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Abstract. We propose a novel semi-supervised learning approach for
classification of histopathology images. We employ strong supervision
with patch-level annotations combined with a novel co-training loss to
create a semi-supervised learning framework. Co-training relies on multi-
ple conditionally independent and sufficient views of the data. We sepa-
rate the hematoxylin and eosin channels in pathology images using color
deconvolution to create two views of each slide that can partially fulfill
these requirements. Two separate CNNs are used to embed the two views
into a joint feature space. We use a contrastive loss between the views
in this feature space to implement co-training. We evaluate our app-
roach in clear cell renal cell and prostate carcinomas, and demonstrate
improvement over state-of-the-art semi-supervised learning methods.
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1 Introduction

Convolutional neural networks (CNNs) are commonly used in histopathology.
Because digital whole slide images (WSIs) in pathology are much larger than
typical input sizes for CNNs, workflows typically first tile the WSI into many
smaller patches. There are two main approaches for training classification mod-
els with WSIs: strong and weak supervision. Strong supervision uses labels for
the individual tiles, which requires expert annotation at a high cost [7]. Weak
supervision applies multiple instance learning with slide level labels [6,10,12,20].
Weakly supervised methods have become popular due to the ease of obtaining
labels for learning directly from pathology reports [5]. However, successful model
training with weak learning requires thousands of WSIs, and strong supervision
is still essential when a smaller number of WSIs are available for learning.

Expert annotation at the tile level is infeasible to obtain beyond a small
number of WSIs. Semi-supervised learning (SSL) seeks to leverage unlabeled
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data to improve the accuracy of models when only a limited amount of labeled
data is available. One of the recent trends in SSL, consistency regularization [9,
16], has also found application in the classification of histopathology images.
Teacher-student consistency [19] has been used to supplement tile-level labels
for quantifying prognostic features in colorectal cancer [17] and in combination
with weak supervision for Gleason grade classification in prostate cancer [11].
The MixMatch model [3] has been tested on histology datasets with open-set
noise [13]. Weak/strong data transformation consistency (FixMatch) [18] has
been applied to detection of dysplasia of the esophagus [13]. State-of-the-art SSL
methods rely on enforcing prediction/representation consistency between various
transformations of the data. Whereas consistency under model perturbations
has been proposed [16], it is a less explored area. On the other hand, the co-
training [4] approach to SSL can provide excellent results when multiple views
of each sample are available that meet the criteria of sufficiency (each view
should be able to support accurate classification on its own) and conditional
independence given the label of a sample.

Hematoxylin (H) and Eosin (E) are chemical stains that are used to highlight
features of tissue architecture in formalin-fixed and paraffin-embedded tissue sec-
tions. H and E provide complementary information for pathologists. H is a basic
chemical compound that binds negatively charged nucleotides in DNA and RNA
to provide a blue color. In contrast, E is acidic and reacts with basic side chains
of amino acids resulting in pink coloration. Whereas proteins bind to DNA and
RNA lead to overlapping H and E staining in the cell nucleus and cytoplasm,
the extracellular matrix and vascular structures supporting cancer cells interact
primarily with E since they are devoid of DNA and RNA. In contrast to RGB
channels that cannot easily be linked to a biological interpretation, H and E
allow separation of nuclei versus cytoplasm and extracellular matrix. Therefore,
we hypothesize that H and E stains, when separated into their own channels,
can provide two views that can, to a large extent, satisfy the co-training assump-
tions. We also formulate a novel contrastive co-training with H and E views. We
validate our approach on a dataset of 53 WSIs from clear cell renal cell carcinoma
(ccRCC) patients for histologic growth pattern (HGP) classification and of 45
WSIs from prostate cancer patients for cancer vs. benign gland classification.
We demonstrate that our approach outperforms state-of-the-art SSL methods.
We perform further experiments to explain the suitability of H and E channels
for co-training as opposed to RGB channels.

2 Stain Based Contrastive Co-training

2.1 Stain Separation

We adopt an approach that separates an H&E image in the RGB space into
individual H and E stain channels using non-linear pixel-wise functions derived
from dominant color profiles of each stain [15]. Concretely, we use the following
approximate transformation between the two spaces:
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The H and E channels are normalized to the range [0, 1] after the transformation.

Fig. 1. H&E RGB image is separated into H and E channels and processed separately
to generate two feature sets fH and fE trained with the proposed contrastive loss.

2.2 Contrastive Co-training

We propose two ResNet models [8] (same architecture, separate parameters) for
H and E channels, respectively (Fig. 1). Existing co-training methods enforce
consistency of prediction between classifier outputs operating on different views
of the data. The disadvantage of this approach is that the individual classifiers
only make use of their respective views and are sub-optimal. Instead, we propose
a contrastive loss in the feature space to implement co-training and define a single
classifier which uses a combined view by averaging the features from the two
channels (Fig. 1). Our approach is inspired by recent works that use contrastive
learning to create a shared feature space between multimodal data [21,22]. We
use a contrastive loss to create a shared feature space between features extracted
by the H and E networks. Let fH(x) and fE(x) denote the H and E features for
input tile x, respectively. We use a triplet loss

Lc.t.(xi) = max (‖ fH(xi) − fE(xi) ‖2 − ‖ fH(xi) − fE(xk) ‖2 +m, 0) , (2)

where random k �= i, ‖ a ‖2 denotes the L2 norm of vector a, and m is the margin
hyperparameter. The triplet loss encourages (fH , fE) pairs from the same H&E
tile xi to be mapped closer together than (fH , fE) pairs from mismatched input
tiles xi and xk. Note that the output of the model is a linear+softmax layer
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applied to 0.5(fH +fE). Therefore, pushing the features fH and fE closer for the
same tile also implicitly minimizes the difference between individual predictions,
similar to co-training, if the final layer were applied to fH and fE alone.

Let L = {xj , yj} denote the labeled training set where yi is the label corre-
sponding to input tile xi. Let U = {xi} denote the unlabeled training set. The
overall learning strategy combines supervised learning with cross-entropy on the
labeled dataset with the triplet loss (2) on the entire dataset:

L =
∑
xj∈L

yj log ŷj + λ
∑

xi∈L∪U

Lc.t.(xi), (3)

where ŷj denotes the output of the model for input xj and λ is a hyperparameter
controlling the relative contributions from the labeled and unlabeled losses.

3 Experiments

3.1 Datasets

ccRCC. H&E slides from ccRCC patients at our institution were retrieved from
the pathology archive and scanned at 40× magnification. HGPs in 53 WSIs were
annotated by drawing polygons around them in QuIP [2] by a GU-subspecialty
trained pathologist. HGPs were divided into nested vs. diffuse (non-nested) his-
tologic classes [1]. Diffuse HGPs are associated with a higher risk of cancer
recurrence and metastatic progression. Each WSI contains multiple polygons.
Images were downsampled by a factor of 2× and a tile size of 400 × 400 pixels
was chosen to capture the visual characteristics of the HGPs after discussion
with pathologists (Fig. 2). We sampled overlapping tiles by choosing a stride of
200 pixels. We extracted 3014 tiles with nested HGPs and 2566 tiles with diffuse
HGPs from the annotated polygons. We separated the WSIs into training, valida-
tion and testing sets to ensure a realistic experimental setting. This separation
resulted in 2116/1990 nested/diffuse tiles for training, 386/246 nested/diffuse
tiles for validation and 512/330 nested/diffuse tiles for testing. The validation
set was used for choosing hyperparameters as discussed below. The test set was
for final model evaluation. Tiles from same patient were in the same set. For
the SSL experiments, we divided the annotated polygons from the training set
into 10 groups and randomly picked one group to draw labeled tiles from in each
run of our experiments. This is a more realistic and challenging scenario than
randomly choosing 10% of the training tiles as labeled data because tiles from
the same polygon usually represent a smaller range of variations for learning.

Prostate Cancer. We collected 6992 benign gland images and 6992 prostate
cancer images from our institution as training set using the same process as with
the ccRCC dataset. The tile size was chosen as 256 × 256, which is sufficient to
characterize gland features. The validation and test sets are from the The Cancer
Genome Atlas Program (TCGA). We collected 477 benign and 472 cancer tiles
from 18 cases. In each experiment, we randomly selected 8 cases for validation
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ccRCC nested ccRCC diffuse Prostate benign Prostate cancer

Fig. 2. Examples of ccRCC and prostate gland tiles.

and 10 cases for testing. Examples of prostate gland images are shown in Fig. 2.
For SSL, we randomly divided training images into 20 groups and used one
group as labeled data. The image sets from our institution are available through
a material transfer agreement and the TCGA set is publicly available.

3.2 Model Selection, Training and Hyperparameters

Considering the small number of training samples, we chose ImageNet pretrained
ResNet18 [8] for all experiments. ResNet is a state-of-the-art model which has
better performance with less parameters. For models that use single channel
inputs, i.e., the H and E CNN pathways in Fig. 1, we summed the convolutional
weights of the R, G and B channels in the first layer of ResNet18. The final layer
of the ResNet18 was also changed for binary classification.

We used color jittering, random rotation, crop to 256×256 (ccRCC) or 224×
224 (prostate) pixels, random horizontal/vertical flip and color normalization as
data augmentation. For validation and test tiles, we performed center crop and
color normalization to follow the same data format as in training. For the co-
training model, H and E channels have independent color jitters but the rest of
the augmentations are common, e.g., the same random rotation angle is applied
to the H and E channels from the same tile. The rationale for independent color
jitters is that color variations due to the amount of H or E chemical tissue stains
used are common in practice, which leads to independent brightness variations
in these channels.

We used the Adam optimizer with an initial learning rate of 10−3(100% label
only) or 10−4 and used a decaying learning rate. A batch size of 64 was used in
ccRCC dataset and 128 in prostate cancer dataset. Hyperparameters in (3) were
chosen as λ = 0.2 × p and m = 40, where p is the percentage of training data
used as labeled data. All hyperparameters were chosen to optimize accuracy over
the validation set, including experiments on other state-of-the-art models. Batch
normalization was applied to the features before computing the contrastive loss.

For comparison with other state-of-the-art SSL methods, we used consistency
regularization [9,16], MixMatch [3] and FixMatch [18]. The same augmentations
discussed above were used for the SSL experiments. We ran all experiments for
250 epochs in ccRCC experiments and 100 epochs in prostate cancer dataset and
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chose the epoch with the best validation accuracy. Each experimental setting was
run 5 times to calculate mean accuracy and standard deviation.

We used Python 3.7.11 + Pytorch 1.9.0 + torchvision 0.10.0 + CUDA 10.2 on
virtual environment and ran on NVIDIA TITAN X and NVIDIA TITAN RTX.
We also used Python 3.9.0 + Pytorch 1.7.1 + torchvision 0.8.2 + CUDA 11.0 and
ran on NVIDIA RTX A6000. With batchsize fixed to 64, co-training experiment
on ccRCC occupied around 5300 MB memory on GPU and needed 1.5–2.0 min
for each epoch. The code is available at https://github.com/BzhangURU/Paper
2022 Co-training.

3.3 Results

We compared proposed co-training with H and E views to a baseline ResNet18
model that uses RGB H&E images as input, as well as other state-of-the-art
SSL methods, such as MixMatch and FixMatch, considering they are already
widely used in histopathology image analysis [13]. The approaches were com-
pared under two settings: using 100% of the available labeled tiles in training set
for supervised learning and using only a subset (10% in ccRCC, 5% in prostate)
of the available tiles for supervised learning. The proposed model also employed
the unsupervised co-training loss with 100% of the training data (unlabeled)
to set up an SSL method. Mean accuracy and standard deviation over 5 runs
reported for all methods are shown in Table 1 for both datasets.

Table 1. Mean accuracy and standard deviations of different models for the test sets
in ccRCC and prostate experiments. Best performing model results for the 100% and
10%/5% labeled data setting are shown in bold.

ccRCC model Test accuracy Prostate model Test accuracy

100% label RGB ResNet 84.8± 2.4% 100% label RGB ResNet 77.5± 2.5%

100% label H/E co-train 92.0± 2.6% 100% label H/E co-train 79.1± 2.0%

10% label RGB ResNet 76.9± 5.9% 5% label RGB ResNet 73.4± 1.0%

10% label RGB consis 86.8± 3.3% 5% label RGB consis 74.7± 1.3%

10% label RGB MixMatch 85.9± 5.7% 5% label RGB MixMatch 73.7± 5.0%

10% label RGB FixMatch 88.3± 3.8% 5% label RGB FixMatch 78.2± 3.8%

10% label H/E co-train 92.3± 2.1% 5% label H/E co-train 78.7± 1.9%

We note that the contrastive co-training strategy improved test accuracy,
by a large margin in the case of ccRCC, when 100% of the labeled data were
used for supervised training (row 2 vs. 1, Table 1), which suggests it provides a
strong regularization effect against overfitting. Note that training accuracy for
the fully supervised RGB ResNet and H/E co-train models were 99.97 ± 0.02%
and 99.78±0.15%, respectively, in the ccRCC dataset. The same models achieve
98.34 ± 0.64% and 98.32 ± 0.55% training accuracy in prostate cancer. The
fact that test accuracies on prostate cancer are lower than on ccRCC for all

https://github.com/BzhangURU/Paper_2022_Co-training
https://github.com/BzhangURU/Paper_2022_Co-training
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models is likely due to domain shift. In ccRCC dataset, all training, validation
and test sets come from our institution. While in prostate cancer dataset, only
training set comes our institution, the validation and test set come from TCGA
dataset. Another possible reason is the fact that sometimes the gland size in
prostate cancer is much smaller than the size of tiles, which could carry much
less distinguishable features.

As expected, the proposed co-training strategy significantly outperforms the
baseline approach (row 7 vs. 3, Table 1) under the limited labeled data setting.
Consistency regularization based SSL methods significantly improve the accu-
racy of RGB ResNet baseline when a limited amount of training data is available
(rows 4–6 vs. 3, Table 1). In line with results from computer vision, FixMatch
even surpasses the baseline model trained with the entire labeled dataset. How-
ever, our proposed method outperformed all other SSL methods we compared
against including FixMatch for both datasets. We note that hyperparameters
for all SSL methods were independently fine-tuned to obtain the best validation
accuracy. Finally, contrastive co-training was able to reach the same accuracy
levels independent of the amount of labeled data that was used for supervised
training (rows 2 and 7, Table 1).

3.4 Co-training View Analysis

In this section, we further study the suitability of the H and E channels for
co-training in the context of the ccRCC dataset. First, we explore whether the
H and E channels are sufficient on their own to provide a basis for accurate
classification in a supervised setting. We train models that only use the H or
only use the E channel as input. The 100% labeled results in Table 2 show that
both channels carry sufficient information for the classification problem at hand.
This is especially true for the E-channel, which is particularly informative for
the nested vs diffuse classification task. However, as expected, the accuracy for
both channels drops significantly when the labeled data is limited.

Table 2. H-only and E-only models test accuracy for the ccRCC dataset.

Model Accuracy Model Accuracy

100% label H ResNet 79.4 ± 3.7% 10% label H ResNet 73.5 ± 4.0%

100% label E ResNet 94.0 ± 1.4% 10% label E ResNet 82.3 ± 7.0%

We next explore if the H and E channels are better suited for co-training
than R, G and B channels due to a higher degree of independence. We trained
an image-to-image regression model using the U-Net architecture [14] between
various channels, e.g., predicting the E-channel from the H-channel of the same
tile. The final layer of the U-Net architecture was chosen to be linear, and we
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used the mean square error function for training. Table 3 reports the coefficient
of determination (R2) achieved for various input/output channel combinations.
We observe that the H and E channels are harder to predict from each other
(lower R2) compared to the R, G and B channels, hence demonstrating a higher
degree of independence and suitability for co-training.

Table 3. Coefficient of determination (R2) of image mapping between various channels
on ccRCC validation set at epoch with the lowest MSE.

Experiments R2 value Experiments R2 value

H ⇒ E 0.5223 E ⇒ H 0.4613

R ⇒ G 0.8464 G ⇒ R 0.7833

R ⇒ B 0.8207 B ⇒ R 0.7713

G ⇒ B 0.8522 B ⇒ G 0.8824

3.5 Ablation Studies

We also conducted ablation studies to separately analyze the role of the con-
trastive loss and the H and E channel selection in terms of classification accuracy
on ccRCC. Omitting the contrastive loss from training while using the H and E
channel inputs lowered the accuracy from 92.0 ± 2.6% to 84.7 ± 5.2% for 100%
labeled data and from 92.3 ± 2.1% to 78.7 ± 8.0% for 10% labeled data. In the
next ablation experiment, we used various pairs from the RGB channels as the
basis for our co-training method, and compared with ResNet using the same
pair as input, e.g., using only the R and B channels to form 2-channel images as
input for ResNet. Results are reported in Table 4. Unlike the H and E models,
we observe that the results are approximately the same, which is expected con-
sidering the higher level of dependence among RGB channels shown in Sect. 3.4.
These observations suggest that the benefit of the proposed model is due to
the contrastive co-training loss applied to the H and E view inputs rather than
simply due to the change in the input space or the contrastive loss individually.

Table 4. Ablation study on ccRCC. Test set accuracy of ResNet and co-training models
taking only 2 channels from RGB as input with 10% labeled data in training.

Model Accuracy Model Accuracy Model Accuracy

RB ResNet 77.5 ± 6.6% RG ResNet 80.2 ± 6.4% GB ResNet 78.4 ± 9.7%

R/B co-train 78.2 ± 4.5% R/G co-train 79.8 ± 5.6% G/B co-train 76.6 ± 7.3%
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4 Conclusion

We proposed a novel co-training approach for pathology image classification that
leverages deconvolution of an H&E image into individual H and E stains. We
demonstrated the advantages of the proposed approach over fully supervised
learning and other state-of-the-art SSL methods in the context of ccRCC and
prostate cancer. The proposed method could be used after segmentation of can-
cer regions from a WSI to drive prognostic markers. In future work, we will
investigate finer-grained classification for further improved prognostic value.

Since our proposed approach uses a complementary learning strategy to con-
sistency regularization approaches that use data transformations, a potential
avenue for future research is to combine them for further improvements. Another
potential direction for further research is to investigate whether a more sophisti-
cated separation into H and E stain channels can provide improved results with
co-training. Methods based on Cycle-GAN have been used for stain-to-stain
translation such as H&E to immunohistochemistry and they could also be used
for separation of H and E stains. However, this would require the acquisition of
additional datasets with H only and E only stains for the discriminators.
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11. Otálora, S., Marini, N., Müller, H., Atzori, M.: Semi-weakly supervised learning
for prostate cancer image classification with teacher-student deep convolutional
networks. In: Cardoso, J., et al. (eds.) IMIMIC/MIL3ID/LABELS -2020. LNCS,
vol. 12446, pp. 193–203. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-61166-8 21

12. Chikontwe, P., Kim, M., Nam, S.J., Go, H., Park, S.H.: Multiple instance learning
with center embeddings for histopathology classification. In: Martel, A.L., et al.
(eds.) MICCAI 2020. LNCS, vol. 12265, pp. 519–528. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-59722-1 50

13. Pulido, J.V., et al.: Semi-supervised classification of noisy, gigapixel histology
images. In: 2020 IEEE 20th International Conference on Bioinformatics and
Bioengineering (BIBE), pp. 563–568 (2020). https://doi.org/10.1109/BIBE50027.
2020.00097

14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

15. Ruifrok, A.C., Johnston, D.A.: Quantification of histochemical staining by color
deconvolution. Anal. Quant. Cytol. Histol. 23(4), 291–9 (2001)

16. Sajjadi, M., Javanmardi, M., Tasdizen, T.: Regularization with stochastic trans-
formations and perturbations for deep semi-supervised learning. In: Lee, D.,
Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural
Information Processing Systems, vol. 29. Curran Associates, Inc. (2016). https://
proceedings.neurips.cc/paper/2016/file/30ef30b64204a3088a26bc2e6ecf7602-
Paper.pdf

17. Shaw, S., Pajak, M., Lisowska, A., Tsaftaris, S.A., O’Neil, A.Q.: Teacher-
student chain for efficient semi-supervised histology image classification. arXiv
abs/2003.08797 (2020)

18. Sohn, K., et al.: Fixmatch: simplifying semi-supervised learning with consistency
and confidence. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H.
(eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 596–608.
Curran Associates, Inc. (2020)

19. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged
consistency targets improve semi-supervised deep learning results. In: Guyon,
I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30.
Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper/2017/file/
68053af2923e00204c3ca7c6a3150cf7-Paper.pdf

https://doi.org/10.3389/fmed.2019.00264
https://doi.org/10.3389/fmed.2019.00264
https://www.frontiersin.org/article/10.3389/fmed.2019.00264
https://openreview.net/forum?id=BJ6oOfqge
https://openreview.net/forum?id=BJ6oOfqge
https://doi.org/10.1007/978-3-030-59722-1_45
https://doi.org/10.1007/978-3-030-59722-1_45
https://hal.archives-ouvertes.fr/hal-03133239
https://doi.org/10.1007/978-3-030-61166-8_21
https://doi.org/10.1007/978-3-030-61166-8_21
https://doi.org/10.1007/978-3-030-59722-1_50
https://doi.org/10.1109/BIBE50027.2020.00097
https://doi.org/10.1109/BIBE50027.2020.00097
https://doi.org/10.1007/978-3-319-24574-4_28
https://proceedings.neurips.cc/paper/2016/file/30ef30b64204a3088a26bc2e6ecf7602-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/30ef30b64204a3088a26bc2e6ecf7602-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/30ef30b64204a3088a26bc2e6ecf7602-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/68053af2923e00204c3ca7c6a3150cf7-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/68053af2923e00204c3ca7c6a3150cf7-Paper.pdf


116 B. Zhang et al.

20. Huang, Y., Chung, A.C.S.: Evidence localization for pathology images using weakly
supervised learning. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp.
613–621. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7 68

21. Yuan, X., et al.: Multimodal contrastive training for visual representation learning.
In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 6991–7000 (2021)

22. Zhang, Y., Jiang, H., Miura, Y., Manning, C., Langlotz, C.: Contrastive learning
of medical visual representations from paired images and text (2020)

https://doi.org/10.1007/978-3-030-32239-7_68

	Stain Based Contrastive Co-training for Histopathological Image Analysis
	1 Introduction
	2 Stain Based Contrastive Co-training
	2.1 Stain Separation
	2.2 Contrastive Co-training

	3 Experiments
	3.1 Datasets
	3.2 Model Selection, Training and Hyperparameters
	3.3 Results
	3.4 Co-training View Analysis
	3.5 Ablation Studies

	4 Conclusion
	References




