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Abstract. Current contrastive learning methods use random transfor-
mations sampled from a large list of transformations, with fixed hyper-
parameters, to learn invariance from an unannotated database. Following
previous works that introduce a small amount of supervision, we pro-
pose a framework to find optimal transformations for contrastive learn-
ing using a differentiable transformation network. Our method increases
performances at low annotated data regime both in supervision accuracy
and in convergence speed. In contrast to previous work, no generative
model is needed for transformation optimization. Transformed images
keep relevant information to solve the supervised task, here classifica-
tion. Experiments were performed on 34000 2D slices of brain Magnetic
Resonance Images and 11200 chest X-ray images. On both datasets, with
10% of labeled data, our model achieves better performances than a fully
supervised model with 100% labels.

Keywords: Contrastive learning · Semi-supervised learning ·
Transformations optimization

1 Introduction

When working with medical images, data are increasingly available but annota-
tions are fewer and costly to obtain. Self-supervised methods have been devel-
oped to take full advantage of the non-annotated data and increase performances
in supervised tasks at low annotated data regime. As part of self-supervised
methods, contrastive learning methods [1,2,11,12] train an encoder on non-
annotated data to learn invariance between transformed versions of images.
Contrastive learning methods are also used with medical images. For instance,
the authors of [1] learn local and global features invariance while those of [5]
introduce a kernel to take metadata into account in contrastive pretraining.

In most works, the transformations used to learn invariance are randomly sam-
pled from a given list. While many works study the impact of removing some trans-
formations on supervised task performance [2,12], not much investigation has been
done on optimizing the transformations and their hyper-parameters. Some authors
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[11,15] focus on the role of transformations but without explicit transformations
optimization. The work of [11] proposes a formal analysis of transformations com-
position to select admissible transformations while [15] explores the latent spaces
of specific transformations. The authors of [16] introduce a generative network to
learn transformations distribution present in the data to use complementary trans-
formations in self-supervised tasks. Unlike our work (see Sect. 2) they need a pre-
training step before the contrastive one to learn transformations distribution.

Within supervised training (not self-supervision), some works have proposed
to optimize data augmentation. In [4], a pre-training step using reinforcement
learning is required. The work of [17] shows that data augmentation should be
applied on both discriminator and generator optimization steps but no optimiza-
tion is performed on augmentation choice. The authors of [8,9] learn a vector
containing augmentations probability. They also present a transformations opti-
mization strategy. Unlike our approach (see Sect. 2), transformation parameters
are discretized. Optimization is performed on the probability of choosing a family
of transformations and a set of parameters.

While supervision is also introduced in contrastive learning in [6,18], few
authors used it in order to influence the choice of transformations. Among them,
the authors of [14] introduce a transformation generator (a flow-based model
based on [7]) to generate transformed images in new color spaces minimizing
mutual information while keeping enough information for the supervised task.
As transformations only impact color spaces, their application to gray scale
images, in particular medical images, is very limited. Furthermore, consistently
synthesizing anatomically relevant images with generative models can be diffi-
cult [3]. To the best of our knowledge, the approach in [14] is the only existing
method optimizing a transformation generator for contrastive learning.

As in [14], the present work uses a small amount of supervision (10%) for
transformation optimization. We introduce a differentiable framework on trans-
formations that needs no pre-training, and, unlike [14], is applicable to both
color and gray scale images. Our contributions are the following:

– We propose a semi-supervised differentiable framework to optimize the trans-
formations of contrastive learning.

– We demonstrate that our method finds relevant transformations for the down-
stream task, which are easy to interpret.

– We show that our framework has better performances than fully supervised
training at low data regime and contrastive learning [2] without supervision.

2 Transformation Network

Contrastive learning methods train an encoder to bring close together latent
representations of positive pairs of images while pushing away representations of
negative pairs of images. As in simCLR [2], positive pairs are two transformations
of the same image while negative pairs are transformed versions of different
images.
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Transformations used in most methods are chosen at random from a fixed
given list. However, as shown in [14], using positive (transformed) images, that
are very similar to each other (i.e., high mutual information), might entail a sub-
optimal solution since it would not bring additional information to the encoder.
By using a small amount of supervision, transformations can be optimized in
order to contain relevant information for the targeted supervised task.

In this work, we focus on classification tasks. We introduce a transforma-
tion network (M) that minimizes the mutual information between images of a
positive pair without compromising the supervised task performance. For each
image of the training set, M , implemented as a neural network, outputs a set
of parameters (Λ) defining the transformations to apply (TΛM

). As in [2,15],
the latent space of the encoder (f) is optimized using a projection head (g)
into a lower dimension space where a contrastive loss function (INCE) is mini-
mized. Supervision is added on the latent space using a linear classifier (p) that
minimizes a classification loss function (L). Figure 1 shows a schematic view of
the architecture used (X denotes an image from the training set and XM its
transformed version).

Fig. 1. Proposed architecture (red color indicates a trainable element, blue color indi-
cates a non-trainable element). (Color figure online)

2.1 Optimizing Transformations

We consider a finite set of intensity and geometric transformations acting on
images. Each transformation is parameterized by a vector of parameters (for
example, the parameter vector of a rotation around a fixed point only contains
its angle). The transformation function (TΛM

) is the composition of transfor-
mations applied in a fixed order. The transformation network (M) outputs the
transformation function parameters. We propose to train M to find the optimal
transformations for the semi-supervised contrastive problem. The network M
maps an image to the space of parameter vectors, normalized to [0, 1]. The order
of the transformations in the composition is not optimized, but the impact of
this order has been studied and results are shown in Sect. 3.

Let λk be the vector of parameters for a given transformation, then the
transformation function, noted as TΛM

, is parameterized by Λ = [λ1, · · · , λK ]
(where K is the number of transformations considered).

The optimal transformations for the semi-supervised contrastive problem is
then obtained via M , which is thus responsible for finding the optimal Λ∗

M .
In contrast with [2], we only transform one version of the image batch. Our
experiments show better results in this setting. The optimization goes as follows.
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Transformation Network Optimization Steps: (i) M generates a batch
of ΛM vectors defining a transformation TΛM

. For every image X in a batch,
a transformed version is generated: XM = TΛM

(X). (ii) The transformed and
untransformed data batches are passed through the encoder f , the projection
head g and the linear classifier p. (iii) The contrastive loss −INCE (see below,
Eq. 2) gradient is computed to update the weights of the network M aiming to
minimize mutual information and classification loss function.

Encoder Optimization Steps: (i) From the previous optimization steps of M ,
one transformed version of the data is generated. Latent projections of the trans-
formed and untransformed data are generated using encoder f and projection
head g. (ii) The contrastive loss gradient is computed and parameters of f , g
and p are updated. This brings closer positive pairs and further away negative
ones, and ensures that transformed images are properly classified.

Formally, these steps aim to solve the following coupled optimization problem
where contrastive and classification loss functions are taken into account:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minM α0INCE

(
g ◦ f(XM ), g ◦ f(X)

)
+ α1L

(
p ◦ f(XM ), y

)

minf,p,g −α2INCE

(
g ◦ f(XM ), g ◦ f(X)

)
+ α3L

(
p ◦ f(XM

)
, y

)

+α4L
(
p ◦ f(X), y

)
(1)

where αi are weights balancing each loss term and y are the classification labels
when available. The term INCE is the contrastive loss function as in [2]:

INCE(XM i,Xi) = −
∑

i

log

(
esim(g(f(XMi)),g(f(Xi)))

∑
j,j �=i esim(g(f(XMi)),g(f(Xj)))

)

(2)

where the index i defines positive pairs, j negative ones, and sim is a similarity
measure defined as sim(x, x′) = xT x′

τ where τ is a fixed scalar, here equal to 1.
Finally, L is the binary cross entropy loss function for the supervised constraint.

2.2 Differentiable Formulation of the Transformations

A fundamental difference of the proposed transformation optimization, com-
pared to [8,9,14], is the use of explicit transformations differentiation. Dur-
ing training, gradient computations of Eq. 1 involve the derivative of TΛM

with
respect to the weights (w) of M : dw(TΛM

) = dTΛM
◦ dwM . This requires the

explicit computation of the derivatives of T with respect to its parameters Λ and
the differential calculus for each transformation composing T . Thus, we introduce
specific formulations and normalized parameterization for the transformations
used in our experiments.

We use the following transformations: crop (Crop), Gaussian blur (G), addi-
tive Gaussian noise (N), rotation (R) around the center of the image, horizontal
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(Flip0) and vertical (Flip1) flips. Table 1 lists the expressions of these transfor-
mations. The final transformation function is defined as:

TΛ = (R ◦ Flip1 ◦ Flip0 ◦ Crop ◦ N ◦ G)(X,Λ) (3)

and TΛ thus depends on 7 parameters (the crop has 2 parameters) which are
generated by M .

Table 1. Differentiable expressions of the transformations used, parameterized by λ ∈
[0, 1], where S is the sigmoid function, s the size of our images, erfinv the inverse of

the error function 2π− 1
2

∫ ∞
x

e−u2
du, U the uniform distribution and x is a point of the

image grid. We fix the maximum Gaussian blur standard deviation to σmax = 2.0 and
the maximum additive noise standard deviation to σ̃max = 0.1.

Flip around axis e F lip(X, λ, e)(x) = (1 − λ)X(x) + λX(x − 2〈x, e〉e)
Crop centered at cλ = [λ1s, λ2s] Crop(X, λ)(x) = X(x) × S( s

8
− ||x − cλ||∞)

Gaussian blur with kernel gλσmax G(X, λ) = gλσmax ∗ X

Rotation R(X, λ)(x) = X

((
cos(λ2π) − sin(λ2π)

sin(λ2π) cos(λ2π)

)

x

)

Additive Gaussian noise N(X, λ) = X + λσ̃max × √
2 erfinv(U [−1, 1])

2.3 Experimental Settings

Dataset. Experiments were performed on BraTs MRI [10] and Chest X-ray [13]
datasets. The Chest X-ray dataset is composed of 10000 images. BraTs volumes
were split along the axial axis to get 2D slices. Only slices with less than 80% of
black pixels were kept. This resulted in 34000 slices. For both datasets, we studied
the supervised task of pathology presence classification (binary classification,
present/not present). In medical imaging problems, it is common to have labels
only for a small part of the dataset. We thus choose 10% of supervision in all
of our experiments. We randomly selected three hold-out test sets of 1000 slices
for BraTs experiments. With the Chest dataset, we used the provided test set
of 1300 images, from [13], evenly split in three to evaluate variability.

Implementation Details. For every experiment with the BraTs dataset, the
encoder f is a fully convolutional network composed of four convolution blocks
with two convolutional layers in each block. Following the architecture proposed
in [13], the encoder f for experiments on the Chest dataset is a Densenet121.
The network M is a fully convolutional network composed of two convolutional
blocks with one convolutional layer. The projection head g is a two-layer percep-
tron as in [2]. On BraTs dataset (resp. Chest dataset), we train with a batch size
of 32 (resp. 16) for 100 epochs. In each experiment, the learning rate of f is set
to 10−4. When optimizing M with (resp. without) supervision, M learning rate
is set to 10−3 (resp. 10−4). When using 10% of labeled data for the supervision
task, on relatively small databases (105 images), there is a risk of overfitting on
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the classification layer (p in Eq. 1). Contrastive and supervision loss terms need
to be carefully balanced while optimizing both the encoder and the transfor-
mation generator. To evaluate the impact of hyper-parameters, we carried out
experiments with (α0, α2) ∈ {1, 0.1} and (α1, α3, α4) ∈ {1, 10}. Linear evalua-
tion results (see Sect. 2.4) on BraTs dataset after convergence are summarized in
Table 2. Results in Sect. 3 are shown with the best values found for each method.

Table 2. 3-fold cross validation mean linear evaluation AUC after convergence with
different αi values (standard deviation in parentheses).

αi values AUC

Optimizing M α0,2 = 1, α3,4 = 1, α1 = 10 0.884 (0.042)

α0 = 0.1, α1,3,4 = 10, α2 = 0.1 0.868 (0.030)

α0 = 0.1, α1 = 10, α2 = 1, α3,4 = 1 0.887 (0.013)

Random M α2 = 1, α3,4 = 1 0.874 (0.000)

α2 = 0.1, α3,4 = 10 0.820 (0.037)

α2 = 1, α3,4 = 10 0.883 (0.003)

Base simCLR [2] 0.730 (0.020)

The fully supervised experiments described in Sect. 3 are optimized with the
same encoder architecture and one dense layer followed by a sigmoid activation
function for the classification task. For the fully supervised experiments we used
a learning rate of 10−4.

Computing Infrastructure. Optimizations were run on Tesla NVIDIA V100
cards.

2.4 Linear Evaluation

To evaluate the representation quality learned by the encoder, we follow the
linear evaluation protocol used in the literature [2,12,14]. The encoder is frozen
with the weights learned with our framework. One linear layer is added, after
removing the projection head (g), and trained with a test set of labeled data,
not used in the previous training phase. This means that we first project the
test samples in the latent space of the frozen model and then estimate the most
discriminative linear model. The rationale here is that a good representation
should make the classes of the test data linearly separable.

3 Results and Discussion

To assess the impact of each term in Eq. 1 we performed optimization using the
following strategies:
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Random (without M , without supervision): each image is transformed with
parameters generated by a uniform distribution: Λ = U (

[0, 1]7
)
, and α1,3,4 = 0.

Random with supervision (without M , with supervision): we add the super-
vision constraint to the random strategy. We set α2 = 1 and α3,4 = 10.

Self-supervised (with M , without supervision): while setting α1, α3 and α4 to
0, we optimize Eq. 1.

Self-supervised with supervision constraint (with M and supervision):
setting α1 = 10 and α0,2,3,4 = 1, we optimize Eq. 1.

We split the data into pre-training and test sets. Data from the pre-training
set are further split into training and validation sets for the perturbator/encoder
optimization. For optimizations with supervision constraint (self-supervised and
random), all pre-training data are used for self-supervision and a small set of
labeled data is used for the supervision constraint. For variability analysis, three
optimizations were performed by changing the supervision set. With the BraTs
dataset, as slices come from 3D volumes, we split the data ensuring that all slices
of the same patient were in the same set.

Linear evaluation was performed on the four optimization strategies with
the hold-out test set. Performances were evaluated with the weights obtained at
different epochs. We aim to evaluate if our method outputs better representations
during training. In Fig. 2, we show performances (mean and standard deviation)
on three different test sets for both datasets. We also trained the encoder on
the classification task in a fully supervised setting with 10% and 100% labeled
data. For the fully supervised training, we used data augmentation composing
the tested transformations randomly. Each transformation had a 0.5 probability
of being sampled. We performed linear evaluation on the frozen encoder with
the hold-out test set and report the obtained AUC as horizontal lines in Fig. 2.
Figure 2 also reports linear evaluation results of the base simCLR optimization as
in [2] where only one image is transformed by a random composition of the tested
transformations. As with the fully supervised experiments, each transformation
had a 0.5 probability of being sampled.

Figure 2 shows that optimizing M with supervision helps to have better rep-
resentations for both datasets. It also shows that optimizing with only 10% of
labeled data allows us to reach the same quality of representation as the fully
supervised training with 100% of labels.

To investigate the impact of the supervised loss function, we launched an
experiment with the supervised contrastive loss introduced in [6] using only 10%
of labeled data. After convergence, we obtained a mean AUC of 0.52 ± 0.12
compared to 0.93 ± 0.01 with our method.

On the Chest X-ray database, strong results were obtained in [13] using a
network pretrained on ImageNet. Optimizing M with 10% supervision on this
ImageNet pretrained network has a smaller impact compared to random trans-
formations (0.96 ± 0.001 for both approaches). However, ImageNet pretrained
networks can only be used with 2D slices whereas our strategy could be easily
extended to 3D volumes.
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Fig. 2. Linear evaluation results comparing with other methods (left BraTs dataset
with batch size 32, right Chest dataset with batch size 16).

Relevance. When optimizing without supervision, the network M needs to
minimize the mutual information and it can therefore generate transformations
that create images that are very different from the untransformed images but
that do not contain relevant information for the downstream task, in particular
for medical images. Without the supervision constraint, the optimal crop can
be found, for instance, in a corner, leading to an image with a majority of zero
values (i.e., entirely black), thus useless for the supervised task. The supervision
constraint helps M to generate relevant images that keep pathological pixels (see
some examples in Fig. 3).

Fig. 3. Two examples (row 1 and 2) of generated transformations in the BraTs dataset
with different optimization strategies (red contour highlights the tumor). (Color figure
online)

Runtime. The addition of the network M increases the training computational
time of around 20–25% which is balanced by a performance gain.
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Transformation Composition Order. As in [2], the transformation order
is fixed. We launched an additional experiment with a different transforma-
tion order for both simCLR and our method. Linear evaluation results after
convergence are respectively: 0.730 ± 0.020 and 0.760 ± 0.027 for simCLR and
0.926 ± 0.020 and 0.923 ± 0.021 for our method. The transformation order has
thus little impact on our results and, above all, our method substantially out-
performs simCLR in both experiments.

4 Conclusions and Perspectives

We proposed a method to optimize usual transformations employed in con-
trastive learning with very little supervision. Extensive experiments on two
datasets showed that our method finds more relevant transformations and
obtains better latent representations, in terms of linear evaluation. Future works
will try to optimize the transformations composition order. Furthermore, in a
weakly-supervised setting, we could also investigate constraining latent space
representations of non labeled data with pseudo-labels and nearest neighbor
clustering.
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