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Abstract. The LIDC-IDRI database is the most popular benchmark for
lung cancer prediction. However, with subjective assessment from radiolo-
gists, nodules in LIDC may have entirely different malignancy annotations
from the pathological ground truth, introducing label assignment errors
and subsequent supervision bias during training. The LIDC database thus
requires more objective labels for learning-based cancer prediction. Based
on an extra small dataset containing 180 nodules diagnosed by patholog-
ical examination, we propose to re-label LIDC data to mitigate the effect
of original annotation bias verified on this robust benchmark. We demon-
strate in this paper that providing new labels by similar nodule retrieval
based on metric learning would be an effective re-labeling strategy. Train-
ing on these re-labeled LIDC nodules leads to improved model perfor-
mance, which is enhanced when new labels of uncertain nodules are added.
We further infer that re-labeling LIDC is current an expedient way for
robust lung cancer prediction while building a large pathological-proven
nodule database provides the long-term solution.

Keywords: Pulmonary nodule · Cancer prediction · Metric learning ·
Re-labeling

1 Introduction

The LIDC-IDRI (Lung Image Database Consortium and Image Database
Resource Initiative) [1] is a leading source of public datasets. Since the intro-
duction of LIDC, it is used extensively for lung nodule detection and cancer
prediction using learning-based methods [4,6,11,12,15–17,21,23].
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When searching papers in PubMed1 with the following filter: (“deep learn-
ing” OR convolutional) AND (CT OR “computed tomography”) AND (lung OR
pulmonary) AND (nodule OR cancer OR “nodule malignancy”) AND (prediction
OR classification), among 53 papers assessed for eligibility of nodule malignancy
classification, 40 papers used LIDC database, 5 papers used NSLT (National
Lung Screening Trial) database2 [10,18,19] (no exact nodule location provided),
and 8 papers used other individual datasets. LIDC is therefore the most popular
benchmark in cancer prediction research.

A careful examination of the LIDC database, however, reveals several poten-
tial issues for cancer prediction. During the annotation of LIDC, characteristics
of nodules were assessed by multiple radiologists, where the rating of malignancy
scores (1 to 5) was based on the assumption of a 60-year-old male smoker.
Due to the lack of clinical information, these malignancy scores were subjective.
Although a subset of LIDC cases possesses patient-based pathological diagnosis
[13], its nodule-level binary labels can not be confirmed.

Since it is hard to recapture the pathological ground truth for each LIDC nod-
ule, we apply the extra SCH-LND dataset [24] with pathological-proven labels,
which is used not only for establishing a truthful and fair evaluation benchmark
but also for transferring pathological knowledge for different clinical indications.

In this paper, we first assess the nodule prediction performances of LIDC
driven model in six scenarios and their fine-tuning effects using SCH-LND with
detailed experiments. Having identified the problems of the undecided binary
label assignment scheme on the original LIDC database and unstable transfer
learning outcomes, we seek to re-label LIDC nodule classes by interacting with
the SCH-LND. The first re-labeling strategy adopts the state-of-the-art nod-
ule classifier as an end-to-end annotator, but it has no contribution to LIDC
re-labeling. The second strategy uses metric learning to learn similarity and dis-
crimination between the nodule pairs, which is then used to elect new LIDC
labels based on the similarity ranking in a pairwise manner between the under-
labeled LIDC nodule and each nodule of SCH-LND. Experiments show that
the models trained with re-labeled LIDC data created by metric learning model
not only resolve the bias problem of the original data but also transcend the
performance of our model, especially when the new labels of the uncertain sub-
set are added. Further statistical results demonstrate that the re-labeled LIDC
data suffers class imbalance problem, which indicates us to build a larger nodule
database with pathological-proven labels.

2 Materials

LIDC-IDRI Database: According to the practice in [14], we excluded CT
scans with slice thickness larger than 3 mm and sampled nodules identified by at
least three radiologists. We only involve solid nodules in SCH-LND and LIDC
databases because giving accurate labels for solid nodules is of great challenge.
1 https://pubmed.ncbi.nlm.nih.gov/.
2 https://cdas.cancer.gov/datasets/nlst/.
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Extra Dataset: The extra dataset called SCH-LND [24] consists of 180 solid
nodules (90 benign/90 malignant) with exact spatial coordinates and radii. Each
sample is very rare because all the nodules are confirmed and diagnosed by
immediate pathological examination via biopsy with ethical approval.

To regulate variant CT formats, CT slice thickness is resampled to 1mm/pixel
if it is larger than 1 mm/pixel, while the X and Y axes are fixed to 512× 512
pixels. Each pixel value is unified to the HU (Hounsfield Unit) value before
nodule volume cropping.

3 Study Design

Fig. 1. Illustration of the study design for nodule cancer prediction. Case 1: training
from scratch over the LIDC database after assigning nodule labels according to the
average malignancy scores in 6 scenarios. Case 2: training over extra data based on
accurate pathological-proven labels by 5-fold cross-validation. Case 3: testing or fine-
tuning LIDC models of Case 1 using extra data.

The preliminary study follows the instructions of Fig. 1 where two types of cases
(Case 1 and Case 2) conduct training and testing in each single data domain
and one type of case (Case 3) involves domain interaction (cross-domain testing
and transfer learning) between LIDC and SCH-LND. In Case 1 and Case 3, we
identify 6 different scenarios by removing uncertain average scores (Scenarios A
and B) or setting division threshold (Scenarios C, D, E, and F) to assign binary
labels for LIDC data training. Training details are described in Sect. 5.1.

To evaluate the model performance comprehensively, we additionally intro-
duce Specificity (also called Recallb, when treating benign as positive sample)
and Precisionb (Precision in benign class) [20], besides regular evaluation metrics
including Sensitivity (Recall), Precision, Accuracy, and F1 score.

Based on the visual assessment of radiologists, human-defined nodule fea-
tures can be easily extracted and classified by a commonly used model (3D
ResNet-18 [5]), whose performance can emulate the experts’ one (Fig. 2, Case
1). Many studies still put investigational efforts for better results across the
LIDC board, overlooking inaccurate radiologists’ estimations and bad model
capability in the real world. However, once the same model is revalidated under
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Fig. 2. Performance comparisons between different Cases or Scenarios (Scen) in Fig. 1.
For instance, ‘A:(12/45)’ represents ‘Scenario A’ that treats LIDC scores 1 & 2 as
benign labels and scores 4 & 5 as malignant labels. FT denotes fine-tuning using extra
data by 5-fold cross-validation based on the pre-trained model in each scenario.

the pathological-proven benchmark (Fig. 2, Case 3, Scenario A), its drawback is
objectively revealed that LIDC model decisions take up too many false-positive
predictions. These two experimental outcomes raise a suspicion that whether the
visual assessment of radiologists might have a bias toward malignant class.

To resolve this suspicion, we compare the performances of 6 scenarios in Case
3. Evidence reveals that, under the testing data from SCH-LND, the number of
false-positive predictions has a declining trend when the division threshold moves
from the benign side to the malignant side, but the bias problem is still serious
when reaching Scenario E, much less of Scenario A and B. Besides, as training
on the SCH-LND dataset from scratch can hardly obtain a high capacity model
(Fig. 2, Case 2), we use transfer learning in Case 3 to get the model fine-tuned
on the basis of weights of different pre-trained LIDC models.

Observing the inter-comparison within each scenario in Case 3, transfer learn-
ing can push scattered metric values close. However, compared with Case 2, the
fine-tuning technique would bring both positive and negative transfer, depending
upon the property of the pre-trained model.

Thus, either for training from scratch or transfer learning process, the radi-
ologists’ assessment of LIDC nodule malignancy can be hard to properly use.
In addition to its inevitable assessment errors, there is a thorny problem to
assign LIDC labels (how to set division threshold) and removing uncertain sub-
set (waste of data). We thus expect to re-label the LIDC malignancy classes
with the interaction of SCH-LND, to correct the assessment bias as well as uti-
lize the uncertain nodules (average score = 3). Two independent approaches are
described in the following section.



46 H. Zhang et al.

4 Methods

We put forward two re-labeling strategies to obtain new ground truth labels
on the LIDC database. The first strategy generates the malignancy label from
a machine annotator: the state-of-the-art nodule classifier that has been pre-
trained on LIDC data and fine-tuned on SCH-LND to predict nodule class. The
second strategy ranks the top nodules’ labels using a machine comparator: a
metric-based Network that measures the correlation between nodule pairs.

Considering that the knowledge from radiologists’ assessments could be a
useful resource, in each strategy, two modes of LIDC re-labeling are proposed.
For Mode 1 (Substitute): LIDC completely accepts the re-label outcomes
from other label machines. For Mode 2 (Consensus): The final LIDC re-
label results would be decided by the consensus of label machine outcomes and
its original label (Scenario A). In other words, this mode will leave behind the
nodules with the same label and discard controversial ones, which may cause
data reduction. We evaluate the LIDC re-labeling effect by using SCH-LND to
test the model which is trained with re-labeled data from scratch.

4.1 Label Induction Using Machine Annotator

The optimized model with fine-tuning technique can correct the learning bias
initiated by LIDC data. Some fine-tuned models even surpass the LIDC model
performance in large scales of evaluation metrics. We wonder whether the cur-
rent best performance model can help classify and annotate new LIDC labels.
Experiments will be conducted using two annotation models from Case 2 and
Case 3 (Scenario A) in Sect. 3.

4.2 Similar Nodule Retrieval Using Metric Learning

Fig. 3. The second strategy of LIDC re-labeling that using a metric learning model to
search for the most similar nodules and give new labels.

Metric learning [2,7] provides a few-shot learning approach that aims to learn
useful representations through distance comparisons. We use Siamese Network
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[3,9] in this study which consists of two networks whose parameters are tied to
each other. Parameter tying guarantees that two similar nodules will be mapped
by their respective networks to adjacent locations in feature space.

For training a Siamese Network in Fig. 3, we pass the inputs in the set of
pairs. Each pair is randomly chosen from SCH-LND and given the label whether
two nodules of this pair are in the same class. Then these two nodule volumes are
passed through the 3D ResNet-18 to generate a fixed-length feature vector indi-
vidually. A reasonable hypothesis is given that: if the two nodules belong to the
same class, their feature vectors should have a small distance metric; otherwise,
their feature vectors will have a large distance metric. In order to distinguish
between the same and different pairs of nodules when training, we apply con-
trastive loss over the Euclidean distance metric (similarity score) induced by the
malignancy representation.

During re-labeling, we first pair each nodule from SCH-LND used in training
up with an under-labeled LIDC nodule and sort each under-labeled nodule part-
ner by their similarity scores. Then the new LIDC label is awarded by averaging
the labels of the top 20% partner nodules in the ranking list of similarity scores.

5 Experiments and Results

5.1 Implementation

We apply 3D ResNet-18 [5] in this paper with adaptive average pooling (output
size of 1× 1× 1) following the final convolution layer. For the general cancer
prediction model, we use a fully connected layer and a Sigmoid function to output
the prediction score (binary cross-entropy loss). While for Siamese Network, we
use a fully connected layer to generate the feature vector (8 neurons). Due to
various nodule sizes, the batch size is set to 1, and group normalization [22] is
adopted after each convolution layer.

All the experiments are implemented in PyTorch with a single NVIDIA
GeForce GTX 1080 Ti GPU and learned using the Adam optimizer [8] with
the learning rate of 1e–3 (100 epochs) and that of 1e–4 for fine-tuning in trans-
fer learning (50 epochs). The validation set occupies 20% of the training set in
each experiment. All the experiments and results involving or having involved
the training of SCH-LND are strictly conducted by 5-fold cross-validation.

5.2 Quantitative Evaluation

To evaluate the first strategy using machine annotator, we first use Case 2 model
to re-label LIDC nodules (a form of 5-fold cross-validation) other than the uncer-
tain subset (original average score = 3). The re-labeled nodules are then fed into
the 3D ResNet-18 model, which will be trained from scratch and tested on the
corresponding subset of SCH-LND for evaluation. The result (4th row) shows
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Table 1. Performances of different re-labeling methods based on each mode of re-
labeling strategies. Under-labeled LIDC data are chosen by their original average score.

Row Baselines Method Training Testing Sensitivity Specificity Precision Precisionb Accuracy F1

1 Case 3-A LIDC Extra 0.9778 0.2333 0.5605 0.9130 0.6056 0.7126

2 Case 2 Extra Extra 0.6333 0.6000 0.6129 0.6207 0.6167 0.6230

3 Siamese Extra Extra 0.6667 0.6000 0.6250 0.6429 0.6333 0.6452

LIDC re-labeling

Strategy Mode Method Under-label Sensitivity Specificity Precision Precisionb Accuracy F1

4 Annotator Substitute Case 2 1;2;4;5 0.5778 0.5667 0.5714 0.5730 0.5722 0.5746

5 Case 3-A 0.4630 0.6667 0.5814 0.5538 0.5648 0.5155

6 Consensus Case 2 0.8778 0.3667 0.5809 0.7500 0.6222 0.6991

7 Case 3-A 0.8556 0.3778 0.5789 0.7234 0.6167 0.6906

8 Comparator Substitute Siamese 1;2;4;5 0.6111 0.6556 0.6395 0.6277 0.6333 0.6250

9 1;2;3;4;5 0.6778 0.6667 0.6703 0.6742 0.6722 0.6740

10 Consensus 1;2;4;5 0.8000 0.3778 0.5625 0.6538 0.5889 0.6606

11 1;2;3;4;5 0.7333 0.5889 0.6408 0.6883 0.6611 0.6839

that although this action greatly fixes label bias to a balanced state, this group
of new labels can hardly build a model tested well on SCH-LND. Contrary to
common sense, the state-of-the-art nodule classifier makes re-label performance
worse (5th row), which is much lower than that of learning from scratch using
SCH-LND (2nd row), indicating that the best model optimized with fine-tuning
technique is not suitable for LIDC re-labeling. The initial two experiments adopt-
ing Mode 2 (Consensus) achieved better comprehensive outcomes than Mode 1
(Substitute) but with low Specificity (Table 1).

Metric learning takes a different re-label strategy that retrieves similar nod-
ules according to the distance metric. Metric learning on a small dataset can
obtain a better performance (3rd row) compared with general learning from
scratch (2nd row). The re-label outcomes (8th and 9th row) also show great
comprehensive improvement over baselines by Mode 1, where the re-labeling of
uncertain nodules (average score = 3) is an important contributing factor.

Overall, there is a trade-off between Mode 1 and Mode 2. But Mode 2 seems to
remain the LIDC bias property because testing results often have low Specificity
and introduce data reduction. Re-labeling by consensus (Mode 2) may integrate
the defects of both original labels and models, especially for malignant labels,
while re-labeling uncertain nodules can help mitigate the defect of Mode 2.

We finally re-labeled the LIDC database with the Siamese Network trained
using all of SCH-LND. As shown in Fig. 4, our re-labeled results are in broad
agreement with the low malignancy score ones. In score 3 (uncertain data), the
majority of the nodules are re-labeled to benign class, which explains the better
performance when the nodules of score 3 are assigned to benign label in Scenario
E (Fig. 2, Case 3). The new labels correct more than half of the original nodule
labels with score 4 which could be the main reason leading to the data bias.

5.3 Discussion

Re-labeling through metric learning is distinct from the general supervised model
in two notable ways. First, the input pairs generated by random sampling for
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Fig. 4. Statistical result of LIDC re-labeling nodules (benign or malignant) in terms
of original average malignancy scores, where the smooth curve describes the simplified
frequency distribution histogram of average label outputs. For each average score of 1,
2, 4, and 5, one nodule re-labeling example with the opposite class (treat score 1 and
2 as benign; treat 4 and 5 as malignant) is provided.

metric learning provide a data augmentation effect to overcome overfitting with
limited data. Second, under-labeled LIDC data take the average labels of top-
ranked similarity nodules to increase the confidence of label propagation. These
two points may explain why general supervised models (including fine-tuning
models) perform worse than metric learning in re-labeling task. Unfortunately,
after re-labeling, the class imbalance problem emerged (748 versus 174), while
bringing up new limits in model training performance in the aforementioned
experiments.

Moreover, due to the lack of pathological ground truth, the relabel outcomes
of this study should always remain suspect until the LIDC clinical information
is available. Considering a number of subsequent issues that LIDC may arise,
sufficient evidence in this paper explores the motive for us to promote the ongoing
collection work of a large pathological-proven nodule database, which is expected
to become a powerful open-source database for the international medical imaging
and clinical research community.

6 Conclusion and Future Work

The LIDC-IDRI database is currently the most popular public database of lung
nodules with specific spatial coordinates and experts’ annotations. However,
because of the absence of clinical information, deep learning models trained
based on this database have poor generalization capability in lung cancer pre-
diction and downstream tasks. To challenge the low confidence labels of LIDC,
an extra nodule dataset with pathological-proven labels was used to identify the
annotation bias problems of LIDC and its label assignment difficulties. With the
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robust supervision of SCH-LND, we used a metric learning-based approach to re-
label LIDC data according to the similar nodule retrieval. The empirical results
show that with re-labeled LIDC data, improved performance is achieved along
with the maximization of LIDC data utilization and the subsequent class imbal-
ance problem. These conclusions provide a guideline for further collection of a
large pathological-proven nodule database, which is beneficial to the community.
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