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Abstract. In many clinical contexts, detecting all lesions is imperative
for evaluating disease activity. Standard approaches pose lesion detec-
tion as a segmentation problem despite the time-consuming nature of
acquiring segmentation labels. In this paper, we present a lesion detec-
tion method which relies only on point labels. Our model, which is
trained via heatmap regression, can detect a variable number of lesions
in a probabilistic manner. In fact, our proposed post-processing method
offers a reliable way of directly estimating the lesion existence uncer-
tainty. Experimental results on Gad lesion detection show our point-
based method performs competitively compared to training on expensive
segmentation labels. Finally, our detection model provides a suitable pre-
training for segmentation. When fine-tuning on only 17 segmentation
samples, we achieve comparable performance to training with the full
dataset.

Keywords: Lesion detection · Lesion segmentation · Heatmap
regression · Uncertainty · Multiple sclerosis

1 Introduction

For many diseases, detecting the presence and location of all lesions is vital for
estimating disease burden and treatment efficacy. In stroke patients, for example,
the location of a cerebral hemorrhage was shown to be an important factor
in assessing the risk of aspiration [1] thus, failing to locate even a single one
could drastically impact the assessment. Similarly, in patients with Multiple
Sclerosis (MS), detecting and tracking all gadolinium-enhancing lesions (Gad
lesions), whether large or small, is especially relevant for determining treatment
response in clinical trials [2]. Detecting all Gad lesions is imperative as just one
new lesion indicates new disease activity.

To achieve this goal, standard practice in deep learning consists of training a
lesion segmentation model with a post-processing detection step [3,4]. However,
segmentation labels are expensive and time consuming to acquire. To this end, we
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develop a lesion detection model trained on pointwise labels thereby reducing the
manual annotation burden. Unlike previous point annotation-based methods [5–
7], ours combines the ability to detect a variable number of lesions with the
benefit of leveraging a probabilistic approach. Indeed, our refinement method is
not only independent of a specific binarization threshold, it offers a unique way
of estimating the lesion existence probability. Our contributions are threefold:

(1) We demonstrate the merit of training on point annotations via heatmap
regression over segmentation labels on the task of Gad lesion detection.
With weaker labels, our models still achieve better detection performance.

(2) Our proposed refinement method allows for a reliable estimation of lesion
existence uncertainty thus providing valuable feedback for clinical review.

(3) When the end goal is segmentation, our detection models provide a suitable
pre-training for fine-tuning on a limited set of segmentation labels. When
having access to only 17 segmentation samples, we can achieve comparable
performance to a model trained on the entire segmentation dataset.

2 Related Work

Point annotations are often extremely sparse which leads to instability during
training of deep neural networks. Therefore, most state-of-the-art methods rely
on the application of a smoothing operation to point labels. A Gaussian filter is
commonly applied to create a heatmap as was done in [5,6] for suture detection.
Others have found success applying distance map transformations. For instance,
Han et al. [8] and van Wijnen et al. [9] used Euclidean and Geodesic distance
maps to perform lesion detection. We demonstrate the benefits of training with
Gaussian heatmaps over distance maps as they offer a more precise and inter-
pretable probabilistic prediction yielding superior detection performance.

Irrespective of the choice of smoothing used for training, detection meth-
ods will often differ in their post-processing refinement step, i.e. in extracting
lesion coordinates from a predicted heatmap. The simplest approach consists in
finding the location with the maximum mass [5,10,11] or computing the centre
of mass [6]. Although these approaches easily allow for the detection of mul-
tiple lesions, they require careful tuning of the binarization threshold and are
susceptible to missing both isolated and overlapping peaks. More sophisticated
methods exist which aim to fit a Gaussian distribution to the predicted heatmap
thus retaining its probabilistic interpretation, e.g. [12,13]. Specifically, to perform
cephalogram landmark detection Thaler et al. [7] align a Gaussian distribution
via Least Squares curve fitting. Since the approach taken in [7] is limited to a set
number of landmarks, we extend it to detect a variable number of lesions. Our
method thus offers the flexibility of simpler approaches, without any dependence
on a binarization threshold, while providing a probabilistic interpretation.

3 Method

In this work, we propose a strategy to detect the presence and location of multiple
lesions from brain MRIs of patients with a neurodegenerative disease. Our model
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Fig. 1. Overview of detection method given a predicted heatmap Ĥi: lesion candidates
are found by (1) locating the global maximum, (2) fitting a Gaussian distribution to
an extracted region and (3) subtracting the influence of this lesion from the heatmap.
(4) Repeat steps 1–3 before (5) filtering out unlikely lesions.

is trained via heatmap regression (Sect. 3.1) while lesion detection is performed in
a post-processing step (Sect. 3.2). Finally, we present a transfer learning scheme
to perform segmentation on a limited dataset (Sect. 3.3).

3.1 Training via Heatmap Regression

The proposed heatmap regression training scheme requires a domain expert to
label only a single point identifying each lesion, e.g. by marking the approxi-
mate centre of the lesion. To stabilize training, we apply a Gaussian filter with
smoothing parameter σ to the point annotations thus creating a multi-instance
heatmap [5–7,14–16]. Since all lesions are represented by a single point and
smoothed using the same value of σ, equal importance is attributed to lesions of
all sizes. We train a model fθ to map a sequence of input MRIs to a predicted
heatmap Ĥi.

3.2 Detection During Inference

Given a continuous heatmap Ĥi, we now aim to detect individual lesions. Specif-
ically, for patient i, we wish to represent the kth detected lesion by a single
point, µ̂ik, which can be extracted from the heatmap. We assume the predicted
heatmap Ĥi will model a sum of Gaussian distributions (each describing a single
lesion) to mimic the target heatmap:1

Ĥi =
∑

K

Ĥik =
∑

K

N (µ̂ik, σ) (1)

1 Valid as long as fθ sufficiently minimizes the loss and thus models the target.
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Our method essentially aims to find the individual Gaussian distributions com-
prising the sum in Eq. 1 in an iterative manner as shown in Fig. 1. We now
describe each depicted step in detail.

(1) Locate Global Maximum. The location of the global maximum serves as
an initial estimate for the kth predicted lesion centre, µ̂ik.

(2) Gaussian Fitting. In the region surrounding a detected lesion with cen-
tre µ̂ik, we fit a Gaussian distribution with normalizing constant α̂ik:

Ĥik = α̂ikN (µ̂ik, σ) (2)

Provided there is minimal overlap between neighbouring lesions, we can use a
Least Squares curve fitting algorithm to estimate α̂ik and µ̂ik.2 The normaliz-
ing constant, α̂ik, represents the prior probability of producing a peak in this
region (from Bayes’ Theorem), i.e. it is the belief that a lesion exists in the
given region. We thus refer to α̂ik as the lesion existence probability (similar
to [17]). As an initial estimate for α̂ik, we sum within the extracted region, i.e.
the hypothesis space, as shown in Fig. 1 (2).

(3) Subtract. Now that potential lesion k has been identified and fitted with
a continuous Gaussian function, we remove its contribution to the sum in Eq. 1.
This allows our method to more easily detect the individual contributions of
neighbouring lesions with overlapping Gaussian distributions.

Ĥ′
i = Ĥi − α̂ikN (µ̂ik, σ) (3)

(4) Repeat. Since we have subtracted the contribution of lesion k from the
aggregated heatmap, the global maximum now corresponds to a different candi-
date lesion. Steps 1 to 3 are repeated until a maximum number of lesions have
been found or when the lesion existence probability drops below a threshold,
e.g. 0.01.

(5) Filtering. Lesions with a low probability of existence are discarded (thresh-
old optimized on the validation set). By overestimating the lesion count and sub-
sequently discarding regions unlikely to contain a lesion, we can better account
for noisy peaks in the heatmap. We evaluate the calibration of these probabilities
and demonstrate the validity of this filtering step (Sect. 4.2).

3.3 Segmentation Transfer Learning

In addition to detection, estimating a lesion segmentation can be beneficial for
assessing lesion load. We therefore design a transfer learning scheme which first
relies on building a strong lesion detector using point annotations before fine-
tuning on a small segmentation dataset. Specifically, we (1) train a detection
model on point annotations until convergence; (2) build a small segmentation
training set; (3) fine-tune the detection model on segmentation samples only.
Training in this manner minimizes the amount of detailed segmentation labels
that must be generated.
2 Valid for Gad lesions given a sufficiently small smoothing parameter σ.
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4 Experiments and Results

The proposed heatmap regression model is compared against three benchmarks
in terms of detection performance. We train models on (1) segmentation labels,
(2) Euclidean distance maps and (3) Geodesic distance maps [8,9]. Similar to
our method, lesions are detected from the output prediction in a post-processing
step. Here, we instead binarize the output at threshold τ (optimized on the
validation set), cluster connected components to form detected lesions and use
the centre of mass (segmentation) or the maximum (detection) to represent the
lesion (referred to as CC). As an additional benchmark, we apply this method to
heatmap outputs from our proposed regression models. This is in line with detec-
tion methods used by [18,19] for segmentation outputs and [5,6] for heatmap
predictions.

4.1 Experimental Setup

Dataset. We evaluate our method on Gad lesion detection as they are a rel-
evant indicator of disease activity in MS patients [20]. However, their subtlety
and extreme size variation makes them difficult to identify. Experiments are per-
formed using a large, multi-centre, multi-scanner proprietary dataset consisting
of 1067 patients involved in a clinical trial to treat Relapsing-Remitting MS.
Multi-modal MRIs, including post-contrast T1-weighted MRI, are available for
each patient and are provided as inputs to our system. For fairness, we create
train (60%), validation (20%) and test (20%) sets by first splitting at the patient
level. We have access to manually derived Gad lesion segmentation masks. Each
sample is first independently rated by two experts who then meet to produce a
consensus. Point labels were generated directly from segmentation masks by cal-
culating the centre of mass of each lesion and transformed into either heatmaps,
using a Gaussian kernel with smoothing parameter σ, or distance maps (base-
line methods), using decay parameter p. Hyperparameters were selected based
on validation performance.

Model. We train a modified 5-layer U-Net [21] with dropout and instance
normalization using a Mean-Squared Error loss for heatmap regression and a
weighted cross-entropy loss for segmentation. See code for details3.

Evaluation. We apply the Hungarian algorithm [22] to match predicted lesions
to ground truth lesions using Euclidean distance as a cost metric. Assignments
with large distances are considered both a false positive and a false negative.

3 https://github.com/ChelseaM-C/MICCAI2022-Heatmap-Lesion-Detection.

https://github.com/ChelseaM-C/MICCAI2022-Heatmap-Lesion-Detection
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Table 1. Lesion detection results as a mean over 3 runs. Reported is the detection F1-
score, precision, recall and small lesion recall for models trained with segmentation,
Gaussian heatmap or distance map (Geodesic, Euclidean) [8,9] labels using connected
components (CC) or Gaussian fitting (Gaussian).

Label type Detection method F1-score Precision Recall Small lesion recall

Segmentation CC 85.4 ± 0.02 85.3 ± 1.10 85.5 ± 1.15 67.7 ± 3.58

Euclidean map CC 80.6 ± 1.01 92.6 ± 1.28 71.4 ± 2.14 51.0 ± 3.28

Geodesic map CC 73.7 ± 4.89 81.0 ± 7.97 67.8 ± 2.98 47.8 ± 2.81

Gaussian heatmap CC 83.9 ± 0.27 80.9 ± 4.43 87.3 ± 2.64 75.0 ± 5.75

Gaussian 86.3 ± 0.24 87.0 ± 1.89 85.7 ± 1.44 70.4 ± 4.47

4.2 Lesion Detection Results

Despite only having access to point annotations, the proposed Gaussian heatmap
approach performs competitively with the segmentation baseline (see Table 1).
In fact, our proposed iterative detection method (Gaussian) even slightly out-
performs the segmentation model on all detection metrics. By contrast, both
distance map approaches show notably worse performance with especially low
recall scores indicating a high number of missed lesions. The proposed model
additionally outperforms competing methods for the task of small lesion detec-
tion (3 to 10 voxels in size) underlining the merit of training directly for detec-
tion. Segmentation models will typically place more importance on larger lesions
since they have a higher contribution to the loss, a bias not imposed by our detec-
tion model. Our model additionally does not sacrifice precision for high recall
on small lesions; we perform on par with segmentation.

Lesion Existence Probability Evaluation. We evaluate the quality of our
fitted lesion existence probabilities on the basis of calibration and derived uncer-
tainty to justify both the curve fitting and filtering steps.

(1) Calibration. We compare the calibration [23] of the lesion existence prob-
abilities before and after Least Squares curve fitting. Recall the initial estimate
for αik is found by summing locally within the extracted region. Our proposed
existence probabilities are well calibrated (Fig. 2a), with little deviation from the
ideal case thus justifying our proposed filtering step. As well, the fitted probabil-
ities are significantly better calibrated than the initial estimates demonstrating
the benefit of curve fitting.

(2) Uncertainty. While it is important to produce accurate predictions, quan-
tifying their uncertainty is of equal importance in the medical domain. We can
compute the entropy of our lesion existence probabilities without sampling and
show it is well correlated with detection accuracy. As we consider only the least
uncertain instances, we observe a monotonic increasing trend, even achieving an
accuracy of 100% (Fig. 2b). Similar results are achieved with the more standard
MC Dropout approach [24] applied to segmentation outputs (calculated at a
lesion level as in [18]).
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Fig. 2. Lesion existence probability evaluation. (a) Calibration of unfitted (pink) vs.
fitted (green) probabilities. (b) Detection accuracy of least uncertain samples according
to our model (green) vs. MC Dropout applied to segmentation (pink). (Color figure
online)

Our derived lesion existence probabilities are not only well-calibrated, they
produce meaningful uncertainty estimates. With only a single forward pass, our
uncertainty estimates perform on par with standard sampling-based approaches.

4.3 Lesion Segmentation via Transfer Learning

To demonstrate the adaptability of our method, we fine-tune the trained
heatmap regression models with a small segmentation dataset as described in
Sect. 3.3. Specifically, we use segmentation labels for a randomly chosen 1% of
our total training set for fine-tuning. To account for bias in the selected subset,
we repeat this process 3 times and average the results. For comparison, we train
from scratch with this limited set as well as on the full segmentation training
set. We additionally include results on random subsets of 5% and 10% in the
appendix along with the associated standard deviation of each experiment.

Remarkably, our pre-trained models show only a 3% drop in segmentation
F1-score performance with a mere 1% of the segmentation labels compared to
the model trained on the full segmentation dataset (see Table 2). By contrast,
the model trained from scratch with the same 1% of segmentation labels shows
a 10% drop in segmentation F1-score. This emphasizes the importance of detect-
ing lesions since models trained from scratch in the low data regime show con-
siderably lower detection F1-score. It is clear the models do not require very
much data in order to properly segment lesions as demonstrated by competitive
performance of our pre-trained models. However, as indicated by poor detection
performance of the pure segmentation models in the low data regime, it is clear
these models need help localizing lesions before they can be segmented. We can
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Table 2. Segmentation transfer learning results averaged over 3 random subsets. We
present segmentation F1-score (Seg F1.) and detection (Det.) metrics on the fine-
tuned segmentation models: F1-score, precision, recall. Pre-trained models are distin-
guished by their smoothing hyperparameter σ.

Quantity seg. labels Pre-trained model Seg. F1 Det. F1 Det. precision Det. recall

100% None 70.5 ± 0.31 85.4 ± 0.02 85.3 ± 1.10 85.5 ± 1.15

1% None 60.7 ± 2.48 69.7 ± 5.92 79.0 ± 6.47 62.7 ± 7.69

σ = 1.0 67.2 ± 0.71 85.4 ± 0.62 83.9 ± 1.74 87.0 ± 2.40

σ = 1.25 67.6 ± 1.31 84.5 ± 0.38 86.0 ± 0.67 83.1 ± 1.32

σ = 1.5 67.2 ± 1.51 85.0 ± 0.50 83.6 ± 1.01 86.6 ± 1.10

Euclidean 66.3 ± 0.18 84.7 ± 1.45 83.3 ± 3.24 86.1 ± 1.67

Geodesic 59.9 ± 1.44 77.9 ± 4.36 85.6 ± 7.33 71.7 ± 3.49

see a similar trend with the models pre-trained on distance maps. The Euclidean
distance maps offered higher detection scores than the Geodesic ones (Table 1)
and therefore serve as a better pre-training for segmentation, although still lower
than our models.

5 Discussion and Conclusion

In this work, we have demonstrated how training a heatmap regression model to
detect lesions can achieve the same, and at times better, detection performance
compared to a segmentation model. By requiring clinicians to indicate a sin-
gle point within each lesion, our approach significantly reduces the annotation
burden imposed by deep learning segmentation methods. Our proposed method
of iteratively fitting Gaussian distributions to a predicted heatmap produces
well-calibrated existence probabilities which capture the underlying uncertainty.

Perhaps most significantly, our transfer learning experiments have revealed
an important aspect about segmentation models. Our results demonstrate that
segmentation models must learn first and foremost to find lesions. Indeed, our
models, which are already adept at lesion detection, can easily learn to delineate
borders with only a few segmentation samples. By contrast, the models provided
with the same limited set of segmentation labels trained from scratch fail primar-
ily to detect lesions thus lowering their segmentation scores. It therefore presents
an unnecessary burden on clinicians to require them to manually segment large
datasets in order to build an accurate deep learning segmentation model.

Although we have demonstrated many benefits, Gaussian heatmap matching
has its limitations. The smoothing hyperparameter requires careful tuning to
both maintain stable training and to avoid a significant overlap in peaks (espe-
cially for densely packed lesions). As well, the method still requires an expert
annotator to mark approximate lesion centres however, this is much less time-
consuming than fully outlining each lesion. We recognize this could introduce
high variability in the labels regarding where the point is placed within each
lesion. Though the current model was trained on precise centres of mass, the
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proposed method does not necessarily impose any such constraints, in theory.
Future work is needed to evaluate the robustness of the model to high variability
in the label space.

In summary, our proposed training scheme and iterative Gaussian fitting
post-processing step constitute an accurate and label-efficient method of per-
forming lesion detection and segmentation.
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