/SAE 21434 · Risk management
framework · Residual risk · Attack tree · Flow graph

1 Introduction

A few decades ago, vehicles had few basic Electronic Control Units (ECUs) con-
nected to actuators and sensors for small-scale communication. Over time, cars
used artificial intelligence-enhanced components, became connected to the Inter-
net and the adjacent vehicles and the roadside infrastructure. These improve-
ments were only possible because of the complex integration of control units,
sensors, actuators, and different communication systems [1]. There are up to
150 ECUs in any modern vehicle with complex integration of these ECUs using
multiple in-vehicle networks including the Controller Area Network (CAN) [26].
ECUs receive inputs from numerous sensors, for instance, acceleration sensors,
Tyre Pressure Monitoring Sensor (TPMS), and wheel speed sensors among oth-
ers. Systematic connections and communications between sensors and control
units gave rise to Cyber-Physical Systems (CPS). On the other hand, Vehicle
to Vehicle (V2V) and Vehicle to infrastructure (V2I) communication needs a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Zhou et al. (Eds.): ACNS 2022 Workshops, LNCS 13285, pp. 235–247, 2022.
https://doi.org/10.1007/978-3-031-16815-4_14
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fusion of Bluetooth, Wi-Fi, and 4G/5G technologies [1]. This integration leads
us towards a more complex and vulnerable system as more attack surfaces will
be available in a system[2]. Several published attacks show that it is possible to
exploit these attack surfaces and these attacks can also affect the operational
safety of a vehicle [3,4].

According to available reports [26], it is possible to attack core functions of
vehicles, such as disconnecting the brakes from the engine. In 2015 there were
about 1.4 million cars recalled by Chrysler because of a discovered vulnerability
using which hackers can remotely take control of the digital system of a Jeep
over the Internet [5]. The Tesla Model S was hijacked remotely from 12 miles
away as reported in [6]. Recently, researchers have found 14 vulnerabilities in
the infotainment system of multiple BMWs series [8]. The above mentioned
studies show that it is crucial to address automotive cybersecurity throughout
the development process. The standard ISO/SAE 21434 was compiled to address
the issues of integration of automotive cybersecurity in the whole product life
cycle of a modern vehicle [7].

The complex infrastructure of modern vehicles increases the risk of cyber-
attacks as the cyber risk of the whole system is composed of the risk of an
individual interconnected component. ISO/SAE 21434 [15] suggests including
cybersecurity aspects at multiple stages of vehicle development. It also includes
risk determination and treatment of the assets. Clause 15, Threat analysis and
risk assessment (TARA) method is designed for the risk assessment and the treat-
ment decision. Currently, the standard considers the risk treatment decision as
the very last step of TARA. Still, it does not advise identifying the residual risk
after applying appropriate risk treatment decisions. Thus if a countermeasure is
chosen there is no calculation of the residual risk.

In ISO 26262, there is consideration of residual risk (defined there as risk
remaining after the deployment of safety measures) but ISO/SAE 21434 [15] has
not included the corresponding security concept as of yet. We define residual
risk as to the remaining risk after applying the chosen threat defenses [9]. It is
vital to consider the effectiveness of the used control measures over the identi-
fied threat. According to [10] after evaluation, the mitigated risk after applying
the defenses is less than expected. Multiple risk management frameworks are
designed according to the standards such as ISO 31000 [11], NIST SP800-30
[12], but there is a need to have one that is aligned with the ISO/SAE 21434.

This work aims to fill the above gap by proposing a novel residual risk
management framework. The framework considers the qualitative and recur-
rent process to reduce the residual risk to an acceptable level while considering
the standard risk management practices. Possible threats of a component will
be identified from the exploitable vulnerabilities, whereas the attack trees will
be generated from the given architecture. Appropriate defenses will be applied
against the generated attack paths to observe the residual risk. The contribution
of this paper includes the proposed residual risk management framework con-
sidering continual risk assessment. We will also present a method to calculate
the residual risk of a system. Lastly, we will apply the proposed method to a
headlamp system example from ISO/SAE 21434 and evaluate its benefits.
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Table 1. Threat Modeling Methods applicable to Automotive

Name Definition Reference
Method

Required
detail level

ATA Model [21] Visualizing threats against a
system in the form of a tree.

Attack Tree Detailed
system design

SW Vulnerability
Analysis

Examining software to
avoid vulnerabilities

Code
examination

FMVEA [22] Failure Mode and Failure
Effect model for both safety
and security

STRIDE Detailed
system design

SAHARA [23] Combination of HARA and STRIDE,
traces impact of security breaches on
system safety.

STRIDE High level
design

SHIELD Security, Privacy and Dependability
assessing method.

Detailed
system design

CHASSIS Analysis Trade-off between safety
and security.

Use Case
Diagram

High level
Design

BDMP Combine Fault tree and Attack tree. Attack Tree Detailed
system design

Threat Matrix [24] Threat data is presented in the
form of threats

FMEA Detailed
system design

BRA 10 binary decisions in the form
of questions

High level
design

The rest of the paper is structured as follows. Section 2 gives a brief introduc-
tion to ISO/SAE 21434 standard, requirements of the risk management frame-
work, and related work. Section 3 walks through the proposed risk management
framework and headlamp example, borrowed from ISO/SAE 21434. In Sect. 4
we discusses the scope of our work with respect to available methods. Finally,
Sect. 5 gives a conclusion about the paper and discusses ways we might extend
this work.

2 Background

This section will discuss the requirements of the risk management framework.
Furthermore, it includes a brief introduction to ISO/SAE 21434 and summarizes
the related work.

2.1 Requirements Of Risk Management Framework

The induction of new technologies in the modern vehicle has revolutionized the
automotive industry. Risk management frameworks play a vital role in building a
more robust and resilient system. We have identified the following requirements of
the risk management framework for the automotive based on work from [13,14].

– The framework must follow well-established standards and practices for risk
management such as ISO 31000 [11], NIST SP800-3 [12].

– It should be a comprehensive framework that ensures that the risk of the
automotive system is managed effectively and efficiently.
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– The risk management framework should be generic so that it can support the
relations and entities involved in the process not bound to specific domain.

– It must be scalable as new interfaces and technology are integrated in the
automotive domain.

– The framework should support automation and parameterization.
– It should also integrate the assurance to verify the effectiveness of the applied

countermeasures.
– It should be a continual process so it can adopt any change in the respective

environment.
– The risk management framework should handle the propagation of risk

between different entities.
– There should be a mechanism that can give intuitive ranking indicators to

measure the results obtained from the risk management framework consider-
ing the acceptable criteria.

2.2 ISO/SAE 21434

As discussed earlier, Connected and Autonomous Vehicles (CAV) have intro-
duced new targets for hackers and therefore risks for users concerning the secu-
rity and safety of a vehicle. To deal with these emerging problems, SAE and ISO
have invested in the development of an industry Standard ISO/SAE 21434 [15]
that is a successor of SAE J3061 [16]. The purpose for creating ISO/SAE 21434
[15] was to define a structured process for cyber-secure design, reducing risks
of a successful attack and providing information regarding how to react while
facing cybersecurity threats. To assess the risk of threats on a system there are
various risk assessment methods which are discussed in detail in clause 15 of
ISO/SAE 21434. Considering the vehicle life cycle for safety that is adopted
from ISO 26262 [17], there are three major phases: the concept phase, product
development phase, and production, operation, and maintenance phase. In the
concept phase, an item is defined. An item represents a system or number of
systems that are implemented in a vehicle considering ISO 26262 [17]. There
are nested models in the product development phase, such as a) product devel-
opment at the system level. b) product development at the hardware level. c)
product development at a software level. The production, operation, and main-
tenance phase has to ensure that cybersecurity specifications are implemented
in the development phase. It ensures that implemented processes prevent new
vulnerabilities from being part of the system. Continual monitoring and incident
response handling is also done in this phase.

2.3 Related Work

Cybersecurity engineering standards were developed in several projects, includ-
ing EVITA and HEAVENS. The EVITA project [19] proposed a method for risk
assessment for automotive that utilized the generic approaches from ISO/IEC
18045 [18]. Later on, it and HEAVENS were incorporated in SAE J3061 [16]
- The Cybersecurity Guidebook for Cyber-Physical Vehicle Systems. It was
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stated by the HEAVENS researchers in 2016 that EVITA was the project that
made the first move towards risk assessment in the automotive industry. The
National Highway Traffic Safety Administration (NHTSA) [20] proposed a com-
posite threat model designed for the automotive industry in 2014. SAE J3061
[16] was released in 2016, and EVITA and HEAVENS are recommended threat
models in it. A few other mentioned models apply to automotive systems, such
as Attack Tree Analysis and Software Vulnerability Analysis. A few other meth-
ods are not mentioned in SAE J3061 but those apply to automotive systems. A
brief overview of the other methods can be found in Table 1.

Creates

1.Vulnerability
Design/ Implementation

/Configuration

5. Defence
Hardware/Software/Policy

4. Attack Tree/ Attack
Path

Generates

3.Component/System
Part2. Threat

6. Risk

Introduces

Third Party Entity/
Software/ Remote
Communication

Affects

Allocated

Applies

Introduces

Impact

Feasibility

Advises

Risk Level

Fig. 1. Residual Risk Management Framework

The risk management process relies upon the set of guidelines and principles
that can be followed across the organization to support design, implementa-
tion, integration, and evaluation. ISO 31000 [11] is an example of a general risk
management framework. Cyber-physical systems are a complex integration of
components required to perform respective functionality. This complex integra-
tion also increases the cyber risk of the system because there is a significant
chance of an attack on the closely connected components. In [25] the authors
proposed a risk assessment method for cyber-physical systems that can help to
analyze the risk propagation as well as aggregation. In addition to risk assess-
ment, they have proposed a technique utilizing evolutionary programming to
select the appropriate control measures from the available list of measures. In
paper [25], the authors have presented an integrated risk management framework
that assesses and proactively manages the risk in a cyber-physical system. They
followed the existing risk management practices and principles, such as iden-
tifying assets and then evaluating the effect of vulnerabilities over that asset.
They have used the power grid system as an example and followed the standard
to determine the risk level and the impact of threats and vulnerabilities to the
assets.
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3 Residual Risk Management Framework

This section describes the proposed residual risk assessment framework for auto-
motive systems, while considering ISO/SAE 21434. The framework is based on
the taxonomy shown in Fig. 1.

Vulnerabilities: The automotive system is the composition of multiple integrated
components produced by different members of the Original Equipment Manufac-
turers (OEMs) supply chain. It is difficult to maintain the same level of assurance
in such a widespread industry; that is why there is always a possibility of weak-
nesses in a system. Weakness can be in the system’s design, implementation,
or configuration. This weakness will become a vulnerability when someone can
exploit it. Vulnerabilities are also possible due to adding some new component
or defense in a system.

Threats: Vulnerabilities become threats when someone exploits them as shown
in Fig. 1. It is essential to understand that every threat is for a specific compo-
nent. Considering an example of GPS spoofing attack that can be done remotely
requires broadcasting of synchronized signal with the original signal after that,
the spoofed signal’s power is increased. Later on, the target position is moved
away from the original location. This threat is possible due to a vulnerability:
GPS devices are programmed to follow high power signals.

Components: To secure a component, we need to understand the possible ways
to compromise it. We can generate attack trees to have a view of the possible
ways. It is also possible to generate an attack tree if we know the architecture
of a component. Considering the headlamp example from Fig. 2(a), where we
know the architecture of the headlamp, we can generate attack trees shown in
Fig. 2(b).

Attack Path: Every attack path has the feasibility of exploitation. Feasibility
would be high or low considering the complexity of an attack path. There is
a possibility that an attack path is relatively short, but its complexity is high.
Therefore, we consider the feasibility of the attack path as a factor to calculate
risk as suggested in ISO/SAE 21434.

Defense: To avoid those threats becoming an attack, defenses can be applied that
could be an integration of new hardware or fixing some software bug. It is also
possible that the cause of the threat is some third-party entity or software. In
that case, we advises some policy for interaction. In Fig. 1., we can observe that
defenses are connected to components and attack paths because one defense is for
some specific component. It is connected to attack paths because it will help to
visualize the placement of defense in the attack path. As discussed earlier, due to
the widespread nature of the automotive industry, there is always a possibility of
introducing new weaknesses that will become vulnerabilities into a system. There
is also a possibility that applied defenses might introduce new vulnerabilities in
a system, as shown by the link from component to the vulnerabilities in Fig. 1.
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Fig. 2. Example from ISO/SAE 21434 Annex-H[15]
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We can calculate associated risk to a component of specific by considering
the attack feasibility and the impact associated with that threat. The risk value
will change after applying defenses. The efficacy depends upon the effectiveness
of the defenses. There is also a possibility that the risk might increase than the
acceptable level; therefore, if the risk level is high, we will consider it as a threat,
as shown by a link from risk to threat in Fig. 1. We will calculate the residual risk
by finding differences before and after applying defenses on the possible threats
using flow graphs as suggested in [10].

According to the standard ISO/SAE 21434, we should select a risk treatment
option when we have identified the risk. a) Avoidance of risk: we need to remove
or update that component in this case. b) Risk reduction: we need to add suitable
defenses to reduce risk. c) Sharing risk: sharing the risk with another party
through contract. d) Retaining risk: takes responsibility for effects if a particular
risk causes any damage. Our framework will only apply in the case where we
consider risk reduction as the risk treatment option.

3.1 Residual Risk

To calculate the residual risk of a system, firstly, we need to compute the initial
risk to a system. Considering the applicability of different threats on one asset,
there is a need to examine all non-functional properties that can be compromised.
Calculation of initial risk requires the following steps.

– Asset assessment
– Threat assessment
– Impact and Likelihood calculation

One system part/ component might have multiple assets Ai those are required
to be identified first. We could have various assets in an automotive system such
as CAN frame, firmware, etc. After identification of assets, there is a need to
associate the non-functional properties Pi i.e. ( confidentiality, integrity, avail-
ability) those can be exploited given identified threats.

Every threat has associated severity/impact to it. Let us consider we have
an asset Ai, and if its property Pi is being violated, then severity or impact I of
that would be

Impact(I) = f (Ai, Pi) (1)

The impact will be quantified as a score(1–4) for severe, major, moderate,
negligible, respectively. If the impact of the threat is high, it means it can cause
more damage to a system if it is successful.

To calculate risk to a system, it is essential to understand that considering
the impact of a threat, what is the feasibility/likelihood of a threat Ti. The
likelihood Li of a threat on an asset will be

Likelihood(L) = f (Ai, Pi, Ti) (2)

The risk is calculated as a lookup matrix in ISO/SAE 21434, and can also
be defined by company (OEM). The total risk associated with an asset can be
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considered as
R(A,P ) =

∑

Ai,Pi,Ti

R(Ai
,Pi

) (3)

The residual risk is risk remaining after applying appropriate control mea-
sures against threats, and that would be updated risk as Ru. The residual risk
would be

ResidualRisk = Ri −Ru (4)

3.2 Head Lamp Example

We are considering a headlamp example from ISO 21434 annex H. The item
boundary of this system is shown in Fig. 2(a) redrawn from ISO 21434. Nav-
igation ECU is connected with Bluetooth and a cellular interface; those are
two attack surfaces that can be used for compromising the headlamp system
remotely. The other attack surface is the OBD-II connector which needs physi-
cal access to the system.

To specify the assets, we will follow the asset identification process as sug-
gested in ISO 21434. In this example, two assets are specified, i.e. CAN frame and
firmware. Multiple damage scenarios are mentioned in the standard, whereas the
impact of each scenario is identified. The impact rating process includes impact
category as well as impact level. In the scope of this paper, we are only consid-
ering the damage scenario with a severe impact rating. The headlamp ON/OFF
message malfunction is a severe safety hazard while night driving. The integrity
and availability of the CAN frame are compromised in such a case. The next
step will be an attack path generation and attack feasibility rating. Majorly three
possible attack surfaces i.e., cellular, Bluetooth, and OBD-II can be exploited.
The attack paths can be seen in Fig. 2(b). The attack path with the highest fea-
sibility is the one with the cellular interface as an attack surface. Its feasibility
value is high because an attacker has to be in a car or very close to a moving
car for the other two attack paths, which does not have a high feasibility. As
discussed in equation (3), the risk value will be determined as we have an impact
and the likelihood of the attack paths. The next step in standard is suggesting
to reduce the risk. We will reduce the risk by applying appropriate defense while
considering their effectiveness.

3.3 Calculating Residual Risk Using Flow Graphs

We can model the residual risk problem as a maximum flow problem using flow
graphs. In the maximum flow problem, we have to route the flow as much as
possible from source to sink. Flow graphs are used in this problem, and we will
be using them for calculating the residual risk of a system. A flow graph is a
directed graph in which the arch has capacities indicating the link’s upper bound.
Flow originates from sources and ends at the sink without any dispersion in flow
graph.

We define a graph G=(V, E, c) where V is composed of assets Ai, properties
Pi, source s, sink t. E is associated with edges, and c is the capacity of each link.
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Mitigated Risk  =  7.8 + 4.9 = 12.7

Residual Risk =  Initial Risk - Mitigated Risk
=  20 - 12.7 = 7.3

Fig. 3. Residual Risk Calculation using Flow Graph

We model a flow graph from standard practices; s and t are added to select the
start and end of the flow graph. The remaining nodes follow the property of the
bipartite graph.

We consider total risk as an inward flow of the flow graph, as shown in
Fig. 3. Defense vertices should reduce the flow of risk after passing through them
as every defense has respective effectiveness. So we can obtain the mitigated risk
by multiplying the effectiveness of control measures against attacks. We have
drawn Fig. 3. from the assets taken from the headlamp example in Sect. 3.2. The
asset is a CAN frame of the headlamp system, whereas the control measures
are verification and anti-spoofing to improve the integrity and availability of the
whole system. The incoming flow is 20, and the effectiveness of defenses is 60%
and 70%. These mechanisms mitigate risk, and the remaining risk that reaches
the sink is 7.3 as calculated using Eq. 4.

3.4 Evaluation

To evaluate the proposed framework, we can compare it with the requirements
of the risk management framework to understand that it satisfies all of the
requirements as discussed in Sect. 2.1.

– Our framework is well-aligned and following NIST-SP 800 as it considers the
whole life cycle. Our proposed approach is also aligned with ISO 21434.

– Our framework is comprehensive enough to deal with risk reduction consid-
ering it as a risk treatment decision. In the scope of this work, our framework
does not deal with other risk treatment decisions, e.g., risk avoidance, risk
sharing, and risk retaining.

– Our proposed approach is quite generic as we can apply it to other domains,
e.g., Cyber-Physical Systems.

– The proposed framework is scalable. We can consider multiple defenses and
attacks against any type of threat. Our work focusses on risk reduction as the
risk treatment option considered.
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– In further work we will be designing automated and algorithmic solutions for
combining attacks trees and finding appropriate defenses, and our intention
is that this framework will support automation.

– Considering the effectiveness of the countermeasures to select it against spe-
cific attacks, we will be integrating assurance techniques with our approach.

– Our framework follows a continuous process, as shown in Fig. 1.
– We will be combining attack trees to improve visualization; this fusion will

allow us to understand and handle the risk propagation from one asset to
another.

– To calculate the severity level of any threat, we are using the look-up matrix
discussed in ISO 21434 that gives the ranking indicators about the threat. In
the future, we will be looking at graph-oriented techniques for ranking.

4 Discussion

Our proposed approach strictly follows the guidelines provided by ISO 31000 as
discussed in Sect. 2.1, a general framework that guides us to follow a set of stan-
dard practices to do a system’s risk assessment. CAVs are one of the complex
CPS, and our approach is generic enough that we can use it to do the risk assess-
ment of other CPS. Currently, we are only using the application of automotive
in the scope of this paper. There are a few other studies, such as [25], in which
authors have proposed the risk assessment framework aligned with standards.
[25] follows a manual approach to identify the vulnerabilities and appropriate
countermeasures using the approach of the American National Highway Traf-
fic Safety Administration; however, we are considering an automated process to
generate attack trees and determine appropriate controls assessing their effec-
tiveness. We integrated a continual process to reduce the risk to an acceptable
level. Another work, [27], did a risk assessment for automotive but they did not
consider residual risk. The major challenge in our work is to quantify threats
and the effectiveness of controls as numerous defense mechanisms are proposed
in the literature. Still, evaluating the countermeasures for effectiveness in some
environments is very rarely available. This knowledge gap introduces a big chal-
lenge in our approach. To a great extent this approach requires considerable
domain knowledge, and it will also complement TARA for better assessment.

5 Conclusion And Future Works

Identifying and mitigating risk is essential in developing the automotive system.
Considering the remaining risk after applying defenses is vital as defenses are
not usually 100% effective. In this paper, we have presented a modern risk man-
agement framework aligned with standards and requirements. It incorporates
the impact of the threats, the feasibility of the attacks, and vulnerabilities intro-
duced by new defenses and third parties. Our approach is centered around the
non-functional properties of the automotive system. We have presented the work
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by discussing it using the example available in ISO/SAE 21434. We have eval-
uated our proposed framework with the requirements of the risk management
framework discussed in Sect. 2.1 and found out that it is closely aligned with
requirements. In the future, we will be increasing that alignment by introducing
algorithms for attack tree combinations for some other examples that will lead
us towards risk propagation, scalability, and a broader view of the whole system.
We will also be considering the method to identify the most suitable defenses
against attacks.
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Abstract. In this paper, we propose deep learning-based output pre-
diction attacks in a blackbox setting. As preliminary experiments, we
first focus on two toy SPN block ciphers (small PRESENT-[4] and small
AES-[4]) and one toy Feistel block cipher (small TWINE-[4]). Due to
its small internal structures with a block size of 16 bits, we can con-
struct deep learning models by employing the maximum number of plain-
text/ciphertext pairs, and we can precisely calculate the rounds in which
full diffusion occurs. Next, based on the preliminary experiments, we
explore whether the evaluation results obtained by our attacks against
three toy block ciphers can be applied to block ciphers with large block
sizes, e.g., 32 and 64 bits. As a result, we demonstrate the following
results, specifically for the SPN block ciphers: (1) our attacks work
against a similar number of rounds that the linear/differential attacks
can be successful, (2) our attacks realize output predictions (precisely
ciphertext prediction and plaintext recovery) that are much stronger
than distinguishing attacks, and (3) swapping or replacing the internal
components of the target block ciphers affects the average success prob-
abilities of the proposed attacks. It is particularly worth noting that
this is a deep learning specific characteristic because swapping/replacing
does not affect the average success probabilities of the linear/differential
attacks. We also confirm whether the proposed attacks work on the Feis-
tel block cipher. We expect that our results will be an important stepping
stone in the design of deep learning-resistant symmetric-key ciphers.

Keywords: Deep learning · Block cipher · SPN · Feistel

1 Introduction

Unlike public-key cryptography, where security is reduced to mathematically
difficult problems, the security of symmetric-key cryptography is evaluated by
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resistance against classical attacks, e.g., differential, linear, and integral attacks.
Specifically, the corresponding statistical characteristics, e.g., differential, linear,
and integral characteristics, are searched by automatic evaluation programs and
tools, e.g., SAT and MILP solvers. If there is a considerable security margin
against these characteristics, the cipher can be considered to be secure against
these attacks. Generally, these evaluations require the deep knowledge of target
algorithms and state-of-the-art cryptanalysis techniques because automatic eval-
uation programs and tools must be customized for different target algorithms
and attacks.

Recently, deep learning-based cryptanalysis has received considerable atten-
tion in the symmetric-key cryptography field [1,5–8,10–14,17,21,22,25,33,37–
39]. Remarkably, this type of attack does not require the knowledge of target
ciphers, except algorithm interfaces, i.e., the attack is feasible even if the adver-
sary does not know the algorithm of target ciphers. Such cryptanalysis in a
blackbox setting is extremely strong, i.e., the adversary can mount an attack
with the minimum knowledge of target ciphers and cryptanalysis techniques. In
this context, we must consider deep learning-based cryptanalysis when designing
symmetric-key ciphers. However, previous studies have not clarified the features
or internal structures that affect the success probabilities. Recently, Benamira
et al. [8] and Chen et al. [12] confirmed whether characteristics explored by
Gohr [17] can be employed in the classical distinguishing attacks. These results
may be used to design deep learning-resistant symmetric-key ciphers; however,
it does not seem to be sufficient because they did not identify any deep learning
specific characteristic in such a manner that it affects the success probabili-
ties of deep learning-based attacks but does not affect those of classical attacks
such as linear/differential attacks. Such a deep learning specific characteristic
is important because it may cause vulnerabilities against deep learning-based
cryptanalysis. Thus, the usage of previous results of these attacks to design such
deep learning-resistant symmetric-key ciphers is difficult.

1.1 Our Contribution

In this study, we present new deep learning-based attacks on block ciphers in
a blackbox setting where the adversary does not know the algorithm of target
ciphers, except algorithm interfaces such as key and block sizes. In a black-
box setting, deep learning-based cryptanalysis allows us to use pre-obtained
input/output pairs to construct deep learning models for our attacks, such as
ciphertext prediction and plaintext recovery, and then we can use these mod-
els to evaluate these attacks. The next step is to examine correlations between
evaluation results obtained by deep learning-based cryptanalysis as well as the
characteristics of target block ciphers. For this purpose, we apply a whitebox anal-
ysis technique to our evaluation phase using deep learning models. The white-
box analysis explores the relationship between the ability of deep learning-based
attacks and classical attacks such as linear/differential attacks; therefore, it may
be possible to clarify correlations between evaluation results obtained by deep
learning-based cryptanalysis and the characteristics of target block ciphers.
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To obtain highly accurate results from the whitebox analysis in a blackbox
setting, we should perform comprehensive analyses using all input/output pairs,
i.e., it is not appropriate to target the reduced-round block ciphers because they
have the same block size as the original block ciphers, e.g., 64 or 128 bits, and
we cannot use all input/output pairs. For this reason, we first focus on toy
block ciphers with a small block size such as 16 bits and perform the whitebox
analysis against these toy block ciphers as preliminary experiments. Based on
the preliminary experiments, we apply the proposed attacks to block ciphers
with large block sizes, e.g., 32 and 64 bits, and consider the whitebox analysis
against the target block ciphers. The details of our contributions in this study
are given as follows.

New Deep Learning-Based Output Prediction Attacks. To perform the
whitebox analysis against block ciphers with large block sizes, we first focus
on two toy SPN block ciphers (16-bit block variants of PRESENT [9] called
small PRESENT-[4] and an AES-like cipher called small AES-[4]) and one toy
Feistel block cipher (a type-II generalized Feistel structure with 4 branches called
small TWINE-[4]). This allows us to accurately compare the effectiveness of the
proposed deep learning-based attacks, which guess the ciphertext/plaintext from
the corresponding plaintext/ciphertext without any knowledge of keys with that
of classical attacks. Due to the page limitation, our target ciphers, two SPN block
ciphers and one Feistel block cipher (and their toy ciphers), are introduced in
Appendix A.

Because of its small internal structures with a block size of 16 bits, we can
develop deep learning models by exploiting the maximum number of plain-
text/ciphertext pairs, and we can precisely calculate linear/differential proba-
bility for each round. We demonstrate that the proposed attacks are effective
against the similar number of rounds as linear/differential attacks. For small
PRESENT-[4], we successfully mount output prediction attacks on 4 rounds,
while the number of rounds that the differential distinguisher can work is also 4.
For small AES-[4] and small TWINE-[4], we can mount prediction attacks on 1
and 3 rounds, while differential distinguishing attacks can reach 2 and 7 rounds,
respectively. Note that our attacks realize output predictions (i.e., ciphertext
prediction and plaintext recovery) that are considerably stronger than distin-
guishing attacks even without knowing the algorithm of target ciphers. Never-
theless, for small TWINE-[4], the number of rounds that the proposed attacks
can be successful is significantly less than that of linear/differential attacks. To
clarify this cause, additional studies will be required in future.

Next, based on evaluation results for toy block ciphers, we apply the proposed
attacks to the target block ciphers with a block size of 64 bits, i.e., PRESENT [9],
AES-like, and TWINE-like ciphers. Consequently, we consider that by increasing
the amount of training data, the whitebox analysis against block ciphers with
large block sizes can be regarded as equal to or greater than the whitebox analysis
against toy block ciphers with a block size of 16 bits; thus, the whitebox analysis
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against the target block ciphers with large block sizes can be summarized as
follows:

– For PRESENT, the maximum number of rounds that the proposed attacks
can be successful is at least equal to that of classical linear/differential attacks.

– For AES-like and TWINE-like ciphers, we conjecture that the maximum num-
ber of rounds that the proposed attacks can be successful also becomes equal
to that of classical linear/differential attacks when the amount of training
data increases more.

In addition, we conduct additional experiments with 10,000 trials (rather
than 100 trials) to confirm the accuracy of the success probability calculated
from the proposed attacks. Consequently, we demonstrate that the additional
experiments with a small number of secret keys are sufficient to obtain the best
success probability, and therefore the proposed attacks lead to reliable results.

Whitebox Analysis for Deep Learning-Based Attacks. We swap or
replace internal components on the toy SPN block cipher, particularly on the
4-round small PRESENT-[4], to investigate the relationship between the inter-
nal components and success probability of our deep learning-based attacks, and
evaluate the impact of these modifications on the success probability of the pre-
diction attacks. The toy Feistel block cipher, i.e., small TWINE-[4], is excluded
from this investigation because Feistel block ciphers generally use the same com-
ponents for both encryption and decryption algorithms. Consequently, we find
that swapping or replacing the internal components significantly affects the aver-
age success probabilities of the proposed attacks. It is particularly worth noting
that this is a deep learning specific characteristic because component swapping
and replacing that we did in this study did not affect success probabilities of
linear/differential attacks. We expect that our results will be an important foun-
dation in the design of deep learning-resistant symmetric-key ciphers.

1.2 Comparison with Existing Studies

Due to the page limitation, we give a comparison among the proposed attacks
and existing deep learning-based attacks [1,5–8,10–14,17,21–23,25,33,37–39] in
Table 8 in Appendix B. For comparison, we particularly focused on whether
these attacks correspond to a deep learning-based attack in a blackbox setting
and a deep learning-based attack with the whitebox analysis. When an adversary
performs a deep learning-based attack in a non-blackbox setting, the adversary
must be familiar with the target ciphers as well as state-of-the-art cryptanalysis
techniques. This degrades the original function of a deep learning-based attack in
such a way that it does not require any knowledge of target ciphers and state-of-
the-art cryptanalysis techniques, except algorithm interfaces. In addition, even if
an adversary uses the whitebox analysis in a non-blackbox setting to perform a
deep learning-based attack, this should not result in accurate evaluations of the
attack. In summary, it is important to perform a deep learning-based attack with
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the whitebox analysis in a blackbox setting. As shown in Table 8, the proposed
attacks are the first deep learning-based output prediction attacks with whitebox
analysis on both SPN and Feistel structures in a blackbox setting.

Organization. This paper is organized as follows. The proposed deep learning-
based output prediction attacks in a blackbox setting are introduced in Sect. 2.
Our whitebox analysis is performed in Sect. 3 that explores the evaluation results
obtained by our attacks against three toy block ciphers can be applied to
block ciphers with large block sizes. An extended whitebox analysis on small
PRESENT-[4] is introduced in Sect. 4. Finally, Sect. 5 concludes this study.

2 Methodology

In this section, we present the proposed deep learning-based output prediction
attacks in a blackbox setting. To realize the proposed attacks, we construct deep
learning models for ciphertext prediction and plaintext recovery, respectively. In
the following, we first discuss the goals of these attacks and then explain the
construction of deep learning models and their evaluation.

2.1 Goals of Attack

To date, the relationship between the abilities classical attacks and deep learning-
based ones has not been clarified. Here, we focus on clarifying this relationship.
We then revisit the common sense in previous works using deep learning-based
attacks. The targets of this work are summarized as follows:

1. We clarify the difference in capabilities between the classical and deep
learning-based attacks. Specifically, we compare the success probabilities of
deep learning-based attacks with those of classical attacks.

2. Swapping or replacing the internal components in the target block ciphers
does not affect the success probability of linear/differential cryptanalysis. We
clarify how such modifications to cipher’s algorithms affect the success prob-
ability of deep learning-based attacks.

We evaluate the success probabilities of attacks using the following settings.

Known-plaintext attack setting: In this setting, the adversary is given mul-
tiple plaintext/ciphertext pairs relating to a single secret key, and the pairs
are used as training data to construct a deep learning model.

Blackbox setting: In this setting, the adversary does not have knowledge about
the target block ciphers, except algorithm interfaces such as key and block
sizes.

In both of these settings, the adversary is a very weak cryptographic attacker.
The blackbox setting assumes that the adversary does not know the internal

structures of the cipher. In addition, the adversary does not know the cipher is a
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permutation. The blackbox setting also assumes that the adversary only knows
the input-output format and possesses deep learning knowledge.

Regarding attack settings, a ciphertext-only attack setting, which allows
the adversary to obtain only the ciphertext, is the weakest setting. However,
information-theoretically no information is provided to the adversary in the set-
ting except for several special cases, e.g., the broadcast setting of RC4 [31]. In
fact, the attack in this setting is practically impossible. The known-plaintext
attack is the next weakest setting. In this setting, the adversary can obtain some
information from the given plaintext/ciphertext pairs and use these pairs for the
attacks. The other attack settings, e.g., chosen-plaintext attack setting, require
the adversary to possess some knowledge about the ciphertext, and the adver-
sary in this setting is stronger than the adversary in the known-plaintext attack
setting. Thus, we employ the known-plaintext attack setting.

In these settings, we decide the adversary’s goal to output predictions (i.e.,
ciphertext prediction and/or plaintext recovery), and we evaluate the success
probabilities of these attacks. The ciphertext prediction and plaintext recovery
attacks are summarized as follows:

Ciphertext prediction attack: In this attack, the adversary obtains multiple
plaintext/ciphertext pairs regarding a secret key, where n is the block size.
Then, the adversary predicts a ciphertext of a plaintext not included in the
previously given pairs.

Plaintext recovery attack: In this attack, the adversary obtains multiple
plaintext/ciphertext pairs regarding a secret key, and then the adversary
recovers a plaintext of a ciphertext that is not included in the pairs given
previously.

If the ciphertext prediction attack is possible, forgery of the Cipher-based Mes-
sage Authentication Code (CMAC) is possible. If the plaintext recovery attack
is possible, the adversary can obtain the plaintext of any ciphertext without
possessing the secret key used for encryption.

2.2 Neural Network and Hyperparameters

Deep learning allows us to automatically extract features unlike statistical
machine learning techniques, e.g., Bayesian inference. Deep learning treats non-
linear separable problems; thus, it appears to work well for simulating crypto-
graphic functions with nonlinearity. Hyperparameters such as the initial learning
rate, number of hidden nodes (neurons), and optimizers, are defined prior to the
learning phase and are used to construct models. These parameters affect model
performance; thus, they are optimized using assessment metrics.

In this paper, we consider ciphertext prediction and plaintext recovery as
regression problems with supervised learning where plaintext/ciphertext pairs
are used as training data. To this end, we must extract numerous features from
the plaintext/ciphertext pairs obtained under the known-plaintext attack; there-
fore, we employ long short-term memory (LSTM) which is a type of recurrent
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Table 1. Hyperparameters

Hyperparameters Search ranges

Number of hidden nodes 100, 200, 300, 400, 500

Initial value of learning rates 0.0001, 0.001, 0.01

Number of hidden layers 1, 2, 3, 4, 5, 6, 7

Optimizers SGD, Adam [26], RMSprop [36]

neural networks (RNN) [20]. The LSTM, which is a general technique for map-
ping sequences to sequences with neural networks, is used in the field of machine
translation [34]. As the LSTM can realize the mapping between sequences in
machine translation, we consider that it can also realize the mapping between
sequences (i.e., between plaintexts and ciphertexts) in encryption/decryption of
permutation-based block ciphers. In addition, we consider that numerous fea-
tures can be extracted from plaintext/ciphertext pairs, i.e., the inputs to our
deep learning models, by using the LSTM, which enables long-term memory of
input sequences. In fact, we have confirmed that the use of the LSTM induces
better experimental results than that of the convolutional neural network (CNN),
as described in Appendix C for more details. We then optimize hyperparame-
ters, e.g., number of hidden nodes, initial learning rates, number of hidden layers,
and optimizers. Table 1 shows the search range for each hyperparameter. During
the hyperparameter optimization, we use different secret keys from those used in
the construction of deep learning models because we strictly evaluate the success
probabilities of ciphertext prediction and plaintext recovery without depending
on secret keys. In the following, the procedure to optimize hyperparameters is
similar to constructing deep learning models, with the exception of the number
of secret keys.

2.3 Deep Learning Models and Their Evaluation

We construct and evaluate deep learning models for ciphertext prediction accord-
ing to the following procedure. Note that we show the plaintext recovery case in
parentheses.

Step 1. The adversary obtains multiple plaintext/ciphertext pairs under the
known-plaintext attack. In our experiments, we randomly select multiple
plaintexts and generate ciphertexts corresponding to the selected plaintexts.

Step 2. The adversary uses the obtained plaintext/ciphertext pairs as train-
ing data to construct deep learning models. Then, the adversary constructs
a deep learning model for ciphertext prediction (plaintext recovery) using
the plaintexts (ciphertexts) as inputs and the ciphertexts (plaintexts) as the
correct outputs.

Step 3. The adversary uses all or part of the remaining plaintexts (ciphertexts),
which were not used as training data, to evaluate the constructed deep learn-
ing models. The adversary uses these plaintexts (ciphertexts) as the input
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to the constructed deep learning models. Then, the adversary predicts the
unknown ciphertext (plaintext) corresponding to each plaintext (ciphertext).

Step 4. The adversary calculates the percentage of exact match between the
predicted ciphertext (plaintext) and the correct ciphertext (plaintext) as the
predicted probability.

To evaluate the predicted probabilities, we use 2x plaintext/ciphertext pairs as
training data and 2y plaintext/ciphertext of the remaining plaintext/ciphertext
pairs as test data when applying the proposed attacks against the target block
ciphers with a block size of 4n bits. It should be noted here that 2x+2y ≤ 24n. In
this case, if the predicted probability is greater than (24n − 2x)−1, we consider
the proposed attacks to be successful. This means that an attacker without
knowledge of the target algorithms can predict the output value with a higher
probability than a random probability.

3 Whitebox Analysis

In this section, we perform the whitebox analysis to explore the relationship
between the ability of deep learning-based attacks and the classical attacks such
as linear/differential attacks against three block ciphers based on our method-
ology presented in Sect. 2. We first use three toy block ciphers with a block size
of 16 bits as a testbed for the proposed attacks. Based on these preliminary
experiments, we then apply the proposed attacks to block ciphers with large
block sizes, such as 32 and 64 bits. Finally, we conduct additional experiments
to ensure that our whitebox analysis is accurate.

3.1 Application to Toy Block Ciphers

In this subsection, we apply the proposed attacks to three toy block ciphers, i.e.,
small PRESENT-[4], small AES-[4], and small TWINE-[4], as preliminary exper-
iments. We first explain the experimental procedure for our whitebox analysis
and then demonstrate experimental results to compare the number of rounds
that the proposed attacks can be successful to that of existing classical attacks.

Experimental Procedure. In our experiments, we implement the proposed
attacks using Keras1, which is a deep learning library, and we employ Tensor-
Flow as the backend. The following is our experimental environment: 8 Linux
machines with 14 NVIDIA GPUs (RTX 2080 SUPER, GeForce GTX 1080 Ti,
TITAN Xp, Tesla K40m, and Quadro P600 Mobile). For developing LSTM mod-
els by Keras, e.g., model.add(LSTM(...)), we specify only units, input shape,
and return sequences as its arguments2. As an initial setting, we use common
experimental hyperparameter values (see Table 2). Our experiments involve the
following two sub-experiments, i.e., Experiment 1 and Experiment 2.
1 https://github.com/keras-team/keras.
2 https://keras.io/ja/layers/recurrent/.

https://github.com/keras-team/keras
https://keras.io/ja/layers/recurrent/
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Table 2. Experimental hyperparameters

Hyperparameters Values

Number of input layer nodes 1

Number of output layer nodes (i.e., block sizes) 16, 32, 64

Batch size 250

Number of epochs 100

Experiment 1: In each round, we optimize hyperparameters for the target block
ciphers using the proposed attacks, as described in Sect. 2.2. For our hyperpa-
rameter optimization, we use Optuna3, which is an automatic optimization tool,
and use its default search algorithm. The indication for our hyperparameter opti-
mization is the success probability of ciphertext prediction or plaintext recovery.
In our hyperparameter optimization, we obtain 100 hyperparameter candidates
from the plaintext/ciphertext pairs generated by 20 secret keys. From these can-
didates, we select the optimized hyperparameter with the highest average success
probabilities of ciphertext prediction or plaintext recovery. To this end, we use
215 plaintext/ciphertext pairs as training data and remaining 215 plaintext or
ciphertext as testing data; thus, each average success probability is calculated
from 215 randomly generated plaintext/ciphertext pairs. If the average success
probabilities of ciphertext prediction or plaintext recovery with the optimized
hyperparameter is greater than 2−15, then the number of rounds for finding the
optimized hyperparameter is incremented by one; otherwise, the second sub-
experiment is executed using the optimized hyperparameter.

Experiment 2: We use randomly generated 100 secret keys and the optimized
hyperparameters obtained in Experiment 1 to execute the proposed attacks for
ciphertext prediction or plaintext recovery; then, we compute the average success
probabilities of ciphertext prediction or plaintext recovery. The secret keys used
in Experiment 2 are not the same as those used in Experiment 1. After clarifying
the number of attacked rounds for target block ciphers by Experiment 2, we use
experimental results and linear/differential probability of the target block ciphers
to compare the proposed attacks to the classical linear/differential attacks.

Experimental Results. Table 3 shows the experimental results of Experiment
2 using the optimized hyperparameter obtained in Experiment 1. Based on these
experimental results, we discuss the whitebox analysis against three toy block
ciphers, i.e., small PRESENT-[4], small AES-[4], and small TWINE-[4].

First, we compare the proposed and classical linear/differential attacks for
small PRESENT-[4]. From the experimental results, the proposed attacks suc-
ceed up to 5 rounds for ciphertext prediction and up to 4 rounds for plain-
text recovery against small PRESENT-[4]. Although the average success prob-
ability of ciphertext prediction for the 5-round small PRESENT-[4] is nearly
2−15, the average success probability of plaintext recovery for the 4-round small
3 https://github.com/optuna/optuna.

https://github.com/optuna/optuna
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Table 3. Average success probabilities of ciphertext prediction/plaintext recovery
using the proposed attacks against three toy block ciphers with a block size of 16
bits. We use 215 training data and the remaining 215 testing data. CP:=Ciphertext
Prediction and PR:=Plaintext Recovery.

Cipher Round Category of
attack

# nodes of
hidden layer

# layers of
hidden layer

Initial
learning rate

Optimizer Succ. prob.

small
PRESENT-[4]

1 CP 400 5 0.001 Adam 1

PR 100 2 0.001 RMSprop 1

2 CP 400 4 0.001 RMSprop 1

PR 400 1 0.001 Adam 1

3 CP 300 6 0.001 RMSprop 1

PR 300 5 0.001 RMSprop 1

4 CP 300 4 0.01 Adam 2−5.63

PR 300 1 0.01 Adam 2−14.50

5 CP 200 7 0.001 Adam 2−14.08

PR 300 6 0.001 Adam 2−15.73

small AES-[4] 1 CP 300 4 0.001 RMSprop 1

PR 200 4 0.001 RMSprop 1

2 CP 300 1 0.01 Adam 2−16.02

PR 200 2 0.01 Adam 2−15.00

small TWINE-[4] 1 CP 300 3 0.001 RMSprop 1

PR 300 2 0.001 Adam 2−0.01

2 CP 400 4 0.001 RMSprop 2−0.01

PR 500 3 0.001 RMSprop 2−0.01

3 CP 300 2 0.001 RMSprop 2−10.46

PR 400 2 0.001 RMSprop 2−9.72

4 CP 200 4 0.001 RMSprop 2−14.61

PR 100 1 0.01 RMSprop 2−15.49

5 CP 300 5 0.01 RMSprop 2−15.64

PR 500 4 0.001 RMSprop 2−15.16

PRESENT-[4] is sufficiently greater than 2−15. In other words, we consider that
the proposed attacks can be successful for a maximum of 4 rounds. On the other
hand, from the precisely calculated differential probability of small PRESENT-
[4] (see Table 10 in Appendix D), the maximum number of rounds that the
differential attack can be successful is 4. Similarly, based on the precisely cal-
culated linear probability, the maximum number of rounds that a linear attack
can be successful is also 4. Therefore, for small PRESENT-[4], the maximum
number of rounds that the proposed attack can be successful is equal to that of
classical linear/differential attacks.

Next, we compare the proposed and classical linear/differential attacks for
small AES-[4]. From Table 3, we evaluate the maximum number of rounds that
the proposed attacks can be successful is 1. From the precisely calculated lin-
ear/differential probabilities, the maximum number of rounds that the differen-
tial attack can be successful is 2, whereas that of the linear attack is 3. Simi-
larly, we compare the proposed attacks and classical linear/differential attacks for
small TWINE-[4]. We discovered that the proposed attack can be successful for a
maximum of 3 rounds with the differential attack lasting 7 rounds and the linear
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attack lasting 9 rounds. In summary, for small AES-[4] and small TWINE-[4], the
maximum number of rounds that the proposed attacks can be successful is less
than that of the classical linear/differential attacks. It should be noted here that
the proposed attacks realize much stronger ciphertext prediction and plaintext
recovery than the distinguishing attacks of the classical linear/differential crypt-
analysis. Nevertheless, for small TWINE-[4], the maximum number of rounds
that the proposed attacks can be successful is significantly smaller than that of
the classical linear/differential attacks. This cause will be clarified in a future
study.

Whitebox Analysis with the Smaller Amount of Training Data. To
perform the whitebox analysis with the smaller amount of training data against
three toy block ciphers (i.e., 1-, 2-, 3-, 4-round small PRESENT-[4], 1-round
small AES-[4], and 1-, 2-, 3-round small TWINE-[4]), we conduct additional
experiments in the same procedure described above, but we vary the amount of
training data in the range of from 22 to 214 and use all the remaining plaintexts or
ciphertexts as testing data. In these additional experiments, we use the optimized
hyperparameters obtained in Experiment 1 (see Table 3).

We show the details of the additional experimental results in Appendix E.
Table 11 shows the minimum amount of training data required for successful
ciphertext prediction/plaintext recovery against three toy block ciphers. In addi-
tion, Table 12 shows more detailed results regarding the average success probabil-
ities of ciphertext prediction/plaintext recovery by the proposed attacks against
three toy block ciphers with a block size of 16 bits. If the predicted probability
is greater than 2−15, we consider the proposed attacks to be successful4. Conse-
quently, we demonstrate successful ciphertext prediction/plaintext recovery with
a smaller amount of training data than 215 against three toy block ciphers, with
the exception of the 4-round small PRESENT-[4].

3.2 Application to Block Ciphers with Large Block Sizes

In this subsection, we apply the proposed attacks to three block ciphers with
large block sizes based on the preliminary experiments as described in Sect. 3.1.
To examine the evaluation results obtained by our whitebox analysis against
three toy block ciphers can be applied to the target block ciphers with large
block sizes, we conduct Experiment 2 in the same procedure as described in
Sect. 3.1, but we change the block sizes of the target block ciphers, e.g., 32 and
64 bits. In our experiments, we use the optimized hyperparameters obtained in
Experiment 1 (see Table 3 in Sect. 3.1).

We show the details of the experimental results in Appendix F. Tables 13 and
14 show the minimum amount of training data required for successful ciphertext
prediction/plaintext recovery against three block ciphers with block sizes of 32
and 64 bits, respectively. We vary the amount of training data in the range of
from 28 to 217 or from 210 to 219 and use 216 of the remaining plaintexts or
4 This assumption is strictly incorrect, but we use it for simple discussion.
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ciphertexts as testing data against three toy block ciphers with block sizes of
32 or 64 bits, respectively; thus, if the predicted probability is greater than the
threshold derived by equation (24n − 2x)−1 shown in Sect. 2.3, we consider the
proposed attacks to be successful for both cases. In this case those thresholds
are (232 − 28)−1 to (232 − 217)−1 or from (264 − 210)−1 to (264 − 219)−1. In
addition, Tables 15 and 16 in Appendix F show more detailed results regarding
the average success probabilities of ciphertext prediction/plaintext recovery by
the proposed attacks against three block ciphers with block sizes of 32 and 64
bits.

From Tables 13 and 15, we report that the average success probabilities of
ciphertext prediction/plaintext recovery by the proposed attacks against the
target block ciphers with a block size of 32 bits are not zero, excluding the 4-
round small PRESENT-[8]. Expressed differently, this fact should indicate that
the proposed attacks against the target block ciphers with large block sizes can
be successful by simply increasing the amount of training data; thus, we consider
that the proposed attack against the target block ciphers with additional rounds
could be successful by using more training data than 217.

From Tables 14 and 16, we can confirm that except for the 4-round small
PRESENT-[16] and the 3-round small TWINE-[16], the average success prob-
abilities of ciphertext prediction/plaintext recovery by the proposed attacks
against the target block ciphers with a block size of 64 bits are not zero. In these
cases, we consider that the proposed attacks against the target block ciphers
with additional rounds could be successful with more training data than 219.

As demonstrated by these results, the proposed attacks can be performed
regardless of the block size of the target block ciphers by simply increasing the
amount of training data. In addition, as the amount of training data increases,
the larger the block size, the greater the rate of increase in the success proba-
bility (see Tables 12, 15, and 16 for more details). Therefore, we consider that
by increasing the amount of training data, the whitebox analysis against block
ciphers with large block sizes can be regarded as equal to or greater than the
whitebox analysis against toy block ciphers with a block size of 16 bits. As dis-
cussed in Sect. 3.1, the maximum number of rounds that the proposed attacks
can be successful against small PRESENT-[4] is equal to that of the classical
linear/differential attacks, while the maximum number of rounds that the pro-
posed attacks can be successful against small AES-[4] and small TWINE-[4] is
less than that of the classical linear/differential attacks. Nevertheless, we con-
sider that the whitebox analysis against the target block ciphers with large block
sizes can be summarized as follows, based on the above consideration:

– For small PRESENT-[16] (i.e., PRESENT), the maximum number of rounds
that the proposed attacks can be successful is at least equal to that of the
classical linear/differential attacks.

– For small AES-[16] (i.e., AES-like) and small TWINE-[16] (i.e., TWINE-like),
we conjecture that the maximum number of rounds that the proposed attacks
can be successful also becomes equal to that of classical linear/differential
attacks. To clarify the correctness of this conjecture, we should conduct addi-
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tional experiments with a larger amount of training data than 219. This will
be our future work.

3.3 Accuracy of Experimental Results

In Sect. 3.1, we have presented the experimental results of Experiment 1 with 20
secret keys and Experiment 2 with 100 secret keys. These experimental results
may appear to be correct. However, because of the small number of secret keys
used in these experiments, we should have an additional discussion to ensure that
the experimental results are accurate. To this end, this subsection shows two
additional experimental results on the 3-round small TWINE-[4] with 100 secret
keys for Experiment 1 and 10000 secret keys for Experiment 2, respectively. The
following explains why we chose the 3-round small TWINE-[4] for confirming the
accuracy: If we choose a target with a probability of 1 or 2−15, it appears difficult
to see how the number of secret keys affects the accuracy. As shown in Table 3,
the average success probabilities of ciphertext prediction and plaintext recovery
by the proposed attacks in the 3-round small TWINE-[4] are approximately
2−10.46 and 2−9.72, respectively. We choose the 3-round small TWINE-[4] as the
best target for additional experiments because these probabilities possibly vary
significantly if the number of keys affects the accuracy.

Experimental Procedure. We explain the following two additional experi-
ments, i.e., Experiment 1’ and Experiment 2’.

Experiment 1’: We use the same procedures as in Experiment 1 to optimize
the hyperparameters for the 3-round small TWINE-[4]. Unlike Experiment 1, we
use plaintext/ciphertext pairs generated by 100 secret keys rather than 20 secret
keys in this experiment. In the hyperparameter optimization, we examine the
impact of the number of secret keys used in Experiment 1’ on the experimental
results.

Experiment 2’: We obtain the average success probabilities of ciphertext pre-
diction/plaintext recovery for the 3-round small TWINE-[4] in the same proce-
dures of Experiment 2 using the hyperparameters optimized by Experiment 1
(see Table 3). Unlike Experiment 2, we use the plaintext/ciphertext pairs gen-
erated by 10000 secret keys rather than 100 secret keys. In the ciphertext pre-
diction/plaintext recovery, we explore the influence of the number of secret keys
used in Experiment 2’ on the experimental results.

Experimental Results. Table 4 shows a comparison of the experimental
results in Experiment 1 and Experiment 1’ for the 3-round small TWINE-[4].
From the table, in the hyperparameter optimization for ciphertext prediction,
the highest average success probabilities obtained from Experiment 1 and Exper-
iment 1’ are nearly equal, such as 2−11.42 and 2−11.26. Conversely, in the hyper-
parameter optimization for the plaintext recovery, the highest average success
probability obtained from Experiment 1 is much higher than that obtained from
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Table 4. Comparison of the experimental results in Experiment 1 and Experiment 1’
for the 3-round small TWINE-[4].

Category of
attack

# keys # trials # nodes of
hidden layer

# layers of
hidden layer

Initial
learning rate

Optimizer Succ.
prob.

Ref.

Ciphertext 20 100 300 2 0.001 RMSprop 2−11.42 Experiment 1

Prediction 100 40 300 7 0.001 RMSprop 2−11.26 Experiment 1’

Plaintext 20 100 400 2 0.001 RMSprop 2−7.80 Experiment 1

Recovery 100 40 100 4 0.001 RMSprop 2−12.82 Experiment 1’

Table 5. Comparison of experimental results in Experiment 2 and Experiment 2’
for the 3-round small TWINE-[4]. We use the optimized hyperparameters obtained in
Experiment 1 (see Table 3).

Attack # keys Succ. prob. Ref.

Ciphertext 100 2−10.46 Experiment 2

Prediction 10000 2−10.64 Experiment 2’

Plaintext 100 2−9.72 Experiment 2

Recovery 10000 2−9.22 Experiment 2’

Experiment 1’, such as 2−7.80 and 2−12.82. As per these experimental results,
optimizing the hyperparameters with a small number of secret keys is sufficient
to obtain hyperparameters with the best average success probability; therefore,
we consider that the hyperparameter optimization presented in Sect. 3.1 has led
to reliable results.

Table 5 shows a comparison of experimental results in Experiment 2 and
Experiment 2’ for the 3-round small TWINE-[4]. We can see from the table
that in both ciphertext prediction and plaintext recoveries, the average success
probabilities obtained from Experiment 2 and Experiment 2’ are nearly equal,
such as 2−10.46 and 2−10.64 in the ciphertext prediction and 2−9.72 and 2−9.22 in
the plaintext recovery. According to these experimental results, the additional
experiments with a small number of secret keys are sufficient to obtain the best
average success probability; therefore, we consider that the ciphertext predic-
tion/plaintext recovery presented in Sects. 3.1 and 3.2 has led to reliable results.

4 Extended Whitebox Analysis on Small PRESENT-[4]

As shown in Table 3, the average success probability of ciphertext prediction
by the proposed attack on the 4-round small PRESENT-[4] is approximately 29

times greater than that of plaintext recovery. However, the security of the encryp-
tion and decryption is thought to be equivalent in terms of the linear/differential
probabilities on small PRESENT-[4]; thus, the experimental result of the pro-
posed attacks on the 4-round small PRESENT-[4] seems contrary to intuition.
We speculate that this can be a deep learning specific characteristic.

In this section, we redesign the 4-round small PRESENT-[4] by swapping or
replacing the internal components, e.g., S-box and bit permutation, and execute
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Table 6. Average success probabilities when swapping or replacing components on
the 4-round small PRESENT-[4]. We use 215 training data and 215 testing data.
CP:=Ciphertext Prediction and PR:=Plaintext Recovery.

Category of
attack

# nodes of
hidden layer

# layers of
hidden layer

Initial
learning rate

Optimizer Succ.
prob.

Original small PRESENT-[4] CP 300 4 0.01 Adam 2−5.63

PR 300 1 0.01 Adam 2−14.50

Replacing the components
(Enc: sLayer-inv → pLayer)
(Dec: pLayer → sLayer)

CP 200 4 0.01 Adam 2−3.75

PR 500 1 0.001 Adam 2−12.13

Swapping the components
(Enc: pLayer → sLayer)
(Dec: sLayer-inv → pLayer)

CP 500 1 0.001 Adam 2−12.21

PR 400 7 0.001 Adam 2−13.74

Experiment 1 and Experiment 2 against the new designs of the 4-round small
PRESENT-[4] to reveal the relationship between the designs of block ciphers
and average success probability of the proposed attacks.

4.1 Experimental Procedure

We discuss two types of experiments to investigate the average success proba-
bilities of ciphertext prediction and plaintext recovery by the proposed attacks
under the conditions that (1) the substitution layer (sLayer) and its inverse func-
tion (sLayer-inv) are replaced, and (2) the order of the sLayer and permutation
layer (pLayer) is swapped in the encryption and decryption algorithms. The tar-
get toy block ciphers are the 4-round small PRESENT-[4] and the 2-round small
AES-[4], and small TWINE-[4] is excluded from the target of these experiments.
This is because the Feistel block ciphers generally use the same components for
both encryption and decryption algorithms. The order of the sLayer and pLayer
is the same in both the encryption and decryption algorithms, and sLayer-inv is
not used in neither the encryption nor decryption algorithms. Rather than the
experiments described in this section, we should compare the maximum number
of rounds that the proposed attacks can be successful against small TWINE-[4]
(a type-II generalized Feistel cipher) to that on the other types of the Feis-
tel block ciphers, such as classical, unbalanced, alternating, type-I and type-III
generalized Feistel ciphers. This will be our future study.

4.2 Experimental Results

Table 6 shows experimental results for new designs of the 4-round small
PRESENT-[4]. The average success probability of ciphertext prediction is greater
than that of the original small PRESENT-[4] when the sLayer is replaced with
the sLayer-inv, as shown in the table. However, when the order of the sLayer
and pLayer is swapped, the average success probability of ciphertext prediction is
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less than that of the original small PRESENT-[4]. We believe that swapping the
component order affects the average success probabilities of the proposed attacks
because the difference in these average success probabilities is relatively large.
Given that swapping or replacing components does not affect linear/differential
probabilities, we expect that our results can be an important stepping stone for
designing deep learning-resistant symmetric-key ciphers.

Nevertheless, the average success probability of plaintext recovery for both
cases is greater than that of the original small PRESENT-[4]; this result tends
to differ from ciphertext prediction. Because the probabilities are nearly 2−15,
the results require more detailed analyses to increase reliability, which we leave
as a future work.

In the experimental results of the 2-round small AES-[4], all average success
probabilities for ciphertext prediction/plaintext recovery by the proposed attacks
are less than 2−15. Therefore, these results do not show whether swapping or
replacing the components has any effect on the average success probabilities of
the proposed attacks in the 2-round small AES-[4].

5 Conclusion

In this study, we presented deep learning-based output prediction attacks on
three block ciphers with a block size of 64 bits in a blackbox setting. We clarified
the following results by examining the relationship between the ability of deep
learning-based attacks and classical attacks such as linear/differential attacks:

– For PRESENT, the maximum number of rounds that the proposed attack can
be successful is at least equal to that of classical linear/differential attacks.

– For AES-like and TWINE-like ciphers, we conjecture that the maximum num-
ber of rounds that the proposed attacks can be successful also becomes equal
to that of classical linear/differential attacks when the amount of training
data is increased more.

In addition, we redesigned the 4-round small PRESENT-[4] by swapping or
replacing the internal components, and we used the whitebox analysis technique
to examine the relationship between the new target cipher designs and the suc-
cess probability of the proposed attacks. Consequently, we clarified that swapping
or replacing the internal components did not affect success probabilities of the
classical linear/differential attacks, whereas it affects the average success prob-
abilities of the proposed deep learning-based attacks; thus, we have obtained a
deep learning specific characteristic. The obtained results are expected to be a
foundation for designing deep learning-resistant symmetric-key ciphers.

Acknowledgments. This work was supported in part by the JSPS KAKENHI Grant
Number 19K11971.
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A Our Target Ciphers

In this section, we introduce two SPN block ciphers (PRESENT [9] and AES-
like cipher), one Feistel block cipher (TWINE-like cipher), and their toy ciphers
(small PRESENT-[n] [27], small AES-[n], and small TWINE-[n]).

PRESENT and Small PRESENT-[n]: PRESENT [9] is a lightweight SPN
block cipher with a 64-bit block size, 31 rounds, and a key size of either 80 or 128
bits. To analyze PRESENT, a toy model of PRESENT called small PRESENT-
[n] [27] has been proposed. We show the round function of small PRESENT-[n]
in Fig. 1. Since the block size is 4n, small PRESENT-[16] is equivalent to the
original PRESENT. The variant n, which specifies the block size and round key
length, allows us to control the round of full diffusion. The S-box has 4-bit input
and output. We provide the correspondence table in Table 7 that maps F4

2 → F
4
2.

The pLayer is described as bit permutation P (i), which is defined as follows.
Note that this is a generalization of that of PRESENT and is equivalent to that
of PRESENT when n = 16. P (i) is used for encryption and P−1(i) is used for
decryption.

P (i) =

{
n × i mod (4n − 1) (0 ≤ i < 4n − 1)
4n − 1 (i = 4n − 1)

P−1(i) =

{
4 × i mod (4n − 1) (0 ≤ i < 4n − 1)
4n − 1 (i = 4n − 1)

For key scheduling, the key scheduling algorithm of PRESENT-80, which is a
variant of PRESENT with a key length of 80, is executed; furthermore, the 4n
rightmost bits are used as round keys rki.

AES-Like and Small AES-[n]: We design AES-like cipher with a 64-bit block
size, called AES-like for short. To analyze AES-like, we design its toy model called
small AES-[n]. The round function of small AES is shown in Fig. 1. As with the
case of PRESENT, small AES-[16] is equivalent to AES-like since the block
size is 4n. The S-box and key scheduling are the same as those of PRESENT.
The maximum distance separable (MDS) matrix (over GF (24) defined by the
irreducible polynomial x4 + x + 1) is the same as that of Piccolo [32], which is
expressed as follows.

M =

⎛
⎜⎜⎝

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞
⎟⎟⎠

When a 16-bit input X(16) is given, the output is computed as t(y0(4), y1(4), y2(4),
y3(4)) ← M ·t(x0(4), x1(4), x2(4), x3(4)).

TWINE-Like and Small TWINE-[n]: We design TWINE-like cipher with
a 64-bit block size, called TWINE-like for short. To analyze TWINE-like, we
design its toy model called small TWINE-[n]. For our design, we adopt the
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Fig. 1. (a) Round Functions of small PRESENT-[n] and small AES-[n], (b) Last Round
Function of small AES-[n].

Table 7. S-box (PRESENT and small PRESENT-[n])

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Fig. 2. Round Function of small TWINE-[n]

type-II generalized Feistel structure with n branches and similar F function as
TWINE, which comprises round key operation and 4-bit S-box, as shown in
Fig. 2.

As with the case of PRESENT, small TWINE-[16] is equivalent to TWINE-
like since the block size is 4n. The S-box and key scheduling are the same as
those of PRESENT. The pLayer is described as round permutation RP , which
is defined as follows:

RP : (y0, y1, . . . , yn−2, yn−1) ← (x1, x2, . . . , xn−1, x0).

Two sub-round keys, rksi for s ∈ {0, 1, . . . , n
2 −1}, are used in each round, which

are generated from the round key rki as follows:

rksi = (rki � (4n − (4s + 4))) & 0xF,

where � and & are bitwise right shift operation and bitwise AND operation,
respectively.
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B Related Works

Regarding the whitebox analysis, Danziger et al. presented deep learning-based
attacks that predict key bits of 2-round DES from a plaintext/ciphertext set,
and analyze the relationship between these attacks and the differential prob-
ability [14]. They compared variants employing several types of S-boxes with
different properties for differential attacks, and they concluded that there is a
nontrivial relationship between the differential characteristics and success prob-
ability of their deep learning-based attacks. However, their results are extremely
limited because they targeted a two-round Feistel construction, which is quite
insecure even if the component is ideal function. It is unclear how much the
property of internal components affects the security of the whole construction.
In addition to improve Gohr’s deep learning-based attack [17], Benamira et al. [8]
and Chen et al. [12] improved the success probability of traditional distinguish-
ers using characteristics that are expected to be reacted by Gohr’s attack. Their
work confirms whether characteristics explored by Gohr can be employed in the
traditional distinguishing attacks and they did not identify any deep learning
specific characteristic. However, we calculated the ability of traditional distin-
guisher and our deep learning-based attack and compared them to investigate
a relationship between them. Then, we identified a deep learning specific char-
acteristic of small-PRESENT. To summarize, to the best of our knowledge, our
results are the first ones that perform the whitebox analysis.

Alani and Hu reported plaintext recovery attacks on DES, 3-DES, and
AES [2,24] that guess plaintexts from given ciphertexts. They claimed that
attacks on DES, 3-DES, and AES are feasible with 211, 211 and 1741 (� 210.76)
plaintext/ciphertext pairs, respectively. However, Xiao et al. doubted the cor-
rectness of their results [2,24] because they could not be reproduced. Baek et
al. also pointed this out in the literature [4]. Therefore, we exclude these results
in Table 8. Mishra et al. reported that they mounted output prediction attacks
on full-round PRESENT; however, it did not work well [16]. In addition, cer-
tain results have yielded classical ciphers such as Caesar cipher, Vigenere, and
Enigma ciphers [15,18,19,30].

Other machine learning-based analyses have also been reported, e.g., [28,29].
Tan et al. demonstrated that deep learning can be used to distinguish cipher-
texts encrypted by AES, Blowfish, DES, 3-DES, and RC5, respectively [35], for
detecting the encryption algorithm that the malware utilizes. Alshammari et al.
attempted to classify encrypted Skype and SSH traffic [3].

C Experimental Results Using the CNN

To confirm that the use of the LSTM induces better experimental results than
that of the CNN, we conducted experiments using the CNN in the same pro-
cedure described in Sect. 3.1. In our experiments, we optimize activation func-
tions in addition to the hyperparameters shown in Table 1. The following is the
search range for activation functions: Tanh, Sigmoid, and ReLU. For developing



Output Prediction Attacks on Block Ciphers Using Deep Learning 267

Table 8. Comparison of deep learning-based cryptanalysis. OP:=Output Predic-
tion, PR:=Plaintext Recovery, KR:=Key Recovery, DD:=Differential Distinguisher,
LD:=Linear Distinguisher, and DLD:=Differential-Linear Distinguisher.

Reference Cipher (Block size) Structures Blackbox setting Target #Round (#Full) Whitebox analysis

BSS08 [5] Serpent (128 bits) SPN No DD 7 (32) No

AAAA12 [1] Simplified DES (12 bits) Feistel Yes OP 2 (N/Ab) No

DH14 [14] Simplified DES (12 bits) Feistel Yes KR/DD 2 (N/Ab) No

Gohr19 [17] Speck32/64 (32 bits) Feistel Noa KR/DD 12 (22) Yes

XHY19 [38] DES (64 bits) Feistel Yes PR 2 (16) No

CY20 [10] Speck32/64 (32 bits) Feistel No KR/DD 13 (22) Yes

CY20 [10] DES (64 bits) Feistel No KR/DD 8 (16) Yes

HLZW20 [21] DES (64 bits) Feistel No KR/LD 5 (16) No

So20 [33] Simplified DES (8 bits) Feistel No KR/LD 8 (8) No

So20 [33] Speck32/64 (32 bits) Feistel No KR/LD 22 (22) No

So20 [33] Simon32/64 (32 bits) Feistel No KR/LD 32 (32) No

BBDC21 [6] Gimli-Perm. (384 bits) SPN No DD 8 (48) No

BBDC21 [6] ASCON-Perm. (320 bits) SPN No DD 3 (16) No

BBDC21 [6] KNOT-256 (256 bits) Feistel No DD 10 (28) No

BBDC21 [6] KNOT-512 (512 bits) Feistel No DD 12 (52) No

BBDC21 [6] CHASKEY-Perm. (128 bits) ARX No DD 4 (12) No

BGMLT21 [7] Speck32/64 (32 bits) Feistel No KR/DD 13 (22) Yes

BGMLT21 [7] Simon32/64 (32 bits) Feistel No KR/DD 16 (32) Yes

BGPT21 [8] Speck32/64 (32 bits) Feistel No DD 7 (22) No

BGPT21 [8] Simon32/64 (32 bits) Feistel No DD 8 (32) No

CY21 [12] CHASKEY-Perm. (128 bits) ARX No DLD 4 (12) Yes

CY21 [12] DES (64 bits) Feistel No DLD 6 (16) Yes

CY21 [12] Speck32/64 (32 bits) Feistel No DLD 7 (22) Yes

CY21 [13] Speck32/64 (32 bits) Feistel No KR/DD 13 (22) Yes

CY21 [13] Speck48/72 (48 bits) Feistel No KR/DD 12 (22) Yes

CY21 [13] Speck48/96 (48 bits) Feistel No KR/DD 12 (23) Yes

CY21 [11] DES (64 bits) Feistel No DD 6 (16) No

CY21 [11] Speck32/64 (32 bits) Feistel No KR/DD 11 (22) No

CY21 [11] PRESENT (64 bits) SPN No DD 7 (31) No

HRC21 [22] Simon32/64 (32 bits) Feistel No KR/DD 13 (32) No

HRC21 [23] Simon32/64 (32 bits) Feistel No KR/DD 13 (32) Yes

HRC21 [23] Simon48/96 (48 bits) Feistel No KR/DD 14 (36) Yes

HRC21 [23] Simon64/128 (64 bits) Feistel No KR/DD 13 (44) Yes

HRC21 [23] Speck32/64 (32 bits) Feistel No DD 8 (22) Yes

HRC21 [23] Speck48/96 (48 bits) Feistel No DD 7 (23) Yes

HRC21 [23] Speck64/128 (64 bits) Feistel No DD 8 (27) Yes

ITYY21 [25] TWINE (64 bits) Feistel No DD 8 (36) No

YK21 [39] Speck32/64 (32 bits) Feistel No DD 9 (22) Yes

YK21 [39] Simon32/64 (32 bits) Feistel No DD 12 (32) Yes

YK21 [39] GIFT 64 (64 bits) SPN No DD 8 (28) Yes

WW21 [37] Speck32/64 (32 bits) Feistel No DD 12 (22) Yes

WW21 [37] Speck48/72 (48 bits) Feistel No DD 15 (22) Yes

WW21 [37] Speck64/96 (64 bits) Feistel No DD 18 (26) Yes

This paper PRESENT (64 bits) SPN Yes OP 4 (31) Yes

This paper AES-like (64 bits) SPN Yes OP 1 (N/Ab) Yes

This paper TWINE-like (64 bits) Feistel Yes OP 3 (N/Ab) Yes
aGohr described in his paper [17] that we consider it interesting that this much knowl-
edge about the differential distribution of round-reduced Speck can be extracted from a
few million examples by black-box methods. However, his black-box methods are different
from our defined blackbox setting. For this reason, we consider his proposed model as
a non-blackbox setting.
bBecause the simplified DES, AES-like, and TWINE-like ciphers, which are the modified
versions of original ciphers, do not specify the number of full rounds, we described the
number of full rounds of these modified versions as ‘N/A’.
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Table 9. Average success probabilities of ciphertext prediction/plaintext recovery
using the proposed attacks against three toy block ciphers with a block size of 16
bits. We employ the CNN and use 215 training data as well as remaining 215 testing
data. CP:=Ciphertext Prediction and PR:=Plaintext Recovery.

Cipher Round Category of
attack

# nodes of
hidden layer

# layers of
hidden layer

Initial learning
rate

Optimizer Activation Succ. prob.

small
PRESENT-
[4]

1 CP 100 5 0.001 Adam Tanh 1

PR 300 3 0.0001 RMSprop Tanh 1

2 CP 200 1 0.01 SGD ReLU 2−11.72

PR 400 3 0.001 Adam Sigmoid 2−11.69

3 CP 200 2 0.01 RMSprop ReLU 2−14.58

PR 300 2 0.0001 RMSprop Sigmoid 2−14.57

4 CP 300 7 0.0001 Adam Tanh 2−15.02

PR 200 1 0.01 SGD ReLU 2−15.20

small
AES-[4]

1 CP 100 4 0.0001 Adam ReLU 2−11.88

PR 400 5 0.0001 Adam Tanh 2−11.83

2 CP 100 4 0.01 SGD ReLU 2−15.76

PR 100 7 0.001 RMSprop Sigmoid 2−15.00

small
TWINE-[4]

1 CP 300 2 0.001 RMSprop Sigmoid 2−8.01

PR 500 5 0.01 RMSprop ReLU 2−8.03

2 CP 100 4 0.0001 SGD Tanh 2−15.86

PR 300 2 0.0001 RMSprop Tanh 2−15.62

CNN models by Keras, e.g., model.add(Conv1D(...)), we specify only filters,
kernel size, activation, and input shape as its arguments5.

Table 9 shows experimental results using the CNN. Consequently, we clarify
the following facts by comparing the experimental results using the LSTM and
CNN based on Tables 3 and 9:

– For small PRESENT-[4], the maximum number of rounds that the proposed
attacks using the LSTM and CNN can be successful is 4 and 3, respectively.

– For small AES-[4], the maximum number of rounds that the proposed attacks
using the LSTM and CNN can be successful is 1 for each case. In addition,
the average success probabilities of ciphertext prediction (plaintext recovery)
by the proposed attacks against the 1-round small AES-[4] using the LSTM
and CNN are 1 (1) and 2−11.88 (2−11.83), respectively.

– For small TWINE-[4], the maximum number of rounds that the proposed
attacks using the LSTM and CNN can be successful is 3 and 1, respectively.

To summarize the foregoing facts, we conclude that the use of the LSTM induces
better experimental results of all the target block ciphers compared to the use
of the CNN.

5 https://keras.io/ja/layers/convolutional/.

https://keras.io/ja/layers/convolutional/
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Table 10. Maximum differential probabilities of small PRESENT-[4], small AES-[4],
and small TWINE-[4]

Round Maximum differential probability

small PRESENT-[4] small AES-[4] small TWINE-[4]

1 2−2 2−2 20

2 2−4 2−9 2−2

3 2−7 2−11 2−4

4 2−8 2−11 2−6

5 2−14 2−11 2−7

6 2−15 2−11 2−9

7 2−15 2−11 2−9

8 2−15 2−12 2−11

9 – – 2−11

10 – – 2−11

D Maximum Differential Probabilities of small
PRESENT-[4], small AES-[4], and small TWINE-[4]

Table 10 shows the maximum differential probabilities of small PRESENT-[4],
small AES-[4], and small TWINE-[4].

E More Detailed Results in Sect. 3.1

Table 11 shows the minimum amount of training data required for successful
ciphertext prediction/plaintext recovery against three toy block ciphers. In addi-
tion, Table 12 details the experimental results shown in Table 11. If the predicted
probability is greater than 2−15, we consider the proposed attacks to be success-
ful6.

6 This assumption is strictly incorrect, but we use it for simple discussion.
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Table 11. Minimum amount of training data required for successful ciphertext predic-
tion/plaintext recovery using the proposed attacks against three toy block ciphers with
a block size of 16 bits. We use the optimized hyperparameters obtained in Experiment
1 (see Table 3). CP:=Ciphertext Prediction and PR:=Plaintext Recovery.

Cipher Round Attack # training data Succ. prob.

small PRESENT-[4] 1 CP 23 2−14.76

PR 23 2−13.40

2 CP 24 2−14.57

PR 24 2−14.56

3 CP 211 2−12.11

PR 211 2−14.55

4 CP 215 2−5.63

PR 215 2−14.50

small AES-[4] 1 CP 29 2−13.32

PR 28 2−14.82

small TWINE-[4] 1 CP 24 2−13.58

PR 23 2−14.93

2 CP 211 2−11.73

PR 211 2−13.18

3 CP 214 2−13.54

PR 214 2−13.02
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F More Detailed Results in Sect. 3.2

Tables 13 and 14 show the minimum amount of training data required for suc-
cessful ciphertext prediction/plaintext recovery against three block ciphers with
block sizes of 32 and 64 bits, respectively. In addition, Tables 15 and 16 detail
the experimental results shown in Tables 13 and 14, respectively.

We vary the amount of training data in the range of from 28 to 217 or from
210 to 219 and use 216 of the remaining plaintexts or ciphertexts as testing data
against three toy block ciphers with block sizes of 32 or 64 bits, respectively; thus,
if the predicted probability is greater than the threshold derived by equation
(24n − 2x)−1 shown in Sect. 2.3, we consider the proposed attacks to be successful
for both cases. In this case, those thresholds are (232 − 28)−1 to (232 − 217)−1 or
from (264 − 210)−1 to (264 − 219)−1.

Table 13. Minimum amount of training data required for successful ciphertext pre-
diction/plaintext recovery using the proposed attacks against three block ciphers with
a block size of 32 bits. We use the optimized hyperparameters obtained in Experiment
1 (see Table 3). CP:=Ciphertext Prediction and PR:=Plaintext Recovery.

Cipher Round Attack # training data Succ. prob.

small PRESENT-[8] 1 CP 210 2−19.47

PR 29 2−22.64

2 CP 211 2−21.64

PR 214 2−1.20

3 CP 215 2−6.34

PR 217 2−2.24

4 CP N/A N/A

PR N/A N/A

small AES-[8] 1 CP 212 2−17.78

PR 211 2−22.64

small TWINE-[8] 1 CP 211 2−20.32

PR 210 2−21.64

2 CP 214 2−20.32

PR 214 2−14.49

3 CP 216 2−22.64

PR 217 2−19.18
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Table 14. Minimum amount of training data required for successful ciphertext pre-
diction/plaintext recovery using the proposed attacks against three block ciphers with
a block size of 64 bits. We use the optimized hyperparameters obtained in Experiment
1 (see Table 3). CP:=Ciphertext Prediction and PR:=Plaintext Recovery.

Cipher Round Attack # training data Succ. prob.

small PRESENT-[16] (PRESENT) 1 CP 213 2−18.00

PR 214 2−17.68

2 CP 214 2−6.64

PR 216 2−2.27

3 CP 217 2−1.30

PR 219 2−3.14

4 CP N/A N/A

PR N/A N/A

small AES-[16] (AES-like) 1 CP 215 2−0.24

PR 215 2−0.06

small TWINE-[16] (TWINE-like) 1 CP 215 2−0.30

PR 214 2−15.91

2 CP 219 2−12.50

PR 219 2−7.05

3 CP N/A N/A

PR N/A N/A

Table 15. Average success probabilities of ciphertext prediction/plaintext recovery
using the proposed attacks against three block ciphers with a block size of 32 bits. We
vary the amount of training data in the range of from 28 to 217 and use 216 of the
remaining plaintexts or ciphertexts as testing data. Moreover, we use the optimized
hyperparameters obtained in Experiment 1 (see Table 3). CP:=Ciphertext Prediction
and PR:=Plaintext Recovery.

Cipher Round Attack Success probability for each amount of training data

28 29 210 211 212 213 214 215 216 217

small
PRESENT-
[8]

1 CP 0 0 2−19.47 2−13.47 2−0.51 1 1 1 1 1

PR 0 2−22.64 2−20.64 2−13.76 2−7.61 2−1.80 2−0.01 2−0.01 2−0.01 2−0.01

2 CP 0 0 0 2−21.64 2−17.35 2−6.22 2−0.57 2−0.54 2−0.05 2−0.02

PR 0 0 0 0 0 0 2−1.20 2−0.06 2−0.13 2−0.05

3 CP 0 0 0 0 0 0 0 2−6.34 2−3.32 2−2.35

PR 0 0 0 0 0 0 0 0 0 2−2.24

4 CP 0 0 0 0 0 0 0 0 0 0

PR 0 0 0 0 0 0 0 0 0 0

small
AES-[8]

1 CP 0 0 0 0 2−17.78 2−8.25 2−0.12 2−0.01 2−0.01 1

PR 0 0 0 2−22.64 2−20.64 2−13.43 2−0.01 2−0.01 2−0.01 2−0.01

small
TWINE-[8]

1 CP 0 0 0 2−20.32 2−17.47 2−4.41 2−0.01 2−0.01 2−0.01 2−0.01

PR 0 0 2−21.64 2−16.45 2−12.62 2−3.86 2−1.69 2−0.76 2−0.76 2−0.27

2 CP 0 0 0 0 0 0 2−20.32 2−4.97 2−4.84 2−2.84

PR 0 0 0 0 0 0 2−14.49 2−16.62 2−8.78 2−12.68

3 CP 0 0 0 0 0 0 0 0 2−22.64 2−15.71

PR 0 0 0 0 0 0 0 0 0 2−19.18
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Table 16. Average success probabilities of ciphertext prediction/plaintext recovery
using the proposed attacks against three block ciphers with a block size of 64 bits. We
vary the amount of training data in the range of from 210 to 219 and use 216 of the
remaining plaintexts or ciphertexts as testing data. Moreover, we use the optimized
hyperparameters obtained in Experiment 1 (see Table 3). CP:=Ciphertext Prediction
and PR:=Plaintext Recovery.

Cipher Round Attack Success probability for each amount of training data

210 211 212 213 214 215 216 217 218 219

small
PRESENT-
[16]
(PRESENT)

1 CP 0 0 0 2−18.00 2−0.01 1 1 – – –

PR 0 0 0 0 2−17.68 2−8.04 2−0.37 2−0.01 2−0.01 –

2 CP 0 0 0 0 2−6.64 2−2.64 2−2.31 2−1.68 2−0.60 –

PR 0 0 0 0 0 0 2−2.27 2−0.39 2−0.08 –

3 CP 0 0 0 0 0 0 0 2−1.30 2−1.68 2−0.74

PR 0 0 0 0 0 0 0 0 0 2−3.14

4 CP 0 0 0 0 0 0 0 0 0 0

PR 0 0 0 0 0 0 0 0 0 0

small
AES-[16]
(AES-like)

1 CP 0 0 0 0 0 2−0.24 2−0.06 2−0.01 2−0.01 –

PR 0 0 0 0 0 2−0.06 2−0.01 2−0.01 2−0.01 –

small
TWINE-[16]
(TWINE-
like)

1 CP 0 0 0 0 0 2−0.30 2−0.04 2−0.01 2−0.01 –
PR 0 0 0 0 2−15.91 2−5.72 2−5.16 2−3.99 2−2.45 2−1.16

2 CP 0 0 0 0 0 0 0 0 0 2−12.50

PR 0 0 0 0 0 0 0 0 0 2−7.05

3 CP 0 0 0 0 0 0 0 0 0 0

PR 0 0 0 0 0 0 0 0 0 0
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Abstract. Collective Remote Attestation (CRA) is a well-established
approach where a single Verifier attests the integrity of multiple devices
in a single execution of the challenge-response protocol. Current CRA
solutions are well-suited for Internet of Things (IoT) networks, where
the devices are distributed in a mesh topology and communicate only
with their physical neighbours. Recent advancements on low-energy pro-
tocols, though, enabled the IoT devices to connected to the Internet,
thus disrupting the concept of physical neighbour. In this paper, we
propose HolA (Holistic and Autonomous Attestation), the first CRA
scheme designed for Internet-like IoT networks. HolA provides defence
against attacks targeting both the nodes and the network infrastructure.
We deployed HolA on both a network of real devices (i.e., 5 Raspberry
Pis) and a simulated environment (i.e., 1M devices in an Omnet++
network). Our results demonstrate that HolA can resist against a dis-
ruptive attacker that compromises up to half of the network devices and
that tampers with network traffic. HolA can verify the integrity of 1M
devices in around 12 s while the state-of-the-art requires 71 s. Finally,
HolA requires 7 times less memory per device compared with the state-
of-the-art.

Keywords: IoT network · Remote attestation · Distributed IoT
services

1 Introduction

Internet of Things (IoT) refers to a category of small independent devices that,
when connected to a network, can autonomously collaborate to accomplish com-
plex tasks [4]. The widespread use of IoT technologies attracted the attention of
adversaries, leading to the development of a broad class of attacks. These attacks
are often partitioned into two groups: (i) software attacks that install malicious
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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software inside the device [26,27,45]; (ii) physical attacks that tamper directly
with the hardware [13,14,24,25]. While software attacks are remotely executed
by leveraging classic hacking techniques, physical ones require an adversary to
remove a device from a network for a non negligible amount of time (e.g., 10
min [23,30]).

In this scenario, Remote Attestation (RA) is a major solution for validat-
ing the integrity (software or physical) of remote devices [21]. The classic RA
scheme [20] involves a trusted entity (i.e., Verifier) that challenges a remote
device (i.e., Prover) to provide a measurement of its current status. Over the past
few years, researchers proposed Collective Remote Attestation (CRA) schemes
that better fit the mesh-like environment of IoT (i.e., networks with devices
communicating only with physically-close neighbours). However, the IoT world
is increasingly moving from mesh-like to Internet-like networks [12,34]. Here, the
concept of physical neighbour vanishes and current CRA schemes show limita-
tions in terms of scalability and security. We consider the adoption of Internet-
like networks prominent in light of the research on new energy-save Wireless
protocols (e.g., 6LoWPAN [40], Thread [22]) that promise to connect many
more IoT devices to the Internet itself.

In light of these considerations we propose HolA, the first Holistic and
Autonomous Attestation protocol for Internet-like IoT networks that: (i) guar-
antees an effective, efficient, and scalable periodic attestation of the whole IoT
network; (ii) makes the IoT network resilient to the well-known attacks targeting
mesh-like networks and the new ones addressing the Internet-like networks. We
implemented HolA on real devices equipped with a trusted anchor [31] for stor-
ing keys and performing cryptographic operations (i.e., 5 Raspberry Pi 3 and a
Raspberry Pi 0 for performance reference). We also evaluated HolA performance
in a large scale simulated network (i.e., 1M devices) through Omnet++ [43]. To
validate our approach, we conducted several attacks in both real and virtual sce-
narios, encompassing software tampering, lost packets, and corrupted devices.

2 Background

2.1 Remote Attestation

RA schemes consist in protocols that permits the verification of a remote entity.
Usually, RA schemes involve two distinct roles: Verifier and Prover. The Verifier
is considered trusted and is usually physically protected from attacks (e.g., a
remote server). The Verifier duty is to verify the integrity of a Prover that may
be corrupted (e.g., due to a malware). RA schemes require a Verifier to start the
protocol by sending a challenge to the Prover, which measures some properties of
its state (e.g., compute a hash of a piece of software) and returns a report. Then,
the Verifier can validate the Prover status by matching the returned report with
a database of correct measurements.

In IoT scenarios, it is a common practice to perform single-device RA and
collective RA. In the former, any network device can play the role of the Verifier
and issue a challenge to another network device, i.e., a Prover, to attest its status.
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In the latter, only a device from a set of predefined ones can verify the current
status of all the other network nodes, i.e., Provers, and generate a cumulative
report.

2.2 Trusted Anchor

Modern RA schemes require nodes mounting specific hardware, called trusted
anchor, that correctly implement minimal hardware features for attestation [20].
The nodes use Read-Only Memory (ROM) and Memory Protection-Unity
(MPU) to partition the device memory into two zones: (i) untrusted, containing
general purpose software; (ii) trusted, a protected memory region shielding sen-
sitive information, such as cryptographic algorithms, keys, and secure random
number generators. In short, the trusted anchor guarantees that only the proto-
col code accesses the cryptographic keys, and the node is booted correctly. Recent
works show that Off-The-Shelf IoT devices already provide trusted anchors with
a minimal hardware features set [39].

2.3 Chord

Chord [41,46] is a Distribushed Hash Table (DHT) protocol for managing dis-
tributed hash tables. In Chord, each node is identified by an m-bit number
computed by a hash function. Using these identifiers, nodes are linked to their
predecessors and successors, thus creating a ring. To improve resilience, nodes
maintain a list of successors called successors list. The routing of messages around
the ring is made efficient by the introduction of the fingers table, which results in
an average routing complexity of O(log2(n)) and renders the operation scalable
w.r.t. the number of nodes in the network. Chord permits dynamicity in the
network by introducing three maintenance tasks [46]: (i) the join task, where
an outside node contacts a member of the ring to join the topology; (ii) the
stabilize task, where a node contacts its direct successor to check its presence
and possibly adjust disruptions using the successors list ; (iii) the rectify task,
where a node receives notification of presence from its predecessor. The join task
is performed only when a node is entering the network, while the stabilize and
the rectify tasks are periodically executed by all the nodes to maintain the ring
topology.

3 Assumptions

3.1 System Model

HolA focuses on Internet-like networks where devices are equipped with a trusted
anchor. Devices communicate with each other over a secure and reliable chan-
nel. The security of the communication is guaranteed by the adoption of known
protocols (e.g., Diffie-Hellman [17]) on top of the Internet ones (e.g., WiFi [8],
6loWPAN [40] and TCP/IP [37]), while the reliability comes from the TCP
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properties Each device is uniquely identified by a certificate signed by a Certifi-
cation Authority (CA) controlled by the network owner. The device private key
is stored within the trusted anchor, while the public key is shared with other
nodes to issue a secure channel. Finally, we assume nodes are already equipped
with countermeasures against side channel attacks and having clocks loosely
synchronized, as already assumed by previous works [23,28,30].

3.2 Threat Model

The goal of an attacker is to gain control of a network device and compromise
it, meanwhile preventing its detection from the rest of the network. To achieve
this goal, the attacker can use two different strategies:

– Software attack (i.e., Asw): working from a remote location, the attacker can
gain control of the untrusted zone of one or more network nodes through
classic exploitation techniques, but not of the trusted one. Moreover, she can
gain control of one or more network infrastructure nodes (i.e., Dolev-Yao
model [18]).

– Hardware attack (i.e., Ahw): the attacker can gain control of both the trusted
and untrusted zone of one or more network nodes by manually tampering with
the hardware node. Thus, the attacker needs to be in a physical range with the
device, to remove it from the network for a time Ta (e.g., 10 min [13,14,23–
25,30]) and compromise it.

Adopting the above-mentioned strategies, the attacker can complete two attacks:

– Injection attack : through a Ahw, the attacker can inject a compromised device
into the network.

– Compromising attack : through either a Ahw or a Asw, the attacker can com-
promise a node already belonging to the network.

To inject a compromised device into the network, an adversary needs a valid
certificate. Thus, she can either obtain a valid certificate from the CA or steal
the certificate from another network node. While the first option is unfeasible,
the second one is doable provided that the original owner is excluded from the
network. In addition, the adversary can rely on Ahw to manipulate the network
infrastructure and tamper with the protocol.

To compromise a network node, the attacker can rely on Ahw or on Asw.
Through Ahw, the attacker physically removes a node from the network for a time
Ta, installs malicious code inside it, compromising the trusted zone, and makes
the node rejoining the network. Moreover, the compromised node might manip-
ulate the network traffic to prevent its detection. Through Asw, the attacker
reaches a network node from a remote location, installs malicious code inside it,
compromising the untrusted zone, and manipulates the network traffic, either
from the compromised node or from a network infrastructure node, to prevent
the node detection.

In this work, we do not consider destructive Denial of Service (DoS) attacks
that utterly interrupt any communication.
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4 Motivation

4.1 CRA Limitations in Internet-Like Networks

To motivate our claim, we discuss here the impact of deploying the following
three different CRA schemes in an Internet-like network: SANA [6], one of the
most scalable protocols and currently used as a baseline; SCAPI [28], one of
the CRA schemes that are the most resistant to physical attacks; PASTA [30],
a scalable and physical attack resistant CRA scheme, that does not require an
external Verifier.

Unlike mesh-like networks, the Internet-like ones do not assume physical
connections among nodes and each device is logically connected to any other
one. To represent the connections among devices in an Internet-like network,
SANA and SCAPI schemes can either save the status of the whole network in
each single node (S1) or define only a subset of nodes as logical neighbors (S2).
S1 requires a high amount of memory allocated for each node, while S2 implies
an adaptation of the current protocols. A similar approach may be applied by
PASTA, which should require a node to store a key for each other network device
or to include a novel mechanism to trace logical neighbor status. Thus, current
CRA schemes lack a mechanism to define logical connections in a Internet-like
network.

From a security perspective, Internet-like networks introduce more attack
surfaces. The attacker can gain control of the devices from a remote location.
Moreover, she can even target network infrastructure components (e.g., switches)
to tamper with the packets. In general, the remote access enables the attacker to
launch wider attacks that may simultaneously affect a large number of devices.
PASTA is the only work that considers such scenario, but its evaluation is limited
(up to 10 devices).

4.2 Security Properties

To effectively defend against injection and compromising attacks, a CRA scheme
designed for Internet-like networks should have three properties: (i) neighbour-
hood attestation; (ii) absence detection; (iii) network obfuscation.

Neighbourhood Attestation – It refers to the capability of each network
node to verify the integrity of its neighbours. Neighbourhood attestation permits
to detect any compromised node that managed to join the network through a
compromising attack. Neighbourhood attestation is the consequence of removing
a central Verifier in CRA schemes and distributing its attestation responsibility
to all the nodes.

Absence Detection – It is the capability of a CRA scheme to detect whenever
a device goes offline for a certain amount of time or even forever. In particular,
the absence detection recognizes if a node becomes offline for a time Ta due to
an injection attack performed through Ahw.
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Network Obfuscation – This property refers to any strategy adopted by a
CRA scheme to harden the network packet inspection and the consequent selec-
tive drop. This property prevents any attempt to manipulate the network traffic,
which can be either performed during an injection or a compromising attack
through Ahw or Asw. Current CRA schemes do not provide any defence against
attacks to the network infrastructure, since they assume the network is self-
contained.

5 HolA Overview

HolA is a CRA scheme specifically designed for Internet-like networks, which
guarantees the security properties illustrated in Sect. 4.2. HolA organizes the
network devices in a ring by relying on the Chord protocol. To achieve this aim,
each device needs to be equipped with specific data structures (Sect. 5.1) and
to manage a specific life cycle (Sect. 5.2).

5.1 HolA Device Architecture

As specified in the system model, network devices are equipped with a trusted
anchor (Sect. 5.2). Chord algorithms, together with HolA data structures and
logic, are saved in the trusted anchor of each device. Table 1 shows the main
components of each device and details are provided below.

cert – Every node is equipped with a certificate signed with privCAKey and
defined as a tuple containing pubKey, role and nodeId. The nodeId is an incre-
mental integer used as the index of the node inside the Status List (SL). The
certificate represents the device identity, is signed offline by a CA, and used to
authenticate messages exchanged among devices. We accept only trusted CAs
that are controlled by the network administrators (Sect. 3.1).

SL – The SL keeps track of the network devices status. Each entry is a triplet
defined as follows:

– deviceStatus (trusted/offline/compromised): a device is considered
trusted as long as it succeeds the attestation from its neighbors. It even-
tually moves to offline status when it becomes inactive. Finally, a device
is set as compromised when it stays offline for more than Ta or it fails the
attestations.

– exitTimestamp: it is the exact time when a device is found to be offline.
– sessionId: it is a monotonic counter increasing every time a device enters

the network. We use the sessionId to handle devices that temporarily go
offline for less than Ta and that are willing to re-join the network.

We maintain a full copy of the SL in each device for two reasons: (R1) it makes
the HolA scheme more robust in case of a simultaneous failure of multiple devices;
(R2) it permits any device to be aware of the whole network status, thus effi-
ciently implementing both single-device and collective attestations (Sect. 6.2).
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Fig. 1. Lifecycle of a network node deployed in the HolA CRA scheme.

Table 1. Main components of the HolA devices.

Data Structure Short Description

successors list List of the direct successors of a device a

finger table List of intermediate devices in the network a

nodeId a progressive unique number that identifies a device in the network

pubKey/privKey keys used for issuing secure communication channels.

cert A certificate representing the device identity b

pubCAKey the CA pubKey used for certificate validation

Status List (SL) a structure containing the status of each device in the network b

verifySF() Function to ascertain the healthy status of a
device [2,3,11,16,30,42,47]

role the privilege of a device 2

a See Chord protocol in (Sect. 2.3) for more info.
b See Device architecture in (Sect. 5.1)

A memory-efficient way to implement the SL is to create a list indexed by the
nodeIds.

role – it represents the device privilege, which could be:

– User : generic IoT device, that can add devices to the SL, but not remove
them.

– Admin: dedicated devices, that can perform network maintenance and remove
a device from the SL.

5.2 HolA Device Lifecycle

The HolA device lifecycle is depicted in Fig. 1 and it involves the following states:
configuration, online, trusted, offline and compromised.

configuration – Before a device is turned on, the network administrator installs
the cryptographic material in the trusted anchor. In particular, the administrator
provides the cert, the pubKey/privKey, and sets the role and the nodeId.
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online – once the device is configured, it can perform the join phase following
the Chord specifications (Sect. 2.3). The join procedure may fail for two reasons:
(1) the device has an invalid cert (e.g., signed by an unauthorized CA), (2)
the node has been already saved in the SL as compromised because of a failed
neighbourhood attestation or a timeout. In both case, the device is considered
compromised.

trusted – When a device is trusted, it performs the neighborhood attestation
and the absence detection.

offline – Once a member device becomes unreachable, it goes offline and has
to re-join the network starting from the online status.

compromised – A member device can be set as compromised by other member
devices, thus becoming isolated. A compromised device can be restored only due
to manual intervention from the network administrator. In this case, the device
passes to online and starts the join again.

6 HolA: Design

6.1 Status List Propagation

The SL is a data structure containing information about the status of all network
devices (i.e., trusted, offline, compromised) and each network device has a
local and up-to-date copy of it. Whenever a device intercepts an event that
requires an update to its local SL, the device will then propagate the information
to the network devices to make them update their local copies of the SL. The
events that can cause an SL update are:

– New device joining the network : when a new device enters the network, it
performs the Chord join operation. The successor of the new device receives
information about the new entrance, updates its own SL and propagates the
information to the network.

– Neighbourhood attestation: thanks to the properties of Chord, each device
periodically attests its successor. If the device finds the successor either
compromised or offline, it updates its own SL and propagates the infor-
mation to the network.

– Absence detection: if a device has some items in its SL marked as offline,
it periodically verifies if any of those devices go online. If a device is found
offline for more than Ta, it is marked as compromised in the local SL and
the information is propagated to the network.

The update of the local SL occurs through a set of priority policies. Given
two SL entries (i.e., E1 and E2), we assume E1 has priority over E2 if (i)
the deviceStatus of E1 is compromised and the deviceStatus of E2 is not
compromised; OR (ii) the sessionId of E1 is greater than sessionId of
E2. Condition (i) makes the network more conservative towards compromised
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devices, which might become again trusted only through the intervention of
an Admin device. While a tampered node may be able to change its state from
compromised to trusted, it would not be able to propagate it to other nodes as
this particular state transition is locked by construction. Condition (ii) handles
the scenario where a device turns online again, after being offline, without
the network detecting its exit. The propagation of the SL update to the whole
network refers only to the entries that need to be updated, thus reducing the
amount of transferred information. A device receives the whole SL only when it
joins the network.

6.2 Neighborhood Attestation and Absence Detection

Neighborhood attestation enables the detection of any compromised node that
managed to join the network through a compromising attack. Absence detection
permits to monitor any device going offline and the amount of time it stays
unreachable. In HolA, each network device periodically performs a neighborhood
attestation against its successor. During neighborhood attestation the successor
receives a challenge asking to check its status through the verifySF() function
(i.e., healthy or compromised), save it into a report, and return it to the sender.
The attestation report can depict three outcomes: correct, in which case nothing
is done; fail, in which case the successor is marked as compromised in the local
SL; timeout, in which case the successor is marked offline.

Any update update to the SL is eventually propagated to the neighbors. This
local and up-to-date copy of the SL allows each network devices to perform:

– Single-device attestation - A device A can verify the integrity of a device B,
even if B is not one of A’s neighbours by inquiring its SL. Previous works [3,
29] focused only on Asw, while the single-device attestation in HolA detects
both Asw and Ahw.

– Collective attestation - an operator connects to a node with Admin role and
looks for compromised devices in the SL. The operator can also manually
remove the compromised nodes from the SL. We remark that the node role
is part of the cert. Thus, an adversary cannot impersonate an Admin node,
unless she breaks the CA signature or steals a node with Admin role.

6.3 Network Obfuscation

In our threat model, we assume that the attacker may perform statistical analysis
over the exchanged packets (Sect. 3.2). For instance, she may detect and stop
those packets belonging to the SL propagation, thus stopping the updates on
compromised nodes. Since we assume the devices employ secure cryptography
primitives, we exclude man-in-the-middle attacks. However, the adversary can
still observe the sender IP, the receiver IP, and the packet size. Previous works
showed that this information is enough to denanonymize the packets [15,32].
To mitigate this issue, we harden the packet analysis by employing network
obfuscation strategies. In particular, we took inspiration from two techniques
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used in the mix-networks [1]: (i) all the exchanged messages have the same size
by design, and (ii) any device sends extra random packets to a fixed set of
devices. These techniques avoid any intermediate device to distinguish between
SL propagation, neighborhood attestation, or Chord routines. In addiction, this
disrupts a frequency analysis to discover the successors of a device [19]. We
analyze the packet size and quantify the network overhead in (Sect. 7.7) and
(Sect. 7.5), respectively.

7 HolA: Evaluation

7.1 Experimental Setup

We used three setups: Raspberry Pi 0 [35], Raspberry Pi 3 [36], and a simulated
network on Omnet++ [43].

We used a Raspberry Pi 0 [35] as a constrained environment to estimate the
cost of cryptographic operations used by HolA. A Raspberry Pi 0 mounts a 1
GHz single-core CPU with 512 MB RAM. Each received message requires three
cryptographic operations to be performed: (i) authentication, (ii) key negotia-
tion, and (iii) decryption. The authentication mechanism uses an RSA schema
with a 2048 bits long key. The certificate verification required on average 0.589 ms
(0.02 ms std). The key generation phase produces an AES 256B long key using
a Diffie-Hellman exponentiation. This operation required on average 5.92 ms
(0.0522 ms std). The decryption mechanism uses an AES-GCM [38] with a 256B
long key. It required on average 0.0833 ms (0.126 ms std).

We used a network of 5 Raspberry Pi 3 [36] to prove the feasibility of HolA
on real devices mounting ARM TrustZone [44]. We developed the prototype
on top of OP-TEE [33] by using the C language. We implemented network
communication using two TCP sockets opened in the untrusted zone.

We used Omnet++ to simulate an IoT TCP/IP network with up to 1M
devices. We set a delay of 10 ms to simulate message processing based on the
measurements on the Raspberry Pi 0. We set the communication rate to 250
Kbps based on the defined data-rate of the 6loWPAN specifications [40].

We compared the results of our experiments with state-of-the-art solu-
tions [6,28,30]. Each work has proposed its own experiments and units of mea-
sure. We therefore tried to proposed a thorough comparison with the information
available.

7.2 HolA Resiliency

HolA requires that the underlying ring is preserved to automatically repair itself
in case of disrupted nodes. Therefore, the overall security of our protocol is
strictly related to this property. We can adjust the resilience of our network
by tuning the successors list length (SLEN). In particular, SLEN must be
longer than the longest sequence of consecutive disrupted nodes.1 Fig. 2a shows
1 With consecutive nodes, we mean nodes with a consecutive position in the Chord

ring.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Minimum successors list length required for preserving the ring structure (a),
average time between two consecutive challenges received by a node (b), average time
required for an information to be broadcasted (c), average number of messages required
to broadcast an information (d), maximum fingers list size (e), average number of
devices communicating with a specific node (f). The graphs are the results of 100
experiments run with 6 different populations. The lines represent different percentages
of offline nodes (a, b) and compromised nodes (c, d). The points represent the average
value and the shaded area the standard deviation. The x-axis has logarithmic base.
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the minimum successors list length required for preserving the ring structure in
case of random nodes disappearing. For the sake of this evaluation, we consider
the nodes disappearing either for failure or attack, while we distinguish these
cases in (Sect. 7.3). Figure 2a shows a logarithmic trend, therefore, the cost for a
single node to maintain the structure scales w.r.t. the size of the network. In the
remainder of this section, we will consider the 50% average values as a reference
(i.e., 4 for 10 nodes, 7 for 100 nodes, 10 for 1K nodes, 14 for 10K nodes, 17 for
100K nodes and 20 for 1M nodes).

Conclusion – Our results show that HolA is in line with [28] by tolerating up
to n/2 outages in the network. In addition, HolA can adjust its resiliency by
increasing the successors list length, thus introducing the unique possibility to
trade-off between resiliency and memory overhead.

7.3 HolA Security Properties

The objective of HolA is to maintain a healthy status of the network (Sect.
3.2). This is achieved by periodically challenging the nodes and broadcasting
the updates. We show the correctness of this approach by formal demonstration.

Definition 1. A node is compromised if it does not pass the neighbourhood
attestation or if it is found offline by the absence detection and it stays offline
for more than a time Ta (Sect. 6.2).

Definition 1 derives directly from the threat model considerations (Sect. 3.2) and
HolA design (Sect. 6).

Definition 2. A network attestation protocol is secure if it prevents compro-
mised nodes to operate in the network.

Definition 2 indicates that each node belonging to the network must receive
neighbourhood attestation and that each offline node must be detected by
absence detection. To avoid compromised nodes to rejoin the network, HolA
must additionally broadcast the information to all the devices inside the net-
work (Sect. 6.1).

Theorem 1. Neighbourhood attestation guarantees continuous check of nodes.

Proof Sketch. In HolA, each node receives a challenge by its predecessor in the
ring (Sect. 6.2). Given the resiliency property (Sect. 7.2), the ring always remains
intact during HolA operations. Therefore, a node participating to the protocol will
always have a predecessor.

In HolA, a node continuously receives challenges to check its status and
eventually detect a compromising attack carried out through Asw or Ahw (Sect.
4.2). Therefore, it is crucial that any node is constantly verified by the other
nodes; this time may vary due to the presence of offline nodes. For instance, a
node immediately after a disruption needs to wait for the protocol to repair the
ring before receiving its next challenge. We deepen this aspect in (Sect. 7.4).
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Theorem 2. Absence detection guarantees the detection of offline nodes.

Proof Sketch. Each node periodically sends a challenge to its successor and
expects a response. In case the communication times out, the node flags the
successor as offline in the status list, removes it from the successors list and
propagates this information. The sequence of operations is repeated until the
node finds the first online device in the successors list. The resiliency property
(Sect. 7.2) assures that at last one node will eventually find an online device.
Each node participating to the protocol performs this task. Hence, using again
the resiliency property, there will always be a node detecting and propagating the
information about its offline successors.

Since each node of the network is continuously proved, HolA avoids injection
attacks (Sect. 4.2).

Theorem 3. Status list propagation reaches all online devices.

Proof sketch. Each node propagates the information to its successors list.
Given the resiliency property (Sect. 7.2), the ring always remains intact during
HolA operations. Hence, the information will be routed around the circle and will
eventually reach all the nodes.

Without losing in generality, we considered a limit case in which a node has
an empty finger list, thus only relying on its successor list. In reality, the finger
table usually has some entries that can be used to improve the broadcast speed.
We measure the impact of the finger table in (Sect. 7.5). Moreover, we distin-
guish between a random attacker and a selective attacker. Section 7.5 treats the
first case demonstrating the robustness of the process with different percentages
of compromised nodes. For the second case, a selective attacker needs to physi-
cally compromise SLEN consecutive nodes in the ring to block the propagation
around the ring. Since we include network obfuscation techniques (Sect. 6.3),
an adversary cannot exactly locate the successors. To successfully remove all
the successors, an adversary must control all the devices contacted by a target
node and those contacted by its successor list. In practice, in a network of 1M of
device, considering a SLEN of 20, and a finger list of 24 devices (more detail in
Fig. 2e), an attacker must control 2420 devices (around 4×1027) at the same time
to block the SL propagation. To summarize, the network obfuscation enables a
secure SL propagation to resist against a compromising attack.

7.4 Time Delay for Neighbourhood Attestation

We evaluated the time delay that neighbourhood attestations could suffer due to
network disruptions. We experimented with 6 different populations presenting 4
different percentages of random offline nodes (from 0 to 50%). Figure 2b shows
a logarithmic trend, therefore, the time period scales w.r.t. network size. The
largest period is reached with a population of 1M device, where the maximum
expected period is 1.3 s.

Conclusion – Despite major disruptions, the neighbourhood attestation proce-
dure demonstrates optimal performance in terms of scalability and availability.
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7.5 SL Propagation Performance

Theorem 3 demonstrates the correctness of HolA propagation. However, the over-
all performance of the naive implementation (i.e., propagating only to successors
list nodes) are linear w.r.t. the network size. To improve it, we experimented with
a more efficient propagation where the information is additionally sent to one
entry in the finger table. From the propagation perspective, this is equivalent
to spread the information using a binary tree topology. We measured the time
and number of messages required for the propagation to reach every node in the
network. We experimented with 6 different populations and 4 different percent-
ages of random offline nodes. For the successors list lengths, we considered the
suggested values in (Sect. 7.2).

Figure 2c shows the average propagation time required for HolA to propagate
an information to the whole network. The propagation time is almost logarith-
mic, demonstrating the scalability of the process w.r.t. the network size and that
the process is slightly affected by the rate of offline nodes. The propagation time
ranges from 8 s to 10 s with a population of 1M devices. In terms of messages,
Fig. 2d shows the average number of messages required increases linearly with
the online population and the number of messages sent by each node. In fact,
each online node sends out an exact number of messages (all the successors plus
a finger). As an example, for a population of 1M devices where 50% of them are
offline we measured exactly 10, 500, 000 messages (50%× 1M)× (20 + 1), where
20 is the successors list length and 1 the additional finger. This simplifies the
estimate of the burden introduced by extra random packets (Sect. 6.3). In fact,
the number of random packets sent proportionally affects the global number of
packets exchanged. In other words, r extra random packets per each node would
bring an increase of r-times in the messages.

Conclusion – HolA guarantees an efficient network propagation that scales
quasi-logarithmically w.r.t. the network size. A complete execution of the proto-
col comprising both the attestation and the propagation takes an average time
period of around 12 s (Sect. 7.4). This is a major improvement w.r.t. to previous
works, where the elapsed time could be as long as 71.7 s [30] and 1421 s [6]. The
time required by PASTA [30] highly depends on the network’s state, ranging
from 3 s to 71.7 s while our results are more stable.

7.6 Memory Consumption

Successor List – The successor list size (SLEN) is a constant value to be
set before deploying the network. Each entry in the successor list stores an IP
address (4B) together with the pubKey of the related node (128B), for a total of
132B. Hence, a complete successor list requires (132 × SLEN)B.

Finger Table – Every entry of the finger table requires 132B as for the successor
list (4B for the IP plus 128B for the pubKey). The total number of entries in
the finger table depends on the network size. Figure 2e shows the maximum
number of fingers of the finger table with different network populations (up to



HolA: Holistic and Autonomous Attestation for IoT Networks 291

1M devices). The plot shows a logarithmic trend, suggesting that the fingers
table scales w.r.t. the network size. In particular, a finger table contains 132 ×
log2(n)B.

Status List – Each SL entry stores a deviceStatus (1B), an exitTimestamp
(8B) and a sessionId (1B), totalling 10B. The SL must contain all the devices
in the network, hence the overall memory overhead is (10 × n)B.

Cache – We introduced a cache for storing the pubKey and nodeId of other
devices and speed up the communications. In particular, we tune the cache to
contain as many entries as the expected number of nodes to contact (Fig. 2f).
The graph indicates a logarithmic growth w.r.t. the global population of the
network. This suggests that a cache could reduce the burden of certificate verifi-
cation without imposing too much overhead on the memory. Each entry in cache
occupies 130B (128B for the pubKey and 2B for the nodeId), setting the cache
memory to (130 × log2(n))B.

Conclusion – The overall memory used for data structures is 10 × n +
262 × log2(n) + 132 × SLEN . The other decentralized autonomous network
(PASTA [30]) claims an overall memory cost of at most (78, 140 + |token| ×
1, 280)B (around 700 Kb). In the same scenario (i.e., 10K), HolA has an over-
head of at most (103, 668+132×SLEN)B. Considering 14 as SLEN (Sect. 7.2),
the size becomes 105, 516B (around 100 Kb), that is seven times less overhead
w.r.t. PASTA.

7.7 Communication Overhead

We measure the communication overhead in terms of message size. In our imple-
mentation, the messages contains a header of 274B, where the majority part is
dedicated to a certificate (256B) and the rest is for the HolA internal working.
The payload of a message depends in which phase HolA is operating: (i) join
phase, and (ii) operational phase. During the join phase, the largest message
sent has size (10×n+132×SLEN +274)B and it is sent once. The operational
phase, instead, comprises all the tasks executed by a node during its permanence
inside the ring. Since we adopt network obfuscation techniques, all the opera-
tional messages has the same length, which is of (264× (SLEN +1))B). In case
of a network of 10K devices and a resiliency rate of 50% (Sect. 7.2), the HolA
operational messages have a weight of 3, 960B.

Conclusion – SANA [6] has a communication costs in the same order of mag-
nitude of HolA. The same can be said for SCAPI [28] that claims an average
cost of 1, 314B for a network of 10K devices.

8 Related Works

CRA on Spanning Tree Topology – SEDA [7], SANA [6], and LISA [10] are
the first CRA schemes. They initiate a spanning tree topology over the network
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and use it for distributing the burden of computation among all the devices.
A limitation regarding these approaches is the static topology assumption that
forces the devices to not disrupt the tree during the protocol execution. Moreover,
they do not consider hardware attackers [6,7,10], they provide coarse-grained
results [7] or expensive aggregation methods [6] and they propose inefficient
secret keys management [7,10].

Physical Attacks Detection – Due to the increasing size of the networks,
researchers investigated mechanisms to detect physical adversaries that may cap-
ture the devices. These works assume a physical adversary removes a device from
the network for a non-negligible amount of time. DARPA [24] and SCAPI [28]
are the main works in this direction. They both rely on an heartbeat token
exchanged between neighbors that permits an external Verifier to detect devices’
absence. These works act as overlays placed above existing solutions (SEDA [7],
SANA [6]). Thus, they inherit both the complexity and the limitations of the
underlying attestation scheme.

CRA for Highly Dynamic Swarms – To tackle the static topology issue
of first CRA schemes, more recent ones proposed a scheme that incrementally
creates a complete snapshot of the network status. SALAD [29] and PADS [5]
achieve this goal through a shared structure that contains the status of all the
devices, and an external Verifier that needs to retrieve the structure from a
random device.

Autonomous Networks – A new branch of CRA works proposes autonomous
networks that do not rely on an external Verifier to maintain their healthy status.
DIAT [3] assumes a mesh-like connection and focuses on software adversaries and
run-time RA (i.e., they validate runtime device status). US-AID [23] can detect
both software tampering and device disconnections. PASTA [30] handles both
software and physical adversaries by relying on a periodical generation of tokens
that attests the integrity of all the devices that participated in its generation.
These autonomous CRA schemes focus on mesh-like networks where a device can
only connect with its physical neighbours. Hence, they do not provide support
for those environments in which a device can potentially connect with all the
others.

9 Discussion

Certificate Revocation/Expiration – In our design, we ruled out the certifi-
cation revocation and expiration. This may let adversaries forge fake certificates
and allow malicious devices to join the network. We can overcome this issue with
the introduction of probabilistic filters, as described in previous works [9].

False Positive – A device is considered compromised through Ahw, if it is
offline for more than Ta. However, this does not mean a device has been
actually under attack. This is also considered as an open problem in previous
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works [23,28,30]. In HolA, we mitigate this issue by relying on Admin devices
that can manually control the network status and restore outage devices.

Devices Loosely Synchronized – As assumed also in previous works [23,28,
30], the network devices require some clock synchronization strategy to detect
a Ahw. We aim at overcoming this limitation by storing the relative time at
which a device becomes offline, instead of the absolute timestamp. However,
this introduces other synchronization challenges, such as considering random
network propagation delays. We plan to investigate new solutions for this issue
in future versions of HolA.

10 Conclusion

In this paper, we proposed HolA, the first Holistic and Autonomous Attestation
protocol for Internet-like networks. HolA guarantees a strong defence against
both compromising and injection attacks.

We demonstrated the feasibility of the HolA protocol over real devices (i.e.,
Raspberry Pi 0 and 3) and on a network of 1M of simulated devices (i.e.,
Omnet++). In our evaluation, we stressed the resilience of HolA against a net-
work with 50% of nodes disrupted. HolA showed an attestation time in between
8 s and 12 s, that is similar and more stable than previous works (i.e., from
3 s to 72 s [30]). In addition, HolA can resist to adversaries that perform net-
work analysis and selectively drop packets. In terms of scalability, HolA requires
only 100 Kb per device in a network of 10K nodes, which is in contrast with the
700 Kb required by previous works [30].
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Abstract. The objective of this research is to lay the foundations for
the development of a scientific theory that determines (all and only) the
possible insecure and secure configurations of any abstract system to
be used for the risk assessment of systems. We claim that cybersecurity
weaknesses (i.e. errors) are at the beginning of the causality chain that
leads to cybersecurity attacks. We formulate a hypothesis that we use
to predict the weaknesses in the architectural design of a system. Our
hypothesis allows for the definition of a mathematical formula which
describes the cybersecurity of a system. We implemented a prototype
cybersecurity risk assessment tool that, based on our hypothesis, predicts
the weaknesses in a UML model of a (cyber-physical) system.

Keywords: Risk management · Cyber-physical systems · Risk
assessment · Security framework

1 Introduction

A scientific theory is an explanation of a phenomenon such that the explanation
follows the scientific method. The scientific method is an empirical method that
aims at mitigating potential fallacies in theories. Karl Popper famously argued
(e.g. in [15]) that a scientific theory can never be verified but only falsified, that
a theory should not be conceived by using the principle of induction,1 and that
empirical experiments should be considered as the only evidence to support the
non-falseness of a scientific theory. In [7], Cormac Herley explores what he calls
“an asymmetry in computer security”, which he defines as follows: “Things can
be declared insecure by observation, but not the reverse. There is no observation
that allows us to declare an arbitrary system or technique secure”. With secu-
rity, Herley only focuses on cybersecurity (we also use security and insecurity, in
this paper, only to refer to cyber-insecurity and cybersecurity) and his intuition
is that there is no scientific theory that can predict the cybersecurity of a sys-
tem, nor a theory that can predict all possible insecurities of a system (which,
by negation, may be used as a theory of cybersecurity). Herley then uses this
argument to show that “claims that any measure is necessary for security are

1 Einstein to Popper: “[...] and I think (like you, by the way) that theory cannot be
fabricated out of the results of observation, but that it can only be invented.” [15].
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empirically unfalsifiable”. The goal of this paper is to address this issue and to
lay the foundations of a scientific cybersecurity theory. We consider the problem
raised by Herley not confined to “computer security” but rather we reason on any
abstract system (so that our scientific hypothesis2 may be tested in any sound
implementation such as a network, a mechanical, cyber, or cyber-physical sys-
tem, or even a single computer or a single device such as a hard-drive). Instead
of starting from reasoning about what makes a system secure or insecure, we
reason about what causes insecurities. We focus on insecurities only caused by
the exploitation of cybersecurity attacks, and we assume that achieving cyber-
security means preventing all those attacks from being exploitable or exploited.
Our hypothesis is that cybersecurity attacks are only caused by the presence of
errors in the design or implementation of a system (i.e. cybersecurity weak-
nesses). With our approach, a list of weaknesses emerges from the mathematical
formulation of a system in a framework called ABF (as in Assertions, Beliefs,
Facts in [18])3 predicts 4 main classes of weaknesses. Those classes are used to
calculate all the insecurity configurations of all the components of a system,
obtaining a precise estimation of all potential cybersecurity-related risks in any
given system. Our hypothesis can be falsified by means of experiments, testing
if all the predicted weaknesses are present in the system under consideration,
or testing if other (not predicted by our hypothesis) weaknesses are present.
In fact, if any cybersecurity weaknesses were to be found in a system and not
predicted by our hypothesis, the hypothesis could be declared incomplete. If a
cybersecurity weakness would be predicted by our hypothesis but found to be
impossible to realize, our hypothesis could be declared as wrong.

2 Literature Review

Cybersecurity attacks seem to be related to the creativity of the attacker and
thus unpredictable. Currently, the most complete understanding of insecurity
issues is stored into a network of databases of weaknesses (e.g. CWE [3]), vul-
nerabilities (e.g. CVE [13], NVD [21]), and attacks (e.g. CAPEC [2], ATT&CK
[12]). Those insecurity issues can be related to the violation of one or more
requirements (explicit or implicit) in the specification, design or implementa-
tion of a system. The correlation between insecurity flaws and cybersecurity
requirements has been used to define standards such as the IEC 62443-1-3 (the
Industrial communication networks - Network and system security – Part 3-3:
System security requirements and security levels) which defines requirements
as “confidentiality of information in transit/at-rest”. More generally, the idea
of defining cybersecurity requirements as properties of a system was initially
defined in 1970s with the CIA triad (Confidentiality, Integrity, Availability) and

2 In the remainder of this paper, we will use the word hypothesis to refer to “scientific
hypothesis” as a proposed scientific theory that has not gone through an extensive
series of tests. We use “logical theory” to refer to a set of formal logical axioms.

3 Intuitively, as we will see later, assertions correspond to an exchange of information
between agents, beliefs to internal information considered true by the agent, and
facts to requirements.
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refined over the decades introducing related concepts such as authenticity or
non-repudiation, or introducing new ones such as “responsibility” in the RITE
approach (see [17] for an overview of the evolution of the CIA triad). The link
between cybersecurity requirements and vulnerabilities is reported in the NVD
databases by the CVSS [11] scoring system. The CVSS evaluates of the sever-
ity of a vulnerability by means of different metrics (such as attack complexity
and user interaction) and quantitatively evaluates the impact on the CIA triad.
While cybersecurity requirements, weaknesses, vulnerabilities, and attacks have
been extensively studied and implemented both in academia and industry to pro-
vide tools for the testing or verification of systems, no scientific falsifiable theory
correlates cybersecurity requirements to necessary and sufficient conditions (e.g.
mitigations) to declare a system secure [7]. Nonetheless, the extensive body of
literature has scientific foundations, for example, providing formal frameworks
for the verification of properties for cybersecurity. As a driver for our argumen-
tation, we start by reviewing the key concepts in the cybersecurity domain.

2.1 Terminology

We provide a baseline for a definition of the terms that structure our current
understanding of cybersecurity.

Vulnerability. As defined in [14] (and adopted in [1]), is a “weakness in an infor-
mation system, system security procedures, internal controls, or implementation
that could be exploited by a threat source”.

Weakness. The definition given by the MITRE in [4] of weakness is: “ a type
of mistake that, in proper conditions, could contribute to the introduction of
vulnerabilities within that product. This term applies to mistakes regardless of
whether they occur in implementation, design, or other phases of a product life-
cycle.” A vulnerability, such as those enumerated on the Common vulnerabilities
and Exposures (CVE) List, is a mistake that can be directly used by an attacker
to gain access to a system or network. The definition is circular if we interpret
the word “error” and “mistake” with the same semantics: a weakness is an error
that leads to a vulnerability and a vulnerability is a mistake which, in turn, is a
weakness. The only difference between a weakness and vulnerability seems to be
that one can consider weakness as a ground term and state that a vulnerability
is caused by a weakness.

Exploit “[. . . ] (from the English verb to exploit, meaning to use something to
one’s own advantage) is a piece of software, a chunk of data, or a sequence of
commands that takes advantage of a bug or vulnerability to cause unintended or
unanticipated behavior to occur on computer software, hardware, or something
electronic (usually computerized).” [8].

Attack. As defined by the International Standard ISO/IEC 27000, is an “attempt
to destroy, expose, alter, disable, steal or gain unauthorized access to or make
unauthorized use of an asset”; where an Asset is “anything that has value to
the organization”. We do not consider ethical hackers as attacking a system. In
fact, we consider the term hack as non-malicious (as, e.g. in [20]).
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Fig. 1. Etiology of cybersecurity (left). Mapping epistemological concepts to (cyber-
physical) systems engineering (right).

Threat. As defined in [14], is “Any circumstance or event with the potential to
adversely impact organizational operations (including mission, functions, image,
or reputation), organizational assets, individuals, other organizations, or the
Nation through an information system via unauthorized access, destruction, dis-
closure, modification of information, and/or denial of service”.

As in Fig. 1, in order to define a theory on cybersecurity we may say that
the presence of vulnerabilities is a necessary condition to cause an attack in the
system. Those vulnerabilities are, in turn, caused by the presence of weaknesses
in the system. Weaknesses are errors in the design or implementation of a system
and a theory on cybersecurity should first predict the errors in a system design.

3 A Cybersecurity Hypothesis in the ABF-Framework

To address the problem raised by Herley, we define how to distinguish between a
secure and an insecure system in the following steps of the engineering process:

1. System Specification: the functional and physical requirements are defined.
2. Architecture Design: the specification is structured into functional and phys-

ical architectures.
3. Cybersecurity Risk Assessment : potential weaknesses (errors) and cybersecu-

rity requirements are identified.

We changed the focus from the attacker as the source of insecurity to the poten-
tial design errors of a system. We now define a framework for the definition of a
system that we use to identify weaknesses as potential design errors.

3.1 Mereo-Topological Reasoning

Following [18], we define a system as a hierarchy of agents. Furthermore, we
model an agent as a meronomy (a hierarchy of part-whole relations) over the
aforementioned constituents (assertions, beliefs, and facts), based on a standard
definition of mereology (i.e. based on the definition of parthood relation between
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Table 1. RCC3 and RCC5 relations between regions X, Y and Z

RCC3 RCC5 Terminology Notation Definition

Connects with C (X ,Y ) Reflexive and symmetric

Disconnected from ¬C (X ,Y ) Irreflexive or antisymmetric

Part of P(X ,Y ) ∀Z C (Z ,X ) → C (Z ,Y )

Overlaps O(X ,Y ) ∃Z P(Z ,X ) ∧ P(Z ,Y )

� � Equal to EQ(X ,Y ) P(X ,Y ) ∧ P(Y ,X )

� Overlaps not equal ONE(X ,Y ) O(X ,Y ) ∧ ¬EQ(X ,Y )

� � DiscRete from DR(X ,Y ) ¬O(X ,Y )

� Partial-Overlap PO(X ,Y ) O(X ,Y ) ∧ ¬P(X ,Y ) ∧ ¬P(Y ,X )

� Proper-Part-of PP(X ,Y ) P(X ,Y ) ∧ ¬P(Y ,X )

� Proper-Part-of-inverse PPi(X ,Y ) P(Y ,X ) ∧ ¬P(X ,Y )

parts). Due to the necessity of considering different relations between parts (as we
will show afterwards) we extend the mereology to a mereo-topology [16,19,24],
considering the relations in Table 1. For the sake of readability, we use the term
region both to refer to a mereological part and to a topological region. Our
aim is to create a meronomy (hierarchy of part-whole relations) instead of the
taxonomies (categorization based on discrete sets) such as the one provided in
[13,21] so that we don’t need to rely on a scoring system (such as the CVSS) to
assign a quantitative evaluation of the cybersecurity of each entry. Instead, we
want a precise calculation of the number of insecure configurations of a system
to emerge from the mathematical formulation of our cybersecurity hypothesis.
A mereotopology, as defined in [16], is a mathematical structure where the basic
relation between regions is the reflexive and symmetric relation Connects With,
that we use to order a universe of agents Ag (see in Tab. 1). We use the Region
Connection Calculus (RCC), as defined in [6,9], to provide an axiomatization
of the mereo-topological concepts. In its broader definition, the RCC theory is
composed by eight axioms, and is known as RCC8 [6]. Using RCC5 instead
of RCC8 prevents us from considering tangential connections between spatial
regions. However, tangential connections in RCC8 can be considered as special
cases of the more general spatial relations considered in RCC5. In Table 1, we
summarize the axioms of the RCC (see, e.g., [6]). We can now define a system
over the mereotopology using the RCC calculus, as follows, where rcc(X,Y ) on
two generic regions X,Y represents one of the possible RCC relations between
X and Y . We note that all the RCC relations are symmetric with the exception
of those that have an explicit (related) inverse.

Definition 1. System State – A Cyber-Physical System (CPS), or a sub-
system, state is defined as a tuple s = 〈rcc(F ,B), rcc(F ,A), rcc(B,A)〉, where
A,B, and F are regions of assertions, beliefs (i.e. the beliefs generated by the
behavior), and facts respectively, expressed as requirements.

As in [18], it follows that, by defining a system as a fixed number of regions,
there exists an upper-bound to the number of possible configuration of a sys-
tem, defined by the possible relations between the different regions. The general
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Fig. 2. Cybersecurity risk for a single agent (left). Example relation between facts, and
assertions and beliefs (right).

Table 2. RCC5 composition table over 3 regions generates the ideal risk matrix (green
the low-risk state, red the high-risk state, and a gradient of intermediate risk states).
T(A,F) = {DR(A,F), PO(A,F), PP(A,F), PPi(A,F), EQ(A,F)}

DR(A,B) PO(A,B) PP(A,B) PPi(A,B) EQ(A,B)

DR(B,F)

DR(A,F)

DR(A,F)

DR(A,F)

T(A,F) PO(A,F) DR(A,F) PO(A,F) DR(A,F)

PO(B,F)

DR(A,F) DR(A,F) PO(A,F)

PO(A,F) T(A,F) PO(A,F) PPi(A,F) PO(A,F)

PP(A,F) PP(A,F)

PP(B,F)

DR(A,F) PO(A,F)

PO(A,F) PO(A,F) PP(A,F) EQ(A,F) PP(A,F)

PP(A,F) PP(A,F) PP(A,F)

PPi(A,F)

PPi(B,F)

DR(A,F)

DR(A,F) PO(A,F) T(A,F) PPi(A,F) PPi(A,F)

PPi(A,F)

EQ(B,F) DR(A,F) PO(A,F) PP(A,F) PPi(A,F) EQ(A,F)

formula to calculate the number of different types of agents is r(
n
k), where r is

the number of relations with arity k, between n different regions. In our case,(
n
k

)
= 3 since we consider 3 regions (A, B, and F), and all the relations consid-

ered in the RCC are binary. Hence, we have up to 125 different types of agents
but only 54 of the 125 (as showed in [6]) combinations are topologically correct.
For RCC5 there are 53 = 125 theoretical combinations but only 54 are correct
with respect to the axioms.

In the quantitative evaluation of a single agent, as in Fig. 2, we argue that
only 1 configuration represents the nominal (expected) behavior of the agent
while the other configurations are either impossible to implement or diverge
from the intended nominal behavior. We note that the numbers reported here
do not consider the details of the engineering process and should be considered
a limit of an abstract representation of the system.
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3.2 Qualitative Evaluation of Agent Space in A,B,F
While a quantitative analysis reveals how many possible configurations of an
agent (i.e. a system) exist w.r.t. the ABF-framework (e.g., 54/125 in RCC5), a
qualitative analysis of the different configurations describe the configurations
allowed by the ABF-framework, and how those configurations can be cate-
gorized. In Table 2, we provide the generic composition table of RCC5 over 3
regions instantiated over A,B,F , which shows the whole state space for a single
agent. The color coding of the table represents the cybersecurity risk related to
a generic agent, the risk is highest on the top left corner of the matrix, lowest
on the bottom right corner. In Fig. 2, the relation between facts, and assertions
and beliefs (as inputs and outputs of the behavior of an agent) is illustrated.
Assertions and beliefs generated by the design of a system may not be exactly
aligned with what the facts mandate (i.e. what the specification mandates). The
relation between facts, and assertions and beliefs can be used as a metric to
determine the soundness of the design with respect to the specification. We now
analyze the relations between each pair of regions (i.e., A,B,F). For the sake of
simplicity, soundness is opposed to non-soundness in the following, however, with
the RCC, one could consider different “degrees” of non-soundness. For example,
in RCC5, if we consider EQ between two regions as representing soundness, DR
over the same regions represents “total” non-soundness; while PP, PO, and PPi
each represent different degrees of non-soundness. A similar argument can be
done for completeness.

rcc(A,B) – Collaboration. By definition, assertions are defined as transfer of
information between two agents. An agent has two main categories of assertions,
input and output assertions. Given an agent a and a collection of asserted pred-
icates Φ, the input assertions are those received by a from an agent s acting as
a sender, As→aΦ; similarly, output assertions are sent from a to a receiver r,
Aa→rΦ. With a slight abuse of notation, in the text we drop the Φ when the
content of the assertions is not relevant. We shall consider two pairs of regions:

– rcc(As→a,B), where the relation between input-assertions and beliefs
describes the soundness of the execution of the functional architecture w.r.t.
input elicitation. If all the inputs (assertions) are correctly handled in the
functional specification (beliefs) the specification is complete.

– rcc(Aa→r,B), where the relation between behavior and outputs describes the
completeness of the behavior defined in the specification w.r.t. the input elic-
itation. If all the outputs (assertions) of the functional architecture can be
produced, the functional architecture is complete.

rcc(A,F) and rcc(B,F) – Honesty and Competence. The relation of assertions
and beliefs with facts determines the quality with respect to the nominal (spec-
ified) system. Given that facts define what needs to be true in the system, the
relation of assertions and facts determines the degree of quality between the real
information circulating in a system (or within an agent) and the one specified.
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Since the transfer of information through assertions generates beliefs, a dishon-
est agent may circulate false information, generating false beliefs. The relation
between beliefs and facts determines the competence (on the subjects defined
by the facts) of an agent (i.e. the more competent an agent is, the more likely a
belief of that agent is true).

A,B,F CyberSecurity Enumeration (CSE). The following cybersecurity
requirement for a CPS specification can be summarized:

CSE-1 Proper interaction between correctly-behaving agents is defined as
EQ(Aa,Ba) for an agent a, and can be detailed as follows when multiple
agents are considered.

CSE-1.1 The equality relation EQ(As→a,Ba) describes the intended secure
behavior as: the beliefs generated by the behavior of the functional
architecture shall be complete w.r.t. the specified inputs of the agent.
Therefore, the assertions received by an agent or a system shall be
compliant with the expected inputs of the functional architecture.

CSE-1.2 Similarly, the equality relation EQ(Aa→r,Ba) defines that the out-
puts of an agent a shall be the outputs of the functional architecture.

CSE-2 The proper adherence of the data transmitted between agents with
respect to requirements, is defined as EQ(A,F).

CSE-3 The proper adherence of the behavior (in terms of input and output
beliefs) with respect to requirements is defined as EQ(B,F).

We note that our CSE define the properties of a secure system, and correlated
weaknesses can be found in the CWE dataset. For example, CSE-1 can be seen
as correlated to the weakness class of “Improper Interaction Between Multiple
Correctly-Behaving Entities” defined by the CWE–435, CSE-2 with the “Insuf-
ficient Control Flow Management” defined by MITRE in the CWE–691, and
CSE-3 with the “Improper Calculation” defined by MITRE in the CWE–682.
All those CWE are in the top “view” of the “research concepts” in [3], while the
other classes of weaknesses do not have a direct counterpart in our hypothesis;
we believe they can be seen as sub-classes, but a full comparison with the CWE
is out of the scope of this article. We can now define what a secure system is
(with respect to the ABF-framework) and, based on that definition, what the
cybersecurity risk is and how to quantify it in a risk matrix. The following def-
inition holds for abstract systems defined in the ABF-framework but will be
refined for CPS afterwards in the paper.

Definition 2. Cybersecurity of a System or an Agent – A secure system
is a system where CSE-1, CSE-2, and CSE-3 holds for each agent of the system.

The ISO 31000 consider risk as the “effect of uncertainty on objectives” and
refers both to positive and negative consequences of uncertainty. Accordingly,
we consider risk as follows.

Definition 3. Risk – The risk is the uncertainty related to the whole space of
potential designs resulting from a specification in the ABF-framework.
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The definition of Risk leads to the risk matrix in Table 2, defined as follows.

Definition 4. Risk Matrix – The risk matrix, as summarized in Table 2, is
a function of the three relations s = 〈rcc(F ,B), rcc(F ,A), rcc(B,A)〉, where the
maximum risk is defined by the DR relation between the three groups of regions,
and the minimum risk by the EQ relation over the same regions. In between the
two extremes, the granularity of possible intermediate configuration is defined by
the calculus used (RCC5 in our case).

While a risk matrix is often defined as a function of the likelihood and impact
of attacks (based on quantitative ad-hoc estimation of how likely it is that an
attacker will exploit one or more vulnerabilities and what is the magnitude
of the incidents produced by this exploitation), we suggest that cybersecurity
weaknesses are all equally likely to be exploited if there’s a connection between
the weakness and the asset that an attacker wants to impact. When the whole
system is considered an asset, all weaknesses are equally likely to be exploited.
Therefore, a risk matrix should capture the number of insecure configurations
of a system, rather than predicating over likelihoods of weaknesses exploitation.

4 Prediction of Cybersecurity Weaknesses

Several standards mandate a secure-by-design approach in which cybersecurity
shall be considered at the very early stages of the design process. Standards do
not describe in detail how to perform a cybersecurity risk assessment and only
vaguely define the overall objective, which can be summarized as to provide
an understanding of the potential cybersecurity risks. All the methodologies
and tools we reviewed (e.g. Threatmodeler [22], CORAS [10], SECRAM [5])
rely on the expertise of the person who performs the risk assessment for the
identification of threats and for the quantitative estimation of risks. In contrast,
in this section, we define how to specify a CPS in the ABF-framework and we
identify a cybersecurity metric.

4.1 From Multi-agent to Cyber-Physical Systems

As in Fig. 1, we relate MAS (Multi-Agent System) and CPS as follows.

– We consider a System as a hierarchy of agents. So, we map agents to systems,
sub-systems, or devices, depending on the granularity of the design. For exam-
ple, a modeler can model a specific device as a system not decomposed into
sub-systems or devices (and the device is considered as an agent).

– Agents reason over beliefs (i.e. transform beliefs into other beliefs) and each
component of a CPS (system, sub-system, or device) is composed by a func-
tional architecture that transforms input-beliefs into output-beliefs.

– Components of a CPS have ports to exchange information with the outer
environment (which may be a sub-system), similarly to agents. The transfer
of information in a CPS is defined by channels.

– The concept of facts is related to the requirements that describe how the CPS
shall behave and its physical architecture.
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Input and Output Ports. Since the ABF-framework is a theory of agents, we
could consider ports as agents that allow the exchange of information between a
channel and another agent. However, we considered a port as a special type
of agent to avoid an infinite regress, as described in the following. While a
channel transfers information between agents, and a functional architecture pro-
cesses information, a port is simply a connector between a channel and a func-
tional architecture. One, however, may argue that a similar connection is needed
between a channel and the port itself. While this is not excluded by the ABF-
framework, it would obviously lead to an infinite nested structure of ports. To
avoid this infinite structure, we assume that a port doesn’t require any other
means to transfer information from/to a channel or from/to a functional archi-
tecture.

Definition 5. Input or Output Port – A port forwards information from the
outside of an agent’s boundary to the inside (input-port) or vice versa (output-
port). There exist two types of ports with the following behavior: an input-port
transforms assertions from a sender s (As→a) to beliefs of an agent a (Ba), while
an output-port transforms beliefs into assertions.

The quality of a port is determined by the rcc relation between the asser-
tions received or sent and the belief, i.e. rcc(As→a,Ba) for input-port or
rcc(Aa→r,Ba), for output-port. A port is, in fact, syntactic sugar to express
the relation between assertions and beliefs. We note that the definition of an
input/output port can be considered “secure”, meaning that we implicitly formu-
lated the requirement that a port always forwards the information without modi-
fying it in any way. This is assumed since we defined a port as if the RCC equality
relation holds between the input/output assertions and the input/output beliefs.
In contrast, assuming any other RCC relation between inputs and outputs of a
port can be considered as generating a weakness.

Port Weaknesses. We now apply the ABF-framework to list all possible cyber-
security weaknesses of a port. From our definition of ports, the following holds.

Theorem 1 (Port Weaknesses). There exist only the following six types of
weaknesses, generating six types of insecure port in RCC5:

W1) Replace port, where assertions reach the port but are replaced with different
and un-related information before passing the boundary.

W2) Drop port, where assertions reach the port but do not pass the boundary of
the agent (i.e. do not become belief of the agent).

W3) Insertion port, where new information is transferred along with the infor-
mation incoming from a channel, and then sent to the recipient (agent).

W4) Injection port, where part of the incoming information is substituted with
new information and transferred to the intended recipient.

W5) Selective port, where some information passes the port and part is either:
(W5.1) Dropped or (WP5.2) Replaced.
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Proof. An input port is, in the ABF-framework, defined secure as long as the
relation between the two regions of input assertions A and output beliefs B are
equal, i.e. EQ(A,B). Therefore, any other relation should result in a weakness
(related to an insecurity flaw) of that input port. Using RCC5, there exist exactly
other 4 different types of relations, one of which is the discrete-from (DR) rela-
tion, i.e. DR(A,B). When two regions are related by the DR relations, they have
no subregion in common. Let us define a function weight |X| such that, for any
region X, it represents the smallest possible cardinality of a (mereo)topological
base for X; where a base is a collection of regions in a (mereo)topology such that
every region can be written as union of elements of that base. We distinguish
between regions that are related to information and regions that are not (i.e.,
regions A such that |A| = 0) by writing the latter as ∅.

1. If EQ(A,B) then either A = B = ∅ (no communication) or A = B �= ∅
(forward communication).

2. If DR(A,B) then A = ∅ ⊕ B = ∅ (we call insert the former, full drop the
latter case), or A �= ∅ ∧ B �= ∅ ∧ A �= B called replace (i.e. drop and insert).

3. If PP (A,B) then B contains and extend A which we call insertion.
4. If PPi(A,B) then A contains and extend B which we call drop (or selective

drop to stress the difference with the full drop).
5. If PO(A,B) then a part of the A is contained in the B which is a combination

of selective drop and generation which we call injection.

Communication Channels. In this work, we only consider mono-directional chan-
nels and communication but the extension to bi-directional channel can be con-
sidered as the union of two unidirectional channels. A mono-directional channel
is defined by the assertions sent or received (over the channel). We consider first
the difference between a (communication) mono-directional channel (channel
from now on) and an agent, as we did for the ports, since the ABF-framework is
a logical theory of agents. In fact, if a channel were considered an agent (channel-
agent) then the question would be how an agent would transfer its assertions
to the channel-agent. If the channel between the agent and the channel-agent
is again an agent, we would generate an infinite regress. Therefore, we do allow
channel-agents but we assume a finite depth (of detail) for a channel, where there
exists a bottom-channel which is not an agent. For now, we do not constrain a
channel-agent in any way so there is no difference between a channel agent and
agent. Therefore, we consider channels to be bottom-channels, defined as agents
with the pre-defined behavior (i.e. defined in an axiomatic way) of forwarding
any input-assertion as output-assertion, without modifying it.4

Definition 6. Mono-directional Channel (bottom-channel) – A mono-
directional channel between two agents (s → r) is an agent whose behavior is
defined as: to forward any assertion received from s over an input-port, to the
output-port where r is listening to.
4 Nothing prevents us from introducing additional constraints to the channel as storing

assertions that are transferred over the channel, or filter out some input-assertions.
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The quality of a mono-directional channel is defined as the rcc relation between
the assertions of the sender and the ones received by the receiver, i.e. rcc(As,Ar).

Channel Weaknesses. Given that a mono-directional bottom-channel is assumed
to be perfectly forwarding any assertion (as we assumed for ports) from its input-
port to its output-port, there is no insecure behavior but only the combination of
the weaknesses of the input and output port; therefore there exist (72) − 1 = 48
theoretical configurations (72 because there are 6 insecure types of port – see
Theorem 1 – plus 1 secure type, on both input and output side; and we exclude
the configuration with 2 secure types as input and output, hence the −1); where
only 44 are possible.

W6) Secure output port and input drop port.
W7) Secure output port and input insertion port.
W8) Output drop port and input drop port.
W9) Output drop port and input insertion port.

W10) Output drop port and input secure port.
W11) Output injection port and input secure port.

For the sake of readability, we reported 6 examples but the proof by exhaus-
tion (up to W49) over all the possible cases is straightforward.

Cybersecurity Weaknesses – The RIDI-Hypothesis. All the results of the appli-
cation of the ABF-framework to channels (the analysis of the RCC relations
between output and input assertions of an agent) lead to the same results of
the analysis of a pair of an input and output port. So far we have consid-
ered information generated by a port PI and then sent through a channel C
to another (recipient) port PO. In this scenario, where ports and channels are
atomic (otherwise raising infinite regress), we can only consider the relations
between ports and channel; considering both input-port to channel and channel
to output-port. In fact, the weaknesses of a channel are defined in terms of the
weaknesses of ports. The same result can be obtained by analyzing the relation
between the outputs of a functional block and the inputs of another functional
block, where functional blocks are constituents of the functional architecture
as described afterwards. To define a functional block without encountering an
infinitely recursive definition, we must reach the same conclusions as for the
channel. So, describing the information as flowing over a channel or in a func-
tional block is purely syntactic sugar. We can summarize these results by saying
that the relations between assertions and beliefs, output assertions of an agent
and input assertions of another agent, or output beliefs of a functional block and
input beliefs of another block can only be affected by the following weaknesses:
replace, drop, injection, insertion, selective drop, and selective drop + insertion.
We call this the RIDI-Hypothesis, being the four main categories of weaknesses:
Replace, Insertion, Drop, Injection. We can, then, deduce the following cyber-
security properties to mitigate cybersecurity weaknesses of a port or a channel
(between ports, functional blocks, or both).
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– Order-preserving – it shall be known if information is replaced.
– Availability – it shall be known if information is dropped or selectively dropped.
– Integrity – it shall be known if information is injected.
– Authentication – it shall be known if information is inserted.

Functional Architecture. A functional architecture takes information as input-
beliefs and transforms the information into output-beliefs. Those transforma-
tions occur within the functional architecture, where functional blocks transform
beliefs into other beliefs. Similarly to channels, we could consider a functional
block as a functional architecture occurring in an infinite regress. Therefore, we
consider functional blocks as executing an abstract undefined behavior, of which
we only observe the inputs and the resulting outputs (beliefs).

Definition 7. Functional Block and Architecture – A functional block of
an agent takes beliefs as inputs (input-beliefs) and returns output-beliefs. A func-
tional architecture is an interconnected system of functional blocks.

The quality of a functional block cannot be determined by the difference between
its inputs and outputs (as we did for ports and channels), because the behavior of
a functional block cannot be determined in general; since any functional block
will have its own purpose based on functional requirements. Therefore, while
the semantics of a port is determined by the relation between assertions and
beliefs, the semantics of a functional block is determined by the relation between
facts/requirements and I/O beliefs. In other words, a functional block is a generic
agent with no pre-defined general behavior (while ports and channels have a pre-
defined behavior). In the following, for the sake of simplicity, we use the generic
region B to refer to the behavior (i.e. the beliefs generated by the behavior).

W50) PO(B,F) the component has a Byzantine behavior. Not all the inputs
are handled properly, nor all the expected outputs are always generated
when correct inputs are given.

W51) PP (B,F) some expected outputs are not generated with the correct
inputs.

W52) PPi(B,F) the components correctly perform the expected behavior when
the correct inputs are provided but is subject to input injections.

W53) DR(B,F) the component never performs the expected behavior (e.g.
physical damage).

Requirements as Facts. During the specification phase, for any agent, channel,
port, functional block and architecture, there may exist a requirement (fact)
predicating over them. In other words, any requirement is defined as a fact since
they must be true in any design or implementation. As in Sect. 4 and depicted
in Fig. 2, facts are definitory rules that define how the system shall behave (by
specification), while reality may be shown to be insecure (i.e. diverging from the
expected behavior). As an example, considering a functional block that performs
the summation of two inputs defined by the requirement r := b3 = b1+b2 for any
b1 and b2. The possible relations between the beliefs generated by the behavior
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of the functional block and the requirements (i.e. rcc(B,F) is determined by
the relations between the I/O beliefs sum(b1, b2) = b3 and the requirement
sum(b1, b2) = b1 + b2, as follows.

– EQ(B,F) = EQ(B3,B1+2), where B3 represents the region of the outputs
of sum while B1+2 the expected outputs of an ideal implementation of the
requirement r. The functional block correctly implements the requirements.

– DR(B,F) = DR(B3,B1+2), the functional block does not implement the
requirements.

– PP (B,F) = PP (B3,B1+2), the block produces incorrect outputs for some
inputs.

– PPi(B,F) = PPi(B3,B1+2), not all outputs result from a summation of two
inputs (but with the expected inputs the function outputs correctly).

– PO(B,F) = PO(B3,B1+2), Byzantine behavior where occasionally outputs
are produced with the correct inputs. Not all the inputs are handled properly,
nor all the expected outputs are generated when correct inputs are given.

Assertions and Facts. The whole reasoning on the relation between beliefs and
facts can be duplicated for the relation between assertions and facts; we cannot
appreciate the difference at this level of abstraction. If the functional architec-
ture would be extended to capture the semantics (i.e. the logic) of the commu-
nication and cybersecurity protocols, with the relation between assertions and
facts we would compare protocol logics with the requirements. We won’t con-
sider the verification of the functional architecture and protocol logic in this
paper since we focus on the architecture specification step of the engineering
process without going into the design of the behavior of agents. We summa-
rize our results by categorizing the weaknesses predicted by our hypothesis into:
data-flow-related and functionality-related weaknesses; as in Table 3. Functional
weaknesses can be seen as a general formulation of our hypothesis, while data-
flow weaknesses as an application of our hypothesis to components with defined
behavior/requirements.

4.2 Security and Insecurity of a System

We are ready to state our main hypotheses.

Hypothesis 1 System Security Design – A system security design (in the
ABF-framework) is given by a precise system specification over the physical and
functional architectures that uniquely defines the design to be built on top of
those requirements.

Hypothesis 2 System Insecurity Design – If, given a system specification
as a collection of requirements, there exist a non-unique design with respect to
those requirements, the number of possible designs that fulfill the requirements
quantitatively defines the magnitude of insecurity of a system design with respect
to the specification.
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Table 3. Weaknesses categorization

RCC5 Quantity: data flow Quality: requirements adherence

EQ Expected/Nominal Expected/Nominal

DR Drops all inputs and
inserts new data

The component never performs/carries the
expected behavior/information

PP Selectively drops inputs Part of the expected outputs are not
generated in response to the correct inputs

PPi Forwards all the inputs
but crafts and inserts
new malicious data

The components correctly performs/carries
the expected behavior/information when
the correct inputs are provided but is
subject to input injections

PO Selectively drops inputs
and inserts new data

Byzantine behavior. Occasionally outputs
the expected output given the correct
inputs. Not all inputs are handled properly,
nor all expected outputs always generated
on correct inputs

Based on these hypothesis, we can formulate the concepts of security and
insecurity (in the ABF-framework) as mathematical equations. Let us consider
a CPS S, represented as a graph G = 〈V,E〉 where V represents the set of
functional blocks and ports of S, and E ⊆ V × V is the set of pairs representing
the channels and connections (data flows) between functional blocks. We define
R ⊆ V × F , where F is the set of all the requirements of S, and extend G as
G′ = 〈V ′, E′〉 with V ′ = V ∪ F and E′ = E ∪ R. Let π : E′ → RCC (where
RCC is the set of relations in the RCC) be the total function associating an RCC
relation to each edge in G′, and Π be the set of all different permutations of
RCC relations over E′ (i.e. Π = {〈π(e0) = EQ, . . . , π(en) = EQ〉, . . . , 〈π(e0) =
DR, . . . , π(en) = DR〉} where ei ∈ E′ for 0 ≤ i ≤ n and |E′| = n). If σ :
Π → {0, 1} is an evaluation function such that σ(p) = 1 (where p ∈ Π) iff
the input configuration is satisfiable with respect to the logical theory defining
the algebraic structure (mereotopology) and constraints of the calculus RCC
(otherwise σ returns 0),5 we define:

I =
∑

p∈(Π\πeq)

σ(p)

Here, πeq ∈ Π is the output of the function π that associates only EQ relations
to any e ∈ E′, and I ∈ N represents all the insecurity configurations of the CPS
S where, at least, one of the RCC relations isn’t EQ. In other words, we consider
πeq as the only secure configuration.

5 In other words, σ returns 1 if and only if a configuration is satisfiable with the respect
to the axioms of the RCC.
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Fig. 3. Cybersecurity risk assessment tool

4.3 Cybersecurity Risk Assessment

To test our hypothesis we implemented a tool-chain (open-source with AGPLv3
license, available at [23]) for the identification of weaknesses and the calculation
of potential insecure configurations. The engineering of the ABF-framework for
CPS is summarized in the UML Class diagram in Fig. 6 (in appendix). As in
Fig. 3, the cybersecurity risk assessment process starts with the definition of
the use cases and architectural requirements. In our process, the specification is
manually translated into a UML design where:

– A deployment diagram describes the physical architecture. Each agent is
defined as an UML node with (physical) ports, and agent’s ports are con-
nected via UML information flow connectors, representing the physical chan-
nel.

– A functional architecture is linked to each agent in the deployment diagram
and is defined by an object diagram. The object diagram is composed by
instances of functional blocks, connected via information flow connectors.

– The connection between the two diagrams is implemented by “sockets”, func-
tional blocks connected to a physical port.

The tool generates a graph-like structure which represents the specification
(ABF-graph). The ABF-graph defines the system as a number of regions of
assertions, beliefs, and facts. Those regions are connected by a generic relation
which is evaluated as follows (according to the formula in Sect. 4.2). The graph
is translated into a logical formula that represents the specification in the ABF-
framework and, along with the axiomatization of the RCC5 calculus, is given
as input to the Z3 SMT solver. The solver identifies all possible configurations
of the system and, in turn, identifies all potential weaknesses. The ABF-graph
can be viewed as PDF and the results are reported into an spreadsheet file. The
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Fig. 4. Sensor board object (left) and water level reader deployment (right) diagrams.

spreadsheet file also reports the total number of configurations as indicating the
cybersecurity risk associated to the specification. A user can change the status
of each weakness in the spreadsheet file from the default status (open) to “mit-
igated” and the risk is re-calculated on-the-fly, i.e. without the need of running
the tool again, based on annotations and formulas in the spreadsheet file. In our
approach, cybersecurity requirements are not imposed by the specification but
are automatically extracted by our tool as mitigations to potential weaknesses,
which are related to the insecure configurations of the specified system.

Case Study. We report here the results of the evaluation of a water level reader
(sensor ad-hoc example). As in Fig. 4 (left), we defined 2 agents: sensorInTank
and sensorBoard, as the physical reader that needs to be placed in a tank, and
the board that interprets the readings and outputs them as signals. The two com-
ponents are connected by a wire. In Fig. 4 (right), we report the functional archi-
tecture that receives the incoming communications from the sensor in the tank
and communicates them encrypted. The tool (Appendix B) reports 16777216
scenarios in which at least one component diverge from the specification.

5 Conclusion and Future Work

We proposed a hypothesis for a foundational theory on security, arguing that
cybersecurity-related issues are not linked to the maliciousness of an agent but
to the vagueness in the design processes. We provided a prototype tool for the
quantitative estimation of the cybersecurity risk based on a UML model of a
system. The verification and test-case generation will be our next steps.
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A Class Diagram for ABF-Framework

The Class Diagram for the Engineering of the ABF-framework is reported in
Fig. 6. A specification of a CPS is viewed as an aggregation of architectures
which can describe the functional or physical requirements. The physical com-
ponents of the architecture are input/output ports and channels (aggregations of
pairs of ports) while functional blocks are the only constituents of the functional
architecture. All of the classes are abstract except input/output ports and func-
tional blocks. Therefore, agents (which represents sub-systems or components)
are composed by ports and functional blocks, as an aggregation of architectures.

B Overview of the Results of the Tool

In Fig. 5 we show a screenshot of the results reported by our tool.

Fig. 5. Partial View of the results in the spreadsheet file
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Abstract. Authenticated key exchange (AKE) protocol is a security
mechanism that ensures two parties communicate securely on a pub-
lic channel and keeps the legal client interacting with the honest
server. Recently, Zhang et al. proposed a multi-factor authenticated key
exchange (MFAKE) scheme for mobile communications. In this paper,
we present the cryptoanalysis of their MFAKE scheme. We find out their
MFAKE scheme has a security flaw that renders it insecure against man-
in-the-middle (MITM) attacks and outsider key compromise imperson-
ation (KCI) attacks. We present a simple case of MITM attacks and
illustrate how an adversary impersonates the client to the server if just
compromising the key of the server. And an improved MFAKE scheme
is proposed to overcome the weakness of Zhang’s MFAKE scheme with
minimum changes. We give the formal security proof of the improved
MFAKE scheme in the random oracle model.

Keywords: Multi-factor · Authenticated key exchange · Key
compromise impersonation attack

1 Introduction

With the rapid development of communication technologies, mobile devices have
been popular in daily life. Advances in mobile telecommunication technology lay
the foundation for accessing critical infrastructure (e.g., industrial manufactur-
ing, energy, healthcare, transportation, and public safety infrastructures). Peo-
ple interact with these systems to obtain personal services. However, adversaries
could intercept, modify or replay messages, as well as impersonate a legal user
to access the protected resource. Communication security has become one of the
most crucial issues when accessing critical infrastructure for service.

Authenticated key exchange (AKE) protocol allows two parties to share a
common session key for secure communication over insecure public channels and
verify the legitimacy of each other. Legitimate access to any information system
requires authentication of the user accessing the protected information. Thus,
password-based authenticated key exchange (PAKE) protocols [5,6,11,14] have
received significant attention in client/server systems. PAKE protocols assume
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a realistic scenario that secret keys are not uniformly distributed over a large
keyspace, but chosen from a small and low-entropy keyspace. It is a realistic
scenario in which the users tend to choose short easily-rememberable passwords
since they may require to remember many passwords and change the password
frequently. Thus, passwords are vulnerable to many brute-force and dictionary-
based attack tools. The simple password-based authentication has proven to be
more and more inadequate [2,15] since the existing solutions cannot sufficiently
prevent password-cracking, data-stealing, and data-phishing practices. Various
schemes [20] are proposed in succession to reduce the affection of the password-
cracking and the compromised password database.

With the growing number of innovative ways to authenticate users, there are
three main approaches [18] for authentication: something you know (e.g., pass-
words), something you have (e.g., smartphones and smart cards), and something
you are (e.g., biometric characteristics). In certain circumstances, however, the
above factors may be insecure. When the honest user types in the correct pass-
word, the malicious user could peep the input. The smart card might be lost,
stolen, or cloned. Once an adversary obtains the smart card, all the informa-
tion stored could be lost. The biometric characteristics are irrevocable. Once
copied by the adversary, this will cause permanent damage. Various multi-factor
authenticated key exchange (MFAKE) schemes [9,16,19,23] were proposed suc-
cessively by combining three factors in an authentication process to reduce the
damage caused by compromising an authentication factor.

1.1 Motivations

User authentication is becoming more widely used to protect sensitive infor-
mation from the illegitimate user. However, research over the past decade has
shown that designing a secure authenticated key exchange scheme is very dif-
ficult. MFAKE schemes aim to achieve higher security by combining the three
factors within the same authentication process. Intuitively, an adversary would
have to break the three factors to break the MFAKE scheme. However, an adver-
sary could compromise less than three factors to break the scheme if the scheme
is not well designed.

An AKE protocol is provable security if and only if the security proof is
correct. Several results [12,21,22] show that even several of the proposed AKE
protocols that have provided security proof cannot achieve their security aims
since the security proof might be flawed. Constructing a multi-factor authenti-
cation protocol remains hard work. Analysis of defects of existing protocols can
make us avoid these shortcomings when designing a new scheme.

1.2 Contributions

In this paper, we revisit Zhang’s MFAKE protocol [23] and analyze its security.
We hope our analysis would help avoid such mistakes when designing a new
MFAKE protocol in the future. The contributions of this paper are listed as
follows:
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1. We show this protocol has a vital security flaw, which may lead the protocol
insecure against man-in-the-middle (MITM) attacks and outsider key com-
promise impersonation (KCI) attacks. The main problem of Zhang’s MFAKE
is the protocol message transcript is not bound to the session key. We give
the details of a simple MITM attack and an outsider KCI attack in Sect. 5.

2. We propose an improved MFAKE protocol to fix the problem of Zhang’s
MFAKE protocol with minimum changes. All protocol messages include in
the session key generation algorithm.

3. Finally, we provide the formal security proof of improved MFAKE protocol
in the random oracle model.

1.3 Organization of the Rest Article

The rest of the paper is organized as follows. In Sect. 2, we review the related
works. In Sect. 3, we introduce the basic definitions for Zhang’s MFAKE protocol.
In Sect. 4, we give the security model. In Sect. 5, we review Zhang’s MFAKE pro-
tocol, analyze the drawback of Zhang’s MFAKE protocol, propose an improved
MFAKE protocol and provide the formal security proof in the random oracle
model. We conclude the paper in Sect. 6.

2 Related Work

Bellovin and Merritt [5] proposed the first password-based authenticated key
exchange protocol, Encrypted Key Exchange (EKE), which allows the client
and server to share the plaintext password and exchange key material to derive
a common session key. Then the augmented EKE protocol proposed by Bellovin
and Merritt [6], replaced the requirement that the server stores the plaintext
password with a one-way transformed value of the password. Augment EKE pro-
tocol prevents the adversary from impersonating the honest user. They presented
two ways to accomplish this goal, digital signatures and a family of commutative
one-way functions. However, the EKE and augment EKE are not given formal
security analysis since the lack of a proper security model. The first formal secu-
rity model of AKE protocols between two parties was introduced by Bellare and
Rogaway [4]. Bellare et al. [3] proposed the security model of PAKE protocols
by extending the definition of Bellare and Rogaway [4]. And this PAKE security
model has been followed extensively in papers [7,10,17].

The protocols referred to above build on the single authentication factor.
Recently, MFAKE which is a valuable and challenging goal has wildly caught
researchers’ attention [9,16,19]. Many papers claim security by combining all
three factors in a protocol. Pointcheval and Zimmer [19] defined a new security
model for MFAKE protocols and proposed a multi-factor AKE protocol that is
proved to be secure in their security model. They claim their MFAKE protocol
remains semantically secure if there are at most two corrupt queries. Namely, an
adversary must break all three factors to win the game. Liu et al. [16] proposed
a three-party MFAKE protocol by extending Pointcheval’s protocol [19]. They
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provided the formal security proof of their three-party MFAKE protocol in the
random oracle model. However, Hao and Clarke [12] found out Pointcheval’s
protocol and Liu’s protocol are insecure. If an adversary has compromised the
client’s password, it could impersonate the server to compromise the other two
factors, thus breaking the entire system. Fleischhacker et al. [9] introduced and
modeled a general framework for (α, β, γ)-MFAKE by extending the three-factor
AKE model from [19]. And they defined a generalized notion of tag-based multi-
factor authentication, extending the preliminary concepts from [13] that con-
sidered the use of tags (auxiliary strings) in public key-based challenge-response
scenarios. In this way, they avoided the problems identified in [12] for the protocol
in [19]. Hossein et al. [8] proposed a hash-chain-based provably secure MFAKE
scheme and analyse the security of their scheme in the real-or-random (ROR)
model [1].

Most recently, Zhang et al. [23] proposed a multi-factor authenticated key
exchange (MFAKE) scheme based on the security model from [19]. It claims
to reduce the security of protocol to the Decisional Diffie-Hellman (DDH) hard
problem. In this work, however, we found two weaknesses that lead to Zhang’s
MFAKE insecurity. One problem is that an adversary could easily modify the
exchanged message to lead two non-partnered sessions to compute the same
session key. Another is that once an adversary compromises the server, it could
impersonate the client to the server.

3 Preliminaries

Let λ ∈ N be the security parameter and 1λ be a string that consists of λ bits. ∅
denotes an empty string. ‖ is the string concatenation operation.

⊕
is the XOR

operation. For n ∈ N, [n] := {1, 2, . . . , n} denotes the set of integers between
1 and n. If X is a set, x

$← X denotes the operation of sampling a uniform
random element x from X. If A is a probabilistic algorithm, a

$← A means
that a is the output of running A with fresh random coins. The hash function
h(·) : {0, 1}∗ → {0, 1}λ is modeled as a random oracle.

3.1 Metric Space

A metric space is a set M with a distance function Dist : M × M → [0,∞).
Commonly, Hamming distance is used to measure the distance from one value
to another value. Dist(w,w′) is the number of positions in which the strings
w ∈ M and w′ ∈ M differ. For an element w ∈ M, let Dist(w) := Dist(w, 0).

3.2 Min-Entropy and Statistical Distance

Definition 1 (Min-Entropy). The min-entropy of X is H∞(X) =
− log2(maxx Pr[X = x]).

Definition 2 (Statistical Distance). The statistical distance between two
random variables A and B with the same domain M is SD(A,B) =
1
2

∑
w∈M |Pr[A = w] − Pr[B = w]|. If SD(A,B) ≤ ε, A and B are called ε-

statistically indistinguishable.
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3.3 Public Key Encryption Scheme

Generally, we consider a public key encryption scheme PKE that consists of three
probabilistic polynomial time (PPT) algorithms PKE = (PKE.KeyGen, PKE.Enc,
PKE.Dec). The PKE scheme is associated with public keyspace PKPKE, private
keyspace SKPKE, message space MPKE and ciphertext space CPKE. The algo-
rithms of PKE are defined as follows:

– (pk, sk) $← PKE.KeyGen(1λ): This algorithm takes as input the security
parameter 1λ and outputs a pair of public/private keys (pk, sk), where the
public key pk ∈ PKPKE and the private key sk ∈ SKPKE.

– c
$← PKE.Enc(pk,m): This is the encryption algorithm that generates a

ciphertext c ∈ CPKE for a message m ∈ MPKE with the public key pk.
– m

$← PKE.Dec(sk, c): This is the decryption algorithm which takes as
input a private key sk, a ciphertext c, and outputs a message m. The cor-
rectness requirement is for all pairs (pk, sk) $← PKE.KeyGen(1λ), we have
m ≡ PKE.Dec(sk,PKE.Enc(pk,m)).

Definition 3 (Public Key Encryption Scheme). We say that a pub-
lic key encryption scheme PKE = (PKE.KeyGen,PKE.Enc,PKE.Dec) is
(q, t, εPKE)-secure (indistinguishable) against adaptive chosen-ciphertext attacks,
if |Pr[EXPind-cca

PKE,A (λ) = 1] − 1/2| ≤ εPKE holds for all adversaries A running in
time at most t in the following experiment:

EXPind-cca
PKE,A (λ) : OPKE.Dec(sk, c) :

(pk, sk)
$← PKE.KeyGen(1λ); if c = c∗, return a failure ⊥,

(m0, m1)
$← A(pk); otherwise m

$← PKE.Dec(sk, c)

b
$← {0, 1}; return m;

c∗ $← PKE.Enc(pk, mb);

b′ $← AOPKE.Dec(sk,·)(pk, c∗);
if b = b′ then return 1,
otherwise return 0 .

where εPKE = εPKE(λ) is a negligible function in the security parameter λ and
the number of queries q is bound by time t.

3.4 Message Authentication Code Scheme

We consider a message authentication code scheme MAC that consists of
three probabilistic polynomial time (PPT) algorithms MAC = (MAC.KeyGen,
MAC.Tag, MAC.Vfy). The MAC scheme is associated with tag space TMAC, mes-
sage space MMAC and private keyspace SKMAC. The algorithms of MAC are
defined as follows:

– skMAC
$← MAC.KeyGen(1λ): This is the key generation algorithm which takes

as input 1λ and outputs a secret key skMAC ∈ SKMAC.
– τ

$← MAC.Tag(skMAC,m): The generation algorithm is run by a party. It
generates a tag τ ∈ TMAC for a message m ∈ MMAC with the generation key
skMAC.
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– {0, 1} $← MAC.Vfy(skMAC, τ,m): The verification algorithm is run by the ver-
ifier. It takes as input a private key skMAC, a tag τ , and a message m. Then
it outputs 1 if τ is a valid tag for m under skMAC, and 0 otherwise.

Definition 4 (Message Authentication Code Scheme). We say that
a message authentication code scheme MAC = (MAC.KeyGen,MAC.Tag,
MAC.Vfy) is (q, t, εMAC)-secure against strongly existential forgeries under cho-
sen message attacks, if |Pr[EXPseuf−cma

MAC,A (λ) = 1] − 1/2| ≤ εMAC holds for all
adversaries A running in time at most t in the following experiment:

EXPseuf-cma
MAC,A (λ) :

skMAC
$← MAC.KeyGen(1λ);

(m∗, τ∗) $← AOMAC.Tag(skMAC,·);
return 1 if the following conditions are held:
1. MAC.Vfy(skMAC, τ∗, m∗) = 1 and
2. A didn’t submit m∗ to MAC.Tag(skMAC, ·),
and 0 otherwise;

where εMAC = εMAC(λ) is a negligible function in the security parameter λ, on
input message m the oracle OMAC.Tag(skMAC, ·) returns τ

$← MAC.Tag(skMAC,m)
and the number of queries q is bound by time t.

If skMAC is a one-time authentication key of MAC scheme, then MAC scheme
is known as a one-time message authentication code (OTMAC) scheme which is
(1, t, εMAC)-secure.

3.5 Fuzzy Extractor

We consider a fuzzy extractor FE that consists of a pair of probabilistic polyno-
mial time (PPT) algorithms FE = (FE.Gen, FE.Rep). The FE is associated with
metric space MFE, randomness space RSFE, extracted string space ESFE and
helper string space HSFE. The algorithms of FE are defined as follows:

– (R,P ) $← FE.Gen(crs, w): This is the generation algorithm that takes as input
crs ∈ RSFE and w ∈ MFE and outputs an extracted string R ∈ ESFE and a
helper string P ∈ HSFE. Note that SD((R,P ), (Uλ, P )) ≤ εFE, where Uλ is
uniform distribution on {0, 1}λ.

– R
$← FE.Rep(w′, P ): This is the reproduce algorithm that takes as input a

string w′ ∈ MFE and a helper string P ∈ HSFE. If Dist(w,w′) is no more than
a predetermined threshold ts and (R,P ) $← FE.Gen(crs, w), this algorithm
outputs FE.Rep(w′, P ) = R. Otherwise, no guarantee is provided about the
output of FE.Rep.

Definition 5 (Fuzzy Extractor). Let W be a family of distributions over
metric space MFE with H∞(W) ≥ min, where min is min-entropy of MFE. We
say that a fuzzy extractor FE = (FE.Gen,FE.Rep) is (min, ts, q, t, εFE)-secure
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(indistinguishable), if |Pr[EXPind
FE,A(λ) = 1]−1/2| ≤ εFE holds for all adversaries

A running in time at most t in the following experiment:

EXPind
FE,A(λ) : OFE.Gen(crs, w+δi) :

crs
$← RSFE; if A submits a shift δi ∈ MFE

w
$← W, Uλ

$← {0, 1}λ; and 0 < Dist(δi) ≤ s,

b
$← {0, 1}; (Ri, Pi)

$← FE.Gen(crs, w+δi),

(R∗, P ∗) $← FE.Gen(crs, w); return (Ri, Pi);
R0 = Uλ, R1 = R∗; else, return a failure ⊥.

b′ $← AOFE.Gen(·,·)(crs, Rb, P
∗);

if b = b′ then return 1,
and 0 otherwise.

where εFE = εFE(λ) is a negligible function in the security parameter λ and the
number of queries q is bound by time t.

Definition 6 (DDH Assumption). We say the DDH assumption holds, given
parameters (G, p, g) where G is a cyclic group of prime order p and g as a
generator of G, if it is hard to distinguish triples of the form (gx, gy, gxy) from
triples of the form (gx, gy, gz), where x, y, and z are random chosen from Z

∗
p.

Namely, the DDH problem is (t, εDDH)-hard, if |Pr[EXPDDH
G,p,g,A(λ) = 1] − 1/2| ≤

εDDH holds for all adversaries A running in time at most t in the following
experiment:

EXPDDH
G,p,g,A(λ) :

g
$← G, (x, y, z)

$← Z
∗
p;

b
$← {0, 1};

if b = 0 then X
$← gxy, otherwise X

$← gz;

b′ $← A(G, p, g, gx, gy, X);
return 1, if b = b′, and 0 otherwise;

where εDDH = εDDH(λ) is a negligible probability in the security parameter λ.

4 Security Model

4.1 Execution Environment

In the execution environment, we fix a set of honest parties IDS = {id1, . . . , idl}
for l ∈ N, where idi (i ∈ [l]) is the identity of client or server. Each identity idi

is associated with a pair of long-term keys (pki, ski) ∈ (PKPKE,SKPKE). Each
honest party idi can sequentially and concurrently execute the protocol multiple
times with different intended partners. We may realize a collection of oracles
{Πs

idi
: i ∈ [l], s ∈ [d]} for (l, d) ∈ N that represent the protocol executions of

a set of honest parties. Each oracle Πs
idi

works as the s-th protocol instance
performed by party idi. Moreover, we assume each oracle Πs

idi
maintains a list

of independent internal state variables with semantics listed in Table 1.
All those variables of each oracle are initialized with the empty string ∅. At

some point, each oracle Πs
idi

may complete the execution and decide the inter-
nal state Φs

i ∈ {accept, reject}. Additionally, we assume that the real session
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Table 1. Internal states of oracles

Variable Description

pids
i Identity of idi’s intended communication partner

sids
i Session identity of an oracle Πs

idi
, sids

i
$← 1λ

Φs
i Internal state of an oracle Πs

idi
, Φs

i ∈ {accept, reject}
Ks

i Session Key of an oracle Πs
idi

, Ks
i ∈ K

sT s
i Transcript of messages sent by an oracle Πs

idi

rT s
i Transcript of messages received by an oracle Πs

idi

key is assigned to the variable Ks
i iff oracle Πs

idi
has reached an internal state

Φs
i = accept.

4.2 Adversarial Model

The adversary A considers being a probabilistic polynomial time (PPT) Turing
Machine, having complete control of the communication network. The adversary
A could interact with the challenger C by issuing the following queries:

– Execute(idi, s, idj , t): If the client oracle Πs
idi

and server oracle Πt
idj

have not
been used, this query will carry out an honest execution of the protocol
between two oracles, and return the transcripts sT s

i and sT t
j to A. This

query models the capability of A passively eavesdrops on plenty of honest
executions.

– Send(idi, s,m): This query allows A to send a message m of his own choice
to the oracle Πs

idi
. The oracle Πs

idi
will send back the response message m′

(if any) according to the protocol specification and its internal states. After
answering a Send query, the variables of Πs

idi
will be updated depending on

the specific protocol. This query models the active attacks in the real world.
– Reveal(idi, s): If the oracle Πs

idi
has reached an internal state Φs

i = accept
(holding a session key) and a Test query has not been made to Πs

idi
or its

partner oracle (if it exists), it responds with the contents of the variable Ks
i .

Otherwise, a failure symbol ⊥ is returned. This query models the leakage of
the session key agreed by the two parties.

– Corrupt(client, a): This query will respond with the password pwd for a = 0,
biometric data W for a = 1, and private key sk for a = 2. By issuing this
query, A could obtain a-th authenticated factor {pwd,W, sk} of client. This
query models corruption capabilities of A.

– Corrupt(server): This query will return server’s private key sk to A.
– Test(idi, s): C first flips a coin b ∈ {0, 1} uesd for all Test queries. If the oracle

Πs
idi

has state Φs
i = reject or Ks

i = ∅, then this query returns a failure symbol
⊥. Otherwise, C samples a random element Kr from session key space K,
and sets K0 = Kr and K1 = Ks

i . Finally, this query responses with Kb. The
oracle Πs

idi
selected by the adversary in this query is called as test oracle. This

query does not model any actual capabilities of A. It is used to measure the
semantic security of session keys.
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4.3 Secure AKE Protocols

We first review the notion regarding the partnership of two oracles, i.e. matching
sessions [3].

Definition 7 (Matching Sessions). In an MFAKE protocol, we say that the
oracle Πs

idi
and oracle Πt

idj
are matching sessions, if both of them have been

accept, hold (Ks
i , sids

i , pid
s
i ) and (Kt

j , sid
t
j , pid

t
j), respectively, and all of the fol-

lowing hold:

1. sids
i = sidt

j and Ks
i = Kt

j .
2. idi ∈ client, idj ∈ server, and vice versa.
3. Πs

idi
has pids

i = idj and Πt
idj

has pidt
j = idi.

4. sT s
i = rT t

j and rT s
i = sT t

j .

Correctness. We say an AKE protocol Π is correct, if an oracle Πs
idi

has a
matching session to an oracle Πt

idj
and they both accept with the same session

key, i.e. Ks
i = Kt

j .
To define the security of the session key, we need the notion of freshness of

an oracle.

Definition 8 (Freshness). We assume that a client instance Πs
idi

has been
accept with its intended server idj. And a server instance Πt

idj
(if it exists) is an

oracle with intended client idi, such that Πs
idi

has a matching session to Πt
idj
.

Then the oralce Πs
idi

is said to be fresh if none of the following conditions holds:

1. A queried Reveal(idi, s).
2. If Πt

idj
exists, A queried Reveal(idj , t).

3. A queried Corrupt(client, a) for all three factors.
4. If Πt

idj
exists, A queried Corrupt(server).

4.4 Security Experiment EXPMFAKE
Π,A (λ)

The security experiment is processed as a game between the challenger C and
adversary A based on MFAKE protocol Π, where the following steps are per-
formed:

1. With the security parameter λ, the challenger C first implements the collection
of oracles {Πs

idi
: i ∈ [l], s ∈ [d]}, and generates l long-term key pairs (pki, ski)

for all honest parties idi where identity idi ∈ IDS of each party is chosen
uniquely. C flips a coin b ∈ {0, 1} uesd for all Test queries. C will give all public
parameters to A and keep track of all variables of the execution environment.

2. A may interact by issuing the polynomial number of queries as aforemen-
tioned, namely, A makes queries: Execute, Send, Reveal and Corrupt.

3. At some point of time during the game, A may issue a Test(idi, s) query.
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client : (pwdi, esi, ski) server : (Xi)
r1, r2, r3, r6

$
Z

∗
p

sidt
j , n1

$ 0, 1}λ

P1 = gr1 , P2 = gr2 , P3 = gr3

Q1 = Xi
r2gr6

P1, P2, P3, Q1, n1, sid
t
j−−−−−−−−−−−−−−−−−

r4, r5
$
Z

∗
p

n2
$ {0, 1}λ

sids
i = sidt

j , P4 = gr4

Q2 = P1
(pwdi+esi+ski)gr5

Ks
i = P3

r5
⊕

( Q1
P2

(pwdi+esi+ski)
)r4

m0 = P1‖P2‖P3‖Q1‖n1‖sidt
j

τs
i

$
MAC.Tag(Ks

i , m0)

−−
P4, Q2, n2, sid

s
i , τ

s
i →−−−−−−−−−−−−−−

Kt
j = ( Q2

Xi
r1 )

r3
⊕

P4
r6

m1 = P4‖Q2‖n2‖sids
i ‖m0

τ t
j

$
MAC.Tag(Kt

j , m1)
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τ t
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if MAC.Vfy(Ks

i , τ t
j , m1) =

1, accept
if MAC.Vfy(Kt

j , τ
s
i , m0) =

1, accept
else reject else reject

Fig. 1. MFAKE protocol

4. A may continue to make the above queries. The binding constraints on this
experiment are that: A cannot make a Reveal query on either the test session
or its partnered session; A can make Corrupt query no more than twice if idi

is a client.
5. Finally, A terminates and outputs its guess b′. The experiment returns 1 if

b = b′, and 0 otherwise.

Definition 9 (Session Key Security). A correct MFAKE protocol Π is called
(t′, ε)-session-key-secure, if for all adversaries A running within time t′ in the
above MFAKE security experiment EXPMFAKE

Π,A (λ), it holds that:

|Pr[EXPMFAKE
Π,A (λ) = 1] − 1/2| ≤ ε,

where ε = ε(λ) is a negligible probability in the security parameter λ.

5 Security Analysis and Improvement of Zhang’s
MFAKE Protocol

In this section, we first review Zhang’s MFAKE protocol in Fig. 1. Then we
analyze the drawbacks of Zhang’s MFAKE protocol. Finally, an improved scheme
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is proposed with slight modification on the generation of the session key. The
formal security proof of our scheme is provided in the random oracle model.

5.1 Zhang’s MFAKE Protocol

This MFAKE scheme [23] is specified by the following algorithms in the sense of
definitions in Sect. 3:

– Public key encryption scheme PKE = (PKE.KeyGen, PKE.Enc, PKE.Dec).
– Message authentication code scheme MAC = (MAC.Tag, MAC.Vfy).
– Fuzzy extractor FE = (FE.Gen, FE.Rep).

Initialization. Assuming that parameters are (G, p, g), where G is a cyclic group
of prime order p and g is a generator of G. Each party idi runs PKE.KeyGen to
generate key pairs (pki, ski). We denote the public parameters are ((G, p, g), pki),
and ski is a private key.

Registration. We assume the registration phase accomplishes in a secure chan-
nel. A client idi interacts with the server idj as following steps:

– The client randomly chooses a password pwdi from password dictionary PW
and creates a biometric template Wi ∈ MFE. Its private key ski is regarded
as device data. The client sents (idi, pwdi,Wi, ski) to the server.

– The server runs FE.Gen with Wi to obtain an extracted string esi ∈ ES and a
helper string hsi ∈ HS, computes Xi = g(pwdi+esi+ski), runs PKE.Enc to obtain
the ciphertext Yi of Xi. Then it deletes the template Wi and extracted string
esi and returns hsi to the client.

– Finally, the client stores hsi, and the server stores identity idi of client and Yi.

Login-Authentication. An honest client idi first inputs pwdi,W
′
i, runs FE.Rep

and sends its identity as an authentication request to a server idj . If there exists
a Yi corresponding to idi, the server computes Xi

$← PKE.Dec(skj , Yi). After
that, the client idi and server idj hold (pwdi, esi, ski) and Xi, respectively, where
Xi = g(pwdi+esi+ski). The MFAKE protocol performs as the following steps (as
shown in Fig. 1):

– The server samples four ephemeral keys r1, r2, r3, r6 from Z
∗
p, a current ses-

sion identity sidt
j and a random nonce n1. Then it computes P1 = gr1 ,

P2 = gr2 , P3 = gr3 and Q1 = Xi
r2gr6 . The authentication challenge

(P1, P2, P3, Q1, n1, sid
t
j) sends to the client.

– After receiving the authentication challenge, the client samples two ephemeral
keys r4, r5 from Z

∗
p and a random element n2. It sets sids

i = sidt
j , computes

P4 = gr4 , Q2 = P1
(pwdi+esi+ski)gr5 and Ks

i = P3
r5

⊕
( Q1

P2
(pwdi+esi+ski)

)r4 . The
client runs MAC.Tag to generate a tag τs

i of m0 = P1‖P2‖P3‖Q1‖n1‖sidt
j , and

sends (P4, Q2, n2, sid
s
i , τ

s
i ) as authentication response to server.
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– After receiving the authentication response, the server can compute Kt
j =

( Q2
Xi

r1 )r3
⊕

P4
r6 . It runs MAC.Tag to generate a tag τs

i of m1 =
P4‖Q2‖n2‖sids

i ‖m0, and sends τ t
j to the client.

– Finally, the client and server run MAC.Vfy(Ks
i , τ t

j ,m1) and
MAC.Vfy(Kt

j , τ
s
i ,m0), respectively. The internal state of the party sets to

be accept if the output is 1, and reject otherwise.

client Πs
idi

:
(pwdi, esi, ski)

A : (Xi) server Πt
idj

: (Xi)

r∗
1 , r∗

2 , r∗
3 , r∗

6
$
Z

∗
p r1, r2, r3, r6

$
Z

∗
p

sidA, n∗
1

$ 0, 1}λ sidt
j , n1

$ 0, 1}λ

P ∗
1 = gr∗

1 , P ∗
2 =

gr∗
2 , P ∗

3 = gr∗
3

P1 = gr1 , P2 =
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Q∗
1 = X

r∗
2

i gr∗
6 Q1 = Xi

r2gr6
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1 , P ∗
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Q∗
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∗
1, sidA Q1, n1, sid

t
j

r4, r5
$
Z

∗
p r∗

4 , r∗
5

$
Z

∗
p

n2
$ 0, 1}λ n∗

2
$

{ {

{ {0, 1}λ
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gr4

sid∗
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∗
4 =

gr∗
4

Q2 =
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1
(pwdi+esi+ski)gr5
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P1
(pwdi+esi+ski)gr∗

5

Ks
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P ∗
3

r5
⊕

( Q∗
1

P2
(pwdi+esi+ski)

)r4
KA =

P3
r∗
5

⊕
( Q1

P2
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)r
∗
4

m∗
0 =

P ∗
1 ‖P ∗
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τs
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$

MAC.Tag(Ks
i , m∗

0)
τ∗

A
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MAC.Tag(KA, m0)
P4, Q2, P ∗

4 , Q∗
2,

n2, sid
s
i , τ

s
i n∗

2, sidA, τ∗
A

K∗
A =

( Q2

Xi
r∗
1
)r

∗
3

⊕
P4

r∗
6

Kt
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( Q∗
2

Xi
r1 )

r3
⊕

P ∗
4

r6
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P4‖Q2‖n2‖sids
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m∗
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P ∗
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2‖sidA‖m0

τA
$

MAC.Tag(K∗
A, m1)
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j

$

MAC.Tag(Kt
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∗
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MAC.Vfy(Kt
j , τ

∗
A,
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τA τ t

j

MAC.Vfy(Ks
i , τA, m1) =

1, accept

Fig. 2. Outsider KCI attack
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5.2 The Insecurity of Zhang’s MFAKE Scheme

Man-in-the-Middle Attack. In the following, we present a man-in-the-middle
(MITM) attack on Zhang’s MFAKE scheme. We assume that an adversary
A intervenes in communication between the client and server. A could receive,
forward, and modify the message exchanged between them.

The concrete MITM attack steps are performed as below:

1. A arbitrarily chooses client oracle Πs
idi

and server oracle Πt
idj

as target oracles.
2. A asks Πs

idi
to execute the protocol instance.

3. A intercepts (P4, Q2, n2, sid
s
i , τ

s
i ) and changes n2 to n3, where n3 ∈ {0, 1}λ is

randomly choosen by A.
4. A does not forge the keying materials of session key. Thus Πt

idj
could compute

a session key Kt
j = Ks

i and accept for MAC.Vfy(Kt
j , τ

s
i ,m0) = 1.

5. At this moment, however, sT s
i �= rT t

j , the oracle Πs
idi

doesn’t have a matching
session to an oracle Πt

idj
.

6. A could queries Reveal(idj , t) to get the session key Kt
j . Then A generates a

tag τ t∗
j of m1 = P4‖Q2‖n2‖sids

i ‖m0 to make Πs
idi

be accept. Kt
j = Ks

i means
that A has the session key Ks

i of oracle Πs
idi

while Πs
idi

is fresh.
7. Finally, A can query Test(idi, s) and wins the game by comparing Kb with

Ks
i .

Outsider KCI Attack. In the following, we show that if A corrupts the
server idj , it could impersonate an uncorrupted client idi to the server idj .
A corrupts idj to get Xi (this is allowed due to the modeling of KCI attacks)
and behaves as if the server interacts with the client. We use the superscript
∗ of a value to be an element chosen by A. Then A could get the session
key K∗

A = gr∗
3r5

⊕
P

r∗
6

4 = Ks
i just like the server. A then computes gr5 since

it has r∗
3 , r

∗
6 , P4. The keying material P

∗(pwdi+esi+ski)
1 is easily computed from

Q2 = P
∗(pwdi+esi+ski)
1 gr5 and it leads the protocol insecure. A could violate the

security of the MFAKE protocol via the following steps:

1. A first chooses a client oracle Πs
idi

and a server oracle Πt
idj

and executes the
MFAKE protocol instances between them.

2. A corrupts the oracle Πt
idj

to get Xi, and intercepts P1, P2, P3, Q1, n1, sid
t
j .

3. Meanwhile, A executes protocol instance with the client idi. If A replaces
P ∗
1 with P1, it can get P

(pwdi+esi+ski)
1 . If A replaces P ∗

1 with P2, it can get
P

(pwdi+esi+ski)
2 .

4. A computes Q∗
2 = P1

(pwdi+esi+ski)gr∗
5 and KA = P3

r∗
5
⊕

( Q1

P2
(pwdi+esi+ski)

)r∗
4 .

A generates a tag τ∗
A of message m0, and sends P ∗

4 , Q∗
2, n

∗
2, sidA, τ∗

A to Πt
idj

.
The oracle Πt

idj
would compute Kt

j = KA and accept the session but it does
not have a matching session to Πs

idi
.

5. A selects the oracle Πt
idj

as the test oracle which should generate the session
key Kt

j . Then A could win the game by impersonating a client and computing
the session key KA = Kt

j .
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The details of this attack are shown in Fig. 2. A succeeds in impersonating
the honest client idi to server idj ’s oracle Πt

idj
and idi has no matching session

to Πt
idj

.

client : (pwdi, esi, ski) server : (Xi)
r1, r2, r3, r6

$
Z

∗
p

sidt
j , n1

$ {0, 1}λ

P1 = gr1 , P2 = gr2 , P3 = gr3

Q1 = Xi
r2gr6

P1, P2, P3, Q1, n1, sid
t
j

r4, r5
$
Z

∗
p

n2
$ {0, 1}λ

sids
i = sidt

j , P4 = gr4

Q2 = P1
(pwdi+esi+ski)gr5

Ki = P3
r5

⊕
( Q1

P2
(pwdi+esi+ski)

)r4

Ks
i = h(Ki‖n1‖n2‖sids

i )
m0 =

P1‖P2‖P3‖Q1‖n1‖n2‖sidt
j

τs
i

$
MAC.Tag(Ks

i , m0)
P4, Q2, n2, sid

s
i , τ

s
i

Kj = ( Q2
Xi

r1 )
r3

⊕
P4

r6

Kt
j = h(Kj‖n1‖n2‖sidt

j)
m1 = P4‖Q2‖n2‖sids

i ‖m0

τ t
j

$
MAC.Tag(Kt

j , m1)
τ t

j

if MAC.Vfy(Ks
i , τ t

j , m1) =
1, accept

if MAC.Vfy(Kt
j , τ

s
i , m0) =

1, accept
else reject else reject

Fig. 3. Improved MFAKE protocol

5.3 An Improvement Solution of Zhang’s MFAKE Scheme

We have shown that Zhang’s MFAKE scheme is vulnerable to MITM and out-
sider KCI attacks since the protocol message transcript is not fully bound to the
keying material. We are trying to circumvent the above attacks by modifying the
key derivation function. A hash function takes as input Ki(Kj), n1, n2, sid

s
i (sid

t
j)

and outputs the session key Ks
i (Kt

j). More specifically, our improved scheme is
shown in Fig. 3.
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Theorem 1. Suppose that the public key scheme PKE is (d, t, εPKE)-secure
against adaptive chosen-ciphertext attacks, the message authentication code
scheme MAC is (1, t, εMAC)-secure against strongly existential forgeries under
chosen message attacks, the fuzzy extractor FE is (min, ts, d, t, εFE)-secure, the
hash function h is collision-resistant and the DDH problem is (t, εDDH)-hard.
Assume that the bit-length of pwd is μ1, the bit-length of W is μ2, and the bit-
length of sk is μ3. Then the improved MFAKE scheme is (t′, ε)-session-key-secure
with t ≈ t′ and

ε ≤ (12dl)2

2λ
+ dl · (εMAC + max{ 1

2μ1
, εFE,

1

2μ3
} + 2εDDH),

Proof. We consider the proof following a sequence of games. A chooses the test
oracle Πs∗

idi
executed between its owner idi and its intended partner idj . Generally

speaking, the values processed in Πs∗
idi

are highlighted with ∗. Let Sξ be the event
that the adversary wins the security experiment in Game ξ, and Advξ = Pr[Sξ]− 1

2
denotes the advantage of A in Game ξ.

Game 0. This is the original security game between an adversary A and a
challenger C. The bit b is chosen at the beginning of Game 0. C will answer the
queries of A on behalf of the instances. By definition, it holds that

Pr[S0] =
1
2

+ ε =
1
2

+ Adv0.

Game 1. The challenger proceeds exactly like the previous game but aborts
if event E1 happens, where E1 denotes two oracles generate the nonce
((r∗

1 , r
∗
2 , r

∗
3 , r

∗
6 , n

∗
1, sid

t∗
j ), (r∗

4 , r
∗
5 , n

∗
2)), the tag (τs∗

i , τ t∗
j ) or the output of hash

function, which have been sampled before. The probability of the collision of
those values is negligible since the nonces are chosen uniformly at random and
the hash function is collision-resistant. There are l parties and at most d oracles
for each party, the birthday paradox results provide that the event E1 happens
with the probability Pr[E1] ≤ (12dl)2

2λ . Thus we have that

Adv0 ≤ Adv1 +
(12dl)2

2λ
.

Game 2. In this game, C aborts when event E2 happens. We define the event
E2 which happens if Πs

idi
receives messages with a valid tag τ t

j which is not send
by its intended partner oracle Πt

idj
. We have Adv1 ≤ Adv2 + Pr[E2].

If the event E2 happens with overwhelming probability, then we could con-
struct a tag forger F2 against the security of the message authentication code
scheme as follows. The forger F2 simulates the challenger for A. It first guesses
an oracle that the adversary can forge, i.e. Πt∗

idj
. Next F2 generates all other

secret keys honestly as the challenger in the previous game. If A outputs a mes-
sage with a valid tag not generated by F2, then F2 could use the tag to break
security. Since there are at most dl oracles for all parties, the event E2 happens
with the probability Pr[E2] ≤ dl · εMAC. Thus it holds that

Adv1 ≤ Adv2 + dl · εMAC.
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Game 3. In this game, C aborts if A asks the Send query with client’s keys
(pwd∗

i , es
∗
i , sk

∗
i ) or server’s key X∗

i . We let pes∗ = pwd∗
i + es∗i + sk∗

i . Due to
definition of three-factors security, A can only compromise two factors. Since
there are l parties and at most d oracles for each party, A can ask dl Send
queries. The three possible cases might occur as follows:

1. If W∗
i and sk∗

i are leaked, A could try to guess low-entropy passwords using
the password dictionary attacks. A could guess correctly in this case with
probability dl

2μ1 .
2. If pwd∗

i and sk∗
i are leaked, A could guess the extracted string es∗i from helper

string hs∗i with the FE.Rep(·) function. Due to the use of the fuzzy extractor,
A has an additional advantage εFE. Namely, A could guess correctly in this
case with probability dl · εFE.

3. If pwd∗
i and W∗

i are leaked, A still has no information about sk∗
i which means

pes∗ is still random for A. A could guess correctly in this case with probability
dl
2μ3 .

Then, we have that

Adv2 ≤ Adv3 + dl · max{ 1
2μ1

, εFE,
1

2μ3
}.

Game 4. In this game, C change the computations of Q∗
1 and Q∗

2 by Q∗
1 = gr∗

6

and Q∗
2 = gr∗

5 . Similarly, the computations of K∗
i and K∗

j change to K∗
i =

P
∗r∗

5
3

⊕
Q

∗r∗
4

1 and K∗
j = Q

∗r∗
3

2

⊕
P

∗r∗
6

4 . We change this game that C will answer
the Test oracle with a random key and abort if event E4 happens. We define
the event E4 which happens if A asks hash oracle with valid K∗

i . If E4 happens
with non-negligible probability, we can build an algorithm A4 against the DDH
challenge. The A4 receives values (gx, gy, gz) such that either z = xy or z

$← Z
∗
p

and runs the adversary A as a subroutine. If A4 receives a Diffie-Hellman triple,
this game proceeds exactly as Game 3, otherwise it is identical to Game 4. If A
can distinguish with non-negligible probability whether gz = gxy or not, then
A4 can use A to break the DDH assumption. There are at most dl oracles for
all parties. Due to the security of DDH assumption, it holds that

Adv3 ≤ Adv4 + 2dl · εDDH

In this game, the answer of each Test query is a random key that is indepen-
dent of the bit b. Thus, the advantage that A wins is Adv4 = 0.

Summing up all the probabilities from Game 0 to Game 4, we hold the result
of this theorem.

6 Conclusion

In this paper, we have studied the MFAKE protocol proposed by Zhang et al.
[23]. As described above, we prove that the security of the MFAKE protocol has
some flaws. A simple man-in-the-middle attack and an outsider key compromise
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impersonation attack have been shown in detail. To remedy these weaknesses,
an improvement MFAKE scheme has been proposed, which is secure against the
attacks mentioned above. The security of the improved protocol was verified in
the random oracle model.
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Abstract. A SCADA system is a distributed network of cyber-physical devices
used for instrumentation and control of critical infrastructures such as an electric
power grid. With the emergence of the smart grid, SCADA systems are increas-
ingly required to be connected to more open systems and security becomes cru-
cial. However, many of these SCADA systems have been deployed for decades
and were initially not designed with security in mind. In particular, the field
devices in these systems are vulnerable to false command injection from an
intruding or compromised device. But implementing cryptographic defence on
these old-generation devices is challenging due to their computation constraints.
As a key requirement, solutions to protect legacy SCADA systems have to be an
add-on. This paper discusses two add-on defence strategies for legacy SCADA
systems—the data diode and the detect-and-respond approach—and compares
their security guarantees and applicable scenarios. A generic architectural frame-
work is also proposed to implement the detect-and-respond strategy, with an
instantiation to demonstrate its practicality.

1 Introduction

A SCADA (Supervisory, Control And Data Acquisition) system is a cyber network of
communicating devices used for instrumentation and control of a distributed infras-
tructure, such as an electric power grid, in order to manage the respective physical
processes. The SCADA system of a power grid can monitor and control various elec-
tric equipment along the power delivery path—including various transformers, circuit
breakers, protective relays and automatic re-closers—while acquiring different mea-
surements, which provide information about the loading conditions at different parts of
the power grid and health conditions of transmission lines, etc. Hence, correct operation
of a SCADA system is critical to the reliability of any power distribution system [2,3].

A successful malicious attack targeting at the SCADA system could potentially
cause extensive power outage. Such service disruption could even have cascading
effects onto other critical infrastructures [3]. However, most of the SCADA systems
currently in active use have been deployed for decades and very few of them were orig-
inally designed with security in mind [19,22,29]. These legacy SCADA systems were
assumed to operate in isolation at first, with obscurity and physical isolation being the
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main security strategy. But nowadays, this design assumption is challenged not only by
new security threats—including demonstrated break-in’s of power substations [28], dis-
covered worms on PLCs (Programmable Logic Controllers) and other industrial control
system platforms [17,23], and the exposure of supposedly obstructed documents (such
as SCADA system configuration and operation manuals) on the Internet [19]—but also
by the changing operational model which desires a higher level of integration with rel-
atively open systems [14], such as the AMI (Advanced Metering Infrastructure), in the
envisioned smart grid for data sharing and orchestration of process control.

The increasing connectivity of these legacy SCADA systems with external smart
grid systems, with comparatively more open access, could increase the attack surface
for attackers to compromise devices inside the SCADA systems or send forged data or
commands directly from outside. Nonetheless, these legacy SCADA systems will take
decades to be phased out from operation since they are so highly integrated with the
power equipment they monitor [7,22]. It is thus essential to devise protection mech-
anisms to safeguard legacy SCADA systems as they are increasingly integrated with
newer smart grid systems.

In particular, legacy SCADA systems are typically vulnerable to forged data or com-
mands sent from intruding or compromised devices (i.e. insider attacks) [2,7,13,19,22,
26]. For instance, a compromised SCADA RTU (Remote Terminal Unit) could launch a
false command attack whereby an attacker impersonates the master station to send false
control commands to other RTUs, say, to maliciously trip a particular circuit breaker. On
the other hand, false readings from compromised instrumentation devices could present
a distorted picture of the system status to the master station, thus possibly triggering a
false alarm and disruptive actions [13]. Currently, most legacy SCADA systems could
have little defense to this kind of attacks as no source authentication or command veri-
fication mechanism is in place [2,4,7,19,22,26].

Implementing cryptographic defence on the old-generation devices in these SCADA
systems is impossible due to their resource constraints, and protection has to resort to
the bump-in-the-wire approach [29], which is generally regarded as very inefficient.
While authentication and authorization frameworks (such as IEC62351-8)—which are
increasingly applied for authentication and access policy enforcement in distributed
smart grid and newer SCADA systems [2,26]—can avoid or minimize false command
injection, it remains challenging to deploy them in some legacy SCADA systems and
protocols due to the computational and communication overheads involved, as well
as, the need of modifications at both the protocol and device level. To avoid proto-
col modification, legacy-compliant message authentication [7] is proposed to embed
authentication data as an additional payload of some specific SCADA protocols. How-
ever, it requires modifications of the device software and is applicable only to a few,
usually newer SCADA protocols and devices that are powerful enough to run common
cryptographic primitives. Generic strategies through enhanced incident management
[1] or better process monitoring [3] could improve SCADA system security but require
a higher degree of human involvement and intervention. It is fair to say truly add-on,
non-intrusive protection for legacy SCADA systems and protocols remains challenging.

This paper studies and compares two different strategies to secure legacy SCADA
systems for safe integration with smart grid systems. Both approaches do not require
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any modification on the devices, protocols or communication channels, and are scalable
for different numbers of devices. The need of human intervention is also minimized.
The first approach, called the “data diode” approach [10,24,30], is commonly adopted
in the industry and aims to preserve the isolation of a legacy SCADA system while
facilitating outward information flow to newer smart grid systems. The second app-
roach aims to open up a legacy SCADA system for bidirectional information flow, with
mechanisms in place to detect and identify false commands sent by intruding devices or
compromised nodes. This paper proposes a high-level, architectural framework for the
second approach to implement a detect-and-respond strategy to neutralize the effects of
false command attacks on a SCADA field network. While this paper focuses on false
command detection based on verification against an authenticated copy of each com-
mand received through a secure channel, the framework provides a general basis for
incorporating other attack detection methods [12,13,18] to implement a defence strat-
egy. This paper will also compare the applicability and usability of the two approaches.

The contributions of this paper is two-fold. First, a generic architectural frame-
work is proposed to implement the detect-and-respond strategy for the protection of
legacy SCADA systems against false command attacks, with a view to opening up these
SCADA systems for integration with relatively more open smart grid systems. The pro-
posed technique is non-intrusive and truly add-on without requiring modifications on
existing devices and systems. It is also scalable in the sense that only one defending
device is needed per field network. To demonstrate the practicality of the proposed
framework, an instantiation of the detect-and-respond strategy on the Siemens Sinaut
8FW protocol [27]—a common industrial protocol for legacy SCADA systems—is pre-
sented with performance results. Second, this paper presents a comprehensive review of
the current landscape of research in legacy SCADA system protection. It compares the
data diode and detect-and-respond approaches, discussing their benefits and limitations,
and provides practical guidelines for their application.

The rest of this paper is organized as follows. In the next section, legacy SCADA
systems and false command attacks against them are discussed. The data diode strategy
and the detect-and-respond strategy are presented in Sect. 3 and Sect. 4 respectively.
Finally, Sect. 5 concludes with a comparison of the two strategies.

2 False Command Attacks Against Legacy SCADA Systems

A typical SCADA system, as depicted in Fig. 1, consists of PLCs and RTUs in the older
versions and IEDs (Intelligent Electronic Devices) in the newer versions as the basic
units for deployment in power substations or remote sites (for monitoring transmission
lines) at different geographic locations. Each of these field devices has interfaces to
sensors and actuators used to monitor and control equipment in a power delivery system.
The field devices in a substation or remote site form a local area network, known as the
field network, and are usually connected together over a broadcast medium to a sub-
master or data concentrator, which in turn is connected to the MTU (Master Terminal
Unit) or master station at the main control center through leased lines over a telecom
operator’s network. While various topologies are in use for connecting field devices
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with the sub-master, a broadcast channel—such as EIA-485 serial ports in the party-
line mode over a pilot cable (as shown in Fig. 2) or DNP3 in the multi-drop or data
concentrator mode1—is typically used in SCADA systems.

Fig. 1. A typical legacy SCADA system and the possibility of false command attacks

Despite cost efficiency achieved in cable layout and maintenance, the use of broad-
cast channels also eases insider attacks from compromised devices. For example, a com-
promised RTU can pose the MTU to issue a forged command to another RTU or PLC,
causing the latter to behave abnormally. Experiments have been repeatedly reported to
demonstrate the possibility of using off-the-shelf protocol analyzer software to inter-
cept control messages and inject false commands in some legacy SCADA systems [13],
with some showing the possibility to trip a circuit breaker maliciously. In a few cases,
even though the circuit breaker signaled the master station that it had opened, the master
station did not respond as it had not instructed the circuit breaker to open.

This type of attacks was inconceivable in the original design of SCADA systems,
and SCADA devices have little resource to defend against them. Obscurity in system
design, command formats and operation, combined with physical isolation, have long
been the main and possibly the only strategy for securing legacy SCADA systems. How-
ever, the effectiveness of obscurity may have become unreasonable. For instance, it has
been demonstrated that fuzzing can effectively discover or recover unknown SCADA
commands of a SCADA device [6]. Physical break-in’s to power substations have been

1 Earlier SCADA systems were designed based on proprietary protocols. DNP3 is a standard
adopted in newer SCADA systems for connecting RTUs and IEDs with an MTU.
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Fig. 2. EIA-485 serial ports connected in the party-line mode

occasionally reported [28]. Even worse, obscurity and isolation are no longer effective
in the envisioned smart grid, wherein SCADA systems have to coexist and possibly
communicate with other relatively more open networks, in order to implement two-
way flow of information and energy. Operation in isolation could be an overly strong
assumption for SCADA systems to operate nowadays against the smart grid backdrop.

Exploitation of software vulnerabilities on field device computing platforms is a
necessary, key step to compromise field devices in a SCADA system. This is the only
possible way which allows an attacker to install his code on a target machine and spread
it to others. The belief that embedded processors used in field devices have relatively
less exploitable software vulnerabilities or it is difficult to compromise an embedded
system has become untenable, as demonstrated by the case of the Stuxnet worm dis-
covered in 2010, which has a rootkit to infect PLCs over a proprietary SCADA system
and damaged a number of centrifuge equipment in an Iranian nuclear facility [17,23].
Subsequent generations of Stuxnet were also discovered. In fact, it has been demon-
strated that with crafted instructions and data, compromising an embedded processor is
within reach to attackers in general. These compromises could normally go undetected
by the MTU since, as demonstrated by the Stuxnet worm, a compromised device could
play man-in-the-middle to conceal all malicious activities from the MTU.

In addition, should a physical break-in to a substation or remote site be possible,
an attacker could simply tap in his own attacking devices directly onto the SCADA
network to manipulate other innocent devices. With the increasing connectivity with
other systems in the smart grid, this threat is particularly real since these newer smart
grid systems typically allow more open access to general users. For instance, a smart
meter may be accessible to a household user’s computer for reading meter data and
setting consumption patterns and alerts. Similarly, an electric vehicle (EV) charging
station in a public car park could have a digital interface open for the general public for
functionalities like making reservation or checking charging status of an EV.
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3 Data Diode Approach

A data diode is a unidirectional gateway, similar to a firewall, which sets a digital barrier
to enforce network perimeter control for a restricted network (such as a SCADA system)
and fend off unwanted accesses from the less secure networks it is connected to (such
as smart grid systems). Yet a data diode provides a stronger security guarantee than a
firewall since strict one-way communication—from the restricted network to the less
secure network only—is enforced by a certain physical law rather than digital logic,
with little chance of reverse communication. Data diodes are often built using fibre
optics coupler or transceivers, through the removal of the transmitter component from
one side of the communication and the respective receiver component from the oppo-
site side.2 This makes it physically impossible to compromise such devices to achieve
reverse connectivity. Moreover, they usually do not contain firmware, thus requiring
minimal or no configuration at all, or have minimal software supported by micro-kernels
that can be formally verified. Whereas, firewalls are often prone to configuration mis-
takes and relatively accessible for exploit by skilful attackers. While firmware upgrade
is regularly needed in firewall maintenance, patching is seldom needed for data diode
deployment. Finally, data diodes are the only devices receiving the EAL7 (Evaluation
Assurance Level 7), the highest grade in the Common Criteria [9] (an international
standard evaluating the level of security of equipment).

Fig. 3. Deployment scenario of the data diode approach

2 Although different hardware implementations of a data diode exist, supporting different phys-
ical channels (e.g. RS-232, EIA-485, USB, Ethernet), most implementations make use of opti-
cal couplers to guarantee physical isolation.
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Fig. 4. TCP message flow in a unidirectional gateway [10]

Data diodes allow organisations to retrieve valuable data generated at the process
level from a critical infrastructure for consumption by a wider group of users in a rela-
tively more open system while assuring the isolation and integrity of the critical infras-
tructure. As shown in Fig. 3, a data diode allows data acquired by SCADA field devices
to be pushed from the SCADA system so that they can be combined with other datasets
captured by smart grid systems like AMI and EV systems which poll the physical condi-
tions of the same electric power grid, in order to give a more holistic and precise picture
of the conditions of the electric power grid for more accurate data analysis and hence
resource planning. The correlation of these different datasets can also provide valuable
insights for fault identification and predictive maintenance. Should the analysis lead to
desired actions to be carried out in the SCADA system, the feedback will be through
human communications. While existence of compromised nodes is possible in the smart
grid systems, the data diode guarantees that they cannot send in false commands to field
devices in the legacy SCADA system or infect/compromise them.

Despite similarities in the isolation mechanism, commercially available data diode
solutions differ in supported services and protocols. In order to support TCP/IP-based
SCADA protocols, such as MODBUS/TCP and DNP3, data diodes usually have to
make use of additional software components for each side of the unidirectional link to
emulate the bidirectional message flow for the three-way handshake and acknowledge-
ments needed in a typical TCP session. As demonstrated by [10] and shown in Fig. 4, the
software components include an application proxy and a protocol breaker. The appli-
cation proxy emulates the TCP server on the sender side to respond to the SCADA
device (TCP client) with TCP connection-oriented messages and acknowledgements
while forwarding messages from the TCP client to the unidirectional link. Similarly,
the application proxy emulates the TCP client on the receiver side. But it does not for-
ward any message from the TCP server on the receiver side to the unidirectional link.
Note that only TCP connection messages sent from the SCADA system to the smart
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grid system are allowed by the data diode. The protocol breaker acts as a middleware
for packet encapsulation and possibly applying encryption and forward error correction
(FEC) to data transferred over the unidirectional link. FEC is especially important to
ensure correct data delivery for the noisy environment of typical SCADA systems.

4 Detect-and-Respond Approach

While data diodes provide strong security and isolation/decoupling assurance for legacy
SCADA systems, sometimes they are too restrictive for certain application scenarios of
the smart grid. Neither is it optimal to rely on human communications for feedback
to a SCADA system. There is a realistic need for two-way flow of data between a
SCADA system and a smart grid system. Proposals such as [30] therefore emerged to
add a reverse channel to data diodes. But whether the advantages of a data diode over
a typical firewall can be preserved in such a modification is highly uncertain. More
importantly, to what degree that the security assurance of a data diode is undermined
with the addition of a reverse channel needs to be assessed carefully. In scenarios requir-
ing bidirectional data exchange between a SCADA system and a smart grid system, it
is therefore more reasonable to assume the existence of compromised devices in the
SCADA system [12,13,16,18,19,22,23] and devise mechanisms to detect false com-
mands [13,16,18,19] and/or identify compromised nodes [19,22]. In general, a detect-
and-respond strategy is preferred despite that many of the proposed schemes in the
literature merely cover attack detection. Once a false command is detected, its impacts
should be voided or neutralised promptly, and ideally, in an automatic manner with
minimum human intervention required.

This paper presents a generic, high-level architectural framework to implement the
detect-and-respond strategy for legacy SCADA systems. An embodiment in the form
of a trusted protection agent is also given to illustrate typical steps needed to neutralise
the effects of false commands injected by compromised field devices. The notion of
the protection agent is similar to that of a trust node in [12]. The difference is that the
protection agent actively neutralises the effects of false commands, whereas, the trust
node only serves as a trusted routing agent to selectively relay messages between field
devices and the master station. Since the framework is defined in a general setting, it
should be applicable to different types of SCADA protocols and provide a basis for
systematically crafting defence mechanisms fit for different SCADA systems and field
devices. Besides, there is flexibility for incorporating different detection algorithms or
mechanisms such as [13,18] into the framework. The framework is also complementary
to and could be combined with other approaches [1,3,7] for securing SCADA systems.

The underlying assumption for implementing the detect-and-respond strategy with
a protection agent is that the protection agent is well protected with different protection
mechanisms in place to implement the defence-in-depth strategy so as to minimize the
probability of its compromise. In practice, there are various conventional techniques
to achieve the security hardening of the protection agent effectively, which will be dis-
cussed in Sect. 4.1 and 4.4. In the worst case, if a physical break-in to a power substation
happens, the protection agent could be compromised. But the question is, if an attacker
successfully breaks in to a power station, he could actually tap in his own device to
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launch any type of attacks. The only reason for him to compromise the protection agent
is to stop the protection agent from alerting the master station in order to conceal his
attacks. That is, even for physical break-in’s, the protection agent would only increase
the difficulty for an attacker to launch attacks sneakily.

4.1 Protection Agent

As depicted in Fig. 5, a protection agent is installed as an add-on device in each field net-
work of a SCADA system, which can be made up of PLCs, RTUs or IEDs. Leveraging
on the broadcast medium typically found in most field networks, the protection agent—
as a network sniffer—monitors commands issued to all the field devices on the network
to detect malicious activities. As a safe assumption, the protection agent is generally a
much more powerful machine than typical field devices, given that the underlying pro-
cessor used in the protection agent could be generations away from those used in the
field device of a legacy SCADA system. In addition, compared to the low-bandwidth
physical channel used by these field devices (typically, in the range of 1.2–19.2 kbps
[20,27,29]), the protection agent can easily be equipped with a wireless link of much
higher bandwidth to the MTU or master station. Note that the design of the protection
agent does not preclude other communication channels such as a fiber link.3 We can
therefore assume that the protection agent has a faster (with a higher bandwidth and
a lower latency) and typically more reliable communication channel (for most of the
time) with the MTU than the field devices. On the basis of a more powerful machine
with a faster communication channel to the MTU, security hardening on the protection
agent is much easier. We assume that the protection agent has a secured, authenticated
channel with the master station. Multi-factor entity authentication (for example, those
based on pre-shared secret keys stored in a tamper-resistant device, physical unclonable
functions [15,25], or even new approaches [8] etc.) could be adopted to implement this
authenticated channel to strengthen its security assurance. Compared to the field device
platforms with little resources for the implementation of cryptographic defence, the pro-
tection agent is more ready to implement cryptographic algorithms and protocols, and
other security mechanisms requiring more resources (such as firewall or remote code
attestation). In short, the protection agent can be viewed as a trusted proxy for the MTU.

On the other hand, the protection agent can be seen as a reliable incognito for the
MTU, monitoring what is happening in the field network. It is assumed that the pro-
tection agent can interpret the underlying protocol messages (as coded in its design)
and can sniff messages in the field network. As discussed in Sect. 2, devices in the
same field network are usually connected over a broadcast channel, meaning that such
traffic sniffing is a practical assumption. Difference in topology would only affect the
number devices that can be eavesdropped. With the protection agent monitoring the
traffic in place, the previously observed problem of some legacy SCADA systems that
the MTU is not aware of a circuit breaker having been tripped by an attacker since it
has not initiated the tripping [11] would not happen if a protection agent is installed
in the field network. When the protection agent observes the tripping command in the

3 A wireless channel is assumed here simply because it is one of the common approaches for
adding new communication channels between a remote substation and a control centre.
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Fig. 5. A SCADA system with protection agents installed

field network but does not receive the same command through the trusted communi-
cation channel shared with the MTU, it would report the tripping event back to the
MTU, which would then be aware of a possible intrusion. While there is possibility that
an attacker might physically remove the protection agent from a field network, secu-
rity mechanisms could be implemented on the protection agent to detect any malicious
removal. For instance, the MTU can run a challenge-response verification protocol with
the protection agent by sending a sequence of specially crafted random messages (i.e.
nonces)—destined at a void device identity—to the protection agent via the field net-
work; if the protection agent is disconnected from the field network, it would not be
able to receive these messages to respond to the MTU’s challenge correctly. Besides,
remote code attestation could be implemented to provide the assurance that the soft-
ware being executed on the protection agent has not been tampered with. It should be
emphasized that a protection agent offers more resources and flexibility than a typical
field device like an RTU or PLC for implementing preventive security measures and
intrusion detection mechanisms.

4.2 Detect-and-Respond Defence of Protection Agent

The detect-and-respond mechanism of the protection agent can simply be implemented
as a finite state machine as shown in Fig. 6. The basic idea is as follows:

1. Whenever the MTU issues a SCADA command to any field device, it also sends an
authenticated message of the same command (protected by a certain cryptographic
algorithm such as AES-CCM) to the corresponding protection agent which is con-
nected to the same field network as the concerned field device is in.
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2. The protection agent listens or eavesdrops in the field network, sniffing all SCADA
commands issued to the field devices in the same field network, and verifies the
authenticity and integrity of each of these SCADA commands by comparing them
with the authenticated commands directly received from the MTU in the authenti-
cated channel shared between the protection agent and the MTU.

3. For any forged or false command detected (say, by comparing the command received
in the field network and that received in the secured channel), the protection agent,
possibly after verifying with the MTU, issues a SCADA command to the affected
field device to reverse the action caused by the false command to cancel out any
undesirable action initiated by the attacker. This is called the “fight-back” or neu-
tralization mechanism as the protection agent takes action—in response to a detected
malicious command—to correct it.

Fig. 6. The state machine diagram of a SCADA protection agent
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Table 1. Details of the protection agent implementation as a state machine

State Description Tasks

Queue State to queue newly received
SCADA and authenticated commands

- Read commands from the receiving port
- Queue the command to the SCADA or
authenticated queue accordingly

Listen Idle state when the SCADA queue is
empty

- Check if the SCADA queue is
non-empty and trigger the “Start” state
when the queue is non-empty

Start State to tell between a new SCADA
command received or an old SCADA
command pending the completion and
confirmation of corrective actions
taken

- Check whether a new SCADA command
arrives and trigger command verification
if positive

Check Rule State to check the local rule set to see
if the received SCADA command is
illegitimate and violates the
prescribed rules

- Evaluate the SCADA command against
the local rule set
- If the SCADA does not pass any of the
rules, trigger the correction process.
Otherwise, check the authenticity of the
SCADA command

Verify Command State to check whether the received
SCADA command is really from the
MTU through the use of the
authenticated channel

- If the SCADA command has a matched
authenticated command received in the
authenticated queue, issue a pass, other-
wise, request the MTU to verify through
the authenticated channel and check again
- If the SCADA command fails, trigger the
correction process

Fight-back State to correct or reverse the actions
caused by a malicious command

- Look up from a pre-set table for the
corrective actions needed for a particular
SCADA command
- Issue the listed SCADA commands to
the affected RTUs to reverse the actions of
the malicious command

Verify Correction State to confirm that the correction is
in effect

- Read the status of the affected RTUs to
confirm that the corrective actions have
been applied

In principle, the neutralization mechanism could invalidate or void out forged com-
mands, restoring the field device to the original state. But the degree of neutralization
or residual effect of a false command would depend on the actual implementation of
the logic and the SCADA command set of a field device. This defence approach shares
some similarities with the fight-back mechanism of OSPF (Open Shortest Path First)—
a link state routing protocol used in the Internet—through which an innocent router
could publicly renounce a malicious route update forged by an attacker [21].

In case of missing commands, the protection agent can request the MTU to resend
a command over the secured, authenticated channel for verification. Besides, the imple-
mentation of the protection agent could be further extended by including additional
false command detection mechanisms beyond comparison with an authenticated copy
of a legitimate command. For example, the detection mechanisms of [13,18] can pos-
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sibly be used by the protection agent to trigger neutralization, preferably after confir-
mation by the MTU. However, in order to respond correctly to any maliciously injected
commands, the deployed detection mechanism should provide sufficient details to help
identify the commands falsely injected by the attacker.

In some cases, a forged or malicious command could be immediately detected in
the local field network without relying on authenticated messages from the MTU. For
example, the remote software update of a field device is normally prohibited by most
utility operators. However, in some SCADA systems composed of RTUs, the denial of a
remote software update request is implemented on the MTU side only, while the RTUs
in the field network usually have no mechanism to deny a software update request or
distinguish whether it is initiated by the MTU or an intruding device. In other words, a
compromised RTU or an intruding attacker device could still initiate a remote software
update at any RTU in the same field network, which will not be denied by the latter. This
flaw would greatly facilitate the spread of worms or malicious instruction sequences
over a field network. In a typical SCADA deployment, a firewall usually only safeguards
a field network from external attacks and would not be able to stop such an insider threat
since the attack is launched fromwithin the field network by a compromised field device
or an intruding device connected to the field network. In contrast, the protection agent
could possibly halt the malicious software update. A local rule set can be implemented
on the protection agent, explicitly specifying that only manual update is allowed. When
the protection agent detects an automatic software update command, it can immediately
halt the update by issuing another command, without having to check with the MTU.

The same technique can be used for other clearly harmful actions. For instance, the
protection agent can enforce that a certain range of parameters is prohibited in some
SCADA commands. With the local rule on protection agents, the damage of the cen-
trifuge equipment caused by the Stuxnet worm could be avoided, since the command
with parameters causing excessive spin speed could be invalidated by the protection
agent. Similarly, the protection agent can be configured to eliminate or invalidate set
point commands—which are used in typical SCADA systems to preset the thresholds
on certain measured system variables (such as voltages or phase angles at certain point
of a power grid) for triggering protective actions like tripping a circuit breaker—with
harmful parameters.

In details, two command queues are implemented in the protection agent, which
respectively stores SCADA commands received in the field network and authenticated
commands received through the secured, authenticated channel between the MTU and
the protection agent. When the SCADA command queue is empty, the protection agent
is at the “Listen” state waiting for new SCADA commands. The arrival of a new
SCADA command will trigger the protection agent to verify the authenticity of the
requested action and reverse it in case it is a fake command. A list of tasks to be imple-
mented at different states of the protection agent is shown in Table 1.

The detect-and-respond strategy deviates from intuition and standard techniques
used in securing a communication network. Whereas existing schemes would suggest
filtering all bogus messages injected by an attacker, the proposed mechanism aims to
tolerate the intrusion for a while if the resulting malicious actions are not critically
harmful and then correct or neutralize the malicious actions. For critical actions which
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are usually banned by norm, the local rule set in the protection agent would stop them
immediately from onset. Since the detect-and-respond approach favors local, distributed
defence, it is more scalable than centralized defence mechanisms.

4.3 Example Implementation with Siemens Sinaut 8FW Protocol

Table 2 illustrates how the detect-and-respond defence strategy can be implemented
with respect to the command set of the Siemens Sinaut 8FW protocol [27], a popular
industrial protocol commonly used in legacy SCADA systems. The Sinaut 8FW proto-
col was the standard protocol used by Siemens devices and systems for communicating
control and monitoring messages between MTU systems and RTU devices before being
replaced by IEC 60870-5-101. It was broadly supported by devices provided by other
manufacturers like ABB and GE. While the principle of the detect-and-respond strategy
can be equally applied to newer protocols like IEC 60870-5-101 and 60870-5-104, its
implementation with these protocols is outside the scope of this paper, partly because it
is possible to implement authentication mechanisms in these protocol [26]. In contrast,
the resource constraints of devices running the Sinaut 8FW protocol preclude the possi-
bility of implementing any security mechanism despite that the protocol is still actively
used in a non-negligible fraction of systems. In other words, it is more critical to inves-
tigate add-on protection for the Sinaut 8FW protocol over others. Each command is
enclosed in a control message in the form of a telegram. Table 2 only shows telegram
types sent in the control direction (from the MTU to field network), with other telegram
types in the monitoring direction (from the field network to the MTU) skipped since
these telegram types are largely for messages sent to the MTU.

False commands that may have critical impact on the functioning of a SCADA sys-
tem are neutralized first and then verified with the MTU, whereas, the less critical ones
are corrected upon confirmation from the MTU. Most of the neutralization actions can
be readily implemented through the replace command telegram. For commands which
switch on/off a certain feature or function, the neutralization can simply be done by top-
pling the command in the oppositive direction with respect to the false command. For
commands which involve updating of parameters like thresholds or set points to trigger
preventive actions, the protection agent stores the latest version of all the parameters of
a field device (with parameters of different field devices stored in different tables) and
apply relevant ones to form a replace command when necessary to revert the parameters
affected by a false command.

Experimentation was carried out on an Intel 2.5 GHz Quad Core Celeron CPU (with
8 GB RAM)—which simulates the protection agent—to estimate the response time of
the protection agent to issue a neutralization command or telegram for different types
of false commands. The protection agent is connected to a server (which simulates the
master station) through a WiFi link. On the other side, the protection agent is connected
to another single board computer through a RS232 serial port (set at a baud rate of
19200), which simulates a compromised field device (in Scenario 1) or a master station
(in Scenario 2) to issue commands to the protection agent. Two types of response time
are measured corresponding to two different scenarios. In the first scenario (i.e. Sce-
nario 1), the protection agent is set to receive no message from the master station and
the compromised field device (simulated by the single board computer) injects a false
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Table 2. Implementation of the detect-and-respond defence on Siemens Sinaut 8FW protocol

Telegram type Priority to
neutralize

Protection agent’s actions to
neutralize

- Control (Type 64)
- Replace command (Type 195)

High - Topple the command
- Report the action back to MTU
and wait for acknowledgement. If
negative acknowledgement is
received, topple the command back

- Analogue/digital set point (Type 65–
67/68–70)
- Modification of threshold value limit
(Type 205)
- Modification of smoothing factor
(Type 206)
- Remote parameterization (Type
212)

High - Temporarily store a copy of the
suspected command
- Apply the latest confirmed param-
eter setting stored in the protection
agent to form a command
- Use replace command (Type 195)
to switch the parameter setting back
- Report the action back to MTU
and wait for acknowledgement. If
negative acknowledgement is
received, apply the stored
suspected command, otherwise,
erase stored command

- Start-up request (start up/restart)
(Type 211)
- Switch on/off recipient in master sta-
tion (Type 203)
- Switch off record transfer from/to
station (Type 204)

Medium - Report to the MTU and wait for
confirmation. If confirmed, topple
the command

- Switch on/off for temporal lists
(Type 201–202)
- Synchronization of fine time (type
207)
- Setting of minutes (Type 208)
- Setting of calendar (Type 209)
- Switch on/off addresses in the lists
(Type 210)
- 4-byte-storage interrogation control
(Type 214)
- Interrogation command ZFBIT and
STOP-cause (Type 215–222)

Low - Report to the MTU and wait for
confirmation. If confirmed, topple
the command or restore the stored
parameters

- Check command (Type 192)
- Check command (type 192)
- Message repeat request/TFK-
acknowledge (Type 193)
- Start acknowledgement (Type 194)
- Single/group interrogation com-
mand (Type 196–197)
- Multiple request (Type 198–200)
- Matrix-check command (Type 213)

Low - Neutralization is not necessary
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command to the serial port to trigger the protection agent to neutralize the command.
The response time needed to issue a neutralization command after the injection of a
false command is measured. In the second scenario (i.e. Scenario 2), the single board
computer simulates an authentic command from the master station. That is, the injected
command is authentic but the protection agent mistakenly considers it as a false com-
mand. The protection agent first issues a neutralization command and then queries the
master station which always returns a negative acknowledgement. That is, the protec-
tion agent has to switch back the command and cancel the effects of the neutralization
command. The response time for the protection agent to issue the second command
after the injection of the first command by the single board computer is measured.

The experimental measurements are presented in Fig. 7. The average response time
required for the protection agent to look up the parameter for a particular field device
identity and issue a neutralization command or telegram for different types of false
commands (at high priority) is 45.52ms with a standard deviation of 9.28ms. The aver-
age response time required for the protection agent to switch back the command for
the second scenario is 175.32ms with a standard deviation of 27.5ms. Compared to the
maximum tolerable delay for SCADA transactions, which is 0.54 s [5], this processing
delay is acceptable (respectively, 8.4% and 32.4% of the maximum tolerable delay).

4.4 Security Analysis

The key assumption for the detect-and-respond mechanism based on a protection agent
is that the protection agent is trusted and has a reliable communication channel to the
master station. This should be a reasonable assumption in practice.

First, it is considerably harder to compromise a protection agent than a typical field
device. But it is easier to detect any compromise of the protection agent. As discussed
in Sect. 4.1, since the protection agent is based on a more powerful computing plat-
form compared to a field device, various techniques—such as remote code attestation
to ensure that a correct version of software is executed on the protection agent and
challenge-response verification to ensure that the protection agent is not disconnected
from the field network—can be readily applied to strengthen the security assurance
of the protection agent and detect any compromise. Besides, if a protection agent is
compromised, the attacker can cause no more harm than what he can achieve with a
compromised field device when no protection agent is deployed. Since compromising a
protection agent is more difficult than compromising a field device, adding a protection
agent would make the job of an attacker more difficult and strengthen system security.

Second, the more powerful platform used for a protection agent (compared to a
field device) enables the implementation of common cryptographic primitives, thereby
allowing the use of standard protocols such as the TLS (Transport Layer Security)
to secure the communication channel between a protection agent and the master sta-
tion. The confidentiality and authenticity of each message sent over the channel is thus
assured. An out-of-band wireless channel is assumed for the communication between a
protection agent and the master station because it is the most cost-effective way, and a
popular means, to add a new communication channel to a power substation. To address
the reliability issues associated with a wireless channel, the protection agent can request
the master station to resend any missed command or explicitly acknowledge/confirm
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Fig. 7. Response time of the protection agent for: (a) Scenario 1: Neutralization of a malicious
command; (b) Scenario 2: Ratification of false neutralization.

any command it has sent through the field network. Since such a channel usually has
a higher bandwidth and a lower latency compared to the field network, the processing
delay is usually reasonable. As demonstrated by the experimental results, the latency
for the confirmation required for a missed command (Scenario 2) seems practically
acceptable. Alternatively, an in-band, authenticated communication channel [7] or a
more reliable communication channel such as a fiber link could be used.

4.5 Cost and Benefit Analysis

The detect-and-respond strategy embodied by the protection agent offers a number of
advantages as follows.

1. The protection mechanism is non-intrusive and truly add-on while strong crypto-
graphic mechanisms can be adopted to protect the communications between a field
network and the MTU (via a protection agent), without replacing any field devices
or modifying their code. No laying of new cables is needed, as wireless links like
mobile cellular networks could be used between protection agents and the MTU.

2. Compared to the bump-in-the-wire approach [1,14] which adds a new cryptographic
device per field device, a smaller number of protection agents are required, with one
required for each field network in most cases. A typical field network could have
at least 30 devices, whereas, the maximum number of field devices per network is
limited by the protocol’s address space. As an example, up to 128 and 65535 devices
per network are allowed for Sinaut 8FW and IEC60870-5-104 respectively. Hence,
compared with the bump-in-the-wire approach, the detect-and-respond approach can
reduce the number of cryptographic devices by a factor between 1/128 and 1/30. The
minimum number of protection agents needed for a SCADA system is roughly equal
to the number of its field networks. For instance, less than 100 protection agents are
needed to secure the SCADA system of Singapore’s 22 kV distribution grid (with
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∼10, 000 substations), whereas, 1–2 protection agents suffice to cover that of its
66 kV distribution grid (with ∼100 substations).

3. The protection agent would not become a bottleneck since additional protection
agents can be deployed to a given field network with many field devices (say, more
than 300 devices). In such cases, the set of field devices in a network can be grouped
into partitions based on their identities and multiple protection agents could be
installed in the network with each responsible for a distinct partition. Since any
number of protection agents can be added to a field network and the field devices
need not be aware of the presence of a protection agent, the solution is scalable.

4. The detect-and-respond strategy is particularly effective for defending against
insider attacks, which existing solutions like firewalls often cannot withhold. A fire-
wall normally cannot filter messages sent from a field device located behind it or
forged messages from outside if no authentication mechanism is in place. Unlike a
firewall, the protection agent does not present a single point of failure. If it is down,
the field network would still operate as usual, which is not the case for a firewall.

5 Conclusions

The instrumentation and control of a power grid is usually carried out by a SCADA
system which is a distributed network of cyber-physical devices taking measurements
and issuing commands at different parts of a power grid. Obscurity and operation in
isolation have long been the security strategy of SCADA systems. However, this is no
longer a reasonable assumption for SCADA systems in the smart grid context with
the need of connectivity with other relatively open networks. False command injection
is a real threat to legacy SCADA systems. While effective security mechanisms and
algorithms for command authentication are largely an overkill for implementation on
field devices in legacy SCADA systems, these devices would normally take decades
to be phased out as they are closely integrated with the power equipment. This paper
discusses and compares two different approaches, namely, the data diode strategy and
the detect-and-respond strategy, to secure legacy SCADA systems for safe integration
with other smart grid systems. A detailed comparison of the two approaches can be
found in Table 3.

The detect-and-respond strategy proposed in this paper presents a number of advan-
tages for securing legacy SCADA systems, including scalability and usability for a wide
range of smart grid scenarios. The proposed framework is also generally applicable to
different SCADA protocols and systems, while a concrete instantiation on Siemens
Sinaut 8FW protocol is presented in this paper. While the data diode strategy offers the
highest level of security guarantee, it can only be applied to a restricted number of use
cases wherein unidirectional data exchange suffices. In contrast, the detect-and-respond
strategy is a more flexible approach which can be applied in almost all scenarios but
generally offer a lower level of security guarantee and is more complex to design.
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Table 3. Comparison between the data diode and detect-and-respond strategy

Data diode Detect-and-respond

Security assurance Highest (EAL7) Medium to High

Applicable cases Limited range Wide range

Pros - Isolation preserved with a
high level of security
- No modifications on field
devices required
- Highly scalable, with only
one data diode required per
system

- Flexible to incorporate other tech-
niques for attack detection and neutral-
ization
- Allow bidirectional data exchange
- No modification on field devices
required
- Scalable

Cons - Only allow unidirectional data
flow from SCADA systems to
other systems
- Little flexibility

- More complex design required to
maintain security
- Design strongly dependent on the
SCADA protocols in use
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Abstract. We present RATLS, a companion library for OpenSSL that
integrates the Trusted Computing concept of Remote Attestation into
Transport Layer Security (TLS). RATLS builds upon handshake exten-
sions that are specified in version 1.3 of the TLS standard. It therefore
does not require any changes to the TLS protocol or the OpenSSL library,
which offers a suitable API for handshake extensions. RATLS supports
remote attestation as part of a complete TLS handshake for new connec-
tions and it augments session resumption by binding session tickets to the
platform state of TLS peers. We demonstrate that RATLS enables both
client and server to attest their respective software stacks using widely-
used Trusted Platform Modules. Our evaluation shows that the number
of round trips during handshake is the same as for traditional TLS and
that session resumption can reduce cryptographic overhead caused by
remote attestation for frequently communicating peers.

Keywords: TLS · TPM · Remote attestation · Trusted computing

1 Introduction

Transport Layer Security (TLS) [10] is the state-of-the-art protocol for securing
communication channels between two computers. It uses encryption and mes-
sage authentication codes (MACs) to ensure confidentiality and integrity for all
information that is transmitted over the communication channel. TLS also pro-
vides authentication to ensure that only the “right” communication partners
can successfully establish a TLS connection. The authentication method used
by TLS requires users to trust that the party who operates the remote computer
acting as a TLS peer will keep this computer secure. Typically, if Alice wants to
exchange data over TLS with a computer operated by Bob, she has to make two
assumptions: 1) Bob keeps the cryptographic keys needed for TLS authentica-
tion secret, and 2) the software running on Bob’s computer does what he claims
it does (e.g., not leak data received from Alice).

The Need for Verifiable Trust. Unfortunately, TLS on its own cannot provide
a verifiable proof that assumptions 1) and 2) actually hold. In certain highly-
critical use cases, such a proof is desirable, though. For example, Alice might
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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want an assurance that her valuable scientific data will only be processed by a
certain, trusted analysis program running on the cloud server that Bob rented
to her. And in an Internet-of-Things (IoT) scenario, lives might be at stake if
an attacker manages to manipulate the firmware of an IoT device. The risk that
TLS keys (assumption 1) and software integrity (assumption 2) are compromised
are much greater for a connected device that must be installed in a public place,
compared to a server behind the walls of a guarded data center. Thus, technical
measures are needed to reduce the trust in the operator of a remote computer
or the environment that surrounds it.

Trusted Computing. Remote Attestation is a cryptographic protocol that can
complement TLS by solving the two trust problems described above. First, it
is built on top of hardware support that is designed to protect cryptographic
secrets. Second, it provides one computer, the challenger, with a verifiable proof
that software running on another computer, the attester, is in a known-good
state. It works as follows:

1. Identifiability: The attester has a root of trust integrated into its hardware
that includes a cryptographic identity that cannot be forged. Through this
identity, the challenger can know what the attester device is and what its
capabilities are.

2. Integrity: The root of trust can create a digital signature over the code of
the software that has been started on the attester. Through this signature,
the challenger can know, if the software currently running on the attester will
be behave as required. Typically, the signature covers both system-level code
and applications, including the TLS protocol implementation that protects
the communication channel.

Roots of trust are much harder to compromise than pure software solutions
because the attacker has to manipulate tamper-resistant hardware. They are
available in various forms for many different platforms. A well-known implemen-
tation is the Trusted Platform Module (TPM) [4], which is nowadays built into
most desktops, laptops, and many servers.

TLS with Remote Attestation. Despite the clear security advantages,
Remote Attestation is complicated to deploy for application developers. No stan-
dardized protocol suite exists, but different root-of-trust implementations come
with their own protocol and software development kit. RATLS intends to sim-
plify the use of attestation by integrating it into the widely-used TLS protocol.
The integration leverages a feature of the TLS v1.3 standard [10], where applica-
tions can append user-defined extensions to TLS handshake messages. Using this
mechanism, RATLS is able to piggyback attestation-related messages onto TLS
handshake messages. The RATLS approach can be applied to any TLS imple-
mentation that supports handshake extensions. We built RATLS as a companion
library for the widely-used OpenSSL [2] implementation, which provides a suit-
able extensions API. The design of RATLS is also agnostic to the underlying
hardware root of trust. In this paper, we describe an RATLS plugin that works
with the widely-used TPM v2.0.
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Contribution. Our work on RATLS makes the following contributions:

– RATLS integrates remote attestation into TLS, thereby enabling verification
of the identity and software integrity of peers communicating via TLS.

– RATLS does not require changes to the TLS protocol nor modifications to
OpenSSL, thereby demonstrating that the approach is non-invasive.

– RATLS supports both full handshakes for new connections and TLS session
resumption for efficient reconnects.

– We evaluate API usability, security properties, and performance of an RATLS
prototype implementation using TPM v2.0-based roots of trust.

In the following Sect. 2, we describe relevant background. Sections 3 and 4 present
the design and implementation, respectively, and in Sect. 5, we evaluate RATLS.
We discuss related work in Sect. 6 before concluding paper in the Sect. 7.

2 Background

In this section, we describe the basics of TLS. We highlight those features of the
standard that are important for RATLS. Furthermore, we give an overview over
trusted computing concepts that enable remote attestation and secure storage.

2.1 Transport Layer Security

TLS enables two computers to communicate securely over an untrusted net-
work. The protocol is based on cryptography and it guarantees confidentiality
and integrity for all user data that is transmitted through the communication
channel. Two computers that wish to communicate over TLS must authenticate
themselves to each other. In the most common scenario, one peer, the server,
proves its identity through possession of the private key of an asymmetric sig-
nature key pair. The other communication partner, the client, can validate the
identity of the server using a publicly-known server certificate that contains
the public part of said key pair. Optionally, the client can also authenticate
itself to the server using its own private key and a corresponding client certifi-
cate. In so-called zero-trust communication scenarios using mutual TLS (mTLS),
certificate-based authentication is mandatory for both peers.

Security Assumptions. For all these variants of TLS, the attacker model
assumes that the private key used by a TLS peer is exclusively known to the
party that operates this peer. For example, if Bob operates a TLS-protected
server, then only Bob shall know the private key used by his server. Likewise,
only Alice shall be in possession of the private key used by her TLS client. A
computer operated by a third party like Eve can impersonate neither Alice’s nor
Bob’s machines, because she does not know their respective private keys. The
encryption and signature algorithms as well as the hash-based MAC schemes in
TLS v1.3 are state of the art and considered secure.
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TLS Handshake and Extensions. One TLS peer, the client, initiates the
secure communication by sending a ClientHello. The server replies with a
ServerHello message, which the client acknowledges in a third message. As
part of this three-phase handshake, the client and server present each other
their certificates and they negotiate the symmetric session keys for encrypting
and integrity-protecting the payload data that is transmitted after the chan-
nel has been established. In TLS v1.3, an application program can request the
TLS implementation to append user-defined extensions to certain TLS messages,
including handshake messages1. Extensions can contain up 64 KiB of arbitrary
data. They must follow a request–response scheme, where a specific extension
can only be appended to a reply message, if the previous message also contained
an extension of the same user-defined type.

TLS Session Resumption. Creating and validating signatures and exchang-
ing session keys incurs computational overhead. Furthermore, during the three-
phase TLS handshake, both client and server must wait for replies to arrive over
a potentially slow network, before they can continue with the protocol. To speed
up connection establishment between frequently communicating peers, TLS v1.3
supports session resumption. Using this optimization, a client can reopen a pre-
viously closed TLS session by sending a ClientHello message with a session
ticket that the server issued to the client while the original connection was active.
If the server recognizes the session ticket, only one network round trip is needed
instead of two round trips for the complete handshake. With session resumption,
both client and server skip the certificate exchange and key negotiation, as they
can reuse the session keys from the original connection.

2.2 Trusted Computing

The core idea behind trusted computing is to verify through technical means
that a computer and the software running on it conform to certain security
properties. This verification can be performed remotely from a second, already
trusted device in the case of remote attestation. But given the right hardware
and system-software support, trusted-computing concepts can also be used to
verify software that is running locally, like in the case of sealed memory.

Remote Attestation. In the first use case, a trusted challenger device requests
an attestation report from a remote computer called the attester. Like TLS, the
underlying cryptographic protocol uses the private part of a signature key pair2

to prove its identity. However, in contrast to TLS, which is pure software, an
implementation of remote attestation typically requires a hardware root of trust
that is integrated into the hardware of the attester device.3 This root of trust

1 TLS v1.2 supports extensions, too, but on fewer message types than TLS v1.3.
2 Some implementations use symmetric keys or a physically unclonable function (PUF)

instead, but the general concept is the same.
3 There are implementations of remote attestation that are software only, but they

assume a weaker attacker model.
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hides the private key in hardware to make it more difficult to forge. The root of
trust signs the executable code that is currently in control of the attester. If the
challenger recognizes that the signature has been created by a root of trust that
it deems trustworthy, it will know what kind of device the attester is and what
software is running on it. Based on the information in the attestation report
(e.g., a hash of the executable code on the attester), the challenger can then
decide whether to trust the attester’s software for the purpose it is interested in.

Sealed Memory. An attestation can also be done locally by the root of trust
on the attester device. Some trusted-computing platforms use local attestation
to protect confidentiality of user data by encrypting it with a storage key that
is also hidden in the hardware root of trust. The root of trust will only release
or unseal the plaintext copy of the data to the currently running software, if the
identity of this software is the one that has been specified as the “owner” when
the data had been sealed. Thus, it is possible to bind (i.e., restrict access to) user
data to a specific, authorized software configuration.

Trusted Platform Modules. A widely-used and thoroughly standardized root
of trust implementation is the Trusted Platform Module (TPM) [4]. TPMs can
create remote attestation reports (called quotes) and they support sealed mem-
ory. Quotes are computed over a set of Platform Configuration Registers (PCRs),
which store hashes of the software stack that has been started (ranging from
firmware over bootloader and OS to application programs). Like all roots of
trust, TPMs require operating-system support in terms of a device driver and
other system-level integration. This support includes the so-called TPM Software
Stack (TSS) [3] through which applications can interact with the TPM.

In the following, we will refer to the combination of root of trust and its
system-level support software as the Attestation Provider. We will also use Quote
as a synonym for “attestation report”, as this term is commonly used for many
root-of-trust implementations. RATLS integrates remote attestation into the
TLS handshake and it uses sealed memory to bind TLS session tickets to the
software configuration that was valid at the time of the initial handshake. Sealed
memory can also be used to protect TLS private keys, in addition to the identity
keys of the root of trust that are already hidden in hardware. Our prototype
implementation is based on a TPM v2.0-based attestation provider.

3 Design

TLS already provides confidentiality and integrity for all data sent through the
communication channel. Our main goal in improving it is twofold: 1) to enhance
authentication of TLS endpoints through additional identity checking, and 2) to
provide technical means for verifying the software integrity on these endpoints.
Thus, our aim for RATLS is to augment TLS with remote attestation such that
it provides additional security guarantees.
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3.1 Design Goals

In the following paragraphs, we define security goals as well as functional and
non-functional goals for the design of RATLS.

Freshness of Attestation Reports. To prevent replay attacks, it is essential
that pre-generation of attestation reports is not possible. Otherwise, an attacker
could intercept a valid attestation report and send it again when trying to spoof
an identity in an impersonation attack. To prevent replay attacks, RATLS must
include a nonce, which is generated by the challenger, in each attestation report
issued by the attester.

Mutual Attestation. In many distributed-computing use cases, both parties
need to trust each other. For example, in so-called zero-trust scenarios in cloud
environments, multiple services communicate with each other over TLS and both
client and server must authenticate themselves. To fully support such mutual
TLS (mTLS) connections, RATLS should enable mutual attestation as well.
Thus, both the client and the server shall be able to request an attestation
report from their respective peer.

Minimal Number of Handshake Messages. Round-trip messages require
both client and server to wait, which is particularly costly in case of high-latency
networks. Therefore, RATLS should not increase the number of handshake mes-
sages that need to be sent and received during handshake. We consider both
one-sided and mutual remote attestation for this design goal.

Session Resumption. In environments where connections are opened and
closed frequently between the same peers, the TLS standard allows a client to
resume a recently-closed session instead of performing the complete TLS hand-
shake with the server again. To keep the benefits of this optimization, RATLS
shall support TLS session resumption in a way that minimizes the cryptography-
related costs for creating and validating attestation reports.

“Don’t Roll Your Own Crypto”. The TLS standard and its implementations
have been subject to extensive review by a huge number of experts in the fields of
computer security and distributed-systems engineering. Therefore, we must avoid
changes to the TLS protocol and, ideally, RATLS should even be compatible with
an existing TLS implementation without further modifications. These two sub-
goals minimize the risk of RATLS introducing new security vulnerabilities. They
also reduce maintenance overhead and make it easier to keep RATLS up to date
with future TLS standards and implementations thereof.

Low-Barrier Adoption. The API offered by RATLS should be as simple as
possible and closely follow the API of the TLS implementation it improves upon.
This simplicity will make it easy for application developers to upgrade their
communication from traditional TLS to TLS with remote attestation.

Separation of Concept and Realization. Remote attestation is a Trusted-
Computing concept, but to use it in practice, it needs to be implemented for a
concrete computer platform with a suitable hardware root of trust. Therefore,
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we aim to integrate the platform-independent concept of remote attestation in
RATLS, but keep separate the support for specific attestation providers as “plu-
gins” that extend the RALTS implementation.

ServerHello
Certificate

CertificateReq
Certificate

AttestationReq

AttestationReq

Quote

Quote

ClientHello

Finish

Fig. 1. Simplified visualization of the TLS v1.3 handshake (left) and protocol steps of
remote attestation (right)

3.2 High-Level Design

The two sequence diagrams in Fig. 1 show simplified visualizations of the TLS
v1.3 handshake (left) and the steps of the remote attestation protocol (right).
Groups of arrows pointing in the same direction represent protocol informa-
tion that can be transmitted in a single batched message. For example, in
the TLS handshake, the server can send the ServerHello, Certificate, and
CertificateReq messages in a single reply to the ClientHello message. The
green and blue colors highlight conceptual similarities between establishing a
TLS connection and performing a remote attestation. They give an idea of how
the two protocols could be folded into one combined handshake, which estab-
lishes a mutually-authenticated TLS connection with mutual remote attestation
between client and server running in parallel.

Combined RATLS Handshake. RATLS builds upon handshake extensions,
which have been standardized in TLS v1.3 [10]. They allow an application to
append arbitrary information to the TLS messages that are exchanged during
the three-phase TLS handshake. The combined handshake works as follows:

1. At the beginning of the TLS handshake, the client and the server send the
ClientHello and ServerHello messages, respectively. RATLS appends to
these messages the attestation requests of both peers. An AttestationReq
message carries a nonce that the sender picked randomly in its role as a
remote-attestation challenger.

2. In their role as the attester in the remote-attestation protocol, the client
and server request a quote from the attestation provider of their respective
devices. Each quote includes the nonce received from the respective challenger
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and the recorded state of the software on the attester. Each attester must
also include the public counterpart to its TLS private key in the attestation
report. By including the public key, both parts of the combined handshake
are cryptographically linked.

3. In the final step, TLS validates the certificates. With RATLS, both parties
also check the validity of the attestation reports. The corresponding quotes
are piggybacked as extensions on the Certificate messages. At this stage
of the TLS v1.3 handshake, all messages and their extensions are already
encrypted. Thus, the quotes are never transmitted as plaintext.

The combined validation of the certificates and the attestation reports is more
complex than in pure TLS. In the final step of the handshake, the challenger
verifies that 1) the nonce is the one sent in step 1, and 2) the attester is indeed
in possession of the private key that signs information in the TLS part of the
handshake. To do that, it compares the public keys (embedded in the client
and server certificates) from the Certificate message to those in the quote. If
the public keys match, the connection is indeed end-to-end encrypted between
the client and server. In case of a mismatch of either the nonce or the public
key, a man-in-the-middle attack has been attempted and the handshake must
be aborted to prevent an insecure (i.e., not end-to-end encrypted) connection.

Properties of the RATLS Handshake. By piggybacking attestation-related
information on the three batches of TLS messages, we can integrate remote
attestation into TLS without additional network round trips. The combination
of both protocols is also convenient from application’s point of view. Once the
combined RATLS handshake completed, both client-side and server-side appli-
cations can be certain that the hardware identity and software integrity of the
remote peer have been verified and found to be trustworthy. If one of the peers
does not need an attestation report from the other party, it can just omit the
AttestationReq extension in its ClientHello or ServerHello message.

Session Resumption. When the client resumes a previously closed TLS ses-
sion, some parts of the handshake, including certificate exchange, are skipped.
Instead, the client presents to the server a session ticket that includes the pre-
viously negotiated session keys. This resume handshake is shorter and therefore
the remote-attestation protocol cannot be piggybacked on it. To provide the
additional security guarantees of remote attestation also with session resump-
tion, we borrow from TLS the idea of keeping session secrets for later use. In a
nutshell, our variation of the approach in RATLS works as follows:

1. During the lifetime of a TLS session, the server sends a NewSessionTicket
message to the client. This message carries the session ticket that the client
can later use to resume the session. In RATLS, the server creates a pair of
additional secrets, namely a client secret and a server secret. It appends these
secrets to the NewSessionTicket message and when the client receives this
message, it stores the server secret in sealed memory. The server keeps a copy
of these secrets, too. It seals the client secret.
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2. When an RATLS-enabled client resumes the session at a later point in time, it
unseals the server secret. It appends this secret to the ClientHello message
and sends it to the server. The server does the same with the client secret,
which it will send to the client in its ServerHello reply. Both client and
server then compare the received secrets with their locally stored copies.

We introduce the client and server secrets, because OpenSSL’s API does not
allow RATLS seal, discard, and later unseal session tickets. By sealing the secrets,
the client and server bind them to the software states that have previously been
attested as part of the RATLS handshake. The capability of the client and server
to unseal the secrets at a later time is used to prove that the session had originally
been established between remotely attested RATLS peer.

We discuss further details about RATLS session resumption and all other
parts of the implementation in the following Sect. 4.

4 Implementation

In this section, we describe an implementation of RATLS that is compatible
with the widely-used OpenSSL library. We describe in detail how the combined
RATLS handshake works, both for new connections and for session resumption.
We will also describe the plugin API for attestation providers and an example
implementation of such a plugin for TPMs.

4.1 Architecture

The general design of RATLS is independent of both the TLS implementation
and the attestation provider that is needed for a specific computer platform.
Although message extensions are part of the TLS v1.3 standard, not all TLS
libraries support them. The OpenSSL library does offer an API, which is based
on user-defined callbacks. We therefore built a companion library to OpenSSL
that implements our RATLS prototype as a callback-driven state machine on
top of this interface.

OpenSSL API for Message Extensions. Whenever OpenSSL creates or
consumes a TLS protocol message during the lifetime of a TLS session, it
calls a function that RATLS registered for the corresponding OpenSSL ses-
sion context (SSLContext). We refer to these two functions as AddCallback
and ParseCallback, respectively. Before sending a message, OpenSSL invokes
the AddCallback for any extensions that have been registered for that spe-
cific message. The callbacks can specify whether or not to add the extension
and what data to populate it with. When receiving a message, OpenSSL calls
the ParseCallback for all registered extensions. In this ParseCallback, we can
extract the extension data and also decide whether to abort or continue the hand-
shake. There is no way in OpenSSL to define a callback for a missing extension.
If the extension is not set, no callback is invoked. Also, according to the speci-
fication, TLS v1.3 does not allow applications to freely add extensions to arbi-
trary messages. Instead, extensions can only be appended if the same extension
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has already been added to the corresponding, previously received message. For
example, to add an extension to the Certificate message on the server side,
the same extension must be set in the ClientHello message.

RATLS State Management. OpenSSL defines additional callbacks for events
such as creation of a new session or certificate verification. RALTLS regis-
ters appropriate callback functions for all relevant events. When invoked by
OpenSSL, each of these callbacks receives a pointer to the current SSL session
object. In this object, the RATLS functions maintain an additional RASession
that represents the attestation-related state during the lifetime of the session.
The complete set of RATLS callback functions implement the generic concept
of remote attestation for TLS.

Attestation Provider Callbacks. Each of the RATLS functions invokes
another callback function that is implemented by an attestation provider plugin.
This second layer of callbacks separates the platform-specific root of trust and
its system-level support software from the generic parts of RATLS. When the
application initializes OpenSSL and RATLS, it must register the callbacks of the
attestation provider with their generic counterparts in the RATLS library.

4.2 RATLS Handshake with Remote Attestation

The sequence diagram in Fig. 2 visualizes the complete, mutual handshake for
both client and server attestation. For readability reasons, we explain in the
following paragraphs only how the server attests to the client. The steps for
attesting the client’s identity and software state to the server are analogous and
interleaved in the RATLS handshake as shown in Fig. 2.

Request Phase. Each TLS handshake starts with a ClientHello message
sent by the client to the server. If RATLS has been enabled for the specific
SSLContext, OpenSSL invokes the AddCallback for the remote attestation
request (RA REQ) extension. The AddCallback invokes another callback func-
tion for generating an RA REQ. This CreateRequest callback is provided by the
attestation provider. It is called in the client’s role as the challenger of the remote-
attestation protocol and its main purpose is to randomly generate a nonce.

Attestation Phase. Upon receiving the ClientHello message, the server
detects the RA REQ extension and invokes the ParseCallback. The server stores
the client’s nonce in the RASession part of OpenSSL’s SSL session object, such
that the next RATLS callback function can retrieve the nonce from there. The
handshake continues until the server intends to send the Certificate mes-
sage. OpenSSL calls the RATLS AddCallback, this time for the remote attes-
tation response (RA RES) extension. From this callback, RATLS invokes the
RemoteAttest function of the attestation provider plugin with the previously
stored nonce as a parameter. In the RemoteAttest function, the server’s attes-
tation provider creates a quote of the client’s nonce, the TLS public key, and the
system state. The user-defined data that has been passed via CreateRequest
will also be included in the quote. RATLS appends the quote to the Certificate
message.
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ClientHello
RA_REQ (nonce)

ServerHello
RA_REQ (nonce)

CertRequest
RemoteAttest

Quote
Certificate
RA_RES (quote)

RemoteAttest
Quote

Certificate
RA_RES (quote)

Create
Quote

Create
Quote

note nonce

note nonce

Attestation providerAttestation provider Client Server

Fig. 2. Remote attested handshake

Verification Phase. When RATLS on the client receives the Certificate
message via the ParseCallback, it stores the server’s quote in the client-side
RASession for later use. Later, OpenSSL invokes the certificate-validation call-
back of RATLS. Here, RATLS checks if the client application originally requested
an attestation. This information is expresses as a flag in the RASession. If the
flag is true and the server ignored the request, the handshake is aborted. If the
server did append an RA RES extension with a quote, RATLS calls the attestation
provider’s CheckQuote function with the original nonce and the received quote
as a parameter. In it’s role as remote-attestation challenger, it then checks the
quote’s signature, compares the copies of the public key in the TLS certificate
and the quote, and aborts the handshake if there is a mismatch. The CheckQuote
function also decides whether the server’s software state as reported in the quote
is acceptable or not.

4.3 RATLS Handshake with Session Resumption

When the client resumes a TLS session, RATLS uses the same callback-based
approach to create and inspect message extensions.

Binding Phase. Session resumption requires a preparatory step while a TLS
session is active. The specification allows the server to send a NewSessionTicket
message at any point during the lifetime of this session. When that happens, a
server-side RATLS callback function creates and appends two new secrets, the
client secret and the server secret, to this message. On the server, RATLS keeps
the server secret in plaintext, but it invokes the SealSecret callback function of
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its attestation provider plugin to seal the client secret. It then discards the plain-
text copy of the client secret. The client performs a similar procedure after receiv-
ing the two secrets in the RA RESUMPTION extension of the NewSessionTicket
message. It stores the server secret in sealed memory and keeps the client secret
in plaintext. Figure 3 shows the sequence of messages to perform this exchange.

NewSession-
Ticket

RA_RESUMPTION
ClientSecret

ServerSecret

(ServerSecret, ClientSecret)
Seal

ClientSecretSeal
ServerSecret

ClientSecret
ServerSecret

Attestation providerAttestation provider Client Server

Fig. 3. Attested ticket issuing

Unseal and Resume Phase. As explained at the end of Sect. 3.2, OpenSSL
does not allow RATLS to access the session ticket. Instead the client must
append the server secret to the ClientHello message when it wants to resume
an RATLS-enabled session. Since it discarded the plaintext copy after sealing
this secret, RATLS must first unseal it using the UnsealSecret function of its
attestation provider plugin. When the server receives the session ticket and the
client’s copy of the server secret via the ClientHello message, it looks up the
secret that matches the session ticket. It then compares the client’s version of
this secret with its own, locally found copy. It allows the session to resume, if
the two copies of the client secret match and the session ticket is valid. As shown
in Fig. 4, the server proves the capability to access its previously sealed copy of
the client secret in the same way.

Security of Session Resumption. Because of the way the TLS protocol
works, the NewSessionTicket message and its RA RESUMPTION extension are
end-to-end encrypted between client and server. However, when resuming, the
RA RESUMPTION extension attached to the ClientHello must be transmitted in
plaintext and the server secret is potentially revealed to an observing attacker.
Nevertheless, an impersonation attack cannot be mounted using just the server
secret:

1. TLS Session tickets are cryptographically bound to the client and server that
negotiated a TLS session. Therefore only a specific pair of client and server



RATLS: Integrating Transport Layer Security with Remote Attestation 373

Unseal

ClientHello
RA_RESUMPTION

(ServerSecret)

ServerSecret

Unseal
ClientSecret

ServerHello
RA_RESUMPTION

(ClientSecret)

Attestation providerAttestation provider Client Server

Fig. 4. Resumed attested handshake

processes have access to the pre-shared session keys associated with the ses-
sion ticket. Well-behaving TLS clients and servers do not compromise session
tickets and keys.

2. If there is a client and server secret for a session ticket, this session ticket
has been exchanged between two computers whose software stacks have been
verified and found to use well-behaving TLS implementations based on remote
attestation during the initial, non-resume handshake.

3. The fact that a server secret (or client secret) is presented during a resume
handshake means that the software on the client (or server) has been in the
correct state at the time of the resumption attempt. Otherwise, the attes-
tation provider of the respective device could not have successfully unsealed
the plaintext secret that the well-behaving RATLS implementation discarded
before. The pre-shared session key are required to complete the handshake.

Thus, despite their name, the client and server secrets are not used for crypto-
graphic purposes or as an authentication token. Instead, they merely serve as
a hint that the session that is being resumed has been previously negotiated
with a well-behaving client or server that must still be in the same software and
hardware state as at the time of the attestation. An eavesdropper has no use
for the secrets as the session is still cryptograhpically bound to the TLS session
ticket.

4.4 Attestation Provider Plugins

RATLS integrates the concept of remote attestation into the TLS handshake but
leaves the implementation open to a specific attestation provider. All attesta-
tion provider-specific functionality is offloaded to callbacks. This allows RATLS
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to be easily used with a variety of attestation providers. The API callbacks of
RATLS are described below. These callbacks could map directly to the attesta-
tion provider plugins API, making them trivial to use:

– CreateRequest is the callback that generates the nonce for the attestation.
Also user specific data could be included, which in turn then is also part of
the generated attestation report.

– RemoteAttest is called by RATLS upon receiving an attestation request. It
passes the requested nonce to the callback. This function should return a
quote based on the requested nonce.

– CheckQuote is called, when RATLS received a quote. This quote and the
expected nonce are passed as parameters to the function. The function returns
true, if the quote comes from a trusted attestation provider and matches the
requested nonce. Otherwise, false is returned.

– SealSessionSecret is called by RATLS upon receiving a session secret. This
callback binds the secret to the system state and returns the encrypted session
secret.

– UnsealSessionSecret is the inverse operation to SealSessionSecret. It
unseals the secret and returns it as plaintext.

RATLS must register two callback functions in the OpenSSL context to work as
intended. If an application registered its own callbacks for the same OpenSSL
handshake events, it would disable RATLS. Therefore, RATLS provides the fol-
lowing replacement callbacks, which such an application can use instead:

– CustomNewSession mirrors the functionality of the new session cb callback
in OpenSSL. It gets called when a session ticket is issued or received.

– CustomVerifyCallback mirrors the verify callback and is invoked when
OpenSSL verifies the certificate chain.

Customization. Registering these two callbacks is optional. Furthermore, the
behavior of RATLS can be adjusted by the following parameters:

– maxSessionTicketsNum specifies the maximum number of session tickets that
RATLS should keep stored, making it possible to limit the memory footprint.

– onlyAllowRemoteAttestedSessionResumption can be specified on the client
side to prevent the use of session tickets that resulted from unattested sessions.

– forceClientRemoteAttestation is a server-side parameter. When set to
true, the server will abort the handshake, if the client has not attested itself.
When false, unattested TLS connections are accepted, too.

RATLS TPM2. RATLS comes with a sample implementation of an attestation
provider plugin for TPM v2.0-based roots of trust. The RATLS TPM2 plugin
is based on Microsoft’s TSS.MSR [5] library, which allows communication with
both hardware and software TPMs. We use the C++ version of TSS.MSR, which
we extended with a driver back-end class for accessing TPMs via the /dev/tpm0
character device on Linux. RATLS TPM2 provides all callback functions that
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RATLS needs and it performs all TPM Quote, TPM Seal, and TPM Unseal oper-
ations that a TPM v2.0 attestation provider must use to fulfill its purpose. It
also verifies quotes using TSS.MSR, as a real implementation would do, but with
demonstration-only TPM storage and attestation keys.

5 Evaluation

In this section, we evaluate the usability, security, and performance of our RATLS
prototype implementation.

5.1 Usability

Activating RATLS for a specific OpenSSL context is as simple as performing
one initialization call. After that all handshakes in that context are attested. To
use RATLS with a specific attestation provider, the application just needs to
register the callback functions of the plugin library.

5.2 Security

RATLS is about integrating the concept of remote attestation into TLS, but
its security guarantees build upon the underlying attestation provider and its
system-level integration. These lower layers must ensure secure startup of appli-
cations that use RATLS. They also provide the functionality that RATLS needs
to request quotes that attest identity, integrity, and possession of certain secrets
for the system and application using RATLS. However, the specifics of their
implementation are out of scope for this paper, as RATLS does not need to alter
the quote format employed by the underlying root of trust. It transmits each
quote as an opaque piece of data. Furthermore, RATLS does not alter the TLS
protocol or its implementation, but rather extends OpenSSL through publicly
available interfaces. Therefore, we are confident that RATLS does not individu-
ally weaken the security properties of remote attestation or TLS. However, two
potential issues remain.

Code Size. First, RATLS itself contributes additional library code to an appli-
cation using it and therefore increases code complexity. Our prototype imple-
mentation adds 1, 145 and 384 lines of C++ code for RATLS and RATLS TPM2,
respectively. OpenSSL is much more complex, as the entire package consists of
hundreds of thousands of lines of code. The C++ implementation of TSS.MSR
comprises more than 30, 000 lines of code. Weighed against the stronger crypto-
graphic assertions offered by attestation, we consider this a worthwhile addition.

Protocol Composition. Second, although we reuse attestation and TLS with-
out modification, RATLS could introduce weaknesses at the meeting points of
both protocols. We performed a manual audit and identified one critical point:
Looking at Fig. 2, we observe that a malicious server could try to fake an attes-
tation response in the server-side RemoteAttest step. Instead of asking its local
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root of trust for a quote, the server could instead become a client to a new
attested handshake and pass along the quote obtained from this new connection
as its own. The original client would thus receive a valid quote as part of a valid
TLS connection, but from different remote machines. RATLS defends against
this attack by including the public keys of the TLS certificates in the measure-
ments that are reported by the quote. By comparing the keys in the quote and
the certificate, each peer can verify that the quote it received originates from
the machine terminating the TLS connection and not from a third party.

5.3 Performance

We evaluate the performance of our RATLS prototype implementation with
standard, non-attested TLS as a baseline. The evaluation was carried out on
two Raspberry Pi 4 single-board computers acting as client and server. Each
Raspberry Pi had an Infineon Optiga SLB 9670 TPM 2.0 plugged onto the
GPIO pin header of the device. Both devices were located in the same local-area
network with a round-trip latency of less than half a millisecond.

Baseline. We benchmarked four variants for establishing a TLS connection:
1) mutually-attested RATLS handshake, 2) RATLS session resumption using
sealing, 3) standard TLS handshakes, and 4) standard TLS session resumption.
Variants 3 and 4 represent the baseline, using the same OpenSSL version and
parameters as RATLS. All experiments were run 100 times. Table 1 shows the
average duration to complete the handshake for all four variants and for both
server and client side. Variation was low, as indicated by the standard devia-
tion (STDEV) figures in the table.

Table 1. Comparison of RATLS and TLS handshake duration

Benchmarks Server Client

Avg. time STDEV Avg. time STDEV

RATLS initial handshake 616.06 ms 2.92 ms 525.30ms 2.88 ms

RATLS resume handshake 156.23 ms 1.42 ms 114.28ms 1.30 ms

TLS initial handshake 52.89 ms 2.03 ms 52.60 ms 2.04 ms

TLS resume handshake 2.97 ms 0.38 ms 2.79 ms 0.37 ms

Initial Handshake Measurements. Mutually-attested RATLS handshakes
are significantly slower than standard TLS handshakes without remote attes-
tation. The observed 10x overhead is caused almost entirely by cryptographic
operations being performed inside the Optiga TPM. On average, TPM Quote and
TPM Seal operations take 212 and 42 ms, respectively. As the TLS handshake
protocol forces client and server to perform their quote operations one after
the other (see Fig. 2 on page 11), these costs add up for mutually-attested ses-
sions. The measurements also include the cost for sealing the session secrets on



RATLS: Integrating Transport Layer Security with Remote Attestation 377

the server. A breakdown of these costs, including the time spent on the TLS
part of the protocol, is shown in Fig. 5. Note that the client receives multi-
ple NewSessionTicket messages that trigger TPM Seal operations. But two of
these messages arrives after the handshake already completed on the client side.
Hence, their costs are not captured in the client-side figures in the table, but we
confirmed that the operations are performed by the client and the costs are as
expected.

Attest

TLS

Check quote

Seal
Unseal

TLS initial
handshake

TLS resume
handshake

RATLS initial
handshake

RATLS resume
handshake Duration handshake

in milliseconds

~ 525ms

~ 114ms

~ 52ms

~ 3ms

50 100 200 300 400 500

Fig. 5. Duration of client side handshakes in comparison

Resume Handshake Measurements. The TLS-only bars in Fig. 5 show that
TLS session resumption can speed up TLS re-connects. Fortunately, RATLS
can play the same trick to reduce the attestation-related costs. RATLS session
resumption is dominated by the duration of two TPM Unseal operations, one
performed by the client and one on the server. As unsealing is cheaper on the
Optiga TPM than generating a quote, RATLS re-connects are about four times
faster than a complete RATLS handshake. On the server, we measured 156 ms,
whereas the client finishes the resume handshake after 114 ms. Like above, for the
complete handshake, this difference is caused by session-ticket messages arriving
after the client-side finished the handshake.

Discussion. We acknowledge that RATLS takes significantly more time to
establish a secure connection than standard TLS. However, our benchmarks
represent a worst-case scenario, because discrete TPM chips like the ones we
used are among the slowest roots of trust that are available. Also, the relative
performance benefits of session resumption would be greater in higher-latency
networks (e.g., over the Internet); we used an Ethernet link with 0.5 ms latency.
The additional costs pay for the additional security guarantees that remote attes-
tation provides.

6 Related Work

RATLS integrates remote attestation into the TLS handshake. Other works have
explored integration at levels below or above the TLS protocol layer with result-
ing differences in usability or generality.
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SGX Remote Attestation with TLS. Knauth et al. integrated attestation
for Intel SGX enclaves with TLS [9]. They chose not to change or extend the
TLS protocol or implementation, but included an attestation quote into the
X.509 certificate used for authentication. A certificate extension is used to carry
the additional information. This method of integration is fully transparent to the
TLS layer and therefore works with any TLS implementation. However, a new
certificate must be minted for every attestation, complicating the interaction
with existing TLS certificate hierarchies. The paper therefore restricts its scope
to self-signed certificates. RATLS does not alter certificates and thus can fully
reuse existing certificate chains and the trust relationships they encode.

HTTPA. King and Wang proposed HTTPA, the HTTPS Attestable Proto-
col [8]. This work integrates attestation in a protocol layer above TLS, by propos-
ing changes to the HTTP layer. New HTTP messages are used to exchange
bidirectional attestation information. Consequently, no changes to TLS imple-
mentations or certificates are needed. However, attestation is specific to HTTP
and must be integrated into application-level code. By encapsulating attesta-
tion in TLS, RATLS gives developers TLS encryption with automatic remote
attestation for any application-layer protocol with just a few lines of code.

DECENT. Zheng and Arden published DECENT [11], which is an attestation
system for decentralized applications consisting of multiple distributed compo-
nents. These components mutually authenticate and attest themselves. In order
to save expensive attestation operations, DECENT proposes mechanisms to
perform attestation only once at component launch. TLS-based protocols like
RATLS would have to re-attest components for every established connection.
However, because we integrated session resumption, RATLS can keep attesta-
tion information alive and reusable, similarly saving expensive operations.

LightBox. Duan et al. describe an example of how trusted execution environ-
ments can be used to protect metadata of network applications. Their network
middlebox system, called LightBox [6], tightly integrates with Intel SGX [1].
Their proposed design is highly optimized for operation in SGX enclaves to avoid
computational overhead when handling packet routing inside an SGX enclave.
Although RATLS could use SGX as an attestation provider for an application
running in an SGX enclave, its goals are orthogonal. Namely, RATLS aims to
integrate the concept of remote attestation into the TLS protocol, so that it
can be used in a variety of applications with minimal effort on behalf of the
application developer.

Benefits of Remote Attestation. Other works point out security benefits of
trusted execution environments and using their roots-of-trust for remote attes-
tation. For example, Kim et al. published [7] case studies for leveraging of SGX
for privacy sensitive applications. In their use cases, they introduce attestation
schemes for inter-domain routing, mix relays like TOR, and other types of mid-
dle boxes. The goals and benefits of RATLS are similar to what they present
in terms of establishing a secure channel between attested endpoints or middle
boxes. RATLS could be used as a building block to implement such use cases
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and because of its modular design, it is compatible with a variety of attestation
providers besides SGX. But most importantly, our work aims to be a general
solution that is easy to use. Thus, by integrating remote attestation into the
TLS Handshake, RATLS makes it trivial to upgrade existing TLS connections
to remote attested sessions in many other application scenarios.

7 Conclusions

In this paper, we presented the design and implementation of RATLS, which
integrates the concept of Remote Attestation into the Transport Layer Secu-
rity (TLS) protocol. RATLS provides additional security guarantees for authen-
tication and software integrity of TLS endpoints. Our implementation builds
upon message extensions in v1.3 of the TLS standard. This approach requires
no modifications to the TLS protocol or its implementation, thereby minimizing
the risk of introducing new security weaknesses. Our prototype is compatible
with Trusted Platform Modules (TPMs), but thanks to a modular design, other
hardware roots of trust could be supported via attestation provider plugins.
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2020 research and innovation program under grant agreement No. 957216.
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Abstract. Shared folders are still a common practice for granting third
parties access to data files, regardless of the advances in data sharing
technologies. Services like Google Drive, Dropbox, Box, and others, pro-
vide infrastructures and interfaces to manage file sharing. The human
factor is the weakest link and data leaks caused by human error are
regrettable common news. This takes place as both mishandled data, for
example stored to the wrong directory, or via misconfigured or failing
applications dumping data incorrectly. We present Data Leakage Pre-
vention FileSystem (DLPFS), a first attempt to systematically protect
against data leakage caused by misconfigured applications or human
error. This filesystem interface provides a privacy protection layer on
top of the POSIX filesystem interface, allowing for seamless integration
with existing infrastructures and applications, simply augmenting exist-
ing security controls. At the same time, DLPFS allows data administra-
tors to protect files shared within an organisation by preventing unautho-
rised parties to access potentially sensitive content. DLPFS achieves this
by transparently integrating with existing access control mechanisms. We
evaluate the impact of DLPFS on system’s performances to demonstrate
the feasibility of the proposed solution.

Keywords: Data leakage prevention · Filesystem · Data management

1 Introduction

Most of today’s data breaches are due to human error caused by insiders (e.g.
misconfiguration, poor data governance), rather than attacks by hackers from
outside an organization1. Incorrectly configured applications and bugs are an
ever present threat to confidentiality of sensitive data. Examples of these sce-
narios include log files, which might contain incorrectly handled log level mes-
sages, and thus potentially leaking sensitive information such as usernames and
passwords, and stack traces or core dumps of crashed applications.

Several approaches [7,19,21] aim to address the issue, mainly through access
control or encryption, hence by restricting who can access specific storage struc-
tures (e.g. partitions, mount points, directories, files and/or zones). This is still
1 Fugue Survey Finds Widespread Concern Over Cloud Security Risks During the

COVID-19 Crisis, https://tinyurl.com/46zj4hwh.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Zhou et al. (Eds.): ACNS 2022 Workshops, LNCS 13285, pp. 380–397, 2022.
https://doi.org/10.1007/978-3-031-16815-4_21
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not sufficient if data are meant to be shared among various principals in a plat-
form, in case of data that is required to be accessible for various reasons (e.g. log
files that need to be accessible both for audit and debugging purposes), or if
datasets are incorrectly stored in locations not initially envisioned – like public
nodes of a Hadoop cluster in a hybrid cloud setting.

Several common use cases require data, possibly containing sensitive informa-
tion, to be accessible from different user/roles with different granularity/level of
completeness. Currently, the solution most used in practice is to create different
versions of the dataset for each purpose, which is expensive or even impractical
if large volumes of data need to be replicated. Alternatives, such as utilization
of techniques based on fully or partially homomorphic encryption have been
proposed [16]. These solutions incur significant performance penalties, however,
caused by the mathematical complexity of the algorithms required to achieve
required levels of security. As the adoption of tools like Dropbox2, Google Drive3,
and Box4 suggests, file systems offer a very popular approach to data sharing
across applications [13] and across systems [2].

Therefore, we propose Data Leakage Prevention FileSystem (DLPFS), a
novel mechanism to share data across multiple applications and systems lever-
aging state-of-the-art data type identification and de-identification technologies.
DLPFS exposes a POSIX file system API to applications accessing a protected
subtree of the file system. Practically, DLPFS acts as a middleware between
applications and the actual file systems, identifying and protecting sensitive data
on both read and write paths.

DLPFS allows data users to share data in a privacy preserving fashion across
multiple systems without the need to create bespoke copies of the data for the
target application. Moreover, DLPFS allows legacy applications to operate on
data de-identified on the fly, without the need of modifying the original applica-
tions. This removes the burden of modifying legacy and mission critical appli-
cations from the developers, allowing DevOps and SecOps teams to define fine
grained access control and privacy profiles, according to application and context
requirements.

The rest of the paper is organized as follows. Section 2 introduces the design
principles of DLPFS and its operational steps. Section 3 and 4 present the imple-
mentation of the DLPFS prototype and discuss empirical performance evalua-
tions. Finally, Sect. 5 compares our solution with the state of the art and Sect. 6
summarizes the contribution and depicts possible future directions.

2 Data Leakage Prevention FileSystem in Practice

DLPFS operates as a middleware between a software application and the file
system stack. The DLPFS conceptual architecture is shown in Fig. 1.

2 https://www.dropbox.com.
3 https://www.google.com/drive.
4 https://www.box.com/.

https://www.dropbox.com
https://www.google.com/drive
https://www.box.com/
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Fig. 1. Overall modules architecture
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Fig. 2. Data flows

The system exposes a POSIX filesystem API that proxies all requests per-
formed by a client application to the actual filesystem. DLPFS intercepts all
read and write operations and acts on the transferred data according to the
instructions specified in the knowledge base. The two supported read and write
flows are sketched in Fig. 2a and Fig. 2b.

The key idea behind DLPFS is to intercept and analyse data as it is trans-
ferred between the data storage and applications. Inspection and transformation
operations can generally be applied to streams of raw data. Hence, there is no
strict need for DLPFS to be aware of the format of the files where the data is
being read from or written to, or their structure.

However, having knowledge of the file structure improves how information
is handled in specific scenarios, leading to more accurate data detection and
data transformation. As an example, consider an application that loads data
from a Comma-Separated Values (CSV) file into memory by sequentially reading
blocks of 1, 024 bytes of data. According to the CSV format, information is
stored within data fields that are separated by a comma character (‘,’) and
groups of fields, i.e. rows, must be terminated with a newline character (‘\n’).
Ignoring such terminators and processing data in blocks with a fixed size of
1, 024 bytes can result in a high probability of processing truncated data, which
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might lead to incorrect classification of the represented information. Therefore,
identification and transformation must be performed on the data in a format
dependent and semantically consistent manner, and DLPFS achieves this by
loading and processing data with a strategy respecting file format specifications
and encoding.

For this reason, minimal support for common file formats like CSV, XLS, or
JSON positively impacts the precision of detection and utility preservation, by
reducing the risk of incorrect classification of data blocks, and the probability of
damaging the file structure.

When a read or write operation is intercepted, DLPFS inspects the raw data
that is being read (or written) in order to identify potentially sensitive infor-
mation. On read, DLPFS retrieves a certain amount of bytes before and after
the buffer requested by the client application. We call this additional amount of
bytes guard. This allows the identification of sensitive patterns that are expand-
ing beyond the acquired buffer. The application of guards is in addition to the
ability to support specific file formats, allowing DLPFS to also handle exotic
file formats. The client application receives only the amount of data initially
requested while the other bytes are kept internally by DLPFS as a cache. Thus,
improving retrieval time for sequential read.

On the other hand, on write, DLPFS delays the flush operation to be able
to perform detection of sensitive information beyond the individual buffer.

These operations require DLPFS of being aware of all applications accessing
files within the directory exposed by DLPFS, basically mimicking the behaviour
of modern operating systems. The size of the left and right guards can be defined
by the user based on empirical observations, or be predefined by the file type. The
latter strategy allows better precision and utility preservation, while requiring
the ability to correctly identify file types with extensive work to expand the
support for unconventional, or custom file types.

The definition of sensitive information is provided through a Knowledge Base
(KB). The KB contains information about the definition of sensitive information,
and instructions on how the identified information should be treated. DLPFS
supports several types of data transformation, ranging from simple redaction,
where the identified values are being replaced with blanks or ‘*’, to semantic
and format preserving masking [5] and anonymisation techniques such as data
generalisation and local differential privacy.

The main advantage of the proposed approach lies in the transparency that
the solution provides. DLPFS can be deployed as a protection layer in order to
reduce the privacy risk in a number of scenarios. For example, by providing access
to data files for monitoring purposes to a third party system, while preventing
leakage of incorrectly handled information produced by applications in testing or
debug mode. This way, it is not required to modify the application consuming the
data, as DLPFS can be transparently deployed to inspect, and redact, the data
that such an application is consuming and/or producing within a specific portion
of file system. The sole effort required is to properly define and validate in the
KB the specifications for detection and transformation of sensitive information.
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As an example of such validation, transformations applied need to be consistent
with the original data format, if the expected applications are sensitive to data
format.

3 Implementation Details

A prototype has been implemented to validate the feasibility of DLPFS and
to test its impact on performance. The code is available as open source5 for
community validation.

Following agile best practices, we concentrated on creating a proof of concept
implementation. This means leveraging languages and framework that would
speed up the development and testing of the system.

For this reason, we created a prototype using Python (version 3.8) and
python-fuse as main development library.6 This library exposes the Python
bindings of FUSE [20]. The reasons behind these choices are as follows. Python
is a popular language for rapid prototyping, thus allowing fast experimentation
of various strategies for rules and transformation application. Similarly, File sys-
tem in User Space (FUSE) is the de-facto standard for user-space applications
exposing a filesystem interface.

These implementation choices have known drawbacks. Namely, using Python
as main language introduces performance penalties, which can be overcome by
implementing the application in a more canonical system language (mainly C or
C++). Similarly, the fact that the main functionality of DLPFS are executed
in user space introduces another performance penalty, as we will present and
discuss in the evaluation section. An implementation in a more canonical system
language would have yielded better performance, however, we are accounting
for this in the evaluations. Nonetheless, these design choices come with advan-
tages. We want to highlight two in particular. First particular, the simplicity
and rapidity of development overtake performance consideration at prototype
stage. Making this solution easily extensible for further developments. Secondly,
the fact that the system runs in user space fosters for its utilization in low priv-
ileges container environments, thus further reducing the security risk of running
application in environments like Kubernetes.

The prototype consists of a main application that is in charge of run-
ning FUSE. Invoking the dlpfs module from Python requires three mandatory
parameters, namely: -t, specifying the file system type; -r, specifying the root
directory; -m, specifying the mounting point; and optionally -s, that is the path
to the behaviour specification file.

Currently, the prototype supports two types of file systems: (i) dlpfs, and
(ii) LoopBack. The latter is a simple LoopBack (LB) file system that mirrors the
content of the root directory to the mounting directory, and its purpose is only
to fairly benchmark DLPFS, as will be discussed in Sect. 4. The former, dlpfs,
is the actual implementation of the method presented in Sect. 2.
5 https://github.com/IBM/data-leakage-prevention-filesystem.
6 https://github.com/libfuse/python-fuse.

https://github.com/IBM/data-leakage-prevention-filesystem
https://github.com/libfuse/python-fuse
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The behaviour specification file contains instructions to DLPFS regarding
which data flow to protect (write, read, or both), which patterns to protect and
what transformation to apply to the detected patterns. A simple example of
this specification file is presented in Fig. 3. The structure of the file is simple. It
consists of a JavaScript Object Notation (JSON)7 object containing the following
fields:

– do_read, a boolean value indicating if read data flow should be protected
– do_write, a boolean value indicating if write data flow should be protected
– rules, a list of rules to be applied on read and/or write operations.

Each rule is a JSON object containing two fields:

– patterns, a list of patterns identified within this rule
– transformation, the transformation to apply to the detected bytes

Currently, DLPFS supports two types of patterns: regular expressions – imple-
mented using the Python wrapper for re28 – and lookup tables. Other types of
patterns – for instance those presented in [5] – are envisioned to be added to the
system according to the needs presented in use cases.

DLPFS currently supports a small but functional set of transformations:
redaction, masking, generalisation, and anonymisation. Redaction is imple-
mented as a specialisation of masking where the detected bytes are replaced
with a predefined character, set as default to ‘*’, preserving the length of the
replaced bytes. Masking, on the other hand, replaces the value with another
fictionalised value within the same domain [5,22]. Generalisation is a special
type of masking, where the identified value is replaced with a more generic value
within the same domain, for example replacing the value “Single” with “Not
Married”, when protecting values within the Marital Status domain. Generalisa-
tions are performed using external knowledge bases like type hierarchies. Finally,
DLPFS supports a lightweight form of local differential privacy. This is achieved
by replacing numerical values with the output of the application of a differential
privacy mechanism [11].

4 Experimental Evaluation

This section describes the evaluation setup used to validate the performance of
DLPFS.

4.1 Setup

A number of experiments have been conducted in order to assess the impact
of DLPFS on the performance of read and write operations. The benchmarks

7 https://www.json.org.
8 https://github.com/google/re2/.

https://www.json.org
https://github.com/google/re2/
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{

"do_read": true,

"do_write": false,

"rules": [{

"patterns": [{

"type": "re",

"spec": "(:?\\w|\\.)+@(?:\\w|\\.) +\\.\\w{2,4}

"

}],

"transformation": {

"type": "redact"

}}, {

"patterns":[{

"type":"re",

"spec": "Account \\s+total:\\s+( -?\\d+\.\\d{2})"

}],

"transformation": {

"type": "diff_priv",

"mechanism": "laplace",

"e": 0.01,

"d": 0.2

}

}]

}

Fig. 3. Example of behaviour specification file content

presented and discussed in the remainder of this section have been executed
on a Virtual Machine (VM), equipped with an Intel® Xeon® Gold 6140 CPU
2.30GHz vCPU with 4 vcores, 8GB of RAM, and Storage Area Network (SAN)
drives.

This scenario mimics a common production environment, where applications
are running in a virtualised environment and the hardware stack is abstracted
to the user. It is not uncommon for the storage system of such virtualised envi-
ronments to be mounted as a remote filesystem, leveraging technologies such as
Network FileSystem (NFS)9.

Thanks to this approach, for instance, directories can be easily shared across
different virtual machines within the same cloud infrastructure, and data can
easily migrate across different environments. This introduces additional penal-
ties to the performance of read and write operations through network factors
such as latency, jitter, and congestion. Therefore, it is paramount to define an
unbiased and clear baseline for performing objective and accurate benchmark
measurements.

9 https://tools.ietf.org/html/rfc7530.

https://tools.ietf.org/html/rfc7530
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As described in Sect. 3, the initial DLPFS prototype has been developed
by extending the fusepy10 library. The performance impact of the protection
offered by DLPFS has then been measured by comparing its throughput with
that obtained from a simple LoopBack (LB) filesystem implementation that also
extends the fusepy library.

A LoopBack file system is a simple pseudo-file system implementation that
accesses content from a storage device at a given path, and renders it available
at a different path. In other words, it simply forwards read and write opera-
tions without introducing any additional computational steps. For any given
benchmark test, the performance of such LB implementation has been used as
a baseline for the experiments, thus accounting in the comparison for the com-
putational overhead caused by using fusepy library and network delays.

4.2 Methodology

The experiments have been conducted as follows.
First, a number of synthetic datasets have been generated using the Python

library faker11, a popular open source library for the generation of synthetic
data. The data schema of these datasets is the following:

– id contains a monotonically increasing sequence number. It reflects the typical
row identifier present in most datasets. Its values range from 0 to N−1, where
N is the number of rows contained in the dataset.

– icd contains a valid International Classification of Diseases (ICD) value with
probability 0.05, or an empty string. The ICD is an international coding
standard maintained by the World Health Organization (WHO), which is
globally used as diagnostic standard for epidemiology, health management,
and clinical purposes. This field contains valid values for the version 10 of the
standard.12

– amount contains a randomly generated currency value. Its values range from
1 to 1, 000 US dollars, with up to 2 decimal places. The values are sampled
uniformly from the domain.

– message contains a variable length string representing a text message, or a
comment, and it is composed by concatenating: (i) A randomly generated
sentence, with length varying between 3 and 9 words. (ii) A first keyword
with probability 0.01. (iii) A second keyword with probability 0.1. (iv) A ran-
domly generated email address with probability 0.05. (v) Another randomly
generated sentence, comprised of 3 to 9 words.

The test data is then represented in CSV format13 and an excerpt of a test
dataset is shown in Fig. 4.

10 https://github.com/fusepy/fusepy.
11 https://faker.readthedocs.io.
12 https://icd.who.int/browse10/2019/en.
13 https://tools.ietf.org/html/rfc4180.

https://github.com/fusepy/fusepy
https://faker.readthedocs.io
https://icd.who.int/browse10/2019/en
https://tools.ietf.org/html/rfc4180
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...
124,"G30.1"," $683 .91"," Force food second. Direction note his finish case."
125,"C00.6","$3.97"," Carry wish quickly industry ... International visit ..."
126,"F71.8"," $355 .56","The politics mother resource ... Charge fill that ..."
127,"D51.3","$93.64"," Born industry here ... Health ever nearly achieved ..."
128,"G29.3","$87.94"," Role method must ... FrequentKeyword. Late why hold ..."
129,"F71.1"," $159 .71"," Father go everybody ... Big according he move."
130,"B20.3"," $874 .19"," Chance data under line left ... FrequentKeyword ..."
131,"C00.2"," $825 .05"," Nation cut last old... vanessa36@cox -mata.net ..."
...

Fig. 4. Example of generated data.

We created several of such CSV test datasets with sizes ranging from 1 to
20, 000 rows, where each row amounts to approximately 100 bytes, and we then
performed two main batches of experiments.

The first batch concentrates on exploring the performance impact of DLPFS
on read operations, while the second one concentrates on measuring the impact
on write operations.

Read Strategies. We tested a number of read strategies, with the objective of
simulating behaviours that are commonly followed by applications while reading
the content of an input file. Namely, we simulated the following scenarios:

– Entire file content loaded in memory as pandas14 dataframe, this strategy
replicates the usual behaviour of a data scientist or machine learning practi-
tioner.

– Entire file content entirely copied in memory, another common practice to
load and process the content of files

– Scan file content one row at a time, delegating to Python the identifica-
tion of row boundaries, typically via the new line character (\n). This is the
behaviour of row-oriented programs or scripts.

– Read file content using Operating System (OS) operations with varying read
buffer size between 10, 100, 1, 000, and 10, 000 bytes. This strategy simulates
sequential access to file when loading fixed size buffers, for example when
data objects are deserialised from disk.

Write Strategies. Similarly to how the read performances were tested, we also
executed benchmarks of different behaviours with respect to writing files to disk.
Namely, we simulated the following writing patterns:

– Entire file content written to disk as pandas dataframe, this strategy repli-
cates the usual behaviour of a data scientist or machine learning practitioner
who is storing the result of a computation to disk.

– Entire file at once, this pattern simulates an application saving the all the
output at once, or a program faulting and creating a memory dump.

14 https://pandas.pydata.org/.
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– Row by row, this pattern mimics the behaviour of an application periodically
logging messages to disc.

– Field by field, this pattern replicates the behaviour of an application incre-
mentally writing the produced output.

DLPFS Configuration. As we will show later in this section, the most important
factor on the performance of DLPFS resides in its configurations, in terms of
identification pattern and guard sizes. We tested numerous configurations. First
of all, we tested the overhead caused by the DLPFS architecture. This has been
done providing a configuration with no patterns or transformation. After that
we tested with different types of patterns, namely regular expressions of various
complexity and coverage. We tested the impact of an administrator specifying
not optimised regular expressions (i.e. containing unnecessary greedy operators,
or containing overlapping parts) against precise patterns. We then tested the
performance impact of using different guard sizes, ranging from 0 (i.e. no guard)
to 256 bytes. Note that the effectiveness of guard size relates to the block size
of the Hard Disk Drive (HDD), or in our case of the SAN. Generally, modern
HDD block size is set to a value between 512 bytes to 4, 096 bytes, while the
SAN block size is generally between 4 kilobytes to 1, 024 kilobytes.

Matching Cases. The last variable in our evaluation is the percentage of matches
encountered by the privacy protection policies when executing the read or write
operation. More precisely, we tested several policies that differ in the number
of matching patterns with the file that is being read or written. As it will be
presented in Sect. 4.3, this is one of the factors that most impacted performance
of the system. We tested three main cases:

– No matches. Thus, specifying patterns that were by design not existing in
the test data.

– Few matches. In this case we used a set of patterns having a low proba-
bility of match within the test data. More precisely, we tested patterns with
probability 0.01 of being present in the test data, according to both data
construction and post data generation assessment.

– Many matches. In this case we used a set of patterns having a higher
probability of match within the test data. Specifically, we tested patterns
with probability 0.10 of being present in the test data, according to both
data construction and post data generation assessment.

Finally, we also tested different strategies in terms of how the patterns are
matched, and how the patterns behave. For example, we noticed in the prelimi-
nary evaluation how the structure of patterns implemented as regular expression
produced very different results depending on whether the regular expression itself
had certain characteristics. As one would expect, optimised regular expressions
with less overlapping parts and less greedy operators were performing better.
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Table 1. Transformations time.

Transformation Time (ms)

No transformation 3.459
Redaction 6.113
Masking 151.982
DP noise 319.207

4.3 Results and Discussion

We repeated executions of the experiments 30 times, and report mean, 10th, and
90th percentile of the execution time.

Before analyzing the performance of DLPFS, let us argue about more general
observations. First of all, the experimental evaluation clearly shows the impor-
tance of the correct selection of the detection engine. One might notice how,
with no detection, DLPFS behaves exactly as the LB baseline, which means
that the additional buffering is not impacting overall read/write performances.
Let us also remark that the time taken by the actual transformation is negligible
when compared with the detection, as demonstrated by preliminary execution of
DLPFS with configuration specifying no transformation, redact, masking (ran-
domisation) or differential privacy noise addition. Table 1 presents the average of
30 runs over randomly generated 20, 000 numerical values transformed with the
strategies supported by DLPFS. In fact, the average time required for processing
20, 000 numerical values takes is, 3.459, 6.113, 151.982, and 319.207 milliseconds.
The only exception is the application of noise addition in a differentially private
fashion. This is caused by two factors. The first one relates to the fact that the
used framework has been designed to operate on vectors of values, not individual
ones. Secondly, the framework is designed to sample noise from a distribution in
a secure manner (see [10,14]), a procedure that introduces additional complexity.

On the other hand, as patterns are detected the reader should notice an
increment in execution time. The amount of execution time directly depends on
the amount of matches the pattern has in the file, as one would expect. Moreover,
the engine actually used for the detection of the patterns greatly impacts the
amount of time spent in this phase. This analysis of difference in performance,
for example between re and re2, is beyond the scope of this paper and it has
been previously discussed.15 For the rest of this we will present only the best
performing detection engine configuration.

Similarly, the strategy of operation affects the performance. For example,
Fig. 5 shows the difference in time required to process different files reading, or
writing, using the different strategies.

A common pattern that can be observed, is that the time increases linearly
as the file sizes increase. This is an expected behavior, and follows the trend of
the baseline, even if generally with a more steep slope. This is shown in Fig. 6,

15 https://pypi.org/project/re2/#performance.
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(a) Read strategy (b) Write

Fig. 5. LB performance, varying file size, all strategies

where we present the trend for two special cases. The first one, Fig. 6a, where
the protection policy is set to empty, and a second one, Fig. 6b, where the policy
has no match in the processed data. The experiments performed on the write
path provide a similar picture, although the overhead of validating data on write
is greater than for read, as shown in Fig. 6c and Fig. 6d.

Figure 7 shows the execution time of the introduced policies when the entire
file is read as a block of data. The first observation is that the guard size does not
seem to impact significantly the performance. On the other hand, the specified
patterns greatly impact the overall performance, as clearly shown in Fig. 7 and
following. A poorly optimised set of patterns, as shown in Fig. 7a, reduces the
system performance greatly, while a set of patterns with similar hit ratio but
with more optimised regular expressions still shows a significant but from a
practical viewpoint acceptable overhead (see Fig. 7b). On the other hand, in
case of patterns with few hits in the data, the performances are affected by less
then 30%, as shown in Fig. 7c and Fig. 7d.

Figure 8 shows how the performance changes with the guard size. Once can
notice how there is no significant variation as the guard, which we remind is
the amount of bytes DLPFS reads before and/or after the buffer required by
the user, ranges from 0 to 256 bytes. One might only notice a shift on the y-
axis caused by the different number of matches between Fig. 8a, having many
matches, and Fig. 8b, having fewer matches.

Similar as for read, also the write pattern performances are mostly influenced
by the pattern itself and the privacy protection policy enforced. Figure 9 presents
an overview of the impact. The performance can degrade up to twice in case of
many matches, as shown in Fig. 9b, but can be deemed generally acceptable for
non real-time services.

After this analysis, we can conclude the DLPFS has known costs in terms
of performance, but compares favourably considering the additional protec-
tion provided. In fact, the mentioned motivating scenario assumes DLPFS to
be deployed as additional protection layer, thus generally providing a minimal
impact on application’s performance as shown in Fig. 6, while providing addi-
tional guarantees in rare but critical events. This is further corroborated by
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(a) Read: No pattern specified (b) Read: No matching pattern

(c) Write: No pattern specified (d) Write: No matching pattern

Fig. 6. Minimum penalty of DLPFS over LB

Fig. 10, where we present the throughput of an application reading (Fig. 10a)
and writing (Fig. 10b) data. This application behaves according to the following
pattern: first it reads(/writes) non sensitive data. At t = 100 the application
accesses a protected pattern, after which it resumes normal operation.

5 Related Work

Properly protecting data outsourcing or sharing, even locally, is an open issue.
Several works have been proposed to address these issues in specific context,
with particular focus on context where sensitive data are pervasive, like in the
healthcare domain [6]. The majority of the proposed approaches leverage, one
way or another, cryptographic-based techniques. For example, [21] presents a
cryptographic-based access control mechanism to selectively limit access to sen-
sitive parts of the file. Similarly, [7,19] describe a system, and associated archi-
tecture, to introduce cryptography-based techniques in federated health infor-
mation systems. The authors show the feasibility of improving the security of
such systems by adopting proper mechanisms to protect the exchanged data and
the provided functionalities from malicious manipulations. Still in the healthcare
domain, other approaches – like the one presented in [23] – tackle the problem of
data sharing using a microservice approach. Hence, data is provided on demand
using highly restricted access control rules, to reveal data on a need-to-know
bases, and transforming the data in an abstract data format before release, thus
limiting the risk of data leakage.
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(a) Not optimised (b) Many match

(c) Few match (d) Dictionary

Fig. 7. Read performance, varying file size, pread-1000

Other approaches rely on different ways to encode the files on storage. For
example, [18] presents a new file system that focuses on the privacy protection
of the on-disk state. This is achieved by re-ordering data in user files at the bit
level, and storing bit slices at distributed locations in the storage system. On the
other hand, [8] presents a stackable filesystem that leverages trusted hardware to
provide confidentiality and integrity for user files stored on untrusted platforms.
A similar idea is presented in [15], where the authors propose a technique that
involves using a hash function that uniquely identifies the data and then splitting
data across multiple cloud providers. This is done following a “Good Enough”
approach to privacy-preserving cloud data storage, which has been proven to be
both technologically feasible and financially advantageous. Moreover, [3] presents
a statistical Data Leakage Prevention (DLP) model to classify data on the basis
of semantics. This study contributes by using data statistical analysis to detect
evolved confidential data. A fairly a summary and comparison of DLP systems,
techniques and research directions is also provided in [4].

The work the most similar to DLPFS is presented in [17]. The authors anal-
yse and propose mechanisms to enhance the disclosure control of personal data.
The scheme, called the Hippocratic Filesystem, stores personal data’s purpose
and use limitation as the data’s label, propagates the label as the information
flows from one place to another, and enforces the label to prevent accidental dis-
closures. DLPFS, on the other hand, presents a complementary method, where
data is transformed either at reading or writing time. Similarly, [1] proposes the
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(a) Many matches (b) Few match

Fig. 8. Read performance, varying guard size

(a) Not optimised (b) Many match

(c) Few match (d) Dictionary

Fig. 9. Write performance, varying file size

so called Hippocratic databases (HDB), which presents similar concept to the
filesystem approach previously presented, but in the context of a centralised
database. Moreover, [24] presents a Windows file system that transparently
encrypts files automatically according to encryption strategies. This work is com-
plementary to the approach here presented. The main differentiation is that in
DLPFS it is not mandatory to access the protected data through DLPFS itself.
A file directory can be protected while accessed from some applications, while
others can access the data without interacting with DLPFS, thus introducing
a performance penalty only when deemed necessary. Leveraging HDB, a P2P-
based solution to tackle the private data sharing problem in social networks
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(a) Read pattern (b) Write pattern

Fig. 10. Throughput of the test application

has been presented [12]. The identification and transformation capabilities of
DLPFS are inspired by the work in [5], which presents a toolkit that contains
functionality for the detection and format preserving transformation of values.

Finally, an extensive survey of masking anonymisation and cryptographic-
based methods for outsourced data storage is presented in [9]. This survey was
instrumental to the design of DLPFS because, even if the application scenario
is different, the referenced techniques can be ported to DLPFS.

6 Conclusions and Future Work

We presented DLPFS, a novel data leakage prevention file system middleware,
to protect sensitive information potentially stored in shared systems. We demon-
strated the technical feasibility and experimentally evaluated the performance
impact of the system. In particular, the evaluation demonstrated that little to
none overhead is introduced by DLPFS on normal file-based operations, with
reductions in performance detected only when sensitive data is protected.

Future work can focus on four main aspects. First, scaling up the concepts
illustrated here in a purely distributed setting, for example by porting the proto-
type to Java to enhance HDFS. Second, the extension of the capabilities offered
by DLPFS in terms of data transformation. This could materialise as an inte-
gration with more established data privacy frameworks. Third, to extend data
detection capabilities, for example with the integration of contextual informa-
tion, such as file metadata, application and user operation, during the detec-
tion process. Fourth and finally, we envision to integrate DLPFS with con-
ventional access control frameworks, to simplify configuration management and
deployment.
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of this work, and to Vassilis Vassiliadis for helping reviewing the writing.
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Abstract. The amount of data stored in data repositories increases
every year. This makes it challenging to link records between different
datasets across companies and even internally, while adhering to privacy
regulations. Address or name changes, and even different spelling used
for entity data, can prevent companies from using private deduplica-
tion or record-linking solutions such as private set intersection (PSI). To
this end, we propose a new and efficient privacy-preserving record link-
age (PPRL) protocol that combines PSI and local sensitive hash (LSH)
functions, and runs in linear time. We explain the privacy guarantees
that our protocol provides and demonstrate its practicality by execut-
ing the protocol over two datasets with 220 records each in 11–45 min,
depending on network settings.

Keywords: Privacy-preserving record linkage · Entity resolution ·
Private set intersection · Local sensitive hash · Information privacy ·
Data security and privacy · Secure two-party computations

1 Introduction

Entity resolution (ER) is the process of identifying similar entities in several
datasets, where the datasets may belong to different organizations. While these
organizations would like to join hands and analyzes the behavior of matching cus-
tomers, they may be restricted by law from sharing sensitive client-data such as
medical, criminal, or financial information. The problem of matching records in
two or more datasets without revealing additional information is called privacy-
preserving record linkage (PPRL) [11] or blind data linkage (BDL) [10] and is
the focus of this paper. A survey of PPRL methods is available in [18]. The
importance of finding efficient and accurate PPRL solutions can be observed,
for example, in the establishment of a special task team by the Interdisciplinary
Committee of the International Rare Diseases Research Consortium (IRDiRC)
to explore different PPRL approaches [1].
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The PPRL problem is a generalization of the well-studied private set inter-
section (PSI) problem in which two parties with different datasets would like to
know the intersection or the size of the intersection of these datasets without
revealing anything else about their data to the other party. Examples for PSI
solutions include [5,6,12,21,33,35]. With PSI, the two parties compute the inter-
section of their respective sets, which can be used to identify matches by looking
for records that share the same identifying field e.g., PSI over social security
numbers (SSNs). However, in reality, such identifying fields do not always exist,
and even when they do exist, their content may be entered incorrectly or differ-
ently. For example, consider two parties that perform PSI on entity names. A
single user may register himself in different systems under the names: ‘John doe’,
‘John P Doe’, ‘john doe’, just ‘John’, or even ‘Jon ode’ by mistake. A general
PPRL solution may attempt to consider all of the above names as matching.

In some cases, more than one data field is used to match two records, e.g.,
first name, last name, addresses, and dates of birth. These fields are known as
quasi-identifiers (QIDs), which may hold private information. In this paper, we
assume that the parties are allowed to learn data by matching QIDs. In other
cases, one can use a masking method e.g., as in [27] to maintain the users’
privacy.

Non-exact matching is commonly performed using ER solutions that employ
a local sensitive hash (LSH) function (e.g., as in [19,32]). Unlike cryptographic
hash functions, this technique permits collisions by deliberately hashing similar
inputs to a single digest. For example, consider a hash function that hashes all
the above names to a single digest value or to lists of digests with non-empty
intersection. Different LSH functions with different parameters allow us to fine-
tune the results in different ways. We provide more details in Sect. 2.2.

Unfortunately, few practical protocols exist that can securely perform such
“fuzzy” record linkage without revealing some private data of the parties, and
do so in a linear time frame. See Sect.A for a review of the different approaches.
Many involve a third-party (e.g., [25]), which we aim to avoid, while other works
do not provide a thorough leakage analysis that would help evaluate the security
of the solution. To this end, we constructed a new and efficient PPRL solution
that runs in O(n). We describe its performance and discuss its security charac-
teristics.

The goal of our solution is to compose a PSI with an LSH function. The
dataset fields are first locally hashed by both parties using the LSH and then
checked for matches using PSI. The choice of PSI algorithm can only affect
the performance (latency and bandwidth) of our solution but does not affect the
amount of leaked information that can be tuned using the different parameters of
the LSH. Figure 1 illustrates a high-level view of our solution. For completeness,
we provide a short related work survey in AppendixA.

Our Contribution. Our contributions can be summarized as follows:

– We introduce a novel and efficient PPRL protocol that combines LSH and
PSI, and analyze its security against semi-honest adversaries. It does not
involve third parties. Specifically, due to the use of LSH, our protocol has
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a low probability of revealing the data of non-matched records and thereby
provides better privacy guarantees.

– We implemented the model and suggest several low-level optimizations.
– We evaluated our implementation over a dataset with 220 records and demon-

strated its practical advantage when the execution took 11–45 min, depending
on network settings.

– Our program is freely available for testing at [23].
– We present and discuss several formal definitions of PPRL protocols in

AppendixC.

Fig. 1. A high level illustration of our PPRL protocol. The parties Ps and Pr hold
datasets Ds and Dr. They preprocess the data for every record and then feed the results
into an LSH that outputs an ordered list of digest vectors Ls and Lr, respectively. These
are fed into a PSI black box. Finally, Ps translates the PSI output to the matching
record IDs.

Organization. The paper is organized as follows. Section 2 provides some back-
ground notation and describes the required preliminaries for this work. Due to
page limit, we defer the presentation and discussion of several possible defini-
tions of PPRL protocols to AppendixC. We provide a high level description of
our solution in Sect. 3 and provide further details about our implementation in
Sect. 4. We report our experimental setup and results in Sect. 5 and conclude in
Sect. 6.

2 Preliminaries and Notation

We denote the concatenation of two strings by s1 | s2. The function Eq(s, r)
returns 1 when two strings are equal and 0 otherwise. An ordered list of elements
A is marked with square brackets, e.g., A = [5, 3, 8] and we access its ith element
by A[i]. A permutation π can either return a permuted list when operating on an
ordered list, or the index of a permuted element within that list when the input
is another index. For example, let π : x �→ x+1 (mod 4) be a permutation, then
π([5, 6, 7, 8]) = [8, 5, 6, 7], π(2) = 3, and π(3) = 0. Uniform random sampling

from a set U is denoted by u
$←− U .
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2.1 Entity Resolution (ER)

An ER method gets as input two datasets of Ns and Nr records from record
spaces R: Ds = {s1, s2, . . . , sNs

} and Dr = {r1, r2, . . . , rNr
}, respectively. It eval-

uates the similarity of every two records using a similarity measure μ : R×R →
[0, 1] and an associated similarity indicator

Iµt : R × R −→ {0, 1}

(s, r) �−→
{

1 μ(s, r) ≥ t

0 otherwise

The ER method uses the similarity indicator to facilitate a bipartite graph
G = (U, V,E), where the nodes of U , V are the records of Ds, Dr, respectively,
and for every two nodes (u ∈ U , v ∈ V ), an edge exists in E if Iµt (u, v) =1.

PPRL. Informally, a PPRL protocol is an ER method executed by two parties:
a sender Ps and a receiver Pr, who privately hold Ds and Dr, respectively. At
the end of the protocol, Pr learns the similarity edges E while Ps learns nothing.
We provide a formal definition in AppendixC. Specifically, our PPRL solution
uses the LSH and PSI primitives, described next.

2.2 Local Sensitive Hash (LSH)

An LSH [31] is a hash function that deliberately hashes similar inputs to the
same output hash value. We are interested in the similarity of strings i.e., the
content of the record fields. Therefore, we use the LSH from [31], which is based
on the Jaccard index and on Min-Hashes, as demonstrated in Fig. 2.

Jaccard index (a.k.a. the Jaccard similarity coefficient) is a similarity measure
for strings. The procedure for computing the Jaccard index of two inputs strings
(s, r) splits each normalized string into the set of all overlapping sub-strings of
given lengths, termed k-shingles (or k-grams), where k is the length of the sub-
strings. We use small letters to denote strings or the corresponding records, and
capital letters to denote their associated sets of k-shingles. The Jaccard index
for records s, r is

J(s, r) =
|S ∩ R|
|S ∪ R| (1)

when the context is clear we use J instead of J(s, r).

Example 1. Consider the strings:

s = ‘Sunset Blvd, Los Angeles’

r = ‘Sunet Blvd, Los Angeles’

that are normalized into
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Fig. 2. Computing the LSH for a string: shingles are extracted from the normalized
string, and then min-hashes are evaluated and grouped into bands that are hashed to
a list of signatures.

‘sunset blvd los angeles’

‘sunet blvd los angeles’

and then split into the set of 19 and 18 shingles of length k = 5, respectively:

S = {‘sunse’, ‘unset’, ‘nset’, ‘set b’, ..., ‘ngele’, ‘geles’}
R = {‘sunet’, ‘unet’, ‘net b’, ‘et bl’, ..., ‘ngele’, ‘geles’}

Here, the Jaccard index is J = 15
22 ≈ 0.68. Using longer shingles of length k = 11

would result in a lower Jaccard index of J = 0.56.

It is possible to instantiate a PPRL solution that relies on the Jaccard index.
The drawback of such a protocol is that it has quadratic complexity in the size
of the datasets. For linear complexity, we use Min-Hash.

Definition 1 (Min-Hash [31]). For a collision-resistant hash function H with
an integer output digest and an integer k, a Min-Hash function receives a string
s as input, converts it to a k-shingles set S, and returns

MinHHk (s) = min
e∈S

H(e)

When the context is clear we write MinH instead of MinHH
k .

Observation 1 ([31]). For two normalized records s and r, a collision resistant
hash function H, and k > 0, it follows that Pr

[
MinHH

k (s) = MinHH
k (r)

]
=

J(s, r).
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An LSH involves applying P different Min-Hash functions to a string s. The
outputs are split into B bands of R digests (P = BR). The concatenation of the
R digests of each band is again hashed to produce the signature of the band,
where the same signature hash function is used for all bands. An LSH output is
a tuple with these band signatures.

Definition 2 (LSH). For k,R,B ∈ N, P = RB, distinct collision-resistant
hash functions Hi, 1 ≤ i ≤ P and another collision-resistant hash functions G,
a band bj, 1 ≤ j ≤ B over a string s is the concatenation

bj(s) = MinH
HR·(j−1)+1

k (s) | · · · | MinHHR·(j−1)+R

k (s)

and the LSH output over a string s is the ordered list

LSH(s) =
[
G

(
b1(s)

)
, G

(
b2(s)

)
, . . . , G

(
bB(s)

)]
Two LSH tuples are considered to be a match if they share at least one

common signature. We denote this by the indicator function

LSHMatch : R × R −→ {0, 1}

(s, r) �−→

⎧⎪⎨
⎪⎩

1 1 ≤
B∑
i=1

Eq
(
LSH(s)[i], LSH(r)[i]

)
0 otherwise

Observation 2 ([31]). For two records s, r,

Pr[LSHMatch(s, r) = 1] = 1 − (1 − JR)B (2)

Example 2. Figure 2 demonstrates an LSH with P = 100, B = 25, R = 4, where
MinHH1

5 (s1) = 17, MinHH2
5 (s1) = 43, etc. Subsequently, every sequence of R

digests is concatenated and hashed to produce a band signature, with a total of
B band signatures, which form the LSH of s1, LSH(s1) = (865, 1082, . . . , 172).
Repeating the process for s2, we observe a match in the signature of the second
band for the two compared strings; this means that the two LSHs match and
the strings match with a high probability.

2.3 Private Set Intersection (PSI)

PSI is a cryptographic protocol that allows two parties to compute the intersec-
tion of their private sets without revealing anything beyond this fact or beyond
the size of the intersected sets to the other party. PSI is a special case of PPRL,
which considers only exact matches. Some variations of PSI allow the parties to
learn just the cardinality of the intersection.

Many PSI solutions exist (see AppendixA). In this work, we use a unidirec-
tional variant of the Diffie-Hellmann (DH)-PSI [33], as presented in Fig. 3. The
two parties Ps and Pr first agree on a group G and a collision-resistant hash func-
tion H, and each party generates its own secret key sks and skr, respectively.
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Subsequently, both parties hash and encrypt their records using their private
keys and send them to the other party. In addition, Pr encrypts the output of
Ps using its secret key and sends the results back to Ps. Finally, Ps learns the
intersection of the two datasets.

Ps (sks) Pr ( skr)

D′
s = {H(s)sks |s ∈ Ds}

D′
s

D′
r = {H(r)skr |r ∈ Dr}

D′′
s = {(s′)skr |s′ ∈ D′

s}
D′

r and D′′
s

D′′
r = {(r′)sks |r′ ∈ D′

r}
Output D′′

s D′′
r Output

Fig. 3. One side DH-PSI

Informally, the security of these protocols against semi-honest adversaries is
guaranteed by the one-way property of the hash function, the computational
hardness of the decisional DH, and the one-more-DH [17] assumptions (see def-
initions in AppendixB). The decisional DH is used to hide the data in transit
from eavesdroppers, while the one-more-DH assumption is used to prevent Ps

from generating new records in the name of Pr.
One DH-PSI variant is the mutual DH-PSI, which includes one extra round:

Ps sends D′′
r to Pr so that Pr can also compute the intersection. However, here

an eavesdropper learns both D′′
s and D′′

r and can therefore learn the cardinality
of the intersection D′′

s ∩ D′′
r .

One issue with DH-PSI is that it is susceptible to man-in-the-middle attacks
[13]. To mitigate this attack and the leakage of the mutual DH-PSI’s intersection
cardinality, we assume that the transportation is encrypted and authenticated
using TLS 1.3.

3 Our Solution

Our PPRL solution (hereafter: LSH-PSI PPRL) is an ER protocol that uses
LSHMatch as its similarity indicator, where for privacy reasons, the parties cannot
directly share the LSH results. The reason depends on whether the LSH is a
preimage-resistant hash function or not. When it is not, Pr and Ps can simply
inverse the LSH results for records that are not in the intersection and reveal
private information of Ps, Pr, respectively. But even when it is, the solution’s
privacy depends on the LSH input entropy, where the parties can maintain an
offline brute force attack against the LSH records of the other party.
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Fig. 4. Schematic of the LSH-PSI PPRL protocol.

To mitigate the privacy issue, we use a PSI protocol. The two parties first
compute the LSH band signatures of all their records and then apply a PSI
protocol over these signatures. Finally, Ps maps back the intersected signatures
to the original records to learn the set of similar records. The concrete properties
of LSHMatch can be tuned using the B and R LSH parameters. Figure 5 presents
the LSH-PSI protocol, and Fig. 4 illustrates it schematically.

Our protocol is defined against semi-honest (honest-but-curious) adversaries,
where all parties do not deviate from the protocol, and their inputs are genuine.
Nevertheless, they may record and analyze all the intermediate computations
and messages from the other parties to get more information.

To increase the efficiency of the underlying ER method, the two parties
must use the same preprocessing techniques. In addition, the LSH-PSI proto-
col assumes that the pre-processing phase runs some deduplication protocol on
the dataset of every party. Otherwise, Ps can extract information from pairs of
matching records s1, s2 ∈ Ds, where s1 matches a record in Dr but s2 does not.
Finally, the PSI protocol is executed for all records at once and not per record,
therefore it is critical to preserve the order of the signatures exchanged between
the parties, i.e., of L

′
s and L

′′
s in Fig. 4. Otherwise, it will be impossible to match

the records in Step 4 of Fig. 5. In Sect. 3.1, we discuss the case where Pr does
not preserve the order of Ps encrypted signatures.

The purpose of using the permutation πp in Step 1b is to avoid the case
where the other party learns information about “missing” records. For example,
suppose that the records in Dr are ordered alphabetically according to a first
name QID, and that Ps learns that Jerry and Joseph are in the intersection. If
Jerry and Joseph happen to belong to adjacent records in Dr, then an honest
but curious Ps learns that Pr has no record for John. When using a permutation,
the only way for Ps to deduce the same information is by learning all the records
in Dr. A concrete example of Steps 1.b - 3 is given in AppendixD.
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1. For every party p ∈ {s, r}
(a) Pp pre-processes the records in Dp by using standard techniques and

canonizations such as dropping non-important fields, converting texts to
lower-case letters, and removing non-alphanumeric characters or super-
fluous white spaces.

D1
p = preprocess(Dp)

(b) Pp chooses a random permutation πp on D1
p and computes the B LSH

band signatures for every record in D1
p. The outputs are concatenated in

an array Lp of size B · Np according to πp as follows

Lp[B · (i − 1) + 1 : B · (i − 1) + B] = LSH(D1
p(πp(i))) 1 ≤ i ≤ Np

2. The two parties run a DH-PSI protocol over their respective band signatures
so that Pr only learns Ns, and Ps only learns Nr and

L′′
s =

[
H(s)sksskr | s ∈ Ls

]
L′′

r =
[
H(r)sksskr | r ∈ Lr

]

3. Ps generates the array

M [i] =

{
1 L

′′
s [i] ∈ L

′′
r

0 otherwise,
1 ≤ i ≤ |L′′

s |

4. Ps returns the matching records

ress = {r | r = Ds[π−1
s (i)], 1 ≤ i ≤ Ns, 1 ≤

B∑
j=1

M [B · (i − 1) + j]}

Fig. 5. The LSH-PSI PPRL protocol.

Theorem 1. The LSH-PSI PPRL protocol is a PPRL protocol according to
Definition 6 from AppendixC where the similarity indicator is LSHMatch. This
protocol is secure against semi-honest adversaries.

Proof. Correctness. The correctness of the protocol follows from the fact that
the intersection Ls ∩ Lr has a one-to-one correlation with the encrypted band
signatures L′′

s ∩ L′′
r .

Privacy of Ps. By the discrete-log assumption, Pr only gets to see Ns ele-
ments that are indistinguishable from random values. Thus, Pr only learns Ns.

Privacy of Pr. Ps gets from Pr the values of L′
s and Lr raised to the power

of Pr’s secret key. By the discrete-log assumption, these values are indistinguish-
able from random to Ps. Except that Ps can raise L′

r values to the power of
its own secret key and then intersect the results with L′′

s . This intersection of
random values is used by Ps to identify matching signatures, which is expected
by Definition 6. Because Ps learns nothing from values outside the intersection,
we say that it only learns res and Nr as expected. ��
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Remark 1. Similar to the DH-PSI case, the use of TLS 1.3 allows the parties
to mutually authenticate themselves and to avoid the attack presented in [13].
Still, as a defense-in-depth mechanism, the parties in every PPRL session should
avoid reusing secret keys to avoid man-in-the-middle attacks.

3.1 PPRL Variants

Based on the above protocol, we construct three other protocols: a mutual PPRL
protocol, where both parties learn the intersection; an N-PPRL protocol, where
the parties only learn the cardinality of the intersection; and a revealing PPRL
protocol, where the latter immediately follows the definition. AppendixC pro-
vides formal abstract definitions of these protocols.

A Mutual PPRL Protocol. To establish a mutual PPRL protocol, we modify
Step 2 of Fig. 5 to use the mutual DH-PSI protocol of Sect. 2.3. The security of
the protocol follows from either the security of the mutual DH-PSI, or from
the fact that the mutual protocol is equivalent to running the original PPRL
protocol twice: first between Ps and Pr, and subsequently between Pr and Ps.
Note that Ps cannot reduce the communication by sending only records that are
in the intersection because then an eavesdropper can learn the intersection size.
This claim is valid even when using a secure communication channel (e.g., TLS
1.3).

An N-PPRL Protocol. To achieve an N-PPRL protocol, we could have sim-
ply counted the number of elements in the intersection set res, but this would
reveal to Ps more information beyond Ns∩r. Instead, we suggest reordering the
encrypted band signatures during the DH-PSI in a way that hides the identity
of the matched records but still enables them to be counted. Specifically, we ask
Pr to apply a secret permutation to L′′

s before sending it to Ps. This permu-
tation has a special property that permutes together the groups of adjacent B
signatures that originate from the same record, otherwise, Ps will not be able to
distinguish between the cases

1. |LSH(s1) ∩ LSH(r1)| = 1 and |LSH(s2) ∩ LSH(r2)| = 1
2. |LSH(s1) ∩ LSH(r1)| = 2 and |LSH(s2) ∩ LSH(r2)| = 0

We call the above permutation an intra-permutation of records. In addition,
we apply an inter-permutation of records, where we separately permute the B
signatures in each group of signatures in L′′

s that originate from the same record.

4 Our Implementation

For reproducibility, we provide concrete details about our LSH implementation.
We start by explaining the concept of relative weighting of the record fields.
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4.1 Relative Weighting of the Record Fields

Some record fields may be more indicative of identity than other fields. For
example, an SSN field is very indicative (though it may also include typos), and
a similarity of the full names is more indicative of identity than the similarity
of zip codes. A simple method of weighting the effect of the different fields on
the matching process is to duplicate the shingles originating from a field for a
predefined number of times. We call this number the field weight. For example,
consider a PPRL that operates over records with two fields: name and zip code.
We use k = 6 and k = 7 shingles for these fields and set their weights to be 3
and 1, respectively. Then, the 6-shingle ‘John S’ extracted from the name field
‘John Smith’ will be duplicated into three separate shingles ‘John S1’, ‘John S2’,
‘John S3’, whereas the zip-code 7-shingle ‘2304170’ will not be duplicated. This
causes shingles originating from the name to be three times more likely than
zip-code shingles to be the minimum value used by the Min-Hashes of the LSH
(see Sect. 2.2). This will make the band signatures more likely to match if name
shingles are identical than if zip-code shingles are identical.

The problem with this shingle duplication weighting method is that the extra
shingles slow down the PPRL process because more shingles need to be hashed
by the many Min-Hashes. To this end, we present a novel method for weighting
the shingles, which yields the same results as the shingle duplication method
but is much faster. The idea is to reduce the hash value of a shingle according
to the shingle’s weight, to directly increase its chance of being the shingle that
receives the minimal value by the Min-Hashes.

We view the hash code h of a shingle as a discrete random variable with
uniform distribution over some integer range [0,maxV al]. Thus, x = h/maxV al
is approximately a random variable with a continuous uniform distribution over
[0, 1]. Our method relies on this being a good approximation.

Our method is as follows: instead of duplicating a shingle w times, we com-
pute the shingle’s hash-code h, normalize it x = h/maxV al, then apply the
transformation y = 1 − (1 − x)1/w, and finally return back to the original scale
h′ = y ∗ maxV al�. Lemma 1 shows that this results with a variable h′ whose
distribution is the same as the minimum of w independent hashes.

Lemma 1. Let H1, H2, . . . , Hn be i.i.d. random variables with uniform distri-
bution over [0, 1]. Let Y = min(H1,H2, . . . , Hw). Then X = 1− (1−H1)1/w has
the same distribution as Y .

Proof. Let FH be the cumulative distribution function (CDF) of each Hi, i.e.,
FH(h) = h in the range [0, 1]. Let FY be the CDF of Y , i.e., FY (y) = 1 −
(1 − FH(y))w = 1 − (1 − y)w and its inverse is F−1

Y (p) = 1 − (1 − p)1/w, so
X = F−1

Y (H1). The CDF of X is therefore

FX(x) = P (X ≤ x) = P (F−1
Y (H1) ≤ x) = P (H1 ≤ FY (x)).

Since H1 is a uniform variable over [0, 1], this means FX(x) = FY (x). ��
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Algorithm 1. Compute the LSH for a given DB record
Input: record, a map of fields to values (strings) and conf a list of tuples (F, k, w)
where F is a set of field names, and k, w ∈ N are the shingles length and the fields
weight, respectively.
Output: lsh = [b1, b2, . . . , bB ].

1: procedure LSH(record, conf)
2: FG = ∅
3: for t ∈ conf do
4: s =“”
5: for f ∈ t.F do
6: s = s | record[f ]

7: FG = FG ∪ (s, t.k, t.w)

8: return LshFG(FG)

We observed a 9% speedup when comparing the computation time (ignoring
communications) of our PPRL solution using the shingle duplication method
versus the above hash-dropping method.

Remark 2. The work in [24] also describes a method of computing a ‘Weighted
MinHash’ over multisets with duplicated elements, but the universe of all possible
items (or dimension for vectors) is assumed to be known in advance.

4.2 LSH Description

We are now ready to describe our LSH implementation. The algorithms below
use a data structure that we call the field-group data structure FG, which is
a list of tuples (s, k, w), where s is a string, k ∈ N is the shingles length, and
w ∈ N is a vector with the shingles’ weights, respectively. Algorithm 1 computes
the LSH for a given record record. First, it concatenates together strings from
fields that belong to the same group according to the configuration variable conf
(Lines 5–6). Then, it attaches to every concatenated string the k,w values of its
group as defined by conf (Line 7). The algorithm returns the output of the
LshFG function on the generated field-group data structure FG (Line 8).

The LshFG algorithm uses the auxiliary functions getWeigthedShingles,
which we describe in Algorithm 2. Its input is a field-group data structure and
its output is a list of pairs of k-shingles and their respective weights.

Algorithm 3 describes the function LshFG, which basically follows the LSH
definition. First, the strings are converted to shingles by invoking Algorithm2.
The loop of lines 8–14 generates the signature bands in M . It starts by comput-
ing a 32-bit hash for every shingle (lines 10–11), and then uses them to construct
R different hashes for each of the shingles. The R hash values are then reduced
according to the shingle weight using the function CalcH. This function is based
on Lemma 1, where the equation in Line 3 can be modified when w ≤ 2 to avoid
the division and save computations. The resulting R minimal hash values are
kept in the M array. To generate fast hash values, we replaced the intermediate
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Algorithm 2. Returns weighted shingles for given strings
Input: FG a field-group data structure.
Output: res an ordered list of pairs (sh, w) where sh is a string and w ∈ N.

1: procedure getWeigthedShingles(FG)
2: res = ∅
3: for (s, k, w) ∈ FG do
4: S = getShingles(s, k) � Returns an ordered list of the k-shingles of s.
5: res = res.append

(
[(sh, w) | sh ∈ S]

)

6: return res

Algorithm 3. Compute the LSH for a given record field group
Constants: MP = 261 − 1, a Mersenne prime, and maxV al = 232

Input: h, c, d, w ∈ N.
Output: an integer.

1: procedure CalcH(h, c, d, w)
2: h =

[
h · c + d (mod MP )

]
(mod maxV al)

3: return maxV al ·
(
1 − (1 − h

maxV al
)

1
w

)
� based on Lemma 1.

Input: B, R ∈ N, and FG a field-group data structure.
Output: L = [b1, b2, . . . , bB ].

4: procedure LshFG(B, R, FG)

5: C
$←− {1, . . . , MP}R

6: D
$←− {0, . . . , MP}R

7: wS = getWeightedShingles(FG)
8: for b = 1, . . . , B do
9: i = 1

10: for (sh, w) ∈ wS do
11: H[i + +] = (Trunc32(SHA256(sh)), w)

12: for r = 1, . . . , R do
13: M [r] = mini{CalcH(H[i].sh, C[r], D[r], H[i].w)}
14: L[b] = SHA256(M)

15: return L

SHA256 calls with a Mersenne twister, which uses random numbers. The algo-
rithm generates and holds these numbers in the arrays C and D. Finally, using
SHA256, we concatenate and hash the values of M to create the band signature
(Line 14).

5 Experiments

Experimental Setup. We carried out the experiments on two machines that
are located in different local area networks (LANs). We measured an average of
65 ms round-trip latency between them.
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Table 1. Accuracy of our PPRL protocol over the NCVR snapshots.

Set size FN FP TP Precision (%) Recall (%) F1 (%)

104 19 21 653 96.88 97.17 97.03

105 1,369 1,665 55,682 97.1 97.6 97.35

106 22,233 19,365 847,724 97.77 97.44 97.61

– Machine A has an Intel R© Xeon R© CPU E5-2620 v3 @ 2.40 GHz, with 12
physical cores and 377 GB of RAM.

– Machine B has an Intel R© Xeon R© CPU E5-2699 v4 @ 2.20 GHz, with 44
physical cores and 744 GB of RAM.

We set machine A to run Ps and machine B to run Pr with Ns ≈ Nr.
Our code is written in C++ and runs on Ubuntu 20.04. It uses OpenSSL

version 1.1.1f to establish secure TLS 1.3 connections between the two par-
ties. In addition, it uses OpenSSL hash function implementation (concretely,
H =SHA256) and DH operations (concretely, elliptic curve DH operations over
the NIST P-256 curve). We report communications in KB and running time
in seconds. We also provide a breakdown of the different running time phases:
communication and computations per party. For the measurements, we sepa-
rated the communication phases from the computation phases, which in a real
scenario can be pipelined to run in parallel.

For the evaluations, we considered two dataset cases: a) The North Carolina
voter register (NCVR) dataset1, which is commonly used for PPRL evaluations;
b) a synthetic dataset that we generated and made available in [23].

NCVR Datasets. We used the November 2014 and November 2017 snapshots
of the NCVR datasets. Prior to running the PPRL protocol, we deduplicated
the snapshots by eliminating duplicate records with identical “NCID” or with
identical values in the ‘first name’, ‘last name’, ‘midl name’, ‘birth place’ and
‘age’ fields. Subsequently, we removed the NCID field from the two snapshots,
and ran our PPRL protocol on the two snapshots. A reported matching pair
was considered to be a true-positive event if the two reported records share
the same NCID value. Table 1 shows the accuracy breakdown of the LSH we
used by reporting the number of false-negative (FN), false-positive (FP), and
true-positive (TP) events, together with the precision, recall, and F1 results
when sampling sets of fixed sizes from the above snapshots. Note that while the
precision is high, the absolute number of false-positives may be regarded as too
high for some users. See Sect. E.1 for ways to tune the process and balance the
number of false positive and false negative cases while considering the protocol
performance.

Synthetic Dataset. We generated two synthetic datasets using IBM
InfoSphere R© OptimTM Test Data Fabrication [22] with the following fields: ‘first

1 https://www.ncsbe.gov/results-data/voter-registration-data,lastaccessedMar2022.

https://www.ncsbe.gov/results-data/voter-registration-data, last accessed Mar 2022
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Table 2. Performance results on the synthetic dataset for different samples of the
original dataset.

Set sizes Comm. (KB) Comm. time (s) Offline time (s) Total time (s)

28 5.68 · 103 3 1 4

212 9.04 · 104 17 2 19

216 1.44 · 106 237 36 273

220 1.19 · 107 1,959 608 2,567

name’, ‘last name’, ‘email’, ‘email domain’, ‘address number’, ‘address location’,
‘address line’, ‘city’, ‘state’, ‘country’, ‘zip base’, ‘zip ext’, ‘phone area code’,
‘phone exchange code’ and ‘phone line number’, where Ns ≈ Nr ≈ 1, 000, 000.
We generated the datasets in a way that only 100 records in the two datasets rep-
resent identical entities. The pairs of records that describe these shared entities
sometimes have identical fields and sometimes fields with minor typos, different
styles, and other types of minor differences, which are still small enough to war-
rant the assumption that the similar records in fact describe the same entity. Our
PPRL protocol identified all the matching records. The performance evaluation
of the protocol is given in Table 2.

6 Conclusion

We presented a novel PPRL solution that relies on LSH to identify similar records
while using PSI to ensure privacy. We formally defined the privacy guarantees
that such a protocol provides and evaluated its efficiency. Our results show that
it takes 11–45 min (depending on network settings) to perform a PPRL solu-
tion comparing two large datasets with 220 records per dataset. Note that none
of the results presented in Sect. A reported comparable speeds for such large
datasets. This makes our solution practical and attractive for companies and
organizations. We made our implementation available for testing at [23].

We proposed a PPRL framework that can use different PSI protocols as long
as they provide the same security guarantees defined above. We demonstrated
our solution using an ECDH PSI protocol. It may be an interesting direction to
implement and test the protocol using other solutions that can further improve
its performance and overall bandwidth.

A Related Work

To demonstrate our solution, we use a PSI instantiation that uses public-key
cryptography; specifically, we use one that leverages the commutative proper-
ties of the DH key agreement scheme. This PSI construction was introduced in
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[21] with a similar construction even before that in [33]. Subsequent PSI works
consider other, more complex cryptographic primitives such as homomorphic
encryption (HE) [6] and oblivious transfer (OT) [35]. While the latter solutions
may offer an interesting tradeoff in terms of performance and security, we decided
to stick with the basic DH-style protocol due to its simplicity and the fact that
its primitives were already standardized [2]. Because we use PSI as a blackbox,
we can also benefit from most of the advantages that the other methods provide
such as performance and security guarantees.

Our solution follows previous works in considering a balanced case, where the
two datasets are roughly equal in size. An example, for a PSI over unbalanced
sets was studied in [5]. In fact, there were attempts to use PSI for PPRL before
this paper. However, they were either noted to be inefficient [40] or relied on
a different techniques such as term frequency-inverse document frequency (TF-
IDF) [37], which is more appropriate for comparing documents, rather than short
record fields (such as names or addresses). Furthermore, the protocol of [37] can
only compare given record pairs. This implies the need for O(n2) operations, in
contrast to our method, which requires O(n) operations.

A complete survey of PPRL techniques and challenges is available at [18,40],
in which we observed solutions that use different cryptographic primitives. For
example, [14,41] relies on HE, which is known for its high computational cost.
For example, [14] reports that it took somewhat less than two hours to evaluate
20, 000 patient records, which is less records than in our evaluations by several
orders of magnitude. Other works [4,38] use garbled circuits, which can still be
inefficient, while other multi-party computation (MPC) solutions such as [28]
can incur high communication costs [7]. Another example is the fuzzy volts
approach, which uses secure polynomial interpolations [34], but only reports
results for around 1, 000 records.

Other solutions [20,36] overcome the privacy issue by using differential pri-
vacy (DP), which provides some level of anonymization. In [36], the two parties
partition the dataset into blocks of records and compare only records in corre-
sponding blocks via an MPC process that computes the distance function. In
contrast, in [20], for every block, the parties compute a private “synopsis” and
send it to a third party, which uses this information to identify when blocks
are too far from each other to justify a comparison of their records. In both
[20,36], the scheme privacy comes from DP, while the scheme security comes
from the MPC process used to compare the pairs of records. The two solutions
use MPC protocols for comparing integers while our record matching metric
relies on LSH, which is a more appropriate comparison method for longer texts
such as addresses. In addition, the complexity of our solution is linear in the total
number of records since we do not separately compare every pair of records in
the two data sets or even in pre-arranged blocks, which requires a sub-quadratic
complexity. Unlike [20], our solution does not require the presence of a third
party. Finally, it is possible to enhance the privacy of our scheme by adding a
preprocessing DP layer as in [20,36]. Thus, we view the usage of DP as orthog-
onal to our approach.
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Many PPRL works use Bloom filter encodings [39], which use a locality pre-
serving hash (LPH) function over the data. The main advantage of the Bloom
filter is speed. The difference between LPH and LSH is that LPH is data-
dependent, i.e., for three records p, q, r, a metric d, and an LPH function lp

d(p, q) < d(q, r) =⇒ d(lp(p), lp(q)) < d(lp(q), lp(r))

This relation complicates the evaluation of the protocol leakage. The lack of a
formal analysis for Bloom filter based solutions caused several attacks on them
[8,9,29,30]. A survey of attacks and countermeasures for this method can be
found in [15]. Our solution’s use of LSH has an advantage over Bloom filters as
it is data-independent and more robust against the above attacks. A method that
combines Bloom filters and LSH was presented in [16,26]. In contrast to this one,
our solution only uses LSH, which simplifies the privacy analysis. Moreover, our
use of PSI hides the LSH output and thus prevents offline attacks. In addition,
[26] requires use of a third-party and demonstrates a solution that took more
than an hour to match 300K records. Another recent example is [28], which runs
in O(n·polylog(n)) and proved to be cryptographically secure in the semi-honest
security model. However, the method analyzed 4, 096 records in 88 min and it is
not clear whether this method can scale to handle more than 100K records.

B Security Assumptions

Definition 3 (Decisional DH (DDH)). For a cyclic group G, a generator g,
and integers a, b, c ∈ Z, the decisional DH problem is hard, if for every proba-
bilistic polynomial-time (PPT) adversary A

|Pr[A(g,ga, gb, gab] = 1)−
Pr[A(g, ga, gb, gc) = 1]| < negl(),

where the probability is taken over (g, a, b, c).

Definition 4 (Computational DH (CDH)). For a cyclic group G, a gener-
ator g, and integers a, b ∈ Z, the computational DH problem is hard, if for every
PPT adversary A

Pr[A(g, ga, gb] = gab) < negl(),

where the probability is taken over (g, a, b).

Definition 5 (One-more-DH (OMDH) [17]). Let G be a cyclic group. The
one-more-DH problem is hard, if for every PPT adversary A that gets a generator
g ∈ G together with some power ga and who has access to two oracles: ha =
CDHg,ga(h) for some h ∈ G, and r

$←− C() a challenge oracle that returns a
random challenge point r ∈ G and can only be invoked after all calls to the
CDHg,ga , it follows that

Pr[A(g, ga, r ← C()) = ra] < negl()

where the probability is taken over (g, a).
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C Privacy-Preserving Record Linkage

PPRL [11] is an ER protocol between two parties Ps and Pr, with private
datasets Ds and Dr of sizes Ns and Nr, respectively; these records have a simi-
larity measure μ(·, ·), and some additional privacy requirements. These require-
ments may lead to several security models and several formal definitions of
PPRL.

The most intuitive way to define privacy for PPRL is by following the PSI
privacy notion: Ps only learns Nr and the intersection Ds ∩ Dr, i.e., all records
that exactly match in all fields while Pr only learns Ns. Note that in both PSI
and PPRL, Ps and Pr need to share the nature of the information contained in
their datasets with each other to decide which QIDs they can validly compare.

The difference between PSI and PPRL is that PSI only returns exact matches
according to some uniquely identifying QIDs, while PPRL returns matching
records up to some similarity indicator and according to non-unique QIDs. For
example, a PSI protocol may rely on users’ SSNs, while a PPRL protocol may
compare first and last names. Thus, a PPRL may inadvertently match “David
Doe” with “Davy Don” even if they represent different entities (users).

Fig. 6. A Venn diagram of different ER outputs applied on two datasets Ds and Dr.
The ER methods are: matching only identical pairs of records (purple), matching pairs
of records with a Jaccard index above some threshold (green), and matching pairs of
records with matching LSH indicators (yellow). (Color figure online)

Figure 6 shows a Venn diagram for the output of different ER solutions on
Ds and Dr datasets. With the exact matching method (Ds ∩ Dr) no privacy
risks occur since it only reveals the agreed-upon intersection2. In contrast, when
using the Jaccard similarity to compute the matches, the parties learn: a) records

2 In practice, if Ps learns that both parties share a record with the same SSN and at
a later stage learns that the other record fields do not match, then it may deduce
that Dr contains a record with a very close SSN that leaks information. Following
previous studies, we only consider leaks that occur as a result of the protocol itself.
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in Ds ∩ Dr, which is ok; b) records outside Ds ∩ Dr that represent the same
entity (true-positive), which is also ok; c) records outside Ds ∩Dr that represent
different entities (false-positive), which may break the privacy of the parties. In
general, any PPRL protocol must assume this kind of leakage, and should do its
best to quantify it, e.g., by assuming the existence of a bound τ on the similarity
false-positive rate.

Definition 6 (PPRL). A PPRL protocol P between two parties Ps, Pr with
datasets Ds, Dr, respectively, a similarity measure μ, a measure indicator Iµt
for a fixed threshold t with a false-positive rate bounded by τ , has the following
properties.

– Correctness: P is correct if it outputs to Ps the set

res = {(s,Enc(r)) | s ∈ Ds, r ∈ Dr, I
µ
t (s, r) = 1},

where Enc(r) is an encryption of r under a secret key of Pr.
– Privacy: P maintains privacy if Ps only learns res and Nr, and Pr only

learns Ns.

Corollary 1. The leaked information of Pr in P is bounded by τ · |res|
Nr

.

Definition 6 assumes the existence of τ but only implicitly uses it. The reason
is that τ does not always exist. In many cases, it can be empirically estimated
based on prior data or based on perturbed synthetic data. However, relying solely
on empirical estimates increases the ambiguity of the privacy definition for such
protocols. Moreover, in many cases, τ depends on data from the two datasets
that have different distributions, which none of the parties know in advance.
Another reason for only implicitly relying on τ is that the leaked information in
Corollary 1 depends on res and can only be computed after running the protocol.

While τ bounds the privacy leak from above, there is still the issue of quan-
tifying the exact leakage after the protocol ends. It is not clear how the parties
can verify the number of false-positive cases without revealing private data. Usu-
ally, an ER protocol is used when the compared records do not include uniquely
identifying fields (such as an SSN) and thus the parties cannot compute the
exact matches using PSI. Consequently, their only way to verify matches is by
revealing their private data. To assist in this task, we define a protocol called a
revealing PPRL.

Definition 7 (Revealing PPRL). A revealing PPRL protocol P is a PPRL
protocol P ′, where Pr also learns u = {Enc(r) | (s,Enc(r)) ∈ P ′.res} and Ps

also learns
res′ = {(r, Enc(r)) | (s,Enc(r)) ∈ P ′.res},

In words, Pr learns which of its own records are matched, and Ps learns the
field content of the matched records of the other party. The simplest way to
achieve a revealing PPRL is for Ps to send u to Pr, who will then decrypt its
values and hand them back to Ps. The difference between Definitions 6 and 7
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is that in the latter, Ps learns the values of Pr’s records instead of just their
encryption. While this definition leaks more data from Pr to Ps, it is easier to
analyze because now Ps can verify the matches with some probability and learn
the estimated number of false-positives. We also consider the definitions of the
associated mutual PPRL and the mutual revealing PPRL.

Definition 8 (Mutual PPRL). A PPRL protocol P between two parties Ps,
Pr with datasets Ds, Dr, respectively, a similarity measure μ, a measure indi-
cator Iµt for a fixed threshold t with a false-positive rate bounded by τ , has the
following properties.

– Correctness: P is correct if it outputs ress (resp. resr) to Ps (resp. Pr),
where

ress = {(s,Enc(r)) | s ∈ Ds, r ∈ Dr, I
µ
t (s, r) = 1}

resr = {(r, Enc(s)) | s ∈ Ds, r ∈ Dr, I
µ
t (s, r) = 1},

and Enc(r) (resp. Enc(s)) is an encryption of r (resp. s) under a secret key
of Pr (resp. Ps).

– Privacy: P maintains privacy if Ps only learns ress and Nr, and Pr only
learns resr and Ns.

The mutual revealing PPRL is similarly defined. The difference between the
mutual PPRL and the revealing PPRL in terms of privacy is that in the mutual
PPRL, Pr can match the encryption of Ps records to its records and therefore
gains more information while Ps only learns the encryption of Pr records.

In the PPRL protocols described above, the two parties learn the intersection
of their datasets. However, in some scenarios, the parties merely need to learn
the number of matches and do not wish to reveal the identity of the matched
records to the other party. To this end, we define an N-PPRL protocol.

Definition 9 (N-PPRL). A PPRL protocol P between two parties Ps, Pr

with datasets Ds, Dr, respectively, a similarity measure μ, a measure indicator
Iµt for a fixed threshold t with a false-positive rate bounded by τ , has the following
properties.

– Correctness: P is correct if it outputs to Ps the value

Ns∩r = |{(s, r) | s ∈ Ds, r ∈ Dr, I
µ
t (s, r) = 1}|,

– Privacy: P maintains privacy if Ps, (resp. Pr) only learns Ns∩r, Nr (resp.
Ns).

The mutual N-PPRL protocol is similarly defined.
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D Example of the LSH-PSI Protocol

A concrete example of Steps 1.b - 3 of the LSH-PSI PPRL protocol (Fig. 5)
is given in Fig. 7. Suppose that v = H(455)sksskr then Ps learns via the PSI
process that Pr also has a band signature with the same value 455. Pr took care
to preserve the order of Ps’s encrypted band signatures during the PSI, so Ps

can map the shared value v back to the band signature for Band 1 of record Ns,
and deduce that Pr has some unknown record that is similar to her own record
Ns.

Fig. 7. Steps 1.b - 3 of our protocol. Ps learns via the PSI protocol that the signature
for Record Ns Band 1 is shared with Pr.

E Using the Jaccard Indicator

Theorem 1 shows that the LSH-PSI PPRL protocol follows Definition 6 when
considering the LSH as the similarity indicator. This means that security review-
ers need to accept the privacy leakage that occurs when using an LSH, some-
thing that is already done by many organizations that perform RL. However,
some reviewers may instead prefer to trust the Jaccard index due to its wide
acceptance.

Figure 6 shows two ways to define LSH false-positive events: in relation to
exact matches of entire records as in the LSH-PSI PPRL, or in relation to the
method of matching pairs of records with a high enough Jaccard index. Thus
according to the latter definition an LSH false-positive happens only when a
pair of records are matched due to having at least one shared LSH band, and
yet they do not have a high enough Jaccard index to justify a claim of similarity.
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Bounding the false-positive events rate τ ′ based on the latter definition will allow
us to define an LSH-PSI PPRL related to the Jaccard index metric but with a
different bound τ · τ ′, where τ is the Jaccard original false-positive bound. In
this section, we further discuss the relation between the LSH and the Jaccard
index.

For two records s, r with Jaccard index J , Fig. 8 shows the probability for an
LSHMatch = 1 event according to Eq. 2 with R = 200 and B = 20. In standard
ER solutions, it is the role of the domain expert to decide the specific Jaccard
index that would indicate enough similarity between the two records. For exam-
ple, in the figure the targeted Jaccard index is 0.78. The figure shows the cumula-
tive probability of getting true-positives (J(s, r) > 0.78 and LSHMatch(s, r) = 1),
true-negatives (J(s, r) ≤ 0.78 and LSHMatch(s, r) = 0), and the corresponding
false-positive and false-negative cumulative probabilities.

Fig. 8. The function F (J) = 1 − (1 − JR)B from Eq. 2, where R = 20 and B = 200.
The black vertical line is the Jaccard index threshold.

The above example shows that when B = 20 and R = 200, it is possible to
close the gap between the Jaccard index and the LSH by choosing the Jaccard
threshold to be below 0.5. In that case, the probability for a false-positive event
is less than 0.0001, which means that one in every ten-thousand records leaks.
However, using such a Jaccard threshold will yield many false-positive cases
relative to exact record matching, which is less desirable in terms of privacy.

It turns out that it is possible to tune the slope of the accumulated probability
function. Figure 9 compares the probability functions in four different setups
B = 20, R = 200 (setup 1) B = 100, R = 100 (setup 2) B = 14, R = 30 (setup
3) and B = 120, R = 18 (setup 4). Here, we see that replacing setup 1 with
setup 2 allows us to set the Jaccard threshold at 0.78 while reducing the LSH
false-positive rate to as low as 10−8. However, setup 2 dramatically increases the
LSH false-negative rate. Note however that false negatives affect the security
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less than false-positives, and in addition, users are often much more reluctant to
report false positives than to miss reports due to false negatives. Setup 2 may
also increase the overall performance of the protocol relative to setup 1 because
there are many more bands to encrypt and communicate, as described in the
following section.

E.1 Optimizing the Protocol

Setup 4 in Fig. 9 probably results in more false-positive and false-negative cases
than setup 1, and the low slope of the curve implies a larger region of uncertainty.
However, the PSI for setup 4 runs more than 6 times faster than the PSI for
setup 1, because there are just 20 rather than 180 band signatures that need to
be encrypted and communicated. The change in the R parameter does not affect
the performance as much, since it merely determines the number of Min-Hashes
that need to be computed locally. It turns out that computing a Min-Hash (like
the highly optimized SHA-256 operation) is much faster than computing the
power in the underlying groups of the DH protocol. Moreover, there are known
methods for quickly producing R different permutations out of a single SHA-256
call such as the Mersenne twister [3]. Finally, the value of R does not affect the
size of the communication.

Fig. 9. A comparison of four probability functions F (J) = 1 − (1 − JR)B (see Eq. 2)
with different B and R values.

We use the B and R parameters to control the curve, which in turn affects
the protocol’s accuracy and performance. Reducing B makes it less likely to find
a matching band signature, thus increasing the false-negative probability, but
improving performance. The rate of false-negatives can be reduced by decreasing
R, thus making it more probable for two bands to match. Conversely, if the false-
positive rate is too high, then one can increase R with little performance penalty.
We therefore optimize the process by searching for values of B and R that have
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the minimal B value (for best performance) while more or less preserving the
targeted curve shape.

Suppose for example that setup 1 has the targeted probability function. The
figure shows the probability function for setup 3, which runs almost twice as
fast as setup 1 and has an almost identical probability function. Setup 4 has an
almost identical curve as setup 3 so it gives an almost identical accuracy, but it
runs much slower because it requires almost 8 times more bands.

E.2 Scoring the Reported Matches

When a PPRL protocol relies on the Jaccard index but its implementation uses
LSH, it may be in the users’ interest to quantify the number of false-positive
events. To this end, we present a way to estimate the Jaccard index based on
the LSH results.

Estimating the Jaccard Index for Matching Pairs. When using LSH with
B band signatures, it is possible to estimate the actual Jaccard index J by using
a binomial confidence interval. By Observation 1, the probability for a matching
band (i.e. the probability for a match in all R Min-Hashes of the band) is p = JR.
Suppose that Ps learns that there are h matching band signatures and t = B −h
non-matching band signatures. Using a 95% confidence interval, the Jaccard
index lies in the range⎡

⎢⎣ R

√√√√∣∣∣∣∣ h

B
− 1.96

√
t

h

B3

∣∣∣∣∣, R

√√√√∣∣∣∣∣ h

B
+ 1.96

√
t

h

B3

∣∣∣∣∣
⎤
⎥⎦ (3)

In some cases this interval is too wide, and the users may prefer using a
different approach, such as a revealing PPRL. In a revealing PPRL, the two
parties learn the intersection of their datasets as in a standard PPRL but they
also learn the records of the other parties that are involved in of the intersection.
Thus, the leaked information in a revealing PPRL is higher than in a PPRL.
Below, we propose an approach with privacy leakage that lies between the leakage
of a revealing PPRL and a PPRL, where we compute the Jaccard index only for
matching pairs, without revealing the exact shingles.

Computing the Precise Jaccard Index for Matching Pairs. Suppose
that at the end of the LSH-PSI PPRL protocol, Ps learns the matching pair
(s,Enc(r)). Ps can ask Pr to participate in another PSI process over the set of
shingles of (s, r), where Ps knows s and Pr knows r. In this PSI, Ps only learns
the intersection size of the associated shingles |S ∩ R| and the size |R|, so it can
compute J(s, r) = |S∩R|

|S|+|R|−|S∩R| . Note that learning only the intersection size
and not the intersection itself makes it harder for Ps to guess Pr’s record.

These additional PSIs are relatively expensive in terms of performance, but
we only need to carry them out for the reported matches, which are presumably
only a very small fraction of all possible pairs of records. Ps and Pr can decide
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to perform such PSIs for every matching pair or for selected pairs of special
interest, or for pairs selected after estimating the Jaccard index as described
above. As mentioned in Sect. C performing a selective PSIs leaks the size of the
selection to an eavesdropper and this should be taken into account in the
application threats model.
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Abstract. Leader election in most existing blockchain consensus pro-
tocols is probabilistic (i.e. based on proof-of-work or proof-of-stake) and
results in the differences in honest parties’ selection of local leaders, which
further leads to the inconsistency among honest parties’ local chains and
high latency in terms of transaction settlement time.

In this work, we study the impact of probabilistic leader election on
transaction settlement time and propose a new structure of two-chain
blockchain, called UniqueChain, which, for the first time, presents a gen-
eral way to achieve single leader election under the mildly adaptive adver-
sary. Precisely, UniqueChain provides the honest parties with a same and
unique local leader. To showcase the usability of UniqueChain, we apply
it in the proof-of-stake setting to obtain a provably secure blockchain
consensus protocol πuc. Specifically, πuc achieves the property of unique-
ness and exhibits (near) optimal transaction settlement time.

Keywords: Two-chain blockchain · Single leader election ·
Uniqueness · Optimal transaction settlement time

1 Introduction

To coordinate with the communication network latency Δ and maintain a lower
chain forking rate, blockchain protocol should adjust difficulty target T properly
to maintain a relatively low block production rate, where the expected time
interval d to elect a leader to generate the next block in the whole network
satisfies d >> Δ, and this is the basic security guarantee in blockchain protocol
design. As a result, the time interval from generating a block B to the time
that B has been received by all the honest parties is lower-bounded by d + Δ
and upper-bounded by 1

αH
d + Δ, where αH ∈ ( 12 , 1] denotes the ratio of overall
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Probabilistic leader election provides honest parties with uncertain local lead-
ers and hence the inconsistency of the latest several blocks, where block final
confirmation with an exponential error in the number of blocks accumulated
beyond this block [1,6,11,13,21,25]. These existing works only guarantee that
the chains held by honest parties satisfy common prefix property with parameter
K ∈ N. Consequently, the time interval from generating a block B to the time
that B is confirmed finally by honest parties is lower-bounded by (K+1)·(d+Δ)
and upper-bounded by (K + 1) · ( 1

αH
d + Δ).

We can further conclude that block production speed and block confirmation
latency are the most two major factors in transaction settlement time. The
objective communication network latency Δ determines that we cannot shorten
the time interval of block production to achieve d < Δ (i.e., via lowering difficult
target T) and the only improvement we can make is to minimize the waiting time
of confirming blocks. It is meaningful to ask the question: Is it possible to confirm
a valid block finally as soon as it has been received by all the honest parties?

1.1 Our Contributions

We propose UniqueChain, a new structure of two-chain blockchain, that achieves
(near) optimal transaction settlement time. Our main results are briefly sum-
marized in the following outline.

Single Leader Election. UniqueChain consists of two closely linked chains: one is
leader-chain consisting of leader-blocks; and the other is transaction-chain con-
sisting of transaction-blocks. To see how to maintain uniqueness of honest par-
ties’ local transaction-chains during protocol execution: informally, transaction-
block with payloads links to a confirmed empty leader-block instead of a newly
generated one. By PoW or PoS, the leader is allowed to generate an empty
leader-block and the leader of issuing transaction-block is the issuer of the newly
confirmed leader-block.

Obviously, if all the honest parties hold an unique view of the current leader,
then they will hold a same view of the current valid block. In UniqueChain, the
newly confirmed leader-block determines a deterministic leader to generate the
next transaction-block. Thanks to the common prefix property of leader-chains
held by honest parties, there is exactly one eligible party to extend transaction-
chain in honest parties’ views at any time, which determines the uniqueness of
valid transaction-block. Roughly, in UniqueChain, the leader-chain executes in
the traditional way called first writing and then consensus, while the transaction-
chain executes in the way called first consensus and then writing.

With UniqueChain, we obtain the following result: once an honest leader-
block has been confirmed finally, then, under the mildly adaptive adversary, the
corresponding transaction-block will be received and confirmed finally by all the
honest parties within time Δ. Actually, UniqueChain achieves optimal transac-
tion settlement time, which is upper-bounded by the time interval between two
consecutive confirmed honest leader-blocks and network latency Δ.

A PoS-Based Protocol πuc. To show case the usability of UniqueChain, we
present a provably secure PoS-based blockchain protocol πuc to achieve optimal
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transaction settlement time, where honest parties hold the forked local leader-
chains that share a common prefix and an unique transaction-chain that is at
least K blocks shorter than the corresponding leader-chain.

1.2 Related Work

The core of bitcoin system [25] has been extracted as bitcoin backbone and ana-
lyzed [15,16,20,27]. Considering the well-known painpoint of PoW-based proto-
cols that enormous energy waste [5,26], a sequence of works aim to study the
PoS-based ones [1,2,6,17,21].

However, both the PoW and PoS based blockchain protocols exhibit an inher-
ent speed-security trade-off. Later efforts to improve performance mainly adopt
one of the four strategies to handle transactions: (1) extend Nakamoto-style
structure to select temporary leaders to generate blocks with transactions - exem-
plified by [11,13,30]; (2) redefine the underlying blockchain protocol structure
(i.e., DAG-based structure) - exemplified by [3,23,29]; (3) delegate block genera-
tion to an eligible set of parties (named committee)- exemplified by [17,18,22,28];
and (4) adopt layer-2 payment [9] or state [8,10] channels that enables users to
perform off-chain transactions. The first two strategies focus on improving trans-
action throughput via fasting the block generation and still need to wait K blocks
to confirm the current valid block. The third strategy delegates block generation
to a small set of parties to achieve quick transaction confirmation, but it can
only resist against 1

3 adversary and create undesirable hierarchies among parties.
The last strategy is only suitable for the transactions with small value.

Two-chain and parallel-chain blockchain protocols [7,11–14,24,30] str-ength
system security and improve performance. 2-hop [7] combines PoW and PoS
to achieve high level of security where the adversary can succeed if it controls
majority of the collective resources. iChing [12] mimics Nakamoto’s protocol via
PoS. Bitcoin-NG [11] designs two types of blocks called key-block and micro-
block, in which the current leader do not stop handling transactions (issuing
micro-blocks) until the next leader is elected (key-block). Parallel Chains [13],
OHIE [30],Ledger Combiners [14] and TaiJi [24] execute m > 1 instances of an
underling blockchain protocol in parallel via parallel composition. In these works,
the eligible parties to handle transactions are elected by the newly generated
empty blocks (i.e., [7,11,12]) or the mechanisms PoW and PoS (i.e., [13,30]).
Due to the instability of the latest several empty blocks and the probabilistic
leader election, honest parties hold inconsistent views of the latest several blocks
that contain payloads (transactions) and adopt different valid ones to extend
local chains. So a long time is required to wait the corresponding block being
confirmed finally and further confirm the transactions.

2 Preliminaries

2.1 The Model of Protocol Execution

– Epoch-Based Execution. UniqueChain executes in disjoint and consecutive
time intervals called epoch. Concretely, time is divided into fixed size unites
called slot (denoted by sl) and each epoch consists of R ∈ N slots.
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– The Parties. In UniqueChain, we use the flat model of [15] that assumes
each party owns one unite of resource and security holds if αH ≥ 1+ϕ

2+ϕ for a
constant ϕ > 0, where αH denotes the ratio of resource that honest parties
hold and hence, the number of honest parties in the whole network.

– The (Mildly) Adaptive Adversary. The adversary is allowed to dynamically
corrupt parties that its corrupt instruction takes effect after δ ≥ W + ς slots
since it is sent. Parameter W guarantees that the adversary cannot control
the leaders of current epoch, even if he knows the leaders at the beginning
of an epoch, and secure duration ς ensures the block generated by the last
leader of an epoch can be confirmed finally before the corrupt instruction
takes effect. Note that we do not consider the malicious leader, who execute
nothing-at-stake attack in PoS setting to issue and broadcast multiple valid
blocks at the same time.

– Synchronous Communication Network. UniqueChain allows synchronous
communication among the honest parties via a diffusion mechanism that guar-
antees the sent honest messages to be delivered within Δ slots. We assume
the parties have access to functionality Fnet (Fig. 1).

Fnet is parameterized by Δ, interacts with an ideal adversary S and a set of parties P.
At slot sl ∈ ei (i ∈ N), it proceeds as follows:
• Upon receiving input (Broadcast, m, Pi′) from a party Pi′ ∈ P (i′ ∈ N), sends
(Broadcast, m, Pi′) to S and records (Pi′ , m, b = 0, sl).
• Upon receiving (Broadcast, m, P′

i′ , t) from S, where P′
i′ ∈ P, then

– if there is a record (·, m, b = 0, sl) and t ≤ sl + Δ, then sends (m, P′
i′) to all the

other parties at time t and sets b = 1;
– else, if t > sl + Δ, then sends (m, P′

i′) to all the other parties at time sl + Δ and
sets b = 1;

– else, ignores the message.

Fig. 1. The communication network functionality Fnet

3 The Single Leader Election

Definition 1 (Transaction Settlement Time (TST)). Blockchain consen-
sus protocol achieves (θ, αH)-TST with parameters θ ∈ [1,K+1] and αH ∈ ( 12 , 1]
iff the time interval for a block being generated and confirmed finally is upper-
bounded by θ · ( 1

αH
d + Δ) slots, where K ∈ N is the parameter of common prefix

property.

Note that (K + 1) · (d + Δ) slots and (K + 1) · ( 1
αH

d + Δ) slots describe the
lower-bound and upper-bound of transactions settlement time of some existing
protocols (i.e., bitcoin, Ouroboros system, Snow White). Under honest majority
assumption that αH ∈ ( 12 , 1], the optimal TST achieves when θ approaches to 1.
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3.1 Two-Chain Blockchain

Notations. Blockchain is a sequence of well connected blocks denoted by C :=
B0, B1, ..., Bn. Genesis block B0 is generated during the initial epoch e0 and
contains the initial state. The number of blocks except the genesis block is the
length of C denoted by len(C) = n. C�κ is a chain by pruning the κ rightmost
blocks of C and if κ ≥ len(C), then C�κ = ε is an empty string. C1 � C2 means
that C1 is a prefix of C2. Csl denotes the subpart of C with time before slot sl.
Chain C is valid if each B ∈ C satisfies V(B) = 1, where V(·) is a function that
specifies the conditions that a valid block should satisfy.

Precisely, UniqueChain C = {C̄, C̃} (Fig. 2) consists of two chains called
leader-chain C̄ = B0, B̄1, ..., B̄n and transaction-chain C̃ = B̃1, ..., B̃m, where
n−m ≥ K (K is the parameter of common prefix property). C is valid if V̄(B̄ī) =
1 and Ṽ(B̃j̃) = 1, where B̄ī ∈ C̄ (̄i ∈ {1, ..., n}) and B̃j̃ ∈ C̃ (j̃ ∈ {1, ...,m}). For
clarity, we use letters with bar to denote the leader-chain parameters and the
letters with tilde to denote the transaction-chain parameters.

Leader-block B̄ = (h̄−1, τ̄) is an empty block generated by the elected parties
of slot sl and transaction-block B̃ = (h̃−1, τ̃) contains transactions X̃ generated
by a party whose leader-block B̄ has been confirmed finally.

1. B̄ī = (h̄−1, τ̄ī) is valid (denoted as V̄(B̄ī) = 1 (̄i ∈ N)) if:
(1) h̄−1 = H(B̄ī−1). B̄ī links to its parent leader-block B̄ī−1 correctly;
(2) τ̄ī = (sl, ω̄ī):

– B̄ī.sl > B̄ī−1.sl. Leader-chain with strictly increasing sequence of time;
– ω̄ī is witness to show that Pi′ is a leader of slot sl ∈ ei and B̄ī is indeed

generated by Pi′ . Let noncei ∈R {0, 1}k be random value to determine the
current hash function H and Ti is difficulty target of epoch ei. Formally, in
PoS setting, ω̄ī = (pki′ , si′ , σ̄ī), where H(noncei, pki′ , sl) < si′ ·Ti denotes
that Pi′ with account (pki′ , si′) is a leader of slot sl and V erpki′ ([B̄ī], σ̄ī) =
1 denotes the signature σ̄ī on (h̄−1, sl) under verifying key pki′ is correct
to ensure that B̄ī is generated by Pi′ ; in PoW setting, ω̄ī = ( ¯ctrī, pki′ , σ̄ī),
where H(noncei, ¯ctrī, pki′) < Ti denotes that Pi′ with pki′ is elected as
leader of slot sl and V erpki′ ([B̄ī], σ̄ī) = 1 denotes the signature σ̄ī on
(h̄−1, sl, ¯ctrī) under verifying key pki′ is correct to guarantee that B̄ī is
generated by Pi′ .

2. B̃j̃ = (h̃−1, τ̃j̃) is valid (denoted as Ṽ(B̃j̃) = 1 (j̃ ∈ N)) if:
(1) h̃−1 = H(B̃j̃−1). B̃j̃ links to its parent transaction-block B̃j̃−1 correctly;
(2) τ̃j̃ = (sl, X̃, r̃j̃ , ω̃j̃)

– B̃j̃ .sl > B̃j̃−1.sl. Transaction-chain with strictly increasing sequence of
time;

– V (X̃) = 1. The set of transactions X is valid;
– r̃j̃ ∈R {0, 1}k. r̃j̃ is used for generating noncei+1 (i > 0);
– ω̃j̃ = (h̄, pkj′ , σ̃j̃)

(a) Fresh(B̄) = 1. B̄ is the newly confirmed leader-block in honest party
Pi′ ’s local leader-chain Ci′ at slot sl∗ and B̃j̃ .sl − Δ ≤ sl∗ ≤ B̃j̃ .sl + Δ;
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(b) h̄ = H(B̄). B̃j̃ links to its parent leader-block B̄ correctly;
(c) (B̃j̃ .pk = B̄.pk) ∧ (V erpkj′ ([B̃j̃ ], σ̃j̃) = 1). The blocks B̃j̃ and

B̄ are generated by a same party Pj′ (pkj′), and the signature σ̃j̃ on
(h̃−1, h̄, sl, X̃, r̃j̃) under verifying key pkj′ is correct.

The items in red guarantee that, at any slot sl, the party who is eligible to
generate transaction-block B̃j̃ is the one whose leader-block B̄ is just in the
common prefix of honest parties’ local leader-chains at the onset of slot sl, which
provides exactly one leader and, under the mildly adaptive adversary, this leader
will be honest if it is not corrupted when generated the leader-block.

Fig. 2. The black arrows denote leader-chain C̄ and the blue arrows denote transaction-
chain C̃. The green blocks are the confirmed ones and the red blocks are the unstable
ones. Note that C̄ and C̃ may not grow synchronously at some slots, in that, at some
slots, there may be no party being elected to generate leader-block or the elected
adversary may not generate block honestly. (Color figure online)

3.2 The Resource Procedure

The resource procedure functionality Fres shows how UniqueChain executes.
At slot sl ∈ ei, Fres grants each registered party with one unit of resource
denoted by s = 1 and sets one party as leader to generate the leader-
block with probability pi = Ti

2k . Especially, Fres maintains a set (Ctr,P) =
{(Ctri,j ,Pi,j)}i>0, j∈{1,...,R}, where Ctri,j is a counter and initialized as 0, and
Pi,j is a set of elected parties and initialized as an empty set φ of slot sli,j
(the jth slot of epoch ei). If at least one parties are elected at slot sli,j ,
then set Ctri,j = Ctri,j−1 + 1 or Ctri,j = Ctri−1,R + 1 for j = 1 and add
the corresponding elected parties to Pi,j , otherwise, set Ctri,j = Ctri,j−1 or
Ctri,j = Ctri−1,R for j = 1 and Pi,j = φ. Furthermore, if Ctri,j−K = Ctri,ξ > 0
(or Ctri,j − K = Ctri−1,ξ > 0) and Pi,ξ �= φ (or Pi−1,ξ �= φ), then Fres uni-
formly selects a party P ∈ Pi,ξ (or Pi−1,ξ) to generate a transaction-block with
slot sli,j , where Ctri,j is the current counter and ξ ∈ {1, ..., R}. At any time,
each party has access to the verification process of Fres to verify blocks. The
detailed description of Fres is showed in Fig. 3.
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Fres with security parameter k ∈ {0, 1}∗ and probability pi = Ti

2k
∈ (0, 1), interacts

with the ideal adversary S, parties Pi′ and Pi′′ .

– Registration.
1. Upon receiving (Register, Pi′) from Pi′ , if there is a record (Pi′ , rei′ = 1), then

ignore. Otherwise, send (Register, Pi′) to S. Upon receiving (Registered, Pi′)
from S, record (Pi′ , rei′ = 1) and send (Registered, Pi′) to Pi′ .

2. Upon receiving (Unregister, Pi′) from Pi′ , if there is no record (Pi′ , rei′ = 1),
then ignore the message. Otherwise, update record (Pi′ , rei′ = 0) and send
(Unregistered, Pi′) to Pi′ .

– Chain Extension. At slot sli,j ∈ ei (i > 0, j ∈ {1, ..., R}).
1. Generating Leader-Block: set Ctr1,1 = 0 and Ctri,j = Ctri,j−1 or Ctri,j =

Ctri−1,R for i > 1, j = 1, and Pi,j = φ. Every registered party Pi′ is granted
with one unite resource si,j,i′ = 1.

• Upon receiving (L-Elect, Pi′) from Pi′ , proceed as follows:
∗ if there is a record (Pi′ , rei′ = 1, si,j,i′ = 1), then

· with probability pi, set Pi,j = Pi,j ∪ {Pi′}, update ((Pi′ , rei′ =
1, si,j,i′ = 0), Pi,j) and send (L-Elected, Pi′ , f̄ = 1) to Pi′ ; (Pi′ is
elected)

· with probability 1 − pi, update ((Pi′ , rei′ = 1, si,j,i′ = 0), Pi,j) and
send (L-Elected, Pi′ , f̄ = 0) to Pi′ . (Pi′ is not elected)

∗ otherwise, send (L-Elected, Pi′ , f = 0) to Pi′ . (Pi′ is not elected)
If Pi,j �= φ, then set Ctri,j := Ctri,j + 1. Otherwise, Ctri,j := Ctri,j .
Update record as (Ctri,j , Pi,j). (Record the counter Ctri,j and elected
parties Pi,j of slot sli,j)

• Upon receiving (Compute, B̄−1, Pi′) from Pi′ : (Compute index of the par-
ent leader-block B̄−1)

∗ If Pi′ ∈ Pi,j and there is a record (B̄−1, h̄−1), then send
(Computed, h̄−1) to Pi′ . Otherwise, choose h̄−1 ∈R {0, 1}k, record
(B̄−1, h̄−1) and send (Computed, h̄−1) to Pi′ ;

∗ Otherwise, send (Error) to Pi′ .
• Upon receiving (Sign, B̄, Pi′) from Pi′ : (Compute signature of B̄)

∗ if Pi′ ∈ Pi,j , then send (Sign, Pi′ , B̄) to S. Upon receiving (Signed,
Pi′ , (B̄, σ̄)) from S, record (B̄, σ̄) and send (Signed, (B̄, σ̄)) to Pi′ ;

∗ otherwise, send (Error) to Pi′ .
2. Generating Transaction-Block:

• Upon receiving (T -Elect, Pi′) from Pi′ , compute Ctri,j − K = Ctri,ξ (or
Ctri,j − K = Ctri−1,ξ). If Ctri,ξ > 0 (or Ctri−1,ξ > 0) and Pi,ξ �= φ (or
Pi−1,ξ �= φ), then uniformly choose Pj′ ∈R Pi,ξ (or Pj′ ∈R Pi−1,ξ).(Only
party Pj′ is elected to generate the transaction-block of slot sli,j).

∗ if Pi′ = Pj′ , then record (Pi′ , Ctri,j , Ctri,ξ) (or (Pi′ , Ctri,j , Ctri−1,ξ))
and send (T -Elected, Pi′ , f̃ = 1) to Pi′ ; (Pi′ is elected)

∗ otherwise, send (T -Elected, Pi′ , f̃ = 0) to Pi′ . (Pi′ is not elected)
• Upon receiving (Compute, B̃−1, B̄, Pi′) from Pi′ : (Compute index of the

parent transaction-block B̃−1 and the corresponding leader-block B̄)
∗ if there is a record (Pi′ , Ctri,j , Ctri,ξ) (or (Pi′ , Ctri,j , Ctri−1,ξ)), then

if there is a record ((B̃−1, h̃−1), (B̄, h̄)), send (Computed, h̃−1, h̄) to
Pi′ . Otherwise, choose h̃−1, h̄ ∈R {0, 1}k, record ((B̃−1, h̃−1), (B̄, h̄))
and send (Computed, h̃−1, h̄) to Pi′ ;

∗ otherwise, send (Error) to Pi′ .
• Upon receiving (Sign, B̃, Pi′) from Pi′ : (Compute the signature of B̃)

∗ if there is a record (Pi′ , Ctri,j , Ctri,ξ) (or (Pi′ , Ctri,j , Ctri−1,ξ)), then
send (Sign, Pi′ , B̃) to S. Upon receiving (Signed, Pi′ , (B̃, σ̃)) from S,
then record (B̃, σ̃) and send (Signed, (B̃, σ̃)) to Pi′ ;

∗ otherwise, send (Error) to Pi′ .
– Verification. Upon receiving (V erify, B̄ (or B̃)) from party Pi′′ :

1. If there is a record of (B̄ (or B̃), σ̄ (or σ̃)), then send f̄ ′(orf̃ ′) = 1 to Pi′′ ;
2. Otherwise, send f̄ ′(or f̃ ′) = 0 to Pi′′ .

Fig. 3. Resource functionality Fres
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4 Protocol πuc: UniqueChain in the PoS Setting

We present protocol πuc in the {Finit,Fnet,Fres}-hybrid model (Fig. 6). First,
the initial parties generate genesis block B0 via Finit (Fig. 4); then, each party
fetches information from the network via Fnet (Fig. 1); and finally, each party
performs validations locally via BestV alid (Fig. 5) and try to extend local chain
via Fres (Fig. 3). The security properties that πuc satisfies presented as follows.

Definition 2 (Uniqueness of Transaction-Chain Qutc). Let any two honest par-
ties P1,P2 hold local transaction-chain C̃1 and C̃2 at the onset of slot sl + Δ
respectively. Qutc states that C̃sl

1 = C̃sl
2 .

Definition 3 (Common Prefix of Leader-Chain Qcplc). Let any two honest par-
ties P1,P2 hold local leader-chain C̄1 and C̄2 at the onset of slot sl1 and sl2
(sl1 + Δ ≤ sl2) respectively. Qcplc with parameter K ∈ N states that C̄�K

1 � C̄2.

Finit is parameterized by initial parties P1, ..., Pn and stakes s1, ..., sn. It gets the
current slot and, upon receiving (Initialize, Pi′ , si′) from Pi′ at slot sl:
– if sl = 0, then compute target T1 according to S0 = {s1, ..., sn}, sample nonce1 ∈R

{0, 1}k and generate B0 = (S0, nonce1). It stores B0, sends (Initialized, B0) to Pi′ and
set isInit ← true;
– else, if sl > 0 and isInit = true, then send (Initialized, B0) to Pi′ .
– else, send (Error) to Pi′ .

Fig. 4. Initialization functionality Finit

BestV alid with parameter K ∈ N and two content validation predicates V̄(·) and Ṽ(·).
At slot sl ∈ ei (i > 0), it takes a set of chains C and party Pi′ ’s local chain Cloc := (C̄, C̃)
as inputs and proceeds as follows:
1. For each Cī = (C̄ī, C̃ī) ∈ C, if C̄ī forks from C̄ with more than K blocks or C̃ī forks
from C̃ with more than one blocks, then remove Cī from Ci,j and set C1 := C/{Cī};
2. For each Cī = (C̄ī, C̃ī) ∈ C1, if (V̄(B̄) �= 1) or (Ṽ(B̃) �= 1), then remove Cī from C1

and set C2 = C1/{Cī}, where B̄ ∈ Cī and B̃ ∈ C̃ī;
3. For each Cī = (C̄ī, C̃ī) ∈ C3 and Cloc := (C̄, C̃). if len(C̄ī) > len(C) or len(C̃ī)−len(C̃) =
1, then set Cloc := Cī = (C̄ī, C̃ī); otherwise, set Cloc := Cloc.

Fig. 5. The best valid chain algorithm BestV alid

Definition 4 (Chain Growth Qcg). Honest party P holds local chain C = (C̄, C̃)
at the onset of slot sl, and chains C1 = (C̄1, C̃1) and C2 = (C̄2, C̃2) at the onset
of slot sl1 and sl2 respectively, where sl1 + t ≤ sl2 ≤ sl and t ∈ N. Qcg with
parameters ḡ ∈ (0, 1] and g̃ ∈ (0, 1] states that len(C̄2) − len(C̄1) ≥ ḡ · t and
len(C̃2)− len(C̃1) ≥ g̃ · t, where ḡ and g̃ are the lower bounds of leader-chain and
transaction-chain growth rate respectively.
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Definition 5 (Chain Quality Qcq). Honest party P holds chain C = (C̄, C̃) at
the onset of slot sl. Qcq with parameters L̄ > K, L̃ ∈ N, μ̄ ∈ [0, 1) and μ̃ ∈ [0, 1)
states that, for any portion of C̄ and C̃ with length L̄ and L̃ respectively, the ratio
of blocks generated by the adversary are at most μ̄ and μ̃ respectively.

πuc is parameterized by two content validation predicates V̄(·), Ṽ(·), interacts with
party Pi′ , the adversary A and the environment Z. It proceeds as follows:

1. Initialization.
∗ if sl = 0, then Pi′ sends (Initialize, Pi′ , si′) to Finit and gets (Initialized, B0);
∗ else, return (Error).

2. Fetch Messages from the Network. Each party fetches a set of messages Mi,j

from network at slot sli,j ∈ ei via Fnet:
∗ the elected parties of sli,j extract the set of chains Ci,j from Mi,j ;
∗ the parties whose former leader-blocks have been backed by K blocks extract
the set of chains Ci,j and the set of transactions T from Mi,j .

3. Update Local State. After receiving the messages from network, each party
updates local chain as Cloc := BestV alid(Cloc,Ci,j).

4. Extend Chain. Each party Pi′ , who has registered to Fres and been granted with
stake si,j,i′ = 1, tries to extend local chain Cloc = {C̄, C̃}:
∗ Upon receiving (Input-Stake, Pi′) from Z, Pi′ extends C̄:
– send (L-Elect, Pi′) to Fres and then receive (L-Elected, Pi′ , f);
– if f = 1,then,

� send (Compute, B̄−1, Pi′) to Fres and receive (Computed, h̄−1);
� send (Sign, B̄, Pi′) to Fres and receive (Signed, (B̄, σ̄));
� set C̄ := C̄ || B̄, Cloc := {C̄, C̃} and send (Broadcast, Cloc, Pi′) to Fnet.

∗ Upon receiving (Input-Stake,T, Pi′) from Z, Pi′ extends C̃:
– send (T -Elect, Pi′) to Fres and receive (T -Elected, Pi′ , f̃);
– if f̃ = 1, then,

� send (Compute, B̃−1, B̄, Pi′) to Fres and receive (Computed, h̃−1, h̄);
� send (Sign, Pi′ , B̃) to Fres and receive (Signed, (B̃, σ̃));
� set C̃ := C̃ || B̃, Cloc := {C̄, C̃} and send (Broadcast, Cloc, Pi′) to Fnet.

Fig. 6. Blockchain protocol πuc

5 Security Analysis of πuc

1. f = 1− (1−p)|E| is the probability that at least one party elected to generate
leader-block at a given slot and (1−f)Δ ≥ 1

2 , where E is the set of all parties;
2. ᾱ = αHf is the probability that at least one honest party is elected to generate

leader-block at a given slot;
3. β̄ = (1 − αH)f is the probability that the adversary is elected to generate

leader-block at a given slot.
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The Security Analysis of Leader-Chain

1. Achieving Chain Growth Property Qcglc.

Theorem 1. For parameters k,K,Δ ∈ N, ε1 ∈ (0, 1
2 ], let an honest party P1

holds local leader-chain C̄ at slot sl, and C̄1 and C̄2 at slots sl1 and sl2 respectively,
where sl1 + t ≤ sl2 ≤ sl. Then protocol πuc achieves chain growth property
with ḡ = (1 − ε1) · γ̄, where γ̄ = αHf

1+αHfΔ , except with error probability pcglc =

exp(− ε2
1·γ̄t
2 ).

Proof. We set γ̄ = αHf
1+αHfΔ , a “discounted” version of ᾱ, to denote the lower

bound of honest parties’ power and the number of newly added leader-blocks
in honest parties’ local leader-chains during time interval I = [sl1, sl2] is lower-
bounded by γ̄ ·t. By the Chernoff bound, we thus have the chain growth property
holds with ḡ = (1 − ε1) · γ̄ except with error probability

pcglc = Pr
[
len(C̄2) − len(C̄1) ≤ (1 − ε1)γ̄t

]
≤ exp(− ε2

1·γ̄t
2 )

2. Achieving Chain Quality Property Qcqlc.

Theorem 2. For the fix parameters L̄, K ∈ N, ε2, ε3, ε4 ∈ (0, 1
2 ], let an honest

party P holds local leader-chain C̄ at the onset of slot sl. Then for any L̄ ≥ 2K
consecutive blocks of C̄, the ratio of blocks created by the adversary is at most
μ̄ = 1 − (1 − ε4) · γ̄

f , except with error probability pcqlc = exp(− ε2
4γ̄
3f ).

Proof. Let Ī be the slot interval in which these L̄ blocks generated, we have
Pr[|Ī| > (1 − ε2) · L̄

f ] > 1 − exp(− ε2
2L̄
3f ). Let X̄ denote the number of blocks

generated by the honest parties during Ī, we have Pr[X̄ > (1 − ε3) · γ̄|Ī|] >

1 − exp(− ε2
3·γ̄|Ī|
3 ). Thus, the number of blocks generated by the adversary is

upper-bounded by Ȳ ≤ L̄ − X̄ ≤ L̄ − (1 − ε3) · γ̄|Ī| and μ̄ = Ȳ
L̄

≤ L̄−(1−ε3)·γ̄|Ī|
L̄

≤
1 − (1 − ε3)(1 − ε2) · γ̄

f = 1 − (1 − ε3)(1 − ε2) · αH

f+αHf2Δ .
By picking sufficiently small ε2 and ε3, it follows that μ̄ ≤ 1 − (1 − ε4) · γ̄

f for

some constant ε4 ∈ (1, 1
2 ], except with error probability pcqlc = exp(− ε2

4γ̄
3f ).

3. Achieving Common Prefix Property Qcplc.

Lemma 1. Assume γ̄ ≥ (1+δ)β̄ for δ ∈ (0, 1), the adversary generates a leader-
chain C̄ with length l > K at slot sl. Then it holds that honest party holds local
leader-chain C̄′ at slot sl′ ≥ sl + δ1t (δ1 ∈ (0, 1)) with length len(C̄′) ≥ l.

Proof. Let block B̄ be the latest common honest block of leader-chain C̄ and
C̄′ (if no such block, then let B̄ = B0), where len(B0, ..., B̄) = l − K ∈ N and
B̄.sl = sl′′ ≤ sl. Thus at least δ2t slots has been passed from slot sl′′ to sl′. By
theorem 1, the leader-chain growth rate is lower-bounded by (1 − ε1)γ̄ except
with error probability exp(− ε1

2·γ̄t
2 ). Thus we have that K ≥ (1−ε1)·γ̄δ1t and the
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number of blocks generated by the adversary in these δ1t slots is upper-bounded
by (1+ ε′

1) ·βδ1t for some ε′
1 ∈ (0, 1) except with error probability exp(− ε′

1
2·βt
2 ).

We set (1 + ε′
1) · βδ1t ≥ K ≥ (1 − ε1) · γ̄δ1t and get γ̄ ≤ (1+ε′

1)
(1−ε1)

β. Picking
sufficiently small ε1 and ε′

1, we have γ̄ ≤ (1 + δ)β for δ ∈ (0, 1).

Lemma 2. Assume (1 − 2(Δ + 1)ᾱ)ᾱ ≥ (1 + δ2)β̄ for δ2 ∈ (0, 1), honest parties
P1 and P2 hold local leader-chains C̄1 and C̄2 at slots sl1 and sl2 (sl1 ≥ sl2 + Δ)
respectively. It holds that C̄1 and C̄2 cannot diverge at slot sl′′ = sl1 − t, except

with error probability pcplc = exp(− δ
′2
1 ·β̄t
3 ).

Proof. We consider the set of slots SL = {sl|sl′′ ≤ sl ≤ sl1} that satisfies: (1)
lasting for at least Δ slots before slot sl that have no honest leaders; (2) there
is exactly one honest leader at slot sl; and (3) lasting for at least Δ slots after
slot sl that have no honest leaders. After such a slot, unless the adversary have
succeed between slot sl′′′ ≥ sl+Δ−t and sl+Δ, the honest parties will agree on
the newly generated leader-block and further hold an identical local leader-chain.

Then we show that the number of such slots increases faster than the number
of blocks generated by the adversary even if it has the additional δ1t slots to
withhold some generated leader-blocks.

• Let O denotes the number that honest parties are elected during slot sl′′

to slot sl1. We have Pr[O ≥ (1 − ε5) · ᾱt] except with error probability
exp(− ε2

5·αt
2 );

• Let Q0 > 0 be the number of slots from slot sl′′ to the first honest success-
ful slot, where honest successful slot is the slot that some honest party is
elected;

• For each j ∈ [1, . . . ,O]:
– Let Qj be the number of slots between the jth honest successful slot and

the j + 1th honest successful slot, and Qj = 1 if qj ≥ Δ;
– Let Xj = 1 if there is exactly one honest party elected at the 1th honest

successful slot;
– Let Xj = 1 if (Xj = 1) ∧ (Qj = 1);
– Let Y1 = 1 if X1 = 1 and Yj = 1 (j > 1) if (Xj = 1) ∧ (Xj−1 = 1).

Note that when Yj = 1 (j ∈ [1, . . . ,O]) and without interference of the
adversary, honest parties converge at a single block and we call such an event as
a convergence opportunity. Let Y =

∑O
j=1 Yj , each Xj = 0 can ruin at most two

convergency opportunities, we have Y ≥ O − 2
∑O

j=1(1 − Xj) = 2
∑O

j=1 Xj − O.
As Pr[Xj = 0] ≤ (Δ + 1)ᾱ and Pr[Xj = 1] ≥ 1 − (Δ + 1)ᾱ, with error

probability exp(− ε
′2
5 ·ᾱt
2 ) for ε′

5 ∈ (0, 1), we have 2
∑O

j=1 Xj − O ≥ 2(1 − ε′
5)[1 −

(Δ + 1)ᾱ]O − O ≥ [1 − 2ε′
5 − 2(Δ + 1)ᾱ] · [(1 − ε5) · ᾱt].

It follows that for constant ε′′
5 ∈ (0, 1), by picking sufficiently small ε5 and ε′

5,
the number of convergence opportunity is at least (1 − ε′′

5) · (1 − 2(Δ + 1)ᾱ) · ᾱt.
During SL and δ1t slots, the number of adversarial blocks is upper-bounded by
(1 + δ′

1)(1 + δ1)(t + 1)β̄ ≤ (1+δ′
1)(1+δ1)

(1+δ2)
· (1 − 2(Δ + 1)ᾱ)(t + 1)ᾱ for δ′

1 ∈ (0, 1),
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except with error probability exp(− δ
′2
1 ·β̄t
3 ). This follows that C̄1 and C̄2 diverge

at slot sl′′ with probability exp(− δ
′2
1 ·β̄t
3 ).

Theorem 3. For parameters Δ ∈ N, ε5 ∈ (0, 1
2 ], let any two honest parties P1

and P2 hold local leader-chain C̄1 and C̄2 at slot sl1 and sl2 (sl1 ≥ sl2 + Δ)
respectively, then C̄�K

2 � C̄1, where K ≤ (1+ε5) ·ft, except with error probability
pcplc = exp(− ε2

5·ft
3 ).

Proof. In these t consecutive slots, the total number of leader-blocks are gener-
ated is upper-bounded by (1+ε5) ·ft, except with error probability exp(− ε2

5·ft
3 ).

Thus we have that leader-chain C̄2 is a prefix of C̄1 except the latest K ≤
(1 + ε5) · ft blocks with error probability pcplc = exp(− ε2

5·ft
3 ).

The Security Analysis of Transaction-Chain

1. Achieving Chain Growth Property Qcgtc

Lemma 3. Suppose that a leader-block B is backed by K blocks at the onset
of slot sl held by honest parties and issued by an honest party P. Then the
transaction-chain held by each honest party must be extended with one valid
transaction-block B̃ within the following 2Δ slots.

Proof. Based on common prefix property of leader-chain held by honest parties,
at the onset of sl + Δ, B must has been in the common part of honest parties’
local chains. Hence P realizes that he is eligible to issue a transaction-block B̃
no later than slot sl + Δ and there is only one valid transaction-block linked to
leader-block B received by all honest parties within the following Δ slots.

Theorem 4. For parameters Δ ∈ N, ε6 ∈ (0, 1
2 ], let honest party P holds

transaction-chains C̃, C̃1 and C̃2 at the onset of slot sl, sl1 and sl2 respectively,
where sl1 + t ≤ sl2 ≤ sl and t > 0. Then protocol πuc achieves chain growth
property with g̃ = (1 − ε6) · αH ḡ

1+αH ḡΔ , such that len(C̃2) − len(C̃1) ≥ g̃ · t except

with error probability pcgtc = exp(− ε2
6
2 · αH ḡt

1+αH ḡΔ ).

Proof. First, the growth rate of confirmed leader-block is lower-bounded by
ḡ = (1−ε1)·γ̄. Second, the slot interval between two consecutive honest confirmed
leader-blocks is upper-bounded by 1

αH ḡ and the corresponding transaction-block
will be added to all the honest parties’ local transaction-chains within the
following Δ slots. Actually, the transaction-chain held by honest parties will
be increased by one block once in at most 1

αH ḡ + Δ slots. Thus, the chain
growth property holds with g̃ = (1 − ε6) · αH ḡ

1+αH ḡΔ except with error probability

pcgtc = Pr
[
len(C̃2) − len(C̃1) < (1 − ε6) · αH ḡ

1+αH ḡΔ · t
]

≤ exp(− ε2
6
2 · αH ḡt

1+αH ḡΔ ).
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2. Achieving Chain Quality Property Qcqtc

Theorem 5. For parameters L̃,Δ ∈ N, ε4 ∈ (0, 1
2 ], let honest party P with

transaction-chain C̃ at the onset of slot sl. Then for any L̃ consecutive blocks of
C̃, the ratio of blocks created by the adversary is at most 1 − (1 − ε4) · γ̄

f except

with error probability pcqtc = exp(− ε2
4γ̄
3f ).

Proof. These L̃ transaction-blocks correspond to L̃ independent confirmed
leader-blocks in honest parties’ local chains. We observe that as long as the
confirmed leader-blocks are generated by honest parties, then under the mildly
adaptive adversary, the corresponding transaction-blocks must be generated by
honest parties. Hence, the chain quality property of transaction-chain fully relies
on chain quality property of the confirmed part in honest parties’ local leader-
chain.

Since, except with error probability exp(− ε2
4γ̄
3f ), the adversary can generate

at most Ȳ ≤ L̃−(1−ε4) · γ̄
f L̃ blocks in L̃ consecutive leader-blocks. Additionally,

these L̃ consecutive leader-blocks may contain some unstable blocks, which may
be discarded by honest parties in the future slots. Thus, the actual number of
confirmed leader-blocks generated by the adversary in L̃ satisfies Ȳ ′ ≤ Ȳ . Fur-
thermore, in these L̃ consecutive transaction-blocks, the adversary can generate
at most Ỹ ≤ Ȳ ′ transaction-blocks. We obtain that μ̃ = Ỹ

L̃
≤ Ỹ ′

L̃
≤ 1−(1−ε4) · γ̄

f

except with error probability pcqtc = exp(− ε2
4γ̄
3f ).

3. Achieving Uniqueness Property Qutc

Lemma 4. There is at most one valid transaction-block with slot sl.

Proof. Consider a contradiction that there are two different valid transaction-
blocks B̃1 and B̃2 with slot sl. Let B̄1 and B̄2 are the corresponding leader-blocks
that are linked by B̃1 and B̃2 respectively. Based on protocol execution, B̄1 and
B̄2 must be the newly confirmed blocks at the onset of slot sl, which have been
backed by K blocks in honest parties’ local leader-chains. So that B̄1 and B̄2 are
in two different leader-chains. Suppose that honest parties P1 and P2 with local
leader-chains C̄1 and C̄2 at slot sl + Δ respectively, where B̄1 ∈ C̄1 and B̄2 ∈ C̄2.
Hence we get that C̄�K

1 � C̄2 and C̄�K
2 � C̄1, which contradicts the common prefix

property of leader-chains held by honest parties.

Theorem 6. For parameter Δ ∈ N, let any two honest parties P1 and P2 hold
local transaction-chains C̃1 and C̃2 at slot sl + Δ respectively. Then it holds that
C̃sl
1 = C̃sl

2 except with error probability pcutc = p̃1 + pcplc.

Proof. Observe that the blocks generated and receive by some honest parties
before slot sl must be received by all the honest parties at slot sl + Δ. Consider
a contradiction that C̃sl

1 �= C̃sl
2 , so len(C̃sl

1 ) �= len(C̃sl
2 ) or there are some different

blocks in these two chains.
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For condition 1, we assume that len(C̃sl
1 ) < len(C̃sl

2 ). Without loss of gen-
erality, let len(C̃sl

2 ) − len(C̃sl
1 ) = 1. It must be the case that the last block

B̃len(C̃sl
2 ) ∈ C̃sl

2 is not accepted or received by P1 at slot sl + Δ. First, we can

see that B̃len(C̃sl
2 ) must be valid in that it has been accepted by P2. Second, in

synchronous network, B̃len(C̃sl
2 ) must have been received by all the honest parties

at slot sl+Δ. As a result, if a valid transaction-block B̃len(C̃sl
2 ) has been received

by an honest party, then it must be confirmed by all the honest parties within
Δ slots. So that condition 1 happens with negligible probability p̃1.

For condition 2, assume that the last blocks of C̃sl
1 and C̃sl

2 are different
(denoted by B̃1, B̃2). During protocol execution, B̃1 and B̃2 must be valid and
received by all the honest parties at the end of sl + Δ, which contradicts to the
result of Lemma 4 and happens with error probability pcplc.

6. Achieving (Near) Optimal Transaction Settlement Time

Theorem 7. For parameters Δ ∈ N, ε1, ε6, ε7 ∈ (0, 1
2 ], αH ∈ ( 12 , 1], θ ∈

[1,K + 1], protocol πuc achieves (θ, αH)-transaction settlement time with θ =
1

(1−ε1)(1−ε6)α3
HfΔ

+ 1
2 , except with error probability exp(− ε2

7
3 ·( 1

(1−ε1)(1−ε6)α3
HfΔ

+
1
2 )).

Proof. Intuitively, the optimal time in transaction-block confirmation is 1
g̃ + Δ

slots. As the honest transaction-block generated once in 1
αH g̃ slots on expectation

and will be received by all the honest parties within Δ. Hence, we conclude that
once in 1

αH g̃ + Δ slots on expectation there will be a honest transaction-block,
which must be received and confirmed finally by all the honest parties. Thus,
with error probability exp(− ε2

7
3 · ( 1

(1−ε1)(1−ε6)α3
HfΔ

+ 1
2 ), a transaction-block can

be generated and confirmed finally within slot interval:

Ĩ =
1

αH g̃
+ Δ =

1 + (1 − ε1)α2
HfΔ

(1 − ε1)(1 − ε6)α3
Hf

+ Δ

≤ 2
(1 − ε1)(1 − ε6)α3

Hf
+ Δ

=
[

2
(1−ε1)(1−ε6)α3

Hf ·( 1
αH

d+Δ)
+ Δ

1
αH

d+Δ

]
· (

1
αH

d + Δ)

≤
[

1
(1−ε1)(1−ε6)α3

HfΔ
+ 1

2

]
· (

1
αH

d + Δ)
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6 Conclusion

In this work, we propose a new structure of two-chain blockchain and based on
which we propose a provably secure PoS-based blockchain protocol πuc. Under
honest majority assumption, except for the three fundamental security proper-
ties, the uniqueness of chains that contain transactions held by the honest parties
is achieved in a slot-synchronous network, which guarantees the low latency in
transactions confirmation. We note that there may be ways to further optimize
UniqueChain, e.g., improving it by allowing the adversary to be fully adaptive
and partition the network for an arbitrarily longtime.

A The Implementation of Finit

We denote ϕinit as the ideal protocol of Finit, where the parties are dummy that
they only forward messages sent by environment Z to Finit and then forward
the messages sent by Finit to environment Z. Further, we denote Πinit (Fig. 7)
as the protocol that implements ϕinit securely.

Let EXECFinit

ϕinit,S,Z be the random variable that denotes the joint outputs
of all the parties by executing ϕinit with adversary S and environment Z. Let
EXECFnet

Πinit,A,Z be the random variable that denotes the joint outputs of all the
parties by executing Πinit with adversary A and environment Z.

Lemma 5. EXECFnet

Πinit,A,Z and EXECFinit

ϕinit,S,Z are indistinguishable.

Proof. Consider the adversary A for Πinit, we construct the adversary S with
a local table T for ϕinit. Upon receiving (Initialize, Pi′ , si′) from A, if it has
record B0 ∈ T , then send (Initialized,B0) to A; otherwise, pass message to
Finit and receive (Initialized,B0), then record B0 and send (Initialized,B0) to
A. We can see that for each query from A, the form of output is (Initialized,B0),
where B0 = (S0, nonce1), nonce1 is sampled uniformly from {0, 1}k. Therefore,
EXECFnet

Πinit,A,Z and EXECFinit

ϕinit,S,Z are indistinguishable.

B The Implementation of Fres

As described above, we denote ϕres as the ideal protocol of Fres and Πres as
the protocol that implements ϕres. We show Πres in the {FRO,FSIG}-hybrid
model (Fig. 8), where functionalities FRO and FSIG have been well defined in
[4,19].
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Let EXECFres

ϕres,S,Z be the random variable that denotes the joint outputs of
all the parties by executing protocol ϕres with adversary S and environment Z.
Let EXECFRO,FSIG

Πres,A,Z be the random variable that denotes the joint outputs of
all the parties by executing protocol Πres with adversary A and environment Z.

Lemma 6. EXECFres

ϕres,S,Z and EXECFRO,FSIG

Πres,A,Z are indistinguishable.

Proof. Consider the adversary A for Πres, we construct the adversary S with a
local table T for ϕres. At slot sli,j (i ∈ N, j ∈ {1, ..., R}), it proceeds as follows:

– Simulating Registration Phase.
∗Upon receiving (Register, Pi′) from A, send (Register, Pi′) to Fres and
obtain (Registered, Pi′), then send (Registered, Pi′) to A;
∗ Upon receiving (Unregister, Pi′) from A, send (Unregister, Pi′) to Fres

and obtain (Unregistered, Pi′), then send (Unregistered, Pi′) to A.
– Simulating Chain Extension Phase.

∗ Generating Leader-Block.
• Upon receiving (L-Elect, Pi′) from A, if there is a record (Pi′ , h̄),

then send h̄ to A. Otherwise, send (L-Elect, Pi′) to Fres and obtain
(L-Elected, Pi′ , f̄). If f̄ = 1, choose h̄ ∈ {0, 1}k such that h̄ ≤ Ti.
Otherwise, choose h̄ ∈ {0, 1}k such that h̄ > Ti. Then record (L-
Elected, Pi′ , h̄) and send h̄ to A;

• Upon receiving (Compute, B̄−1, Pi′) from A, if their is a record
(B̄−1, h̄−1), then send h̄−1 to A. Otherwise, send (Compute, B̄−1, Pi′)
to Fres and obtain (Computed, h̄−1), then record (B̄−1, h̄−1) and send
h̄−1 to A;

• Upon receiving (Sign, B̄, Pi′) from A, if there is a record (B̄, σ̄), then
send (Signed, (B̄, σ̄)) to A. Otherwise, send (Sign, B̄, Pi′) to Fres and
obtain (Signed, (B̄, σ̄)), record (B̄, σ̄) and send (Signed, (B̄, σ̄)) to A.

∗ Generating Transaction-Block.
• Upon receiving (T -Elect, Pj′) from A, if there is a record (Pj′ , f̃),

then send f̃ to A. Otherwise, send (T -Elect, Pj′) to Fres and obtain
(T -Elected, Pj′ , f̃), then record (Pj′ , f̃) and send f̃ to A.

• Upon receiving (Compute, B̃−1, B̄, Pj′) from A, if there is a
record (B̃−1, B̄, h̃−1, h̄), then send (h̃−1, h̄) to A. Otherwise, send
(Compute, B̃−1, B̄, Pj′) to Fres and obtain (Computed, h̃−1, h̄), then
record (B̃−1, B̄, h̃−1, h̄) and send (h̃−1, h̄) to A;

• Upon receiving (Sign, B̃, Pj′) from A, if there is a record (B̃, σ̃), then
send (Signed, (B̃, σ̃)) to A. Otherwise, send (Sign, B̃, Pj′) to Fres

and obtain (Signed, (B̃, σ̃)), record (B̃, σ̃) and send (Signed, (B̃, σ̃))
to A.
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– Simulating Verification Phase.
• Upon receiving (V erify, B̄) from A, if there is a record ((P ′

i′ , f̄), (B̄, σ̄)),
then send ȳ′

i′ = f̄ to A. Otherwise, then send ȳ′
i′ = 0 to A;

• Upon receiving (V erify, B̃) from A, if there is a record ((P ′
i′ , f̃), (B̃, σ̃)),

then send ỹ′
i′ = f̃ to A. Otherwise, send ỹ′

i′ = 0 to A.

Now, we can see that the environment Z gets what it can get in the real pro-
tocol execution. Precisely, for each L-Elect query, based on Fres’s response,
S responds with messages chosen uniformly from {0, 1}k; for each T -Elect,
Compute and Sign query, S responds as Fres does; for each V erify query,
S responds according to the records in T , which also come from Fres. In fact, S
just transfers messages between Z and Fres. Thus, we have that EXECFres

ϕres,S,Z
and EXECFRO,FSIG

Πres,A,Z are indistinguishable.

Πinit is parameterized by security parameter k, interacts with initial party Pi′ (i′ ∈
{1, 2, ...}), adversary A and environment Z. For each Pi′ , it proceeds as follows.
Upon receiving (Initialize, Pi′ , si′) from Z, Pi′ gets the current slot sli,j (i ∈ N, j ∈
{1, ..., R}) from the local clock.

– If i = 0 and j = 1, then chooses random values r′
i′ , ri′ ∈ {0, 1}k, computes com-

mitment as Ci′ := Com(si′ , ri′ ; r′
i′) and sends (Broadcast, Pi′ , Ci′) to Fnet.

• collects all the received commitments C := {Ci′ , i′ ∈ {1, 2, ...}}, opens com-
mitment as (si′ , ri′) and sends (Broadcast, Pi′ , (si′ , ri′)) to Fnet at sl0,2;

• collects all the valid openings O := {(si′ , ri′), i′ ∈ {1, 2, ...}}, computes the
difficulty target T1 according to the distribution of stakes {si′ , i′ ∈ {1, 2, ...}}
and the random value nonce1 := ⊕i′ri′ ;

• set B0 = (S0, nonce1);

Output (Initialized, B0) to the environment Z.

Fig. 7. The initialization protocol Πinit
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Πres is parameterized by probability p, security parameter k, interacts with parties
Pi′ , Pi′′ , adversary A and environment Z. At slot sli,j , it proceeds as follows:
1. Registration.
1) Upon receiving (Register, Pi′) from Z, if Pi′ has registered with rei′ = 1, then
ignore the message. Otherwise, record (Pi′ , rei′ = 1) and send (Registered, Pi′) to Z;
2) Upon receiving (Unregister, Pi′) from environment Z, if Pi′ has not registered
with rei′ = 1, then ignore the message. Otherwise, record (Pi′ , rei′ = 0) and send
(Unregistered, Pi′) to Z.
2. Chain Extension.
1) Generating Leader-Block: Pi′ with one unite stake si,j,i′ = 1 proceeds as follows:

– Upon receiving (L-Elect, Pi′) from Z:
• If there is a record (Pi′ , rei′ = 1, si,j,i′ = 1), then query FRO with input

(pki′ , sli,j) and obtain h̄. If h̄ ≤ Ti, send (L-Elected, Pi′ , f̄ = 1) to Z, other-
wise, send (L-Elected, Pi′ , f̄ = 0) to Z.

• Otherwise, send (L-Elected, Pi′ , f̄ = 0) to Z.
– Upon receiving (Compute, B̄−1, Pi′) from Z, query FRO with B̄−1 and obtain h̄−1,

then send (Computed, h̄−1) to Z.
– Upon receiving (Sign, B̄, Pi′) from Z, send (Sign, B̄, Pi′) to FSIG, obtain

(Signed, (B̄, σ̄)), then send (Signed, (B̄, σ̄)) to Z.

2) Generating Transaction-Block: if a leader-block B̄ is backed by K′ blocks issued
by Pi′ , then Pi′ proceeds as follows:

– Upon receiving (T -Elect, Pi′) from Z, if K′ = K, then send (T -Elected, Pi′ , f̃ = 1)
to Z. Otherwise, send (T -Elected, Pi′ , f̃ = 0) to Z.

– Upon receiving (Compute, B̃−1, B̄1, Pi′) from Z, query FRO with (B̃−1, B̄−1) and
obtain (h̃−1, h̄), then send (Computed, h̃−1, h̄) to Z.

– Upon receiving (Sign, B̃, Pi′) from Z, then send (Sign, B̃, Pi′) to FSIG and obtain
(Signed, (B̃, σ̃)), then send (Signed, (B̃, σ̃)) to Z.

3. Verification. Upon receiving (V erify, B̄) or (V erify, B̃) from Z, Pi′′ proceeds as
follows:
1) Send (pk′

i′ , sli,j) to FRO and obtain h̄, if h̄ ≤ Ti, then set ȳi′ = 1, otherwise set
ȳi′ = 0;
2) Send (V erify, (B̄, P ′

i′ , σ̄)) or (V erify, (B̃, P ′
j′ , σ̃)) to FSIG and obtain ȳ′

i′ or ỹ′
i′ ;

3) If (ȳi′ = 1 ∧ ȳ′
i′ = 1) or ỹ′

i′ = 1, then send (V erified, f̄ ′ = 1) or (V erified, f̃ ′ = 1)
to Z. Otherwise, send (V erified, f̄ ′ = 0) or (V erified, f̃ ′ = 0) to Z.

Fig. 8. The resource protocol Πres
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1 Introduction

With the rapid development of public key cryptography, Public Key Infras-
tructure was formed to provide comprehensive security services for the Internet
and Internet-related facilities. PKI [28] uses public key cryptography and digi-
tal certificates to ensure the security of system information and is responsible
for verifying the identity of the digital certificate holder. At present, PKI can
be used for security services such as identity authentication, non-repudiation of
operations, information transmission, storage integrity and confidentiality.

Although PKI technology is relatively mature and has entered the stage of
large-scale application, the security governance of the PKI trust system faces
many new opportunities and challenges. In recent years, a large number of new
PKI technology research results have emerged one after another, dedicated to
overcoming various difficulties in application promotion and deployment. Some
focus on enhancing the credibility of PKI, like CT [24], DANE [17], CAA [14].
Some focus on optimizing certificate revocation such as CRLite [23], PKISN
[34]. But there are few related kinds of research on improving the performance
of public key usage, which is one of the main contents of a digital certificate.

In 1987, the elliptic curve cryptography public key cryptography algorithm
[21] was first proposed. Compared with RSA, elliptic curve cryptography has a
shorter key length and faster computing speed. It has attracted extensive atten-
tion from academia and industry. It is reported that ECC is the most widely
used public key cryptography algorithm at present [16]. Among the interna-
tional public key cryptographic algorithms, the mainstream elliptic curve algo-
rithms include NIST-P series [29], Brainpool [27], etc. Affected by the Snow-
den incident, some new elliptic curve curves with higher security and more
efficient performance have received attention, including Curve25519/448 [22],
Edwards25519/448 [19], FourQ [8], etc.

The public key cryptography algorithm structure based on the elliptic curve
discrete logarithm problem (ECDLP) is complex, and the computing perfor-
mance is an important bottleneck in practical application. With the promotion
of IoT applications in smart transportation, smart medical care and other fields,
users are extremely demanding on the computing power of ECC cryptographic
algorithms. Researchers have carried out a lot of works on the acceleration of
elliptic curve cryptographic algorithms on various computing platforms, includ-
ing GPU [13], CPU [6], Embedded CPU [26], FPGA [18], etc. Liu et al. [26]
improved the scalar multiplication implementation of FourQ elliptic curve on
three resource-constrained embedded platforms (AVR, MSP430, ARM Cortex
M4). Considering the sufficient memory resources of the GPU platform, Dong et
al. [9] used a fixed window and a portion-by-portion addition method for EdDSA
signature and verification, respectively. These works use the idea of combining
software and hardware to improve the performance of the ECC algorithm and
do not take into account the performance breakthrough brought by optimizing
the PKI certificate.

In this paper, we propose a novel improved X.509v3 certificate, named Pre-
computed ECC Points Embedded in Certificates (short for PEPEC), which con-
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tains a validated w-NAF precomputed table related to the certificate public key.
Each Domain owner who uses a PEPEC certificate will establish a faster but
still secure communication with clients. The offline precomputed table of PEPEC
can improve the performance of ECC public key operation by about 10%. Even
clients with limited performance can load the appropriate size of precomputed
table according to their situation. Moreover, a PEPEC certificate is fully appli-
cable to the current CT environment, and the log servers of CT can also ensure
the correctness of the w-NAF precomputed table.

The rest of our paper is organized as follows. Section 2 covers the basic knowl-
edge. Section 3 gives an overall architecture of our CT-based efficient ECC certifi-
cate scheme. Section 4 presents a comparative analysis in terms of computational
costs and security. Section 5 concludes the paper.

2 Preliminaries

2.1 PKI and CT

In traditional PKI, TLS Server (domain owner for example) generates its pri-
vate and public key first. Then Server will encode the public key and identifying
attributes into a Certificate Signing Request (CSR), sign the CSR with its pri-
vate key and send the signature and CSR to the Certificate Authority (CA).
The issuing CA validates the request and signs the certificate with the CA’s
private key. Once the domain owner obtains the certificate, it can communicate
confidentially with the TLS client. Anyone including the TLS client can use the
public portion of a certificate to verify that it was issued by the CA. The whole
process is shown in Fig. 1:

WWW.
.COM

Domain owner

(1) requests certificate

CA
TLS Client

(3)serve website
and certificate

(4)PKca

(2)sends signed cert

Fig. 1. The structure of PKI

A certificate, the important trust credential in PKI, is issued by the CA.
Therefore, as a trust anchor, CA is usually considered to be completely trusted.
However, a series of security incidents have shown that, as trust anchors in PKI
systems, CAs are not as reliable as people think. CAs may issue “fake” certifi-
cates due to mismanagement or attacks [7,36]. The fake certificate is issued by
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a trusted CA, so it can pass the certificate verification so that it can be used
by the adversary to launch malicious websites, man-in-the-middle, or imperson-
ation attacks without any warning of the target. In this regard, relevant tech-
nical achievements in attack detection and protection have been proposed to
detect fake certificates in time and restrict the rights of CA agencies [10,20,33].
At present, the most mainstream trust enhancement mechanism is Certificate
Transparency (CT), which was led by Google in 2013. It has been officially
adopted as the IETF RFC 6962 standard [24] and is supported by browsers and
TLS software, including Firefox [5], Apple platforms [2], Chrome [4], Nginx [30],
OpenSSL [35]. Compared to traditional PKI, the CT solution adds two main
components, including log server and monitor :

Log Server. A Log server maintains append-only logs to record certificates,
which means that once a certificate is added to the log, it cannot be removed
or modified. These logs are publicly visible so that anyone can audit the logged
certificates by calling the port provided by the log server. Once the certificate
submitted to the Log Server is verified to be valid, the Log Server needs to gener-
ate a Signature Timestamp (SCT), which proves that the relevant certificate has
been stored on the Log Server. The SCT contains the SCT version number, log
Id, timestamp and a signature containing the above contents and the received
certificate. The signature ensures that the certificate cannot be modified after it
is submitted to the Log Server.

Monitor. Monitors regularly query public logs and can download and store
certificates for subsequent reporting. There are also third-party monitors which
process the records in public to provide certificate search services for users [25].

2.2 Elliptic Curve Cryptography

Elliptic curve cryptography can be defined by different curve forms, such as
Weierstrass equation, Montgomery equation, Edwards equation and so on.
Weierstrass equation is the most common representation form. An elliptic curve
E/Fp defined over the finite field p can be represented by

E : y2 = x3 + ax+ b (4a3 + 27b2 �= 0) (1)

Elliptic curve digital signature algorithm (ECDSA) was standardized by
NIST [29] in 2013. The Snowden incident has a certain negative impact on the
widespread promotion of ECDSA. In recent years, a variety of more secure and
efficient elliptic curve cryptography algorithms, including Curve25519, FourQ,
have been proposed and applied. The Edwards-curve Digital Signature Algo-
rithm (EdDSA) is a variant of Schnorr’s signature system with Edwards curves.
EdDSA is a popular choice to improve the traditional ECDSA (elliptic curve
digital signature algorithm) signature algorithm, which has the characteristics
of high performance and high security. At present, EdDSA has been added to
TLS 1.3 [32]. A variety of cryptographic algorithm libraries including OpenSSL
[12] have support EdDSA.
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Algorithm 1. ECC Signature Verification Sample (EdDSA)
Input:

256-bit Message Digest M , 32-octet public key U , 64-octet signature (R,S), the
fixed based point G, the order of edwards25519 L.

Output:
Accept or reject the signature

1: k =SHA-512(R||U ||M) mod L
2: accept if [2cS]G = [2c](Decode(R) + [k]Decode(U)); otherwise reject.

From the bottom to the top, elliptic curve cryptography can be divided into:
finite field layer, point arithmetic layer and scalar multiplication layer. The scalar
multiplication is to compute kP = P + ... + P . The implementation of scalar
multiplication is directly specific to the performance of elliptic curve cryptogra-
phy algorithm. The common algorithms mainly include Double-and-add, Mont-
gomery Ladder, Non-adjacent form (NAF) and so on. There are also methods of
using space for time, such as fixed window method, sliding window method and
w-NAF. According to different base points P , the scalar multiplication kP can
be simply divided into two types:

– Fixed-point Scalar Multiplication: the base point P of kP is fixed (the scalar
multiplication [2cS]G in Algorithm1), and is able to use one offline precom-
puted table for accelerations of different keys, such as portion-by-portion
addition method in [31]. Because all keys share one precomputed table, it
only needs to be generated once. And the calculation time of the precom-
puted table can be ignored.

– Unknown-point Scalar Multiplication: the base point P of kP is unfixed(the
scalar multiplication [k]Decode(U) in Algorithm1). To use the space-for-time
acceleration methods, the existing works always calculate the precomputed
table online.

Figure 2 presents the relationship between ECC signature operations and
scalar multiplications. Compared with ECC key generation and signature gener-
ation, the signature verification operation of elliptic curve cryptography is more
complex, which requires not only a fixed-point scalar multiplication, but also an
unknown-point one.

2.3 w-NAF

Window Non-adjacent form combines the Non-adjacent method with a window
method, which processes w digits of k at a time. In the width-w NAF of length l, a
positive integer k is an expression k =

∑l−1
i=0 ki2i, where each nonzero coefficient

ki is odd, |ki| ≤ 2w−1 and kl−1 �= 0. It must be sure that at most one of any w
consecutive digits is nonzero and the window size must be greater than or equal
to 2. If the window size is 2, NAF2(k) is equal to NAF(k).

A positive integer k has a unique NAFω(k), which can be efficiently computed,
leading to Algorithm2, where the value of k mods 2w is mapped to the range
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Key Generation Signature Generation Signature Verification

Fixed-point Scalar Multiplication Unknown-point Scalar Multiplication

Offline Precomputed Table Online Precomputed Table

Fig. 2. Scalar multiplication & ECC signature operation

Algorithm 2. Computing the width-w NAF of a positive integer
Input:

Window width w, a positive integer k.
Output:

NAFω(k).
1: i ← 0
2: while k ← 0 do
3: if k is odd then
4: ki ← k mods 2w, k ← k − ki

5: else
6: ki ← 0
7: end if
8: k ← k/2, i ← i + 1
9: end while

10: Return(ki−1, ki−2, · · · , k1, k0)

of [−2(w−1), 2(w−1) − 1]. The digits of NAFω(k) are generated by repeatedly
dividing k by 2, allowing remainders r in [−2(w−1), 2(w−1) − 1]. If k is odd, then
remainder r = k mods 2w is chosen so that (k − r)/2 will be divisible by 2w−1,
ensuring that the next w − 1 digits are 0 [15].

Algorithm3 generalizes the binary NAF method for point multiplication by
using NAFω(k). When executing the algorithm, we need to preprocess Pi = iP
for i ∈ {1, 3, · · · , 2w−1 − 1}.

3 PEPEC Design

Although the w-NAF algorithm can speed up the calculation of the public key
point, the calculation of the precomputed table is time-consuming. If the TSL
client calculates the precomputed table, it will perform 2w−2 − 1 point double
operations. An idea that comes to our mind is to move this part of the calculation
to the CA side. As mentioned above, the CA may not be trusted, we believe
that the log server is also needed to verify the generated precomputed table.
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Algorithm 3. Window NAF method for point multiplication
Input:

Window width w, positive integer k, P ∈ E(Fq)
Output:

Q = kP .
1: Use Algorithm 2 to compute NAF2(k) =

∑l−1
i=0 ki2

i

2: Q ←∝
3: for i = l − 1 to 0 do
4: Q ← 2Q
5: if ki �= 0 then
6: if ki > 0 then
7: Q ← Q + Pki

8: else
9: Q ← Q − P−ki

10: end if
11: end if
12: end for
13: Return(Q)

Combining the above two aspects, we design a PEPEC certificate which brings
the main changes to CT are reflected in three stages: 1) Generating PEPEC
Certificates, 2) Verifying PEPEC Certificates, 3) Utilizing PEPEC Certificates.
We named this improved CT model PEPEC-CT, as shown in Fig. 3:

3.1 Generating PEPEC Certificates

In PEPEC-CT, the whole process still starts with the domain owner submit-
ting the request. The domain owner generates the public key, constructs the
CSR with a flag, applies for the CA to generate a precomputed table, added
and signs it. Then the CA can generate a precomputed table for the domain
owner’s public key after validating the request. The window size of the precom-
puted table is determined by CA according to its computing ability. Finally, a
TBSCertificate [3] containing a precomputed table will be constructed with the
following structure (Fig. 4):

Referring to the RFC 5280, we put the precomputed table into the certifi-
cate as an X.509v3 extension. The window size of w-NAF w is also needed to
notify Log Server and client so that they can verify or use the precomputed
table properly. These should be a non-critical extension which means it can be
ignored if clients don’t support such extension. According to the requirements of
RFC9162, a precertificate in Cryptographic Message Syntax (CMS) format will
be constructed and sent to at least two different logs.

3.2 Verifying PEPEC Certificates

Log Server maintains a list of trusted certificates, which is obtained out-of-band
and should include the set of root CAs trusted by mainstream browsers. Once
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2.1 verifies the 
(pre)certificate chain

,containing precompute-table

WWW.
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1.1 requests certificate
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3.1 serve website and 
certificate

C
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Log Server

3.3 uses the certificate 
with precompute-table  

Fig. 3. The structure of PEPEC-CT

the precertificate chain or certificate chain is submitted by CA, the Log Server
will verify it. The verification includes two aspects: 1) Each certificate: check
the certificate encoding format, the Key Usage extension, the Basic Constraints
extension to verify that the certificate on the chain is valid, or a badCertificate
identifier will return to the CA. 2) Between certificates: check whether each
certificate on the chain except the first certificate is the issuer of its previous
certificate, otherwise return the bad Chain identifier; check whether the last
certificate on the chain is in the list of trusted certificates in the log, otherwise
the unknown Anchor identifier is returned.

In PEPEC-CT, Log Server only needs to perform additional verification on
the precomputed table when checking each certificate. If the verification fails, the
badCertificate will also be returned, or else, the Log Server should issue an SCT,
which ensures the correctness and read-only of the precomputed table. Finally,
CA signs the PEPEC certificate and sends the SCT along with the PEPEC
certificate to the domain owner, and then the domain owner can communicate
confidentially with the TLS client. As for step 2.4 and 2.5 in the PEPEC-CT,
Monitors play their part periodically, therefore these two steps do not have to
be performed in order.

3.3 Utilizing PEPEC Certificates

From the side of the client, the TLS client will first validate the SCTs and the
inclusion proofs to make sure the certificate from the domain owner is valid.
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Version version;Version version;

CertificateSerialNumber serialnumberCertificateSerialNumber serialnumber

AlgorithmIdentifier signature;AlgorithmIdentifier signature;
Name issuer;Name issuer;

Validity validity;Validity validity;

Name subject;Name subject;

SubjectPublicKeyInfo subjectPublickeyInfo;SubjectPublicKeyInfo subjectPublickeyInfo;

UniqueIndentifier issuerUniqueID;UniqueIndentifier issuerUniqueID;

UniqueIndentifier subjectUniqueID;UniqueIndentifier subjectUniqueID;

Extensions extensions;Extensions extensions;

w window size of w-NAF;w window size of w-NAF;

PreTable precomputed table;PreTable precomputed table;

OtherExtensions other extensions;OtherExtensions other extensions;

Fig. 4. New structure of PEPEC certificates

Then the precomputed table will come into play. According to Algorithm 3,
accelerated computations can be performed everywhere public keys are used,
including certificate authentication and key exchange.

Table 1 shows performance differences caused by different width-w. Owing
to the point P as the public key has been loaded, we don’t need to store it.
For example, when the window width is 2, the number of precomputed points is
0. And, it is quite clear from the number of point addition that the larger the
window width is, the less the number of point addition operations required.

Table 1. Performance variation of different width-w

Window size w 2 3 4 5 6 7 8

Number of precomputed pointsa 0 1 3 7 15 31 63

Number of point additionb 86 64 52 43 37 32 29

Precomputed table size/Bc 0 64 192 448 960 1984 4032
aAs introduced in Sect. 2.3, we can get it with the formula 2w−2 − 1.
bIn general, the type of k is 256 bits. The number of point addition can be
calculated utilizing the Hamming Weight, where the Hamming Weight is

k
w+1

.
cWe reserve 64B for a single point P .

In actual situations, the following three modes in Fig. 5 may appear when
the TLS client applies the precomputed table:

– Legacy mode in the unsupported environment: The TSL client does not
support certificate authentication and key exchange with PEPEC Certificates.
This means that it will directly ignore the relevant content of the precomputed
table extension in the certificate. For a 256-bit value of k, even though it
guarantees zero memory usage to store precomputed tables, it requires extra
computing power to compute 128 point additions.

– Hit mode in the resource-restricted environment: Due to limited resources
in TSL client, such as insufficient memory space, only suitable window size
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w′ can be loaded, where 2 ≤ w′ ≤ 7. In such a situation, there may be
256

w′+1 point addition operations. Compared to legacy mode, it saves w′−1
w′+1%

operation time. If w′ = 4, the value of w′−1
w′+1% is 60%.

– Eager mode in the resource-abundant environment: The TSL client has
enough resources to load the full precomputed table. In such a situation, the
TSL client has all the precomputed points and only about 29 point additions
need to be calculated. Offloading such compute-intensive operations can save
much time for the TSL client to execute other tasks. About 78% of the point
addition operations can be saved over legacy mode.

Unsupported 
environment

TLS Client

Not support any 
changes

Load partial 
precomputed table

Load full 
precomputed table

Resource-restricted 
environment 

Resource-abundant
environment  

1. Legacy mode

2. Hit mode

3. Eager mode

Fig. 5. Three modes of utilizing PEPEC certificates

4 Evaluation

In this section, We mainly introduce the security and performance of the PEPEC
certificate.

4.1 Security Evaluation

In this part, we analyze the security of the PEPEC certificate from the three
security elements: 1) Confidentiality, 2) Integrity, and 3) Availability.

Confidentiality. Our major optimizations are for the certificate public key,
which is public. And the corresponding precomputed table can be constructed
by everyone. So we don’t involve a discussion of confidentiality for the PEPEC
certificate.

Integrity. For a PEPEC certificate, the client will check integrity from two
aspects. The first one is to verify the CA signature which can be found in the
signatureValue field according to the RFC 5280 [3]. The CA signature for the
TBSCertificate including precomputed table guarantees that the precomputed
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table has not been tampered with. The second one is to verify SCTs from different
Log Servers. Each SCT contains a signature for the received certificate where
the precomputed table is on. We don’t need extra resources for integrity because
these two signatures are provided by CT.

Availability. Log Servers will verify the precomputed table in the PEPEC cer-
tificate by recalculating the precomputed table based on the w value. Since it is
almost impossible for CA to collude with all logs in CT, we can assume that all
precomputed tables in the PEPEC certificate passed to the client are correct.
In addition, the client can load precomputed tables of the corresponding size
according to their own needs, as mentioned above. We believe that TLS clients
have a better experience when using PEPEC certificates.

4.2 Performance Evaluation

In this section, we take Signature Verification via EdDSA as an example to
analyze the efficiency improvement brought by the use of PEPEC certificates to
the client. We compared the amount of computation required in the two cases
of using the PEPEC certificate and using the standard X.509v3 certificate and
found that the performance improved by at least 11%.

As shown in Fig. 2, Signature Verification can be divided into fixed-point
scalar multiplication and unknown-point scalar multiplication. To simplify the
analysis, we use the w-NAF algorithm with a window size of 8 for both sides,
which will produce a 4 KB precomputed table to be embedded in a PEPEC
certificate. This is a reasonable size since the average size of a certificate in actual
delivery is around 4 KB [11]. In the case of IoT devices using the communication
module ATK-M751C provided by ALIENTEK, the network transmission rate is
between 7.5 Mbit/s and 10 Mbit/s [1], which means we only need to spend an
extra 4.26 ms to transfer a PEPEC certificate. Then we need 29 point additions
and 256 point doublings for fixed-point scalar multiplication because we ignore
the calculation time of the precomputed table. This part of the calculation is
fixed, whether a PEPEC certificate is used or not. As for unknown-point scalar
multiplication, we can save 63 point additions if we use a PEPEC certificate,
which is shown in Table 2.

Table 2. Complexity comparison of X.509 and PEPEC

Types Fixed-point scalar multiplication Unknown-point scalar multiplication
Point addition Point double Point addition Point double

X.509 29 256 29 + 63 256
PEPEC 29 256 29 256

According to the RFC 8032 [19], 9 multiplications are required for each point
doubling and 11 for each point addition. Using the standard X509v3 certificate,
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we need to do 5939 multiplications, while the times of multiplication will reduce
to 5246 if we use the PEPEC certificate. In the general case, we got an 11%
performance boost, but if we convert multiply by 2 into shift left operation which
means 8 multiplications for each point doubling and 9 for each point addition,
we will get a 13% performance boost. And if We optimize the algorithm for this
part of the fixed point calculation by using methods in [9,13], clients will get a
19% computing performance boost.

5 Conclusion

In this paper, We integrate w-NAF and CT into a novel efficient certificate called
PEPEC, which accelerates the client to use the certificate public key to perform
related calculations. As an innovative efficient certificate, PEPEC satisfies clients
vary from high-memory to low-memory while ensuring the correctness of the
precomputed table. Due to this efficient certificate compatibly working with
current CT, we plan to do a simple implementation of the PEPEC certificate
in the future. Then we can further study how this certificate improves client
computing performance.
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Abstract. A Bilinear pairing on an elliptic curve defined over a finite
field provides an attractive prospect for designing cryptographic schemes
with various functionalities. An elliptic curve over which a computation-
ally efficient bilinear pairing can be defined is called a “pairing-friendly
curve”. Finding families of pairing-friendly curves with sufficient antici-
pated bit security has attracted significant research attention. For exam-
ple, the Barreto-Neahrig (BN) and Barreto-Lynn-Scott (BLS) curves,
are existing curves of this type. However, there is a need for alternatives
to back up these already evaluated curves. In 2020 Guillevic, Masson,
and Thomé (GMT) proposed pairing-friendly curves with embedding
degrees 5 to 8 range. GMTk denotes curves with an embedding degree
k. A composite k is preferred from the efficiency viewpoint. However,
to the best of the GMT6 and GMT8 curves have been reported in the
literature. In this paper, novel field-towering methods using two types of
extension method and constructions are developed. These methods are
applied to efficiently implement and analyze the bilinear pairings based
on the GMT6 curve over a 672-bit prime field and the GMT8 curve over
a 542-bit prime field. The pairing-computation times of our developed
software evaluated using an Intel Core i7-8700 (@4.3 GHz Turbo Boost
on) is computer are 0.987 ms and 1.12 ms for GMT6-672 and GMT8-542,
respectively indicating the practicality of these curves.

Keywords: Software implementations · Bilinear pairings · Type-I
AOPF

1 Introduction

A Bilinear pairing (hereafter simply “pairing”) over an elliptic curve is valu-
able for implementing advanced cryptography, such as aggregate signatures [1],
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homomorphic encryption [2], etc. One of the recent innovative protocols based
on pairing is the zero-knowledge succinct noninteractive argument of knowledge
(zk-SNARKs) [3]. Pairing is a nondegenerate bilinear map obtained from the
direct product of two additive groups G1 and G2, resulting in a multiplicative
group G3. The groups G1 and G2 are generally subgroups obtained from elliptic
curve groups E(Fp) and E(Fpk), where E, p, and k denote an elliptic curve,
field characteristic, and embedding degree, respectively. Pairings constructed
over elliptic curves require different properties and security levels depending on
the particular application. Therefore, the investigation of new curves of efficient
pairing computation (called “pairing-friendly” curves) constitutes a significant
research area. The Barreto-Naehrig (BN) curves [5], Barreto-Lynn-Scott curves
(BLS) [6], and Kachisa-Schaefer-Scott (KSS) curves are the most well-known
families of pairing-friendly curves, which have been widely studied as efficient
candidates for 128-bit level security pairings. Besides, there is an attack reported
in [7] improves the number field sieve algorithm in discrete-logarithm problems
in extension fields and affects the security level of many pairing-friendly curves.
Hence, the parameters of pairing-friendly curves are forced to be replaced with
their parameters for 128-bit security levels with enough margin. This parameter
replacement has been studied only for a short period since the year 2016, after
it the performance and security assessment for the well-known curves appear
vague. In 2020, Guillevic, Masson, and Thomé (GMT) [8] proposed new curves
generated by a modified Cocks-Pinch method. These curves satisfy the 128-bit
level security against the attack mentioned in [7]. We refer to the paper [8] as
“the GMT paper”. Moreover, we denote the curves with k = 6, 8 proposed in [8]
as the GMT6 and GMT8 curves, respectively. The GMT paper presented algo-
rithms for fast pairing calculation. A simple model estimates the computational
timings of pairing computation over the GMT6 and GMT8, where both results
are 1.5 ms using an Intel Core i7-8700@3.2GHz computer. Although the results
reported in the GMT paper are promising, to the best of our knowledge, there is
no study on rigorous software implementation for these curves. For this purpose,
this paper aims to provide the first and efficient software implementation of the
GMT curves with a detailed cost analysis.

Our Contributions. The following three main contributions are present in
this paper. First, two types of efficient field towering methods for the GMT6
and GMT8 curves with the type-I all-one polynomial field (AOPF) [11] and the
optimal extension field (OEF) [12] are proposed. These fields are used as the
first subextension fields for fast paring calculation. Furthermore, the number
of arithmetic operations of the proposed extension field towering is investigated
and a new GMT8 curve parameter optimized for our extension fields is provided.
Second, an unique detailed cost at the algorithm level is provided for implement-
ing Miller’s algorithm [4] with twists [13], and the required cost is reevaluated
using an accurate expression. Moreover, the polynomials suggested by the GMT
paper are reviewed for calculating the fast final exponentiation calculation and
revised for efficiently calculating the orders of both curves. Finally, the exper-
imental results obtained from the implemented software regarding the pairings
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over the GMT6 and GMT8 curves based on the proposed constructions are pre-
sented. The software implementations, which are based on the crypto library [14]
and the GNU MP library (GMP) version 6.2.1, give rise to pairing computation
of the GMT6 and GMT8 curves in 0.987 ms and 1.12 ms, respectively, using
an i7-8700 (@4.3GHz Turbo Boost enabled) computer without using the lazy
reduction technique.

Related Research Works. Lavice et al. [9] proposed a small-area pairing-
computation architecture using the FPGA for the updated 128-bit level pairing-
friendly curves. They also proposed an attractive formula for calculating the
squaring in the quadratic cyclotomic subgroup. We adopt this suggested squar-
ing method employed in the quadratic cyclotomic subgroup and use it in our
proposed tower of extension fields to reduce the calculation cost.

Notation. In this paper, a multiplication, squaring, and inversion cost in Fpk is
denoted as mk, sk, and ik, respectively. The symbol ak denotes an addition cost
in Fpk , where it is assumed that subtraction, left-shift, and right-shift costs in
Fpk are identical to ak. m is used with m1, and s1 summarizes the total cost of
m1 + s1 in Fp. To distinguish parameters with different characteristics with the
same embedding degree, each curve parameter is given a different designation
using a bit length of characteristic p as the suffix, such as the GMT8-544 and
GMT8-542.

2 Preliminaries

The GMT curves with embedding degrees k = 6, 8 and ate pairing over the GMT
curves are reviewed in this section.

2.1 Guillevic-Masson-Thomé (GMT) Curves with Embedding
Degrees 6 and 8

Guillevic, Masson, and Thomé [8] proposed pairing-friendly elliptic curves based
on the Cocks-Pinch algorithm with embedding degrees k = 5, 6, 7, 8. The curves
with even embedding degrees k = 6 and 8 (GMT6 and GMT8) are capable of
calculating pairing efficiently. The parameters of the GMT curves (field char-
acteristic p(u), order r(u), and Frobenius trace t(u) with coefficient ht, hy) are
given by the following polynomials, where the integer parameters u, hy, ht ∈ Z

are selected as p and r are prime numbers. The complex multiplication (CM)
discriminant of the GMT6 curve is D = 3 with elliptic curve E : y2 = x3 + b
where x, y ∈ Fp6 with non-zero coefficient b ∈ Fp. The ρ-value= log(p)/log(r) of
GMT6 is 2.63. For GMT8 curve, the CM discriminant is D = 4 with the elliptic
curve E : y2 = x3 + ax where x, y ∈ Fp8 with the nonzero coefficient a ∈ Fp. For
k = 8, the obtained GMT8-542 curve has a slightly better ρ-value= 2.12 than
the GMT6 curve.
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Algorithm 1. Ate pairing over the GMT6 and GMT8 curves using a 2-NAF
loop parameter expression
Require: T , P ∈ G1, Q ∈ G2

Ensure: fT,Q(P ) ∈ F
∗
pk

1 f ← 1, R ← Q
2: for i = �log2(T )� − 1 down to 0 do
3: λ ← lR,R(P ), R ← 2R � //DBLLine
4: f ← f2 · λ � //UPDATE1
5: if T [i] = 1 then
6: λ ← lR,Q(P ), R ← R + Q � //ADDLine
7: f ← f · λ � //UPDATE2
8: if T [i] = −1 then
9: λ ← lR,−Q(P ), R ← R − Q � //ADDLine
10: f ← f · λ � //UPDATE2
11: f ← f (pk−1)/r

12: return f

The number of rational points on the elliptic curve E over the finite field Fp

is expressed as #E(Fp) = p+1−t according to the Hasse’s theorem. The elliptic
curve E also forms an additive group in the extension field E(Fpk), where k is
the embedding degree of the curve. The order of E(Fpk) is #E(Fpk) = pk+1−tk,
where tk = αk + βk and α and β are complex conjugate numbers. The r-torsion
subgroup of E, which is defined as E[r] := {P |P ∈ E, [r]P = O} has two
unique subgroups of order r. These subgroups are useful for efficient pairing
computation. Let the πp be Frobenius endomorphism and the first subgroup
G1 = E[r] ∩ ker(πp − [1]) ⊂ E(Fp)[r], which is defined over Fp. The second
subgroup G2 = E[r] ∩ ker(πp − [p]) ⊂ E(Fpk)[r], which is defined over Fpk . The
subgroup order r satisfies the condition r|(pk −1), r|#E(Fp), r2|#E(Fpk) which
are important for pairing computation optimization.

2.2 Ate Pairing over the GMT6 and GMT8 Curves

Let G3 be a multiplicative subgroup defined as

G3 = Fpk [r] (1)

where k is the embedding degree of the pairing-friendly curve. For three Abelian
groups G1,G2,G3, an ate pairing aT can be defined as follows:

aT : G2 × G1 → G3, (2)

(Q,P ) �→ (fT,Q(P ))(p
k−1)/r (3)

where T = u − 1 and fT,Q is a rational function with a divisor div(fT,Q) =
T (Q) − ([T ]Q) − (T − 1)(O). Ate pairing for the GMT6 and GMT8 curves is
calculated by using Algorithm 1.
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In Algorithm 1, the calculation steps 1 to 10 are identified as Miller’s algo-
rithm, where steps 2 to 10 are particularly called Miller’s loop. Steps 3, 6 and
9 describe the calculations of the rational functions lR,R, lR,Q together with the
elliptic curve doubling (ECD) and elliptic curve addition (ECA) calculations. We
call the calculations of lR,R together with the ECD as DBLLine. Similarly, we
call the calculations of and lR,Q together with the ECA as ADDLine. UPDATE1
and UPDATE2 are “sparse” multiplications in Fpk with less computational load
than the standard multiplication in Fpk .

The input T = u − 1 is expressed in a nonadjacent form (NAF), which
represents integers in certain conditions as three value types of 1, 0, −1, rather
than a binary form for efficient pairing calculating. Miller’s algorithm is also
known as an algorithm capable of using a 2-NAF since the inversion operation
lR,−Q(P ) can be easily calculated in this case.

Step 11 is known as the final exponentiation, the details of the final exponen-
tiation calculation for the GMT6 and GMT8 curves are described in Sect. 5.2.

2.3 Ate Pairings over GMT Curves with Twists

The GMT6 curve with the CM discriminant D = 3 and input Q ∈ G2 used for
ate paring over the elliptic curve E : y2 = x3+b known as having an isomorphism
ψ. The isomorphism ψ projects the subgroup G2 ⊂ E(Fp6) to a same order
subgroup G

′
2 ⊂ E′(Fp) where the sextic twist E′ : y2 = x3 + b/z, z ∈ Fp. Since

two subgroups have the same information, the required cost heavy arithmetics
in Fp6 can be replaced by the simple calculations in Fp. The isomorphism ψ from
the twisted curve to the original curve can be defined as follows:

ψ : E′ → E, (4)

Q′(x, y) �→ Q(xz−1/3, yz−1/2) (5)

With assuming that both P ∈ G1 ⊂ E(Fp) and Q ∈ G
′
2 ⊂ E′(Fp), the twisted

ate pairing for the GMT6 curve can be computed as follows:

aT : G′
2 × G1 → G3, (6)

(Q′, P ) �→ (fT,ψ(Q′)(P ))(p
6−1)/r (7)

In this case, the ADDLine and DBLLine can be computed in Fp.

The GMT8 curve E : y2 = x3 + ax with a CM discriminant D = 4 has a
different type of twist called “quartic twist”. The map ϕ from the twisted elliptic
curve E′ to the original curve E is defined as follows:

ϕ : E′ → E, (8)

Q′(x, y) �→ Q(xz−1/2, yz−3/4) (9)

where z ∈ Fp2 is a quadratic non-residue in Fp, x4 − z ∈ Fp2 [x] is irreducible,
the twisted curve E′ : y2 = x3 + ax/z, and Q′ ∈ G

′
2 ⊂ E′(Fp2). Similar to
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the GMT6 curve, ate pairing with the quartic twist for the GMT8 curve can be
computed as follows:

aT : G′
2 × G1 → G3, (10)

(Q′, P ) �→ (fT,ϕ(Q′)(P ))(p
8−1)/r (11)

In this case, the GMT8 curves with embedding degree 8 can compute the
ADDLine and DBLLine functions of ate pairing in Fp2 arithmetics. Even though
the twist maps reduce the number of arithmetic operations in the pairing, the
total cost of Miller’s algorithm depends on other elements, such as the Miller’s
loop parameter T and the coordinate system. Furthermore, optimizing the final
exponentiation calculation and not only Miller’s algorithm (for example, factor-
izing the polynomial (pk − 1)/r (k = 6, 8) and performing fast squaring in the
extension fields), is also a key component for fast pairing computations.

3 Review of Extension Field Classes

For fast pairing computation, the efficiency of the multiplication over the exten-
sion fields heavily decides it’s efficiency. To construct an extension field, first the
primitive root c of f(x) is preferred to choose from the twist curve parameter z
[13]. Second, the primitive root of f(x) is preferred to be as simple as possible
(for example c = 2). These constraints make impose a difficulty to find efficient
irreducible polynomials for pairing. A tower of extension fields that have nested
structures is proposed based on [10]. In this section, the existing classes of prac-
tical extension fields are initially reviewed and then the candidates for the tower
of fields available for the GMT curves are indicated.

3.1 Optimal Extension Fields

Bailey and Paar [12] introduced the following formal definition for constructing
extension fields consisting of a polynomial basis:

Definition 1 (Optimal extension fields, OEFs). OEFs are the extension
fields satisfying the following three properties.

1. Characteristic: A pseudo-Mersenne prime number p of the form p = 2l ± c,
where l, c ∈ Z.

2. Modular Polynomial: An irreducible binomial xm − s, where s ∈ Fp and
m is the extension degree.

3. Basis: A set {1, ω, ω2, ..., ωm−1}, where ω is a primitive root of the modular
polynomial.

Although the characteristic p is a pseudo-Mersenne prime number in the
OEF definition, it is known that an OEF is actually capable of general prime
numbers. An OEF has several fast multiplication algorithms for different degrees
m, such as Karatsuba method [19], the Karatsuba-like method [20], and Toom-
Cook method [21]. Specifically m = 2 and s = −1 constitute the most important
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variant, where the squaring computation in Fp2 requires only two multiplications
in Fp, using the Karatsuba method. We call this technique “Karatsuba complex
method,” which is a famous and standard technique for accelerating pairing
calculation.

3.2 All-One Polynomial Extension Fields

Unlike an extension field such as the polynomial based OEF described above, a
special extension with a Gaussian normal basis was introduced by Nogami et al.
[11]. This field is called all-one polynomial field (AOPF). Later Nekado et al.
extended its definition and classified several types of AOPFs, such as type-I X
[18] and type-II X [15,17]. The definition of Type-I AOPF is given as follows:

Definition 2 (Type-I All-one polynominal Fields). Type-I AOPFs are
the extension fields satisfying the following three properties.

1. Characteristic: A pseudo-Mersenne prime number p of the form p = 2l ± c,
where l, c ∈ Z.

2. Modular Polynomial: An all-one irreducible polynomial (xm+1−1)/(x−1),
where s ∈ Fp and m + 1 is a prime number.

3. Basis: A pseudo basis {ω, ω2, , ω3..., ωm} is equivalent to the normal basis
{ω, ωp, ωp2

, ..., ωpm−1} where ω is a primitive root of the modular polynomial.

Although the characteristic p is a pseudo-Mersenne prime number in the Defi-
nition 2, it is known that an AOPF is actually capable of general prime num-
bers. An efficient way to calculate the multiplication in an AOPF is to use the
cyclic vector multiplication algorithm (CVMA), which is more efficient than the
multiplication in an OEF. According to Nekado et al. [18], the squaring in the
quadratic type-I AOPF: Fp2 = Fp[ω]/(ω2 + ω + 1) only requires two multiplica-
tions in Fp as follows:

α = (a0, a1), α2 = β = (b0, b1), (12)
b0 = {−a1(a0 − a1) + a0}, b1 = {−a0(a0 − a1) − a1} (13)

where α, β ∈ Fp2 and a0, a1, b0, b1 ∈ Fp. Unlike the OEF, the type-I AOPF has
much constraints. For example, m + 1 must be a prime number, which restricts
the degree of AOPF extension to an even number only. Furthermore, since the
degree of type-II AOPF, the squaring in Fp2 requires three multiplications in Fp,
which is less efficient compared with the type-I AOPF or the adapted z = s = −1
OEF in Karatsuba complex method. In addition, if the probability of a general
prime number to construct a degree-2 type-I AOPF is at most 50%. Still, the 2
m cost squaring, the quadratic extension field of both OEF with s = −1 and
type-I AOPF are still good candidates for a fast pairing calculation.
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4 Proposal of Efficient GMT6 and GMT8 Curve
Parameters and Their Field-Towering Schemes

As described in Sect. 3, building an efficient tower of an extension field with twist
capability has a few constraints regarding the selection of the polynomial prim-
itive root. Although the field towering system reduces the degree of irreducible
polynomials to be explored, finding the curve parameters with an efficient com-
putation cost is still complicated. In this section, the parameter selection for
both GMT6 and GMT8 curves is described, and new curve parameters and
tower construction methods for efficient pairing computation over GMT curves
are proposed.

4.1 GMT6 Curve Parameters and Towers

The GMT paper [8] suggests the use of parameters for the GMT6 curve, as
shown in Table 1. These parameters are denoted as GMT6-672. The GMT paper
suggests the direct sextic extension using the irreducible polynomial x6 − s, s =
2 ∈ Fp for the pairing computation over GMT6-672. Since 2 is a quadratic non-
residue (QNR) and a cubic non-residue (CNR) in Fp, the twist parameter z
can be equivalent to z = 2. In this work, a field towering scheme τ1 based on
the extension proposed in the GMT paper was derived, as shown in Table 3.
However, we found that the suggested τ1 cost 2 extra addition in Fp2 squaring
compare to z = s = −1; therefore, the arithmetic costs in τ1 is not the best for
pairing calculation.

We propose a new variant of field towering scheme τ2 for efficient pairing
computation over the GMT6 curve using both the sextic twist and Karatsuba
complex techniques. −1 is not CNR in Fp. Therefore, we had to find an alterna-
tive, QNR and CNR elements in Fp for the twist parameter z without changing
the entire tower construction. Using numerical experiments, we found that the
element −4 ∈ Fp satisfies the requirements. The cost estimations presented in
Table 3 show that the extension field construction τ2 exhibits less Fp addition
costs in Fp6 than τ1.

4.2 GMT8 Curve Parameters and Towers

The GMT8-544 curve proposed in [8] with the extension Field Fp8 = Fp[x]/(x8−
5) which only capable with OEF and Type-II AOPF. We present an alternative
characteristic p for the GMT8 curve with both OEF and Type-I AOPF construc-
tion available which can achieve flexible and efficient implementation. To find
such a characteristic, we focus on finding a prime number available with either
the Karatsuba complex or type-I AOPF. According to the GMT paper [24], the
2-NAF weight of some parameters is required for efficient computation over the
GMT8-544 curves as follows:

u : 2-naf weight ≤ 5, hy : 2-naf weight ≤ 7, ht : 2-naf weight ≤ 4 (14)
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Table 1. GMT6-672 parameters [8]

Param 2-NAF
weights

Bit
length

Value

u 2 128 0xefffffffffffffe00000000000000000

ht 1 – -1

hy 4 – 0xffbbffffffffffffc020

p – 672 0x9401ff90f28bffb0c610fb10bf9e0fefd59211629a7991
563c5e468d43ec9cfe1549fd59c20ab5b9a7cda7f27a0067
b8303eeb4b31555cf4f24050ed155555cd7fa7a5f8aaaaaa
ad47ede1a6aaaaaaaab69e6dcb

In the GMT paper, the evaluated security level of the proposed GMT8-544
curve is 131-bits. We investigated for new parameters which satisfies approxi-
mately the 128-bit security level by focusing the characteristic search in the 525
- 544 bit range. Looking for only the characteristic satisfying the condition above
for quadratic type-I AOPF and OEF construction could be obtained. The param-
eters found are denoted as GMT8-542; these are presented in Table 2. The sub-
group security and twist subgroup security of our GMT8-542 are the same with
original GMT8-544; G1,G2 subgroup-security are confirmed, the twist-subgroup
is not secure.

Compared to the original GMT8-544 curve, hy in the proposed curve has
2 more weights in the 2-NAF. A part from this disadvantage, the proposed
GMT8-542 parameters are available only with the type-I AOPF, and 1/3 cost
reduction is achieved for the squaring operation in the extension fields. Based on
the extension proposed in the GMT paper, we derived a field-towering scheme τ3
as shown in Table 3. In this case, the element 3 is a QNR in Fp, and the square
root of 3 in Fp2 is also a QNR element which makes the quartic twist available
for this tower.

We propose a more efficient towering scheme τ4, where the first subextension
field Fp2 is constructed using the type-I AOPF method. A simple QNR element
(1,−1) ∈ Fp2 for the second and third stage OEFs is selected. Since (1,−1) is
QNR, the quartic twist is also available in τ4. Two towers of extension fields
and their arithmetic costs for each curve are summarized in Table 3. The newly
proposed towers τ2 and τ4 exhibit less number of arithmetic operations for the
squaring and the cyclotomic subgroup squaring in Fp2 , Fp6 , and Fp8 .

The final exponentiation raising power of (pk − 1)/r is heavily dependent on
the squaring cost in Fpk . We can use two strategies to accelerate the final expo-
nentiation: compressed squaring introduced by Karabina [25] and cyclotomic
subgroup squaring [9,26]. Both algorithms are efficient compared with the reg-
ular squaring in the extension fields; however, the compressed squaring requires
inversion operation in Fp, which could be the bottleneck of pairing computation.

In Table 3, the scyclo
k is represented by the square in the cyclotomic subgroup

of extension field Fpk . scyclo
k represents the cost of the cyclotomic subgroups



470 Z. Song et al.

Table 2. GMT8-542 parameters

Param 2-NAF
weights

Bit
length

Value

u 4 64 0xffc0000004020002

ht 1 – -1

hy 6 – 0x7452

p – 542 0x347111bfc75e57d130de7be68437c8d75455d209459d42
1455023bee14df9fe75aa4734686ca3d08c1fa594100d794
21d56c53899ee0f066fad9eb45b0985dbdbba2dcc1

squaring in Fpk . The cyclotomic subgroup squaring equation for τ1 and τ2 was
adopted from [26, Sect. 3.2]. For τ3, we adopt the cyclotomic subgroup squaring
equation from [26, Sect. 3] was adopted, whereas for τ4, the equation from a
recent work [9] was selected to prevent the multiplication with (ω2+ω)−1 in the
Fp4 multiplication.

5 Implementation of Ate Pairing over the GMT6
and GMT8 Curves

In this section, the details of the proposed pairing implementation are presented.
Among the proposed towers of the extension fields, τ2 and τ4 are the best con-
structions for the GMT6 and GMT8 curves, respectively. This section provides
a detailed calculation of pairing cost based on these towers.

5.1 Implementation of Miller’s Algorithm

In previous studies, many sophisticated techniques were proposed to improve the
performance of Miller’s algorithm. For example, the optimal coordinate system
depends on the type of the underlying elliptic curves. Base on the GMT paper
[8, Table 5], the homogeneous projective coordinate system (weight[1:1])) for the
GMT6-672 curve was adopted. This system was proposed by Costello et al. in
[23] and later modified in [22, Section 5].

For the proposed GMT8-542 curve, the Miller’s algorithm with the projective
coordinate system (weight[1:2]) was adopted. This is also suggested by Costello
et al. in [22, Sect. 4]. As a Miller’s loop parameter, the GMT6-672 has 129-bit
T = u − 1 with a 2-NAF weight of 2, whereas the GMT8-542 curve has a 65-bit
T = u − 1 with a 2-NAF weight = 4. The cost of the implemented functions
in Miller’s loop based on the τ2 and τ4 field-towering schemes is summarized in
Table 4.

In Table 4, the column “Call” indicates the number of function calls per
Miller’s algorithm execution. Since DBLLine does not require UPDATE1 in the
first loop of Miller’s algorithm, UPDATE1 has one less call than DBLLine. Two
ADDLine functions are denoted “ADDLine” and “ADDLine′” in Table 4. Due to
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3i1 and 1m1 precomputation, ADDLine in Miller’s loop can be replaced with
“ADDLine′”. Although the pairings and applications employ “ADDLine′”, the
only functional with constant P , Q is the subgroup generator of G1 and G

′
2.

Thus, pairings without restricting any of the application functionalities were
implemented.

5.2 Implementation of Final Exponentiation

In the second part of pairing calculation, the result of Miller’s algorithm is raised
to the power of (pk − 1)/r. This is also known as final exponentiation (pk − 1)/r
can be separated into two parts; the easy part and the hard part. The complexity
of the final exponentiation largely depends on the curve parameters, especially
the polynomials of characteristic p(u), order r(u), and Frobenius trace t(u).

Table 3. Arithmetic calculation costs in the tower of the extension fields

Curve and tower Extension fields Operation m1 s1 a1 i1 Note

GMT6, τ1
E(Fp) : y2 = x3 − 1

E′(Fp) : y2 = x3 − v−6

F
p2 : Fp[i]/(i

2 − 2) m2 3 0 6 0

s2 2 0 5 0

F
p6 : F

p2 [v]/(v3 − i),

where i2 = 2

m6 18 0 76 0

s6 12 0 47 0

s
cyclo
6 6 0 37 0 [26] Sect. 3.2

f6 4 0 0 0

i6 35 1 102 1

GMT6, τ2
E(Fp) : y2 = x3 − 1

E′(Fp) : y2 = x3 − v6

F
p2 : Fp[i]/(i

2 + 1) m2 3 0 5 0

s2 2 0 3 0

F
p6 : F

p2 [v]/(v3 − 2i),

where i2 = −1

m6 18 0 64 0

s6 12 0 41 0

s
cyclo
6 6 0 29 0 [26] Sect. 3.2

f6 4 0 0 0

i6 36 1 80 1

GMT8, τ3
E : y2 = x3 + x

E′(F
p2 ) : y2 = x3 + ix

F
p2 : Fp[i]/(i

2 − 3) m2 3 0 7 0

s2 2 0 5 0

F
p4 : F

p2 [v]/(v2 − i) m4 9 0 33 0

s4 6 0 25 0

F
p8 : F

p4 [g]/(g2 − v),

where i2 = 3

m8 27 0 121 0

s8 18 0 93 0

s
cyclo
8 12 0 69 0 [26] Sect. 3.1

f8 6 0 0 0

i8 46 1 169 1

GMT8, τ4
E : y2 = x3 + x

E′(F
p2 ) : y2 = x3 + v2x

F
p2 : Fp[ω]/(ω2 + ω + 1) m2 3 0 4 0

s2 2 0 3 0 Type-I AOPF

F
p4 : F

p2 [v]/(v2 − (ω2 +ω)) m4 9 0 26 0

s4 6 0 21 0

F
p8 : F

p4 [g]/(g2 − v),
where (1, −1) ∈ F

p2

ω + ωp = 1

m8 27 0 102 0

s8 18 0 83 0

s
cyclo
8 12 0 66 0 [9] Sect 3.3

f8 9 0 12 0

i8 49 0 132 1
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Using the following equation, the GMT curves feature a very unique and efficient
construction [8]:

t′ ≡ ui + 1 ≡ p + 1 (mod r), (i = 1) (15)

j =
p + 1 − t′

r
, (16)

GMT6-672 Final Exponentiation
As mentioned above, the final exponentiation can be separated into two parts
such as follows:

p6 − 1
r

= (p3 − 1)(p + 1) × (p2 − p + 1)
r

(17)

The easy part (p3 −1)(p+1) requires two Frobenius endomorphism calculations
f6 for p and p3. The Frobenius endomorphism for the raised power of pk/2 does
not require any multiplication when k is even. Moreover, as shown in Table 3,
the OEF nested tower of the extension field only requires 4 m for the Frobenius
endomorphism fk.

For the hard part, using the replacement technique given in (17) and (18)
where c = j (where Φ6(x) is the 6-th cyclotomic polynomial), (p2−p+1)

r can be
broken down to:

Φ6(t′ − 1)
r

+ (p + t′ − 2)c = 1 + (p + t′ − 2)c (18)

The hard part can be multiplied by a small integer, which does not change
the bilinear pairing integrity. In this case, a multiplication by 3 is recommended,
so that the polynomial 3c does not have any fraction terms, such as

3(1 + (p + t′ − 2)c) = 3 + 3c(p + u − 1) (19)

Table 4. Cost of miller’s loop in τ2 and τ4

Curve: tower Function m1 s1 Total m Call

GMT6-672: τ2 DBLLine 4 7 11 m 128

UPDATE1 25 0 25 m 127

ADDLine 13 2 15 m 2

ADDLine′ 12 2 14 m 0

UPDATE2 13 0 13 m 2

Miller’s loop 3739 900 4639 m 1

GMT8-542: τ4 DBLLine 26 0 26 m 64

UPDATE1 42 0 42 m 63

ADDLine 44 0 44 m 4

ADDLine′ 41 0 41 m 0

UPDATE2 24 0 24 m 4

Miller’s loop 4582 0 4582 m 1
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However, bilinearity could not be achieved using (19) with the polynomial 3c
provided in Sect. 5.2 (3) of the GMT paper. Thus, our version of 3c was recal-
culated and corrected as follows:

3c = ((1 + 3w + 9w2)(u − 1) + (6w + 9w2))(u − 1) + 9w + 9w2, (20)

where w = hy/2. We propose an efficient calculation order for 3c, which is shown
in Table 5. However, we realize Nanjo et al. [16] already proposed the same
equation in their paper’s TABLE IX. The final exponentiation costs using the
above 3c calculation based on τ2 are summarized in Table 7. Compare with the
original GMT672 final exponentiation hard part, our calculation order reduced
4m6 and s6.

GMT8-542 Final Exponentiation
Similar to the GMT6-672 curve, the power of the GMT8-542 final exponentiation
can also be divided into two parts as follows:

p8 − 1
r

= (p4 − 1) × (p4 + 1)
r

(21)

In this case the easy part (p4 − 1) only requires 1 m6 and 1 i6. Using again the
replacement technique given in (17) and (18) with parameter u′ = u − 1. The
hard part of GMT8-542 can be broken down as follows:

(p4 + 1)
r

=
Φ8(t′ − 1)

r
+ d(p+ t′ − 1)(p+(t′ − 1)2) = 1+ d(p+u)(p2 +u2) (22)

Table 5. Calculation of the raised power of GMT6-672 hard part-3c

Computation Term computed Cost

Input: M ∈ Fp6 , w, u′ ∈ Fp

Output: M3c ∈ Fp6

Temp. var: t0, t1, t2

t0 ← Mw Mw cw

t1 ← t02 M2w scyclo
6

t0 ← t0t1 M3w m6

t1 ← t0M M3w+1 m6

t1 ← t1w M3w2+w cw

t2 ← t12 M6w2+2w scyclo
6

t1 ← t2t1 M9w2+3w m6

t2 ← t1t0 M9w2+6w m6

t1 ← t1M M9w2+3w+1 m6

t1 ← t1u′
M(9w2+3w+1)u′

cu′

t1 ← t1t2 M(9w2+3w+1)u′+9w2+6w m6

t1 ← t1u′
M((9w2+3w+1)u′+9w2+6w)u′

cu′

t1 ← t1t2 M((9w2+3w+1)u′+9w2+6w)u′+9w2+6w m6

t0 ← t1t0 M((9w2+3w+1)u′+9w2+6w)u′+9w2+9w m6

return t0
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According to the GMT paper, thr hard part of embedding degree 8 is multiplied
by 4 as follows:

4 + 4d(p + u)(p2 + u2) (23)

Similar to the GMT6-672, 4d was recalculated and corrected as follows:

4d = ((((4n2 + 1)u − 4n)u + 4n + 1)u − 4)u + 4n2, (24)

where n = hy. We propose an efficient calculation algorithm for 4d, as shown in
Table 6. The total calculation costs of the final exponentiation are summarized
in Table 7. Compare with the original GMT672 final exponentiation hard part,
our calculation order increased 2s6 reduced 5m6.

6 Implementation Results

To confirm the efficiency of the proposed methods, all the towers shown in Table 3
were implemented for ate pairing cost and speed comparison. The software devel-
oped computes bilinear pairings based on the algorithms introduced in Sect. 2.3.
In this section, the features of the software libraries used are initially introduced.
Furthermore, the pairing implementation results with detailed calculation costs
are presented.

Table 6. Calculation of the raised power of GMT8-542 hard part-4d

Computation Term computed Cost

Input: M ∈ Fp8 , u, n ∈ Fp

Output: M4d ∈ Fp8

Temp. var: t0, t1, t2, t3

t0 ← M2 M2 scyclo
8

t0 ← t0
2 M4 scyclo

8

t1 ← t0
n M4n cn

t2 ← t1
n M4n2

cn

t3 ← t2M M4n2+1 m8

t3 ← t3
u M (4n2+1)u cu

t3 ← t3t1
−1 M (4n2+1)u−4n m8

t3 ← t3
u M ((4n2+1)u−4n)u cu

t3 ← t3t1 M ((4n2+1)u−4n)u+4n m8

t3 ← t3M M ((4n2+1)u−4n)u+4n+1 m8

t3 ← t3
u M (((4n2+1)u−4n)u+4n+1)u cu

t3 ← t3t0
−1 M (((4n2+1)u−4n)u+4n+1)u−4 m8

t3 ← t3
u M ((((4n2+1)u−4n)u+4n+1)u−4)u cu

t0 ← t3t2 M ((((4n2+1)u−4n)u+4n+1)u−4)u+4n2
m8

return t0
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6.1 Multi-precision Libraries and Implementation Features

As mentioned above, two libraries (mcl [14] and GMP) are used, which are
combined in this work. mcl is a library for pairing-based cryptography, mainly
supporting the optimal ate pairing over BN curves and BLS12-381 curves. This
library is available on almost all x32 and x64 architecture available platforms.
The implementation conducted in this work mainly uses the mpn function group
of the GNU multiple precision (GMP) Library called by the C++ language,
although some core operations such as multiplication, modulo, addition and bit
shift are replaced by mcl functions. The multiplication in Fp is performed using
the Montgomery multiplication techniques.

6.2 Pairing Benchmark Results

Miller’s algorithm and final exponentiation costs are summarized in Table 8. It
can be observed that the proposed towers τ2 and τ4 exhibit lower costs than τ1
and τ3 by applying all the techniques previously described. Specifically, compared
with τ1 and τ2, they are addition almost 6% more efficient because of the addition
cost reduced Karatsuba complex method. Although, τ4 exhibits an approximate
2% higher costs due to the specially of type-I AOPF but it has lower addition
in total. The implementation results are presented in Table 9. The program was
compiled using the Clang++12 with the compile option -Ofast -march=native.
The benchmarks were obtained using an i7-8700 (base clock 3.2GHz, boost
4.3GHz) computer.

Table 7. τ2 and τ4 final exponentiation costs.

Curve: tower Part m6 scyclo
6 fk f2

k i6 cu cu−1
a cw

a cn
a Total m

GMT6-672 : τ2 Easy 2 0 1 0 1 0 0 0 0 77 m
Hard (without 3c) 4 1 1 0 0 1 0 0 0 886 m
3c 8 2 0 0 0 0 2 2 0 2892 m
Total 14 3 2 0 1 1 2 2 0 3855 m

GMT8-542 : τ4 Easy 1 0 0 0 1 0 0 0 0 76 m
Hard (without 4d) 3 2 1 1 0 3 0 0 0 2748 m
4d 6 2 0 0 0 4 0 0 2 4320 m
Total 10 4 1 1 1 7 0 0 2 7144 m

aGMT6-672:τ2, the costs for the raised power of u, u − 1 and w are cu = 804 m ,
cu−1 = 822 m , cw = 546 m respectively. For the GMT8-542:τ4 case the costs for raised
power of u and n are cu = 876 m, cn = 315 m respectively.

Table 8. Pairing total costs

Tower Miller’s algorithm cost Final Exponentiation cost Total Pairing cost

τ1 4902 m 3854 m +i1 8774 m +i1

τ2 4639 m 3855 m +i1 8494 m +i1

τ3 4310 m 7135 m +i1 11445 m +i1

τ4 4582 m 7144 m +i1 11726 m +i1
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Table 9. Implementation results obtained using an i7-8700 CPU (3.2GHz Turbo Boost
off, 4.3GHz on) computer compared with the GMT paper estimation results

Curve Tower MP library Miller’s
algorithm [μs]

Final
exponentiation [μs]

Pairing [μs] Turbo
Boost

GMT6-672 τ1 mcl 772 722 1494 Off
mcl 539 503 1042 On

τ2 mcl 721 693 1410 Off
mcl 505 481 987 On

– RELIC
(estimation)

800 700 1500 Off

GMT8-542 τ3 mcl 589 1050 1639 Off
mcl 411 731 1142 On

τ4 mcl 569 1050 1616 Off
mcl 398 730 1120 On

GMT8-544 – RELIC
(estimation)

600 900 1500 Off

The proposed pairing computation over the GMT6-672 and GMT8-542
curves is achieved in 0.99 and 1.12 ms, respectively, with Turbo Boost enabled.
The construction of tower τ2 is 5.2% faster than τ1. Moreover, the construction
of tower τ4 is 2% faster than that of τ3 due to the addition reduction. It is also
observed that τ4 has this feature which does not require any squaring in Fp,
which is an interesting result. A comparison with the GMT paper estimation
results is also provided. A comparison between our implementation result and
the GMT paper estimation results is provided in Table 9.

Our implementation results are Benchmarked in the same environment as
the GMT paper estimation results. It is observed that the GMT6-672 curve with
tower τ2, our results are achieved faster by approximately 6% than the GMT
paper estimation results. For the GMT8-542 curve with tower τ4, our results are
achieved by 0.116 ms slower than the GMT paper estimation results.

7 Conclusion and Future Work

The following results can be concluded:

1. After reviewing the GMT6 and GMT8 curve parameters and classes of the
existed extension fields, two different types of towers for newly emerged
pairing-friendly curves were proposed. Since the GMT6 curve original char-
acteristic is considered sufficiently efficient, a unique and efficient tower con-
struction consisting of nested OEF was proposed. This scheme is suitable to
the minimal addition karatsuba complex method. For the GMT8 curve, the
existed parameters cannot achieve the best performance. Thus, we reexplored
the characteristic and proposed a new set of parameters with only 2 less bits
suitable with the type-I AOPF.

2. To the best of the authors’ knowledge, complete and efficient software imple-
mentations of pairings for the GMT6 and GMT8 curves have not been
reported. The cost of the recommended Miller’s algorithm with a twist on
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the available rational functions of pairings was presented. For the final expo-
nentiation, the polynomials were recalculated, and the costs for both curves
were re-evaluated. The implementation results suggested that the GMT6 and
GMT8 curves are excellent and efficient candidates for 128-bit security pairing
applications.
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Abstract. In the mobile domain, VPN applications promise an addi-
tional layer of protection for wireless connections. They offer users the
choice to improve the security of their connections, however, we only
have very limited knowledge about the technical implications that the
shift from desktop to mobile applications brings. In this work, we con-
duct a quantitative analysis of selected Android VPNs and demonstrate
how all of them leak packets during an active tunnel. We conduct these
measurements for different phones and in varying use case scenarios,
including the comparison of Wi-Fi and 4G connections, to get a bet-
ter understanding of how the mobile setting influences the security of a
VPN. While we observe leaks in all combinations, some settings partic-
ularly cause the transmission of thousands of unprotected packets. We
further conduct a series of case studies to provide some first insights on
the causes for the observed leakage.

Keywords: VPN · Mobile · Information leakage

1 Introduction

VPN applications provide an additional layer of protection to Internet connec-
tions. The market size of VPNs is expected to grow from 25 million USD in 2019
up to 75 million USD in 2027 [17], indicating a high commercial potential. VPNs
are beneficial in various use case scenarios ranging from casual convenience, e.g.,
circumventing geofencing for online content, over adding more security to stan-
dard Internet connections, to gaining protection from censorship authorities [19].
While conventional VPN applications are well-researched in the context of desk-
tops [9,13,15], we only have limited knowledge about their performance in the
mobile domain.

Mobile devices introduce constraints that are not present when running a VPN
application on a desktop computer. In most cases, a mobile device has less com-
putational power. It runs on a battery and uses a wireless network connection to
either a Wi-Fi or a mobile network. All of these constraints have in common that
they limit the performance of an application, e.g., optimizing the battery usage
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Zhou et al. (Eds.): ACNS 2022 Workshops, LNCS 13285, pp. 481–494, 2022.
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makes active applications and processes compete for the available resources. Due
to these constraints, we assume consequences for mobile VPN applications, espe-
cially concerning their power and data consumption. Prior work provides differ-
ent static and dynamic analyses of Android-based VPN apps [8]. However, they
mainly focus on the characteristics of the various applications and ignore influ-
encing factors that are critical for the mobile domain. The results of these studies
indicate different security issues involving malware in officially accessible Play-
store apps, occurrences of TLS interception, or information leakage due to the
transmission of untunneled traffic. However, these results are obtained through
stationary setups that ignore the critical characteristics in the mobile domain.
Examples of this are operating devices without any power connection or connect-
ing to a mobile network instead of a Wi-Fi connection. Both characteristics are
directly related to the power and traffic optimizations of a mobile device, and we
must assume an impact on the behavior of mobile VPN apps.

In this work, we analyze Android VPN apps with a focus on the key influ-
encing factors of the mobile domain. More precisely, we test three popular apps
(Turbo VPN, Thunder VPN, Orbot) on three mobile devices that represent dif-
ferent ages of smartphones. Our primary focus is on information leakage, i.e.,
traffic that leaves or reaches the device without being protected by the active
VPN tunnel. We use leakage to indicate how well an application handles a use
case scenario in our experimental setup. Our quantitative evaluation demon-
strates that all apps and devices in our setup transport unprotected traffic while
the VPN is supposed to be active. This leakage can result in thousands of unpro-
tected packets that carry potentially sensitive information.

Our setup covers various use case scenarios and combinations of influencing
factors. Besides comparing devices and the individual VPN applications, we
further investigate the differences between devices with and without an available
USB power supply. In another experiment, we evaluate the differences between a
network connection through Wi-Fi versus a mobile network connection using 4G.
We apply these combinations to typical usage scenarios that resemble varying
types of user data traffic, including simple browsing under varying link qualities
or data-intensive streaming of multimedia content. Our case studies support our
initial assumptions and indicate that the internal performance optimizations
affect the security of mobile VPNs.

Our experimental evaluation prepares different starting points for future work
on the performance of VPN apps in the mobile domain. This includes various
technical aspects derived from our quantitative and qualitative evaluation find-
ings, e.g., the internal resource optimization under varying constraints or the
internal dependencies of operating systems and VPN apps that require a proxy
interface for tunneling traffic. Finally, we point out user discrepancies that can
arise from the consistent leakage of all apps in our test set. Overall, we make the
following core contributions.

1. Quantitative analysis: We test three commercial smartphones and three
Android-based VPN apps in four scenarios. We use the results of these exper-
iments to compare the traffic leakage under various influencing factors.
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2. Qualitative analysis: In a smaller set of targeted measurements, we investigate
the performance of VPN apps in characteristic setups, including a lockdown
setting and DNS specifics.

3. We provide a detailed discussion of our technical findings and identify different
starting points for future work in this context.

2 Technical Background

A Virtual Private Network (VPN) tunnels traffic through a TCP or UDP con-
nection between the user’s system and a remote network, which allows access
to services and devices in the remote network. Optional encryption through
IPSec [6], TLS, or Wireguard [3] provides an additional level of confidentiality.

2.1 Mobile Devices

Mobile devices use the same architecture of processes, network devices etc.. as
home computers, e.g., most mobile devices run on a version of the Linux ker-
nel [7]. The fact that there are different underlying components for Wi-Fi, mobile
data, or Bluetooth is abstracted away from applications running in userspace.

Differences to Desktops. Mobile devices are typically more resource-
constrained than laptops or desktop computers. High screen resolutions and
intensive applications draw power and produce heat, and applications differ by
their performance requirements [14]. In addition to the graphical processing and
the CPU in the phone’s chipset, there are different chips for Wi-Fi or mobile
connections that increase the overall load on the available resources. On the
network side, mobile devices receive a higher number of unsolicited incoming
connections, mainly from mobile network sources. While these incoming connec-
tions are technically also established by the mobile device after an indication
from the network, the phone user has little control over this in practice.

Based on the particular characteristics of the mobile domain, we expect dif-
ferences in the performance of mobile applications, including VPNs. Due to the
additional layer of encryption and the tunneling of user traffic, a VPN intro-
duces a significant overhead for the device. Limited resources might affect the
performance of such apps, which eventually leads to security flaws.

Mobile VPN Apps. The Android operating system allows apps to register as
a VPN by creating a VpnService [1]. The developer can provide an IP address of
the tunnel endpoint, a route for the traffic (generally expected to be the default
route for all traffic), and a DNS server. After establishment, this gives the app a
filehandle from which reading equates to getting a message sent into the tunnel,
and writing equates to sending a message out of the tunnel. The Android API
also allows the application to set allowed or disallowed apps explicitly or enable
apps to bypass the VPN.



484 T. Heijligenberg et al.

Modern Android versions provide two additional settings that the user can
set for an individual VPN from the settings menu: the option to always have
the VPN enabled and to block traffic outside the tunnel, which in the android
source code is referred to as lockdown. The Android operating system handles
these settings, but apps must provide specific functionality relating to device
startup to allow the always-on option to work.

2.2 Networks

Mobile devices use either an available Wi-Fi connection or refer to the mobile
network made available through an active data plan with one of the network
operators. While this wireless Internet connection is transparent to the user, the
internal connection handling introduces some technical differences.

Wi-Fi. Wi-Fi networks in their most common simple form, as provided by a
Raspberry Pi 4 in our test network (Sect. 3), are a transmission modem and a
gateway behind a NAT (Network Address Translation). The modem is respon-
sible for communicating with the connected devices, which have been appointed
individual IP addresses in the local network. The gateway aggregates all traffic
and forwards it to the Internet or the encompassing network.

The operating system implements its protocol stack to handle Ethernet con-
nections on the mobile device. The underlying Wi-Fi protocol stack is imple-
mented in either the application processor or a dedicated Wi-Fi chip and resem-
bles the same reference model as other network devices.

Mobile Networks. Mobile networks consist of multiple base stations and the
core network. A base station handles the radio connection with connected mobile
devices and sends/receives the traffic to/from the core network. The core network
provides a link to the Internet and manages the phone’s registration status. It
also includes identity management and cryptographic procedures, and handles
mobility between base stations or gateways.

On mobile devices, a separate baseband processor implements the mobile
network stack. In the case of a mobile network connection, this stack takes over
the processing of traffic on the network layer and handles the traffic from that
point on.

3 Experimental Setup

The main focus of our analysis is on the volume of leaked traffic during an active
VPN connection.

3.1 Network Setup

The network setup describes how we provide a wireless access point for the
devices under test (cf. Fig. 1). This access point is either a Wi-Fi access point
(Sect. 3.1), or serves as a 4G (LTE) mobile network base station (Sect. 3.1).
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Phone

Wi-Fi

4G

tcpdump

tcpdump

Fig. 1. Experimental setup. The phone connects through a VPN to a wireless access
point. We capture traffic at the wireless interface (Wi-Fi) or the core’s Internet gateway
(4G).

Table 1. Devices and capabilities.

Name Device Experiments
Short Android Chipset Wi-Fi 4G Unplugged Lockdown

Oneplus 8 O8 11 SM8250 � � � �
Poco F2 Pro PO 10 Qualcomm SM8250 � � � �
Samsung Galaxy S9 S9 10 Exynos 9810 � � � �

Wi-Fi Setup. For the Wi-Fi setup, we use a Raspberry Pi 4 that offers net-
work access through a hostapd service. The Pi is connected to the Internet and
provides a dedicated Wi-Fi network for the devices in our test set. To record
traffic, we run tcpdump on the wireless interface of the access point and save the
resulting PCAP traces on a second machine to avoid any additional file writing
load on the Pi. We have complete control over the access point, and we can
adjust the network link according to our scenarios.

4G Setup. The wireless access point is a base station for our mobile network
setup and offers connectivity through a mobile network. To this end, we use an
Amarisoft callbox classic [2] configured to a 4G setup. The callbox is connected to
the Internet and offers connectivity through the core network’s serving gateway.
More precisely, the mobile network serves as a NAT providing the connected
device with an internal IPv4 address and making requests through its external
address. We record traffic using tcpdump at the external interface of the callbox
and apply traffic shaping to the internal interface if necessary for a scenario.

3.2 Devices and App Setup

Our experiments cover devices released between 2018 and 2020, as summarized
in Table 1. These devices differ in their hardware capabilities and enable us to
analyze the performance of VPN apps on different host machines. All devices in
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Table 2. VPN apps used

App Version Downloads Protocol

Turbo VPN 3.7.4 100 m+ ESP

Thunder VPN 4.1.2 50 m+ SSL

Orbot 16.5.2 10 m+ TCP

our test setup are capable of Wi-Fi and 4G (LTE) connections. We control each
phone using ADB, either via USB (in the plugged experiments) or via a network
connection (in the unplugged experiments).

The Xiaomi and Samsung provide a relatively clean setup with only a handful
of apps installed or activated, representing a realistic but controlled environment.
The Oneplus has around 300 popular apps installed to simulate a setting where
background traffic and heavy CPU load can occur.

Each device installs the same set of VPN apps as specified in Table 2. The
apps in our setup represent different popular choices of free VPN services, with
two offering a paid premium option (we refer to the basic service). Despite some
conceptual and technical differences, all apps have in common that they route
network traffic through at least one additional proxy on the transmission path
(cf. Sect. 2).

3.3 Parameter Setup

We test three different devices and applications in four use case scenarios. If not
noted otherwise, each experiment covers all 36 combinations of these param-
eters. We apply these combinations to different setups that focus on relevant
influencing factors.

Scenarios. The four different scenarios in our setup represent individual use
cases that result in characteristic user data traffic.

Reference. The reference scenario covers simple web browsing where we open
the Alexa top 10 websites in individual tabs of the device’s standard browser
and wait 1 s between new page loads. This setup serves as a reference with a
moderate amount of traffic generated. We use the same browsing procedure in
the following link failure setups.

Link Failure. In the link failure scenarios, we artificially add delay or loss to
the transmission link. To this end, we use different combinations of the Linux
traffic control settings tc. In the Wi-Fi setup, we apply the delay and loss rules
to the wireless interface of the Raspberry Pi; in the mobile setting, we select
the internal tunnel interface of the callbox. The tunnel interface represents the
internal address of the serving gateway, i.e., the gateway that a mobile phone
uses for an outbound connection from the core network to the Internet. The
assumption behind this scenario is that we force the device into compensating
for the lost or delayed traffic, e.g., through initiating retransmissions of packets.



Leaky Blinders: Information Leakage in Mobile VPNs 487

Stress. The stress scenario aims to create a high overall burden for the device.
This is achieved by opening a webpage with eight embedded 8K videos, resulting
in the network link being fully used. The assumption behind this scenario is that
by interfering with the limited resources of a device, eventual optimization steps
by the operating system might affect the performance of the VPN. Furthermore,
the high amount of traffic might affect the internal policies of a VPN app.

Influencing Factors. We identify two key influencing factors that are charac-
teristic of the mobile domain. To get a better understanding of these factors, we
apply them to all of the above combinations. For example, to compare different
network setups, we conduct the 36 permutations of devices, apps, and scenarios
on a Wi-Fi and a 4G setting, resulting in 72 experiments in total.

Network Setup. We test two different variants of wireless network access. The
device connects to our access point and receives an Internet connection through
the wireless interface in the Wi-Fi setting. We connect the device to our mobile
network in the LTE setting. The assumption behind this comparison is to vary
the received signals and trigger the operating system’s optimization of the traffic
consumption.

Power Supply. As mobile devices only have a limited battery capacity, the
power consumption of different apps and services is the target of optimization.
To cover the differences between mobile and stationary usage of a device, we
conduct experiments in both a plugged-in and plugged-out setting. The assump-
tion behind these two variants is that energy optimization might also affect a
VPN app and lead to side effects for tunneled traffic.

4 Dynamic Analysis

In our dynamic analysis, we look at the volume of leaked packets in different
combinations of our parameters and setups.

4.1 Metrics

Our primary focus is on the amount of leaked information, i.e., the number and
volume of packets that are processed outside the tunnel while a VPN app is
active. We define and measure leakage as follows. When a device starts the VPN
app, a VPN connection established message is sent to the Android log. We
take this event as the starting point of the VPN and note the start time. As soon
as the VPN app terminates, the log documents a VPN disconnected message.
We use this timestamp as the end time. In the next step, we filter captured
traffic and keep those packets sent between the recorded start and end times.
We assume this to be the window in which the VPN tunnel is supposed to be
active.

To determine leakage, we then document all IP addresses that transmit traf-
fic using the protocol used by the VPN app (cf. Table 2). All traffic sent to and
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Fig. 2. Relative leakage (left) and distribution of traffic up/downlink (right). We com-
pare the performance of the three VPN apps in our test setup.

Fig. 3. Relative leakage of Turbo VPN traffic. Plots show the comparison of different
devices (left), power supply (middle), and network connections (right).

received from these addresses is considered VPN traffic, and all other transmis-
sions (IP address �= VPN IP) are untunneled traffic. The main metric of interest
is the leak’s volume, i.e., the sum of the sizes of all packets outside the tunnel.
We document the leakage relative to the overall volume of traffic sent while the
VPN is active.

We conduct five repetitions for all experiments for each parameter combina-
tion and aggregate the results accordingly.
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Fig. 4. Relative leakage of Orbot and Thunder VPN traffic. Plots show devices (left),
power (middle), and network (right); results are merged for both apps.

4.2 Experiments

Our experiments provide a step-by-step analysis of the different influencing fac-
tors. We first give a general comparison of apps and continue with devices, power
supply, and network connection. As Turbo VPN has a significantly higher leakage
than the other apps, we separate all results after inspecting the apps.

Apps. Our experiments cover three popular (by download numbers) VPN apps
from the Android Play Store. While some apps compensate for the free usage
model with advertisements (Turbo VPN, Thunder VPN), the Orbot app provides
its core service without any additional content. For our measurements, we focus
on the free variants of the apps and compare their performance in our set of four
use case scenarios.

Figure 2 summarized the relative leakage per app and further documents the
transmission direction of leaked traffic. In our results, it is evident that Turbo
VPN causes a significantly higher leakage. While the other apps provide a much
lower number and volume of leaked packets, it is worth mentioning that all
experiments (combinations and repetitions) contain leakage.

We further observe that Turbo VPN traffic consists of significantly more
downlink traffic. This indicates that Turbo VPN constantly receives traffic, even
though the app operates in the same settings as other candidates. To avoid any
bias in the next steps of our evaluation, we separate the results of Turbo VPN
from the other apps. This allows us to discuss the factors that influence the
heavy leakage in Turbo VPN while also allowing us to look at the results of the
other apps without the outliers introduced by Turbo VPN.

Devices. The devices in our test setup provide different hardware specifications
and were released during the last four years. Consequently, we expect individual
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performance characteristics in the use case scenarios that we vary in our exper-
iments. We expect that devices with an overall lower RAM and CPU power
availability might introduce effects that are represented in the observed leakage,
e.g., in the case of processes competing over the available resources.

Figure 3 (Turbo VPN, left) and Fig. 4 (Orbot, Thunder VPN; left) summarize
the performance for the different devices under test. Our results indicate that
the median leakage for Turbo VPN is higher and that the S9 experiences a
series of outliers. We attribute this to the overall weaker performance of Turbo
VPN and the weaker hardware capabilities of the S9. No significant outliers are
visible for the other apps, and we observe leakage of less than 1%. We conclude
that Turbo VPN introduces outliers, while we leave a detailed evaluation of the
S9 internals in this setup to future work. Future work should continue with a
detailed analysis of the app internals and how they interfere with the OS.

Power. We compare the performance differences for plugged and unplugged
setups, e.g., the devices receive power via USB or are unplugged from any power
source. In these experiments, we limit ourselves to the Oneplus 8. We perform a
full test of scenarios for the Wi-Fi setup.

Again, we observe how Turbo VPN differs from the results of the other apps,
as it indicates a higher leakage for the unplugged setting. In all other cases,
a constant power supply leads to more unprotected traffic. We assume that
battery power leads to a higher degree of performance optimizations in the OS,
which eventually leads to more constraints for the VPN apps. Future work should
investigate OS optimizations and how they affect different apps, e.g., categorized
by access and interface usage.

Network. Next, we analyze the differences between a Wi-Fi and a 4G mobile
network setup. While we do not expect significant differences on the packet level
(the underlying network connection is invisible to the VPN app), mobile traffic
might lead to a different optimization strategy for the operating system. An
example of this is minimizing mobile traffic consumption for specific use cases.

In our experiments, the use of 4G resulted in less leakage. The hypothesis can
explain that the phone is more stringent with giving resources to background
processes while leaving the VPN app untouched. Future work should continue
this by monitoring the power consumption and device battery status.

4.3 Case Study: Lockdown Option

In addition to the quantitative evaluation of the above parameter combinations,
we conduct targeted case studies for specific VPN characteristics. We begin with
the lockdown function that blocks all traffic outside a VPN tunnel. Figure 5
provides a comparison of scenarios with and without the lockdown function
enabled. We observe that the option drastically reduces leakage in all scenarios.
However, none of the setups yielded truly zero leakage, and further research
is required to investigate what information the leaked packets contain. We did
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Fig. 5. Comparison of different scenarios with the lockdown option disabled and
enabled.

not test Thunder VPN in this variation as it does not support the prerequisite
always-on option.

4.4 Case Study: DNS Traffic

A portion of the leaked traffic consists of DNS messages bypassing the VPN.
As a second case study, we test whether a domain responds to a DNS request.
This gives us a strong indication that this domain serves as a name server. In
all our experiments, the combined DNS traffic amounted to around 1% of traffic
by packet count. This indicates that while DNS is part of the leaked traffic, it is
not the leading cause. Unprotected DNS messages, when sniffed, can lead to a
privacy leak as they do give a hint on the user’s behavior, but further research is
required to ascertain how impactful the DNS traffic leaked from the DNS apps
is.

Conclusion. From the analysis of different influencing factors, we can conclude
that the choice of a VPN app serves as an amplifier for the observed characteris-
tics. All setups have in common that they do not function without any leakage,
and even the otherwise effective lockdown function does not entirely prevent
this. Less reliable VPN apps lead to more downlink traffic, which indicates that
incoming traffic is less likely to be protected by the tunnel. Our evaluation is a
first starting point and helps identify future work directions. In particular, the
dependencies between operating systems and applications should be analyzed in
settings characteristic of mobile usage.

5 Directions for Future Work

Our work indicates that the mobile domain introduces different influencing fac-
tors that affect the performance of VPN apps. This underlines the initial assump-
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tion of facing specific challenges that can affect the security of an App and, even-
tually, the privacy of its users. From our findings, we derive important directions
for future work.

5.1 Android Internals

To avoid the requirement of root privileges, mobile VPN apps are limited to
using the API that Android exposes for tunneling traffic. At the same time, the
internal baseband and application processors implement the different network
stacks responsible for processing the incoming and outgoing traffic. As soon as
network effects like delays or packet loss affect the connection, these parts of
the operating system must respond to the incidents. This directly affects the
performance of the VPN apps. Future work should investigate how apps and
operating systems interact and how different factors like the power supply or
network connection influence the security of a VPN.

5.2 VPN App Internals

Similar to the impact of the operating system, the specific implementation of an
app influences how different use case scenarios can be handled. As we observed
significant differences between the VPN apps in our experiments, a valuable next
step is an evaluation of the internals of such apps. While prior work already
covers static analyses, a dynamic approach would allow for covering relevant
characteristics of the mobile domain.

5.3 User Expectations

Besides the technical aspects of apps and their host devices, users’ expecta-
tions are a critical factor in assessing the security of mobile VPNs. Our experi-
ments show constant leakage for all combinations of scenarios and parameters.
Although the relative amount of leaked packets can be low, all untunnelled data
has the potential to carry sensitive information. This might cause discrepan-
cies with user expectations and emphasizes the fact that a mobile OS is mostly
opaque to users [11]. Future work must analyze such user expectations, the tech-
nical understanding of VPN apps, and differences between the perception of
mobile versus desktop VPN solutions.

6 Related Work

Prior work provides an extensive measurement study on more than 200 commer-
cial VPN providers that involves static and dynamic analyses of the apps and the
resulting traffic [8]. While their work demonstrates how the VPN permissions of
Android facilitate different kinds of information leakage or connection manipu-
lations, this existing study only covers a stationary, single-device setup using a
Wi-Fi connection. In contrast, our work focuses on the specific characteristics
of a mobile setting. More precisely, we incorporate different network setups and
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the capabilities of different classes of devices, all in the presence of individual
use case scenarios. Our results underline the assumption that these influencing
factors affect the performance of a mobile VPN and should not be isolated in
quantitative analyses.

There are different reasons to use a VPN application. Tunneling traffic
through a trusted party can help to improve the overall privacy, e.g., by avoiding
tracking [4] or fingerprinting [16] attacks. Another use case scenario is the cir-
cumvention of Internet censorship, where the authorities of a jurisdiction limit
the access to certain services and information sources on the Internet. Prior work
monitors worldwide incidents of Internet censorship [18] and investigates ways
to circumvent the resulting limitations [10,12].

A different line of work focuses on the manual inspection of popular VPN ser-
vices regarding their network characteristics or the infrastructure of the different
providers. Results indicate misconfigurations and bugs that lead to leakage of
DNS and IPv6 information [5,13]. Follow-up work repeats this with a specific
focus on VPN applications in the Android ecosystem [8,20]. These studies show
different instances of malware, manipulation of connections and TLS intercep-
tion, or traffic leakage. The findings of these studies were later confirmed [9].

7 Conclusion

VPNs offer an additional layer of protection for user traffic. While such apps are
increasingly popular, we only have limited knowledge about the implications of
switching from stationary to mobile settings. Optimization strategies of operat-
ing systems that aim to reduce the battery usage and consumed traffic when con-
nected to a mobile network might impact the protection capabilities of a VPN,
leading to traffic and, thus, information leakage. In this work, we analyze the
information leakage of Android VPN apps in different use case setups to assess
the impact of critical characteristics of the mobile domain. Our results indicate
that in all combinations of devices, apps, and scenarios, a certain amount of
traffic remains unprotected by the tunnel. In some cases, the combination of
influencing factors leads to thousands of leaked packets. Our results indicate dif-
ferent directions for future work and emphasize the need to consider the unique
aspects of mobile VPN usage.
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Abstract. The explosive growth of the amount of Android apps has
given rise to a pressing need to analyse these apps, most importantly for
security purposes. Many Android app analysis and hardening tools rely
on bytecode instrumentation: the modification of the compiled app code.
App instrumentation tools have all kinds of purposes, ranging from the
measurement of code coverage to placing probes for malware detection.
Given this variety, it may be useful to work with multiple tools that
rely on instrumentation at the same time. The composition of such tools
can however lead to issues, since their changes to the applications under
analysis may conflict with each other. To facilitate the composition of
multiple instrumentation tools, we propose a two-step approach involving
instrumentation blueprints, reports of the instrumentation changes a tool
needs to apply. We have designed a prototype syntax for these blueprints,
adapted a modern instrumentation tool to emit them and implemented
a prototype blueprint application program. Our evaluation shows that
the proposed approach is viable.

Keywords: Android · App instrumentation · Instrumentation
blueprints

1 Introduction

Over the last few years, the smartphones market has continued to grow. Accord-
ing to Statcounter, today Android is the most popular mobile operating system
today, with a market share exceeding 70%1. Many apps are released for this
operating systems every day: according to Statista, approximately 81,000 apps
were released on Google Play only during February 20222. As the size of the
Android ecosystem grows, so does the demand for tools that analyze its apps.
And indeed, in the recent years many such tools have become available.
1 https://gs.statcounter.com/os-market-share/mobile/worldwide Data for February

2022; last accessed on March 18, 2022.
2 https://www.statista.com/statistics/1020956/android-app-releases-worldwide/

Last accessed on March 18, 2022.
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Android app analysis tools often use a technique called instrumentation: they
modify the (compiled) code of the application in order to gather information
while it is running. Even though a multitude of systems and frameworks related
to instrumentation is continually being developed (e.g., [6–8,23,26,34]), a topic
that has not been considered in detail in the community is the composition of
instrumentation tools: using multiple such tools at once.

Indeed, given the variety of the available instrumentation tools, it may be
useful to work with multiple of them at the same time. Example use cases are
composing multiple analysis tools to scan for different kinds of behavior at the
same time, combining a tool that looks for malicious behavior with a code cov-
erage tool in order to gain information on how complete the results are, and
composing multiple app hardening tools to gain the benefits of each of them. To
the best of our knowledge, not much research has been done in this area.

For dynamic analysis tools, a simple approach to composition would be to
repeat the same input for differently instrumented versions of an app. This is
however not always possible: even with the same input, apps do not always
behave in the same way (see, e.g., [23]), since they may use some form of external
input like the internet or may just contain random elements. The time overhead
of such a scheme might also be quite large. And of course, it does not apply at
all in the case of app hardening.

Instrumenting an application with multiple tools may cause problems, as
instrumentation tools generally assume that no changes have been applied to
the application before, and no changes will be applied after. Applying instru-
mentation tools one after the other will cause the later tools to instrument the
code added by the earlier ones, which may result in undesired behavior: we do
not want to measure the coverage of the code inserted by other tools, or to
analyze such inserted code for malicious behavior. It may even lead to a com-
binatorial explosion of added code, significantly increasing the overhead of the
instrumentation. Multiply instrumented apps may also fail to run altogether,
since it is known that success rate of individual tools is often much lower than
100% [23].

In order to facilitate the composition of instrumentation tools, this work
introduces the concept of instrumentation blueprints: specifications of the instru-
mentation changes applied by a tool. Instead of instrumenting applications
directly, tools can output a blueprint, and a dedicated applicator system can
subsequently apply multiple such blueprints at once. Because the applicator has
knowledge of all the required code changes of the different tools at once, it can
avoid issues that would otherwise be caused by the composition of the tools.

The contributions of this work are:

1. The design of an approach for the composition of instrumentation tools, based
on instrumentation blueprints.

2. The definition of a prototype syntax for instrumentation blueprints.
3. The proof-of-concept implementation of a blueprint output for ACV-

Tool [23]3.
3 Available at https://gitlab.com/avdstaaij-academic/citfaa-acvtool-fork.

https://gitlab.com/avdstaaij-academic/citfaa-acvtool-fork
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4. The implementation of a prototype blueprint applicator program released
open-source for the community to build on this work4.

5. Evaluation of the prototypes on a case study.

2 Instrumentation Tools in the Literature

2.1 Taxonomy of Instrumentation Tools

We can distinguish two different types of app bytecode instrumentation: static
instrumentation and dynamic instrumentation (not to be confused with static
and dynamic analysis). With static instrumentation, applications are modified
in one go, prior to analysis. With dynamic instrumentation on the other hand,
the app is continuously modified as it runs. Dynamic instrumentation is more
complex and appears to be less frequently used.

Examples of analysis tools that use static instrumentation are ICCIn-
spect [17], AspectDroid [2], DroidFax [7], APIMonitor [34] (a system that was
used in a version of DroidBox [19,35]) and other unnamed tools [15,27,32]. App-
Trace [24] is an example of a dynamic instrumentation tool.

The contributions of this work apply to only the static instrumentation
approaches. From this point on, we will refer tools that use some form of static
Dalvik bytecode instrumentation as simply instrumentation tools.

Instrumentation tools have a variety of purposes. DroidFax [7] and the tool
developed by Somarriba et al. [27] monitor and visualize the runtime behavior of
apps. ICCInspect [17] provides statistics and visualizations for the runtime usage
of the Android ICC system. The tool from Hu et al. [15] analyzes the energy
consumption of methods and API calls, helping developers with the optimization
of their apps.

Another common use for instrumentation is taint tracking. AspectDroid [2],
DroidBox [19] and the tool developed by Will [32] are examples of taint tracking
tools that rely on app instrumentation.

There are also a number of frameworks for development of instrumentation
tools. Examples are Apkil [34], I-ARM-Droid [8] and InsDal [20]. An interesting
system that also somewhat fits in this category is Repackman [26], which can
repackage apps with arbitrary payloads in order to evaluate other tools that
detect such repackaging.

Some instrumentation tools instrument apps in order to improve them, usu-
ally focusing on security and privacy. If instrumentation is used for this purpose,
it is often called bytecode rewriting or app hardening. One such tool is introduced
by [4], describing the use cases of advertisement removal and the injection of a
more fine-grained permission system. The system from [18] also involves byte-
code instrumentation to make the Android permission system more fine-grained.
Aurasium [33] is yet another example. An overview of techniques of this family
is given by [13].

4 https://gitlab.com/avdstaaij-academic/citfaa-blueprint-applicator.

https://gitlab.com/avdstaaij-academic/citfaa-blueprint-applicator
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Finally, an interesting group of instrumentation tools is formed by tools that
measure black-box code coverage, i.e. how much of the bytecode of the applica-
tion under test is actually executed during analysis. Examples of instrumentation
tools that measure code coverage are Ella [3], CovDroid [36], the tools described
in [16] and [14], ACVTool [23], and COSMO [25]. ACVTool appears to be the
most mature tool of this group, and [22,23] describe many more tools, alternative
approaches and uses for code coverage measurements.

2.2 Limitations of Instrumentation

Although bytecode instrumentation is used by a variety of tools, it does have
some significant limitations. Instrumented apps must be repackaged, and mali-
cious apps could detect this repackaging and then not execute any malicious
code (again capitalizing on the general weakness of dynamic analysis). Apps
can, for example, verify their own signature: changing the bytecode of an appli-
cation invalidates its signature, so instrumentations tools must re-sign them
before installation. Another limitation is that instrumentation may sometimes
break the application under test: Pilgun et al. report that instrumentation suc-
cess rates (the fraction of apps that remains functional after instrumentation) of
older code coverage tools lie between 36% and 65% [23]. ACVTool and COSMO
have much higher success rates, but they cannot successfully instrument every
app either.

As an alternative to bytecode instrumentation, many tools (e.g. [5,10,29])
instead change or substitute some component of the Android operating system
itself, like the Android Runtime or the API framework. Usually, these tools use
an emulator to run the modified operating system. A notable disadvantage of
these techniques compared to bytecode instrumentation is that the tools need to
be updated as the Android OS changes. The bytecode specification is sometimes
changed in updates as well, but these changes are usually fairly small.

To summarize, a rich variety of instrumentation tools exist in the literature,
but, even though many of their goals are complimentary, to the best of our
knowledge, nobody has investigated composing several tools. This is the gap
that we start to address with this work.

3 Background

Applications for Android come in the form of an Android Package, or APK for
short. An APK contains all components that make up an application, such as
Dalvik bytecode, native code and assets like images and XML files. They also
include a manifest file, which is an XML file that holds the name of the package,
its components, required permissions and other metadata.

Dalvik Bytecode and the Smali Representation. Dalvik bytecode is in many ways
similar to machine code, consisting of low-level instructions like add and goto [9].
The full instruction list can be found in [1]. There are, however, some significant
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Table 1. Example register layout (adapted from [32])

v0 First local register

v1 Second local register

v2 = p0 First parameter register (this)

v3 = p1 Second parameter register

v4 = p2 Third parameter register

differences as well. For example, the Android Runtime is a register-based virtual
machine [9]. This means that there are no memory access instructions in the
bytecode, and there is no stack. Instead, functions have parameter registers and
declare the amount of local registers they need. A total number of 65 536 registers
is supported, far more than most real-world machines have.

Because Dalvik bytecode representation is too low-level, instrumentation
tools usually do not deal with it directly. Instead, a human-readable assembly-
like representation of it is used. There are two such representations that are
commonly used: Smali [12] and Jimple [31]. Smali, the output of Gruver’s
smali/baksmali tool, has been designed specifically for Dalvik bytecode and
stays very close to it. Jimple is a bit more abstract, and was primarily created
for Java bytecode. This work uses the Smali representation.

In this work we use Apktool [30], which relies on smali/baksmali, to disas-
semble APKs into Smali files. A separate file is used for every Java class. Figure 1
shows an example of a Java class and its Smali representation. For clarity, we
have removed some debug information and optional reflection metadata from the
Smali code. Note how the class Foo, its methods bar and baz (and its implicit
constructor) and its field value can all still be identified. The lines that start
with a dot are called directives.

For each method in the original Java code, there is a corresponding
.method/.end method block. Such a block begins with a header containing the
method descriptor: the name of the method, its parameters and its return type.
For example, the descriptor of bar is bar(I)V, as it requires one parameter of
type int (I), and its return type is void (V). The first line after the method
header declares how many local register the method uses. All methods in the
example use one. Instead of using .locals, as in the example, methods can also
use .registers to specify the total number of registers (local and parameter).
Inside a function, local registers are referenced with v<number>. The registers
containing the method’s parameters use the p prefix instead. All non-static
methods also have an implicit this-parameter, which is placed in p0.

Although local and parameter registers use different names, there is actually
no distinction: parameters are simply placed in the last registers of the method.
If a method has n local registers, the first parameter register is vn. The p-names
refer to the exact same registers; they are merely aliases. Table 1 shows the
relation between the v- and p-registers for a non-static method with two local
registers and three parameters (including the this-parameter).
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1 package com.example;

2
3 public class Foo {

4 private void bar(int count) {

5 for(int i = 0; i < count; i++) {

6 baz(i);

7 }

8 }

9
10 private void baz(int i) {

11 value += i;

12 }

13
14 private int value = 0;

15 }

1 .class public Lcom/example/Foo;

2 .super Ljava/lang/Object;

3 .source "Foo.java"

4
5 # instance fields

6 .field private value:I

7
8 # direct methods

9 .method public constructor <init>()V

10 .locals 1

11 invoke-direct {p0}, Ljava/lang/Object;-><init>()V

12 const/4 v0, 0x0

13 iput v0, p0, Lcom/example/Foo;->value:I

14 return-void

15 .end method

16
17 .method private bar(I)V

18 .locals 1

19 const/4 v0, 0x0

20 :goto_0

21 if-ge v0, p1, :cond_0

22 invoke-direct {p0, v0}, Lcom/example/Foo;->baz(I)V

23 add-int/lit8 v0, v0, 0x1

24 goto :goto_0

25 :cond_0

26 return-void

27 .end method

28
29 .method private baz(I)V

30 .locals 1

31 iget v0, p0, Lcom/example/Foo;->value:I

32 add-int/2addr v0, p1

33 iput v0, p0, Lcom/example/Foo;->value:I

34 return-void

35 .end method

(a) Java (b) Smali

Fig. 1. Example of a Java file and the corresponding Smali code

A challenge that nearly all instrumentation tools face is the management
of registers. Because Dalvik bytecode is register-based, almost any meaningful
addition to it will require a register. Instrumentation code could use the existing
local registers if the method already has enough of them, but unless code is
added only at the beginning or at the end of the method, doing so without
disturbing the original code is very difficult, and not always possible. In most
cases, additional registers have to be allocated. For the lack of space we only
discuss how we approached the register management in this work (Sect. 5.2).
The challenges of register management and an alternative solution are discussed
in detail in [22,28].

4 Instrumentation Blueprints

In order to better facilitate the composition of instrumentation tools, we will
now introduce our main contribution: the concept of instrumentation blueprints.



Instrumentation Blueprints 501

Fig. 2. Process flow for instrumentation composition with and without blueprints

As stated in Sect. 1, the main disadvantage of using instrumentation tools
one after the other is that they will instrument each other’s changes. In order to
avoid these problems, we essentially need to instrument an application with both
tools at the same time. This is exactly what we aim to make possible by using
instrumentation blueprints. Figure 2 shows a diagram of how instrumentation
tool composition works with and without instrumentation blueprints. Without
blueprints, the tools are used one after the other. The use of the second tool may
break the changes of the first tool, or lead to the instrumentation of the first
tool’s instrumentation code. With blueprints, each tool first outputs a blueprint
individually, and the applicator then applies these blueprints at the same time.
Since the applicator has knowledge of all the changes that need to be made, it
is able to avoid certain problems that would otherwise arise, or to at least warn
the user in the case that composition is not possible.

4.1 Blueprint Design

Practically, an instrumentation blueprint is a file that contains all changes that
an instrumentation tool wants to apply to the bytecode. It is essentially a kind
of diff, but a bit richer. Our main goal when designing a prototype syntax
for instrumentation blueprints was to make them highly expressive in order to
support as many instrumentation tools as possible, while at the same time giving
them enough structure to actually help with composition.

Blueprints represent code using the Smali representation, because it makes
the code human-readable and easier to work with while still remaining very
close to the original bytecode. It may be harder to implement blueprint output
for instrumentation tools that are based on a more abstract representation like
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Jimple, but since all representations must eventually be converted back to byte-
code, it should still be possible. Converting changes at a lower-level representa-
tion to a higher-level would certainly be more difficult.

The blueprint syntax is line-based: the smallest unit whose change can be
represented is a single line of Smali code. Lines can be changed in three distinct
ways: code can be prepended to them, appended to them, or they can be entirely
replaced. In principle, all code changes can be represented using replacements (or
by using additions and deletions like diff), but including the intention behind
the change is what allows us to compose multiple blueprints.

Distinguishing prepend-additions from append-additions may also seem
superfluous, as appending to line n is equivalent to prepending to line n+1.
However, when multiple blueprints are combined, the difference can actually be
meaningful. For example, a tool could append a (conditional) jump instruction
after line n that may cause code prepended to line n+1 to not be reached. Again,
we aim to capture the intention behind the code changes, and separating prepend
from append yields more expressivity in that regard.

Currently, the only requirement for two blueprints to be composable is that
they do not include a replacement for the same line. We believe that many instru-
mentation tools do not need to replace lines, since they usually aim to analyze
the code that already exists in a transparent manner (i.e. without changing its
behavior). We expect that replace-conflicts are only unavoidable when tools are
inherently not composable, for example when two app hardening tools try to
modify the same part of a program, but we did not investigate this thoroughly.

There is however one important exception to this: tools may need to replace
lines of code whose behavior they do not intend to change for the purpose of
register management. For example, ACVTool needs to change every line that
contains a parameter register [23]. For this reason, we designed the blueprint
syntax to abstract register management away.

Blueprints consist of a series of method entries, each containing the line
changes for a single method. Every method entry specifies how many additional
registers the instrumentation code needs. The included Smali code can then refer
to these additional instrumentation registers using the names i0, i1, i2 and so
on (the i stands for instrumentation). Of course, the normal v- and p-registers
can still be used as well. The applicator program will then ensure that the reg-
isters are managed correctly (described in Sect. 5.2).

4.2 The Syntax

All instrumentation changes to an APK file are condensed into a single blueprint
file. As we already touched upon, blueprint consist of a list of method entries.
These method entries consist of a header, followed by a list of line entries. Line
entries have a header as well, and optionally Smali code contents.

The format of these entries is shown in Fig. 3. The <method> field specifies
the fully qualified descriptor of the method, and the <register-count> field
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@@<method>:<register-count>

<line entry>

<line entry>

...

(a) Method entry

@<line-number>:<operation>

<content>

(b) Line entry

Fig. 3. Formats of method and line entries

Table 2. Possible line entry operations

Character Operation Description

a Append Add <content> after the line

p Prepend Add <content> before the line

r Replace Replace the line with <content>

specifies the required number of instrumentation registers. Lines are identified
by their line number relative to the method (starting at zero), which is placed
in the <line-number> field. The <operation> field contains a character that
identifies type of line operation. The options are shown in Fig. 2. Finally, the
<content> field may consist of any amount of Smali instructions, optionally
using i-registers. Multiple method entries for the same method, or multiple line
entries for the same line and operation, are permitted.

Both method and line entry headers can appear directly after a line of Smali
code, so we have to be able to distinguish these headers from Smali. This is
achieved by beginning both headers with an @-character, since beginning a line
with one is not legal in Smali. Its “at”-meaning also fits rather well. Method
entry headers have an additional @ to distinguish them from line entry headers.

Because we identify lines using their line number, we need to be very precise
about which lines are counted. Generally, the fewer lines are counted, the easier
the implementation of blueprint output for instrumentation tools becomes, but
changes to lines that are not counted cannot be represented in a blueprint. We
decided to count every line, except for (1) empty lines; (2) the line containing
.locals or .registers; (3) lines containing debug information.

The lines that we consider to be debug lines are those containing a .line,
.local or .prologue directive. We do not count these lines because they are
optional, they do not alter the state of the program, and we cannot think of any
reason to instrument them: they are equivalent to empty lines. Any change to a
debug line can instead be represented as a prepend entry for the line that comes
after it.

The syntax is still a prototype: there are multiple code modifications that it
currently cannot represent. We will discuss these shortcomings in Sect. 5.4. A
concrete example of the blueprint syntax will be given in Sect. 5.1.
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5 Implementation

We have implemented our blueprint system from two directions: we extended
ACVTool [23] to generate blueprints, and we created a program that can apply
blueprints to Smali files. In this section, we describe how we went about each of
these directions.

5.1 Generation of Instrumentation Blueprints for ACVTool

We have extended ACVTool to generate a blueprint as a side-effect of instru-
mentation5. Because ACVTool uses Smali and instruments almost every line, it
is a good test of both the expressivity of our syntax and the correctness of our
applicator (discussed in Sect. 5.2).

ACVTool is written in Python and its source code is publicly available [21].
We refer the interested reader to [22] for the detailed explanation of the ACVTool
instrumentation process. The tool uses a modified version of Apkil, a bytecode
instrumentation library that was originally created for APIMonitor [34]. Apkil
discards lines containing debug information at an early stage, which partly influ-
enced our decision to not count those lines for the blueprint syntax.

We identified all locations in the ACVTool code where Smali was inserted into
the application and added blueprint generation code for each of them. ACVTool
creates an auxiliary .pickle file, used to generate a report from the analysis
results. We made ACVTool additionally create a blueprint file at the same loca-
tion.

Figure 4 shows the blueprint segment for an ACVTool instrumentation exam-
ple. The lines that are highlighted6 in Fig. 4b which also appear in Fig. 4c are
highlighted there as well.

The blueprint begins with a header specifying the method baz(I)V from
com/example/Foo. ACVTool needs three instrumentation registers per method,
so the header ends with :3. Below that, the blueprint contains five line entries:
@0:p, @0:a, @1:a, @2:a and @3:a. The first entry contains the prepended lines
that load in the coverage array and mark the method as covered. The other
entries contain the appended lines that mark each of the original instructions
as covered. Note that the blueprint uses the i0, i1 and i2 registers where the
instrumented code uses v3, v4 and v5. The first two instructions added by ACV-
Tool are omitted, since they only served to copy the values of the parameters
to their original positions, in order to free up the v3, v4 and v5 registers. Since
register management has been abstracted away by the i-register system, these
two instructions should not be included in the blueprint.

5 Our extension of ACVTool is available at https://gitlab.com/avdstaaij-academic/
citfaa-acvtool-fork.

6 Highlighted in yellow lines are those added by ACVTool during instrumentation.

https://gitlab.com/avdstaaij-academic/citfaa-acvtool-fork
https://gitlab.com/avdstaaij-academic/citfaa-acvtool-fork
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1 .method private baz(I)V
2 .locals 1
3 iget v0, p0, Lcom/example/Foo;->value:I
4 add-int/2addr v0, p1
5 iput v0, p0, Lcom/example/Foo;->value:I
6 return-void
7 .end method

(a) Original bytecode

1 .method private baz(I)V
2 .locals 4
3 move-object/16 v1, p0
4 move/16 v2, p1
5 sget-object v3, Ltool/acv/AcvReporter

;->LcomexampleFoo583:[Z
6 const/16 v4, 0x1
7 const/16 v5, 0xe
8 aput-boolean v4, v3, v5
9 iget v0, v1, Lcom/example/Foo;->value

:I
10 goto/32 :goto_hack_2
11 :goto_hack_back_2
12 add-int/2addr v0, v2
13 goto/32 :goto_hack_1
14 :goto_hack_back_1
15 iput v0, v1, Lcom/example/Foo;->value

:I
16 goto/32 :goto_hack_0
17 :goto_hack_back_0
18 return-void
19 :goto_hack_0
20 const/16 v5, 0xb
21 aput-boolean v4, v3, v5
22 goto/32 :goto_hack_back_0
23 :goto_hack_1
24 const/16 v5, 0xc
25 aput-boolean v4, v3, v5
26 goto/32 :goto_hack_back_1
27 :goto_hack_2
28 const/16 v5, 0xd
29 aput-boolean v4, v3, v5
30 goto/32 :goto_hack_back_2
31 .end method

1 @@Lcom/example/Foo;->baz(I)V:3
2 @0:p
3 sget-object i0, Ltool/acv/AcvReporter;-

>LcomexampleFoo583:[Z
4 const/16 i1, 0x1
5 const/16 i2, 0xe
6 aput-boolean i1, i0, i2
7 @0:a
8 goto/32 :goto_hack_2
9 :goto_hack_back_2

10 @1:a
11 goto/32 :goto_hack_1
12 :goto_hack_back_1
13 @2:a
14 goto/32 :goto_hack_0
15 :goto_hack_back_0
16 @3:a
17 :goto_hack_0
18 const/16 i2, 0xb
19 aput-boolean i1, i0, i2
20 goto/32 :goto_hack_back_0
21 :goto_hack_1
22 const/16 i2, 0xc
23 aput-boolean i1, i0, i2
24 goto/32 :goto_hack_back_1
25 :goto_hack_2
26 const/16 i2, 0xd
27 aput-boolean i1, i0, i2
28 goto/32 :goto_hack_back_2

(b) Instrumented by ACVTool bytecode (c) Blueprint segment

Fig. 4. An example blueprint segment for ACVTool

5.2 Blueprint Applicator

Besides designing a prototype blueprint syntax and extending ACVTool to gen-
erate blueprints, we also created the prototype blueprint applicator program
applybp7. It has two functions: apply and merge. The primary function apply is
capable of applying any amount of blueprints to a specified set of Smali files. The
additional function merge merges multiple blueprints into a single one and out-
puts the result. This allows us to examine the result of combining two blueprints
without actually applying them.

For either function, before looking at any Smali file, applybp first parses
all specified blueprint files and merges them into a single data structure. We
7 https://gitlab.com/avdstaaij-academic/citfaa-blueprint-applicator.

https://gitlab.com/avdstaaij-academic/citfaa-blueprint-applicator
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do this primarily for register management purposes and to detect incompatible
blueprints early, but it has performance advantages as well. If the original pro-
gram consists of n lines, and the blueprints to apply have a total sum of m line
entries, the simple approach of looking up all line entries that affect a Smali line
for every line would result in a time complexity of O(n ·m). By first merging all
blueprints into a single data structure, we can improve on this.

The blueprint syntax has a natural “method entry → Smali line num-
ber → line operation” tree structure. The blueprint data structure stores this
tree using lookup maps (std::map). Creating the structure therefore has a time
complexity of O(m log(m)): inserting an element into the tree has a complexity
of O(log(m)), and there are m lines to insert. After parsing all the blueprint files,
applying them to the Smali code has a time complexity of O(n log(m)): looking
up a line entry in the data structure is logarithmic. The total complexity there-
fore becomes O(m log(m) + n log(m)). If we assume that m grows about as fast
as n, which seems realistic (more lines means more instrumented lines), then
O(m log(m) + n log(m)) = O(n log(n)), which is better than O(n · m) = O(n2).

If multiple method entries for the same method are encountered, they are
merged together. When method entry B is merged into method entry A, the
instrumentation register count of A is set to the sum of the counts of A and B.
Every line entry from B is added to A, but all instrumentation register indices
are increased with the original instrumentation register count of A. For example,
if A used three instrumentation registers (i0, i1 and i2) and B used two (i0
and i1), the combined method entry uses five, and all line entries that came
from B refer to i3 and i4 instead of i0 and i1. This ensures that the added
lines from each of the method entries do not affect each other.

If multiple line entries for the same line and operation type
(append/prepend/replace) are encountered, one of two things happens: If the
operation is append or prepend, the Smali contents are simply concatenated.
However, like we stated in Sect. 4.1, if there are two replacements for the same
line, the blueprints are considered non-composable, and applybp aborts with an
error message.

Note that the blueprint syntax does not prohibit multiple method entries
for the same method or multiple line entries for the same line, so merges (and
even replace-conflicts) can occur within a single blueprint. In fact, concatenating
multiple blueprint files and then passing them to applybp as one large file is
equivalent to passing them separately. Using applybp’s merge function with
only a single blueprint as input will squash all duplicate entries. If the merge
function was chosen, applybp prints the result from the merge and exits.

Figure 5 shows an example result of merging two blueprints. Both blueprints
have a method entry for Lcom/example/Foo;->bar(I)V. Blueprint 1’s version
uses three instrumentation registers and blueprint 2’s version uses two. In the
merged blueprint, this method entry therefore uses 3+ 2 = 5 of them. The @0:a
line entry from blueprint 2 is added to the @0:p and @0:r line entries from
blueprint 1 without problems. Both Lcom/example/Foo;->bar(I)V method
entries have a @1:a line entry, so the merged blueprint contains the contents of
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1 @@Lcom/example/Foo;->bar(I)V

:3

2 @0:p

3 add-int i0, i1, i2

4 @0:r

5 sub-int i0, i1, i2

6 @1:a

7 mul-int i0, i1, i2

1 @@Lcom/example/Foo;->bar(I)V

:2

2 @0:a

3 div-int i0, i1, v0

4 @1:a

5 rem-int i0, i1, v0

6 @@Lcom/example/Foo;->baz(I)V

:1

7 @0:a

8 neg-int i0, v0

1 @@Lcom/example/Foo;->bar(I)V

:5

2 @0:p

3 add-int i0, i1, i2

4 @0:r

5 sub-int i0, i1, i2

6 @0:a

7 div-int i3, i4, v0

8 @1:a

9 mul-int i0, i1, i2

10 rem-int i3, i4, v0

11 @@Lcom/example/Foo;->baz(I)V

:1

12 @0:a

13 neg-int i0, v0

(a) Blueprint 1 (b) Blueprint 2 (c) Merged

Fig. 5. The result of merging two blueprints

both. Note how the indices of all instrumentation registers used by the line entry
contents that came from blueprint 2’s Lcom/example/Foo;->bar(I)V method
entry have been incremented by three. A method entry for baz only appears in
blueprint 2, so it is included in the merged blueprint without any modifications.

If the apply function was chosen, applybp will proceed with applying the
merged blueprint to the specified Smali targets. Targets can be either files or
directories: in the case of directory, applybp applies the blueprints to all files in
the directory recursively.

Register Management Approach. To manage registers, applybp uses the same
method as ACVTool [22] and the tool described by Will [32], because Pilgun has
shown that this method is very robust [22]. We increment the number of local
registers by the amount of instrumentation registers, then copy the values of
the parameters to the v-registers corresponding to their original positions, and
then replace all p- and i-register references with their v-equivalents. Figure 6
illustrates the register management process for an example method with one
original local register, two parameter registers and three instrumentation regis-
ters. Initially, the method has three registers in total, and p0 and p1 are aliases
of v1 and v2. After incrementing the local register count with three, there are
five registers in total, and the parameter registers point to v4 and v5. The values
of the parameter registers are then copied back to v1 and v2, leaving v3, v4 and
v5 available as instrumentation registers.

When applying the merged blueprint, applybp will read the Smali files line by
line, generally copying them directly to its output. When it encounters a method,
it will look up if the blueprint contains an entry for it, and if it does, it will apply
its line entries. The number in the .locals/.registers line is incremented as
specified by the method entry, and move instructions are added to move the
parameters to v-registers. Dalvik contains a few different move instructions; the
specific one to use depends on the type of the parameter.

The application of line entries is straightforward: prepend contents are added
before the line, append contents are added after, and if there is a replace entry,
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v0

v1 = p0

v2 = p1

v0

v1

v2

v3

v4 = p0

v5 = p1

v0

v1 = p0

v2 = p1

v3 = i0

v4 = i1

v5 = i2

(a) Initial layout
(b) Additional local
registers

(c) Parameters moved

Fig. 6. Register management process

the line is replaced with its contents. For every line of Smali written in an instru-
mented method, whether it comes from the original code or from the blueprint,
all p- and i-registers are replaced with their v-equivalents (Fig. 6c).

Our program needs to parse two languages: the blueprint language, and Smali
(the blueprint language also contains a subset of the Smali language). We wrote
two simple recursive descent parsers for this purpose. Our Smali parser is very
limited: it only parses exactly what applybp needs to function, and leaves every-
thing else as strings. An advantage of this is that the parser is fairly future-proof.
For example, it does not care about specific instructions, so it will not be affected
if new instructions are added to Dalvik.

We ran into quite a few issues while implementing the application part of
applybp, mostly because the Smali syntax lacks extensive documentation. We
used the Android Emulator in combination with the debug tool logcat [11] to
discover and fix any issues we came across. Some notable examples are:

– Two of the types supported Smali, long and double, are “wide”: their values
occupy two registers instead of one. We had to take this into account for the
code that copies p-registers to v-registers.

– Methods that are abstract or native (implemented in native code) are
empty in Smali: they do not even contain a .locals/.registers line. Our
program ignores these methods when applying blueprints.

– Instead of the operation arg1, arg2, arg3 syntax that is used by almost
all Smali instructions, method calls use lists of registers. For example:
invoke-direct {p0, v0}, <method-descriptor> (see Fig. 1b). The vari-
ant {v0 .. v3} is sometimes used as well.

– Before we clearly defined our policy of which lines are counted for the purpose
of blueprint line entry line numbers, some “block-directives” caused the counts
of applybp and our ACVTool blueprint output to become mismatched. An
example of such a block-directive is .packed-switch/.end packed-switch,
which corresponds to the packed-switch-payload as described in [1].

Our program is still a prototype, and as such, it still has a few limitations
discussed in Sect. 5.4. Our prototype is released to the community8.

8 https://gitlab.com/avdstaaij-academic/citfaa-blueprint-applicator.

https://gitlab.com/avdstaaij-academic/citfaa-blueprint-applicator
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5.3 Evaluation

We tested the correctness of our ACVTool blueprint-generation extension and
our blueprint application program applybp in a case study, using an app from
F-droid9. For the case study, we used Lesser Pad, a simple note-taking app from
F-droid10. We generated a blueprint for the it, applied it to the original app
using applybp and checked whether the resulting app ran without problems
on the Android Emulator. As a result, the app, which ran successfully with
ACVTool’s instrumentation, also did so after being instrumented according the
above procedure.

To verify whether ACVTool’s coverage-measuring code still functioned cor-
rectly when applied through applybp, we generated a code coverage report with
both a directly instrumented version and an applybp-instrumented version of
Lesser Pad. For both versions, we installed the app on the Android Emulator,
opened it, interacted with it for a few seconds, closed it, and then made ACV-
Tool generate a coverage report using the gathered data. The obtained coverage
reports were identical. Screenshots of the generated reports can be inspected
in [28]. We note that the experiment was rather informal: we did not use a
testing framework to repeat the exact same inputs for each version.

We must note that the performance of the blueprint parsing step of applybp
is rather bad. We expected the difference in speed of the parsing and the appli-
cation steps to be a small constant factor (see the time complexity discussion in
Sect. 5.2). The blueprint application step is virtually instant, so we expected the
parsing step to be similarly fast. However, the parsing step takes significantly
longer. On our machine, it took ACVTool 8.29 seconds to instrument Lesser
Pad (including the unpacking, repacking and re-signing steps) and it took our
program 9.91 seconds to parse the blueprint. As the size of the instrumented
application increases, the blueprint application time seems to grow faster than
the instrumentation time, but we did not investigate this in detail.

The bad blueprint parsing performance may be caused by the fact that the
blueprint files generated by ACVTool are extremely large: the blueprint for
Lesser Pad consisted of 619 235 lines. The reason for this size is that ACV-
Tool instruments every method, even those from additional libraries provided
by Google. Only 29 384 of the 619 235 blueprint lines (about 5%) were for Lesser
Pad-specific code. Perhaps the blueprint parsing performance could be improved
if blueprints were split into separate files for every class. Do note that the bad
parsing performance is not a huge issue, since it only affects the offline blueprint
application time. There is no difference in the runtime performance of directly
instrumented and applybp-instrumented apps.

5.4 Limitations

Although we believe that our blueprint composition approach is promising, it
does have a number of limitations. Our blueprint system can only be used
9 https://www.f-droid.org/.

10 https://f-droid.org/en/packages/org.pulpdust.lesserpad/.

https://www.f-droid.org/
https://f-droid.org/en/packages/org.pulpdust.lesserpad/
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with static instrumentation, since all instrumentation changes have to be known
before they are combined. It also requires internal changes to existing instru-
mentation tools (although a limited form of automatic blueprint generation may
be possible). Furthermore, since we use the Smali representation, the implemen-
tation of blueprint output will be more difficult for tools that are based on other
representations like Jimple. We stated our reasons for using Smali in Sect. 4.1.
It may be possible to integrate a translation of Jimple changes to Smali changes
into our system, since Jimple is more high-level than Smali.

We already mentioned the limitations of our prototype blueprint syntax in
Sect. 5.3. Blueprints can currently only represent changes to method contents:
they cannot represent changes to classes, method descriptors, fields or any other
components of Smali. They also cannot represent changes to an application’s
manifest file. Many instrumentation tools need to change the manifest file in
order to function. Our current blueprint prototype cannot represent added or
removed files either.

These syntax limitations can likely all be alleviated by extending the
blueprint syntax. Special entry types could be added to represent added or
removed methods, fields or classes (files), and method entry headers could be
given additional fields for information such as return value and parameter mod-
ifications. The manifest file has a well-defined structure, so a more semanti-
cal syntax could be created to represent changes to it, with entries such as
“add <contents> to <xml element> ”.

A minor limitation of our prototype applicator program is that application
unpacking and repacking are currently not built in: it can only operate on Smali
files or directories thereof. Users have to manually unpack, repack, re-sign and
install applybp-instrumented apps. This shortcoming can be addressed with
updates to the program. Another limitation is the bad blueprint parsing per-
formance. This could be improved by further optimizing the program or by
redesigning blueprints to use multiple files.

A general limitation of our work is that we did not perform extensive exper-
iments, and that the experiments we did perform only involved a single instru-
mentation tool. We therefore do not yet have empirical evidence that shows
whether our approach works for most tools, nor whether it actually improves
the success rate of instrumentation composition. We plan to address this limi-
tation in the future work.

6 Conclusions and Future Work

To address problems that may occur from the composition of instrumenta-
tion tools, we have proposed a two-step approach involving instrumentation
blueprints and the application thereof. We have defined a prototype syntax for
these blueprints, we have extended the code coverage tool ACVTool [23] to emit
blueprints, and we have implemented the program applybp that can apply them.
We have performed a case study showing that our approach can work in prac-
tice. Our proposed blueprint system may offer benefits for the creation of new
instrumentation frameworks or the meta-analysis of instrumentation tools.
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There are still many aspects that can be explored in future work. First of
all, improving the prototype will improve the practical usability of our system.
Furthermore, we have only implemented blueprint output for a single instru-
mentation tool, so a larger-scale investigation of the effectiveness of our system,
involving multiple instrumentation tools, is in order. Finally, it would be inter-
esting to explore automated generation of blueprints and to empirically assess
challenging arising from combining multiple instrumentation tools.

Acknowledgements. We thank the anonymous reviewers for their useful comments.
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Abstract. The rise in popularity of web and mobile applications brings
about a need of robust authentication systems. Behavioral Biometrics
Authentication has emerged as a complementary risk-based authentica-
tion approach which aims at profiling users based on their interaction
with computers/smartphones. In this work we propose a novel approach
based on Siamese Neural Networks to perform a few-shot verification of
user’s behavior. We develop our approach to authenticate either human-
computer or human-smartphone interaction. For computer interaction,
our approach learns from mouse and keyboard dynamics, while for smart-
phone interaction it learns from holding patterns and touch patterns. The
proposed approach requires only one model to authenticate all the users
of a system, as opposed to the one model per user paradigm. This is
a key aspect with respect to the scalability of our approach. The pro-
posed model exhibits a few-shot classification accuracy of up to 99.8%
and 90.8% for mobile and web interactions, respectively. We also test our
approach on a database that contains over 100K interactions collected
in the wild.

Keywords: Risk-based authentication · Behavioral biometrics · Deep
learning · Siamese networks

1 Introduction

Although password authentication is the most popular authentication mech-
anism, it has several drawbacks [8,45]. Biometric authentication has emerged
as a complement to traditional authentication systems [28,29,43]. The main
advantage of such systems is that they rely on user’s information that can not
easily be stolen or crafted. Most active fields of biometric authentication in
academia and industry are related to face authentication or fingerprint authen-
tication, with a recent increase in interest on behavioral biometrics. Behavioral
Biometrics authentication refers to the use of human-device interaction features
to grant access to a specific service. This interaction could include, but is not
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Zhou et al. (Eds.): ACNS 2022 Workshops, LNCS 13285, pp. 515–535, 2022.
https://doi.org/10.1007/978-3-031-16815-4_28
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limited to, typing patterns [21,37], mouse dynamics [36], smartphone holding
patterns [1,5,16,24], voice recognition, gait recognition [19,44], etc.

Machine learning algorithms have been proposed to verify users’ identity
using behavioral biometrics features. Regarding behavioral biometrics in web
environments (Human-Computer interaction), most of the work has focused on
the use of Support Vector Machine and Random Forest classifiers to analyze
mouse and keyboard interaction [21,37]. Alternatively, some works have pro-
posed to use built-in sensors available in mobile devices (i.e. sensors information,
touch interaction etc.) for authentication purposes [1,5,31,32,44]. However, pre-
vious works in behavioral biometrics usually have three main drawbacks: (1) they
need long interactions (minutes) in order to learn accurately the user behavior;
(2) they need a model per user to improve system accuracy; or (3) they require
ad-hoc interaction challenges.

In this paper, we present a Siamese One-Shot Neural Network (SOS-NN)
which is able to assess a risk score after only one observation (i.e. enrollment
behavior) of a given user. To achieve this, we propose a Siamese Neural Network
architecture that assesses whether two behaviors belong to the same user. We
present a similar network architecture for user verification for both web and
mobile environments. In web environments, we create a set of features from
raw mouse movements and keyboard strokes. On the other hand, for the mobile
environment our SOS-NN analyzes features created from touch interaction and
motion sensors on the smartphone. For both environments, the proposed set
of features successfully built a suitable feature representations of human-device
interactions from different behavioral sources (mouse, keyboard, mobile sensors).
This feature representation enables the generation of an effective latent space
for one-shot biometric authentication.

In sum, the contributions of our work are:

– An accurate few-shot model based on behavioral biometrics information to
authenticate users after only 5 s of user interaction;

– A unified neural network architecture to authenticate user’s behavior for both
mobile and web environments that is able to achieve an accuracy of up to
99.8% and 90.8% respectively;

– A scalable framework which is able to accurately authenticate users without
requiring to retrain the model for new users;

– A systematic measurement study to understand the impact of the parameters
to SOS-NN based on the authentication time window length and the n number
in the n-shot test

– A practical study in the intersection of biometric data and Deep Learning
which evaluates in-the-wild our SOS-NN over thousands of users from real
financial services.
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2 Background

In the field of biometric-based authentication, many sources of information have
been proposed. These could be physical (facial recognition, fingerprint scanning,
retina scan, etc.) or behavioral patterns (signature verification, mouse dynamics,
gait analysis, voice recognition, etc.). Behavioral biometrics has gained increased
attention since reproducing the behavior of a legitimate user constitutes an
unconventional challenge for attackers. While substantial advances have been
achieved, there is still a gap to make such systems widely adopted in practice.
We define as ‘practical’ methods that demand short periods of interaction per
user (both for model training and for authentication), and simple architectures
that ease deployment and maintenance. This paper proposes a few-shot learn-
ing novel approach, which complements traditional authentication in web and
mobile environments, considering practical implementation characteristics and
scalability constraints.

Web Environment. Multiple previous studies have employed multimodal bio-
metrics in desktop environments to identify user’s behaviour [6,14,27,37,40].
These studies propose to integrate, either at the feature or decision level, infor-
mation from keyboard interaction, mouse dynamics and others. Most of these
studies have evaluated classic machine learning classification models (e.g. sup-
port vector machine (SVM), Naive Bayes, Random forest and J48 algorithms).
Few others [20,21], have explored the use of shallow neural networks.

Regarding user interaction, we highlight that, in multiple real-world applica-
tions there is a practical limit to the length of the interaction and amount of data
that can be collected before deploying an authentication model. Therefore, we
compared previous approaches on the amount of interaction required, per user,
to train the model. We are comparable to few studies, that require between
2 min to approximately 30 min of user interaction to train the model. As an
illustration, Khan et al. [21] reported an accuracy of 97.3% using an SVM model
per user, however, their approach would require recording at least 30 previous
login attempts (≈15 min) to train each user’s model. A more recent approach
proposed by Neha et al. [27] achieves an accuracy of 95.6% after training a mul-
tilayer perceptron (MLP) for each user but they required 50 logins (≈25 min)
for training phase.

On the scalability perspective, previous studies use authentication paradigms
that involve one model per user or multiclass classification, these methods trans-
late into large infrastructure, deployment, monitoring and maintenance chal-
lenges. In contrast, our SOS-NN model generates a measure of similarity between
two behaviors in a latent feature space. In this case, the question is not whether
the sample belongs to a particular user, but rather if the samples are simi-
lar enough to conclude that the user is the same. This one-model-for-all (OfA)
paradigm facilitates deployment and avoids further training for every new user
registered in the system. Acien et al. [2] implements an OfA paradigm as well, but
they require longer interactions, like writing an email, instead of just a login,
and they save and process the value of the pressed keys, which is completely
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unacceptable in a banking login environment, where the privacy of the users
must be protected above all other aspects.

Mobile Environment. Likewise, behavioral biometrics for authentication has
also been implemented for mobile environments. Such models complement tradi-
tional authentication by taking advantage of the multiple built-in sensors avail-
able in mobile devices, being able to capture user behavior through several
modalities. Some modalities rely on the use of mobile keyboard dynamics [11];
touchscreen interaction [31,32]; or embedded motion sensors data [1] to authen-
ticate users. In order to strengthen security, especially against ad-hoc adver-
sarial attacks, multimodal authentication frameworks have been proposed by
researchers [3,10,23,25,34,35,38,42]. Those methods rely on the fusion of mul-
tiple modalities of behavioral information (i.e. keyboard, sensors, touch, etc.)
with the goal of having a better performance. Previous works, have achieved
low False Acceptance Rate (FAR) and False Rejection Rates (FRR). However,
they require a one-model-per-user paradigm (OpU) and long user interaction
times (>10 min), which makes them challenging to use in real world scenarios.
In our review, one of the best comparable performances was reported by Stanciu
et al. [38], with FAR and FRR equal to 0.14%, nonetheless, the system would
require one K-Nearest Neighbors (KNN) model per user and 20 previous logins
from the user to train each model. The performance of [12], namely a 97.1%
TAR (True Acceptance Rate) at 0.1 % FAR is impressive as well, however, they
need to train one model for each of the eight features they process.

Table 3 presents a detailed comparison between the main state-of-the-art
studies developed for both web and mobile behavioral biometrics in terms of
the classification methods used, the authentication paradigm, user interaction
required and model performance.

Siamese Networks. Siamese Neural Networks were first introduced by Brom-
ley et al. [9] to verify hand-written signatures. In general, Siamese networks are
composed of two twin sub-networks and a similarity module which compares the
outputs of both sub-networks. Consequently, Siamese networks are trained by
feeding a pair of inputs which are processed by each twin in the network. Siamese
networks have been used for verification tasks because of their capabilities to cre-
ate embedding representations which minimizes similarity between samples from
different classes [7,26]. In the field of behavioral biometrics, Siamese networks
have been implemented to approach different behavioral modalities, like face
recognition [33,39], signature recognition [13], gait recognition [44], among oth-
ers. Regarding the use of Siamese networks for behavioral biometrics authentica-
tion in web and mobile environments, [10] used Siamese networks along with con-
volutional neural networks (CNNs) as a tool to create embeddings from motion
sensors plots, and then feed them into a one-class SVM classifier. More recently,
[15] proposed the use of Siamese networks to approach static authentication
model using keyboard dynamics in web environments.

Moreover, Siamese networks have been extensively used to approach classi-
fication problems in which the few samples of each class are available to learn
from (i.e. Few-shot Learning) [18]. Particularly, it is possible to go as far as
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to limit the number of available samples to only one (one-shot learning). In
one-shot learning literature, Siamese networks have shown promising results in
tackling classification tasks, under the restriction of observing only one sample
before making a prediction over a test instance [22,41]. Even though Siamese
Neural Networks have been previously studied, and other applications in differ-
ent domains have been presented, our novelty relies on proposing a methodology
that couples previous knowledge related to architecture, losses, sample genera-
tion and data structures, producing a well-performing model in a new domain.
The behavioral domain presents its own difficulties inherent to the nature of bio-
metric data, different from the challenges present in other tasks such as object
tracking and face recognition tasks.

To the best of our knowledge there are no previous works on the use of
Siamese networks to approach multimodal behavioral biometrics authentication
agnostic to web or mobile environments. Specifically, our approach differs from
others in that it (1) focuses on one-shot learning, (2) implements semi-hard pair
selection, (3) learns from different behavioral sources in both web and mobile
environment, and (4) needs only one model to process all the feature types.
Additionally, this paper is the first to propose an OfA paradigm for web behav-
ioral mouse and keyboard biometric data. Furthermore, we test our approach in
a real production case with thousands of users, which has never been reported
before.

2.1 Attacker and System Model

System Model. We assume a system where a Monitor (M) on the client-side
receives raw mouse and keyboard events as inputs, that is a series SM of mouse
events (tuples (x, y, a, t)) where x and y are positions, a is an action and t is
a timestamp and a series SK of keyboard events (tuples (k, a, t) where k is the
key identifier, a is an action (click, scroll, key-press, key-release, etc.) and t is
a timestamp). M pre-processes each of those traces at a given time interval
and ultimately communicates with our SOS-NN, which is in the server-side, by
sending the processed feature vectors. Notice that we transform raw sequences
into processed features on the client-side in order to ensure privacy of sensitive
information. For the scope of this paper, we assume that the classifier resides
in a server outside the end-user’s device and that communication cannot be
tampered with (because security keys are stored in a trusted computing instance
for example, or other software protection mechanisms are in place).

Attacker Model. We consider an attacker (A) who is interested in impersonating
a user (U) while authenticating into a sensitive service. For the scope of this
paper we assume the attacker will manually interact with the system and will
behave as they would normally behave when interacting with their laptop or
mobile. Replay attacks or more sophisticated automatic impersonation attacks
(such as adversarial machine learning attacks for instance) are out of scope of
this work.
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Fig. 1. Features engineering illustration for mouse analysis in web environment.

3 Approach

In this work we propose a deep learning framework to complement traditional
authentication systems by analyzing behavioral biometric features. Such frame-
work aims to learn and analyze inherent user behavior while interacting with a
device in a few-shot fashion. In particular, we analyze two different environments
to learn from users: Web environments and Mobile environments. For the Web
environment we are interested in authenticating users using information from
mouse and keyboard dynamics; while for the Mobile environment we focus on
the physical sensors like touch, accelerometer, gyroscope and magnetometer.

3.1 Feature Engineering

As we are interested in behavior verification, the first step consists in processing
continuous raw data sequences, recorded from the machine-user interaction, and
then transform them into readable features for the model. These features do not
contain sensitive information like usernames or passwords. Recorded sequences
are split into multiple fixed length interaction windows for all the modalities
recorded. In this paper we explored the performance of the model for multiple
fixed-time windows varying from 5 s to 60 s of user interaction.

Web Environment. For the Web environment, we start out from the raw
sequences of mouse movements and key presses. The raw mouse data includes
timestamp, pointer coordinates (x, y) and the type of interaction (i.e. click,
mouse movement, etc.). We transform the mouse raw data by designing two
sets of features, inspired in [4,36]. These features build a mouse dynamics profile
over the movements performed by a user in a fixed-time window. We perform
this test by getting and analyzing the next pointer’s position (See Fig. 1). To
calculate features that capture the direction of the mouse moment, the angular
space is split into eight equal bins of 45◦ and each mouse event in the fixed-time
window is classified into one bin. Then, the first set of features is calculated by
finding the average movement speed in each of those direction partitions. The
second set is the proportion of movements performed in each direction along the
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Fig. 2. SOS-NN architecture.

fixed-time window. Mouse dynamics were captured from 16 features (2 sets × 8
directions).

In a similar manner, the keyboard raw data includes the timestamp, key and
key interaction (i.e. Press or release). Four sets of keyboard features were created:
(1) the length of time from a key is pressed until it is released; (2) the latency
from one key is released until the next key is released; (3) the latency between
two consecutive keys are pressed; and (4) the length of time from one key is
released until the next key is pressed. As a result, for the keyboard dynamics
information we build a set of 12 features (4 sets × 3 metrics). Altogether, the
feature vector for the web environments contains 28 elements.

Mobile Environment. For the Mobile environment, the raw data is represented
by (1) measurements from sensors (gyroscope, magnetometer and accelerome-
ter) and (2) touch inputs performed by the user along the fixed-time window.
Regarding the sensor’s measurements, we record values in X,Y and Z axes for
each sensor. Consequently, we have 9 sequences of sensor measurements (3 sen-
sors x 3 axes). For each sensor sequence, we compute 5 measures of central
tendency of the data distribution: mean, standard deviation, median, minimum
and maximum. On the other hand, for the touch interaction we record raw data
from the touch’s center, the touch’s pressure and the touch’s size. From these
records we compute 4 features: mean touch duration, the average number of
changes in pressure or touch center within the same touch (down-up) interac-
tion, standard deviation of touch’s center (x, y) and mean finger size (touch size
area). We added two features related to mobile keyboard interaction, based on
latency between consecutive touches. Altogether, for each fixed-time window we
have a vector containing 52 features (45 sensors + 5 touch + 2 keyboard).

3.2 Siamese Neural Network

Our Deep Learning framework evaluates if two recorded behaviors belong to
the same user. To that end our SOS-NN computes the similarity between two
behavior inputs. In that sense, if two inputs are similar enough, our system
concludes that the incoming behavior belongs to the legitimate user. The siamese
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network architecture is made of two identical sub-networks; in our case, two fully-
connected neural networks which share weights. Each sub-network processes one
of the input behaviors and works as a feature extractor.

Both of the sub-network’s outputs are bounded by an energy function. We
compute a L1 distance as the energy function. Intuitively, this distance should
be large when input behaviors belong to different users but small when they
belong to the same user. Following the energy function calculation, we include
in our model a fully-connected decision network, which makes the classification
decision based on the distance between the feature vectors in the latent space.
Consequently, the output of our SOS-NN is a binary classification, where the
output is One if behaviors belong to the same user, and Zero otherwise. Figure 2
depicts an illustration of the architecture of the proposed SOS-NN.

Sample Generation. The Siamese networks learn from comparing pairs of
behaviors. A positive pair is defined as a pair of two behaviors which belong to
the same user, whereas a pair of behaviors from different users is labeled as a
negative pair. The model is trained by presenting multiple samples of these pairs,
the training goal is to minimize the energy function (i.e. L1 distance) between
behaviors in positive pairs, and to maximize the energy function for negative
pairs. The quality of retrieved pairs in training will determine the quality of our
SOS-NN. The naive selection of those positive and negative pairs is a random
selection. This naive approach is fine for the positive pairs but for the negative
samples it is crucial to select high quality pairs.

More advanced techniques can be used to select the training samples, like
triplet loss technique, which uses simultaneously 3 examples to optimize every
training step [17]. For instance, these 3 examples could be carefully selected so
that the first two of them belong to a positive match (i.e. two examples that
correspond to the same class, namely an anchor (A) and a positive example (P))
and the last one corresponds to a different class, being a negative example (N).
The goal is to minimize the distance in the feature space between examples of
the same class and maximize the distance between examples of different classes,
which can be expressed as:

|f(xA) − f(xP )|2 + α < |f(xA) − f(xN )|2 (1)

where α is a margin parameter related to the difficulty of the examples. The
final loss can be represented as:

L(A,P,N) = max(|f(xA) − f(xP )|2
+ α − |f(xA) − f(xN )|2, 0) (2)

As in the pair generation, the three examples per triplet can be generated
randomly as long as they fulfill the previously named condition. Nevertheless,
this strategy would deliver most of the time a small loss, because it is expected
that many negative examples produce features with larger distances from the
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anchors, whose loss ends up adding nothing to the training. A better approach
is to pre-select the triplets, by controlling the distances within the triplets. There-
fore, the pre-selection could be performed by choosing two kinds of triplets: Hard
negatives and Semi-hard negatives. Hard negatives are examples whose feature
distances with the anchor are strictly smaller than the distance between the
positive example and the anchor [33]. Semi-hard negatives are examples whose
distance with the anchor is greater than the positive example, but still inside the
margin α [17]. In principle, the Hard negatives deliver the greatest losses, and
therefore the strongest convergence, but in practice they could be too aggressive
and collapse the loss function. Consequently, we use Semi-hard negatives as our
strategy to populate triplets in training phase. On the evaluation we compare two
pair generation strategies to feed with the Siamese networks, namely (1) Naive
Pair and (2) Semi-hard Triplets.

4 Evaluation

4.1 Experimental Setup

Web Environment Dataset. We collected two datasets under controlled and
uncontrolled conditions. For the controlled setting, we used data acquired through
the ‘Amazon Mechanical Turk’ service1 by submitting a task of logging on a web-
site designed to capture mouse and keyboard events. Here we collected interac-
tions from 89 worldwide workers who introduced fictitious credentials on the
login website. A total of 1374 full login interactions were obtained with an aver-
age duration of 26.7 s per session. As for the uncontrolled setting, a monitoring
system was appended into two real banking login web pages where mouse and
keyboard events were recorded. To protect users privacy, the raw data was trans-
formed into features on the client-side before they were sent to the server. In this
setting, ≈800K sessions worth of interactions were collected from ≈125K users,
with an average of 22.4 s per session.

Mobile Environment Dataset. We developed a realistic looking Android
application simulating different banking activities and equipped with an event
logger to record information related to touch, accelerometer, magnetometer and
gyroscope events. For keyboard touch events, the timestamp and key value were
logged. We collected data from 35 volunteers performing sessions lasting 10 min
on average and making up to 372 min in total. Moreover, the volunteers used
more than 20 different smartphone devices. Volunteers were mostly IT workers
with ages ranging from 20 to 50 years.

Privacy Concerns. Collecting behavior sequences could lead to privacy con-
cerns as personal data like passwords patterns (Keyboard dynamics), user loca-
tion (Sensor analysis), among others, is being recorded. To ensure privacy of the

1 A service where human workers perform a certain task following instructions defined
by the task requester.
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information, we transform the raw sequences in the client-side so that no sen-
sitive information leaves the device and send the behavioral biometrics features
to be analyzed by our SOS-NN model in the server-side.

Feature Engineering. The behavioral data gathered in controlled settings was
subsequently merged into a continuous interaction for each user. Afterwards, the
full history per user was split into fixed-time windows. We analyzed time win-
dows of 5, 10, 20, 30 and 60 s of interaction. Next, for each fixed-time window we
calculate the features following the methodology described in Sect. 3.1. Regard-
ing the data collected in the wild from real banking domains, since features are
pre-computed on the client-side, we collected login sessions with arbitrary dura-
tions. Finally, we randomly split the dataset by users, since we wanted to avoid
validating with behaviors similar to the ones observed in training. Splitting the
dataset by users has been shown to perform better than other train-test schemes
in previous verification tasks [22]. Once the features have been calculated, we
split the dataset into three disjoint set of users: 64% of the users for training,
16% for validation and 20% for test. Finally, the features were transformed in
order to follow a normal distribution by using a non-linear transformation on
each feature independently (Quantile Transformation in Scikit-learn [30]).

Networks Configuration. The feature extraction and classification decision is
made by a siamese network and decision network respectively, both were built
using fully connected architectures. The feature extractor was composed by a
couple of dense layers with ReLU activation and a last layer with a Sigmoid
activation. For the decision module, another fully connected network was imple-
mented whose input was the L1 distance layer between the features in the latent
space. We also tested other distances as energy function, like L2, Manhattan
and Cosine distances as well, but L1 showed the best results. Regularization,
batch normalization and dropouts were also tested for both networks. For the
triplet loss we used the SemiHardTriplets implementation available on Ten-
sorflow Addons [17]. The best parameter configuration was a mini batch of 100
samples, a learning rate of 0.001, an Adam Optimizer and 200 steps per epoch.
Weights were initialized following a normal distribution with zero-mean and
standard deviation 0.01. For the feature extraction training with triplet config-
uration, we use a L2 distance for triplet loss schema (α = 1.0). We implemented
our approach using the Tensorflow framework.

Training Strategies. The training procedure depends on the sample genera-
tion strategy (naive or triplet). For the naive pair strategy, we train our SOS-NN
using a cross entropy objective loss on our binary classifier (same or different
user). Therefore, for the naive strategy, we perform the weights optimization over
the full network (including both siamese and decision networks), using standard
back propagation. Notice that gradient is additive over the tied sub-networks.
On the other hand, for the triplet strategy the training is done in two steps: (1)
Siamese Network training and (2) decision layer training. To train the Siamese
Network, we use the Semi-Hard Triplets procedure [17]. Once the feature extrac-
tor is trained, their weights are frozen and the fully connected decision layer is
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Fig. 3. Accuracy for evaluation over several n-shot comparisons and time window inter-
action in web environment

appended to complete the SOS-NN. Lastly, we train the decision layer by using
binary cross-entropy as a loss function.

4.2 Results

To understand the capabilities and robustness of our proposed SOS-NN we per-
form a systematic evaluation over the model performance for different setups in
the training and verification phase. Variables included in this systematic evalua-
tion are the sample generation scheme (pair o triplet), interaction time required
(fixed-time window length) and the number of samples (n) from previous history
to compare with (n-shot testing). For the n-shot testing, the output consists in
the average of each individual pair-comparison. At the end of the section, we
show an evaluation of our SOS-NN for web environments over a large scale
experiment (≈125K of users) to verify that performance remains at the same
level under uncontrolled conditions.

Web Environment Results. Figure 3 illustrates the model accuracy in web
environments for different configurations. It can be seen, that the verification
accuracy is consistently higher for longer time windows in the verification phase.
The best verification accuracy obtained for web environment is 90.8%. More-
over, we also found a gradual rise in the verification accuracy when the number
of comparisons increases. In the 1-shot and 5-shot verification tasks our app-
roach achieves up to 74% and 86% in verification accuracy respectively. Table 1
summarizes the accuracies for different verification windows requirements with
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Fig. 4. Accuracy for evaluation over several n-shot comparisons and time window inter-
action in mobile environment

higher values in darker color. As we expected, the performance of our model is
better when analyzing longer times in verification phase. However, more com-
parisons seems to have a larger effect on accuracy than longer interactions times.
For instance, 10 comparisons (10-shot) for window lengths of 5 s is better than
one comparison (1-shot) of 60 s, as can be observed in Table 1b. We believe this
is due to multiple comparisons smoothing the score of the incoming fixed-time
windows.

Moreover, we observe an improvement of around 4% when using triplet setup
for training phase. This improvement is a consequence of better negative sample
choices in the training phase, which leads to a more powerful feature extraction
at the bottom of our SOS-NN. Consequently, our results confirm that a better
choice of behavioral positive and negative samples could moderately improve the
performance of our SOS-NN for web environments. Furthermore, the verification
accuracy reaches the best values after 10 comparisons (10-shot) as it starts
fluctuating close to the maximum obtained performance. As can be observed
from Fig. 6, the FAR and FRR are 9.8% and 16.2% respectively for classification
threshold equal to 0.45.
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Table 1. Accuracies for test in Web environment

(a) Accuracies for pair training.

Time Length [sec]
5 10 20 30 60

C
o
m
p
a
ri
so

n
s 1 0.60 0.64 0.67 0.73 0.73

3 0.67 0.71 0.74 0.81 0.81
5 0.70 0.75 0.78 0.82 0.82
10 0.71 0.78 0.79 0.86 0.84
20 0.75 0.80 0.81 0.88 0.85
30 0.73 0.80 0.82 0.86 0.87

(b) Accuracies for triplet training.

Time Length [sec]
5 10 20 30 60

C
o
m
p
a
ri
so

n
s 1 0.62 0.66 0.71 0.74 0.74

3 0.68 0.75 0.80 0.83 0.81
5 0.73 0.74 0.79 0.84 0.86
10 0.78 0.79 0.85 0.85 0.87
20 0.79 0.80 0.88 0.84 0.88
30 0.77 0.81 0.86 0.87 0.91

Mobile Environment Results. Results for the mobile environment can be
found on Fig. 4. The best verification accuracy obtained is 99.8%. We found
a considerable accuracy improvement (5%) when the number of n comparisons
increases from 1 to 10 comparisons. However, from 10 comparisons until 30, for all
window lengths the accuracy is saturated around 98% for a 60 s window and 97%
for a 5 s window. Besides, a 1% difference between a 5 and a 60 s-window suggests
that the information collected in the first seconds gives already a satisfactory
description of user behavior. The difference between pair and triplet training
is not significant. This suggests for high validation accuracy (i.e. >90%), the
performance depends more on the architecture of the sub-networks or on data
structure aspects instead of the sample generation strategy.

Table 2. Accuracies for test in mobile environment.

(a) Accuracies for pair training.

Time Length [sec]
5 10 20 30 60

C
o
m
p
a
ri
so

n
s 1 0.92 0.90 0.93 0.90 0.94

3 0.95 0.95 0.94 0.95 0.98
5 0.95 0.95 0.97 0.98 0.98
10 0.97 0.96 0.98 0.98 0.99
20 0.97 0.96 0.99 0.98 0.99
30 0.97 0.97 0.99 0.98 0.99

(b) Accuracies for triplet training.

Time Length [sec]
5 10 20 30 60

C
o
m
p
a
ri
so

n
s 1 0.92 0.92 0.91 0.92 0.92

3 0.96 0.96 0.94 0.95 0.96
5 0.97 0.97 0.96 0.96 0.97
10 0.97 0.98 0.97 0.97 0.98
20 0.98 0.98 0.98 0.98 0.99
30 0.98 0.99 0.98 0.98 0.98

Finally, if we focus on an ideal setting where there are no restrictions on how
much data can be sampled from each user, meaning no limit on comparisons or
windows lengths, we achieve a validation accuracy up to 98% for all with windows
above 20 comparisons (See Table 2). Nevertheless, in the case of a practical
solution (i.e. a company’s product) there are some limitations to be taken into
account. Here, waiting too much to gather several 60-s windows can compromise
the security of the system. In this case, the lesser the time the better: even for
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Fig. 5. Receiver Operative Curve (ROC) for the best setup for Web (20 s) and Mobile
(5 s) environments. Notice that the True Positive Rate (TPR) is equal to 1−FRR and
that FAR is equivalent to the False Negative Rate (FNR).

the case of a 5-s window and only one comparison, namely one-shot inference, we
achieve an accuracy of 92%. Our preferred case would be using 3 comparisons,
which corresponds to 15 s of interaction, easily collected after only one login
session of the user; in this scenario our accuracy is 96%. Figure 5 shows the
ROC curve and Fig. 6 shows the FAR and FRR for the best setup in web and
mobile environments. The best FAR and FRR are 0.01% and 0.22% respectively
for threshold classification equal to 0.4. Remarkably, our SOS-NN achieves an
AUC of 0.99 in mobile environment (See Fig. 5).

Evaluation in the Wild. In order to reach a deep understanding on how our
SOS-NN behaves in the wild at a large scale, we tested the framework with
over 100 thousand real users from legitimate banking domains. Figure 7 depicts
the verification accuracy of our approach evaluated in real web sessions. First
of all, we simulated the same setting we had in the controlled experiment: we
trained with 50 users and tested with the remaining users. In this baseline,
the verification accuracy for 1-shot testing is 63% and 68% for pair and triplet
training respectively. Notice that this performance value is very close to metrics
we had for the controlled dataset for a time window length of 10 s. Recall that
75% of sessions in the uncontrolled dataset lasted less than 10 s. In like manner,
the accuracy when testing in a 5-shot and a 10-shot fashion is up to 75% and
79% respectively.
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Fig. 6. FAR and FRR for all classification thresholds for the best setup for Web (20 s)
and Mobile (5 s) environments.

More importantly, we investigated how the model performance increases
when more data is considered to train it. Accordingly, we study the verifica-
tion accuracy or our SOS-NN when behavioral data from 25K, 75K or 100K
different users is included in the training set. Figure 7 shows the verification
accuracy for different n-shot configurations when different amounts of users in
training data are used. From Fig. 7 we can observe that model performance
jumps when more user’s behaviors are in the training phase. In general, the rise
in verification accuracy when training with 25K in comparison with 50 users is
about 9%. In addition, we do not observe sharp improvements when training
with more than 25K users. We believe this is happening because the behavior of
25K users is complex enough to force the network to learn the differences in the
latent space among a diverse spectrum of user behaviors. This finding suggests
that, for behavioral biometric data, there could be a limit to the representa-
tional power of the data in the latent space, this is an interesting insight for
future research on siamese neural networks applied to structured data.

Discussion. As shown, our SOS-NN is able to accurately classify behaviors for
short and long interaction windows, and therefore it is suitable as a competitive,
maintainable and lightweight mechanism for authentication in contrast to pre-
vious works. Table 3 shows a detailed comparison of our SOS-NN with previous
works in terms of model inputs, model performance, authentication paradigm,
required amount of user interaction to train the model and required amount of
interaction to authenticate the user, once the model has been trained. Firstly,
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Fig. 7. Accuracy results for evaluation over several n-shot comparisons for web behav-
iors collected in the wild (125K users).

as can be observed in Table 3, previous schemes are mainly based on either
one model per user or a multiclass classification, which could result in a resource
intensive implementation in the real world and arguably not as scalable for thou-
sands or even millions of users as our proposed one-for-all approach. In fact, for
multiclass classification paradigm the model has to be re-trained every time a
new user is added; while for the one-model-per-user a model has to be trained
for new user in the service (requiring high volumes of data for each new user).
By comparison, after training with a certain quantity of data our SOS-NN is
ready to be deployed and used with any user, even if it has not seen before by
the system.

Additionally, we studied the system performance in a real authentication
scenario, where requiring short interaction windows and rapidly deploy a model
that can assess a risk score for the user can be a large advantage. The majority
of examples in the related work require minutes or even hours of interactions
or tenths of logins to achieve their performance (See Table 3). Alternatively, our
approach could authenticate the user after only 25 s to 3 min with an accuracy of
92% to 99% in Mobile environment, while for Web environment it is between 73%
to 85%. We understand the performance achieved in Web Environment could
seem relatively low, but that is because we push to the limit the capabilities
of the model to learn behaviors even from very short interactions as a trade-off
between accuracy and promptness of assessment.

Finally, the difference of performance between web and mobile environments
is noteworthy. The complete framework behaves way better with mobile data,
even when the architecture and training procedure are the same. Recall that for
the mobile environment a few seconds of interaction are enough for the model
to achieve 99% of accuracy. This can be explained given that our model receives
the devices’ sensors input even when the user is not actively interacting with
the application and is only holding the device. On the other hand, the web
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Table 3. Related work - Web and mobile behavioral biometric authentication

Reference Input Paradigm Performance Training &

authentication

interaction per

user

Web [20] K, M OpU Acc. 82.2% Tr: ≈11min
Auth: ≈30 s

[14] K, M, St MC FAR 0.004%
FRR 0.01%

Tr: 33.6 h
Auth: 30 s

[21] K, M OpU Acc. 97.3% Tr: ≈17min
Auth: ≈30 s

[27] K, M MC Acc. 95.6% Tr: ≈25min
Auth: ≈30 s

[37] K, M OpU Acc. 85% Tr: 2min
Auth: 30 s

[2] K OfA EER 3.35% Tr: 3min
Auth: 3min

Ours K, M OfA FAR 3.62%
FRR 27.3%
EER 13.1%
Acc. 88.4%*

Tr: 6.6min
Auth: 20 s

Mobile [35] K, TI OpU EER 7.16 % Tr: ≈10min
Auth: ≈20 s

[34] TI, MS OpU FRR 6.85%
FAR 5.01%

Tr: ≈250min
Auth:3 s

[38] K, MS OpU EER 0.14% Tr: ≈3min
Auth: ≈15 s

[10] MS OpU Acc 95.8% Tr: ≈4.5min
Auth:2 s

[42] MS, TI OpU EER 15% Tr:≈ 80min
Auth: ≈ 9min

[12] EMS, TI, GPS SfA TAR 97.1%
FAR 0.1%

Tr: 20 s
Auth: 3 s

Ours MS, K, TI OfA FAR 0.01%
FRR 0.22%
EER: 0.10%
Acc. 96.2%*

Tr: 15 s
Auth: 5 s

Input: K: Keyboard Interaction, M: Mouse Dynamics, MS: Motion Sensors,
EMS: Extended Motion Sensors, TI: Touchscreen Interaction, GPS: Global Position-
ing System, GUI: Gui Features, St: Stylometry Features, AppU: App-usage time.
Paradigm: OpU: One Model per User, MC: Multi-Class Classification, OfA: One
Model for All, SfA: Several models for All
Performance: EER: Equal Error Rate, FAR: False Acceptance Rate, FRR: False
Rejection Rate, TAR: True Acceptance Rate, Acc.: Accuracy.
Tr/Auth Interaction: ME: Mouse Events, KS: Key strokes.
*For both web and mobile, those are not the best accuracies that we
could achieve, but they are the best trade-off between interaction time
and performance.
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environment depends on the user interacting with the peripherals (mouse &
keyboard), otherwise the system goes blind due to insufficient input data to make
a valuable prediction, as seen in Fig. 3. This means that our web system needs
more data, and therefore more time to be able to complement the authentication,
but nonetheless can achieve reasonable performances of up to 90% of accuracy.

Scalability. Besides the advantages in data required for training and inference,
our SOS-NN is a scalable framework ready to be deployed to millions of users
without increasing the deployment complexity. Firstly, as our SOS-NN is based
on the one-model-for-all (OfA) users paradigm it is only necessary to train/store
one model. Consequently, the system architecture is simplified due to the fact
that only one universal service is required to be available. Furthermore, no re-
training is needed when new users are added to the systems, which is particularly
important when scaling a computing cluster both horizontal and vertically. More-
over, it is required that a scalable framework handles a high volume of request
(millions) simultaneously. One way to accomplish this requirement while mini-
mizing the computing resources could be by decreasing the inference time of the
model, so the system could process more request per second. The inference time
of our SOS-NN is 17 ms, which faster (44%) than inference times reported in the
literature [37].

On the other hand, this model not only is accurate but also light, ≈120 Kb
and ≈70 Kb for mobile and web, respectively. In that sense, the storage required
to serve 1M of users in our SOS-NN is ≈1 GB, which is the sum of ≈100 Kb of
the model plus the store of the enrollment behaviors (1′000.000x1 Kb). Previous
works in literature developed one-model-per-user strategies where each model
size is about ≈ 100 Kb per user, which means that for a system of 1M of users
100 GB are required [37].

5 Conclusion

In this paper we have presented an effective feature representation for human-
device interactions from different behavioral sources (mouse, keyboard, mobile
sensors), that enables the generation of a latent space effective for biometric
authentication. Our approach is based on Siamese Neural Network models to
learn user behavior in both web and mobile environments. Remarkably, our
model obtained high accuracy even when tested in a few-shot fashion, that
is, needing only a few behavior samples per user. We also showed that the
proposed feature representation and model architecture can be easily adapted
to both web and mobile interactions. Furthermore, our methodology has been
proved in large scale in-the-wild scenarios and over different behavioral sources.
Our system exhibits the potential to rapidly scale in production environments
because it needs only one model to evaluate behavior of many users. Besides,
as we do not process the key values of the keyboard, and all the features can
be calculated on the client side, our system protects the privacy and data of
the users, which is essential for login in banking applications, our principal use
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case. Finally, we evaluated our approach on various datasets, including produc-
tion data from thousands of users in a web-application. Finally, our proposed
methodology exhibits interesting insights about how biometric data and Deep
Learning could be integrated in realistic scenarios, setting a precedent for future
studies in the field.
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Abstract. Privacy-preserving deep neural network (DNN) inference is
a necessity in different regulated industries such as healthcare, finance,
and retail. Recently, homomorphic encryption (HE) has been used as
a method to enable analytics while addressing privacy concerns. HE
enables secure predictions over encrypted data. However, there are sev-
eral challenges related to the use of HE, including DNN size limitations
and the lack of support for some operation types. Most notably, the com-
monly used ReLU activation is not supported under some HE schemes.

We propose a structured methodology to replace ReLU with a
quadratic polynomial activation. To address the accuracy degradation
issue, we use a pre-trained model that trains another HE-friendly model,
using techniques such as ‘trainable activation’ functions and knowledge
distillation. We demonstrate our methodology on the AlexNet architec-
ture, using the chest X-Ray and CT datasets for COVID-19 detection.
Experiments using our approach reduced the gap between the F1 score
and accuracy of the models trained with ReLU and the HE-friendly
model to within a mere 0.32–5.3% degradation. We also demonstrate our
methodology using the SqueezeNet architecture, for which we observed
7% accuracy and F1 improvements over training similar networks with
other HE-friendly training methods.

Keywords: Deep learning · Homomorphic encryption · HE-friendly
neural networks · DNN training · AlexNet · SqueezeNet

1 Introduction

The ability to run deep neural network (DNN) inference on untrusted cloud
environments is becoming critical for many industries such as healthcare, finance,
and retail. Doing so while adhering to privacy regulations such as HIPAA [7] and
GDPR [15] is not trivial. For example, consider a hospital that wishes to analyze
and classify medical images (e.g., [20,43]) on the cloud. Regulations may force
the hospital to encrypt these images before uploading them to the cloud; this
would normally require that the data first be decrypted before any analytical
evaluation can be done.
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Fig. 1. This paper focuses on the model-owner training task. A typical flow for running
DNN over HE spans over three entities: a model owner, a cloud server, and an analyst.
The model owner trains an unencrypted HE-friendly DNN model, encrypts it,
and uploads it to the cloud. Next, the analyst encrypts some private samples and also
uploads them to the cloud. Finally, the cloud processes the encrypted data using the
encrypted model and returns the results to the analyst for decryption.

Homomorphic encryption (HE), which allows computation over encrypted
data, is one of the recent promising approaches to help maintain the confiden-
tiality of private data in untrusted environments. At its core, an HE scheme
provides three capabilities: encryption (Enc), evaluation (Eval), and decryption
(Dec). The data owner, say the hospital in our example, can encrypt a mes-
sage m by invoking c = Enc(m) and then upload the ciphertext c to the cloud,
together with some function f that it wishes to evaluate on m. Subsequently, the
cloud evaluates c′ = Eval(f, c) without learning anything about m or the value
that c′ encrypts. The function returns the encrypted results to the data-owner,
who can decrypt it using m′ = f(m) = Dec(c′) and get the desired results. For
further information on HE, see [17].

HE for DNN inference is an active research topic [18,21,36] focused on using
a trained DNN model to classify encrypted data. Figure 1 illustrates the overall
process and highlights the training phase; this training is done by the model
owner on unencrypted data and is the focus of this paper. In practice, the training
task is not trivial due to possible limitations of the HE scheme. We describe two
principal challenges of HE inference.

Multiplication Depth. Multiplication depth is defined as the longest chain
of sequential multiplication operations in the HE evaluated function. Some HE
schemes only allow for a certain number of consecutive multiplication opera-
tions. To tackle this challenge, such schemes use a bootstrapping operation [16]
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that allows further computation. Because bootstrapping is expensive in terms of
run-time, reducing the multiplication depth allows us to reduce or avoid boot-
strapping, while speeding up the entire computation.

Non-polynomial Operations. Some modern HE schemes support only basic
arithmetic operations of addition and multiplication e.g., CKKS [8] and BGV
[6] schemes. Consequently, only DNN components that can be represented as a
composition of these arithmetic operations can be computed directly in HE.

One way to overcome this limitation is by using a polynomial approximation
to approximate the operation. For example, the ReLU activation function defined
as ReLU(x) = max(0, x) is approximated by a polynomial in [21,27,35,41]. A
second option is to replace the operation with a similar but different HE-friendly
operation. For example, this may involve replacing a max-pooling operation with
the HE-friendly operation of average-pooling, which in many use cases does not
affect the DNN performance [18]. A third option, is to use a client-aided design
[31], where the hard-to-compute operation is sent to the data-owner who decrypts
the data, computes the operation, encrypts the result, and sends it back to the
cloud to continue its HE computation. We prefer to avoid this method because,
in addition to the communication complexity, it increases the attack surface and
opens the door to theoretical attacks such as those suggested by Akavia et al. [3]
or model-extraction attacks as presented by Li [28]. We summarize our research
question.

Research Question. Can we find a methodology for modifying DNN architec-
tures and their training process to produce a HE-friendly model with similar
prediction accuracy as the original DNN?

1.1 Our Contributions

We propose a new methodology that combines several techniques for adapting
and training HE-friendly DNNs on the plaintext, to enable homomorphic infer-
ence over encrypted data. In these DNNs, we replace the ReLU activations by
customized quadratic polynomial activation functions. Our methodology also
enables the entire inference process to occur in the cloud environment, without
interaction with the data-owner. We show empirically that the resulting infer-
ence accuracy is comparable with the inference accuracy of our baseline, the
original DNN with the ReLU activation function.

Our customized activation functions apply the following techniques:

– Low-degree polynomial activation functions with trainable coefficients
– Method for gradual replacement of the original activation functions during

the training phase
– Adaptation of the knowledge distillation (KD) technique [22] to train an HE-

friendly model from a pre-trained baseline model in its vanilla settings

We evaluated the efficiency of our method on two different model architectures,
AlexNet [25] and SqueezeNet [23], for the task of COVID-19 detection over CT
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and chest X-ray (CXR) images of size 224×224×3. We chose these datasets for
their relevance to the current pandemic, as it may enable hospitals to evaluate
COVID-19 cases on the cloud, and analyze them globally. In addition, we prefer
these datasets over more standard datasets such as MNIST or CIFAR-10, which
have much smaller image sizes: 28×28×1 and 32×32×3, respectively; as a result,
their DNN models are also much smaller. For completeness, we also evaluated
our methodology on CIFAR-10 images that were resized to 224 × 224 × 3, and
showed that our methodology outperforms previous works, even when using the
original AlexNet.

Our results for AlexNet demonstrated a minimal degradation of up to 5.3%
in the F1 score, compared to the original baseline models. For both architectures,
we improved the F1 score by 4%–10% compared with HE-friendly networks that
we trained using state-of-the-art methods. Note that we chose to demonstrate
our methodology on AlexNet and SqueezeNet as these are, to the best of our
knowledge, the deepest HE-friendly architectures that were demonstrated to run
encrypted within a reasonable amount of time over large images. Other architec-
tures such as VGG-16, MobileNet, and ResNet-20 were either demonstrated for
non-HE-friendly, client-aided solutions [5] or over datasets with smaller images
such as CIFAR-10 with images of size 32 × 32 × 3 as in [33]. Our trained models
are available online1.

Organization. The paper is organized as follows. Section 2 surveys the relevant
literature. Section 3 presents our methodology and the techniques we used. We
present our experiments in Sect. 4 and conclude in Sect. 5.

2 Related Work

The ReLU function uses the non-polynomial max operation, which is not sup-
ported by some HE schemes such as CKKS. These schemes can only address this
limitation using methods such as lookup tables and polynomial approximations.

Using lookup tables to approximate ReLU was introduced in [26,37], and
was used to homomorphically train DNNs in [32,36]. One disadvantage of this
approach is the low resolution of the lookup table, which is limited by the number
of lookup table entries. This number is significantly lower than the number of
values possible in a single or double floating-point number. In addition, this
technique is not available for all HE schemes, such as CKKS.

The second approach involves techniques to replace the ReLU activation
function with a polynomial approximation function. This can be done using an
analytical method to approximate the polynomial or machine learning to train
the polynomial coefficients. The work of Cheon et al. [9] describes a method
for approximating the generic max function. However, using this method often
leads to a high degree polynomial approximation, which increases the multi-
plication depth and the accumulated noise. In addition, this approximation is
applicable only when the input operands are limited to a specific range. Unlike

1 https://ibm.ent.box.com/folder/161803670185?v=fhe-friendly-models.

https://ibm.ent.box.com/folder/161803670185?v=fhe-friendly-models
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the above methods that can approximate generic functions, we are interested
in ReLU. ReLU is a special case of the max function, where one of the max
input operands is fixed to zero. Hence, it is possible to use other approximation
methods that yield polynomials with even lower degrees and better performance,
while improving the overall efficiency.

The square function (square(x) = x2) [18] is a well-known low-degree polyno-
mial replacement for the ReLU function. However, when the number of layers in
the model grows, the accuracy of the model degrades significantly. To mitigate
this degradation, several works [21,27,35,41] suggested using a higher-degree
polynomial, which again leads to high multiplication depth. For example, Lee
et al. [27] used polynomial approximation with degrees 15 and 27. However,
these polynomials had to use bootstrapping twice for each activation function.
The excessive use of bootstrapping caused them to report the results only for
a 98-bit secure solution. In contrast, our method enabled the authors of [2] to
run the AlexNet model on large images using 128-bit security and without any
bootstrap operations.

Another mitigation suggested by Wu et al.[41] approximated ReLU using
the quadratic polynomial 0.00047x2 + 0.5x instead of a simple square function.
To evaluate the performance of their methods, the authors use a lighter variant
of AlexNet [25] with images of size 32 × 32 × 3. We tested their approach on
the original AlexNet architecture with larger images of size 224 × 224 × 3. As
reported in Sect. 4, this approximation suffers from a degradation in accuracy of
up to 35%.

The studies above searched for a ReLU replacement that would serve as a
good polynomial approximation. They then replace all the ReLU occurrences in a
model with this approximation. In contrast, we consider a fine-tuning approach,
in which we use a different activation per layer, without necessarily approxi-
mating the ReLU activation function. To this end, we used a DNN to train
the coefficients of the different polynomials. We call this technique ’trainable
activation’2.

A similar approach was suggested in other works [37,39,45], in which the
authors trained a polynomial per neuron in small networks of several dozens of
neurons. Clearly, this approach is not feasible in modern networks, where the
number of neurons is in the order of millions and the number of parameters
requiring optimization is huge.

Instead of training a polynomial per neuron, Wu et al. [44] suggested training
a polynomial per layer, for all channels together. They evaluated their activa-
tion functions on 3 models, where the largest model has 4 convolutional layers,
2 average-pooling layers, 2 fully-connected layers, and 3 polynomial activations,
accompanied by a batch normalization layer. The experiments were applied on
the MNIST dataset, which consists of images of size 28 × 28 × 1. We scaled
up this approach by using a larger model (see AppendixA), over larger images,
and extended their methodology by combining additional techniques to help the

2 Other names suggested in previous works are “parametric activation” [44] and “adap-
tive polynomial activation” [37,39,45].
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model converge better. Our evaluation shows that we were able to narrow down
the accuracy gap between the HE-friendly AlexNet and SqueezeNet, trained
using the approach of [44] with our baseline. Our experiments show that we
improved the performance of the model by up to 12.5% compared to their app-
roach.

3 Methodology

Our goal was to replace the ReLU function with a polynomial activation function.
This section describes the training methodology we used to achieve comparable
performance with the baseline model, as presented in Fig. 2.

Fig. 2. Training methodology for HE-friendly DNNs.

3.1 Trainable Polynomial Activation

Based on our approach, we wanted to design a trainable polynomial that would
replace the ReLU activation, without approximating it. Recent papers suggested
approximating ReLU using high-degree polynomials to achieve a good approxi-
mation. However, for a polynomial of degree n, this requires an order of log2(n)
multiplications [40], which significantly increases the computation depth as the
number of multiplications grows.

Therefore, we suggest using a trainable polynomial activation of a 2nd degree
polynomial without the constant term. We used the form ax2 + bx, where a and
b are trainable coefficients, which we trained individually per layer. A similar
approach was presented by Wu et al. [44], where each such activation layer only
increments the multiplication depth by 1.
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3.2 Smooth-Transition

Applying such a significant architectural change to a complex model, without
first adapting the model weights, can lead to a steep drop in accuracy. Hence, we
designed a new approach that we call smooth-transition. We start by training a
model that includes ReLU activation layers for e0 epochs. Over the next d epochs,
we smoothly transition from the ReLU functions to the polynomial activation
functions poly act(). Then, we continue to train the model on the transitioned
HE-friendly architecture. To model this, we use the ratio parameter λe per epoch
e.

λe =

⎧
⎪⎪⎨

⎪⎪⎩

0, (e − e0) ≤ 0
e − e0

d
0 < (e − e0) < d

1 Otherwise

and set the weighted activation function at epoch e as

weighted actλe
(x) := (1 − λe) · ReLU(x) + λe · poly act(x).

To help the network converge, we initiated the quadratic function poly act(x) =
ax2 + bx as a linear function that is somewhat similar to ReLU, by setting a = 0
and b = 1. We stress that the weight λe is not trained during the transition
phase, instead it is predefined according to the smooth-transition policy.

Remark 1. We tried replacing the ReLU activation functions with quadratic
polynomials layer-by-layer, instead of replacing all layers in parallel. However,
it did not provide any significant advantage, and in some cases even showed
performance degradation.

3.3 Knowledge Distillation

Using polynomial activations instead of ReLU activations is less suitable for the
classification task. To strengthen the model, we adopted the well known KD [22]
technique.

KD enables a knowledge transfer from a stronger pre-trained ‘teacher’ model
to a weaker ‘student’ model. In practice, the student model is usually smaller
than the teacher [34]. In our case, replacing ReLU by a polynomial activa-
tion weakens the HE-friendly model; therefore, the original model is used as
a ‘teacher’ model to assist in training the ‘student’ HE-friendly model.

We used the response-based KD approach, one of the simplest KD methods
[19]. Here, an additional term is added to the loss function to measure dis-
crepancies between the predictions of the teacher and student models. We also
employed the soft target technique [22], in which soft targets are used instead of
the original predictions of the teacher and student models:

Qτ [i] =
exp (zi/τ)

∑
j exp (zj/τ)
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where Qτ [i] is the soft target version of the prediction for the class i, zi are the
original prediction logits, and τ is the temperature [22]. With τ = 1, the above
formula becomes the standard “softmax” output: using a higher temperature
value (τ > 1) produces a more uniform distribution of the probabilities over the
classes. The resulting loss function becomes [29,30]:

LKD = ατ2 · CE(Qτ
s , Qτ

t ) + (1 − α) · CE(Q1
s, ytrue)

where Qτ
s and Qτ

t are vectors of the soft target predictions of the student and
teacher models with the same temperature τ > 1, Q1

s is the “softmax” student
prediction, ytrue is the original labels, CE is the cross-entropy loss function, and
α is the hyperparameter controlling the relative weight of the additional KD loss
term.

4 Experiments

4.1 Datasets

Our experiments use two datasets: COVIDx and COVIDx CT-2A.

– COVIDx [43]. This is a dataset of CXR images labeled as: Normal, Pneu-
monia, or COVID-19. It is an open access benchmark dataset comprising
∼20, 000 CXR images, with the largest number of publicly available COVID-
19 positive cases. This dataset collects its data from 6 chest X-Ray datasets
[1,10–12,38,42] and combines them into a big dataset that is updated over
time with more COVID-19 positive CXR images. The number of images we
used per class is depicted in Table 1. When creating this dataset, we verified
that there are no patients overlapping between the train, test, and validation
subsets. We applied an augmentation process to the data, similar to Wang
et al. [43].

– COVIDx CT-2A [20]. This dataset contains 194,922 chest CT slices from
3,745 patients, with the same classes as in the previous dataset. We used a
random balanced subset of the original dataset, as depicted in Table 1. Each
image was augmented as follows: resize to 224 × 224 × 3, random rotation,
horizontal flip, vertical flip, color jitter, and normalize.

4.2 Model

For evaluation, we used the AlexNet [25] and SqueezeNet [23] models. We chose
AlexNet because it was the deepest network that was tested for non-interactive
HE solutions [2]. We also used SqueezeNet, which was designed as a light version
of AlexNet with 50× fewer parameters. Although lighter, it is a much deeper
network with 40 layers instead of 21. The models were originally pretrained on
the ImageNet [14] dataset, and then fine-tuned on the COVIDx datasets. Because
both original models are not HE-friendly, we describe the steps to transform the
original models into HE-friendly models.
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Table 1. COVIDx and COVIDx CT-2A data sizes used per class

Normal Pneumonia COVID-19 Total

COVIDx Train 7966 5475 4303 17744

Validation 797 534 559 1871

Test 88 60 61 209

COVIDx CT-2A Train 10000 10000 10000 30000

Validation 1000 1000 1000 3000

Test 100 100 100 300

AlexNet. We implemented an AlexNet model based on PyTorch3, and added a
batch normalization layer after every activation layer. To avoid additional mul-
tiplication depth, after the training process ended, we absorbed the coefficients
of the batch normalization into the weights of the next layer, as suggested by
Ibarrondo and Onen [24]. Appendix A presents the network architecture.

HELayers [2] is an AI over HE framework. Following the pre-print version of
this paper [4], the developers of HELayers tested our methodology for AlexNet.
Their results showed a speedup for time and accuracy over encrypted input when
using large networks (in terms of HE) and large image sizes of 224 × 224 × 3.

SqueezeNet. The SqueezeNet model [23] aims to achieve AlexNet-level accu-
racy with 50× fewer parameters. This comes at the cost of significantly increasing
the multiplication depth, from 21 layers to 40 layers. Unlike our approach for
AlexNet, we did not add batch normalization for SqueezeNet, as we did not
observe significant performance improvement when using it. Our model archi-
tecture is the SqueezeNet version 1.0 implemented in PyTorch.

A lighter HE-Friendly version of SqueezeNet tailored for CIFAR-10 with 23
layers instead of 40 over small images of size 32 × 32 × 3 was implemented and
evaluated by Dathathri et al. [13]. The successful implementation of this lighter
version increased our motivation to offer a method that can also successfully train
the original (larger) SqueezeNet over larger images while achieving acceptable
accuracy.

Our evaluation is focused on AlexNet and SqueezeNet as these are the largest
model architectures that were demonstrated to run over HE in a non-interactive
mode, i.e., without using client-aided designs. We are not aware of other attempts
to use larger networks while also considering large image sizes as in our case.

4.3 Experimental Results

AlexNet. Table 2 summarizes our experimental results using different meth-
ods on the COVIDx and COVIDx-CT-2A datasets. In every experiment, we
measured the accuracy and macro-average of the F1 scores on all of the three
3 https://pytorch.org.

https://pytorch.org
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Table 2. A comparison of our suggested methods and their contributions to previous
works, over the AlexNet model. The results are reported for the test data of COVIDx
and COVIDx CT-2A images. The baseline network is the original network with max
pooling and ReLU. For all columns, higher values are better. We use the term TP for
Trainable Polynomials, ST for Smooth-Transition and KD for Knowledge Distillation.

Technique COVIDx CT-2A COVIDx

Accuracy F1 Accuracy F1

Square [18] 0.435 ± 0.11 0.429 ± 0.13 0.378 ± 0.06 0.372 ± 0.08

Approx. ReLU [41] 0.706 ± 0.02 0.703 ± 0.09 0.696 ± 0.01 0.670 ± 0.01

TP [44] 0.806 ± 0.03 0.807 ± 0.03 0.811 ± 0.02 0.809 ± 0.04

Our method TP+ST 0.837 ± 0.01 0.835 ± 0.10 0.881 ± 0.12 0.878 ± 0.14

Our method TP+ST+KD 0.848± 0.04 0.847± 0.09 0.913± 0.10 0.907± 0.16

Baseline 0.893 ± 0.03 0.892 ± 0.08 0.916 ± 0.01 0.915 ± 0.03

classes. We repeated every experiment five times with different seeds and report
the average results and the standard deviation. For more details regarding the
training setup, see Appendix B.

As can be seen from Table 2, the trainable activation improved the results
by 14–20% when compared to the quadratic approximated ReLU. The smooth-
transition (ST) approach, which gradually changes the activation function over
10 epochs starting from the 3rd epoch, further improved the results by 3.4–8.6%
when compared to replacing all activations at once. Finally, combining both
approaches with Knowledge Distillation (KD), where the original AlexNet
with ReLU was used as a teacher to the new adapted architecture, performed
even better with an improvement of 1.3–3.6% (baseline divided by our method).
This almost closed the gap with the original reference model, with only 0.32–
5.3% degradation.

Table 3. A comparison of our suggested methods and their contributions to previous
works over the SqueezeNet architecture. The results are reported on the test data of
COVIDx CT-2A images. The baseline network is the original network with max-pooling
and ReLU; we also added a reference model with average-pooling and ReLU. For all
columns, higher values are better.

Technique Accuracy F1

Square 0.33 ± 0.00 0.33 ± 0.00

Approx. ReLU 0.740 ± 0.15 0.728 ± 0.15

TP 0.754 ± 0.05 0.742 ± 0.06

Our method TP+ST 0.806 ± 0.23 0.800 ± 0.05

Our method TP+ST+KD 0.820± 0.23 0.816± 0.02

Baseline (ReLU + Avgool) 0.825 ± 0.23 0.826 ± 0.31

Baseline (ReLU + Maxpool) 0.898 ± 0.01 0.897 ± 0.05
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SqueezeNet. Table 3 summarizes the results of using different methods on
the COVIDx-CT-2A dataset. The results are reported in a similar format as in
Table 2. The only difference is that in this table we also added a baseline model,
which consists of the original model of SqueezeNet with ReLU but with average-
pooling. The reason is that when we replaced the max-pooling layer with an
average-pooling layer, both the F1 scores and the accuracy scores went down by
around 8%. This observation is interesting because it shows that the claim of
Gilad-Backrach et al. [18] does not hold for all models. This may also open the
door for a new line of research that focuses not only on the activation layers but
also on max-pooling layers.

We compared the accuracy and F1 score of models with average-pooling,
where one is trained using our methodology and the other using the stan-
dard methodologies. The results showed almost the same performance as with
AlexNet, with 0.6–1.2% degradation in the former model. Interestingly, the
smooth-transition technique played an important role, and improved the results
by 6.9%–7.8%. Interestingly, when we evaluated a model with square activations,
the model did not converge at all.

CIFAR-10 for AlexNet. For completeness, we also evaluated our methodology
on the well-known CIFAR-10 dataset over the AlexNet model. We resized the
images to 224× 224× 3 to fit the input size required by the model. The baseline
network with ReLU reached an accuracy of 0.901, and the accuracy of the HE-
friendly model using our full methodology was only slightly lower at 0.872 (and
0.869 without KD). Using non-smooth trainable activation functions resulted
in a low accuracy of 0.751, and with an approximated ReLU it reached 0.7405.
Again, we see that our methodology outperforms previous works, especially when
evaluating on the original AlexNet model without modifications, and over large
images.

Varying Polynomial Activations per Layer. To better understand the final
activation polynomials (ax2 + bx), we analyzed the ranges of their coefficients.
For AlexNet, we got a ∈ [0.003, 0.010], with a standard deviation of 32% of
the 0.0065 average value and b ∈ [0.057, 0.110], with a standard deviation of
20% of the 0.0830 average value. We got similar results for SqueezeNet. Figure 3
presents a sample of the activation function graphs of different layers next to
the graphs of the ReLU, square, and the ReLU approximation functions. The
large variance between the polynomials may explain the accuracy advantage we
see when using several different polynomial activations compared to using only
one fixed approximation for all layers.

In our experiments, the inputs to the AlexNet activation functions were in
the range [−90, 90], the average input value for most layers was close to zero
with standard deviations in the range [4, 18]. In contrast, in SqueezeNet, the
input to the activation functions were in [−100, 100] for the first 18 activations,
and in [−1506, 1356] otherwise. Here too, the average input value for most layers
was close to zero with standard deviations of less than 20 for the first 18 layers
and around 180 for the other layers. Thus, Fig. 3 shows the graphs for small
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Fig. 3. Different activation functions: ReLU, Square function, ReLU approximation
and the resulted trainable polynomials for several layers of AlexNet (top panels) and
SqueezeNet (bottom panels). In panel (d) the curves of L1-L30 coincide.

inputs in [−2, 2] but also in wide ranges [−60, 60] and [−400, 400] for AlexNet
and SqueezeNet, respectively.

The graphs show that, unlike ReLU, the square function grows and even
explodes for negative inputs, therefore it is less likely to cause a network to
converge. In contrast, compared to ReLU, the ReLU approximation outputs
lower values for both negative and positive inputs. This allows the network to
converge, but the increased weight it gives to negative inputs might be the reason
for the observed lower accuracy. Interestingly, our trainable functions happen to
be closer to ReLU, at least in the range [−2, 0] and starts to deviate from it
when extending the input range. It seems that in [−2, 2] with small inputs, our
trainable functions almost agree on their outputs, but for distant inputs, they
uniquely define the characteristics of the layers. In our experiments, we did not
observe that the order of layers dictates some order on the trained functions.

Smooth Transition and Training Robustness. Figure 4 compares the
robustness of the previous methods for replacing the ReLU activations with our
smooth transition approach over five different seeds. The graphs show that using
approximated ReLU or trainable activations without smooth transition leads to
a wide deviation of the final accuracy results and training failures. In contrast,
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using smooth transition improves the robustness of the training process, which
succeeded for all seeds.

Fig. 4. Test accuracy for the AlexNet (top) and SqueezeNet (bottom) architectures
trained with the approximated ReLU (left, orange), trainable polynomial without
smooth-transition (middle, green), and trainable polynomial with smooth-transition
(right, red) – our method. The graphs show the average and spread of five different
runs with different seeds. A smaller spread indicates a more stable training method.
(Color figure online)

As described in Sect. 3.2, the smooth transition starts at epoch 3 and pro-
gresses over 10 epochs. This explains the immediate accuracy drop at epoch 3
for the left and middle graphs in Fig. 4. The rightmost graphs show the training
process with a smooth transition, where the accuracy drop is delayed to the last
transition epoch (around epoch 13) or stretched during epochs 3–13. One expla-
nation for the accuracy drop in the rightmost graph is that the graphs of the
trainable activations lay below the ReLU graph, see Fig. 3. Therefore, when we
set the activation to λe × trainable + (1 − λe) × ReLU , the ReLU term is larger
than the trainable term. Once the transition ends, we remove the ReLU term,
which causes the model to respond with an accuracy drop. However, as we see
in the graphs, the transition period helps stabilize the final accuracy. We also
evaluated a smoother version of the transition, where we split the last 2 epochs
into 10 smaller epochs with an increment of 0.02 for λe; but we did not observe
any improvement.
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5 Conclusions

We introduced a new methodology for training HE-friendly models that replaces
the ReLU activation functions with a trainable quadratic approximation. Our
approach uses techniques such as polynomial activation functions with trainable
coefficients, gradual replacement of activation layers during training, and KD. In
addition, our methodology can be automated and thus simplifies the way data
scientists generate HE-friendly networks. Moreover, it allows them to avoid many
struggles in achieving models with relatively good accuracy. We stress again that
the entire training phase is done by the data owners on unencrypted data. Only
when the model is ready the data owner encrypts it and uploads it to the cloud.

We tested our methodology on chest CT and CXR image datasets using the
AlexNet architecture, and showed that the performance of our trained model is
only 0.32–5.3% less accurate than the reference model, making it at least 15%
better than all previously suggested HE-friendly training methods. We achieved
similar results for SqueezeNet, which is a deeper network with 40 layers. Finally,
we note that the authors of [2] used our methodology to train AlexNet. Sub-
sequently, they used their HELayers framework to demonstrate running it over
encrypted data in less than five minutes without any degradation in accuracy.

Secure computations using HE is a rapidly growing domain and there are
already several HE frameworks that enable private DNN computations on
untrusted systems such as [2,13]. However, they can provide accurate and usable
solutions only in the presence of accurate HE-friendly models. This puts our
study on the critical path of deploying non-interactive HE-based solutions. In
future work, we plan to further evaluate our methodology on more complicated
models and domains. In addition, in the light of the results from SqueezeNet, we
would like to design an approach for replacing max-pooling that will offer less
accuracy degradation.

A AlexNet Network Architecture

Our AlexNet architecture is the original implementation of PyTorch, where we
added a batch normalization layer after every activation layer as our baseline.
Here, all convolution layers use padding=‘same’. Note that the original model
implemented by PyTorch has a Global Average Pooling layer with an output size
that is 6 × 6. For input images of size 224 × 224, it is equivalent to the identity
function so we ignored it in our experiments.

Our Variant of AlexNet

1. Conv2d(3, 64, kernel=11 × 11, stride=4, trainable polynomial)
2. AvgPool2d(3 × 3, stride=2)
3. BatchNorm2d(64)
4. Conv2d(64, 192, kernel=5 × 5, stride=1, trainable polynomial)
5. AvgPool2d(kernel=3 × 3, stride=2)
6. BatchNorm2d(192)
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7. Conv2d(192, 384, kernel=3 × 3, stride=1, trainable polynomial)
8. Conv2d(384, 256, kernel=3 × 3, stride=1, trainable polynomial)
9. Conv2d(256, 256, kernel=3 × 3, stride=1, trainable polynomial)

10. AvgPool2d(kernel=3 × 3, stride=2)
11. BatchNorm2d(256)
12. Dropout(p=0.2)
13. Flatten()
14. FC(in=256, out=4096, activation=trainable polynomial)
15. Dropout(p=0.2)
16. FC(in=4096, out=4096, activation=trainable polynomial)
17. FC(in=4096, out=3)

Total number of layers, including the activation layers and ignoring the dropout
layers: 21.

B Model Hyperparameters

We evaluated each experiment with 5 different seeds: 111, 222, 333, 444, 555.
During the training process, we loaded images in mini-batches of size 32, and
optimized the loss function using Adam optimizer. The number of epochs differs
for each task, as does the learning rate, which was usually 3e−5 or 3e−4.

The activation replacement started at epoch 3, and in case of smooth tran-
sition it was gradually replaced for 10 epochs. We replaced all ReLU activations
in parallel. We found that it is better to initialize the coefficients with values
similar to the form of ReLU, and that when the coefficients are scaled by a
predefined number (s1, s2), the network converges better. Therefore, the coeffi-
cients of each trainable activation were initialized as s1 × 0.0X2 + s2 × 1.1x or
s1 × 0.0X2 + s2 × 1.1x, where (s1, s2) are set to either (0.1, 0.1) or (0.01, 0.1).

For the distillation process described in Sect. 3.3, we set the temperature
value to 10, and the α parameter was set to 0.1.
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Abstract. Although browser fingerprinting has been widely studied
from a privacy angle, there is also a case for fingerprinting in the context
of risk-based authentication. Given that most browser-context features
can be easily spoofed, APIs that potentially depend both on software
and hardware have gained interest. HTML5 Canvas has been shown to
provide a certain degree of characterization of a browser. However, mul-
tiple research questions remain open. In this paper, we study how to
use this API for browser fingerprinting in a scalable way by means of a
Siamese deep neural network. We also explore the limits of this technique
on modern browsers that are progressively standardizing the Canvas out-
puts. On our evaluation using over 200 browser instances, we obtain an
82% accuracy in distinguishing browser instances in our dataset and 92%
if the model only distinguishes between users with a different browser or
OS. Our model has a 0% false-rejection rate and up to 36% average false
acceptance rate on simulated attacks, that occurs mostly when victims
and attackers share the same browser model and version and the same
OS.

Keywords: Risk-based authentication · Machine learning · Deep
learning · Computer vision · Siamese networks · HTML5 Canvas

1 Introduction

Browser fingerprinting, the ability to remotely recognize or identify a browser
or sets of browsers with similar intrinsic characteristics, has been studied in the
literature for various reasons. On the one hand, browser fingerprinting can be
used to track and identify users, and as such it poses a risk to user’s privacy
[1,15,33,35]. Also, browser fingerprinting can be a useful tool to enforce risk-
based authentication and protect users specially for websites that require very
sensitive information, like email accounts or credit card numbers [5,13,31]. If
we are used to seeing legitimate users accessing our web services from a given

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Zhou et al. (Eds.): ACNS 2022 Workshops, LNCS 13285, pp. 554–574, 2022.
https://doi.org/10.1007/978-3-031-16815-4_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16815-4_30&domain=pdf
https://doi.org/10.1007/978-3-031-16815-4_30


Scalable and Secure HTML5 Canvas-Based User Authentication 555

set of browsers, sudden changes (i.e. a never seen before browser) could trigger
2-factor authentication mechanisms or other checks.

Several features have been considered so far to characterize browsers, ranging
from the browser-declared user agent, to checks on installed fonts and browser
family specific implementations that can be distinguished via JavaScript. Among
proposed features, the use of HTML5 Canvas, first proposed by [24], stands
out given that it has been shown that Canvas rendering can depend on both
software implementations (browser family) and hardware (graphic cards). So
far, this feature has been leveraged in two ways in order to build a fingerprint:
a) originally, a hash was computed out of a given generated picture on a browser,
which can be stored and used later for comparison on freshly generated hashes
of the same image and b) machine learning classifiers have been proposed to
distinguish images generated in a given browser from those generated in other
browsers.

There are however so far unanswered questions in three important respects:
1) How secure is a fingerprinting solution based on HTML5 Canvas with respect
to replay attacks? 2) Is it possible to build a secure solution that also scales
to thousands, even millions of system users? and 3) Are the early observations
on HTML5 Canvas still valid in modern browsers, as standardization efforts
progress?

In this paper we study the above research questions and propose a fingerprint-
based authentication protocol that uses HTML5 Canvas and a Siamese neural
network with the following characteristics. First, it relies on a freshness factor
(a randomly generated text) to validate a fingerprinting which defends against
replay attacks. Second, it only needs a single Siamese network to evaluate a
freshly generated fingerprint that can be used for all users in a system. Similar
for example to a face detection network that compares a stored picture of a user
against a freshly taken one, this paradigm avoids the necessity of storing and
training a classifier for each user in a system (as opposed to closely related work),
and only requires to store previously generated canvases in order to authenticate
fresh instances.

We evaluate our approach on a dataset consisting of 1’374.000 images gen-
erated on 239 different browsers and 80 distinct machines. As a result of our
training we obtain a network that has 82% accuracy with 0% false-rejection
rate (FRR) and 36% false-acceptance rate (FAR), a 30 ms of inference time
and requires 9.7 MBs of storage. Note that the high FAR is an average value
that includes simulated attacks using all possible combinations of browser and
OS, and that instance of false acceptance occur mostly when attackers use the
same browser type and version and operating system as the victim. Moreover,
our analysis indicates that recent versions of browsers based on Chromium yield
identical canvases and it is thus impossible to distinguish them using this feature,
although they are still distinguishable from other browser families.

In summary, our contributions are as follows:
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– We propose a single Siamese neural network to classify randomly generated
canvas images as generated by a given known browser or not, obtaining an
accuracy of 82%.

– Based on this network, we propose a browser fingerprinting protocol that is
resistant to replay attacks.

– We evaluate our approach on a dataset consisting of 1’374.000 images gener-
ated with HTML5 Canvas on 239 distinct browsers.

– We discuss the effectiveness of HTML5 Canvas as a fingerprinting technique
in modern browsers, concluding that the Chromium-based family has effec-
tively standardized this API rendering, making it an ineffective browser for
fingerprinting purposes, and observing a similar trend in other browser fam-
ilies as well.

2 Background

In computer science, a fingerprinting algorithm is a mechanism to extract a
unique signature to identify a trait from a specific user, such as human finger-
prints uniquely identify people. These traits can contain features from one or
several sources. For example, iris images, fingerprint scanners, heartbeat signals,
and face photographs are information on the biological aspects of the user known
as biometrics [7,8,26]. For instance, User-Agent string, HTTP request headers,
cookies enabled, time zone, screen size, browser plugins, and their versions, and
the list of system fonts are features that describe the interaction between a user
with a browser [16,20]. Recent research applies the described features and others
generated by HTML5 requirements (see Sect. 2.2) to identify a user uniquely as
a browser fingerprinting [1,10,13,15,23,29].

2.1 Browser Fingerprinting

With the well-known Panopticlick1 experiment, Eckersley [14] investigated the
potential of fingerprinting using the browser features given the absence of stan-
dard tracking technologies like cookies and achieve an 84% of unique identifica-
tion of the participants from a collection of hundreds of thousands of submissions
when data came from HTTP headers, using JavaScript and plugins like Flash or
Java. Panopticlick is a usual acquisition tool used by several authors [16,20,23].

Later studies found that fingerprinting in the browser environment has sev-
eral applications with benign and malign proposes.

On one hand, for harmless applications, Al-Fannah [3] classify them into four
applications: target advertising [9], social media sharing [27], analytics services
[1], and web security. From the last application, there is the study of Nikiforakis
in 2013 [25] where he discovered 40 pages (0.4% of the Alexa top 10,000) utiliz-
ing fingerprinting with commercial code and related to web tracking to detect
shared or stolen credentials of paying members and user identification in dating

1 https://coveryourtracks.eff.org/.

https://coveryourtracks.eff.org/
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sites to ensure that attackers do not create multiple profiles for social engi-
neering purposes. Mowery [24] also mentions that current approaches include
fingerprinting a user’s machine by a bank to require additional authentication
for login attempts from systems whose fingerprint does not match.

For the aim of this paper, fingerprinting is treated as a web security service
focused on authentication processes. It is known that the main challenge with
browser fingerprinting is that most collected attributes of a browser are static and
could easily be modified and replayed, enabling attackers to impersonate users
[6]. In contrast to active fingerprinting techniques like canvas (see Sect. 2.2),
WebGL, audio, or crypto fingerprinting which are valuable tools for creating
challenge/response-based authentication protocols [10,12,22,31].

On the other hand, when fingerprint use is destructive, users do not benefit
from being tracked or do not wish to be tracked. In that case, users can attempt
to avoid tracking by using their browsers’ “private browsing” modes [17] or
addons [2] intended to hide the user preferences.

Due to the detrimental approach of fingerprinting, community research has
developed tools to detect, quantify, and characterize emerging online tracking
behaviors, as Englehardt presents in [15] with an open-source web privacy mea-
surement tool. Similarly, Vastel [35] tested a suite to evaluate fingerprinting coun-
termeasures and resilience against an adversarial crawler developer that tries to
modify its crawler fingerprints to bypass security checks. Furthermore, Reitinger
[30] explored in his work blocking canvas fingerprinting using a machine-learning-
based approach, and Al-Fannah [4] presented a comprehensive and structured
discussion of measures to limit or control browser fingerprinting.

In addition, recent works like Gomez et al. [18] evaluate the uniqueness of the
browser fingerprinting, finding that from 2,067,942 fingerprints collected from
one of the top 15 French websites, only 33.6% of fingerprints are unique in
contrast to results published by Eckersley [14]. Authors of [18] attribute this gap
to the fact that users do not need to play with their browsers to change their
configuration and produce different fingerprints to protect their privacy, as is
suggested in the Panopticlick experiment.

2.2 HTML5 Canvas

Browser features from Flash and Java plugins have shown that they are not
enough to obtain a unique user identification. Also, the browser user should
accept the use of the plugins to achieve a high degree of uniqueness [14], and
some of the Flash applications are currently obsolete [11]. Late approaches prefer
the use of canvases which differentiate from their conventional counterparts by
their potential to circumvent users’ tracking preferences, being hard to discover
and resilient to removal [1,31]. Besides, works like [19,32] research into the iden-
tification performance increment using machine learning techniques, extracting
a relation among the existing browser features and HTML5 canvases.

Mowery et al. [24] suggest that current browsers are increasing their sophisti-
cation in their application platforms which implies additional requirements and
resources to the operating system, in contrast to traditional functionalities. The
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HTML5 suite with its specifications is guilty of many sophistications such as
programmatic drawing surfaces (canvas), three-dimensional graphics (WebGL),
structured client-side data-store, geolocation services, the ability to manipulate
browser history together with the browser cache, audio and video playback, and
more.

The natural way for browsers to implement such features is to draw on the
host operating system and hardware. They use the GPU for 2D or 3D graphics,
improving visual performance and saving battery on mobile devices. Moreover,
using the operating system’s font-rendering code for text means that browsers
automatically display text in a way that is optimized for the display and consis-
tent with the user’s expectations.

Differences among user’s machines generated by a list of fonts (a particular
case of canvas fingerprinting called canvas font fingerprinting [16]), font render-
ing, smoothing, and other device features cause a drawing of a particular image
where the resulting pixels can be part of a canvas fingerprinting [15].

3 Approach

In the following, we will discuss the protocol and machine learning classi-
fier design that we will later evaluate on data collected from several browser
instances. To guide our discussions, we will start by stating the research ques-
tions we want to answer in this work.

GRQ: Is it possible to enhance risk-based authentication through canvas based
fingerprinting in today’s browsers?

– RQ1: How dependent are canvases on hardware and software nowadays?
– RQ2: Can a unique canvas-fingerprint be created for each browser instance?
– RQ3: Is it possible to build a system that scales to thousands/millions of

users?
– RQ4: Is it possible to design a system that is secure against replay attacks?

3.1 System and Attacker Model

We assume an attacker A wants to impersonate a victim V on an online ser-
vice. The attacker is in possession of the victim’s credentials and can therefore
successfully login at the target service. An attacker can spoof any value trans-
mitted over to the server, including HTTP parameters as usually declared by a
browser or other readings collected by JavaScript on behalf of the service. The
service will collect such information to profile legitimate users through a risk-
based authentication module. The service will assume that all legitimate clients
can run HTML 5 Canvas calls on their browsers and thus request them to do so
for (benign) profiling purposes.
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We do not rule out that an attacker might be in possession of old legitimate
communications between a victim and the service and therefore access to past
rendered images on the victim’s browser and other context information on the
victim.

The attacker’s goal is to successfully evade a risk-based authentication sys-
tem that considers the profiling information of a legitimate user. The system may
challenge users with a 2-factor authentication method in case of suspicious activ-
ity, and we assume attackers do not have access to this additional authentication
mechanism.

3.2 Authentication Protocol Design

The system design corresponds to an authentication scenario where a user
attempts to gain access to secured resources from a web server. The user must
solve particular challenges, such as enter a combination of username and pass-
word, to authenticate him/her into the server. In the background, the user’s
device is required to authenticate by rendering an HTML5 Canvas image on the
user’s browser. If it can be ascertained that the image comes from one of the
user’s registered devices, the authentication is complete.

The authentication process followed by our system is shown in Fig. 1. First,
to authenticate a user’s device, the server generates a fresh scripting recipe for
an image and challenges the user’s browser to render it and send the result back
to the server. In HTML5 Canvas, a fresh recipe means asking a browser to draw
graphics via scripting where the script contains a randomness source. Including
a source of randomness in the system, such as random text strings, is essential to
avoid replay attacks. To ensure no replay attack is able to bypass authentication,
both the server and the client generate images based on the same fresh challenge,
then the images are compared through a classical image-similarity approach. If
both images contain the same text, the mean difference should be smaller than
the case where the images represent different text, which is the scenario when
an attacker steals a previously generated canvas by the victim and tries to input
into the system. Length and complexity of the random string determines the
theoretical security of the protocol (secret’s entropy).

After filtering replay attacks, the next step is to compare the image generated
by the user’s browser against a previous instance of an image from the same
user’s device (reference image). To extend the system to users with multiple
devices, at least one reference image per device should be saved, and the whole
process should be executed for each image. Through this comparison the system
assess if the new login is suspicious or not. The key challenge of such a multi-user
system is to devise a scalable strategy to determine whether two different images
come from the same user device. It is not practical to create a single model
that would need to be retrained when a new user is registered. On the other
hand, a one-model-per-user approach usually requires large amounts of data per
user that is hard to collect in the short-term (as in [31]), affecting the model
reliability due to users constantly updating devices. Moreover, users may log in
from multiple devices that might be constantly or sporadically used. Therefore



560 E. Rivera et al.

If similarity(         ,         ) > th

Challenge image

Server

bob

*******

Client

Baseline image

C B

True

Successful
authentication

Anomalous
session

Replay attack

If fromSameDevice(         ,         )

Challenge image Reference image

C R

Generate
fresh challenge

False

False

True

<random string>

Fig. 1. The authentication process begins with the delivery of a fresh challenge to
a client. The similarity of the client’s image is compared against a baseline image
generated on the server-side using the same random text. If the similarity between
both images surpasses a given threshold, the client’s image is now compared against a
reference image previously generated from the user device (e.g. when registering or a
previous login). If both images were generated from the same device, the authentication
is successful and the most recent challenge becomes the new reference image.

a model-per-user would need retraining, or enough data must be collected to
create a model per user device. We solve this scalability challenge by means of
a Siamese deep neural network.

3.3 Machine Learning Classifier Design

Feature Engineering: For the purpose of fingerprinting, exploring various
canvas styles is fundamental to establish which graphic features better highlight
the differences among images rendered with different devices. Experimenting
with multiple curves, text strings and visual effects as in [10,22] provides key
insights represented in Fig. 2. Here, we generated 300 different canvas styles
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Fig. 2. Canvas style comparison. The color represents the mean absolute difference
between two samples coming from different users of the same canvas.

(X-axis) for 5 different pages (Y-Axis). Each cell represents the mean canvas
difference between 2 random sampled users. The 0–200 canvases only contained
colored curves and shadows, the 200–300 contained colored texts. As it can be
seen, the greatest differences appear for the canvases containing text, therefore,
those types of canvases were used later for our main experiment.

These findings corroborate the positive results yielded by SWAT [31]. Thus,
the same configuration of fonts, colors, and design were used in our subsequent
experiments as we focused on going one step forward to develop a scalability
strategy that can make this graphic approach suitable for real production envi-
ronments. An example of the resulting images can be seen in Fig. 3.

Fig. 3. Example of an image generated on the client-side using Canvas API (35 ×
280 px).

Siamese Neural Network: In order to go further than previous approaches
[10,31] in the task of user authentication through the canvas, we implemented
a Siamese network [21] as a way of using only one model to identify if two
images were rendered by the same device instead of training one model for every
single user. Therefore, the inputs of our system are two images, and the output
corresponds to a binary similarity score stating whether they belong to the same
device or not. In addition, we wanted to use fresh challenges so the system was
not weak against replay attacks. Hence it was trained with different images with
randomly generated text for the positive class.

The overall design of the architecture used in the classification process is
depicted in Fig. 4. The main idea is to implement a Siamese network, this is,
two networks sharing their weight values. For the implementation we used two
different network architectures: a convolutional neural network (CNN) followed
by a fully connected or dense network. The outputs for both networks in the
Siamese architecture are then compared using an energy function represented
by a similarity distance between both outputs. This similarity distance feeds a
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Fig. 4. Model architecture used for the classification of generated canvas
images.Conv2D: 2D Convolution layer, MP: MaxPooling layer, DL: Dense Layer, u:
units.

subsequent decision network which consists of a fully connected or dense neural
network whose output will measure the similarity distance between both canvas
or inputs.

Using too deep network architectures led to the vanishing gradient problem,
which could be reduced with the inclusion of residual blocks. However, the results
are similar to those obtained using shallower networks, but the time involved in
the training process increases significantly with the inclusion of more layers. In
the decision process, the decision network, which corresponds to a fully connected
neural network, was included to obtain a higher performance in the classification
results than those obtained using only the energy function (represented by the
similarity distance in Fig. 4).

3.4 Training Procedure

For training the negative class, we generated the inputs from the random images
in two different ways: Easy and Random generators. The easy one selects a pair
of images from users who did not share at least one feature: Browser or OS.
The random generator did not filter the users at all. The approach was always
the same for the positive class: Select a random couple of images from the same
user.

To optimize the process, the training was performed in an easy-to-difficult
way. The first batches of data were small, and as soon as the metrics achieved
a specific value, a new bigger batch was sampled. Incidentally, the firsts batches
were generated with the easy generator and the last ones with the random gen-
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erator. In this way, it should have been easier for the optimizer to find the local
minima for the first epochs, and the last epochs were used as a fine-tuner of the
model. This approach did not do not only help the speed of training but the
convergence itself. To ensure the generalization results, we split the users into
train and test sets, so both of them were in principle independent and gave us
insights on the performance of the model on unseen data.

3.5 Evaluation Strategy

We wanted to test if the model was really learning features related to the render-
ing of the canvases or learning other aspects related to the string written on the
canvas or its colors. To accomplish this, we proposed the following evaluation
approach: For the positive class, we used different images from the same user,
which would have different strings. For the negative class, we would pick the
same image from two different users. In this way, we are sure that, the positive
class images are more dissimilar than the negative class images in a pixel-wise
manner, so the evaluation tests the image rendering in the worst case possible.
This would give us a lower bound for the accuracy and recall of the system in
the real world because in the actual environment would be expected that the
images coming from different devices will have different texts.

4 Evaluation

In this section we discuss our evaluation efforts, based on the previously discussed
strategy. We will also discuss the results of our evaluation in the context of the
larger objective which is risk-based authentication.

4.1 Datasets

A dataset was collected to train and evaluate the approach. For this purpose,
we designed a login web page where users provided a unique username. In one
login, a user’s browser built 6000 images in the background through the Canvas
API. 3000 images were generated from canvases with random text strings. The
other 3000 images were generated from canvases with fixed text strings, which
means that the 3000 strings were the same for all users. Nevertheless, all of the
canvases shared font colors and sizes. The only randomness source was the text
string in the image, see Fig. 3.

The random images are used to train the models and the fixed images are
used to evaluate them and gain insights from a pixel-wise analysis.

The data collection was performed with the help of 80 volunteers that col-
laborated with the experiment, but each of them could perform the login from
different browsers. We usually collected information from three browsers from
each user, giving us a total of 239 pairs browser-devices to be identified. The
information was collected only for computers for this experiment, leaving mobile
devices for the next steps.
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The OS-Browser distribution can be seen in Fig. 5. There is an obvious preva-
lence of Windows devices as expected [34], followed by Mac-OS. Ubuntu is also
present in our sample almost as much as Mac-OS, maybe because there are sev-
eral developers in the company who prefer this operative system. The most used
browser of the sample is Google Chrome, followed by Mozilla Firefox. Safari only
appears for Mac-OS users and Microsoft Edge is prevalent for Windows users
and a marginal quota for Ubuntu and Mac-OS users. Our sample appears to be
close to what we would find in the real world [34], therefore, we consider it is
a adequate representation of data in a bigger scale, and additionally, it has the
heterogeneity we look for identifying all the cases we want to analyze.

Fig. 5. OS-Browser distribution for the collected dataset

4.2 Results

To characterize the reach of our approach, we tested the pixel-wise difference for
canvases between different types of users. This classification was made with the
browser and OS information from the collected user agents. As we collected the
data in a controlled environment, we are sure that none of the participants tried
to hide or modify their user agent data polluting the dataset.

For this step, we used the fixed canvas part of the dataset, meaning that all
the 3000 images were different between them, but similar between users. Their
color and text were the same, but it was expected that the rendering made from
each browser was going to make them different to a small extent.

We took the difference between two images and summed all the resulting
matrix elements in a single number. Then the mean for all the entries with the
same pair Browser-OS was calculated. The results can be seen in Fig. 6.

One of the most important insights from this plot is the diagonal: The com-
parisons between users with the same Browser-OS configuration. For this type
of comparison, the mean difference is close to zero. It means that the unique
fingerprint per user is rather difficult for this case. Additionally, for comparisons
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Fig. 6. Mean pixel-wise differences for users grouped by Browser-OS configuration.

between Chromium-based browsers, the mean difference is slight, suggesting that
these browsers use the same engine to render the canvases, which would be an
issue towards a unique fingerprint.

To see more closely those cases, the histogram of differences for same config-
uration comparison is shown in Fig. 7a. Although some samples are above zero,
the great majority of the data is centered at exactly zero. There are no differ-
ences between canvases of users with the same configuration, which could mean
that no unique fingerprint can be forged for those users.

Following the hint given by Fig. 6, we wanted to check what was happening
with the comparison of devices with Chromium-based browsers like Chrome,
Edge and Opera. Those results are seen in Fig. 7b. The histogram looks similar
to the one in Fig. 7a, with the majority of mean differences at exactly zero.
This results tells us that Chromium-based browsers tend to generate the exact
same canvas and therefore, it is impossible to distinguish devices using the latest
versions of those browsers through a canvas fingerprint.

Next, we wanted to test how our system would defend against replay attacks,
as explained in Sect. 3.2. Our key assumption is that a couple of images contain-
ing the same text, rendered with different devices, are more similar than two
images containing different texts. In this way, if an attacker returns an image
with a text different from the one the server sent as a challenge, it would be
labeled as an attack. We tested both cases, calculating the similarity between
two images with the Structural Similarity Function from Sklearn [28]. The only
preprocessing done was a Gaussian blur. The resulting histograms can be seen
in Fig. 8. This outcome supports our hypothesis. We can certainly distinguish
between pairs of images with the same and different texts. Consequently, our
system should be robust against replay attacks.
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Fig. 7. Histogram of differences

Fig. 8. Histogram of scores for images compared with the Structural similarity function

Given the concerns expressed about the canvases generated by users with
the same Browser-OS configuration, the first evaluation over the canvases was
made for the negative class scenario, as seen in Fig. 9a. Here we present a his-
togram of scores for couples of the negative class, meaning two images generated
from different devices. If those devices share neither browser nor OS, the score
is mostly zero or close to it. However, when they share both of those proper-
ties, the score becomes higher than 0.7. This insight was expected because of
the previously performed analysis. If the images are pixel-wise equal, there is
no way to distinguish them through any computer vision algorithm by itself.
However, for actually different images, the neural network does a good job sepa-
rating the classes. Moving the threshold between 0.1 and 0.7 does not make any
difference, which makes the output relatively stable. We would suggest using
0.4 as threshold, because is the mean value between both positive and negative
distributions.
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Fig. 9. Score histograms

On the other hand, for the case where we have different images generated by
the same device, namely the positive class, the histogram is presented in Fig. 9b.
It can be seen that all of the scores are above 0.7, so every threshold below would
assure that no positive attempt would be labeled as a false negative.

Summarizing, for a threshold of 0.4, we achieved the following metrics: Accu-
racy: 0.82, Precision: 0.73, Recall: 1.00. The worst value is the precision because
of the common appearance of false positives. In contrast, the perfect recall means
that in a real-world application, the model would present no friction at all for
users trying to authenticate or access some service.

Taking this into account, we present the metrics for an implementation for
which it is not necessary to identify a single user through a unique fingerprint
but to identify the configuration they have and raise the alarm if something is
off. For this case, the metrics are: Accuracy: 0.92, Precision: 0.86, Recall: 1.00.
The precision increases substantially because the system is not presented in the
case where the input images come from devices with the same configuration.
However, it is still low. We believe the explanation lies in Fig. 5 and Fig. 7b.
First, from the distribution of our data, there are a lot of Chrome and Edge
users, and marginally some Opera users. In the histogram of Fig. 7b it is seen
that the behavior for users of different but Chromium-based browsers is similar
to the behavior of entries from the same browser: The canvases are equal pixel-
wise. Again, there is no way to distinguish those kinds of images.

Now, to see how well our system behaves for images that are not the same,
we propose the following scenario: The inputs are canvases coming from devices
which did not share at least one feature (OS or Browser) and Chromium-based
browsers (Chrome-Edge-Opera) were grouped as one. In this case the metrics
are: Accuracy: 0.99, Precision: 0.99, Recall: 1.00. We achieve an almost perfect
performance. The Siamese network successes separating canvas that are actually
different.
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Finally, we wanted to test how robust the network was to changes in the
input. For this purpose, we fed the network with input images with different
text colors as the ones used to train it. Results can be seen in Figs. 10a and 10b.
For the negative case, similarity score distribution differs concerning Fig. 9a in
that some samples are now connecting to the two external peaks, although those
peaks are still located around 0.0 and 0.7. For the positive case (Fig. 9b), the
behavior is similar, with the appearance of a tail from the peak distribution at
0.0. The histograms are different from the baseline, leading to an increase in
False Negatives, but not a significant one. Those results tell us that the network
is learning rendering features depending on factors like lines, positions, aliasing,
and others, not only colors.

4.3 Discussion

Regarding RQ1, some previous works imply that the canvas generation depends
on software and hardware stacks [10,31]. This premise is the basis for arguing
that a unique canvas fingerprint would be possible, or at least unique enough to
distinguish devices with different software or hardware. Nevertheless, the results
in Fig. 6 point otherwise. It is clear that the values on the diagonal are much
lower than the other ones, suggesting that devices with the same browser are
more similar between them than devices with other browsers families. But with
the Fig. 7a the analysis can go further. It can be seen that the majority of pixel-
wise comparisons between devices with the same OS and browser family lies
at exactly zero. It could be thought that several users from our dataset shared
a similar hardware configuration, and therefore the canvases were generated so
that their pixel-wise difference was zero. Nonetheless, along with their canvas
and user-agents, some WebGL hardware features were collected as well. Those
WebGL features gave us information about the rendering stack that each device
owned, which could be an external GPU or the integrated graphics rendered of
the CPU. Even though this is not necessarily the device that renders the canvas,
this information could be indirectly related to the hardware stack of each user’s
device.

When joining the user-agent information, JS browser-navigator, and WebGL
hardware features, we found that from about 17K possible user combinations,
only 14 showed the exact same software and hardware stacks, less than 0.1%.
This indicates that there are limits in the granularity of hardware/software com-
binations that can be distinguished using images generated by the HTML5 can-
vas API.

Together with the information in Fig. 7a, it could be assessed that the hard-
ware stack is not a determining parameter at the moment of canvas generation.
For different hardware stacks but same software configurations, the result was
that the canvas difference was mostly zero. This means that the software stack
is the determinant factor when generating canvas, and devices with the same
OS-Browser combination tend to produce the exact same image.

RQ2 addresses this particular challenge. If our results show that different
hardware configurations generate the same canvas, then creating a unique fin-



Scalable and Secure HTML5 Canvas-Based User Authentication 569

Fig. 10. Score histograms for images with different font colors as in the training set.

gerprint based only on canvas and computer vision is not possible. It does not
matter if the most complex image classification architecture is used or trained
with millions of examples if the images contain the same information pixel-wise.
This is a limitation observed in the latest browser versions, which are trying to
protect users from tracking [17]. They try to hide the most features that can be
used to fingerprint them on the web [18], or those features become obsolete, like
flash fonts [11], so it is no surprise that they are standardizing canvas rendering
to avoid tracking. In this case, it is impracticable to have a canvas-only-based
system that provides a unique fingerprint given the current browsers, but as
shown in our results, our system has an almost perfect performance to distin-
guish different types of software configurations. We believe an upper bound has
been achieved to distinguish the canvases, and no computer vision strategy could
improve it.

Even though the unique fingerprint is not feasible, our system can be used
as a first filter to identify attackers, checking if an impersonation attempt is
made from a device with a different configuration than the victim’s one. In a
real scenario, there can be millions of users and thousands of requests per day;
RQ3 relates to this situation. Our system is based on the One-for-all approach.
A single Siamese network is used to assess whether two input canvases belong
to the same device or not, compared to [31], which trains one model per user.
For our case, we do not need to train and allocate millions of models.

Additionally, the volume of images needed for training decreases considerably
because the entries of all users can be used to train the model, compared to
the one-model-per-user approach, which needs many examples of the same user
to achieve acceptable accuracy. To bring down this discussion, here are some
numbers of our approach: Our model requires less than 140 images per user to
train the positive class, in the extreme case that we only want the positive class
to be trained with one user; otherwise, that number goes further down; each of
those images weights around 25Kb; training of the model requires around 5 min
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of GPU time, and it just has to be done once independently of the number of
users; finally, inference takes around 30 ms, and only one image per user has
to be saved and compared with the incoming one. As no parameter related to
performance or efficiency depends on the number of users, we believe that the
system scales efficiently to real-world applications with millions of users.

RQ4 refers to a common problem on fingerprinting and tracking algorithms,
namely, what about replay attacks? Typically, if a fingerprinting system requires
a static challenge, it requires attackers to steal it once and then impersonate the
victim endlessly with only one stolen vector. It is not the case for our system
because of the way it was thought and designed. As seen in Sect. 4.2, for the
positive class, the network was trained with a randomly generated canvas from
each user, with different texts. At the test, it is shown that even when two
images had different texts if the same user-generated them, the system assesses
this almost perfectly. Thus, the idea for the implementation is to ask the user
to generate a random image to compare each time but generate a similar (Same
text) image in the server to compare it to whatever the user returns. Both images,
generated by the user and the server, should be similar because they represent
the same text, which could be tested with a classic image-similarity approach.
However, if an attacker tries to use a previously generated image by the user, it
would not have the same text as the generated by the server, and it would be
easily recognized as an attack. This imposed freshness implies that the system
is not vulnerable to replay attacks, in comparison to canvas approaches that
depend on hashes [10] because they need to compare between equally generated
images.

Lastly, RQG asks about the conclusion from the specific research questions.
Knowing the reach and limitations of our system, it can be answered that certain
types of impersonation attacks can be detected through canvas-based authentica-
tion. Namely, attackers with a different OS or Browser family can be opportunely
detected even if they modify their user-agent or other browser features.

Nevertheless, it was proven that attackers or users with the same OS-Browser
configuration in most cases could not be distinguished, as their pixel-wise differ-
ence is frequently zero. Creating a unique fingerprint for each device based only
on this type of canvas is not possible. Therefore, we propose our system only to
complement other subsystems or features that perform the users’ authentication.
We distance our goal from scripts that use fingerprints for targeted advertising
and other privacy-concerning objectives. Our work aims to provide an extra layer
of protection in authentication procedures, looking for canvas-noticeable anoma-
lies. Accordingly, we see no use of models like ours to consistently track users
to fill them with advertising or to collect sensitive data from them. However,
tracking and fingerprint authentication are for browser developers two sides of
the same coin. Consequently, they are still going to make fingerprinting difficult,
looking forward to protecting user’s privacy.

In sum, although the proposed protocol and underlying classifier have short-
comings in terms of authentication accuracy, we believe that our analysis shows
that they constitute a promising building block in the context of a risk-based
authentication toolkit. In fact, accuracy can be further improved by taking into
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account other traditional fingerprinting features (such as installed fonts, declared
HTTP parameters, etc.) or other hardware-based features (such as the WebGL
API). Given that most of those features are not secure against replay attacks,
our technique can complement them by raising the bar against such advanced
attacks. Being a complement for the authentication process, the 82% accuracy
together with the 0% FRR are encouraging results, because this guarantees low
or no friction on legitimate user, while detecting most attacks coming from dif-
ferent browser and OS combinations.

5 Related Work

There are three works that attack the problem of browser fingerprinting exclu-
sively through the canvas API, namely Picasso [10], SWAT [31], and Morel-
lian Analysis [22]. Picasso is a protocol to fingerprint browsers based on canvas
and hashes. The idea is to create images that maximize the entropy between
data from users with different OS or Browser when compared, and minimize
the entropy between users who share the same combination. Those images are
hashed together with a seed and the generated hash would then be compared to
the expected response for that OS-Browser combination. Before Picasso could
be launched, a bootstrap step had to be performed: They had to generate them-
selves a sufficiently large sample of images and expected responses from each
combination so that it is not feasible for an attacker to brute force a replay
attack on them. This process needs to be repeated every time a new browser
or OS version is on the market, because they cannot directly verify the user’s
response. They presented an accuracy of 100% between users with different OS
or Browser but did not analyze Chromium-based browsers other than Google
Chrome.

Secondly, SWAT appears as the first contribution that does not use a pixel-
wise comparison between a trustworthy canvas and a new attempt but a simi-
larity score to compare them. Here, a neural network is trained for each user to
assess if an input canvas was generated by the user’s device or not. They achieve
up to 95% accuracy in the median case, compared to 82% in our case. However,
they acknowledge that their False Positive Rate is vast for some scenarios. As
discussed in Sect. 4.2 those scenarios refer to users who share either Browser or
OS which are sometimes impossible to distinguish. Additionally, they have to
train one model per user, with training times between 1–3 min and at least 2000
images per user. This fact may be inconvenient for large-scale implementation,
firstly because it requires time and computational resources to train each model,
and secondly because collecting 2000 images per user can take a considerable
amount of time, compared to the minimum of two images per user necessary for
our approach. It would require either increasing the friction to users, make them
wait until all the canvases are rendered in one session, or collecting the canvases
through several sessions before the SWAT system can be initialized.

Finally, the Morellian Analysis paper [22] is a canvas-based fingerprinting
technique that generates a challenge on the server-side as an authentication
protocol. The comparison is made pixel-wise, so they have an utterly binary
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response, either both images are equal or not. To avoid replay attacks, they ask
the client to generate two random canvases each time he/she wants to authen-
ticate, one for the current login and one to compare the next login. In this way,
an attacker must steal the correct canvas to be able to impersonate the victim.
In contrast, in our work users always receive fresh challenges in a single session,
further raising the bar against replay attacks.

In sum, to the best of our knowledge ours is the first work to propose a Can-
vas based authentication protocol using machine-learning that is secure against
replay attacks and is by design scalable to a large user base, by requiring only one
model for all users in a system. Additionally, we prove that for current browsers,
the previous works on canvas fingerprinting based on hashes or similarity can not
be longer applied to create a unique fingerprint because the generated canvases
for same-browser-OS devices are exactly the same.

6 Conclusions

In this paper, we present a canvas-based system to help authenticate users. We
also analyze the generated text-based canvases in a pixel-wise manner to show
that some devices could not be distinguished when they share OS and Browser
configuration because their canvases are exactly equal. Nevertheless, comparing
random users, we achieve an accuracy of 82%, and comparing users with either
different browsers or OS an accuracy of 92%. Specifically, we present virtually
no friction for the users for the positive class, with a recall of 100%. Given
the nature of our system, the One model for All approach is easily scalable
to millions of users without the need to train the same number of models and
requiring much fewer images to accomplish the training. Similar to other Risk-
based Authentication approaches, we propose our system as a complement, not
a replacement of other types of authentication systems, enhancing the security
level without compromising the scalability of the system and the overall user
experience.
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Abstract. In this paper, we propose two empirical studies to (1) detect
Android malware and (2) classify Android malware into families. We
first (1) reproduce the results of MalBERT using BERT models learning
with Android application’s manifests obtained from 265k applications
(vs. 22k for MalBERT) from the AndroZoo dataset in order to detect
malware. The results of the MalBERT paper are excellent and hard to
believe as a manifest only roughly represents an application, we therefore
try to answer the following questions in this paper. Are the experiments
from MalBERT reproducible? How important are Permissions for mal-
ware detection? Is it possible to keep or improve the results by reducing
the size of the manifests? We then (2) investigate if BERT can be used to
classify Android malware into families. The results show that BERT can
successfully differentiate malware/goodware with 97% accuracy. Further-
more BERT can classify malware families with 93% accuracy. We also
demonstrate that Android permissions are not what allows BERT to
successfully classify and even that it does not actually need it.

1 Introduction

Android malware are malicious applications aiming at attacking the end-users’
devices, data, money, software or third party applications and services [5]. With
the democratization of smartphones, virtually everyone nowadays carries every-
day a device that can access, store, and manipulate sensitive and private data.
Android, being the most used smartphone operating system, is a target of choice
for attackers, who create malicious applications that aim to obtain financial gains
from often unsuspecting users.

In fact, new Malware are constantly being released [19], causing a constant
threat and challenge for the users, the application-markets maintainers, and the
security researchers.

Consequently, much effort and resources are spent to develop approaches
that are able to automatically detect Malware in the unstopping flow of new
applications. This includes detection approaches at the app store level such as
Google PlayStore [2], or at the device level via anti-viruses [5]. Practitioners and
researchers are in a constant race with the load of appearing Malware, thus, try-
ing to detect not only previously identified Malware but also new ones. For this
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Zhou et al. (Eds.): ACNS 2022 Workshops, LNCS 13285, pp. 575–591, 2022.
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purpose, they propose approaches that classify the applications into Malware
or not depending on relevant suspiciousness-related components appearing in
the applications. Those approaches are classified into two main categories: static
and dynamic analysis techniques. The approaches based on static analysis aim at
identifying Malware by parsing and evaluating the syntax of the application while
the dynamic-based approaches extract information about application by instru-
menting and running them in order to capture any eventual malicious/suspicious
behavior of the application through its execution. Additionally, a third approach
category – a hybrid one – consists of combining both static and dynamic analy-
sis, in the hope of obtaining more and better information that could be leveraged
to determine the maliciousness of a given application.

The growing interest and evolution of the machine learning techniques have
engendered significant advances in the security field in general [13] and in mal-
ware detection particularly [27]. Obviously, it is more interesting and even more
cost-effective [27] to save expensive human computing effort by letting the
machine capture the malicious characteristics of malware, instead. In this regard,
previous research has focused on defining the key-components that are the most
relevant to malware detection, to better guide the learning and detection abil-
ities of the approaches. Notably, the exotic or unexpected usage of API-calls
such as the data-transfer via insecure web urls can be a determinant symptom
of an eventual malicious behavior [4,23,29]. Leveraging this extra knowledge
of historical malware specifications boosted the capabilities of machine learning
techniques towards higher performances.

Recently Rahali et al. [24] have trained a model MalBERT based on BERT [9]
– a language representation model, originally only intended for natural text pro-
cessing – in order to determine whether an Android application is malicious or
not by processing applications’ Manifest file. More precisely, they fine-tune a pre-
trained BERT model on the Manifest files of the malicious and benign Android
applications included in an Android dataset collected from public resources.
Their evaluation of the proposed approach shows promising results, achieving
97% of prediction accuracy. This high performance could be explained by: (1)
first, the relevance of the manifest information – including the configuration and
descriptive data of the application – in hinting at the presence or absence of
malicious behavior in the application and (2) second, the ability of BERT in
differentiating between the malicious and safe variants of these relevant compo-
nents.

In this same line of research, we drive an empirical study on a large-scale
dataset AndroZoo [5], where we: (1) reproduce the training and evaluation exper-
iments of Rahali et al. [24], (2) investigate the impact of the manifest permissions
on the Malware detection, (3) evaluate the xml-tags noise effect on the model
performance, and finally (4) discuss the capability of the proposed approach in
classifying malware by families.

Our results confirm the ones published by the authors in the original
paper [24], where MalBERT achieves 97% of prediction accuracy. Surprisingly,
our results show that MalBERT’s representation of the Manifests is not restricted
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to particular components of the Manifest. In fact, the model differentiates cor-
rectly between malware and benign applications even when fed with only the
permissions, or when excluding the permissions, with almost 90% of recall and
more than 93% of accuracy. Similarly, reducing the size of the input Manifests
by considering only the xml values (without the tags), improves very slightly the
results by 0,003% for the accuracy and 0,008% for the recall. Finally, we show
that MalBERT can also be used to predict Malware families with an accuracy
varying between 0,81 and 0,995.

In this paper we make the following contributions:

– A reproducibility study of MalBERT using a dataset an order of magnitude
bigger (265k Android applications vs. 22k);

– An ablation study where we study the impact of different elements of the
Android Manifest on the malware detection rate;

– An empirical study of the usefulness of BERT to classify Android malware
into families. Results show that the approach can classify malware with 93%
accuracy.

The remainder of the paper is organized as follows. In Sect. 2 we describe
the background information necessary to understand the paper. In Sect. 3, we
present our experimental setup. Next, in Sect. 4, we analyze the empirical results.
We discuss the results in Sect. 5 and present the related work in Sect. 6. Finally,
we conclude in Sect. 7.

2 Background

2.1 Malware Detection

To detect malware with machine learning, practitioners traditionally have to
extract a list of features from the applications, and to represent apps as a vector.
These features can be extracted using two main approaches: static analysis and
dynamic analysis.

Static Analysis. Static Analysis consists of analyzing an application without
executing it. It can extract features such as binary signatures, the list of used
libraries, or code structures. More advanced analyses generate information about
the code such as a call-graph (i.e., the relationship between callee and caller
functions) or control flow graphs to understand, for instance, how data flows
in a function or the whole program. The power of static analysis comes from
the fact that, contrary to dynamic analysis, the whole code can be reached
and analyzed. This also comes with a cost in term of precision and run-time.
Many static analyses have a high false positive rate since paths which cannot
be executed in practice might also be analyzed. A static analysis often does not
scale well and thus might take a long time to execute on realistic applications.
In our experiments, we statically extract features from Android applications’
manifests.
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Dynamic Analysis. In a dynamic analysis, the application is executed to
understand its behavior. In the case of malware analysis, executions are typically
performed in an isolated sandbox to prevent the malicious code from spreading
to the machine running the dynamic analysis or to machines on the network.
The main challenge is to find input to the application to execute as much as
possible of the application’s code. Extracted features could be a list of API calls
or a list of DNS requests.

2.2 Android Package

Android applications are zip files whose names end with the .apk (Android
PacKage) extension. It is a container that includes the application’s code,
resources, certificates, assets and a manifest. The manifest is an XML file which
contains metadata describing among others the structure of the application, its
name and version. Furthermore, it also includes the permissions that the appli-
cation requires. Thus, a manifest is a high-level representation of an Android
application. We extract features from Android applications’ manifest as input
for our experiments.

2.3 Transformer

More recently, researchers have tried to automate the extraction of manually-
defined features, or to by-pass this step altogether.

The Transformer [28] is an architecture designed to handle sequential data.
It excels in the field of NLP (Natural language processing) such as transla-
tion, question and answer, paraphrasing, and text summarization. Transformers
quickly became the foundation of several impressive improvements over the pre-
vious state of the art. Introduced in 2017, Transformers have been the subject of
many research papers. A Transformer consists of an Encoder and a Decoder. The
Encoder, takes a sequence in input and transforms it into a continuous sequence.
The Decoder then generates a sequences element by element using the previous
one at each step, and the sequence generated by the encoder.

2.4 BERT

BERT [9] is an approach based on transformers and has been created for text
processing tasks such as translation [34], question answering [32], text classifica-
tion [14,26] or text comprehension [30]. With its impressive performance, BERT
had a massive impact, and has served as the basis for many other models such as
Roberta [21] which is a version of BERT model with carefully selected key hyper-
parameters to improve its performance, Deberta [11] that improves BERT and
Roberta models by changing its attention mechanisms and masking, or Code-
Bert [10] that achieves great results on both natural language code search and
code documentation generation tasks. BERT (and its descendants) divides its
training in two stages, Pre-training and Fine-Tuning. BERT is able to capture
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high-level concepts from sentences, one of its main novelty being its use of context
from sentences in both directions, forward and backward, which may explains its
state-of-the-art results on NLP tasks. The pre-training phase consists in train-
ing the model from scratch using non-labeled data such as the Wikipedia Corpus
(2500M words) [1]. The pre-training performs two “fake” tasks, i.e., tasks that
have no real purpose other than to force the model to learn to capture high-level
concepts:

– Masked Language Model: In order to exercise the model’s ability to con-
sider the context of a sentence, random words from the input sentences are
masked, and BERT tries during this process to infer (i.e.,recover) the words
that have been masked.

– Next Sentence Prediction: It consists in making BERT tries to infer
whether two sentences given as input are likely to be a valid sequence of
sentences. This allows BERT to learn the link between sentences, which is
very useful for tasks such as questions and answers.

The fine-tuning phase adapts an already-trained, task-agnostic BERT model
to a specific task. In practice, layers of neurons are added as output, to use
the output of BERT. During the fine-tuning phase, the weights of the existing
BERT model are fixed, but the weights of the newly added, task-specific layers
are trained in order to obtain the desired performance on the task at hand.

This separation in two phases (pre-training and fine-tuning) is a signifi-
cant advantage of BERT (and of similar approaches): The pre-training, while
extremely computationally expensive, only has to be done once. The resulting
pre-trained model can then be put to use in a variety of tasks, after a much less
computationally expensive fine-tuning.

3 Experimental Setup

In this section, we present the experimental setup we use in our study. A high-
level overall representation of the entire process is depicted in Fig. 1. The process
features three main steps: (1) the creation of the dataset explained in Sect. 3.1,
(2) the pre-processing step described in Sect. 3.2 and (3) the fine-tuning step
explained in Sect. 3.3.

Fig. 1. Experiment representation
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3.1 Dataset

In our experiments we use Android applications from AndroZoo [5]. AndroZoo
is a dataset of Android apps made available to the research community, and
that contains, at the time of writing, more than 19 million Android applications.
All applications in AndroZoo are analyzed with several antivirus software using
VirusTotal1 in order to determine whether they are malware.

We randomly selected 265 000 Android applications released in 2019 or after,
and we downloaded them from AndroZoo. The resulting dataset is composed of
around 30% malware (77 768) mainly containing malware from three families2:

– Jiagu is a large family of malware. This family includes many variants that
exhibit malicious behaviors such as unwanted advertisement, or Trojan click-
ing, i.e., clicking on ads without user’s consent. Approximately 60% (47 522)
of the malware in our dataset are of the jiagu family.

– Dnotua is the second largest family of malware in our dataset, representing
2% (1443) of the malware samples. Apps that are members of the Dnotua
family can perform a variety of malevolent actions such as installing other
apps or collecting network information.

– Secneo is the third largest malware family in our dataset, with 1% (674)
of malware samples. Secneo apps can perform many nefarious tasks, such as
sending SMS, collecting contacts, or placing phone calls.

In addition to these three families, the remaining 31% (25 182) of the malware
in our dataset are either a) members of a family that contains only a small
number of samples, or b) malware that do not seem to be members of a family.
For our experiments, we construct training, validation, and evaluation sets, by
drawing apps from the global dataset. Each experiment is conducted with a
different shuffle for training, validation, and evaluation sets in order to report
the most faithful values possible during evaluations. For the ground Truth of the
malware detection experiments, we rely on the reports obtained from VirusTotal.
For the malware family classification, we leveraged the AVclass tool [25] that can
take a detection report from VirusTotal, and compute the name of the family of
the sample, or a unique identifier for APKs that cannot be linked to a family.

3.2 Pre-trained Model

Since the introduction of BERT, many research teams have released their own
implementation of the BERT approach, most often also accompanied by pre-
trained models. In this study, we rely on a BERT model released on the Tensor-
Flow Hub platform3. This model, built on top of the Tensorflow [3] library, is
widely used, and follows very closely what was described in the original BERT
paper [9]: It is composed of L = 12 hidden layers, a hidden size of H = 768 and

1 https://www.virustotal.com.
2 To obtain information about malware families, we rely on the AVclass tool [25].
3 https://tfhub.dev.

https://www.virustotal.com
https://tfhub.dev
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A = 12 attention heads4. It has been pre-trained for English on Wikipedia [1]
and BooksCorpus (110M parameters)5.

3.3 Fine-Tuning

We perform two different fine-tunings for two different tasks: malware detec-
tion and malware family classification. The first tasks we investigate is malware
detection. In this setting, models are fine-tuned with the aim of discriminating
benign applications from malicious ones. The fine-tuning step is performed on a
training-set composed of 132 500 (i.e., half the dataset) APKs from AndroZoo [5]
with 30% malware. The second task we investigate, malware family classifica-
tion, is different than malware detection while being closely related. The models,
whose objective is to detect whether an application is part of a malware family
or not, are fine-tuned with a dataset of 77 768 malware, i.e., all the malware
samples of our dataset. The training, validation and test sets are distributed
as 50%, 20% and 30% respectively. The training, validation and test sets are
stratified, which means that each set has the same malware/goodware ratio as
the whole dataset.

Regarding the parameters, the models are fine-tuned for 20 epochs with a
batch size set to 32, using Adam as the optimizer function, and with a learning
rate of 3e−5. All training phases and inference phases are performed on one
NVIDIA Tesla V100 GPU with 32 GB of memory. As an indication, one complete
experiment (i.e., fine-tuning on a training set for 20 epochs, and inferring on the
test set for one given type of input) takes between 10 to 16 hours each. In
addition, each complete experiment is performed ten times using a different seed
(i.e., a different shuffle for Train/Validation/Test sets), in order to obtain an
average of performance as representative as possible of the models.

4 Empirical Results

In this section, we investigate to the following research questions:

– RQ1: Are the experiments from MalBERT reproducible?
– RQ2: How important are Permissions for malware detection?
– RQ3: Is it possible to keep or improve the results by reducing the size of the

manifests?
– RQ4: Can BERT classify families of malware?

4 The exact model we used can be found at https://tfhub.dev/tensorflow/
bert en uncased L-12 H-768 A-12/4?tf-hub-format=compressed. We note that we
also relied on the matching BERT Pre-processor available at https://tfhub.dev/
tensorflow/bert en uncased preprocess/3?tf-hub-format=compressed.

5 More information about this model as well as about the other available models of
this collection can be found at https://tfhub.dev/google/collections/bert.

https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4?tf-hub-format=compressed
https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4?tf-hub-format=compressed
https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3?tf-hub-format=compressed
https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3?tf-hub-format=compressed
https://tfhub.dev/google/collections/bert


582 B. Souani et al.

4.1 RQ1: Are the Experiments from MalBERT Reproducible?

While reading the literature, we observed a large number of papers discussing
various techniques for Android malware detection [15,16,33]. The objective was
to study an Android malware detection technique using BERT. MalBERT [24],
which uses BERT with as an embedding technique for manifests from APKs
achieves very good results with 97% accuracy. It is not surprising to see BERT
perform very well on tasks involving text such as manifests that, while being
XML data, contain nonetheless mostly textual data. However, these results might
be considered quite hard to believe. Indeed, obtaining such high performance
with so little information—Manifest are at most a few tens of kilobits—seems at
first sight both surprising and highly promising. Our objective here is therefore
to first check if the manifests are really enough to represent an application in
order to determine if it is malware or not.

Table 1. Results of Bert model malware detection

Model Application Accuracy Loss F1 score

MalBERT 22 000 0.9761 0.1274 0.9547

Our study 265 000 0.970 0.183 0.949

Like in MalBERT, the BERT model we rely on was already pre-trained for
English on Wikipedia [1] and BooksCorpus. The experiments are run using the
previously mentioned dataset of 265 000 different manifests with 30% malware,
and with 20 epochs of fine-tuning. The dataset is divided into three stratified
sets as detailed above: training, validation and testing set contain respectively
50%, 20% and 30% of the dataset.

Regarding the results in Table 1, our model has a slightly lower accuracy
with 0.970 opposed to 0.976 and F1 score with 0.949 in our results, and 0.9547
with MalBERT. This can be explained by the fact that their dataset consists of
only 22.000 manifests with about 45% malware which is a rather different scale.
MalBERT’s results have therefore been successfully reproduced, it seems that it
is indeed possible to identify malware using manifests.

4.2 RQ2: How Important are Permissions for Malware Detection?

As shown above, MalBERT seems to be able to differentiate malware from benign
APKs simply by using the manifests. One immediate question that follows from
this observation is: What parts of the Manifest files are enabling such perfor-
mance?

Permissions is the first component of a manifest we investigate the discrim-
inating power of. Several papers [6,8,18] show experiments carried out on the
permissions of the manifests to detect malware because this is likely to be the
factor that differentiates the category to which an APK belongs. Indeed, some
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permissions are more dangerous than others because they give more possibilities
to the application, such as accessing sensitive information or performing actions
that can alter the Android system.

In order to answer this research question, two different pre-processing were
done on the manifests in order to create two new types of manifests, one with only
the permissions (Permission Only), and one composed of manifests without the
permissions (No Permission). Two different models were fine-tuned like before
using the two new manifest types and the same parameters. The results are
shown in Table 2.

Table 2. Results of Bert models malware detection with pre-processed Permissions

Pre-process Accuracy Loss F1 score Precision Recall

Full 0.970 0.183 0.949 0.957 0.941

Permission only 0.930 0.228 0.879 0.897 0.861

No permission 0.967 0.193 0.943 0.952 0.933

The fine-tuned model using manifests with only the requested permissions
shows an accuracy of 0.93 and an F1 score of 0.879. Permissions do allow BERT
to differentiate malware from benign APKs, but permissions do not seem to be
the only part of the manifest that BERT uses for malware detection as shown
by the lower results of this training compared to the one using the full manifest.
It can be inferred that the permissions do indeed contain information that is
very relevant for a malware detector, but that the other information in the man-
ifests also contain additional information that could be leveraged for malware
detection.

Next, the results of the fine-tuning using the manifests without the permis-
sions are 0.967 for the accuracy and 0.943 for the F1 Score. Manifests without
permissions have a very slightly lower result than the originals. This proves that
permissions are not necessary for BERT to get good results. One can assume
that something else in the manifests allows to differentiate malware from benign
applications quite accurately. Further experiments with more precise ablations
will be necessary to define which part of the manifest allows BERT to operate.

4.3 RQ3: Is it Possible to Keep or Improve the Results by Reducing
the Size of the Manifests?

To determine what helps BERT to detect malware using the manifests, an inter-
mediate step can be to remove what might be suspected of simply interfering
with the learning process. For this purpose, two new variants of manifests have
been created by performing a pre-processing on the manifests as before.

For the first variant, a deny list is created with words and characters arbi-
trarily considered as useless for learning. This list is quite short and consists
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Fig. 2. Pre-process on the manifests using the deny list

Fig. 3. Pre-process on the manifests removing tag names

of words like ‘android:’ which is repeated many times in the manifests, or the
less-than and greater-than signs that are heavily used to construct the XML
elements. These words and letters are simply removed from the manifests and
this process can be observed on Fig. 2. We will refer to this manifest variant
as (Deny List) For the second variant, referred to as Values, XML tag names
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are removed to keep only the XML values as shown in Fig. 3. This would allow
BERT to focus on what matters most. The results are presented in Table 3 and
the experiments are made with the same parameters as before.

Table 3. Results of Bert models for malware detection with pre-processed manifests
for Permissions and Noises

Pre-process Accuracy Loss F1 score Precision Recall

Full 0.970 0.183 0.949 0.957 0.941

Permission only 0.930 0.228 0.879 0.897 0.861

No permission 0.967 0.193 0.943 0.952 0.933

Deny list 0.972 0.168 0.951 0.961 0.942

Values 0.973 0.155 0.954 0.959 0.949

The results of the pre-precessing deny list consisting in removing the redun-
dant words judged as being useless for the learning process allow to obtain
slightly better results than the previous fine-tuning phases with an accuracy of
0.0972 and an F1 score of 0.951. This shows that reducing the “noise” indeed
seems to help BERT, and that nothing necessary for its classification has been
removed.

Finally, the model trained with the manifests without most of the tags but
keeping the values shows the best results with 0.973 of accuracy and 0.954 of F1
score. As with the deny list, reducing the noise in the file by deleting tag names
makes BERT concentrate more on what helps it to classify.

4.4 RQ4: Can BERT Classify Families of Malware?

It makes sense to say that BERT can detect quite accurately whether an APK is
a malware using its manifest. But can BERT determine which family an appli-
cation labeled as malware belongs to? In order to answer this question, the mal-
ware of the dataset have been used in order to construct a new dataset composed
exclusively of malware. The experiments are carried out with the same parame-
ters as before with the difference that the dataset is composed as explained above
of 77 768 manifests. The tests and fine-tuning are carried out exclusively on the
three families of malware the most present in the dataset as a consequence of
the too weak presence of the other families in the dataset. These three families
are Jiagu, Dnotua and Secneo with respectively 60%, 2% and 1% of presence in
the dataset. The tests are performed only on the best models of each category
for each family. The best model is selected by taking the one with the lowest
loss value on the validation set test. The tests on the validation set are done at
the end of each epoch.
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Table 4. Results of Bert models Jiagu malware detection with pre-processed manifests

Pre-process Accuracy Loss F1 score Precision Recall

Full 0.81 0.43 0.86 0.78 0.958

Permission only 0.758 0.522 0.827 0.734 0.946

No permission 0.81 0.435 0.86 0.783 0.953

Deny list 0.813 0.423 0.863 0.782 0.963

Values 0.813 0.426 0.862 0.785 0.956

Table 5. Results of Bert models Dnotua malware detection with pre-processed mani-
fests

Pre-process Accuracy Loss F1 score Precision Recall

Full 0.994 0.015 0.836 0.927 0.762

Permission only 0.989 0.023 0.765 0.627 0.979

No permission 0.995 0.013 0.865 0.902 0.831

Deny list 0.994 0.014 0.854 0.843 0.866

Values 0.992 0.019 0.822 0.719 0.958

Table 6. Results of Bert models Secneo malware detection with pre-processed mani-
fests

Pre-process Accuracy Loss F1 score Precision Recall

Full 0.995 0.025 0.682 0.852 0.569

Permission only 0.993 0.035 0.464 0.683 0.351

No permission 0.994 0.032 0.641 0.732 0.683

Deny list 0.995 0.025 0.657 0.768 0.574

Values 0.996 0.023 0.723 0.843 0.639

Among these tables, it is important to pay attention to the F1 score which
expresses more accurately the results than the accuracy, since the datasets
are very unbalanced for Dnotua (Table 5) and Secneo (Table 6) unlike Jiagu
(Table 4).

Table 7. Average of BERT models performance for families binary classification with
pre-processed manifests

Pre-process Accuracy Loss F1 score

Full 0.933 0.232 0.793

Permission only 0.913 0.193 0.685

No permission 0.932 0.164 0.789

Deny list 0.934 0.154 0.791

Values 0.934 0.156 0.802
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Overall, according to the F1 scores, it seems that BERT manages to classify
the families: F1 scores reach on average 0.854 for Jiagu and 0.823 for Dnotua.
The inferior results of Secneo with an F1 score of 633 is certainly explained
by its too weak presence in the dataset, which unbalances the training and
reduces its efficiency. These results are interesting but cannot be considered as
a generalization as detection from manifests can be more complex or simpler for
other malware families.

Table 7 showing the average of the three family tables tells that permissions
are not necessary for the detection of malware families either. This is also easily
seen in Tables 4, 5, and 6 which show lower results for the experiments where
only the permissions are used.

5 Discussion

As shown in MalBERT [24], the results of the models trained on manifests give
very good results slightly exceeding 97% accuracy for the malware/benign differ-
entiation. The reason why this study was done is to define what exactly allows
the manifests to teach BERT so well since a manifest is not enough to faithfully
represent an application as manifests files are orders of magnitude smaller than
applications. Moreover the approach is relatively light and easy to set up, all of
the heavy lifting being already done in the BERT pre-training.

When we successfully replicated the MalBERT experiments, we expected that
the manifests, once deprived of permissions would give bad results, we thought
that permissions were what BERT used to differentiate malware/goodware. This
information is important, since an approach relying only (or mostly) on permis-
sions is likely to be unsuitable for real-world malware detection. Indeed, attackers
can request as many permissions as they wish, and they would be quick to find
combinations of permissions that are not detected as malware. But it turned out
that the opposite might be true.

MalBERT seems to not use only permissions, but to also integrate in its
reasoning other elements of the manifests as the results in Table 2 show. A
further ablation study on the manifests would be interesting to understand what
correlation BERT finds between the malware manifests, or the goodware ones
to get its results.

It should also be noted that BERT differentiates fairly well one family from
another based on the manifests, at least for the Dnotua and Jiagu families. The
Secneo family does not show such good results, but this can be explained by the
dataset which is rather unbalanced for this family. This remains a speculation
and it is possible that BERT is simply not as effective in detecting the Secneo
family as Dnotua or Jiagu. This is also true for other malware families on which
further experiments would be interesting.

6 Related Work

Liu et al. [20] present different Android malware detection approaches based on
machine learning. This review goes through the Android system architecture,
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security mechanisms, and classification of Android malware but also machine
learning techniques such as data-preprocessing, feature selection and algorithms.

Similar to our paper, transformers [28] are used in MalBERT [24] in order to
detect malicious software. Specifically, it uses BERT [9] based model with static
analysis of Android applications to perform binary and multiclass classification.
Also called MalBERT but oriented to the detection of malware affecting win-
dows systems using BERT, MalBERT: A novel pre-training method for malware
detection [31] uses dynamic analysis with two different datasets with more than
40 000 samples. Their results show 99.9% detection rate on their datasets and
more than 98% under different robustness tests.

Malware Detection on highly imbalanced data through sequence model-
ing [22] also performs Android malware detection but using dynamic analysis.
Furthermore, sequence activities are generated by launching the applications,
and by recording their behavior. Since only a small portion of real-world appli-
cations are malicious, they recreate a real-world scenario by taking a low rate
of malware in their training and testing set. Both static and dynamic analysis
can lead to high performance as shown with DL-Droid [7] with deep learning
systems up to 99.6% detection rate.

In a recent paper [12], the authors present an approach for malware detection
using manifest permissions but without using deep-learning in contrast to us.
They investigates four different machine learning algorithms, Random Forest,
Support Vector Machine, Gaussian Naive Bayes and K-Means. On a test set
consisting of 5243 samples, they manage to obtain results above 80%. The most
effective being Random Forest with 82.5% precision and 81.5% accuracy.

CatBERT [17] is a BERT [9] model for detecting social engineering emails.
They fine-tuned a BERT model with half of transformer blocks replaced with
simple adapters to learn the representations of the syntax and semantics of the
natural language. The model detects social engineering emails with 87% accuracy
as compared to DistilBERT or LSTM which achieve 83% and 79%, respectively.

7 Conclusion

The technique used in this paper to detect Android malware and classify Android
malware into families is straightforward. It uses only a BERT model and Android
manifests to work. In our experiments, BERT works well for malware detection
with 97% accuracy and an F1 score of 94.9%. The same goes for classification of
families with on average 93.3% accuracy and 79.3% F1 score. Our experiments
have shown that for malware detection, permissions alone give lower results with
93% accuracy and 87.9% F1 score, furthermore that the absence of permissions
does not significantly impact the performance of the models since it obtains
96.7% accuracy and 94.3% F1 score. Finally, it is also notable that reducing the
noise in the manifests used for training the models by removing redundant char-
acters or words that are not useful for training allows BERT to obtain slightly
better results. MalBERT seems to have good results and a further ablation study
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on the manifests would be interesting. It would help to understand what corre-
lation BERT finds between the malware manifests, or the goodware ones to get
its results.

Reproduction Package

The code used for the experiments, and the list of APKs in our dataset can be
found at https://github.com/BadrSouani/BERT Manifest.
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Abstract. We address the problem of sharing an expensive hardware-
based high-entropy quantum random number generator (QRNG) among
multiple users connected to it via the network. We demonstrate how to
1) divide the limited bandwidth of the QRNG device among multiple
clients, 2) secure network communication between the QRNG and its
users by applying quantum-safe algorithms, and 3) switch existing client-
side applications to use randomness received from the remote QRNG
without the need to recompile their code.
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number generator · QRNG · Quantum-safe

1 Motivation

Unpredictable random numbers are required in many cryptographic operations
such as key generation, key exchange, randomization-based encryption, and even
mechanisms for attacking cryptosystems. True randomness is also important
to other applications such as simulation of physical, chemical and biological
processes, probabilistic algorithms, sampling, and testing.

While there are different kinds of hardware random number generators1, it is
considered that the only true random number generators (RNG-s) are quantum-
based (QRNG-s) [3]. QRNG-s are expected to pass NIST and Dieharder statis-
tical tests.

Due to a high price and specific hardware and OS requirements, it is not
feasible to install a QRNG device into every computer. Nevertheless, it is possible
to make that device available as a shared resource via a web service (the “QRNG
web service”). Still, we face the following challenges:
1 For instance, TrueRNG v3 (https://ubld.it/truerng v3) uses the avalanche effect

in a semiconductor junction; HotBits (https://www.fourmilab.ch/hotbits/) rely on
radioactive decay; https://www.random.org is based on atmospheric noise; Intel
CPU instructions RDRAND and RDSEED are based on thermal noise within the
silicon.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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– dividing the QRNG random data into multiple isolated streams to be sent to
different users according to fairness principles;

– leveling out the response time during peak request rates and avoiding block-
ing;

– applying post-quantum cryptography (PQC) to secure communication
between the QRNG web service and its clients;

– transparently switching existing applications (without the need to recompile
them) to the new QRNG web service.

The following sections provide solutions to all these challenges.

2 The Overall Architecture

Our solution is based on the architecture depicted in Fig. 1.

Fig. 1. The overall architecture for accessing the hardware QRNG via a quantum-safe
link. White bold boxes constitute our contribution. (Color figure online)

We hide our QRNG web service behind a reverse proxy, which factors
out user authentication, load balancing, and server-side certificate management.
Within X.509 certificates, we use PQC algorithms for both the key and the signa-
ture chain. In our testbed, we used HAProxy as a reverse proxy. We compiled2 it
with PQC support implemented in liboqs from the Open Quantum Safe (OQS)
project3.

Clients connect to the web service via bi-directional web sockets. That not
only simplifies data streaming but also requires only one initial TLS handshake
per client, which is important since PQC keys are longer than classical RSA/ECC
keys and require more computation power.

On the client side, we introduce a native library (called the receiver) that
can establish a quantum-safe TLSv1.3 web socket connection with the server for

2 we contribute our script at https://github.com/LUMII-Syslab/oqs-haproxy.git.
3 https://openquantumsafe.org.

https://github.com/LUMII-Syslab/oqs-haproxy.git
https://openquantumsafe.org
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receiving random data from it. The receiver behaves similarly on different plat-
forms; only the byte code varies. We also introduce an OS-specific module (called
the wiretap) that replaces the default OS-level random number generator with
ours.

The QRNG web service, the receiver, and the wiretap constitute our contri-
bution. The following three sections provide the details.

3 The QRNG Web Service

The QRNG web service cannot be launched in the cloud since it needs to access
a physical QRNG device attached directly. Besides, it should not be launched
in a virtual environment since it is difficult to “passthrough” devices from the
host OS to the guest OS, PCI devices being the hardest. Thus, the QRNG web
service is launched on a real (non-virtualized) OS with the corresponding QRNG
device drivers installed.

In our laboratory, we have tested IDQ Quantis PCIe 40 Mbps QRNG devices
on Windows 10 and Ubuntu 18.04-22.04. Since Java bindings for the native
QRNG API were also available from IDQ, our design choice was to implement the
QRNG web service as a cross-platform Java program using Jetty as an embedded
web server. HAProxy was configured to forward web socket connections to the
QRNG web service backend.

The QRNG web service maintains a synchronized buffer (called the Big
Buffer) of random bytes generated by the QRNG. The Big Buffer is constantly
replenished by a specific “charger” thread at a fixed rate. Our experiments with
IDQ Quantis show that the best QRNG speed is achieved when large (> 1 MiB
or 8 Mpbs) portions of random bytes are requested. Since our Quantis QRNG
device has a rate of 9.6 Mbps ± 5% (with post-processing), we replenish the
buffer once a second. If there are multiple QRNGs installed, multiple charger
threads are launched. Let S denote the maximal number of bytes per second
that can be appended to the Big Buffer by all threads when all clients are idle.

The Big Buffer is consumed by 1 KiB blocks, which are distributed among
the connected users. The fair bandwidth distribution is ensured by the rule: each
next 1 KiB block is sent to the user who has not been served the longest. In
order to guarantee the 1 KiB/s = 8 Kbps rate, we must limit the number of
simultaneously connected users to S/1024. However, the actual speed will be
higher since (a) users request random bytes depending on their needs, (b) on
peek requests, the Big Buffer allows us to sustain low response time by consuming
the content loaded into the buffer earlier. We are going to compute the expected
mean response time as we get more users registered for our service.

There are several existing HTTP GET-based QRNG services such as
RandomNumbers.info4, the Ru -der Bošković Institute service5, the Humboldt-

4 http://www.randomnumbers.info (operating on Quantis QRNG PCIe Legacy).
5 http://random.irb.hr/index.php (operating on QRBG121).

http://www.randomnumbers.info
http://random.irb.hr/index.php
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Universität zu Berlin service6, the Australian National University service7, and
QRate qrng.cloud (not launched yet). Sadly, some of these services use inse-
cure HTTP, and none of them can establish a quantum-safe TLS connection.
Those services that support HTTPS require a TLS handshake on each request.
In contrast, our service is quantum-safe and relies on more efficient web sockets.

4 The Receiver

The receiver is a native library for accessing a remote QRNG via a quantum-safe
web socket. The following arguments must be provided:

– the server web socket URL (wss://);
– the authorization token (unique for each client);
– the trusted CA certificate signed with a PQC algorithm (e.g., SPHINCS+-

SHA256-128f-robust) for validating the server.

We implemented the receiver in Java and compiled it using native-image
from the GraalVM JDK. Thus, we have the same code base for different plat-
forms. Besides, we do not have a dependency on the OQS version of OpenSSL.

However, while OQS provides Java bindings for invoking OQS PQC algo-
rithms, the standard Java javax.net.ssl.SSLSocket class is unaware of them.
The Bouncy Castle library8 implements some PQC algorithms but still they are
not integrated with Java Secure Socket Extension (JSSE). By thoroughly inves-
tigating the Bouncy Castle TLSv3 code, analyzing TLS handshake dumps, and
trial-and-error, we found that OQS uses specific code points (marked “for pri-
vate use” by NIST) for both key-exchange and signature algorithms. We had to
modify the Bouncy Castle TLSv3 handshake process by adding support for OQS
code points, validating PQC server certificates, and negotiating the cipher in a
quantum-safe way (previously, only RSA- and ECC-based key exchange meth-
ods were supported). In our testbed, we used Frodo640AES for key exchange
and Rainbow-I-Classic to sign and validate the CA+server certificate chain. We
also implemented in Java a PQC-aware TLS1.3-based SSLSocket that is able to
communicate with an OQS-OpenSSL-based C endpoint (HAProxy).

Sadly, Rainbow is vulnerable to MinRank-based attacks [1]. Thus, we con-
tinue our experiments by replacing Rainbow with SPHINCS+, which is another
family of algorithms supported by both OQS and Bouncy Castle.

5 The Wiretap

In Windows, the wiretap is a DLL that re-implements Windows API functions
CryptGenRandom, BCryptGenRandom, and RtlGenRandom by returning the
randomness obtained from the receiver. We use the Microsoft Detours9 library to
6 http://qrng.physik.hu-berlin.de/download (operating on PicoQuant PQRNG 150).
7 https://qrng.anu.edu.au (own equipment for measuring quantum fluctuations of the

vacuum with the potential to achieve the 70 Gbit/s rate) [2].
8 provides pure Java implementations of cryptographic primitives, https://www.

bouncycastle.org.
9 https://github.com/microsoft/Detours.

http://qrng.physik.hu-berlin.de/download
https://qrng.anu.edu.au
https://www.bouncycastle.org
https://www.bouncycastle.org
https://github.com/microsoft/Detours
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replace the original Windows functions with ours. In order to force a particular
program (such as openssl.exe) to use our randomization functions, we launch
it with the help of withdll.exe (from the Detours library). Other DLL injection
techniques (such as listing the wiretap DLL in the correct Windows registry key
or manipulating existing processes with CreateRemoteThread) are also possible.

In GNU/Linux, the wiretap consists of 2 modules:

– a Linux kernel module that creates and manages a new device file with the
default name /dev/qrandom0;

– a simple C program that is launched as a systemd service; it fetches random
numbers (by means of the receiver) and writes them to /dev/qrandom0, which
stores them in a buffer until someone reads them.

In order to force applications to use /dev/qrandom0, we backup the existing
/dev/random file and create the symlink /dev/random→/dev/qrandom0.

Since version 5.6, the Linux kernel implements its own cryptographi-
cally secure RNG that is used as a non-blocking entropy source for both
/dev/random and /dev/urandom. Additional entropy can be added by writing
into /dev/random (with a subsequent ioctl call). Thus, for Linux kernel v5.6+,
our GNU/Linux wiretap could consist only of the systemd service, which fetches
random numbers from the QRNG web service and writes them into /dev/random
on a regular basis.

6 Conclusion

The proposed QRNG web service with the corresponding client-side modules will
be available in June 2022 at qrng.lumii.lv. We also look forward to experimenting
with hybrid RSA/ECC and PQC algorithms and integrating them into our web
application infrastructure webAppOS [4].
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Abstract. Decision systems are at the core of our democratic and meri-
tocratic processes. Systems for voting, procurement, grant management,
and competitive examinations all rest on submission, evaluation, and
ranking . Computer assistance is a critical part of modern decision sys-
tems and so are cybersecurity challenges. As decision systems get increas-
ingly complex, the classic approach of enforcing security through fail-
safe mechanisms preventing cybersecurity attacks becomes infeasible. A
recent trend in cybersecurity is to disincentivize potential attacks by
using deterrence-based mechanisms that make stakeholders accountable
for their actions. However, using such mechanisms requires knowledge of
the underlying technology, which is not accessible to all people.

This poster looks at ways to extend decision systems with user-
accountable mechanisms enabling users to verify correct executions and
provide dispute resolution capabilities by combining cryptographic tech-
niques for human senses with advanced cryptographic protocols. If suc-
cessful, this line of work will provide novel ways to secure decision sys-
tems by creating disincentivizing mechanisms that are accessible to any
human user.

1 Motivation

Currently, decision systems require user expertise in the auditing technology.
It is an open question on how to make auditing accessible to everyone. End-
to-end verifiable voting schemes, which allow voters to check that the outcome
of an election is correct, have no user-friendly mechanisms for dispute resolu-
tion in case of incorrect tallying, hence they do not provide adequate attack
deterrence [8]. Current systems for procurement, grant management, and com-
petitive examinations heavily rely on trusted parties that run core parts of the
system as black boxes at the price of a lack of transparency [6]. We challenge
such design in favour of a trust-no-one and user-accountable design. Moreover,
general approaches for algorithmic accountability have been recently proposed in
the context of AI, machine learning, and secure multi-party computation (MPC)
[7], but the verification procedures require relevant expertise in the underlying
technology to accomplish auditing.

The verification procedures for accountability should essentially be a human
task. State-of-the-art technologies only provide guarantees for machines, while
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Zhou et al. (Eds.): ACNS 2022 Workshops, LNCS 13285, pp. 600–605, 2022.
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leaving out human users. This undermines public confidence in the system’s reli-
ability and in the end affects negatively the trustworthiness of decision systems.
We thus need to design accountability mechanisms that can be used by humans.

We observe that existing cryptographic techniques for human senses, such
as visual cryptography and hash visualization, can achieve classic security goals
such as confidentiality and authentication. We aim at exploring whether a combi-
nation of cryptographic techniques for human senses with state-of-the-art cryp-
tographic protocols enables user-accountable mechanisms in decision systems.
We deem the following combinations to be of particular relevance:

Cryptographic techniques
Protocols

for human senses
Visual cryptography [9] Zero-knowledge proofs
Audio cryptography [3]

Ś
Oblivious transfer schemes

Lound-and-clear [5] Identity-based encryption
Hash visualization [10] Homomorphic schemes

EyeDecrypt [4]
Building user-accountable mechanisms for decision systems will give: (i) a

concrete method to design accountable decision systems, in the age of perva-
sive security attacks aiming at breaking down public trust; (ii) a novel security
paradigm that revisits the established view of “users being the weakest link
in security” in to “users as the needed link for security”; (iii) new research
directions in cybersecurity aimed at reconciling the mathematical guarantees of
cryptography with the public confidence in democratic and meritocratic pro-
cesses.

2 Approach

Figure 1 presents our approach to design accountable mechanisms for decision
systems. We consider potential misbehaving parties willing to attack one or more

Fig. 1. Design approach for user-
accountable mechanism in decision
systems.

Fig. 2. A user-accountable mechanism for veri-
fying the correct generation of anonymous iden-
tifiers.
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functionalities in a decision system. We identify the needed security guarantees
and choose accordingly cryptographic protocol and technique for human sense.
We want to allow a user to detect the failure of a functionality requirement
and to find the misbehaving parties who caused that failure. We model a user-
accountable mechanism by intertwining the chosen protocol and technique in
order to provide evidence that can be used by humans. Below we show how one
can construct a user-accountable mechanism by combining visual cryptography
and an oblivious transfer scheme.

2.1 User-Accountable Anonymous Identifiers

One of the core functionalities of a decision system is to guarantee anonymous
submissions. For example, in voting, this is equivalent to ballot privacy. The goal
is to generate identifiers to anonymise submissions and to make their construc-
tion user-accountable in case of a dispute. In a trustless environment, anony-
mous identifiers can be normally built using secret sharing. We describe how
one can design a user-accountable mechanism for anonymous identifiers by com-
bining oblivious transfer schemes, visual cryptography, digital signatures, and
QR codes (cf. Fig. 2). We note that the combination of digital signatures and
oblivious transfer can provide auditability. In a two-party setting, an auditable
oblivious transfer enables one party to generate a secret random permutation of
the set of possible identifiers, and the other party to obliviously select one ran-
dom element of the permutation. Parties can send each other encrypted audits,
which can be encoded as QR codes. Also, each party encodes their secrets using
visual cryptography, and only when the secrets are brought together the identi-
fier is determined.

More specifically, to encode a single secret visual character c, one party gen-
erates a random visual crypto image share α, prints it, and generates a comple-
mentary set of visual crypto shares β1, . . . , βk for each of the possible c1, . . . , ck

characters, such that βi ÐπR (α ‘ ci), with πR being a random permutation of
the list of characters. The same party receives from the other party a Pedersen
commitment y “ gxhγ on an unique index γ PR [1, k], randomly permutes the
order of the set of visual crypto shares, and sends to the other party an obfus-
cated version of the set ω1, . . . , ωk using Tzeng’s oblivious transfer scheme [12],
such that ωi “ 〈ai, bi〉 Ð 〈gri , βi

(
y
h

)ri〉 together with signatures on to the other
party’s commitment. The selected obfuscation can be signed and printed as a
QR code for auditing purposes. Then, the other party deobfuscates a random
element of the set based on its commitment β “ bγ

(aγ)
x and prints the deobfus-

cated share as well as the signature on its commitment as QR code. Notably,
none of the parties learns which share has been printed by the other party, hence
the secret character is revealed to the parties only when the shares are brought
together. The procedure can be iterated so that a secret identifier can be built
from a sequence of secret characters.

This example shows that the human user can visually verify whether any
of the parties misbehaved since no intelligible identifier would be determined if
any of the parties misprints their visual shares. Thanks to the digital signatures
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encoded in the QR code, the user can also blame which parties misprinted their
share, making them accountable for the generation of anonymous identifiers.

3 Challenges and Potential

One of the main challenges is that a single user-accountable mechanism might not
fit all situations. We can address this by investigating several alternative combi-
nations of protocols and techniques, and by developing specialised mechanisms
for specific systems. Having defined a way to design user-accountable mecha-
nisms and to add them to decision systems, we will first implement our user-
accountable mechanisms in a mock voting system. Then, we will test whether
our user-accountable mechanisms can be integrated into existing secure deci-
sion systems such as Helios [1], Prêt à Voter [11], and Confichair [2]. This will
convince us whether our approach can scale up to any other decision systems.

Also, privacy and accountability are intuitively two contrasting requirements:
accountability demands for more evidence to accomplish the verification proce-
dures aiming at increase confidence in the decision outcome; privacy demands for
minimising such evidence. For example, a voting system should provide high con-
fidence in the result of the election even for voters who do not necessarily trust
the voting authority. On the other hand, failing to provide vote privacy opens
to effective manipulation of voters and to control the outcome of the election.
While it is challenging designing mechanisms that maximise both accountability
and privacy, one can explore mechanisms that allow one to set an appropriate
trade-off between privacy and accountability.

Providing a practical design for user-accountable mechanisms enables people
to audit the system and fosters public trust in accepting computer assistance
in decision systems. This has the potential not only to pave the way for an
exciting research agenda in developing a new generation of decision systems, but
it can provide new directions in securing distributed systems and MPC. Also,
the field of AI and machine learning, whose current efforts are aimed at helping
the machines to understand and interpret humans, can eventually benefit from
this line of work, which is about helping humans to interpret the machines.

4 Conclusion and Open Questions

This work explores ways for building verification mechanisms for accountability
in decision systems by combining existing cryptographic techniques for human
senses with state-of-the-art cryptographic protocols. The ultimate goal of this
line of work is to enable human users to directly execute the verification mecha-
nism themselves without the need of relying on trusted computer parties. This
poster also provides a practical example on how one can implement such a mech-
anism.

Although our example works for generating verifiable anonymous identifiers
for submissions, it may not work to address any requirement of decision sys-
tems. Still, with this work, we challenge the established position of minimising
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people involvement in cybersecurity by building methods that enable people to
understand when the underlying technology works, rather than how it works.

This line of work can provide a practical way to build and strengthen public
confidence in decision systems technology. The need for user-accountable mech-
anisms is concrete and actual, as it could be readily used in today’s challenges,
such as providing credible elections. This can also inspire addressing future chal-
lenges, such as allowing any user to audit AI-powered decision systems.

Some open questions can be easily drafted. An obvious one comes from
observing that some decision systems are very different from each other, and a
user-accountable mechanism may not be used in, e.g., both voting and procure-
ment systems. In fact, there are obvious differences in the requirements among
categories and also within a single category. One can address this question by
focusing on the core functionalities and related requirements, which exist among
all decision systems. We believe that even a limited number of user-accountable
mechanisms provide some guarantees to the users and deters attacks, unlike
current decision systems.

Finally, we observe that security researchers have not looked at this before
for some reason. The cryptographic community focuses on making highly secure
and efficient algorithms for machines while usable security community focuses
on how to make secure technologies more human-centric. The two communities
do not collaborate often. This line of work also aims to bridge the gap.
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Abstract. Key generation from the randomness of wireless channels
is a promising technology for the establishment of cryptographic keys
between any two users. This paper introduces the wireless key gener-
ation technology based on physical layer. Aiming at the shortcomings
of the existing key generation scheme, we have done optimization work
in the quantization algorithm and preprocessing. We design an iterative
lossless quantization algorithm, which is a multi-round lossless quan-
tization algorithm to make full use of the collected measurements. To
enhance the randomness of the generated keys, an adaptive quantiza-
tion algorithm is designed, which enlarges the quantization intervals in
the quantization algorithm. In addition, according to the characteristics
of the measurements of static and dynamic scenario, we adopt suitable
filtering methods for the respective scenario. At last we concludes with
some suggestions for future studies.

Keywords: Wireless network security · Physical layer security ·
Physical layer key generation

1 Introduction

1.1 Wireless Network Security

In today’s world, wireless communication technology has quietly entered all levels
of people’s lives, the footprint of wireless communication technology can be seen
everywhere in modern production and life. However, due to the inherent broad-
cast nature of wireless channels, attackers can launch various attacks such as
passive eavesdropping, traffic analysis and monitoring, etc., which makes wireless
communication security a major issue related to people’s livelihood. Establish-
ing communication keys between wireless devices is an effective way to protect
wireless network security. Currently, there are two methods to generate keys in
wireless network, one is classical encryption method and the other method is
physical layer method.

The classical encryption for establishing key is achieved by public key cryp-
tography, which is generally based on the unproven assumptions of the hardness
of some problems, such as integer factorization and discrete logarithm [3]. How-
ever, a public key encryption system can be broken if the adversary has enough
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computing power. Moreover, such method consumes too many resources and
might require a key management center.

In contrast, key generation leveraging wireless channel reciprocity is consid-
ered as a promising alternative to public key cryptography. Physical layer method
achieves the goal of secure communication by utilizing the unpredictability and
randomness of the existing wireless channel by both legitimate communication
parties [1,2]. The encryption and decryption keys of both parties Alice and Bob
come from the generation of the wireless channel, and do not need to be obtained
through a third-party key distribution center.

Fig. 1. Schematic of key generation.

1.2 Key Generation Method Based on Physical Layer

As a promising technique achieves wireless network security, the design of key
generation method based on physical layer consists of four parts: Channel
Probing, Quantization, Information Reconciliation and Privacy Amplification.
Figure 1 illustrates the process of key generation based on physical layer. In the
Channel Probing, the wireless devices use wireless network cards to obtain the
channel measurements. The measurements are converted into bitstream after
Quantization. The output of Quantization serves as input of the Information
Reconciliation, the inconsistent bits from wireless devices can be removed. In
order to enhance the security of the generated keys, Privacy Amplification phase
is implemented.

2 Our Work

Although the physical layer-based key generation method is accepted in wireless
networks, there are still problems such as low key generation rate and weak
randomness that need to be optimized. In view of the existing problems, we
have done optimization work in the quantization algorithm and preprocessing.
The specific details are described as follows.
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2.1 Optimization of Quantization Algorithms

Aiming at the shortcomings of the existing quantization algorithms, we have
successively designed two optimization algorithms: iterative quantization algo-
rithm [5] and adaptive quantization algorithm [4,6]. Most of the existing quan-
tization algorithms are based on one round of lossy quantization. The main
purpose of the optimization algorithm is to design a multi-round lossless quanti-
zation algorithm to make full use of the collected measurements. Therefore, we
design an iterative lossless quantization algorithm, which is a multi-round loss-
less quantization algorithm to make full use of the collected measurements [5].
The specific details are shown in the Fig. 2(a). There are multiple rounds of
quantification in the algorithm display, which can quantify all the input mea-
surement values. This not only improves the utilization of the measured value,
but also improves the key generation rate.

Fig. 2. The details of the optimization algorithm.

After repeated experiments and tests, it is found that privous work can-
not adapt to different scenarios to generate keys with strong randomness. Since
the measurements show different characteristic trends, if the same quantization
threshold is used to quantize the measured values of different characteristics,
the probability of consecutive 0 s and 1 s appearing in the generated key will
be high. Therefore, we design an adaptive quantization algorithm to solve the
above problems. The details of algorithm is given in the Fig. 2(b). The difference
from the work [5] is the design of the quantization algorithm. The specific detail
is shown in the quantization reference levels, which enlarges the quantization
intervals in the quantization algorithm. The design of the quantization reference
levels makes the generated keys more random and avoids consecutive zeros or
ones in the generated keys.

In addition, we have extended on the basis of these two algorithms, and opti-
mized the group quantization for the measurements in different scenarios [6].
Based on the paper [4], according to the characteristics of different scenarios,
we design a method based on group quantization. This is because that RSS
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measurements in static and dynamic scenarios are different and cannot be quan-
tified by using the same quantification standard. Additionally, in the experimen-
tal implementation, we collect measurements of different network cards in static
and dynamic scenarios to verify the feasibility of the method.

2.2 Preprocessing of Measurements in Different Scenarios

Due to the absence of environmental noise and the influence of hardware devices,
the reciprocity of the wireless channel measurements of both parties will be
affected, which will affect the final key. In order to reduce the influence of the
external environment and the device itself on the measurements, it is necessary
to preprocess the collected measurements before key generation. Filtering the
collected measurements is a particularly effective method. Filtering is the opera-
tion of filtering out specific frequency bands in the signal, and it is an important
measure to suppress and prevent interference. According to the characteristics
of the measurements of static scenario and dynamic scenario, we adopt filter-
ing methods suitable for the respective scenarios. In our work, according to the
characteristics of the measurements of static and dynamic scenario, we adopt
suitable filtering methods for the respective scenario. The purpose of prepro-
cessing in static scenario is to filter out outliers, so we use a clipping filter to
ensure the removal of abnormally mutated data. In dynamic scenario, the main
purpose is to remove the high-frequency noise, and we use the method of wavelet
transform or discrete cosine transform. Figure 3 shows the preprocessing of mea-
surements in different scenarios.

Fig. 3. The preprocessing of measurements in different scenarios.

3 Future Research

Though the physical layer-based key generation scheme has great potential in the
security of future wireless communication systems, there are still open questions
to be resolved in order to make key generation more robust. Future research
work can be carried out from the following aspects.
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– Pre-judgment of wireless channel measurements. From the characteristics of
static scenarios and dynamic scenarios, the differences in the measurements
of different scenes are obvious. Therefore, it is necessary to perform a pre-
liminary analysis of the collected measurements and to select an appropriate
preprocessing and key generation scheme.

– Optimizing the key generation algorithm in static and dynamic scenarios. In
practical scenarios, the differences in measurements lead to a lack of emphasis
on key generation requirements. Therefore, the general key generation process
is not necessarily suitable for specific application scenarios.

– Regular update keys. At present, most key generation schemes remain in
the successful establishment of a single key, and it is still a blank stage for
using the physical layer to periodically update the key for wireless devices.
Regularly updating the keys of wireless devices can ensure the timeliness of
wireless network security and resist potential attacks.
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1 Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
{mkamel,ligetipeter}@inf.elte.hu

2 Institute of Data Science, Cloud Computing and IT Security,
Furtwangen University, Furtwangen im Schwarzwald, Germany

{mkamel,christoph.reich}@hs-furtwangen.de
3 Department of Computer Science, University of Kufa, Najaf, Iraq

Abstract. The ‘things’ layer in Internet of Things (IoT) consists of
a massive number of devices, many of which are power and resource
constrained. Decentralized Attribute-based Encryption (DABE) provides
a one-to-many scheme that fits the distributed nature of IoT, however
requires extensive computation power which makes its adoption difficult.
In this work, we proposed an encryption model in DABE utilizing a single
node, without revealing the secrets to the outsider node. The results
showed that our model significantly improved the DABE.

1 Introduction

In public key cryptography, the data owner encrypts the data based on the
identity of the data consumer in a one-to-one scheme. This scheme might not be
suitable in some environments such as IoT where there are many data consumers
and the data encryptor might not know the exact decryptors. Attribute-based
Encryption (ABE) [5] provides a one-to-many scheme by allowing the data owner
to define a policy in which the decryptors with given attributes can decrypt the
data, even if the attribute has been gained after the data encryption.

While the original ABE proposal by Sahai and Waters [3] consists of a central-
ized entity, Lewko and Waters proposed Decentralized ABE [1] that removes any
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the National Research, Development and Innovation Fund of Hungary, financed under
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the support provided by the Ministry of Innovation and Technology from the National
Research, Development and Innovation Fund and by ÚNKP-20-4 New National Excel-
lence Program of the Ministry for Innovation and Technology from the source of
National Research, Development and Innovation Fund.
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centralized managing or attribute authority. Compared to public key cryptogra-
phy, ABE suffers from more extensive computations of expensive exponentiation
which limits its deployment in distributed systems with resource-constrained
nodes. Many efforts tried to decrease the computation power by various tech-
niques such as outsourcing to more powerful nodes or introducing a trusted third
party to perform the encryption. In this paper, we proposed Outsourced Decen-
tralised ABE (ODABE) to perform the heavy computations during encryption
in a single external node, without revealing the secret data.

2 Literature Review

ABE [3] extends the concept of identities in Identity Based Encryption (IBE)
by proposing a new term of attribute. Due to its heavy computations, several
authors proposed lightweight model [2,4] to improve the ABE algorithms. The
proposed models for lightweight ABE rely on a centralized entity as part of their
algorithms. The existence of a centralized single entity in a model makes its
adoption in a large-scale distributed system harder.

Authors in [1] proposed a model to decentralizing ABE [3], which comes with
significant overhead. ODABE resembles [2] to outsource the heavy computations
during encryption computational node. However, unlike the model in [2] that
outsources the computations of Ciphertext-Policy Attribute-based Encryption
(CP-ABE) with a central attribute authority and a central Key Distribution
Center (KDC), our model distributes the computations of Decentralized ABE
to an outsider node without introducing a centralized managing entity.

3 Outsourced Encryption

Our proposed solution utilizes the Decentralized ABE cryptographic protocol.

Protocol 1 (Decentralized ABE [1]). The protocol consists of the following
five algorithms:
Global Setup: on the security parameter as input this algorithm generates the
public parameters GP that include two cyclic groups G,GT , a generator g in the
group G, a bilinear mapping e : G × G → GT and a hash function H(.) that
maps a given identifier to a member in G.
Attribute Setup: in this protocol a new attribute authority takes the public
parameters GP as input and chooses random private parameters PR = (α, β),
and computes its public parameters PK = (e(g, g)α, gβ).
Key Generation: an attribute authority takes the general identifier Iu of the
user as input and using PR generates the secret key sk = gαiH(Iu)βi of the
attribute.
Encrypt: It takes the public parameters GP , the set of public keys of the involved
attribute authorities, the access structure Γ along with the message m as inputs,
and generates the ciphertext c.
Decrypt: It takes all the secret keys sk of the attributes of a single user as input
and computes a message m.
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In DABE, first the global parameters (cyclic groups G,GT , a generator g ∈ G,
bilinear pairing e : G × G → GT , and hash function H : {0, 1}∗ → G are gener-
ated. Each attribute authority i generates and publishes its public parameters
e(g, g)αi and gβi . The encryption algorithm in DABE takes the message m, the
access structure Γ , and the public parameters Q = {{e(g, g)α1 , gβ1 , . . . }, {G,GT ,
g ∈ G,H(.)}}, and outputs the ciphertext c, i.e. Encrypt(m,Γ,Q) = c.

Our model consists of three disjoint sets of participants. The set U consists of
members that uses three of the DABE algorithms: Keygeneration(), Encrypt()
and Decrypt(). The attribute authorities reside in A set that includes indepen-
dent nodes. During the model life cycle new attribute authorities can joint A
independently. The nodes in A generate their private keys, publish their public
keys, and generate secret keys for any node in U that has the relevant attributes.
The set P includes the computational nodes with high computational power that
can execute heavy computational operations. In IoT environment, the data pro-
ducers might be resource-constrained with limited computation power, while
the data consumers are mostly clients with proper computation power. Due to
that, we focus on the encryption algorithm of DABE that is done by the data
producers.

The members of A that handle attributes Tu of the user u ∈ U are con-
sidered semi-honest. Additionally, the chosen members in P from the point of
view of members of U are defined as semi-honest nodes, and all other members
in U might be considered malicious. We assume that each user u ∈ U has a
unique global identifier Iu, and secure channels between the encryptor and the
involved members of A and at least one member in P are established. As shown
in Fig. 1, these channels will be used to securely generate the secret parameters
and distribute the heavy computations.

Protocol 2 (ODABE Secret parameter generation). A user u ∈ U ran-
domly chooses a number xi, yi, zi ∈ Zp, for the attribute i. An attribute authority
ai ∈ A receives the values xi, yi, zi from the user, and generates and sends the
following to the user:

gyi , gzi , gβizi , e(g, g)xi , e(g, g)αizi

Protocol 3 (ODABE encryption). The proposed outsourced encryption
works as follows:
Step 1: The encryptor u ∈ U randomly chooses s ∈ Zp, and calculates:

γ = (s, . . . ), ω = (0, . . . )

.
Step 2: For each row i in M(Γ ) generates:

γi = M(Γ )i · γ, ωi = M(Γ )i · ω, ri ∈ Zp

.
Step 3: Chooses a computational node P0 ∈ P and sends:

Γ,∀i : γ′
i ≡ γi − xi mod p, ω′

i ≡ ωi − yi mod p, r′
i ≡ ri − zi mod p



614 M. B. M. Kamel et al.

Fig. 1. ODABE encryption overview

Step 4: The computational node P0 for each leaf i in Γ computes the following
three parameters and sends the results (∀i : {Ei1, Ei2, Ei3}) back to the encryptor:

Ei1 = e(g, g)γ′
ie(g, g)αir

′
i , Ei2 = gr′

i , Ei3 = gβir
′
igω′

i

.
Step 5: The encryptor u calculates the final ciphertext of the message m as
follows:

C0 = m · e(g, g)s, ∀i : Ci1 = Ei1e(g, g)
xi e(g, g)αizi , Ci2 = Ei2 gzi , Ci3 = Ei3 gyi gβizi

4 Analysis

ODABE is secure if a PPT adversary getting the values ∀i : γ′
i has negligible

probability of guessing ∀i : γi, and thereafter the secret value s.

Lemma 1. Let G be a cyclic group of prime order p, and r ∈ G be uniformly
distributed over G, then given a number n ∈ G the value n+r mod p is uniformly
distributed over G.

As a result of applying Lemma 1 to the step 3, the values ∀i : γ′
i, ω

′
i, r

′
i are uni-

formly distributed over Zp. Therefore, a PPT adversary can guess the used values
γi, ωi, ri during encryption with negligible probability only. The proposed model
has been validated in a setup including a Raspberry Pi running at 1000 MHz
MHz as the encryptor, a computer running at 1800 MHz MHz as a computa-
tional node in P on a communication link with 20 ms delay, and the result is
shown in Fig. 2.
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5 Conclusion

In this paper we proposed a lightweight encryption model for DABE. During
encryption in ODABE the required computation in the encryptor is minimized,
and the heavy computations are outsourced to an outsider computational node,
without revealing the secret data. The encryption is done without involving any
centralized managing entity, through a single external node.
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Abstract. Ransomware nowadays is one of themost critical security threats. Ran-
somware attacks are targeted at governments, enterprises, and casual users. With-
out very good backup and retention policies, it can lead to serious data damage.
However, even very good data protection can’t secure data from being stolen and
revealed after a successful ransomware attack. This could be also very dangerous,
especially for governments and enterprises in terms e.g. of trust and confidence.
We have seen many times all these kinds of problems during our professional
activity. We have helped recover from many ransomware attacks. Sometimes we
were able to recover almost all of the encrypted data, sometimes not even a single
one. That is why we have started the project that will end with specifications and
working Proof-of-Concept of the ransomware detection mechanism.

Keywords: Ransomware · Cryptovirus · Detection

1 Introduction

The project is being led by the Military University of Technology in Warsaw and TiMSI
Sp. z o.o. Some of the results of the project will be published in the public domain and
will be available free of charge for every polish citizen. The project is addressing the
topic of the early detection of the activity of the ransomware software and will end with
specifications and working Proof-of-Concept of the ransomware detection mechanism.
This mechanism would be able to detect ransomware activity at the very beginning stage
and thus minimize the possible losses that this attack could have caused.

The project consists of threemain phases. The first one is an analysis. The second one
is development. The third one is implementation and testing. We are at the beginning of
phase number two. We have analyzed ransomware samples and Windows mechanisms,
provided ransomware general characteristics, and developed ideas for the detection indi-
cators. Now we are creating a detailed description of the indicators and shortly, we will
develop the detection mechanism that will use those indicators. In the next phases, we
will create a working Proof-of-Concept, conduct some tests and implement necessary
tweaks and improvements.

What is more, the project covers some topics that are not being connected with
ransomware detection (like locality-preserving hashing) and in detail consider topics
that were not analyzed in the literature very well (like using Windows drivers/drivers
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filters in term of ransomware detection). In our work, we are also using results presented
in papers e.g. written by Scaife et al. [1], Continella et al. [2], Kharraz et al. [3], Palisse
et al. [4] and [5], Kolodenker et al. [6], Lee et al. [7], etc.

In this paper, we briefly summarize the current status of the project and mention the
main challenges that we will deal with shortly.

2 Current State

The project started in the summer of 2021. Since then we have done a lot of analysis,
mind-storming, and engineering work. The important results are:

• Working environment and procedures – the project started with preparations of the
working environment and working procedures. The prepared working environment
consists of virtual machines for running and for analyzing ransomware software. The
main tools to disassemble and decompile ransomware binary code are a very power-
ful Hex-Rays IDA Pro and Hex-Rays IDA Decompiler. We use also other assisting
software like e.g. APIMonitor, WinDbg, Ghidra, Binary Ninja, Autopsy, etc. What
is more, we have created a set of procedures for maintaining working environments
and for analyzing the binary code of the ransomware. The procedures consist of steps
and expected results. This approach speeded up the analysis process and ensured that
results from different versions of the ransomware are measurable and comparable.

• Analyzed samples – samples that we have usedwere collected frommalware reposito-
ries like MalwareBazaar (https://bazaar.abuse.ch/), MalShare (https://malshare.com/)
or Bleeping Computer (https://www.bleepingcomputer.com). We have downloaded,
analyzed, or tried to run (debug) ransomware from many families, e.g.: Avaddon,
BlackMatter, Chaos, Conti, Darkside, Hanta, Hive, Kaseya, Lockbit, LokiLocker,
Magniber, MedusaLocker, MountLocker, Nefilim, Nitro, Sodinokibi, Stop, Thanos,
White Rabbit. The results from this phase were crucial in terms of further analysis
and preparation of the ransomware detection mechanism.

• AnalyzedWindowsOSmechanisms – during the first stage of the project, we analyzed
many different mechanisms available in theWindows OS.We have analyzed them for
two purposes: to better understand mechanisms that are used by ransomware and to
find the best suitable mechanisms for detection mechanism. We have analyzed e.g.:
WindowsAPI functions,Windows drivers,Windows driver filters, PE files, DDLfiles,
process injection techniques, DLL injection techniques, Windows API hooks, kernel
mode, etc.

• Ransomware characteristics – the results from conducted ransomware samples anal-
ysis were used to prepare generic ransomware characteristics. Those characteris-
tics include behavior like destroying backup resources, stopping system processes,
stopping system services, filesystem operations, cryptography operations, privi-
leges escalations, threads/processes management, and local and network resources
discovery.

2.1 Indicators

The indicators are among themost important results of the project that havebeen achieved
so far. The basic specification of the indicators has been developed during the last phase

https://bazaar.abuse.ch/
https://malshare.com/
https://www.bleepingcomputer.com
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of the project. Indicators use characteristics and behaviors that were observed during
ransom-ware samples analysis. The task of every indictor would be to provide some
measurements and informdetectionmechanismswhen orange or red levels are exceeded.
For every indicator, we have defined warning levels. Indicators can have defined green,
orange, and red levels. The green level means that indicators do not recognize any
suspicious behavior. The orange level means that the process could be suspicious and
that other measurements should be taken into the consideration. The red level means
that the process is probably ransomware.

We have developed the following indicators:

• Cryptography API usage – this indicator will monitor and measure the usage of the
most popular cryptography functions available in the API provided by aWindows OS.
Monitoring will include functions like CryptAcquireContextW, CryptDestroyKey,
CryptDuplicateKey, CryptEncrypt, CryptExportKey, CryptGenKey, CryptImportKey,
CryptReleaseContext, CryptSetKeyParam. For this indicator, we have defined green,
orange, and red warning levels.

• File API usage – this indicator will monitor andmeasure the usage of themost popular
file functions available in theAPI provided by aWindowsOS.Monitoringwill include
functions like CopyFileW, CreateFileW, FindClose, FindFirstFileExW, FindFirst-
FileW, FindFirstVolumeW, FindNextFileW, FindNextVolumeW, FindVolumeClose,
GetFileAttributesW, GetFileSizeEx, GetFileType, GetVolumeInformationW, GetVol-
umePathNamesForVolumeNameW, MoveFileExW, ReadFile, SetFileAttributesW,
SetFilePointerEx, SetVolumeMountPointW, WriteFileCryptSetKeyParam. For this
indicator we have defined green, orange and red warning levels.

• Process/thread API usage – this indicator will monitor and measure the usage of the
most popular process/threads management functions available in the API provided by
a Windows OS. Monitoring will include functions like CreateThread, ExitProcess,
ExitThread, GetCurrentProcess, GetCurrentProcessId, GetCurrentThread, GetCur-
rentThreadId, GetExitCodeThread, GetProcessAffinityMask, GetProcessHeap, Get-
ThreadContext, GetThreadPriority, GetThreadTimes, OpenProcess, OpenProcessTo-
ken, Process32FirstW, Process32NextW, SetThreadAffinityMask, SetThreadPriority,
TerminateProcess. For this indicator we have defined green and orangewarning levels.

• Settings API usage – this indicator will monitor and measure the usage of the most
popular system settingsmanagement functions available in theAPI provided by aWin-
dows OS.Monitoring will include functions like GetCommandLineW, GetComputer-
NameA, GetDateFormatW, GetDiskFreeSpaceW, GetEnvironmentStringsW, GetEn-
vironmentVariableW, GetStartupInfoW, GetSystemInfo, IsProcessorFeaturePresent,
IsValidCodePage, RegCloseKey, RegOpenKeyExW, RegSetValueExW. For this indi-
cator we have defined green and orange warning levels.

• Other API usages – this indicator will monitor and measure the usage of functions
available in the API provided by a Windows OS that was identified by us as unusual
in normal programs. Monitoring will include functions like AdjustTokenPrivileges,
CheckRemoteDebuggerPresent, GetCommandLineA, GetCommandLineW, GetLo-
caleInfoA, GetLocaleInfoW, GetProcAddress, IsDebuggerPresent, IsProcessorFea-
turePresent, IsValidCodePage, IsValidLocale, LoadLibraryExW, LoadLibraryW. For
this indicator, we have defined green and orange warning levels.
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• Privilege escalation – this indicator will monitor active processes if there were exe-
cution privileges changes since the process started. The indicator will also monitor
the changes in the state of the Windows UAC mechanism. For this indicator, we have
defined green and orange warning levels.

• Level of randomness change – this indicator will monitor and measure the level of the
change in the randomness of the file content. To do this it will combine file entropy
with some high-speed statistical functions. For this indicator, we have defined green,
orange, and red warning levels.

• Bucket change – this indicator will monitor and measure if the content of the file
belongs to the same category (bucket) as before the changes. To do this it will use
a specially crafted locality-preserving hash function. This function will ensure that
minor changes to original content result in no or minor changes in the hash value. For
this indicator, we have defined green and orange warning levels.

• Decoy files access – this indicator will monitor and measure the access to specially
prepared decoy files. Decoy files will be created and distributed randomly within
system resources – every computer will have different files in different locations. For
this indicator, we have defined green and red warning levels.

• Decoy files changes – this indicator will monitor and measure the changes in the
content of the specially prepared decoy files. Decoy files will be created and dis-
tributed randomly within system resources – every computer will have different files
in different locations. For this indicator, we have defined green and red warning levels.

3 Upcoming Challenges

The final results of this project will be a working Proof-of-Concept of the ransomware
detection mechanism and a set of specifications. Those specifications will describe in
detail proposed indicators,mechanisms, and detection use cases. Specificationswill have
an implementation-ready description. This should speed up deployments in production
environments. Below we have described the main challenges we will deal with in the
nearest future:

• Detection mechanism – The ransomware detection mechanism will use proposed
indicators. Proposed indicators will work mainly as a part of analyzed Windows
mechanisms. E.g. indicator “decoyfile access”will useWindows drivers andWindows
driver filters to measure and detect ransomware activity. In this phase of the project,
we will propose and technically specify the ransomware detection mechanism. For
every indicator, we will provide a detailed explanation of how it should be used
within the detection mechanism. For the detection mechanism, we will provide a
detailed description of how it should work, how it should react to measurements from
indicators, and how it should react in the most common scenarios.

• Proof-of-Concept – the proof-of-Concept will be a crucial part of this project in terms
of assessing the effectiveness and the accuracy of the ransomware detection level. All
tests and further improvements will be conducted on this working PoC. PoC will be
also used as a reference implementation of the indicators and the detectionmechanism.
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• Testing and improvements – the testing process will involve PoC and ransomware
samples running in the test environment. We will use well-known samples, as well as
samples gathered during the whole project lifecycle. This approach will allow check-
ing how well the PoC of the detection mechanism will deal with new and unknown
during the analysis phases versions of ransomware. The test result will be used to
add some final tweaks and improvements in the PoC, specification of the detection
mechanism, and specification of the indicators.
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opment, Poland. The project number is CYBERSECIDENT/490737/IV/NCBR/2021. The project
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Kozlovičs, Sergejs 595
Kulkarni, Praveen 218
Kushnir, Eyal 398

Le Traon, Yves 575
Li, Bin 66
Li, Bingyu 447
Li, Yuanzhang 3, 53, 104
Ligeti, Peter 611
Lim, Yong Zhi 36
Liu, Lu 53
Lkhaouni, Oualid 481
López, Christian 515, 554
Losiouk, Eleonora 277
Lu, Mingfeng 53

Ma, Zhiqiang 320
Masalha, Ramy 398
Matsumoto, Tsutomu 461
Mirkin, Michael 398
Mitsunari, Shigeo 461
Moshkowich, Guy 536

Nakai, Tsunato 200
Nardi, Oliviero 299
Ni, Peifang 427
Ni, Ziwei 84

Ochoa, Martín 515, 554
Ogawa, Kazuto 248
Ohigashi, Toshihiro 248

Pacchin, Mattia 299
Perin, Guilherme 165
Picek, Stjepan 165



622 Author Index

Qiu, Kefan 104

Reich, Christoph 611
Rivera, Esteban 515, 554
Rocchetto, Marco 299
Roitzsch, Michael 361

Sabaliauskaite, Giedre 235
Saerbeck, Martin 36
Sakamoto, Junichi 461
Schürmann, Carsten 600
Simioni, Marco 380
Sinn, Mathieu 380
Soceanu, Omri 398
Solano, Jesús 515, 554
Song, Zihao 461
Souani, Badr 575
Standaert, François-Xavier 146
Su, Chunhua 606
Sun, Xiaobing 66
Suzuki, Daisuke 200
Swaminathan, Sudharshan 165

Tan, Shichong 15
Tan, Yu-an 53
Tengana, Lizzy 515, 554
Toffalini, Flavio 277
Tu, Liangqiong 66

Vadnala, Praveen Kumar 127
van der Staaij, Arthur 495
van Geest, Jurian 183

Verneuil, Vincent 218
Vı̄ksna, Juris 595
Visintin, Alessandro 277

Walther, Robert 361
Wang, Dianxin 3, 53
Wang, Jianfeng 15
Wang, Juan 3
Wang, Yajie 3
Wang, Yu 66
Weinhold, Carsten 361
Wu, Jiaojiao 15

Xu, Jing 427
Xu, Yidan 3
Xu, Zixuan 3

Yang, Jie 84
Yoshida, Naoki 461

Zhang, Jiale 66
Zhang, Jingci 104
Zhang, Li 84
Zhang, Pinchang 447
Zhang, Quanxin 84, 104
Zhang, Quanxing 53
Zhang, Yaoyuan 53
Zhang, Zheng 104
Zhao, Hong 606
Zheng, Jun 84, 104
Zhou, Jianying 36, 277, 338
Zhou, Yuanyuan 146


	Preface
	Organization AIBlock 2022 Fourth Workshop on Application Intelligence and Blockchain Security 21 June 2022
	AIHWS 2022 Third Workshop on Artificial Intelligence in Hardware Security 21 June 2022
	AIoTS 2022 Fourth Workshop on Artificial Intelligence and Industrial IoT Security 23 June 2022
	CIMSS 2022 Second Workshop on Critical Infrastructure and Manufacturing System Security 20 June 2022
	CLOUD S&P 2022 Fourth Workshop on Cloud Security and Privacy 22 June 2022
	SCI 2022 Third Workshop on Secure Cryptographic Implementation 23 June 2022
	SecMT 2022 Third Workshop on Security in Mobile Technologies 20 June 2022
	SiMLA 2022 Fourth Workshop on Security in Machine Learning and its Applications 22 June 2022
	Contents
	AIBlock – Application Intelligence and Blockchain Security
	Universal Physical Adversarial Attack via Background Image
	1 Introduction
	2 Background and Related Work
	2.1 Object Detection
	2.2 Physical Adversarial Attacks
	2.3 Adversarial Attacks Using Contextual Information

	3 Method
	3.1 Objective Function
	3.2 The Generation of the Universal Background Image

	4 Experiments
	4.1 Experiment Setup
	4.2 Attack Success Rate
	4.3 The Effect of Angle and Distance
	4.4 The Effect of Target Model
	4.5 Visualized Results

	5 Conclusion
	References

	Efficient Verifiable Boolean Range Query for Light Clients on Blockchain Database
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Blockchain Data Structure
	2.2 B+-Tree
	2.3 Constant Size Polynomial Commitment

	3 Problem Statement
	3.1 System Model
	3.2 Threat Model and Assumptions

	4 Polynomial Commitment B+-Tree
	4.1 Overview
	4.2 PCB-Tree Structure on Blockchain

	5 The Proposed Construction
	5.1 Verifiable Range Query Processing
	5.2 Extension to Verifiable Boolean Query
	5.3 Security Analysis

	6 Performance Evaluation
	6.1 Experiment Setting
	6.2 Experiment Evaluation

	7 Conclusion
	A  Pseudo Codes of the PCB-Tree Algorithms
	References

	SuppliedTrust: A Trusted Blockchain Architecture for Supply Chains
	1 Introduction
	2 Background
	2.1 Current State of Supply Chains
	2.2 Cybersecurity Standards

	3 Related Work
	4 Framework
	4.1 Overview
	4.2 Governance Layer
	4.3 Supply Chain Layer
	4.4 Blockchain Layer
	4.5 Use Cases

	5 Threats
	5.1 Web3 Vulnerabilities
	5.2 Smart Contract Attacks
	5.3 Consensus Attacks

	6 Challenges
	6.1 Layer-1 Solutioning
	6.2 Layer-2 Solutioning
	6.3 IT/OT Integration

	7 Conclusion
	References

	Towards Interpreting Vulnerability of Object Detection Models via Adversarial Distillation
	1 Introduction
	2 Related Works
	2.1 Interpretable Adversarial Examples
	2.2 Object Detection
	2.3 Adversarial Examples
	2.4 Distillation

	3 Methodology
	3.1 Definitions
	3.2 Framework
	3.3 Extracting Adversarial Features
	3.4 Adversarial Distillation

	4 Experiments
	4.1 Setup
	4.2 Generating Adversarial Examples
	4.3 Evaluation on Adversarial Distillation

	5 Conclusion
	References

	Vulnerability Detection for Smart Contract via Backward Bayesian Active Learning
	1 Introduction
	1.1 Motivation
	1.2 Contribution

	2 Related Work
	2.1 Smart Contract Vulnerability Detection
	2.2 Active Learning

	3 The Proposed Method
	3.1 Overview
	3.2 Feature Extraction
	3.3 Active Learning with Uncertainty Measure
	3.4 Active Learning with Backward Noise Removing

	4 Experiment
	4.1 Experiment Set and Benchmark Detaset
	4.2 Performance Indicators
	4.3 Experimental Results

	5 Conclusion and Future Work
	References

	A Multi-agent Deep Reinforcement Learning-Based Collaborative Willingness Network for Automobile Maintenance Service
	1 Introduction
	2 Research Background
	2.1 Automobile After-Sales Collaborative Service
	2.2 Multi-agent Deep Reinforcement Learning

	3 System Model
	3.1 Local Maintenance
	3.2 Recommending to Other Maintenance Service Stations
	3.3 Joint Optimization Problem

	4 Dynamic Task Recommending Algorithm Based on MADRL
	4.1 Dec-POMDP Formulation
	4.2 Proposed CWN-MADRL Algorithm
	4.3 Algorithm Training

	5 Experimental Analysis
	5.1 Experimental Setup and Comparison Algorithm
	5.2 Comparison of Algorithm Performance

	6 Conclusion
	References

	Hybrid Isolation Model for Device Application Sandboxing Deployment in Zero Trust Architecture
	1 Introduction
	2 Related Work
	2.1 Sandbox Security
	2.2 Access Control Model

	3 Motivation and Threat Model
	3.1 Attack Surface
	3.2 Assumptions and Threat Models

	4 Hybrid Isolation Model Based on Access Behavior
	4.1 Security Objectives
	4.2 Definitions
	4.3 Security Characteristics
	4.4 Security Level Management
	4.5 Security State Transition Rules

	5 Security Analysis
	6 Experiment
	6.1 Prototype
	6.2 Security Evaluation
	6.3 Performance Evaluation

	7 Conclusion
	References

	AIHWS – Artificial Intelligence in Hardware Security
	On the Effect of Clock Frequency on Voltage and Electromagnetic Fault Injection
	1 Introduction
	2 Preliminaries
	3 Test Applications
	3.1 Register-Based Loop
	3.2 Memory-Based Loop
	3.3 Unrolled Loop

	4 Setup
	4.1 Target of Evaluation
	4.2 Hardware Tools
	4.3 Software Tools
	4.4 EMFI Setup
	4.5 VFI Setup
	4.6 Results Classification

	5 Experimental Results
	5.1 EMFI
	5.2 VFI

	6 Discussion
	7 Conclusion
	References

	S-box Pooling: Towards More Efficient Side-Channel Security Evaluations
	1 Introduction
	1.1 The Context of This Work
	1.2 Problem to Be Addressed
	1.3 Our Contribution
	1.4 Related Work
	1.5 Organization of the Paper

	2 Background
	2.1 Template Attack
	2.2 Stochastic Model Attack
	2.3 Deep Learning DPA Attack

	3 Methodology
	3.1 S-box Pooling Profiled Attack
	3.2 Knowledge of POIs Assumption
	3.3 Metrics and Selection of Parameters

	4 Experimental Results
	4.1 Common Settings
	4.2 Setting #1: An Unmasked Sequential AES S-boxes Implementation
	4.3 Setting #2: A Masked Sequential AES S-boxes Implementation
	4.4 Setting #3: A Masked Parallel AES S-boxes Implementation

	5 Conclusion
	References

	Deep Learning-Based Side-Channel Analysis Against AES Inner Rounds
	1 Introduction
	2 Preliminaries
	2.1 Correlation Power Analysis (CPA)
	2.2 Deep Learning Methodologies
	2.3 Attack Evaluation Methodology

	3 Related Work
	4 First-Order Non-profiled Attacks on AES Inner Rounds
	4.1 Notations
	4.2 On the Attack Feasibility After the S-box at Rounds 2, 3, and 4
	4.3 Attacking a Byte Before AddRoundKey at Round 7

	5 Experimental Results
	5.1 Setup
	5.2 The Deep Learning Model Architecture
	5.3 Attacking a Byte After Round 2S-box
	5.4 Attacking a Byte After Round 3S-box
	5.5 Attacking a Byte After Round 4S-box

	6 Conclusions and Future Work
	References

	A Side-Channel Based Disassembler for the ARM-Cortex M0
	1 Introduction
	2 Related Work
	3 Experimental Setup
	4 The Datasets
	5 Selecting the Mixed-Instruction Sequence
	6 Experimental Results
	6.1 Overview of Algorithms Used for Training and Classification
	6.2 Choosing the Configuration for the Dataset
	6.3 Amount of Traces per Program
	6.4 Training and Classification for Groups of Instructions
	6.5 Training and Classification Results for Individual Instructions
	6.6 Discussion

	7 Conclusions and Future Work
	A Discussion KL-Based Feature Selection
	A.1 Background
	A.2 Results of Feature Selection

	References

	Towards Isolated AI Accelerators with OP-TEE on SoC-FPGAs
	1 Introduction
	2 Security Analysis
	2.1 AI Accelerators
	2.2 Threat Model
	2.3 Related Works

	3 Proposed Method
	3.1 Overview
	3.2 NVDLA
	3.3 Arm TrustZone and OP-TEE
	3.4 XMPUs and XPPUs
	3.5 Threats and Countermeasures

	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Discussion
	5.1 Parameter Encryption
	5.2 Combined Use of AI Accelerators
	5.3 Hardware Security

	6 Conclusion
	References

	Order vs. Chaos: Multi-trunk Classifier for Side-Channel Attack
	1 Introduction
	2 Standard Classifiers
	2.1 Architecture
	2.2 Evaluation
	2.3 Thought Experiment
	2.4 Ambiguous Labels and Low Accuracies (Acc)

	3 Introducing MTOvC classifiers
	3.1 Architecture
	3.2 Evaluation
	3.3 Advantages and Disadvantages over Standard Classifier

	4 Results
	4.1 Datasets
	4.2 Discussion

	5 Conclusion
	References

	AIoTS – Artificial Intelligence and Industrial IoT Security
	Framework for Calculating Residual Cybersecurity Risk of Threats to Road Vehicles in Alignment with ISO/SAE 21434
	1 Introduction
	2 Background
	2.1 Requirements Of Risk Management Framework
	2.2 ISO/SAE 21434
	2.3 Related Work

	3 Residual Risk Management Framework
	3.1 Residual Risk
	3.2 Head Lamp Example
	3.3 Calculating Residual Risk Using Flow Graphs
	3.4 Evaluation

	4 Discussion
	5 Conclusion And Future Works
	References

	Output Prediction Attacks on Block Ciphers Using Deep Learning
	1 Introduction
	1.1 Our Contribution
	1.2 Comparison with Existing Studies

	2 Methodology
	2.1 Goals of Attack
	2.2 Neural Network and Hyperparameters
	2.3 Deep Learning Models and Their Evaluation

	3 Whitebox Analysis
	3.1 Application to Toy Block Ciphers
	3.2 Application to Block Ciphers with Large Block Sizes
	3.3 Accuracy of Experimental Results

	4 Extended Whitebox Analysis on Small PRESENT-[4]
	4.1 Experimental Procedure
	4.2 Experimental Results

	5 Conclusion
	A Our Target Ciphers
	B Related Works
	C Experimental Results Using the CNN
	D Maximum Differential Probabilities of small PRESENT-[4], small AES-[4], and small TWINE-[4]
	E More Detailed Results in Sect.3.1
	F More Detailed Results in Sect.3.2
	References

	HolA: Holistic and Autonomous Attestation for IoT Networks
	1 Introduction
	2 Background
	2.1 Remote Attestation
	2.2 Trusted Anchor
	2.3 Chord

	3 Assumptions
	3.1 System Model
	3.2 Threat Model

	4 Motivation
	4.1 CRA Limitations in Internet-Like Networks
	4.2 Security Properties

	5 HolA Overview
	5.1 HolA Device Architecture
	5.2 HolA Device Lifecycle

	6 HolA: Design
	6.1 Status List Propagation
	6.2 Neighborhood Attestation and Absence Detection
	6.3 Network Obfuscation

	7 HolA: Evaluation
	7.1 Experimental Setup
	7.2 HolA Resiliency
	7.3 HolA Security Properties
	7.4 Time Delay for Neighbourhood Attestation
	7.5 SL Propagation Performance
	7.6 Memory Consumption
	7.7 Communication Overhead

	8 Related Works
	9 Discussion
	10 Conclusion
	References

	CIMSS – Critical Infrastructure and Manufacturing System Security
	The Etiology of Cybersecurity
	1 Introduction
	2 Literature Review
	2.1 Terminology

	3 A Cybersecurity Hypothesis in the ABF-Framework
	3.1 Mereo-Topological Reasoning
	3.2 Qualitative Evaluation of Agent Space in A,B,F

	4 Prediction of Cybersecurity Weaknesses
	4.1 From Multi-agent to Cyber-Physical Systems
	4.2 Security and Insecurity of a System
	4.3 Cybersecurity Risk Assessment

	5 Conclusion and Future Work
	A  Class Diagram for ABF-Framework
	B  Overview of the Results of the Tool
	References

	Outsider Key Compromise Impersonation Attack on a Multi-factor Authenticated Key Exchange Protocol
	1 Introduction
	1.1 Motivations
	1.2 Contributions
	1.3 Organization of the Rest Article

	2 Related Work
	3 Preliminaries
	3.1 Metric Space
	3.2 Min-Entropy and Statistical Distance
	3.3 Public Key Encryption Scheme
	3.4 Message Authentication Code Scheme
	3.5 Fuzzy Extractor

	4 Security Model
	4.1 Execution Environment
	4.2 Adversarial Model
	4.3 Secure AKE Protocols
	4.4 Security Experiment EXPMFAKE,A ()

	5 Security Analysis and Improvement of Zhang's MFAKE Protocol
	5.1 Zhang's MFAKE Protocol
	5.2 The Insecurity of Zhang's MFAKE Scheme
	5.3 An Improvement Solution of Zhang's MFAKE Scheme

	6 Conclusion
	References

	Toward Safe Integration of Legacy SCADA Systems in the Smart Grid
	1 Introduction
	2 False Command Attacks Against Legacy SCADA Systems
	3 Data Diode Approach
	4 Detect-and-Respond Approach
	4.1 Protection Agent
	4.2 Detect-and-Respond Defence of Protection Agent
	4.3 Example Implementation with Siemens Sinaut 8FW Protocol
	4.4 Security Analysis
	4.5 Cost and Benefit Analysis

	5 Conclusions
	References

	Cloud S&P – Cloud Security and Privacy
	RATLS: Integrating Transport Layer Security with Remote Attestation
	1 Introduction
	2 Background
	2.1 Transport Layer Security
	2.2 Trusted Computing

	3 Design
	3.1 Design Goals
	3.2 High-Level Design

	4 Implementation
	4.1 Architecture
	4.2 RATLS Handshake with Remote Attestation
	4.3 RATLS Handshake with Session Resumption
	4.4 Attestation Provider Plugins

	5 Evaluation
	5.1 Usability
	5.2 Security
	5.3 Performance

	6 Related Work
	7 Conclusions
	References

	DLPFS: The Data Leakage Prevention FileSystem
	1 Introduction
	2 Data Leakage Prevention FileSystem in Practice
	3 Implementation Details
	4 Experimental Evaluation
	4.1 Setup
	4.2 Methodology
	4.3 Results and Discussion

	5 Related Work
	6 Conclusions and Future Work
	References

	Privacy-Preserving Record Linkage Using Local Sensitive Hash and Private Set Intersection
	1 Introduction
	2 Preliminaries and Notation
	2.1 Entity Resolution (ER)
	2.2 Local Sensitive Hash (LSH)
	2.3 Private Set Intersection (PSI)

	3 Our Solution
	3.1 PPRL Variants

	4 Our Implementation
	4.1 Relative Weighting of the Record Fields
	4.2 LSH Description

	5 Experiments
	6 Conclusion
	A Related Work
	B Security Assumptions
	C Privacy-Preserving Record Linkage
	D Example of the LSH-PSI Protocol
	E Using the Jaccard Indicator
	E.1 Optimizing the Protocol
	E.2 Scoring the Reported Matches

	References

	SCI – Secure Cryptographic Implementation
	UniqueChain: Achieving (Near) Optimal Transaction Settlement Time via Single Leader Election
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 The Model of Protocol Execution

	3 The Single Leader Election
	3.1 Two-Chain Blockchain
	3.2 The Resource Procedure

	4 Protocol uc: UniqueChain in the PoS Setting
	5 Security Analysis of uc
	6 Conclusion
	A  The Implementation of Finit
	B  The Implementation of Fres
	References

	PEPEC: Precomputed ECC Points Embedded in Certificates and Verified by CT Log Servers
	1 Introduction
	2 Preliminaries
	2.1 PKI and CT
	2.2 Elliptic Curve Cryptography
	2.3 w-NAF

	3 PEPEC Design
	3.1 Generating PEPEC Certificates
	3.2 Verifying PEPEC Certificates
	3.3 Utilizing PEPEC Certificates

	4 Evaluation
	4.1 Security Evaluation
	4.2 Performance Evaluation

	5 Conclusion
	References

	Efficient Software Implementation of GMT6-672 and GMT8-542 Pairing-Friendly Curves for a 128-Bit Security Level
	1 Introduction
	2 Preliminaries
	2.1 Guillevic-Masson-Thomé (GMT) Curves with Embedding Degrees 6 and 8
	2.2 Ate Pairing over the GMT6 and GMT8 Curves
	2.3 Ate Pairings over GMT Curves with Twists

	3 Review of Extension Field Classes
	3.1 Optimal Extension Fields
	3.2 All-One Polynomial Extension Fields

	4 Proposal of Efficient GMT6 and GMT8 Curve Parameters and Their Field-Towering Schemes
	4.1 GMT6 Curve Parameters and Towers
	4.2 GMT8 Curve Parameters and Towers

	5 Implementation of Ate Pairing over the GMT6 and GMT8 Curves
	5.1 Implementation of Miller's Algorithm
	5.2 Implementation of Final Exponentiation

	6 Implementation Results
	6.1 Multi-precision Libraries and Implementation Features
	6.2 Pairing Benchmark Results

	7 Conclusion and Future Work
	References

	SecMT – Security in Mobile Technologies
	Leaky Blinders: Information Leakage in Mobile VPNs
	1 Introduction
	2 Technical Background
	2.1 Mobile Devices
	2.2 Networks

	3 Experimental Setup
	3.1 Network Setup
	3.2 Devices and App Setup
	3.3 Parameter Setup

	4 Dynamic Analysis
	4.1 Metrics
	4.2 Experiments
	4.3 Case Study: Lockdown Option
	4.4 Case Study: DNS Traffic

	5 Directions for Future Work
	5.1 Android Internals
	5.2 VPN App Internals
	5.3 User Expectations

	6 Related Work
	7 Conclusion
	References

	Instrumentation Blueprints: Towards Combining Several Android Instrumentation Tools
	1 Introduction
	2 Instrumentation Tools in the Literature
	2.1 Taxonomy of Instrumentation Tools
	2.2 Limitations of Instrumentation

	3 Background
	4 Instrumentation Blueprints
	4.1 Blueprint Design
	4.2 The Syntax

	5 Implementation
	5.1 Generation of Instrumentation Blueprints for ACVTool
	5.2 Blueprint Applicator
	5.3 Evaluation
	5.4 Limitations

	6 Conclusions and Future Work
	References

	SiMLA – Security in Machine Learning and its Applications
	A Siamese Neural Network for Scalable Behavioral Biometrics Authentication
	1 Introduction
	2 Background
	2.1 Attacker and System Model

	3 Approach
	3.1 Feature Engineering
	3.2 Siamese Neural Network

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Conclusion
	References

	A Methodology for Training Homomorphic Encryption Friendly Neural Networks
	1 Introduction
	1.1 Our Contributions

	2 Related Work
	3 Methodology
	3.1 Trainable Polynomial Activation
	3.2 Smooth-Transition
	3.3 Knowledge Distillation

	4 Experiments
	4.1 Datasets
	4.2 Model
	4.3 Experimental Results

	5 Conclusions
	A AlexNet Network Architecture
	B Model Hyperparameters
	References

	Scalable and Secure HTML5 Canvas-Based User Authentication
	1 Introduction
	2 Background
	2.1 Browser Fingerprinting
	2.2 HTML5 Canvas

	3 Approach
	3.1 System and Attacker Model
	3.2 Authentication Protocol Design
	3.3 Machine Learning Classifier Design
	3.4 Training Procedure
	3.5 Evaluation Strategy

	4 Evaluation
	4.1 Datasets
	4.2 Results
	4.3 Discussion

	5 Related Work
	6 Conclusions
	References

	Android Malware Detection Using BERT
	1 Introduction
	2 Background
	2.1 Malware Detection
	2.2 Android Package
	2.3 Transformer
	2.4 BERT

	3 Experimental Setup
	3.1 Dataset
	3.2 Pre-trained Model
	3.3 Fine-Tuning

	4 Empirical Results
	4.1 RQ1: Are the Experiments from MalBERT Reproducible?
	4.2 RQ2: How Important are Permissions for Malware Detection?
	4.3 RQ3: Is it Possible to Keep or Improve the Results by Reducing the Size of the Manifests?
	4.4 RQ4: Can BERT Classify Families of Malware?

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	POSTERS
	POSTER: A Transparent Remote Quantum Random Number Generator over a Quantum-Safe Link
	1 Motivation
	2 The Overall Architecture
	3 The QRNG Web Service
	4 The Receiver
	5 The Wiretap
	6 Conclusion
	References

	POSTER: Enabling User-Accountable Mechanisms in Decision Systems
	1 Motivation
	2 Approach
	2.1 User-Accountable Anonymous Identifiers

	3 Challenges and Potential
	4 Conclusion and Open Questions
	References

	Poster: Key Generation Scheme Based on Physical Layer
	1 Introduction
	1.1 Wireless Network Security
	1.2 Key Generation Method Based on Physical Layer

	2 Our Work
	2.1 Optimization of Quantization Algorithms
	2.2 Preprocessing of Measurements in Different Scenarios

	3 Future Research
	References

	POSTER: ODABE: Outsourced Decentralized CP-ABE in Internet of Things
	1 Introduction
	2 Literature Review
	3 Outsourced Encryption
	4 Analysis
	5 Conclusion
	References

	POSTER: Ransomware Detection Mechanism – Current State of the Project
	1 Introduction
	2 Current State
	2.1 Indicators

	3 Upcoming Challenges
	References

	Author Index

