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Abstract. The role of chest X-ray (CXR) imaging, due to being more
cost-effective, widely available, and having a faster acquisition time com-
pared to CT, has evolved during the COVID-19 pandemic. To improve
the diagnostic performance of CXR imaging a growing number of studies
have investigated whether supervised deep learning methods can provide
additional support. However, supervised methods rely on a large num-
ber of labeled radiology images, which is a time-consuming and complex
procedure requiring expert clinician input. Due to the relative scarcity of
COVID-19 patient data and the costly labeling process, self-supervised
learning methods have gained momentum and has been proposed achiev-
ing comparable results to fully supervised learning approaches. In this
work, we study the effectiveness of self-supervised learning in the context
of diagnosing COVID-19 disease from CXR images. We propose a multi-
feature Vision Transformer (ViT) guided architecture where we deploy a
cross-attention mechanism to learn information from both original CXR
images and corresponding enhanced local phase CXR images. By using
10% labeled CXR scans, the proposed model achieves 91.10% and 96.21%
overall accuracy tested on total 35,483 CXR images of healthy (8,851),
regular pneumonia (6,045), and COVID-19 (18,159) scans and shows sig-
nificant improvement over state-of-the-art techniques. Code is available
https://github.com/endiqq/Multi-Feature-ViT.
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1 Introduction

The rapid spread of COVID-19 outbreak caused a surge of patients to emer-
gency departments and hospitalization. Compared to CT, chest X-ray (CXR) has
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several advantages such as its wide availability, exposure to less radiation, and
faster image acquisition times. Due to this CXR has become the primary diag-
nostic tool for improved management of COVID-19. However, the interpretation
of CXR images, compared to CT, is more challenging due to low image resolution
and COVID-19 image features being similar to regular pneumonia. Computer-
aided diagnosis via deep learning has been investigated to help mitigate these
problems and help clinicians during the decision-making process [20,21,24]. Most
supervised deep learning methods rely on a large number of labeled radiology
images. Medical image labeling is a time-consuming and complex procedure
requiring expert clinician input.

Semi-supervised learning methods have been proposed to provide a solu-
tion to scarcity of data in the context of COVID-19 diagnosis. [22] proposed
a multi-feature guided teacher-student distillation approach. Most recently self-
supervised learning methods, which utilize all the unlabeled data during learning,
have been investigated for COVID-19 diagnosis [8,9,19]. [8] achieved 79.5% accu-
racy and 86.6% area under the receiver operating characteristic curve (AUC) on
426 COVID-19 scans while using 1% of the labeled data for the pretext task. [9]
reported a mean average precision of 41.6% for 1,214 COVID-10 test data. [19]
reported 99.5% accuracy using 607 COVID-19 scans. While these initial results
on self-supervised learning are promising most of the prior work was evaluated
on limited COVID-19 scans.

In order to break the challenges associated with scarcity of training data and
to boost classification performance, we propose a new self-supervised learning
approach where the proposed framework exploits local phase enhanced CXR
image features to significantly improve the learning performance, specially when
the data is limited. Our contributions and findings include the following: 1) We
developed MoCo-COVID, a Vision Transformer(ViT) with modified Momentum
Contrast (MoCo) pretraining on CXR images for self-supervised learning. This
is the first study pretraining a ViT using MoCo for COVID-19 diagnosis from
CXR images. 2) We demonstrated the performance of MoCo-COVID can be
significantly improved by leveraging the local phase-based enhanced CXR scans
specially in low data regime. 80.27% and 93.24% overall accuracy were achieved
tested on 799 and 14,123 COVID-19 scans while using 1% of the labeled local
phase-based enhanced data for the training. 3) A novel objective function was
proposed using knowledge distillation to provide better generalization. 4) We
developed a multi-feature ViT architecture based on cross-attention mechanism
(MF-ViT CA) to further improve accuracy. The proposed MF-ViT CA achieves
95.03% and 97.35% mean accuracy on two large-scale test datasets including
14,922 COVID-19 scans and outperforms state-of-the-art semi-supervised learn-
ing and self-supervised learning methods.

2 Methods

Datasets: All images were collected from six public data repositories, which
are BIMCV [12], COVIDx [30], COVID-19-AR [6], MIDRC-RICORD-1c [28],
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COVID-19 Image Repository [31] and COVID-19-NY-SBU [5]. Our dataset con-
sists of a total of 33,055 CXR scans from 18,252 patients with three classes: nor-
mal, pneumonia, and COVID-19. These images were split into two datasets: 1)
Dataset-1: A subset containing 12,108 CXR scans with a balanced distribution
of classes (Fig. 1(b)). Dataset-1 was split into 60% training, 20% as validation,
and 20% as testing dataset. No subject overlaps among train, validation, and
test datasets. The test data in this dataset is referred to as Test-1. 2) Dataset-
2: Includes 20,947 CXR scans from 8,181 patients and has a larger number of
scans in COVID-19 class. Dataset-2 only serves as an additional test dataset,
referred to as Test-2, for evaluating the robustness of the proposed methods.

Fig. 1. (a) Top row original CXR images. Bottom row MF (x, y) images. The first two
columns are from subjects who are diagnosed with COVID-19. The last column is from
a healthy subject. (b) Class distribution of the evaluation datasets.

Image Enhancement: Local phase-based image analysis methods are more
robust to intensity variations, usually arising from patient characteristics or
image acquisition settings, and have been incorporated into various medical
image processing tasks [1,15,32]. The enhanced local phase CXR image, denoted
as MF (x, y), is obtained by combining three different local phase image features:
1-Local weighted mean phase angle (LwPA(x, y)), 2-Weighted local phase energy
(LPE(x, y)), and 3-Enhanced local energy attenuation image (ELEA(x, y)).
LPE(x, y) and LwPA(x, y) image features are extracted by filtering the CXR
image in frequency domain using monogenic filter and α-scale space deriva-
tive (ASSD) bandpass quadrature filters [21]. ELEA(x, y) image is extracted,
processing the LPE(x, y) image, by modeling the scattering and attenuation
effects of lung tissue inside a local region using L1 norm-based contextual reg-
ularization method [21]. We have used the filter parameters reported in [21] for
enhancing all the CXR images. Investigating Fig. 1(a) we can see that struc-
tural features inside the lung tissue are more dominant for COVID-19 CXR
images compared to healthy lung (last column Fig. 1(a)). The enhanced local
phase CXR images (MF (x, y)) and the original CXR images are used to train
proposed self-supervised learning methods explained in the next sections.
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MoCo-COVID-Self-Supervised Pretraining Using MoCo: We introduce
a MoCo-COVID framework (Fig. 2(c)). During the self-supervised training, a
CXR image is first transformed via two random augmentations(Aug.1 and
Aug.2) into images xq and xk. xq is passed through an encoder network, while xk

is passed through a momentum encoder network. We choose ViT-Small (ViT-S)
[7] with 6 heads as the backbone, instead of 12 heads used by MoCo v3, to have
a lower parameter count, and a faster throughput [3]. Sine-cosine variant [29]
is added to the sequence as positional embedding. The representations gener-
ated by each network are then passed into the projection head followed by a
prediction head. The projection head has three layers and the prediction head
has two layers. Each layer follows with batch normalization (BN) and a rectified
linear unit (ReLU) except the last layer of both projection head and prediction
head. Then the InfoNCE contrastive loss function [18] is adopted to promote the
similarity between the representations rq and rk:

L(rq, rk) = −log
exp(rq.rk + /τ)

∑K
i=1 exp(rq.rk, i/τ)

, (1)

where τ is a temperature hyperparameter and K is the number of currently stored
representations. The momentum coefficient follows a cosine schedule changing
from 0.9 to 0.999 during the MoCo-COVID pretraining.

Multi-Feature Fusion Vision Transformer via Cross Attention: Figure 2-
(a) illustrates the architecture of our proposed Multi-Feature Vision Transformer
with cross-attention (CA) block (MF-ViT CA), which consists of two branches
and a CA block. CXR-branch is used for processing the original CXR image, Enh-
branch is used for processing the enhanced local phase CXR image (MF (x, y)),
and CA block for extracting information from both branches. During the forward
pass, an original CXR image and corresponding MF (x, y) image is first passed
to the pretrained MoCo encoder in parallel to obtain a tensor of dimension 197 ×
384 for each image. These two tensors are then fed as inputs to our CA block. In
the CA block, the CLS token of one branch fuses with patch tokens of the other
branch using CA mechanism, and after fusion the CLS token concatenates with
its own patch tokens again to produce an output in the same dimension of input
tensor for each branch, described more details in below. The outputs of cross-
attention and MoCo encoder are then combined via element-wise summation
for each branch. The CLS token of dimension 1 × 384 from each branch as a
compact representation, which encodes the information from both the original
CXR image and MF (x, y) image, is fed into a linear projection layer with three
units. After that, the outputs of the two projection functions are fused using an
element-wise summation.

Loss Function: We used hard-label distillation, which is a variation of distil-
lation introduced by [27], for training CA block. In our study, CXR-branch and
Enh-branch, which are obtained with the MoCo-COVID-pretrained ViT-S by
using original and enhanced CXR scans (denoted as cxr and enh in Eq. 2), are
considered as the teacher models. The CA block is considered as the student
model. The objective function with this hard-label distillation is:
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Fig. 2. (a) Proposed multi-feature fusion ViT architecture using the cross attention
block which is shown in (b). (c) The proposed MoCo-COVID architecture.

LhardDistill
global =

1
3
LCE(ψ(Zs), y) +

1
3
LCE(ψ(Zs), ytcxr

) +
1
3
LCE(ψ(Zs), ytenh

). (2)

where Zs is the logits of the student model and ψ is the softmax function. The
idea is to use both the real target y and the target generated by the teachers
yt = argmaxcZt(c), where Zt is the logits of the teacher models. For a given
image, the predicated label associated with the teacher may change due to data
augmentation during the forward pass. Thus, the teacher model is aiming at
producing predicted labels that are similar but not identical to true label.

The major benefit of the proposed hard label distillation is being parameter-
free compared to soft distillation in [11]. In our study, the probability distribution
has the correct class at a very high probability, with all other class probabilities
close to 0. The problem with these weak probabilities is they do not capture
desirable information for the student model to learn effectively. To address this
issue, we proposed this hard label distillation loss function by adding two distil-
lation losses, which are losses between the predicted label of teacher model and
logits of student model. Distillation loss would soften the distributions predicted
by the teacher model so that the student model can learn more information,
and this is especially useful when dealing with small datasets [11]. And the pro-
posed objective function ensures the student model inherits better quality from
the teacher model and mitigates the over-confidence issue of neural networks by
improving the generalization.
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Cross-Attention (CA) Mechanism: The proposed CA mechanism is inspired
by [2], which is designed for fusing multi-scale features from two branches. In
our study, we intend to extract information from two types of images via cross-
attention, and thus we removed projection function used in [2] for changing the
dimension of feature maps. Figure 2(b) presents the structure of our proposed
cross-attention. Similar to [2], we utilize the CLS token at each branch to fuse
with patch tokens from the other branch and then project it back to its own
branch in order to exchange information among the patch tokens from the other
branch. Since the CLS token already learns the extracted information from all
patch tokens in its own branch, interacting with the patch tokens from the
other branch helps to include information from different feature inputs. In the
following section, we provide a detailed explanation about the CA mechanism
for the CXR-branch. Enh-branch follows the same process.

CXR-Branch-CA: An illustration of CA for CXR-branch is presented in the
Fig. 2(b). Firstly, the CLS tokens from CXR-branch, denoted as cxr, concate-
nates the patch tokens from the Enh-branch to form x

′cxr shown as Eq. 3.

x
′cxr = [ xcxr

cls ‖ xenh
patch ] (3)

Then, the CA is performed between xcxr
cls and x

′cxr using linear projections to
computer queries, keys and values (Q, K and V), where CLS token is the only
information used in query. And it uses the scaled dot product for calculating the
attention weights between Q and K and then aggregates V. The CA can be
expressed as below:

Q =xcxr
cls Wq, K = x

′cxrWk, V = x
′cxrWv,

CA = softmax(QKT /
√

D/h)V, (4)

In the Eq. 4, Wq, Wk,Wv ∈ R
C×(C/h) are learnable parameters, where C and

h are the embedding dimension and number of heads. We use the three heads in
the cross attention in this study. In the end, the new CLS token of CXR-branch,
which is obtained by cross attention and residual shortcut, concatenates with
patch tokens from CXR-branch as the output of CXR-branch shown as below:

ycxr
cls = xcxr

cls + CA, zcxr = [ ycxr
cls ‖ xcxr

patch ] (5)

3 Experiments and Results

MoCo-COVID Pretraining: We pretrained our MoCo-COVID end-to-end
for both original CXR image (denoted as CXR-ViT-S) and MF (x, y) (denoted
as Enh-ViT-S), on all training dataset without label information. MoCo-COVID
pretraining initialization was performed using the weights obtained on ImageNet-
initialized models for a faster convergence [23]. Data augmentation included
resizing to a 224 × 224 gird, random rotation (10 ◦C), and horizontal flipping
similar to [25]. We maintained hyperparameters related to momentum, weight
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decay, and feature dimension from MoCo v3 [3]. To be specific, the model was
optimized by AdamW [17], a weight decay parameter of 0.1 and batch size of
16 on 2 NVIDIA GTX 1080 using PyTorch’s DistributedDataParallel framework
[14]. We pretrained for 300 epochs (40 warm-up epochs) with a cosine linear-
rate scheduler and set the initial learning rate as lr× BatchSize/4 , where lr is
1.5e−4.

We fine-tuned models with different fractions of labeled data. Label fraction
represents the percentage of labeled data retained during fine-tuning. For exam-
ple, a model fine-tuned with 1% label fraction meaning the model will only have
access to 1% of the training dataset as labeled dataset, and the remaining 99%
are hidden from the model as unseen data. The label fractions of training dataset
are 0.25% (18 scans), 1% (72 scans), 10% (728 scans), 30% (2184 scans), and
100%. Fine-tuning was repeated five times for each label fraction. Label fractions
less than 100% are random samples from the training dataset.

We conducted two fine-tuning ablations, which are linear probing (LP) and
end-to-end fine-tuning (FT). LP means the pretrained weight values of the
MoCo-COVID encoder were frozen and, after removing the projection and pre-
diction heads, a new linear classifier with randomly reinitialized weights was
added and fine-tuned using labeled data. FT allowed the entire model including
MoCo-COVID encoder to fine-tune not just the newly added classifier. The mod-
els were fine-tuned using 90 epochs. All fine-tunings used the cosine annealing
learning rate decay [16] and SGD [13] optimizer.

Ablations of Multi-Feature ViT Using Cross-Attention Mechanism
(MF-ViT CA): The weights of the CXR-branch and Enh-branch are initialized
to the MoCo-COVID pretrained weight values of CXR-ViT-S FT and Enh-ViT-
S FT respectively, and the weights of the CA block are randomly reinitialized
with a uniform distribution [10]. The CA block was fine-tuned using labeled
data with hard-label distillation. We compared the proposed MF-ViT CA with
a model, where it also has two MoCo-COVID pretrained branches (CXR branch
and Enh branch) without using cross-attention block, denoted as MF-ViT LP.
During the fine-tuning, we only fine-tuned the linear layers of CXR-branch and
Enh-branch.

Baselines: As baseline comparison we report results from MoCo-CXR [25],
which uses MoCo v2 pretrained Dense121, when trained using original CXR
and enhanced local phase CXR images (MF (x, y)). We report end-to-end fine-
tuning protocol (FT) results for MoCo-CXR [25] and the network architecture
was optimized to achieve the best results using our dataset to provide a fair
comparison. Finally, we also compare our results against [22] semi-supervised,
and fully supervised methods where MF (x, y) were used.

Quantitative Results: Quantitative results are displayed in Table 1. The pro-
posed MF-ViT CA architecture achieved the best accuracy compared to the rest
of the self-supervised learning models when label fractions were more than 1%.
MF-ViT CA performed significantly better (paired t-test p< 0.05) when tested
on Test-2 data compared to Test-1 data proving the robustness of the method
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when tested on large scale COVID-19 data (14,123 images). The proposed Enh-
ViT-S FT model had the highest accuracy for label fraction less than 10%. We
can also observe that end-to-end fine-tuning protocol (FT) results are significant
improvements over linear probing (LP) protocol in the proposed MoCo-COVID
model. The accuracy of the baseline architecture MoCo-CXR [25] and all the pro-
posed architectures improve when enhanced local phase CXR images (MF (x, y))
were used as an input. Finally, we have also observed that the CA mechanism
significantly improves the results of the proposed MF-ViT LP model (paired
t-text p< 0.05) (Table 1). From the results, we observe that the MF-ViT CA
yields a statistically significant gain (paired t-text p< 0.05) compared to MF-
TS [22] at 0.25% (18 scans) and 1% label fractions (72 scans). This indicates
that the proposed models provide high-quality representations, better general-
ization capability, and transferable initialization for COVID-19 interpretation
for minimal label fractions and when evaluated on large test data.

Table 1. Accuracy results obtained from Test-1 and Test-2 data. Green shaded region
corresponds to the highest scores obtained. * indicates statistical improvement com-
pared with second best self-supervised learning method (p< 0.05) using paired t-test.

Method
0.25% 1% 10% 30% 100%

Test1 Test2 Test1 Test2 Test1 Test2 Test1 Test2 Test1 Test2

MoCo-CXR[25]-pretrained end-to-end Dense121

FT CXR 65.16 73.85 78.85 77.52 90.23 84.57 92.86 90.62 94.74 93.70

FT Enh 73.60 81.85 83.12 90.87 90.40 95.84 91.57 95.95 93.73 96.50

MoCo-COVID Pretrained (ours)

CXR-ViT-S LP 72.64 74.18 77.35 78.33 83.76 81.71 85.10 83.88 86.93 86.15

Enh-ViT-S LP 79.97 91.71 84.06 94.00 87.81 94.87 89.10 95.85 90.51 94.14

CXR-ViT-S FT 73.00 73.37 78.23 81.13 88.59 85.94 91.66 89.48 93.26 92.19

Enh-ViT-S FT 80.27 93.24* 84.10 94.00 89.09 95.33 91.43 96.23 92.62 96.57

Multi-Feature Model (ours)

MF-ViT LP 69.01 65.22 67.20 69.72 86.72 85.20 91.06 92.02 92.53 95.01

MF-ViT CA 79.88 89.91 82.72 92.57 91.10* 96.21 93.27 96.84* 95.03 97.35*

Semi-Supervised Learning

MF-TS[22] 77.13 80.93 82.27 86.57 90.73 95.65 92.68 96.35 - -

Fully-Supervised Learning

XNet[4] - - - - - - - - 94.38 89.20

InceptionV4[26] - - - - - - - - 93.98 88.92
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4 Conclusion

Our large quantitative evaluation results obtained using the largest COVID-19
data collected from different sites, show the significant improvements achieved
using the local phase image features for self-supervised learning. Although we
did not have access to the CXR machine type and non-image patient informa-
tion (BMI, age, sex) we believe the large data used in this work represents images
with varying image acquisition settings and intensity variations. Our quantitative
results show significantly improved accuracy values over the investigated base-
lines proving the robustness of our proposed methods. Future work will include the
extension of the method for diagnosing different lung diseases from CXR images.
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