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Abstract. Training deep learning models on medical datasets that per-
form well for all classes is a challenging task. It is often the case that a
suboptimal performance is obtained on some classes due to the natural
class imbalance issue that comes with medical data. An effective way to
tackle this problem is by using targeted active learning, where we itera-
tively add data points that belong to the rare classes, to the training data.
However, existing active learning methods are ineffective in targeting
rare classes in medical datasets. In this work, we propose Clinical (tar-
geted aCtive Learning for ImbalaNced medICal imAge cLassification) a
framework that uses submodular mutual information functions as acqui-
sition functions to mine critical data points from rare classes. We apply
our framework to a wide-array of medical imaging datasets on a variety
of real-world class imbalance scenarios - namely, binary imbalance and
long-tail imbalance. We show that Clinical outperforms the state-of-
the-art active learning methods by acquiring a diverse set of data points
that belong to the rare classes.

1 Introduction

Owing to the advancement of deep learning, medical image classification has
made tremendous advances in the past decade. However, medical datasets are
naturally imbalanced at the class level, i.e., some classes are comparatively rarer
than the others. For instance, cancerous classes are naturally rarer than non-
cancerous ones. In such scenarios, the over-represented classes overpower the
training process and the model ends up learning a biased representation. Deploy-
ing such biased models results in incorrect predictions, which can be catastrophic
and even lead to loss of life. Active learning (AL) is a promising solution to
mitigate this imbalance in the training dataset. The goal of AL is to select data
points from an unlabeled set for addition to the training dataset at an additional
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labeling cost. The model is then retrained with the new training set and the pro-
cess is repeated. Reducing the labeling cost using the AL paradigm is crucial in
domains like medical imaging, where labeling data requires expert supervision
(e.g., doctors), which makes the process extremely expensive. However, current
AL methods are inefficient in selecting data points from the rare classes in med-
ical image datasets. Broadly, they use acquisition functions that are either: i)
based on the uncertainty scores of the model, which are used to select the top
uncertain data points [26], or ii) based on diversity scores, where data points
having diverse gradients are selected [3,25]. They mainly focus on improving the
overall performance of the model, and thereby fail to target these rare yet criti-
cal classes. Unfortunately, this leads to a wastage of expensive labeling resources
when the goal is to improve performance on these rare classes.
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Fig. 1. Motivating examples of two main
class imbalance scenarios occurring in medi-
cal imaging. Left: Long-tail imbalance (Dia-
betic retinopathy grading from retinal images
in APTOS-2019 [10]). Right: Binary imbal-
ance (Microscopic peripheral blood cell image
classification in Blood-MNIST [1]). Red boxes
in both scenario denote targeted rare classes.
(Color figure online)

In this work, we consider two
types of class imbalance that recur
in a wide array of medical imag-
ing datasets. The first scenario is
binary imbalance, where a subset
of classes is rare/infrequent and the
remaining subset is relatively fre-
quent. The second scenario is that
of long-tail imbalance, where the
frequency of data points from each
class keeps steeply reducing as we
go from the most frequent class to
the rarest class (see Fig. 1). Such
class imbalance scenarios are par-
ticularly challenging in the med-
ical imaging domain since there
exist subtle differences which are
barely visually evident (see Fig. 1).
In Sect. 3, we discuss Clinical, a
targeted active learning algorithm that acquires a subset by maximizing the sub-
modular mutual information with a set of misclassified data points from the rare
classes. This enables us to focus on data points from the unlabeled set that are
critical and belong to the rare classes.

1.1 Related Work

Uncertainty Based Active Learning. Uncertainty based methods aim to
select the most uncertain data points according to a model for labeling. The
most common techniques are - 1) Entropy [26] selects data points with max-
imum entropy, 2) Least Confidence [28] selects data points with the lowest
confidence, and 3) Margin [24] selects data points such that the difference
between the top two predictions is minimum.

Diversity Based Active Learning. The main drawback of uncertainty based
methods is that they lack diversity within the acquired subset. To mitigate this,
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a number of approaches have proposed to incorporate diversity. The Coreset

method [25] minimizes a coreset loss to form coresets that represent the geometric
structure of the original dataset. They do so using a greedy k -center clustering. A
recent approach called Badge [3] uses the last linear layer gradients to represent
data points and runs K-means++ [2] to obtain centers that have a high gradient
magnitude. The centers being representative and having high gradient magnitude
ensures uncertainty and diversity at the same time. However, for batch AL,
Badge models diversity and uncertainty only within the batch and not across
all batches. Another method, BatchBald [15] requires a large number of Monte
Carlo dropout samples to obtain significant mutual information which limits its
application to medical domains where data is scarce.

Class Imbalanced and Personalized Active Learning. Closely related to
our method Clinical, are methods which optimize an objective that involves a
held-out set. GradMatch [13] uses an orthogonal matching pursuit algorithm
to select a subset whose gradient closely matches the gradient of a validation
set. Another method, Glister-Active [14] formulates an acquisition function
that maximizes the log-likelihood on a held-out validation set. We adopt Grad-

Match and Glister-Active as baselines that targets rare classes in our class
imbalance setting and refer to it T-GradMatch and T-Glister in Sect. 4.
Recently, [16] proposed the use of submodular information measures for active
learning in realistic scenarios, while [17] used them to find rare objects in an
autonomous driving object detection dataset. Finally, [19] use the submodular
mutual information functions (used here) for personalized speech recognition.
Our proposed method uses the submodular mutual information to target select-
ing data points from the rare classes via using a small set of misclassified data
points as exemplars, which makes our method applicable to binary as well as
long-tail imbalance scenarios.

1.2 Our Contributions

We summarize our contributions as follows: 1)We emphasize on the issue of binary
and long-tail class imbalance in medical datasets that leads to poor performance
on rare yet critical classes. 2)Given the limitations of current AL methods on med-
ical datasets, we propose Clinical, a novel AL framework that can be applied to
any class imbalance scenario. 3) We demonstrate the effectiveness of our frame-
work for a diverse set of image classification tasks and modalities on Pneumonia-
MNIST [12], Path-MNIST [11], Blood-MNIST [1], APTOS-2019 [10], and ISIC-
2018 [4] datasets. Furthermore, we show that Clinical outperforms the state-of-
the-art AL methods by up to ≈ 6%−10% on an average in terms of the average
rare classes accuracy for binary imbalance scenarios and long-tail imbalance sce-
narios. 4) We provide valuable insights about the choice of submodular functions
to be used for subset selection based on the modality of medical data.

2 Preliminaries

Submodular Functions: We let V denote the ground-set of n data points V =
{1, 2, 3, ..., n} and a set function f : 2V −→ R. The function f is submodular [5] if it
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satisfies diminishing returns, namely f(j|X ) ≥ f(j|Y) for all X ⊆ Y ⊆ V, j /∈ Y.
Facility location, graph cut, log determinants, etc. are some examples [9].

Submodular Mutual Information (Smi): Given a set of items A,Q ⊆ V,
the submodular mutual information (MI) [6,8] is defined as If (A;Q) = f(A) +
f(Q)− f(A∪Q). Intuitively, this measures the similarity between Q and A and
we refer to Q as the query set. [18] extend Smi to handle the case when the target
can come from a different set V ′ apart from the ground set V. In the context of
imbalanced medical image classification, V is the source set of images and the
query set Q is the target set containing the rare class images. To find an optimal
subset given a query set Q ⊆ V ′, we can define gQ(A) = If (A;Q), A ⊆ V and
maximize the same.

2.1 Examples of SMI Functions

For targeted active learning, we use the recently introduced Smi functions in [6,8]
and their extensions introduced in [18] as acquisition functions. For any two data
points i ∈ V and j ∈ Q, let sij denote the similarity between them.

Graph Cut MI (Gcmi): The Smi instantiation of graph-cut (Gcmi) is defined
as: IGC(A;Q) = 2

∑
i∈A

∑
j∈Q sij . Since maximizing Gcmi maximizes the joint

pairwise sum with the query set, it will lead to a summary similar to the query
set Q. In fact, specific instantiations of Gcmi have been intuitively used for
query-focused summarization for videos [27] and documents [20,21].

Facility Location MI (Flmi): We consider two variants of Flmi. The first
variant is defined over V(Flvmi), the Smi instantiation can be defined as:
IFLV (A;Q) =

∑
i∈V min(maxj∈A sij ,maxj∈Q sij). The first term in the min(.)

of Flvmi models diversity, and the second term models query relevance.
For the second variant, which is defined over Q (Flqmi), the Smi instan-

tiation can be defined as: IFLQ(A;Q) =
∑

i∈Q maxj∈A sij +
∑

i∈A maxj∈Q sij .
Flqmi is very intuitive for query relevance as well. It measures the representation
of data points that are the most relevant to the query set and vice versa.

Log Determinant MI (Logdetmi): The Smi instantiation of Logdetmi

can be defined as: ILogDet(A;Q) = log det(SA) − log det(SA − SA,QS−1
Q ST

A,Q).
SA,Q denotes the cross-similarity matrix between the items in sets A and Q.

3 CLINICAL: Our Targeted Active Learning Framework
for Binary and Long-Tail Imbalance

In this section, we propose our targeted active learning framework, Clinical

(see Fig. 2), and show how it can be applied to datasets with class imbalance.
Concretely, we apply the Smi functions as acquisition functions for improving a
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model’s accuracy on rare classes at a given additional labeling cost (B instances)
without compromising on the overall accuracy. The main idea in Clinical, is to
use only the misclassified data points from a held-out target set T containing data
points from the rare classes. Let T̂ ⊆ T be the subset of misclassified data points.
Then, we optimize the Smi function If (A; T̂ ) using a greedy strategy [23].

Misclassified Instances 

Large Imbalanced Dataset Selected Subset  
with lesser imbalance

Targeted Active Learning
using SMI Functions

argmax

Misclassified Instances 

Large Imbalanced Dataset Selected Subset  
with lesser imbalance

Targeted Active Learning
using SMI Functions

argmax

Fig. 2. The Clinical framework. We use a set of misclassified instances T̂ as the query
set Q in the SMI function. We then maximize If (A; T̂ ) in an AL loop to target the
imbalance and gradually mine data points from the rare classes.

Note that since T̂ contains only the misclassified data points, it would contain
more data points from classes that are comparatively rarer or the worst perform-
ing. Moreover, T̂ is updated in every AL round, this mechanism helps the Smi

functions to focus on classes that require the most attention. For instance, in
the long-tail imbalance scenario (see Fig. 1), Clinical would focus more on the
tail classes in the initial rounds of AL. Next, we discuss the Clinical algorithm
in detail:

Algorithm: Let L be an initial training set of labeled instances and T be the
target set containing examples from the rare classes. Let U be a large unlabeled
dataset and M be the trained model using L. Next, we compute T̂ as the
subset of data points from T that were misclassified by M. Using last layer
gradients as a representation for each data point which are extracted from M,
we compute similarity kernels of elements within U , within T̂ and between U
and T̂ to instantiate an Smi function If (A; T̂ ) and maximize it to compute an
optimal subset A ⊆ U of size B given T̂ as target (query) set. We then augment
L with labeled A (i.e. L(A)) and re-train the model to improve the model on
the rare classes.
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Algorithm 1. Clinical: Targeted AL for binary and long-tail imbalance
Require: Initial Labeled set of data points: L, unlabeled dataset: U , target set: T , Loss

function H for learning model M, batch size: B, number of selection rounds: N

1: for selection round i = 1 : N do
2: Train M with loss H on the current labeled set L and obtain parameters θi

3: Compute T̂ ⊆ T that were misclassified by the trained model M
4: Use Mθi to compute gradients using hypothesized labels {∇θH(xj , ŷj , θ), ∀j ∈ U}

and obtain a pairwise similarity matrix X. {where Xij = 〈∇θHi(θ), ∇θHj(θ)〉}
5: Instantiate a submodular function f based on X.
6: Ai ← argmaxA⊆U,|A|≤BIf (A; T̂ )

7: Get labels L(Ai) for batch Ai, and L ← L ∪ L(Ai), U ← U − Ai

8: T ← T ∪ AT
i , augment T with new data points that belong to target classes.

9: end for
10: Return trained model M and parameters θN .

4 Experiments

In this section, we evaluate the effectiveness of Clinical on binary imbalance
(Sect. 4.1) and long-tail imbalance (Sect. 4.2) scenarios. We do so by compar-
ing the accuracy and class selections of various Smi functions with the existing
state-of-the-art AL approaches. In our experiments, we observe that different
Smi functions outperform existing approaches depending on the modality of the
medical data. We show that the choice of the Smi based acquisition function
is imperative and varies based on the imbalance scenario and the modality of
medical data.

Baselines in all Scenarios. We compare the performance on Clinical against
a variety of state-of-the-art uncertainty, diversity and targeted selection meth-
ods. The uncertainty based methods include Entropy, Least Confidence

(Least-Conf), and Margin. The diversity based methods include Core-

set and Badge. The targeted selection methods include T-Glister and T-

GradMatch. We discuss the details of all baselines in Sect. 1.1. For a fair com-
parison with Clinical, we use the same target set of misclassified data points T̂
as the held out validation set used in T-Glister and T-GradMatch. Lastly,
we compare with random sampling (Random).

Experimental Setup: We use the same training procedure and hyperparam-
eters for all AL methods to ensure a fair comparison. For all experiments, we
train a ResNet-18 [7] model using an SGD optimizer with an initial learning rate
of 0.001, the momentum of 0.9, and a weight decay of 5e−4. For each AL round,
the weights are reinitialized using Xavier initialization and the model is trained
till 99% training accuracy. The learning rate is decayed using cosine annealing
[22] in every epoch. We run each experiment 5× on a V100 GPU and provide
the error bars (std deviation). We discuss dataset splits for each our experiments
below and provide more details in Appendix. B.
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4.1 Binary Imbalance

Datasets: We apply our framework to 1) Pneumonia-MNIST (pediatric chest X-
ray) [12,29], 2) Path-MNIST (colorectal cancer histology) [11,29], and 3)Blood-
MNIST (blood cell microscope) [1,29] medical image classification datasets. To
create a more realistic medical scenario, we create a custom dataset that simu-
lates binary class imbalance for each of these datasets for our experiments. Let
C be the set of data points from the rare classes and D be the set of data points
from the over-represented classes. We create the initial labeled set L (seed set)
in AL, |DL| = ρ|CL| and an unlabeled set U such that |DU | = ρ|CU |, where ρ
is the imbalance factor. We use a small held out target set T which contains
data points from the rare classes. For Path-MNIST and PneumoniaMNIST, we
use ρ = 20, and for Blood-MNIST, we use ρ = 7 due to the small size of the
dataset. For Pneumonia-MNIST, |CL|+ |DL| = 105, |CU |+ |DU | = 1100, B = 10
(AL batch size) and, |T | = 5. Following the natural class imbalance, we use
the ‘pneumonia’ class as the rare class. For Path-MNIST, |CL| + |DL| = 3550,
|CU |+ |DU | = 56.8K, B = 500 and, |T | = 20. Following the natural class imbal-
ance, we use two classes from the dataset (‘mucus’, ‘normal colon mucosa’) as
rare classes. For Blood-MNIST, |CL| + |DL| = 228, |CU | + |DU | = 1824, B = 20

LOGDETMI
FLQMI

FLVMI
GCMI

BADGE
CORESET

ENTROPY
LEAST-CONF

MARGIN
RANDOM

T-GLISTER
T-GRADMATCH

105 115 125 135 145 155 165 175 185
Labeled Set Size

0

20

40

60

80

R
ar

e
cl
as
se
s
A
cc

u
ra

cy

Chest X-ray: Rare classes Acc

105 115 125 135 145 155 165 175 185
Labeled Set Size

40

50

60

70

80

O
ve

ra
ll

A
cc

u
ra

cy

Chest X-ray: Overall Accuracy

105 115 125 135 145 155 165 175 185
Labeled Set Size

0

10

20

30

40

50

C
u
m
u
la
ti
ve

#
R
ar

e
S
am

p
le
s Chest X-ray: #Rare Samples

50 550 1050 1550 2050 2550 3050 3550 4050
Labeled Set Size

20

30

40

50

60

70

R
ar

e
cl
as
se
s
A
cc

u
ra

cy

Colon Pathology: Rare classes Acc

50 550 1050 1550 2050 2550 3050 3550 4050
Labeled Set Size

60

65

70

75

80

O
ve

ra
ll
A
cc

u
ra

cy

Colon Pathology: Overall Accuracy

50 550 1050 1550 2050 2550 3050 3550 4050
Labeled Set Size

0

200

400

600

C
u
m
u
la
ti
ve

#
R
ar

e
S
am

p
le
s Colon Pathology: #Rare Samples

228 248 268 288 308 328 348 368 388

Labeled Set Size

25

30

35

40

45

50

55

60

R
ar

e
cl
as
se
s
A
cc

u
ra

cy

Blood Cell: Rare classes Acc

228 248 268 288 308 328 348 368 388

Labeled Set Size

72

74

76

78

80

82

O
ve

ra
ll

A
cc

u
ra

cy

Blood Cell: Overall Accuracy

228 248 268 288 308 328 348 368 388

Labeled Set Size

0

20

40

60

80

100

C
u
m
u
l.

#
R
ar

e
S
am

p
le
s

Blood Cell: #Rare Samples

Fig. 3. AL for binary imbalanced medical image classification on Pneumonia-MNIST
[12] (first row), Path-MNIST [11] (second row), and Blood-MNIST [1] (third row).
Clinical outperforms the existing AL methods by ≈ 2%−12% on the rare classes acc.
(left col.) and ≈ 2%−6% on overall acc. (center col.). Smi functions select the most
number of rare class samples (right col.)
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and, |T | = 20. Following the natural class imbalance, we use four classes from
the dataset (‘basophil’, ‘eosinophil’, ‘lymphocyte’, ‘neutrophil’) as rare classes.

Results: The results for the binary imbalance scenario are shown in Fig. 3.
We observe that the Clinical consistently outperform other methods by ≈
2%−12% on the rare classes accuracy (Fig. 3(left column)) and ≈ 2%−6% on
overall accuracy (Fig. 3(center column)). This is due to the fact that the Smi

functions are able to select significantly more data points that belong to the
rare classes (Fig. 3(right column)). Particularly, we observe that when the data
modality is X-ray (Pneumonia-MNIST), the facility location based Smi variants,
Flvmi and Flqmi perform significantly better than other acquisition functions
due to their ability to model representation. For the colon pathology modality
(Path-MNIST), Gcmi and Flqmi functions that model query-relevance signifi-
cantly outperform other methods. Lastly, for the blood cell microscope modality
(Blood-MNIST), we observe some improvement using Flqmi, although it selects
many points from the rare classes.

4.2 Long-Tail Imbalance

Datasets: We apply Clinical to two datasets that naturally show a long-tail
distribution: 1) The ISIC-2018 skin lesion diagnosis dataset [4] and 2) APTOS-
2019 [10] for diabetic retinopathy (DR) grading from retinal fundus images. We
evaluate all AL methods on a balanced test set to obtain a fair estimate of accu-
racy across all classes. We split the remaining data randomly with 20% into the
initial labeled set L and 80% into the unlabeled set U . We use a small held-out
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Fig. 4. Active learning for long-tail imbalanced medical image classification on ISIC-
2018 [4] (first row) and APTOS-2019 [10] (second row). Clinical outperforms the
state-of-the-art AL methods by ≈ 10%−12% on the average long-tail accuracy (left
col.) and ≈ 2%−5% on overall accuracy (center col.). Smi functions select the most
number of long-tail class samples (right col.)
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target set T with data points from the classes at the tail of the distribution
(long-tail classes, see Fig. 1). For ISIC-2018, we use the bottom three infrequent
skin lesions from the tail of the distribution as long-tail classes (‘bowen’s dis-
ease’, ‘vascular lesions’, and ‘dermatofibroma’). We set B = 40 and |T | = 15.
For APTOS-2019 we use the bottom two infrequent DR gradations as long-tail
classes (‘severe DR’ and ‘proliferative DR’) (see Fig. 1). We set B = 20 and
|T | = 10.

Results: We present the results for the long-tail imbalance scenario in Fig. 4. We
observe that Clinical consistently outperform other methods by ≈ 10%−12%
on the average long-tail classes accuracy (Fig. 4(left column)) and ≈ 2%−5%
on the overall accuracy (Fig. 4(center column)). This is because the Smi func-
tions select significantly more data points from the long-tail classes (Fig. 4(right
column)). On both datasets, we observe that the functions modeling query-
relevance and diversity (Flvmi and Logdetmi) outperform the functions mod-
eling only query-relevance (Flqmi and Gcmi).

5 Conclusion

We demonstrate the effectiveness of Clinical for a wide range of medical data
modalities for binary and long-tail imbalance. We empirically observe that the
current methods in active learning cannot be directly applied to medical datasets
with rare classes, and show that a targeting mechanism like Smi can greatly
improve the performance on rare classes.
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