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Abstract. Generation of photo-realistic images, semantic editing and
representation learning are only a few of many applications of high-
resolution generative models. Recent progress in GANs have established
them as an excellent choice for such tasks. However, since they do
not provide an inference model, downstream tasks such as classification
cannot be easily applied on real images using the GAN latent space.
Despite numerous efforts to train an inference model or design an iter-
ative method to invert a pre-trained generator, previous methods are
dataset (e.g. human face images) and architecture (e.g. StyleGAN) spe-
cific. These methods are nontrivial to extend to novel datasets or archi-
tectures. We propose a general framework that is agnostic to architecture
and datasets. Our key insight is that, by training the inference and the
generative model together, we allow them to adapt to each other and
to converge to a better quality model. Our InvGAN, short for Invert-
ible GAN, successfully embeds real images in the latent space of a high
quality generative model. This allows us to perform image inpainting,
merging, interpolation and online data augmentation. We demonstrate
this with extensive qualitative and quantitative experiments.

1 Introduction

The ability to generate photo-realistic images of objects such as human faces
or fully clothed bodies has wide applications in computer graphics and com-
puter vision. Traditional computer graphics, based on physical simulation, often
fails to produce photo-realistic images of objects with complicated geometry
and material properties. In contrast, modern data-driven methods, such as deep
learning-based generative models, show great promise for realistic image synthe-
sis [23,24]. Among the four major categories of generative models –generative
adversarial networks (GANs), variational auto-encoders (VAEs), normalizing
flows and autoregressive models– GANs deliver images with the best visual qual-
ity. Although recent efforts in VAEs [13,34] have tremendously improved their
generation quality, they still use larger latent space dimensions and deliver lower
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quality images. Autoregressive models are very slow to sample from and do not
provide a latent representation for the trained data. Flow-based methods do not
perform dimensionality reduction and hence produce large models and latent
representations. On the other hand, GANs offer great generation quality, but do
not provide a mechanism to embed real images into the latent space. This limits
them as a tool for image editing and manipulation. Specifically, while several
methods exist [2,4,6,46], there is no method that trains the generative and the
inference model together1. To that end, we propose InvGAN, an invertible GAN
in which the discriminator acts as an inference module. InvGAN enables a wide
range of applications, as described in the following paragraphs.

GANs learn a latent representation of the training data. This representation
has been shown to be well-structured [10,23,24], allowing GANs to be employed
for a variety of downstream tasks (e.g. classification, regression and other super-
vised tasks) [28,33]. We extend the GAN framework to include an inference
model that embeds real images into the latent space. InvGAN can be used to
support representation learning [11,27], data augmentation [10,37] and algorith-
mic fairness [7,38,39]. Previous methods of inversion rely on computationally
expensive optimization of inversion processes [3,4], limiting their scope to offline
applications, e.g. data augmentation has to happen before training starts. Effi-
cient, photo-realistic, semantically consistent, and model-based inversion is the
key to online and adaptive use-cases.

Recent work shows that even unsupervised GAN training isolates several
desirable generative characteristics [29,43]. Prominent examples are correspon-
dences between latent space directions and e.g. hairstyle, skin tone and other
visual characteristics. Recent works provide empirical evidence suggesting that
one can find paths in the latent space (albeit non-linear) that allow for edit-
ing individual semantic aspects. GANs therefore have the potential to become
a high-quality graphics editing tool [18,41]. However, without a reliable mech-
anism for projecting real images into the latent space of the generative model,
editing of real data is impossible. InvGAN take a step towards addressing this
problem.

2 Related Work

The task, GAN inversion, refers to the task of (approximately) inverting the
generator network. It has been addressed in two primary ways (1) using an
inversion model (often a deep neural network) (2) using an iterative optimization-
based method, typically initialized with (1). Although, invertibility of generative
models span beyond specific data domains (images, speech, language etc..), we
study InvGAN applied to image data only. Its applications of generation of
sound, language etc.. is left as future work.

1 Except for BiGAN [14] and ALI [16]. We discuss the differences in Sect. 2.
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Optimization Based: iGAN [53] optimizes for a latent code while minimiz-
ing the distance between a generated image and a source image. To ensure
uniqueness of the preimage of a GAN-generated data point, Zachary et al. [26]
employ stochastic clipping. As the complexity of the GAN generators increases,
an inversion process based on gradient descent and pixel space MSE is insuf-
ficient. Addressing this, Rameen et al. specifically target StyleGAN generators
and optimize for perceptual loss [3,4]. However, they invert into the W+ space,
the so-called extended W space of StyleGAN. This results in high dimensional
latent codes and consequently prolongs inversion time. This can also produce out-
of-distribution latent representations, which makes them unsuitable for down-
stream tasks. Contrary to these, InvGAN offers fast inference embedding in the
non-extended latent space.

Model Based: BiGAN [14] and ALI [16] invert the generator of a GAN during
the training process by learning the joint distribution of the latent vector and
the data in a completely adversarial setting. However, the quality is limited,
partially because of the choice of DCGAN [32] and partially because of the
significant dimensionality and distribution diversity between the latent variable
and the data domain [15]. More recent models target the StyleGAN architecture
[35,44,52] and achieve impressive results. Most leverage StyleGAN peculiarities,
i.e., they invert in the W+ space, so adaptation to other GAN backbones is non-
trivial. Adversarial latent auto-encoders [31] are closest to our current work.
Our model and adversarial autoencoders can be made equivalent with a few
alterations to the architecture and to the optimization objective. We discuss
this more in detail in Sect. 3.2. Our method, on the other hand, neither uses any
data set specific loss nor does it depend upon any specific network architecture.

Hybrid Optimization and Regression Based: Guan et al. [20] train a
regressor that is used to initialize an optimization-based method to refine the
regressor’s guess. However, is specific to human face datasets. Zhu et al. [51] mod-
ify the general hybrid approach with an additional criterion that encourages the
recovered latent must belong to the semantically meaningful region learned by
the generator by assuming that the real image can be reconstructed more faith-
fully in the immediate neighbourhood of an initial guess given by a model-based
inversion mechanism. Yuval et al. [5] replace gradient-based optimization with
an iterative encoder that encodes the current generation and target image to
the estimated latent code difference. They empirically show that this iterative
process converges and that the recovered image improves over iterations. How-
ever, this method requires multiple forward passes in order to achieve a suitable
latent code. In contrast to the work above, the inference module obtained by our
method infers the latent code in one shot. Hence, it is much faster and does not
run the risk of finding a non-meaningful latent code.

The inversion mechanisms presented so far do not directly influence the gen-
erative process. In most of the cases, they are conducted on a pre-trained frozen
generator. Although in the case of ALI [16] and BiGAN [14] the inference model
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loosely interacts with the generative model at training time, the interaction is
only indirect; i.e. through the discriminator. In our work, we tightly couple the
inference module with the generative module.

Joint Training of Generator and Inference Model: We postulate that
jointly training an inference module will help regularize GAN generators towards
invertibility. This is inspired by the difficulty of inverting a pre-trained high-
performance GAN. For instance, Bau et al. [8] invert PGAN [22], but for best
results a two-stage mechanism is needed. Similarly, Image2StyleGAN [2] projects
real images into the extended W+ space of StyleGAN, whereas, arguably, all the
generated images can be generated from the more compact z or w space. This
is further evident from Wulff et al. [45] who find an intermediate latent space
in StyleGAN that is more Gaussian than the assumed prior. However, they too
use an optimization-based method and, hence, it is computationally expensive
and at the same time specific to both the StyleGAN backend and the specific
data set. Finally, we refer the readers to ‘GAN Inversion: A Survey’ [46] for a
comprehensive review of relate work.

3 Method

Goal: Our goal is to learn an inversion module alongside the generator during
GAN training. An inversion module is a mechanism that returns a latent embed-
ding of a given data point. Specifically, we find a generator G : W → X and an
inference model D : X → W such that x ≈ G(D(x ∼ X)), where X denotes the
data domain and W denotes the latent space. We reuse the GAN discriminator
to play the role of this inference model D in practice.

3.1 Architecture

We demonstrate InvGAN using DC-GAN, BigGAN and StyleGAN as the under-
lying architectures. Figure 1 represents the schematic of our model. We follow
the traditional alternate generator-discriminator training mechanism. The gener-
ative part consists of three steps 1. sampling latent code: z ∼ N (0, I), 2. mapping
the latent code to w space: w = M(z), 3. using mapped code to generate fake
data: x = G(w), where M is a mapping network, G is the generator, D is the
discriminator, and N (0, I) is the standard normal distribution. In practice, the
discriminator, besides outputting real/fake score, also outputs inferred w param-
eter, which was found to work better empirically over designs with two different
networks for discrimination and inference. From here on, we use w̃, c = D(x) to
denote the inferred latent code (w̃) using the discriminator D and c to denote
the real-fake classification decision for the sample x ∈ X. Wherever obvious, we
simply use D(x) to refer to c, the discrimination decision only.
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3.2 Objective

GAN Objective: The min-max game between the discriminator network and
the generator network of vanilla GAN training is described as

min
G,M

max
D

LGAN = min
G,M

max
D

[Ex∈X[log D(x)] + Ez∈Z[log(1 − D(G(M(z))))]] .

(1)
A naive attempt at an approximately invertible GAN would perform minG maxD

LGAN + minG,D ‖w − w̃‖p, where ‖•‖p denotes an Lp norm. This loss function
can be interpreted as optimal transport cost. We discuss this in more detail at
the end of this section. However, this arrangement, coined the “naive model”,
does not yield satisfactory results, cf. Sect. 4.4. This can be attributed to three
factors: (1) w corresponding to real images are never seen by the generator; (2)
no training signal is provided to the discriminator for inferring the latent code
corresponding to real images (wR); (3) the distribution of wR might differ from
prior distribution of w. We address each of these concerns with a specific loss
term designed to address the said issues. Our naive model corresponds to the
adversarial autoencoders [31] if the real-fake decision is derived from a common
latent representation. However, this forces the encoding of real and generated
images to be linearly separable and contributes to degraded inference perfor-
mance.

Minimizing Latent Space Extrapolation: Since, in the naive version, nei-
ther the generator nor the discriminator gets trained with wR, it relies completely
upon its extrapolation characteristics. In order to reduce the distribution mis-
match for the generator, we draw half the mini batch of latent codes from the
prior and the other half consists of wR; i.e., wtotal = w ++ wR, w ∼ P (W ) where
++ denotes a batch concatenation operation. By w ∼ P (W ), we denote the two
stage process given by the following w = M(z ∼ P (Z)). Together with the naive
loss this forms the first three terms of our full objective function given in Eq. 3

Pixel Space Reconstruction Loss: Since latent codes for real images are
not given, the discriminator cannot be trained directly. However, we recover a
self-supervised training signal by allowing the gradients from the generator to
flow into the discriminator. Intuitively, the discriminator tries to infer latent
codes from real images that help the generator reproduce that image. As shown
in Sect. 4.4, this improves real image inversion tremendously. We enforce further
consistency by imposing an image domain reconstruction loss between input and
reconstructed real images. However, designing a meaningful distance function for
images is a non-trivial task. Ideally, we would like a feature extractor function f
that extracts low- and high-level features from the image such that two images
can be compared meaningfully. Given such a function, a reconstruction loss can
be constructed as

Lfm = ‖Ex∈X(f(x) − f(G(w ∼ P (W |x)))‖p (2)
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A common practice in the literature is to use a pre-trained VGG [21,50] network
as a feature extractor f . However, it is well known that deep neural networks are
susceptible to adversarial perturbations [47]. Given this weakness, optimizing for
perceptual loss is error-prone. Hence, a combination of a pixel-domain L2 and
feature-space loss is typically used, but this often results in degraded quality.
Consequently, we take the discriminator itself as the feature extractor function
f . Due to the min-max setting of GAN training, we are guaranteed to avoid the
perils of adversarial and fooling samples, if we use the discriminator features,
instead of VGG features. The feature loss is shown in the second half of Fig. 1.
Although this resembles the feature matching described by Salimans et al. [36],
it has a crucial difference. As seen in Eq. 2 the latent code fed into the generator
is drawn from the conditional distribution P (W |x) := δD(x)(w) rather than the
prior P (W ), where δ(x) represents the Dirac delta function located at x. This
forces the distribution of the features to match more precisely as compared to
the simple first-moment matching proposed by Salimans et al. in [36].

Addressing Mismatch Between Prior and Posterior: Finally, we address
the possibility of mismatch between inferred and prior latent distributions (point
(3) described above) by imposing a maximum mean discrepancy (MMD) loss
between the sets of samples of the said two distributions. We use an RBF kernel
to compute this. The loss improves the random sampling quality by providing a
direct learning signal to the mapping network. This forms the last term of our
objective function as shown in Eq. 3.

Fig. 1. We train InvGAN following a regular GAN. We use a second output head in
the discriminator besides the real fake decision head, to infer the latent-code z of a
given image. Here � denotes no gradient propagation during back propagation step. It
also denotes ‘no training’ when it is placed on a model. We use red color to show data
flow corresponding to real images.

Putting everything together gives the objective of our complete model. It
is as shown in Eq. 3. Note that here the expectation operator Ew++wR

acts on
several loss terms that are independent of wR or w. In such cases keeping in mind
the identity c = E[c], where c is a constant, can add clarity. Furthermore, here
and in the rest of the paper we use a plus operator +, between two optimization
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process, to indicate that both of them are performed simultaneously.

min
G,M

[
max
D

LGAN + min
D

[
Ew++wR

[ ‖M(z) − w̃‖2
2 +

∥∥(w̃ ++ wR) − ˜̃w
∥∥2

2
+ Lfm

+ MMD{w,wR}]]] (3)

An Optimal Transport Based Interpretation: Neglecting the last three
terms described in Eq. 3, our method can be interpreted as a Wasserstein autoen-
coder (the GAN version) (WAE-GAN) [42]. Considering a WAE with its data
domain set to our latent space and its latent space assigned to our image domain,
if the encoder and the discriminator share weights the analogy is complete. Our
model can, hence, be thought of as learning the latent variable model P (W ) by
randomly sampling a data point x ∼ X from the training set and mapping it to
a latent code w via a deterministic transformation. In terms of density, it can
be written as in Eq. 4.

P (W ) :=
∫
x∈X

P (w|x)P (x)dx. (4)

As proven by Olivier et al. [9], under this model the optimal transport prob-
lem Wc(P (W ), PD(W )) := infΓ∈P (w1∼P (W ),w2∼PD(W )) [Ew1,w2∼Γ [c(w1, w2)]] can
be solved by finding a generative model G(X|W ) such that its X marginal,
PG(X) = Ew∼P (W )G(X|w) matches the image distribution P (X). We ensure
this by considering the Jensen-Shannon divergence DJS(PG(X), P (X)) using a
GAN framework. This leads to the cost function given in Eq. 5, when we choose
the ground cost function c(w1, w2) to be squared L2 norm.

min
G,M

max
D

LGAN + min
G,M

min
D

‖w − w̃‖2
2 (5)

Finally, we find that by running the encoding/decoding cycle one more time,
we can impose several constraints that improve the quality of the encoder and
the decoder network in practice. This leads to our full optimization criterion,
as described in Eq. 3. Note that our method because of this extra cycle is less
efficient computationally as compared to vanilla VAEs or WAEs, but by incurring
this computational penalty we successfully avoid having to define a loss function
in the image domain. This results in sharper image generation.
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3.3 Dealing with Resolutions Higher Than the Training Resolution

Although StyleGAN [24] and BigGAN [10] have shown that it is possible to
generate relatively high-resolution images, in the range of 1024×1024 and 512×
512, their training is resource intense and the models are difficult to tune for new
data sets. Equipped with invertibility, we explore a tiling strategy to improve
the output resolution. First, we train an invertible GAN at a lower resolution
(m×m) and simply tile them n×n times with n2 latent codes to obtain a higher
resolution (mn × mn) final output image. The new latent space containing n2

latent codes obtained using the inference mechanism of the invertible GAN can
now be used for various purposes, as described in Sect. 4.3 and reconstructions
are visualized in Fig. 3. This process correlates in spirit somewhat to COCO-
GAN [25]. The main difference, however, is that our model at no point learns
to assemble neighbouring patches. Indeed, the seams are visible if one squints
at the generated images, e.g., in Fig. 3. However, a detailed study of tiling for
generation of higher resolution images than the input domain is beyond the scope
of our paper. We simply explore some naive settings and their applications in
Sect. 4.3.

4 Experiments

We test InvGAN on several diverse datasets (MNIST, ImageNet, CelebA, FFHQ)
and multiple backbone architectures (DC-GAN, BigGAN, StyleGAN). For the
mapping network in the generator, we use the standard 8-layer mapping network
with StyleGAN and add a 2-layer mapping network to BigGAN and DC-GAN.
Our method is evaluated both qualitatively (via style mixing, image inpainting
etc.) and quantitatively (via the FID score and the suitability for data augmen-
tation for discriminative tasks such as classification). We found that relative
weights of different terms in our objective function do not impact the model’s
performance significantly. Therefore, keeping simplicity in mind, we avoid tuning
and simply set them to be one.

Table 1 shows random sample FIDs, middle point linear interpolation FIDs
and test set reconstruction mean absolute errors (MAEs) of our generative
model. We note here that interpolation FID and random generation FID are
comparable to non-inverting GANs. This leads us to conclude that the inversion
mechanism does not adversarially impact the generative properties. We provide
a definition, baseline and understanding of inversion of a high-quality gener-
ator for uniform comparison of future works on GAN inversion. We highlight
model-based inversion, joint training of generative and inference model and its
usability in downstream tasks. We demonstrate that InvGAN generalizes across
architectures, datasets, and types of downstream task.
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Table 1. Here we report random sample FID (RandFID), FID of reconstructed random
samples (RandRecFID), FID of reconstructed test set samples (TsRecFID), FID of the
linear middle interpolation of test set images (IntTsFID) and reconstruction per pixel
per color channel mean absolute error when images are normalized between ±1, also
from test set. All FID scores are here evaluated against train set using 500 and 50000
samples. They are separated by ‘/’. For the traditional MSE optimization based and
In-Domain GAN inversion, the MSE errors are converted to MAE by taking square
root and averaging over the color channels and accounting for the re-normalization of
pixel values between ±1 (MAE±1). Runtime is given in seconds per image. We ran
them on a V100 32GB GPU and measured wall clock time.

Models RandFID RandRecFID TsRecFID IntTsFID MAE±1 Run Time

FFHQ [48] 49.65/14.59 56.71/23.93 -/13.73 68.45/38.01 0.129 0.045

FFHQ Enc. [51] 46.82/14.38 -/- 88.48/ - -/- 0.460

FFHQ MSE opt. [51] 46.82/14.38 -/- 58.04/ - -/- 0.106

FFHQ In-D. Inv. [51] 46.82/14.38 52.02/- 42.64/ - 71.83/- 0.115 99.76

DCGAN, MNIST 17.44/6.10 16.76/4.25 17.77/4.70 26.04/11.44 0.070 3.3 · 10−5

StyleGAN, CelebA 26.63/4.81 24.35/3.51 24.37/4.14 32.37/15.60 0.150 1.0 · 10−3

StyleGAN, FFHQ 49.14/12.12 44.42/8.85 41.14/7.15 49.52/14.36 0.255 2.0 · 10−3

We start with a StyleGAN-based architecture on FFHQ and CelebA for
image editing. Then we train a BigGAN-based architecture on ImageNet, and
show super resolution and video key-framing by tiling in the latent domain to
work with images and videos that have higher resolution than training data. We
also show ablation studies with a DC-GAN-based architecture on MNIST. In the
following sections we evaluate qualitatively by visualizing semantic editing of real
images and quantitatively on various downstream tasks including classification
fairness, image super resolution, image mixing, etc.

4.1 Semantically Consistent Inversion Using InvGAN

GANs can be used to augment training data and substantially improve learning
of downstream tasks, such as improving fairness of classifiers of human-facial
attributes [7,33,38,39]. There is an important shortcoming in using existing
GAN approaches for such tasks: the labeling of augmented data relies on meth-
ods that are trained independently on the original data set, using human anno-
tators or compute-expensive optimization-based inversion. A typical example is
data-set debasing by Ramaswamy et al. [33]. For each training image, an altered
example that differs in some attribute (e.g. age, hair color, etc..) has to be gener-
ated. This can be done in one of two ways, 1. by finding the latent representation
of the ground truth image via optimization and 2. by labeling random samples
using pre-trained classifiers on the biased data set. Optimization-based methods
are slow and not a viable option for on-demand/adaptive data augmentation.
Methods using pre-trained classifiers inherit their flaws, e.g. spurious correla-
tion induced dependencies. However, having access to a high-quality inversion
mechanism help us overcome such problems [54].
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To verify that InvGAN is indeed suitable for such tasks, we train ResNet50
attribute classifiers on the CelebA dataset. We validate that the encoding and
decoding of InvGAN results in a semantically consistent reconstruction by train-
ing the classifier only on reconstructions of the full training set. As a baseline,
we use the same classifier trained on the original CelebA. We produce two recon-
structed training sets by using the tiling-based inversion (trained on ImageNet)
and by training InvGAN on CelebA (without tiling). For each attribute, a sepa-
rate classifier has been trained for 20 epochs. The resulting mean average preci-
sions are reported in Table 2. We see that training on the reconstructions allows
for very good domain transfer to real images, indicating that the reconstruction
process maintained the semantics of the images.

Table 2. Mean average precision for a ResNet50 attribute classifier on CelebA, aver-
aged over 20 attributes. We report the performance for training on the original dataset,
the reconstructed dataset using the tiling-based method pre-trained on ImageNet and
the reconstruction on InvGAN trained on the CelebA training set directly.

Train on →
Eval. on ↓

Original Tile Recon. Full Recon.

Original 0.81 ± 0.15 0.77 ± 0.16 0.79 ± 0.15
Tile recon. 0.79 ± 0.16 0.80 ± 0.15 0.78 ± 0.16
Full recon. 0.81 ± 0.15 0.78 ± 0.16 0.81 ± 0.14

Recon. Vis.

4.2 Suitability for Image Editing

GAN inversion methods have been proposed for machine supported photo edit-
ing tasks [12,30,51]. Although there is hardly any quantitative evaluation for the
suitability of a specific inversion algorithm or model, a variety of representative
operations have been reported [3,4,51]. Among those are in-painting cut out
regions of an image, image-merging and improving on amateur manual photo
editing. Figures 2 and 8 in the appendix visualize those operations performed on
FFHQ and CelebA images, respectively. We demonstrate in-painting by zero-
ing out a randomly positioned square patch and then simply reconstructing the
image. Image-merging is performed by reconstructing an image which is com-
posed out of two images by simply placing them together. By reconstructing
an image that has undergone manual photo editing, higher degrees of photo-
realism are achieved. Quantitative metric for such tasks are hard to define and
hence is scarcely found in prior art, since they depend upon visual quality of the
results. We report reconstruction and interpolation FIDs in Table 1, in an effort
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to establish a baseline for future research. However, we do acknowledge that a
boost in pixel fidelity in our reconstruction will greatly boost the performance
of InvGAN on photo editing tasks. The experiments clearly show the general
suitability of the learned representations to project out of distribution images to
the learned posterior manifold via reconstruction.

Style mixing

In-painting Editing

Merging I Merging II

Fig. 2. Benchmark image editing tasks on FFHQ (128 px). Style mixing: we transfer
the first 0, 1, 2, . . . , 11 style vectors from one image to another. For the other image
editing tasks, pairs of images are input image (left) and reconstruction (right).

4.3 Tiling to Boost Resolution

Limitations in video RAM and instability of high resolution GANs are prominent
obstacles in generative model training. One way to bypass such difficulties is to
generate the image in parts. Here we train our invertible generative model, a
BigGAN architecture, on 32 × 32 random patches from ImageNet. Once the
inversion mechanism and the generator are trained to satisfactory quality, we
reconstruct both FFHQ and ImageNet images. We use 256 × 256 resolution and
tile 32 patches in an 8 × 8 grid for FFHQ images, and 128 × 128 resolution and
tiling 32 patches in a 4× 4 grid for ImageNet images. The reconstruction results
are shown in Fig. 3. Given the successful reconstruction process, we explore the
tiled latent space for tasks such as image deblurring and time interpolation of
video frames.

Image De-blurring: Here we take a low-resolution image, scale it to the
intended resolution using bicubic interpolation, invert it patch by patch, Gaus-
sian blur it, invert it again and linearly extrapolate it in the deblurring direction.
The deblurring direction is simply obtained by subtracting the latent code of the
given low resolution but bicubic up sampled image from the latent code of the
blurred version of it at the same resolution. The exact amount of extrapolation
desired is left up to the user. In Fig. 4 we show the effect of three different lev-
els of extrapolation. Although our method is not trained for the task of super
resolution, by virtue of a meaningful latent space we can enhance image quality.
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(a) (b)

Fig. 3. Tiled reconstruction of random (a) FFHQ images and (b) ImageNet images. The
left column shows the real images, the second shows the patch by patch reconstructions,
and the third shows the absolute pixel-wise differences. Note that interestingly though
the patches are reconstructed independent of each other, the errors lie mostly on the
edges of the objects in the images, arguably the most information dense region of the
images.

Fig. 4. Super resolution using extrapolation in the tiled latent space. From left, we
visualize the original image, the low-resolution version of it, the reconstruction of the
low-resolution version, and progressive extrapolation to achieve deblurring.

Temporal Interpolation of Video Frames: Here we boost the frame rate
of a video post capture. We infer the tiled latent space of consecutive frames in
a video, and linearly interpolate each tile to generate one or more intermediate
frames. Results are shown in Figure 6 in the appendix and in the accompanying
videos in supplementary material. We find the latent code of each frame in a
video sequence, and then derive intermediate latent codes by weighted averaging
neighboring latent codes using a Gaussian window. We use the UCF101 data set
[40] for this task. Note however that since there is no temporal constraint and
each patch is independently interpolated, one can notice flicker effect. Further-
studies into this matter are left to future work.

As can also be seen, this process produces discontinuities at the boundaries
of the patches. This is because neighboring patches are modeled independently
of one another in this work. This can be dealt with in a variety of ways, namely,
by carefully choosing overlapping patch patterns and explicitly choosing a pre-
determined or learning-based stitching mechanism, seam detection and correc-
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tion [1,49]. However, a thorough study in this direction is considered out of scope
for the current work.

4.4 Ablation Studies

Recall that the naive model defined in Sect. 3.2 uses the optimization
minG,M

[
maxD LGAN +minD Ez∼P (Z) ‖M(z) − w̃‖p

]
to train (also given in Eq-

uation 5), In Fig. 5a we show how our three main components progressively
improve the naive model. As is apparent from the method section, the first major
improvement comes from exposing the generator to the latent code inferred from
real images. This is primarily due to the difference in the prior and the induced
posterior distribution. This is especially true during early training, which imparts
a lasting impact. The corresponding optimization is minG,M

[
maxD LGAN+

minD Ew=M(z∼P (Z))++wR
‖w − w̃‖p

]
. This simply reduces the distribution mis-

match between prior and posterior by injecting inferred latent codes, improves
inversion quality. This is visualized in Fig. 5b. We call this model the augmented
naive model. However, this modification unlocks the possibility to enforce back
propagation of generator loss gradients to the discriminator and real-image,
generated-image pairing, as detailed in Sect. 3.2. This leads to our model and
the results are visualized in Fig. 5c.

(a) (b) (c)

Fig. 5. Inversion of held out test samples. Columns are in groups of three: the first
column holds real images, second their reconstruction and third the absolute pixel-wise
difference. (a) Inversion using naive model, i.e. only z reconstruction loss is used (b)
inversion using model that uses latent codes from real samples, i.e., the augmented
naive model. (c) our full model. Notice how the imperfections in the reconstructions
highlighted with red boxes gradually vanishes as the model improves. (Color figure
online)

5 Discussion and Future Work

While InvGAN can reliably invert the generator of a GAN, it still can benefit
from an improved reconstruction fidelity for tasks such as image compression,
image segmentation, etc. We observe that the reconstruction of rare features,
such as microphones, hats or background, tend to have lower quality, as seen in
the appendix in Figure 7 bottom row 3rd and 4th columns. This combined with
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the fact that the reconstruction loss during training tends to saturate even when
the weights are sufficiently high indicates that even well-engineered architectures
such as StyleGAN and BigGAN lack representative power to provide sufficient
data coverage.

Strong inductive biases in the generative model have the potential to improve
the quality of the inference module. For instance, GIF [18] and hologan [29]
among others introduce strong inductive bias from the underlying 3D geometry
and lighting properties of a 2D image. Hence, an inverse module of these gener-
ative mechanism has the potential to outperform their counterparts, which are
trained fully supervised on the labelled training data alone at estimating 3D face
parameters from 2D images.

As was shown by the success of RAEs [17], there is often a mismatch between
the induced posterior and the prior of generative models, which can be removed
by an ex-post density estimator. InvGAN is also aminable to ex-post density
estimation. When applied to the tiled latent codes, it estimates a joint density
of the tiles for unseen data. This would recover a generative model without going
through the unstable GAN training.

We have shown that our method scales to large datasets such as ImageNet,
CelebA, and FFHQ. A future work that is able to improve upon reconstruction
fidelity, would be able to explore adversarial robustness by extending [19] to
larger datasets.

6 Conclusion

We presented InvGAN, an inference framework for the latent generative param-
eters used by a GAN generator. InvGAN enjoys several advantages compared to
state-of-the-art inversion mechanisms. Since InvGAN is a model-based approach,
it enjoys computational efficiency. This enables our mechanism to reconstruct
images that are larger than the training images by tiling, with no additional
merging step. Furthermore, the inversion mechanism is integrated into the train-
ing phase of the generator, this encourages the generator to cover all modes. We
further demonstrated that the inferred latent code for a given image is semanti-
cally meaningful, i.e., it falls inside the structured part of the latent space learned
by the generator.
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53. Zhu, J.-Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipu-
lation on the natural image manifold. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) ECCV 2016. LNCS, vol. 9909, pp. 597–613. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46454-1 36

54. Zietlow, D., et al.: Leveling down in computer vision: pareto inefficiencies in fair
deep classifiers. arXiv:2203.04913 (2022). https://doi.org/10.48550/ARXIV.2203.
04913

http://arxiv.org/abs/1212.0402
https://openreview.net/forum?id=HkL7n1-0b
https://openreview.net/forum?id=HkL7n1-0b
http://arxiv.org/abs/2002.03754
http://arxiv.org/abs/2104.07661
http://arxiv.org/abs/2009.06529
http://arxiv.org/abs/2101.05278
http://arxiv.org/abs/1909.08072
https://doi.org/10.48550/ARXIV.1909.08072
https://doi.org/10.1007/978-3-030-58520-4_35
http://arxiv.org/abs/1906.08090
https://doi.org/10.1007/978-3-319-46454-1_36
https://doi.org/10.1007/978-3-319-46454-1_36
http://arxiv.org/abs/2203.04913
https://doi.org/10.48550/ARXIV.2203.04913
https://doi.org/10.48550/ARXIV.2203.04913

	InvGAN: Invertible GANs
	1 Introduction
	2 Related Work
	3 Method
	3.1 Architecture
	3.2 Objective
	3.3 Dealing with Resolutions Higher Than the Training Resolution

	4 Experiments
	4.1 Semantically Consistent Inversion Using InvGAN
	4.2 Suitability for Image Editing
	4.3 Tiling to Boost Resolution
	4.4 Ablation Studies

	5 Discussion and Future Work
	6 Conclusion
	References




