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Preface

Deep learning (DL)-based computer-aided diagnostic systems have been widely and
successfully studied for analyzing various image modalities such as chest X-rays,
computed tomography, ultrasound, and optical imaging including microscopic imagery.
Such analyses help in identifying, localizing, and classifying disease patterns as well as
staging the extent of the disease and recommending therapies. Although DL approaches
have a huge potential to advance medical imaging technologies and potentially improve
quality and access to healthcare, their performance relies heavily on the quality, variety,
and size of training data sets as well as appropriate high-quality annotations. In the
medical domain, obtaining such data sets is challenging due to several privacy constraints
and tedious annotation processes. Further, real-world medical data tends to be noisy
and incomplete leading to unreliable and potentially biased algorithm performance.
To mitigate or overcome training challenges in imperfect or data-limited scenarios,
several training techniques have been proposed. Despite the successful application
of these techniques in a wide range of medical image applications, there is still a
lack of theoretical and practical understanding of their learning characteristics and
decision-making behavior when applied to medical images.

This volume presents novel approaches for handling noisy and limited medical
image data sets. This collection is derived from articles presented in the workshop titled
“Medical Image Learning with Noisy and Limited Data (MILLanD)” that was held
in conjunction with the 25th International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI 2022). The workshop brought together
machine learning scientists, biomedical engineers, and medical doctors to discuss the
challenges and limitations of current deep learning methods applied to limited and
noisy medical data and present new methods for training models using such imperfect
data. The workshop received 54 full-paper submissions in various topics including
efficient data annotation and augmentation strategies, new approaches for learning with
noisy/corrupted data or uncertain labels, weakly-supervised learning, semi-supervised
learning, self-supervised learning, and transfer learning strategies. Each submission
was reviewed by 2–3 reviewers and further assessed by the workshop’s chairs. The
workshop’s reviewing process was double-blind, i.e., both the reviewer and author
identities were concealed throughout the review process. This process resulted in the
selection of 22 high-quality papers that are included in this volume.
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Heatmap Regression for Lesion Detection
Using Pointwise Annotations

Chelsea Myers-Colet1(B), Julien Schroeter1, Douglas L. Arnold2,
and Tal Arbel1

1 Centre for Intelligent Machines, McGill University, Montreal, Canada
{cmyers,julien,arbel}@cim.mcgill.ca

2 Montreal Neurological Institute, McGill University, Montreal, Canada
douglas.arnold@mcgill.ca

Abstract. In many clinical contexts, detecting all lesions is imperative
for evaluating disease activity. Standard approaches pose lesion detec-
tion as a segmentation problem despite the time-consuming nature of
acquiring segmentation labels. In this paper, we present a lesion detec-
tion method which relies only on point labels. Our model, which is
trained via heatmap regression, can detect a variable number of lesions
in a probabilistic manner. In fact, our proposed post-processing method
offers a reliable way of directly estimating the lesion existence uncer-
tainty. Experimental results on Gad lesion detection show our point-
based method performs competitively compared to training on expensive
segmentation labels. Finally, our detection model provides a suitable pre-
training for segmentation. When fine-tuning on only 17 segmentation
samples, we achieve comparable performance to training with the full
dataset.

Keywords: Lesion detection · Lesion segmentation · Heatmap
regression · Uncertainty · Multiple sclerosis

1 Introduction

For many diseases, detecting the presence and location of all lesions is vital for
estimating disease burden and treatment efficacy. In stroke patients, for example,
the location of a cerebral hemorrhage was shown to be an important factor
in assessing the risk of aspiration [1] thus, failing to locate even a single one
could drastically impact the assessment. Similarly, in patients with Multiple
Sclerosis (MS), detecting and tracking all gadolinium-enhancing lesions (Gad
lesions), whether large or small, is especially relevant for determining treatment
response in clinical trials [2]. Detecting all Gad lesions is imperative as just one
new lesion indicates new disease activity.

To achieve this goal, standard practice in deep learning consists of training a
lesion segmentation model with a post-processing detection step [3,4]. However,
segmentation labels are expensive and time consuming to acquire. To this end, we
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Zamzmi et al. (Eds.): MILLanD 2022, LNCS 13559, pp. 3–12, 2022.
https://doi.org/10.1007/978-3-031-16760-7_1
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develop a lesion detection model trained on pointwise labels thereby reducing the
manual annotation burden. Unlike previous point annotation-based methods [5–
7], ours combines the ability to detect a variable number of lesions with the
benefit of leveraging a probabilistic approach. Indeed, our refinement method is
not only independent of a specific binarization threshold, it offers a unique way
of estimating the lesion existence probability. Our contributions are threefold:

(1) We demonstrate the merit of training on point annotations via heatmap
regression over segmentation labels on the task of Gad lesion detection.
With weaker labels, our models still achieve better detection performance.

(2) Our proposed refinement method allows for a reliable estimation of lesion
existence uncertainty thus providing valuable feedback for clinical review.

(3) When the end goal is segmentation, our detection models provide a suitable
pre-training for fine-tuning on a limited set of segmentation labels. When
having access to only 17 segmentation samples, we can achieve comparable
performance to a model trained on the entire segmentation dataset.

2 Related Work

Point annotations are often extremely sparse which leads to instability during
training of deep neural networks. Therefore, most state-of-the-art methods rely
on the application of a smoothing operation to point labels. A Gaussian filter is
commonly applied to create a heatmap as was done in [5,6] for suture detection.
Others have found success applying distance map transformations. For instance,
Han et al. [8] and van Wijnen et al. [9] used Euclidean and Geodesic distance
maps to perform lesion detection. We demonstrate the benefits of training with
Gaussian heatmaps over distance maps as they offer a more precise and inter-
pretable probabilistic prediction yielding superior detection performance.

Irrespective of the choice of smoothing used for training, detection meth-
ods will often differ in their post-processing refinement step, i.e. in extracting
lesion coordinates from a predicted heatmap. The simplest approach consists in
finding the location with the maximum mass [5,10,11] or computing the centre
of mass [6]. Although these approaches easily allow for the detection of mul-
tiple lesions, they require careful tuning of the binarization threshold and are
susceptible to missing both isolated and overlapping peaks. More sophisticated
methods exist which aim to fit a Gaussian distribution to the predicted heatmap
thus retaining its probabilistic interpretation, e.g. [12,13]. Specifically, to perform
cephalogram landmark detection Thaler et al. [7] align a Gaussian distribution
via Least Squares curve fitting. Since the approach taken in [7] is limited to a set
number of landmarks, we extend it to detect a variable number of lesions. Our
method thus offers the flexibility of simpler approaches, without any dependence
on a binarization threshold, while providing a probabilistic interpretation.

3 Method

In this work, we propose a strategy to detect the presence and location of multiple
lesions from brain MRIs of patients with a neurodegenerative disease. Our model
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Fig. 1. Overview of detection method given a predicted heatmap Ĥi: lesion candidates
are found by (1) locating the global maximum, (2) fitting a Gaussian distribution to
an extracted region and (3) subtracting the influence of this lesion from the heatmap.
(4) Repeat steps 1–3 before (5) filtering out unlikely lesions.

is trained via heatmap regression (Sect. 3.1) while lesion detection is performed in
a post-processing step (Sect. 3.2). Finally, we present a transfer learning scheme
to perform segmentation on a limited dataset (Sect. 3.3).

3.1 Training via Heatmap Regression

The proposed heatmap regression training scheme requires a domain expert to
label only a single point identifying each lesion, e.g. by marking the approxi-
mate centre of the lesion. To stabilize training, we apply a Gaussian filter with
smoothing parameter σ to the point annotations thus creating a multi-instance
heatmap [5–7,14–16]. Since all lesions are represented by a single point and
smoothed using the same value of σ, equal importance is attributed to lesions of
all sizes. We train a model fθ to map a sequence of input MRIs to a predicted
heatmap Ĥi.

3.2 Detection During Inference

Given a continuous heatmap Ĥi, we now aim to detect individual lesions. Specif-
ically, for patient i, we wish to represent the kth detected lesion by a single
point, µ̂ik, which can be extracted from the heatmap. We assume the predicted
heatmap Ĥi will model a sum of Gaussian distributions (each describing a single
lesion) to mimic the target heatmap:1

Ĥi =
∑

K

Ĥik =
∑

K

N (µ̂ik, σ) (1)

1 Valid as long as fθ sufficiently minimizes the loss and thus models the target.
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Our method essentially aims to find the individual Gaussian distributions com-
prising the sum in Eq. 1 in an iterative manner as shown in Fig. 1. We now
describe each depicted step in detail.

(1) Locate Global Maximum. The location of the global maximum serves as
an initial estimate for the kth predicted lesion centre, µ̂ik.

(2) Gaussian Fitting. In the region surrounding a detected lesion with cen-
tre µ̂ik, we fit a Gaussian distribution with normalizing constant α̂ik:

Ĥik = α̂ikN (µ̂ik, σ) (2)

Provided there is minimal overlap between neighbouring lesions, we can use a
Least Squares curve fitting algorithm to estimate α̂ik and µ̂ik.2 The normaliz-
ing constant, α̂ik, represents the prior probability of producing a peak in this
region (from Bayes’ Theorem), i.e. it is the belief that a lesion exists in the
given region. We thus refer to α̂ik as the lesion existence probability (similar
to [17]). As an initial estimate for α̂ik, we sum within the extracted region, i.e.
the hypothesis space, as shown in Fig. 1 (2).

(3) Subtract. Now that potential lesion k has been identified and fitted with
a continuous Gaussian function, we remove its contribution to the sum in Eq. 1.
This allows our method to more easily detect the individual contributions of
neighbouring lesions with overlapping Gaussian distributions.

Ĥ′
i = Ĥi − α̂ikN (µ̂ik, σ) (3)

(4) Repeat. Since we have subtracted the contribution of lesion k from the
aggregated heatmap, the global maximum now corresponds to a different candi-
date lesion. Steps 1 to 3 are repeated until a maximum number of lesions have
been found or when the lesion existence probability drops below a threshold,
e.g. 0.01.

(5) Filtering. Lesions with a low probability of existence are discarded (thresh-
old optimized on the validation set). By overestimating the lesion count and sub-
sequently discarding regions unlikely to contain a lesion, we can better account
for noisy peaks in the heatmap. We evaluate the calibration of these probabilities
and demonstrate the validity of this filtering step (Sect. 4.2).

3.3 Segmentation Transfer Learning

In addition to detection, estimating a lesion segmentation can be beneficial for
assessing lesion load. We therefore design a transfer learning scheme which first
relies on building a strong lesion detector using point annotations before fine-
tuning on a small segmentation dataset. Specifically, we (1) train a detection
model on point annotations until convergence; (2) build a small segmentation
training set; (3) fine-tune the detection model on segmentation samples only.
Training in this manner minimizes the amount of detailed segmentation labels
that must be generated.
2 Valid for Gad lesions given a sufficiently small smoothing parameter σ.
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4 Experiments and Results

The proposed heatmap regression model is compared against three benchmarks
in terms of detection performance. We train models on (1) segmentation labels,
(2) Euclidean distance maps and (3) Geodesic distance maps [8,9]. Similar to
our method, lesions are detected from the output prediction in a post-processing
step. Here, we instead binarize the output at threshold τ (optimized on the
validation set), cluster connected components to form detected lesions and use
the centre of mass (segmentation) or the maximum (detection) to represent the
lesion (referred to as CC). As an additional benchmark, we apply this method to
heatmap outputs from our proposed regression models. This is in line with detec-
tion methods used by [18,19] for segmentation outputs and [5,6] for heatmap
predictions.

4.1 Experimental Setup

Dataset. We evaluate our method on Gad lesion detection as they are a rel-
evant indicator of disease activity in MS patients [20]. However, their subtlety
and extreme size variation makes them difficult to identify. Experiments are per-
formed using a large, multi-centre, multi-scanner proprietary dataset consisting
of 1067 patients involved in a clinical trial to treat Relapsing-Remitting MS.
Multi-modal MRIs, including post-contrast T1-weighted MRI, are available for
each patient and are provided as inputs to our system. For fairness, we create
train (60%), validation (20%) and test (20%) sets by first splitting at the patient
level. We have access to manually derived Gad lesion segmentation masks. Each
sample is first independently rated by two experts who then meet to produce a
consensus. Point labels were generated directly from segmentation masks by cal-
culating the centre of mass of each lesion and transformed into either heatmaps,
using a Gaussian kernel with smoothing parameter σ, or distance maps (base-
line methods), using decay parameter p. Hyperparameters were selected based
on validation performance.

Model. We train a modified 5-layer U-Net [21] with dropout and instance
normalization using a Mean-Squared Error loss for heatmap regression and a
weighted cross-entropy loss for segmentation. See code for details3.

Evaluation. We apply the Hungarian algorithm [22] to match predicted lesions
to ground truth lesions using Euclidean distance as a cost metric. Assignments
with large distances are considered both a false positive and a false negative.

3 https://github.com/ChelseaM-C/MICCAI2022-Heatmap-Lesion-Detection.

https://github.com/ChelseaM-C/MICCAI2022-Heatmap-Lesion-Detection
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Table 1. Lesion detection results as a mean over 3 runs. Reported is the detection F1-
score, precision, recall and small lesion recall for models trained with segmentation,
Gaussian heatmap or distance map (Geodesic, Euclidean) [8,9] labels using connected
components (CC) or Gaussian fitting (Gaussian).

Label type Detection method F1-score Precision Recall Small lesion recall

Segmentation CC 85.4 ± 0.02 85.3 ± 1.10 85.5 ± 1.15 67.7 ± 3.58

Euclidean map CC 80.6 ± 1.01 92.6 ± 1.28 71.4 ± 2.14 51.0 ± 3.28

Geodesic map CC 73.7 ± 4.89 81.0 ± 7.97 67.8 ± 2.98 47.8 ± 2.81

Gaussian heatmap CC 83.9 ± 0.27 80.9 ± 4.43 87.3 ± 2.64 75.0 ± 5.75

Gaussian 86.3 ± 0.24 87.0 ± 1.89 85.7 ± 1.44 70.4 ± 4.47

4.2 Lesion Detection Results

Despite only having access to point annotations, the proposed Gaussian heatmap
approach performs competitively with the segmentation baseline (see Table 1).
In fact, our proposed iterative detection method (Gaussian) even slightly out-
performs the segmentation model on all detection metrics. By contrast, both
distance map approaches show notably worse performance with especially low
recall scores indicating a high number of missed lesions. The proposed model
additionally outperforms competing methods for the task of small lesion detec-
tion (3 to 10 voxels in size) underlining the merit of training directly for detec-
tion. Segmentation models will typically place more importance on larger lesions
since they have a higher contribution to the loss, a bias not imposed by our detec-
tion model. Our model additionally does not sacrifice precision for high recall
on small lesions; we perform on par with segmentation.

Lesion Existence Probability Evaluation. We evaluate the quality of our
fitted lesion existence probabilities on the basis of calibration and derived uncer-
tainty to justify both the curve fitting and filtering steps.

(1) Calibration. We compare the calibration [23] of the lesion existence prob-
abilities before and after Least Squares curve fitting. Recall the initial estimate
for αik is found by summing locally within the extracted region. Our proposed
existence probabilities are well calibrated (Fig. 2a), with little deviation from the
ideal case thus justifying our proposed filtering step. As well, the fitted probabil-
ities are significantly better calibrated than the initial estimates demonstrating
the benefit of curve fitting.

(2) Uncertainty. While it is important to produce accurate predictions, quan-
tifying their uncertainty is of equal importance in the medical domain. We can
compute the entropy of our lesion existence probabilities without sampling and
show it is well correlated with detection accuracy. As we consider only the least
uncertain instances, we observe a monotonic increasing trend, even achieving an
accuracy of 100% (Fig. 2b). Similar results are achieved with the more standard
MC Dropout approach [24] applied to segmentation outputs (calculated at a
lesion level as in [18]).
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Fig. 2. Lesion existence probability evaluation. (a) Calibration of unfitted (pink) vs.
fitted (green) probabilities. (b) Detection accuracy of least uncertain samples according
to our model (green) vs. MC Dropout applied to segmentation (pink). (Color figure
online)

Our derived lesion existence probabilities are not only well-calibrated, they
produce meaningful uncertainty estimates. With only a single forward pass, our
uncertainty estimates perform on par with standard sampling-based approaches.

4.3 Lesion Segmentation via Transfer Learning

To demonstrate the adaptability of our method, we fine-tune the trained
heatmap regression models with a small segmentation dataset as described in
Sect. 3.3. Specifically, we use segmentation labels for a randomly chosen 1% of
our total training set for fine-tuning. To account for bias in the selected subset,
we repeat this process 3 times and average the results. For comparison, we train
from scratch with this limited set as well as on the full segmentation training
set. We additionally include results on random subsets of 5% and 10% in the
appendix along with the associated standard deviation of each experiment.

Remarkably, our pre-trained models show only a 3% drop in segmentation
F1-score performance with a mere 1% of the segmentation labels compared to
the model trained on the full segmentation dataset (see Table 2). By contrast,
the model trained from scratch with the same 1% of segmentation labels shows
a 10% drop in segmentation F1-score. This emphasizes the importance of detect-
ing lesions since models trained from scratch in the low data regime show con-
siderably lower detection F1-score. It is clear the models do not require very
much data in order to properly segment lesions as demonstrated by competitive
performance of our pre-trained models. However, as indicated by poor detection
performance of the pure segmentation models in the low data regime, it is clear
these models need help localizing lesions before they can be segmented. We can
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Table 2. Segmentation transfer learning results averaged over 3 random subsets. We
present segmentation F1-score (Seg F1.) and detection (Det.) metrics on the fine-
tuned segmentation models: F1-score, precision, recall. Pre-trained models are distin-
guished by their smoothing hyperparameter σ.

Quantity seg. labels Pre-trained model Seg. F1 Det. F1 Det. precision Det. recall

100% None 70.5 ± 0.31 85.4 ± 0.02 85.3 ± 1.10 85.5 ± 1.15

1% None 60.7 ± 2.48 69.7 ± 5.92 79.0 ± 6.47 62.7 ± 7.69

σ = 1.0 67.2 ± 0.71 85.4 ± 0.62 83.9 ± 1.74 87.0 ± 2.40

σ = 1.25 67.6 ± 1.31 84.5 ± 0.38 86.0 ± 0.67 83.1 ± 1.32

σ = 1.5 67.2 ± 1.51 85.0 ± 0.50 83.6 ± 1.01 86.6 ± 1.10

Euclidean 66.3 ± 0.18 84.7 ± 1.45 83.3 ± 3.24 86.1 ± 1.67

Geodesic 59.9 ± 1.44 77.9 ± 4.36 85.6 ± 7.33 71.7 ± 3.49

see a similar trend with the models pre-trained on distance maps. The Euclidean
distance maps offered higher detection scores than the Geodesic ones (Table 1)
and therefore serve as a better pre-training for segmentation, although still lower
than our models.

5 Discussion and Conclusion

In this work, we have demonstrated how training a heatmap regression model to
detect lesions can achieve the same, and at times better, detection performance
compared to a segmentation model. By requiring clinicians to indicate a sin-
gle point within each lesion, our approach significantly reduces the annotation
burden imposed by deep learning segmentation methods. Our proposed method
of iteratively fitting Gaussian distributions to a predicted heatmap produces
well-calibrated existence probabilities which capture the underlying uncertainty.

Perhaps most significantly, our transfer learning experiments have revealed
an important aspect about segmentation models. Our results demonstrate that
segmentation models must learn first and foremost to find lesions. Indeed, our
models, which are already adept at lesion detection, can easily learn to delineate
borders with only a few segmentation samples. By contrast, the models provided
with the same limited set of segmentation labels trained from scratch fail primar-
ily to detect lesions thus lowering their segmentation scores. It therefore presents
an unnecessary burden on clinicians to require them to manually segment large
datasets in order to build an accurate deep learning segmentation model.

Although we have demonstrated many benefits, Gaussian heatmap matching
has its limitations. The smoothing hyperparameter requires careful tuning to
both maintain stable training and to avoid a significant overlap in peaks (espe-
cially for densely packed lesions). As well, the method still requires an expert
annotator to mark approximate lesion centres however, this is much less time-
consuming than fully outlining each lesion. We recognize this could introduce
high variability in the labels regarding where the point is placed within each
lesion. Though the current model was trained on precise centres of mass, the
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proposed method does not necessarily impose any such constraints, in theory.
Future work is needed to evaluate the robustness of the model to high variability
in the label space.

In summary, our proposed training scheme and iterative Gaussian fitting
post-processing step constitute an accurate and label-efficient method of per-
forming lesion detection and segmentation.
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Abstract. Deep learning methods have been shown to be effective for the auto-
matic segmentation of structures and pathologies in medical imaging. However,
they require large annotated datasets, whose manual segmentation is a tedious and
time-consuming task, especially for large structures. We present a new method
of partial annotations of MR images that uses a small set of consecutive anno-
tated slices from each scan with an annotation effort that is equal to that of only
few annotated cases. The training with partial annotations is performed by using
only annotated blocks, incorporating information about slices outside the struc-
ture of interest and modifying a batch loss function to consider only the annotated
slices. To facilitate training in a low data regime, we use a two-step optimization
process. We tested the method with the popular soft Dice loss for the fetal body
segmentation task in two MRI sequences, TRUFI and FIESTA, and compared
full annotation regime to partial annotations with a similar annotation effort. For
TRUFI data, the use of partial annotations yielded slightly better performance
on average compared to full annotations with an increase in Dice score from
0.936 to 0.942, and a substantial decrease in Standard Deviations (STD) of Dice
score by 22% and Average Symmetric Surface Distance (ASSD) by 15%. For the
FIESTA sequence, partial annotations also yielded a decrease in STD of the Dice
score and ASSD metrics by 27.5% and 33% respectively for in-distribution data,
and a substantial improvement also in average performance on out-of-distribution
data, increasing Dice score from 0.84 to 0.9 and decreasing ASSD from 7.46 to
4.01mm.The two-step optimization processwas helpful for partial annotations for
both in-distribution and out-of-distribution data. The partial annotations method
with the two-step optimizer is therefore recommended to improve segmentation
performance under low data regime.
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1 Introduction

Fetal MRI has the potential to complement US imaging and improve fetal development
assessment by providing more accurate volumetric information about the fetal structures
[1, 2]. However, volumetric measurements require manual delineation, also called seg-
mentation, of the fetal structures, which is time consuming, annotator-dependent and
error-prone.

In this paper, we focus on the task of fetal body segmentation in MRI scans. Several
automatic segmentation methods were proposed for this task. In an early work, Zhang
et al. [3] proposed a graph-based segmentation method. More recently, automatic seg-
mentation methods for fetal MRI are based on deep neural networks. Dudovitch et al. [4]
describes a fetal body segmentation network that reached high performance with only
nine annotated examples. However, the method was tested only on data with similar
resolutions and similar gestational ages for the FIESTA sequence. Lo et al. [5] proposed
a 2D deep learning framework with cross attention squeeze and excitation network with
60 training scans for fetal body segmentation in SSFP sequences.

While effective, robust deep learning methods usually require a large, high-quality
dataset of expert-validated annotations, which is very difficult and expensive to obtain.
The annotation process is especially time consuming for structures with large volumes,
as they require the delineation of many slices. Therefore, in many cases, the annotation
process is performed iteratively, when first initial segmentation is obtained with few
annotated datasets, and subsequently manual segmentations are obtained by correcting
network results. However, the initial segmentation network trained on few datasets is
usually not robust and might fail for cases that are very different from the training set.

To address the high cost associated with annotating structures with large volumes,
one approach is to use sparse annotations, where only a fraction of the slices or pixels
are annotated [6]. Çiçek et al. [7] describes a 3D network to generate a dense volumetric
segmentation from sparse annotations, in which uniformly sampled slices were selected
for manual annotation. Goetz et al. [8] selectively annotated unambiguous regions and
employed domain adaptation techniques to correct the differences between the training
and test data distributions caused by sampling selection errors. Bai et al. [9] proposed
a method that starts by propagating the label map of a specific time frame to the entire
longitudinal series based on the motion estimation, and then combines FCN with a
Recurrent Neural Network (RNN) for longitudinal segmentation. Lejeune et al. [10]
introduced a semi-supervised framework for video and volume segmentation that itera-
tively refined the pixel-wise segmentation within an object of interest. However, these
methods impose restrictions on the way the partial annotations are sampled and selected
that may be inconvenient for the annotator and still require significant effort.

Wang et al. [11] proposed using incomplete annotations in a user-friendly manner of
either a set of consecutive slices or a set of typical separate slices. They used a combined
cross-entropy loss with boundary loss and performed labels completion based on the
network output uncertainty that was incorporated in the loss function. They showed
that their method with 30% of annotated slices was close to the performance using
full annotations. However, the authors did not compare segmentation results using full
versus partial annotations with the same annotation effort. Also, a question remains if
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user-friendly partial annotations can be leveraged in the context of the Dice loss as well,
a widely used loss function that is robust to class imbalance [12].

Fig. 1. Training flow with partial annotations. 1) Non-empty blocks are picked from the partially
annotated scans (sagittal view, example of relevant blocks is shown in yellow). 2) A batch of non-
empty blocks is used as input along with information about non-empty slices. The black areas of
the blocks correspond to unselected voxels (voxels that are not used by the loss function). 3) The
network is trained with a selective loss that uses only the pixels in annotated slices. (Color figure
online)

Training with limited data usually makes the training optimization more difficult.
Therefore, to facilitate optimization, we seek a scheme that will help in avoiding conver-
gence to a poor local minimum. Smith [13] proposed the usage of a cyclic learning rate
to remove the need for finding the best values and schedule for the global learning rates.
Loshchilov et al. [14] showed the effectiveness of using warm learning rate restarts to
deal with ill-conditioned functions. They used a simple learning rate restart scheme after
a predefined number of epochs.

In this paper, we explore the effectiveness of using partial annotations under low
data regime with the Soft Dice loss function. We also explore the usefulness of a
warm restarts optimization scheme in combination with fine-tuning to deal with the
optimization difficulties under low data regime.

2 Method

Our segmentation method with small annotation cost consists of two main steps: 1)
manual partial delineations, where the user partially annotates scans with the guidance
of the algorithm; 2) training with partial annotations, where a 3D segmentation network
is trained with blocks of the partially annotated data using a selective loss function.

The manual partial delineations step is performed as follows. First, the uppermost
and lowermost slices of the organ are manually selected by the annotator, which is a
quick and easy task. Then, the algorithm randomly chooses a slice within the structure
of interest. Finally, the slices to annotate around this slice are selected. The number of
slices is determined by the chosen annotation percentage. The annotation percentage is
taken from the slices that include the structure of interest, i.e., non-empty segmentation
slices. The slices to annotate are chosen consecutively to reduce annotation time, as often
the annotations depend on the 3D structure of the organ seen by scrolling and viewing
nearby slices during the annotation.

The training with partial annotations is performed as follows. Only the non-empty
blocks of the partially annotated data are used for training, as some of the blocks may



16 B. S. Fadida et al.

not include annotations at all. To enrich the annotated data, we also use the border slices
information in the loss function and treat the slices outside the structure of interest as
annotated slices.We add as input to the network a binarymask specifying the locations of
the annotated slices during training. The network is trained with a selective loss function
that takes into account only the annotated slices. Also, we use a relatively large batch
size of 8 to include enough information during each optimization iteration. Figure 1
shows the training flow.

Fig. 2. Illustration of the two-step optimization process with the proposed learning rate regimes
(graphs of learning rate as a function of epoch number).

2.1 Selective Dice Loss

To train a network with partially annotated data, we modify the loss function to use
only the annotated slices information. We illustrate the use of a selective loss for the
commonly used Soft Dice loss. A batch loss is used, meaning that the calculation is
performed on the 4-dimentional batch directly instead of averaging the losses of single
data blocks.

Let the number of image patches be I and let the image patch consist of C pixels.
The number of voxels in a minibatch is therefore given by I ×C = N . Let ti be a voxel
at location i in the minibatch for the ground truth delineation ti ∈ T and ri be a voxel at
the location i in the minibatch for the network result ri ∈ R.

The Batch Dice loss [15] is defined as:

Batch Dice Loss (LCD) = − 2
∑

Ntiri∑
Nti +

∑
Nri

(1)

Since we have partial annotations, we will use only the annotated slices locations in
the loss calculation. Let T

′ ⊂ T and R
′ ⊂ R be the ground truth in the annotated slices

and the network result in the annotated slices, with minibatch voxels ti
′ ∈ T

′
and ri

′ ∈ R
′

respectively. The number of voxels that we consider in the minibatch is now N
′
< N ,

corresponding only to the annotated slices. The batch dice loss for partial annotations is
defined as:

Selective Batch Dice Loss (LCD) = − 2
∑

N ′ ti
′
ri

′
∑

N ′ ti
′ + ∑

N ′ ri
′ (2)
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2.2 Optimization

To facilitate the optimization process under small data regime, we perform the training
in two steps. First, a network is trained with reduction of learning rate on plateau. Then,
we use the weights of the network with best results on the validation set to continue
training. Similarly to the first phase, the training in the second phase is performed with
reduction in plateau, but this time with learning rate restarts every predefined number of
epochs (Fig. 2).

3 Experimental Results

To evaluate our method, we retrospectively collected fetal MRI scans with the FIESTA
and TRUFI sequences and conducted two studies.

Datasets and Annotations: We collected fetal body MRI scans of patients acquired
with the true fast imagingwith steady-state free precession (TRUFI) and the fast imaging
employing steady-state acquisition (FIESTA) sequences from the Sourasky Medical
Center (Tel Aviv, Israel) with gestational ages (GA) 28–39 weeks and fetal body MRI
scans acquired with the FIESTA sequence from Children’s Hospital of Eastern Ontario
(CHEO), Canada with GA between 19–37 weeks. Table 1 shows detailed description of
the data.

Table 1. Datasets description.

MRI
sequence

ID/
OOD

Clinical
site

Scanners Resolution
(mm3)

Pixels/
slice

#
Slices

GA #

TRUFI ID Sourasky
Medical
Center

Siemens
Skyra 3T,
Prisma 3T,
Aera 1.5T

0.6 − 1.34
× 0.6 −
1.34 × 2 −
4.8

320 – 512
× 320
– 512

50–120 28–39 101

FIESTA ID Sourasky
Medical
Center

GE MR450
1.5T

1.48 −
1.87 ×
1.48 − 1.8
× 2 − 5

256 ×
256

50–100 28–39 104

OOD Children’s
Hospital

Mostly GE
Signa HDxt
1.5T; Signa
1.5T,
SIEMENS
Skyra 3T

0.55 − 1.4
× 0.55 −
1.4 × 3.1
− 7.5

256 ×
256512 ×
512

19–55 19–37,
mostly
19–24

33

Ground truth segmentations were created as follows. First, 36 FIESTA cases were
annotated from scratch. Then, 68 ID and 33 OOD cases were manually corrected from
network results. For the TRUFI data all cases were created by correcting network results:
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first, a FIESTA network was used to perform initial segmentation and afterwards a
TRUFI network was trained for improved initial segmentation. Both the annotations and
the corrections were performed by a clinical trainee. All segmentations were validated
by a clinical expert.

Studies: We conducted two studies that compare partial annotations to full annotations
with the same number of slices. Study 1 evaluates the partial annotations method for
the TRUFI body dataset and performs ablation for the two-step optimization process
and the usage of slices outside of the fetal body structure. Study 2 evaluates the partial
annotations method for the FIESTA body dataset for both ID and OOD data.

For both studies, we compared training with 6 fully annotated cases to 30 partially
annotated cases with annotation of 20% of the slices. The selection of cases and the
location for partial annotations was random for all experiments. Because of the high
variability in segmentation quality for the low-data regime, we performed all the experi-
ments with four different randomizations and averaged between them. The segmentation
quality is evaluated with the Dice, Hausdorff and 2D ASSD (slice Average Symmetric
Surface Difference) metrics.

Fig. 3. Fetal body segmentation results for the FIESTA sequence. Training with full annotations
(full) is compared to training with partial annotations with (\w) and without (\wo) border slices.
The colored bars show the STD of the metric and the grey bars show the range of the metric
(minimum and maximum).

A network architecture similar to Dudovitch et al. [4] was utilized with a patch size
of 128 × 128 × 48 to capture a large field of view. A large batch size of 8 was used in all
experiments to allow for significant updates in each iteration for the partial annotations
regime. Since the TRUFI sequence had a higher resolution compared to FIESTA, the
scans were downscaled by × 0.5 in the in-plane axes to have a large field of view [16].
The segmentation results were refined by standard post-processing techniques of holes
filling and extraction of the main connected component.

Both partially annotated and fully annotated networks were trained in a two-step
process. First, the network was trained with a decreasing learning rate, with an initial
learning rate of 0.0005. The network that yielded the best validation result was selected,
and this network was then fine-tunned on the same data. For fine-tuning, we again used
a decreasing learning rate scheme with an initial learning rate of 0.0005, but this time
we performed learning rate restarts every 60 epochs.
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Study 1: partial annotations for TRUFI sequence and ablation
The method was evaluated on 30/13/58 training/validation/test split for partially anno-
tated cases with 20% of annotated slices and 6/13/58 for fully annotated cases. The 6
fully annotated training cases were randomly chosen out of the 30 partially annotated
training cases. Ablation experiments were performed to evaluate the effectiveness of the
two-step optimization scheme and the usage of slices outside the body structure.

Six scenarios were tested: 1) full annotations without fine tuning; 2) partial annota-
tions without fine tuning and without borders information; 3) partial annotations without
fine-tuning and with borders information; 4) full annotations with fine tuning; 5) partial
annotations with fine tuning but without borders information; 6) partial annotations with
fine tuning and borders information.

Figure 3 shows the fetal body segmentation results with the Dice score and ASSD
evaluation metrics. Fine tuning with restarts was helpful for both full and partial anno-
tations regimes, increasing the full annotations segmentation Dice score from 0.919 to
0.937 and partial annotations with borders segmentation Dice score from 0.92 to 0.942.
Incorporating border information with the selective Dice loss function improved partial
annotation setting, increasing the Dice score from 0.936 to 0.942 and decreasing the
Dice Standard Deviation (STD) from 0.056 to 0.049. Finally, partial annotations with
borders information had slightly better average results to the full annotations regime
with a Dice score of 0.937 and 0.942 and ASSD of 3.61 and 3.52 for the full and partial
annotations respectively, with a substantially smaller STD: a Dice score STD of 0.063
compared to 0.049 and ASSD STD of 4.04 compared to 3.45 for the full annotations
and partial annotations regimes respectively.

Table 2. Segmentation results comparison between partial and full annotations for FIESTA body
sequence on ID and OOD data. Best results are shown in bold. Unusual behavior for fine-tuning
(two step optimization) is indicated with italics.

Data
distribution

Network
training

Dice Hausdorff
(mm)

2D ASSD
(mm)

In-Distribution
(ID)

Full 0.959 ± 0.044 34.51 ± 37.26 2.15 ± 2.33

Full fine-tuned 0.964 ± 0.040 32.98 ± 36.86 1.88 ± 2.07

Partial 0.959 ± 0.034 34.15 ± 35.96 2.21 ± 1.67

Partial fine-tuned 0.965 ± 0.029 31.89 ± 35.82 1.90 ± 1.39

Out-of-Distribution (OOD) Full 0.836 ± 0.178 39.34 ± 29.26 7.46 ± 10.61

Full fine-tuned 0.826 ± 0.214 39.61 ± 32.66 8.86 ± 16.54

Partial 0.875 ± 0.091 36.19 ± 21.44 5.47 ± 3.92

Partial fine-tuned 0.899 ± 0.067 30.37 ± 18.86 4.00 ± 2.26

Study 2: partial annotations for FIESTA sequence for ID and OOD data
For partial annotations regime, the network was trained on 30 cases and for the full
annotations regime the network was trained on 6 cases randomly chosen out of the
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Fig. 4. Illustrative fetal body segmentation results for the FIESTA OOD data. Left to right
(columns): 1) original slice; 2) Full annotations without fine-tuning; 3) Full annotations with
fine-tuning; 4) Partial annotations with fine-tuning; 5) ground truth.

30 partially annotated training cases. For both methods, we used the same 6 cases for
validation, 68 test cases for ID data and 33 test cases for OOD data.

The OOD data was collected from a different clinical site than the training set and
included mostly smaller fetuses (28 out of 33 fetuses had GA between 19–24 weeks
compared to GA between 28–39 in the training set). For both partial and full annotations
regimes we used Test Time Augmentations (TTA) [17] for the OOD setting to reduce
over-segmentation. Because of large resolution differences, we rescaled OOD data to
the resolution of 1.56 × 1.56 × 3.0mm3, similar to the resolution of the training set.

In total, eight scenarios were tested, four for ID data and four for OOD data. For
both ID and OOD data the following was tested: 1) full annotations without fine tuning.
2) full annotations with fine tuning. 3) partial annotations without fine-tuning. 4) partial
annotations with fine-tuning.

Table 2 shows the results. For the ID data, partial annotations results were similar to
full annotations with the same annotation effort, but again the STD was much smaller:
Dice STD of 0.04 compared to 0.029 and ASSD STD of 2.07 compared to 1.39 for full
and partial annotations respectively. For both full and partial annotations regimes the
fine tuning slightly improved the segmentation results.

For the OODdata, the differences between segmentation results using full and partial
annotations were much larger, with better results for partial annotations regime. Using
partial annotations, results improved from aDice score of 0.836 to 0.899 and fromASSD
of 7.46 mm to 4 mm. Unlike in the ID setting, fine-tuning with restarts hurt performance
on OOD data in the full annotations regime, potentially indicating an overfitting phe-
nomenon. This was not the case for partial annotations, where again fine tuning with
learning rate restarts further improved segmentation results as in the ID setting.

Figure 4 shows illustrative body segmentation results for the OOD data. Partial
annotations showed better performance on these cases compared to full annotations,
indicating higher robustness. Also, fine tuning full annotations resulted in decreased
performance with a complete failure to the detect the case in the top row, which may
indicate an overfitting to the training set.
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4 Conclusion

We have presented a new method for using partial annotations for large structures. The
method consists of algorithm-guided annotation step and a network training step with
selective data blocks and a selective loss function. Themethoddemonstrated significantly
better robustness under low data regime compared to full annotations.

We also presented a simple two-step optimization scheme for low data regime that
combines fine-tuning with learning rate restarts. Experimental results show the effec-
tiveness of the optimization scheme for partial annotations method on both ID and OOD
data. For full annotations, the two-step optimization was useful only for ID data but hurt
performance on OOD data, indicating potential overfitting.

The selected partial annotations are user-friendly and require only two additional
clicks in the beginning and end of the structure of interest, which is negligible compared
to the effort required for segmentation delineations. Thus, they can be easily used to
construct a dataset with a low annotation cost for initial segmentation network.
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Abstract. Assessing prostate cancer grade from whole slide images
(WSIs) is a challenging task. While both slide-wise and pixel-wise anno-
tations are available, the latter suffers from noise. Multiple instance
learning (MIL) is a widely used method to train deep neural networks
using WSI annotations. In this work, we propose a method to enhance
MIL performance by deriving weak supervisory signals from pixel-wise
annotations to effectively reduce noise while maintaining fine-grained
information. This auxiliary signal can be derived in various levels of
hierarchy, all of which have been investigated. Comparisons with strong
MIL baselines on the PANDA dataset demonstrate the effectiveness of
each component to complement MIL performance. For 2,097 test WSIs,
accuracy (Acc), the quadratic weighted kappa score (QWK), and Spear-
man coefficient were increased by 0.71%, 5.77%, and 6.06%, respectively,
while the mean absolute error (MAE) was decreased by 14.83%. We
believe that the method has great potential for appropriate usage of
noisy pixel-wise annotations.

Keywords: Multiple instance learning · Weak supervision · Noisy
labels · Prostate cancer grade assessment · Whole slide image

1 Introduction

Prostate cancer is one of the most common cancers in the world [8,10]. Impor-
tant prognostic information is inferred from Gleason patterns and grades which
are categorized into international society of urological pathology (ISUP) grade
groups [5] based on their severity. Assessing prostate cancer grades in whole
slide images (WSIs) with giga-scale resolutions is time-consuming and pixel-wise
annotations have significant noisiness [1].

Deep neural networks when used to assist diagnosis of cancer must indi-
cate regions where Gleason patterns present for further confirmation. However,
pixel-wise Gleason pattern annotations are known to be excessively noisy and its
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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noise levels outweigh its potential benefits. Optimizing patch-wise metrics was
insufficient to translate to slide-wise performance, and consequently learning algo-
rithms typically have used pixel-wise annotations have been used only for fea-
ture extraction, while the final classifiers have been trained on the less noisy
slide-wise annotations [9]. Multiple instance learning (MIL) is a widely used
paradigm when classifying histopathological WSIs because slide-wise annotations
can be obtained through medical information systems while pixel-wise annota-
tions are not readily available [4]. Attention-based MIL emphasizes regions to
locate sparsely-positioned lesions in core needle biopsy tissues but never directly
accesses pixel-wise information.

Several attempts to utilize both WSI and pixel-wise annotations are outlined
in [2,9]. Instead of relying on noisy Gleason patterns, the studies use annotations
indicating presence of tumor and separate localization from classification. Specif-
ically, Strom and Kartasalo et al. applied boosting on ensembles of detection and
grading networks and evaluated their patch-wise performances [9]. Bulten et al.
mimicked a clinical setting where a feature extraction network learns to identify
tumor positions [2]. Features were then extracted to train a classification model
predicting ISUP grade groups. Without training on segmentation masks, [4] ranks
of the top-K relevant patches and MIL were utilized. Relevant patches were sub-
jected to recurrent neural network to diagnose malignant or benign tumors.

This work seeks to complement MIL by eliciting useful information from sta-
tistical approach in pixel-wise noisy annotations. Our experiments demonstrate
that without carefully filtering pixel-wise noise, a combination with MIL ampli-
fies errors in already mis-classified cases, e.g. ISUP grade 3 classified as 2 by a
MIL model is classified as 1 by their combination. To allay such issues, we pro-
pose to construct weak-supervisory signals from noisy pixel-wise annotations.
Annotation abstraction derived from Gleason patterns was shown to enhance
spatial attention by reducing pixel-wise noise. Experiments demonstrated how
coarse auxiliary signals effectively enhance an attention module’s accuracy and
improve ISUP grading of prostate WSIs.

2 Materials and Method

2.1 Data

The Prostate cANcer graDe Assessment (PANDA) dataset containing 10,516
WSIs was used for this study [3]. Data were split into 8,419 and 2,097 WSIs of
digitized hematoxylin and eosin (H&E)-stained biopsies for training and test.
Slide-wise annotations are provided in the form of Gleason scores and corre-
sponding severity grade ranging 0 to 5 according to the international society of
urological pathology (ISUP) standard [5], and endpoints indicating no tumor or
malignancy. Mask values in pixel-wise annotation depend on the data provider
[3]. Masks acquired from different institutions come with different semantics
and are converted to another mask indicating tumor presence. In this work, we
excluded slide-wise Gleason scores to focus on the effect of annotation abstrac-
tion. The distribution of dataset is detailed in Table 1.
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Table 1. Dataset description separated by ISUP grade groups.

Grading group Train Val Test Total

No tumor 1,726 575 572 2,873

ISUP group 1 1,572 524 520 2,616

ISUP group 2 805 269 267 1,341

ISUP group 3 735 244 247 1,226

ISUP group 4 750 249 246 1,245

ISUP group 5 727 243 245 1,215

Total 6,315 2,104 2,097 10,516

2.2 Architecture

The end-to-end network architecture commonly used throughout this work is
described. An ImageNet-pretrained ResNeXt-50 extracted 2,048 channel pre-
global average pooling features from a batch of bg = 16 WSI inputs. Each WSI
was split into bs = 32 patches, with resolution of H = W = 224. A learnable
global convolution filter followed by sigmoid activation was used to compute
attention A and multiplied with the input feature. Post-attention features were
fed to the classification layers to predict the ISUP grading group. The classifi-
cation layer consists of max-pooling, average pooling layer, and fully connected
layer(FC layer) as in Fig. 1(a).

2.3 Multiple Instance Learning for Cancer Grade Assessment

Let Y = {0, . . . , 5} be the set of possible ordinal annotations describing ISUP
grades. A classifier is trained to predict slide-wise ordinal annotations y ∈ Y. Its
softmax prediction is denoted by p̂. Because classes share ordinal relations, the
mean variance loss [7] is added to the standard cross entropy loss:

Lmv = H (y, p̂) + Eŷ∼p̂

[
(ŷ − y)2

]
+ (Eŷ∼p̂ [ŷ] − y)2 . (1)

2.4 Noisy Labels and Weak Supervision

Raw pixel-wise annotations are extremely noisy [3], therefore have often been
discarded [1]. Models trained using only MIL often weighed each patch equally
because only ISUP grade groups were learnt. Appropriately processed fine-
grained annotations can potentially inform the model to utilize local morpho-
logical features whose importance should be weighed differently.

The consensus of fine-grained pixel-wise annotations was rarely achievable,
so that, the annotations method itself could be major component the noise of
pixel-wise annotations. However, their abstraction at the increased coarseness
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Fig. 1. (a) An overview of the proposed method. Attention mechanism for multiple
instance learning and additional network layers when using (b) no auxiliary loss, (c)
patch-wise auxiliary loss, and (d) slide-wise auxiliary loss. bg: Global batch size, bs:
slide batch size, C: Input channel size, W: Input width, H: Input height, Cf : Initial
feature channel

releases pixel-wise noise in WSI annotations. Let γp, γs be ratio of tumor to
total tissue area in each patch and slide:

γ� =
1

|Ω�|
∑

ω∈Ω�

1 {Mω = 1} , � ∈ {p, s} (2)

where Ω� = {1, . . . , H�}×{1, . . . ,W�} is the resolution set of a patch or slide, i.e.
its pixel indices, and Mω is the tumor indicator mask. The masks (Fig. 2(a)) are
obtained from WSI using Akensert method [1], resolution being 1.0 micron per
pixel (mpp). To ensure representation capacity for well-separability, we added
a learnable block followed by sigmoid for each coarseness level p, s, shown in
Fig. 1(b–d). The auxiliary losses (L�) are then computed as the binary cross
entropy H2 between predictions and the above ratio:

L� = H2 (γ�, p̂�) . (3)
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Fig. 2. (a) Slide batch generation; bs: slide batch size, C: channel size, W: Patch width,
H: Patch height, (b) Abstraction in noisy annotation method based on the noisy pixel-
wise annotation.

Combining all the losses considered, the total loss is then a convex combina-
tion between MIL and the auxiliary loss computed at varying levels of abstraction
� ∈ {p, s}. Here, w is the for the auxiliary loss as follows:

L = wL� + (1 − w)Lmv. (4)

3 Experiments

3.1 Implementation and Evaluation

We compared the performance of three baselines without the auxiliary loss and
conducted an ablation study assessing the effectiveness of each auxiliary loss
according to abstraction type and its weight (w). All models shared the same
ResNeXt-50 (32 × 4d) encoder. The first baseline is MIL model without both
attention and auxiliary loss. This MIL baseline model already achieved high
performance by positioning in the top-10 rank in the challenge. [1]. The second
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Fig. 3. A comparison of methods using patch-wise and slide-wise annotation abstrac-
tions evaluated with respect to the following criteria: (a) Accuracy (Acc), (b) Mean
absolute error (MAE), (c) Quadratic weighted kappa (QWK), and (d) Spearman
correlation. (Color figure online)

baseline model consisted of two stages. In the first stage, a U-Net model with
ResNeXt-50 backbone networks was trained on pixel-wise annotations for feature
extraction. In second stage, MIL with the freezed ResNeXt-50 in the end of first
stage in Fig. 1(a) was trained on only slide-wise annotation based on the first
stage’s output as typical methods [2,9]. The third baseline adds only attention
module without abstraction on top of the second baseline.
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Ablation study proceeds with increasing levels of abstraction (patch/slide)
with various coefficients (w). A coefficient of 0.7 on the auxiliary loss was found
to work best via grid search which weighs the abstraction loss during the training
of the model. AdamW optimizer [6] with 16 slides in each mini-batch was used
with cosine annealing, and the initial learning rate was set to 1e−4. Performance
for ISUP grade group prediction were evaluated with respect to accuracy, mean
absolute error (MAE), quadratic weighted kappa (QWK), and spearman rank
correlations.

3.2 Results

As shown in Fig. 3(a), the accuracy of the model trained on pixel-wise noisy
annotations was improved with the use of slide-wise annotations. This margin is
similar to the gain achieved by adding attention to the MIL baseline (green dot-
ted line in Fig. 3). However, inspecting other criteria (b–d) which penalizes incor-
rect predictions far from true annotations demonstrates how pixel-wise labels are
detrimental in amplifying incorrect predictions. Acc, QWK, and Spearman coef-
ficient were increased by 0.71%, 5.77%, and 6.06%, and MAE was decreased
by 14.83% when adding slide-wise label abstraction to the MIL baseline. For
such cases, models trained using either patch or slide-wise abstraction predicted
ISUP grades closer to true annotations’. The higher levels of abstraction, the
more noise filtered naturally, thereby the slide-wise annotations with high noise
have achieved benefit. These results support that the use of auxiliary loss using
abstracted annotations is more helpful in improving model performance.

Fig. 4. Confusion matrices comparing (a) Pixel-wise annotation based baseline model
without the abstraction with (b) Proposed method trained on abstracted annotations.
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We also visualized the distribution of predictions and true ISUP grade groups
in Fig. 4. The QWK increased from 0.8190 to 0.8663 when using slide-wise
abstractions. Under and over-estimated predictions with margin ≥ 2 are high-
lighted in blue and red triangles, respectively. The implications of under and
over-estimates differ: over-estimations (blue) lead to unnecessary costs of care.
Under-estimating the severity of cancer (red) is critical because a patient would
not receive proper treatment. The cumulative number of upper triangular cases
slightly increased by 9 cases (from 64 to 73), but the number of lower triangu-
lar cases decreased by 30% from 148 cases to 100 cases. This implies that the
potential risk of a patient can be mitigated with the use of our method.

In this study, we tested the effective use of pixel-wise noisy labels in slide-wise
inference. It showed a performance improvement in terms of QWK compared to
slide-wise classification after attention based on the results of the segmentation
model. Compared with the PANDA challenge, the source of the dataset we used,
we note that there may be a slight performance difference because the train set
and test set used are different from the challenge.

4 Conclusion

We proposed a method to guide a MIL attention network by performing abstrac-
tion to filter annotation noise. Our method demonstrated superior performance
in comparison with strong baselines. In particular, the performance was improved
for samples that were difficult to predict due to noisy annotations, thereby reduc-
ing the severity of misdiagnosis. We believe that this study has potential not only
for pathology, but also for large-scale environments when fine-grained annota-
tions are contaminated with substantial noise levels.

References

1. Bulten, W., et al.: Artificial intelligence for diagnosis and Gleason grading of
prostate cancer: the panda challenge. Nat. Med. 24, 1–10 (2022)

2. Bulten, W., et al.: Automated Gleason grading of prostate biopsies using deep
learning. arXiv preprint arXiv:1907.07980 (2019)

3. Bulten, W., Pinckaers, S., Eklund, K., et al.: The PANDA challenge: prostate
cancer grade assessment using the Gleason grading system. MICCAI challenge
(2020)

4. Campanella, G., et al.: Clinical-grade computational pathology using weakly super-
vised deep learning on whole slide images. Nat. Med. 25(8), 1301–1309 (2019)

5. Egevad, L., Delahunt, B., Srigley, J.R., Samaratunga, H.: International society
of urological pathology (ISUP) grading of prostate cancer-an ISUP consensus on
contemporary grading (2016)

6. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017)

7. Pan, H., Han, H., Shan, S., Chen, X.: Mean-variance loss for deep age estimation
from a face. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 5285–5294 (2018)

http://arxiv.org/abs/1907.07980
http://arxiv.org/abs/1711.05101


Abstraction in Pixel-wise Noisy Annotations for Prostate Cancer Assessment 31

8. Society, A.C.: About prostate cancer. https://www.cancer.org/cancer/prostate-
cancer/about/key-statistics.html

9. Ström, P., et al.: Pathologist-level grading of prostate biopsies with artificial intel-
ligence. arXiv preprint arXiv:1907.01368 (2019)

10. UK, P.C.: What is the prostate? https://prostatecanceruk.org/prostate-
information/about-prostate-cancer

https://www.cancer.org/cancer/prostate-cancer/about/key-statistics.html
https://www.cancer.org/cancer/prostate-cancer/about/key-statistics.html
http://arxiv.org/abs/1907.01368
https://prostatecanceruk.org/prostate-information/about-prostate-cancer
https://prostatecanceruk.org/prostate-information/about-prostate-cancer


Meta Pixel Loss Correction for Medical
Image Segmentation with Noisy Labels

Zhuotong Cai(B), Jingmin Xin, Peiwen Shi, Sanping Zhou, Jiayi Wu,
and Nanning Zheng

Xi’an Jiaotong University, Xi’an, China

cai99624@stu.xjtu.edu.cn

Abstract. Supervised training with deep learning has exhibited impres-
sive performance in numerous medical image domains. However, previous
successes rely on the availability of well-labeled data. In practice, it is
a great challenge to obtain a large high-quality labeled dataset, espe-
cially for the medical image segmentation task, which generally needs
pixel-wise labels, and the inaccurate label (noisy label) may significantly
degrade the segmentation performance. In this paper, we propose a novel
Meta Pixel Loss Correction (MPLC) based on a simple meta guided net-
work for the medical segmentation that is robust to noisy labels. The core
idea is to estimate a pixel transition confidence map by meta guided net-
work to take full advantage of noisy labels for pixel-wise loss correction.
To achieve this, we introduce a small size of meta dataset with the meta-
learning method to train the whole model and help the meta guided
network automatically learn the pixel transition confidence map in an
alternative training manner. Experiments have been conducted on three
medical image datasets, and the results demonstrate that our method is
able to achieve superior segmentation with noisy labels compared to the
existing state-of-the-art approaches.

Keywords: Label noise · Loss correction · Meta learning

1 Introduction

With the recent emergence of large-scale datasets supervised by high-quality
annotations, deep neural networks (DNNs) have exhibited impressive perfor-
mance in numerous domains, particularly in medical applications. It has proved
itself to be a worthy computer assistant in solving many medical problems, includ-
ing disease early diagnosis, disease progression prediction, patient classification,
and many other crucial medical image processing tasks like image registration and
segmentation [7]. However, the former success is mostly contributed to the avail-
ability of well-labeled data. In practice, it is a great challenge to obtain large high-
quality datasets with accurate labels in medical imaging. Because such labeling is
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not only time-expensive but also expertise-intensive. In most cases, the labeled
datasets more or less have potential noisy labels, especially for the segmenta-
tion task, which generally needs pixel-wise annotation. Therefore, a segmentation
model that is robust to such noisy training data is highly required.

To overcome this problem, a few recent approaches had been proposed.
Mirikharaji et al. [11] proposed a semi-supervised method to optimize the weights
on the images in the noisy dataset by reducing the loss on a small clean dataset
for skin lesion segmentation. Inspired by [13], Zhu et al. [20] detected incor-
rect labels in the segmentation of heart, clavicles, and lung in chest radiographs
through decreasing the weight of samples with incorrect labels. Wang et al. [18]
combined the meta learning with the re-weighting method to adapt for corrupted
pixels and re-weight the relative influenced loss for lung and liver segmentation.

All these methods are built on the basis of exclusion or simply re-weighting
the suspected noisy samples to reduce their negative influence for training. How-
ever, simple exclusion or re-weighting can not make full use of noisy labels and
ignores the reason leading to these noise labels, which makes them still have
room for further performance improvement. This motivates us to explore the
feasibility of taking full advantage of noisy labels by estimating the pixel transi-
tion confidence map, so as to do further pixel loss correction to make the model
noise-robust and improve the segmentation performance with corrupted pixels.

In this paper, we propose a novel meta pixel loss correction(MPLC) to
address the problem of medical image segmentation with noisy labels. Specif-
ically, we design a meta guided network by feeding the segmentation network
prediction as input to generate the pixel transition confidence map. The obtained
pixel transition confidence map can represent the possibility of transitioning from
the latent clean label to the observed noisy label, which can lead to improved
robustness to noisy labels in the segmentation network through further pixel
loss correction processing. The contributions of this paper can be summarized
as follows: 1) We propose a novel meta pixel loss correction method to generate
a noise-robust segmentation model to make full use of the training data. 2) With
the introduction of noise-free meta-data, the whole model can be trained in an
alternative manner to automatically estimate a pixel transition confidence map,
so as to further do pixel loss correction. 3) We conduct experiments on a combi-
nation of three medical datasets, including LIDC-IDRI, LiTS and BraTS19 for
segmentation tasks with noisy labels. The results show that our method achieves
state-of-art performance in medical image segmentation with noisy labels.

2 Methodology

We propose a novel meta pixel loss correction method (MPLC) to correct loss
function and generate a noise-robust segmentation network with noisy labels.
The detailed architecture of our proposed framework and workflow are shown in
Fig. 1. And it consists of two components: (1) a segmentation network based on
U-Net (2) a meta guided network for generating the pixel transition confidence
map to do further pixel loss correction. The components are trained in an end-
to-end manner and are described as follows.
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Fig. 1. Overview of our workflow in one loop.

2.1 Meta Pixel Loss Correction

Given a set of training noisy label samples S =
{

(Xi, Ỹ i), 1 ≤ i ≤ N
}

, where

Xi is training input images, Ỹ i ∈ {0, 1}h×w×c represent the observed noisy
labels, denote training images with noisy segmentation annotations. We use U-
Net [14] as the backbone DNN for segmentation and it generates a prediction
P i from the function P i = f(Xi, ω), where f denotes the U-Net and ω denotes
the parameters of U-Net. For a conventional segmentation task, cross entropy is
used as the loss function Loss = l(P i, Ỹ i) to learn the parameters ω.

However, there may exist many noisy labels in the training dataset which
contributes to the poor performance of the trained U-Net. Because the influ-
ences of these errors in the loss function can lead the gradient into the probably
wrong direction and cause overfitting issues [16]. Instead of simply excluding
the corrupted unreliable pixel [11,18], we aim to take advantage of these noisy
labels.

T Construction. Assuming that there is a pixel transition confidence map T ,
which can bridge clean label and noisy label, specifying the probability of clean
label flipping to noisy label. T will be applied to the segmentation prediction
through the transition function and finally we get the revised prediction, which
resembles the relative noisy mask. Thus, the noisy labels are used properly and
the original cross entropy loss between the revised prediction and the noisy mask
can work as usual, which approximately equals to training on clean labels.

In this paper, we design a learning framework with prediction P i which could
adaptively generate pixel transition confidence map T for every training step

T i = g(P i, θ), (1)

where θ indicates the parameters of that framework. Specifically, for T in every
pixel, we have

T i
xy = p(Ỹ i

xy = m|Y i
xy = n),∀m,n ∈ {0, 1} , (2)
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where T i
xy represents the confidence of transitioning from the latent clean label

Y i
xy to the observed noisy label Ỹ i

xy at pixel (x,y). Corrupted pixels have low
pixel confidence but high transition probability. Due to binary segmentation,
we assume the size of the pixel transition matrix is N × C × H × W , where
C = 2 represents the foreground and background in our paper. Each value in
the transition matrix from different C represents the confidence that the pixel
in foreground and background keep not flipping to other.

We can use T i
xy to do pixel loss correction and the loss function of the whole

model can be written as:

Loss = − 1
Nhw

N∑
i=1

h∑
x=1

w∑
y=1

l(Htrans(T i
xy, f(Xi

xy, ω)), Ỹ i
xy), (3)

Htrans(T i
xy, f(Xi

xy, ω)) = P i
xy ∗ T i

xy(C = 1) + (1 − P i
xy) ∗ (1 − T i

xy(C = 0)) (4)

where l is BCE loss function, Htrans is the transition function between fore-
ground and background. In our method, the transition function Eq. 4 represents
the foreground of prediction keeps no change and the background of prediction
flips into the foreground.

Optimization. Given a fixed θ, the optimized solution to ω can be found
through minimizing the following objective function:

ω∗(θ) = arg min
ω

1
Nhw

N∑
i=1

h∑
x=1

w∑
y=1

l(Htrans(T i
xy, f(Xi

xy, ω)), Ỹ i
xy). (5)

We then introduce how to learn the parameters θ through our meta guided
network. Motivated by the success of meta-parameter optimization, our method
takes advantage of a small trusted dataset to correct the probably wrong direc-
tion of the gradient and guide the generation of pixel loss correction map. Specif-
ically, we leverage an additional meta data set S =

{
(X j ,Yj), 1 ≤ j ≤ M

}
which

has clean annotations. M is the number of meta-samples and M � N . Given a
meta input X j and optimized parameters ω∗(θ), through segmentation network,
we can obtain the prediction map as Pj = f(X j , ω∗(θ)), the meta loss for the
meta dataset can be written as:

Lossmeta = − 1
Mhw

M∑
j=1

h∑
x=1

w∑
y=1

l(f(X i
xy, ω∗(θ)),Yi

xy), (6)

Combined with Eq.(5) and Eq.(6), it is formulated into a bi-level minimization
problem and the optimized solution to θ∗ can be acquired through minimizing
the following objective function:

θ∗ = arg min
θ

1
Mhw

M∑
j=1

h∑
x=1

w∑
y=1

l(f(X i
xy, ω∗(θ)),Yi

xy). (7)

After achieving θ∗, we can then get the pixel transition confidence map, which
estimates the transition confidence from correct labels to be corrupted ones to
help train a noise-robust segmentation model.
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Fig. 2. Illustration of working processing about meta guided network. (Dilation oper-
ator is used to generate noise)

Meta Guided Network. For the meta guided network g in the Eq. (1), we
explore the different architectures, which need to satisfy the auto-encoder struc-
ture of U-Net and be also easy trained for the small meta dataset by meta-
learning. In this paper, SENet [5] has been used as the backbone, which is a
simple and easy trained structure and generates the same size result as U-Net for
transition. By feeding the prediction P i, this meta guide network can adaptively
recalibrate latent transition confidence by explicitly modeling interdependencies
between channels, especially in favor of finding the transition confidence from
correct labels to the corrupted ones.

From Fig. 2, we can see that how our meta guided network work to build a
noise-robust model. By feeding the prediction (c) to the meta guided network, the
relative pixel transition confidence map can be obtained. Corrupted pixels have
low pixel confidence but high transition probability. After the transition function
with the confidence map, the prediction is turned into the revised prediction (d),
which is very similar to the noisy mask (e). Finally, cross entropy can be used
between revised prediction and observed noisy mask to train the segmentation
model. This enables our method to train a noise-robust segmentation network
with noisy labels.

2.2 Optimization Algorithm

The algorithm includes mainly following steps. Given the training input (Xi, Ỹ i),
we can then deduce the formulate of one-step w updating with respect to θ as

ω̂(θ) = ω(t) − α
1

Nhw

N∑
i=1

h∑
x=1

w∑
y=1

∇wl(Htrans(T i(t)
xy , f(Xi

xy, ω)), Ỹ i
xy), (8)

where α is the learning rate and T
i(t)
xy is computed by feeding the pixel-level

prediction into meta guided network with parameters θ(t).
Then, with current mini-batch meta data samples(X j ,Yj), we can perform

one-step updating for solving

θ(t+1) = θ(t) − β
1

Mhw

M∑
j=1

h∑
x=1

w∑
y=1

∇θl(f(X i
xy, ω̂(θ)),Yi

xy), (9)
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Algorithm 1: The proposed learning Algorithm
Input: Training data S, meta data S, batch size n m, the number of iterations I

1 Initialize segmentation network parameter ω and meta guided network
parameter θ;

2 for t = 1 to I do
3 X, Y ← Sample minibatch (S, n);
4 Xm, Ym ← Sample minibatch (S, m);

5 Update θ(t+1) by Eq.(9);

6 Update ω(t+1) by Eq.(10);

7 Update T by the current segmentation network with parameter ω(t+1);

8 end

Output: Segmentation network parameter ωI+1

where β is learning rate and we use autograd to calculate Jacobian. After we
achieve θ(t+1), we can update w, that is

ω(t+1) = ω(t) − α
1

Nhw

N∑
i=1

h∑
x=1

w∑
y=1

∇wl(Htrans(T i(t+1)
xy , f(Xi

xy, ω), Ỹ i
xy), (10)

The predict T
i(t+1)
xy is updated with the parameters of ω(t+1) of the segmentation

network. The entire algorithm is then summarized in Algorithm 1.

3 Experiment Results

3.1 Dataset

We evaluate our method on three medical segmentation datasets: LIDC-IDRI [1],
LiTS [4] and BraTS2019 [10], which were selected for lesion segmentation. We
follow the same preprocessing and experiment settings with [18] on the LIDC-
IDRI and LiTS datasets with 64× 64 cropped lesion patches. LIDC-IDRI is a
lung CT dataset consisting of 1018 lung CT scans. 3591 patches are adopted,
which are split into a training set of 1906 images, a testing set of 1385 images
and the last 300 images for the meta set. LiTS contains 130 abdomen CT liver
scans with tumors and liver segmentation challenge. 2214 samples are sampled
from this dataset. 1471, 300 and 443 images are used for training, meta weight
learning, and testing respectively. BraTS19 is a brain tumor challenge dataset.
It consists of 385 labeled 3D MRI scans and each MRI scan has four modalities
(T1, T1 contrast-enhanced, T2 and FLAIR). 3863 ET lesion patches are adopted
and training dataset, meta dataset and testing dataset contain 1963 samples, 300
samples and 1600 samples respectively. Specifically, because our input is cropped
lesion patch, the challenge results can not be cited in our experiments.
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Table 1. Results of segmentation models on LIDC-IDRI. (r = 0.4)

Noise Dilation ElasticDeform

Model name mIOU Dice Hausdorff mIOU Dice Hausdorff

U-Net [14] 62.53 75.56 1.9910 65.01 76.17 1.9169

Prob U-Net [9] 66.42 78.39 1.8817 68.43 79.50 1.8757

Phi-Seg [3] 67.01 79.06 1.8658 68.55 81.76 1.8429

UA-MT [19] 68.18 80.98 1.8574 68.84 82.47 1.8523

Curriculum [8] 67.78 79.54 1.8977 68.18 81.30 1.8691

Few-Shot GAN [12] 67.74 78.11 1.9137 67.93 77.83 1.9223

Quality Control [2] 65.00 76.50 1.9501 68.07 77.68 1.9370

U2 Net [6] 65.92 76.01 1.9666 67.20 77.05 1.9541

MWNet [15] 71.56 81.17 1.7762 71.89 81.04 1.7680

MCPM [18] 74.69 84.64 1.7198 75.79 84.99 1.7053

Our MPLC 77.24 87.16 1.6387 77.52 87.44 1.6157

3.2 Experiment Setting

Noise Setting: Extensive experiments have been conducted under different
types of noise. We artificially corrupted the target lesion mask with two types
of label degradation: dilation morphology operator and ElasticDeform. 1) Dila-
tion morphology operator: the foreground region is expanded by several pixels
(randomly drawn from [0, 6]). 2) ElasticDeform [17]: label noise is generated by
complicated operations such as rotation, translation, deformation and morphol-
ogy dilation on groundtruth labels. Specifically, we set a probability r as the noisy
label ratio to represent the proportion of noisy corrupted labels in all data.

Implementation Detail: We train our model with SGD at initial learning rate
1e−4 and a momentum 0.9, a weight decay 1e−3 with mini-batch size 60. Set
α = 1e−4, β = 1e−3 in all the experiments. The learning rate decay 0.1 in 30th
epoch and 60th epoch for a total of 120 epoch. mIOU, Dice and Hausdorff were
used to evaluate our method.

3.3 Experimental Results

Comparisons with State-of-the-Art Methods. In this section, we set r to
40% for all experiments, which means 40% training labels are noisy labels with
corrupted pixels. There are 9 existing segmentation methods for the similarity
task on the LIDC-IDRI dataset, including: Prob U-Net [9], Phi-Seg [3], UA-
MT [19], Curriculum [8], Few-Shot GAN [12], Quality Control [2], U2 Net [6],
MWNet [15] and MCPM [18]. Visualization results are shown in Fig. 3.

Table 1 shows the results of all competing methods on the LIDC-IDRI dataset
with the aforementioned experiment setting. It can be observed that our method
gets the best performance. Specifically, compared with MCPM and MWNet,
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which use the re-weighting method, our algorithm has the competitive Dice
result (87.16) and it outperforms the second best method(MCPM) by 2.52%.

An extra t-test comparison experiment has been done between our method
and the second best method(MCPM), and the result shows that P-value < 0.01,
which represents there is a statistical difference between our method and MCPM.

Input with GT U-Net Pro U-Net MWNet Our MPLCMCPM

LIDC-IDRI

LiTS

BraTS19

80.36%72.73%38.46%35.95%

87.54%82.11%62.21%48.50% 78.41%

95.54%89.70%76.82%63.32% 88.89%

64.47%

Fig. 3. Visualization of segmentation results under r = 0.8 in this section. Green and
red contours indicate the ground-truths and segmentation results, respectively. The
Dice value is shown at the bottom line, and our method produces much better results
than other methods on every dataset. (Color figure online)

Robustness to Various R-S. We explore the robustness of our MPLC under
the various percent of noise label ratio r {0.2, 0.4, 0.6, 0.8}. It has been evaluated
on LIDC-IDRI, LiTS and BraTS19 datasets under the dilation operation. Table 2
shows the results compared with baseline approaches. It shows that our method
consistently outperforms other methods across all the noise ratios on all datasets,
showing the effectiveness of our meta pixel loss correction strategy.

Table 2. Results (mIOU) of segmentation methods using various r-s.(Noise=Dilation)

Dataset LIDC-IDRI LiTS BraTS19

r 0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2

U-Net [14] 42.64 51.23 62.53 69.88 37.18 43.55 46.41 51.20 32.51 50.02 56.27 63.65

Prob U-Net 52.13 60.81 66.42 71.03 40.16 45.90 49.22 53.97 55.04 56.25 58.08 62.64

MWNet [15] 61.28 67.33 71.56 72.07 43.14 44.97 51.96 58.65 60.63 66.06 67.99 69.50

MCPM [18] 67.60 68.97 74.69 74.87 45.09 48.76 55.17 62.04 61.74 67.39 67.93 69.52

Our MPLC 73.04 76.07 77.24 78.16 62.25 64.53 65.56 66.44 63.67 67.79 69.09 71.79

3.4 Limitation

Because our approach is based on the instance-independent assumption that
P (ỹ|y) = P (ỹ|x, y). It is more suitable to model single noise distribution but
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fails in real-world stochastic noise like the complicated noise setting with multi
noises(erosion, dilation, deformity, false negatives, false positives). When it is
extended to instance-dependent, we should model the relationship among clean
label, noisy label and instance for P (ỹ|x, y) in future work.

4 Conclusion

We present a novel Meta Pixel Loss Correction method to alleviate the nega-
tive effect of noisy labels in medical image segmentation. Given a small number
of high-quality labeled images, the deduced learning regime makes our meta
guided network able to take full use of noisy labels and estimate the pixel tran-
sition confidence map, which can be used to do further pixel loss correction
and train a noise-robust segmentation. We extensively evaluated our method on
three datasets, LIDC-IDRI, LiTS and BraTS19. The result shows that the pro-
posed method can outperform state-of-the-art in medical image segmentation
with noisy labels.
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References

1. Armato, S.G., et al.: The lung image database consortium (LIDC) and image
database resource initiative (IDRI): a completed reference database of lung nodules
on CT scans. Acad. Radiol. 14(12), 1455–1463 (2007)

2. Audelan, B., Delingette, H.: Unsupervised quality control of image segmentation
based on Bayesian learning. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS,
vol. 11765, pp. 21–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
32245-8 3

3. Baumgartner, F., et al.: PHiSeg: capturing uncertainty in medical image segmen-
tation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 119–127.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8 14

4. Han, X.: Automatic liver lesion segmentation using a deep convolutional neural
network method (2017)

5. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks.
IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 2011–2023 (2020). https://doi.org/
10.1109/TPAMI.2019.2913372

6. Huang, C., Han, H., Yao, Q., Zhu, S., Zhou, S.K.: 3D U2-net: a 3D universal u-net
for multi-domain medical image segmentation. In: Shen, D., et al. (eds.) MICCAI
2019. LNCS, vol. 11765, pp. 291–299. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-32245-8 33

7. Karimi, D., Dou, H., Warfield, S.K., Gholipour, A.: Deep learning with noisy labels:
Exploring techniques and remedies in medical image analysis. Med. Image Anal.
65, 101759 (2020)
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Abstract. The LIDC-IDRI database is the most popular benchmark for
lung cancer prediction. However, with subjective assessment from radiolo-
gists, nodules in LIDC may have entirely different malignancy annotations
from the pathological ground truth, introducing label assignment errors
and subsequent supervision bias during training. The LIDC database thus
requires more objective labels for learning-based cancer prediction. Based
on an extra small dataset containing 180 nodules diagnosed by patholog-
ical examination, we propose to re-label LIDC data to mitigate the effect
of original annotation bias verified on this robust benchmark. We demon-
strate in this paper that providing new labels by similar nodule retrieval
based on metric learning would be an effective re-labeling strategy. Train-
ing on these re-labeled LIDC nodules leads to improved model perfor-
mance, which is enhanced when new labels of uncertain nodules are added.
We further infer that re-labeling LIDC is current an expedient way for
robust lung cancer prediction while building a large pathological-proven
nodule database provides the long-term solution.

Keywords: Pulmonary nodule · Cancer prediction · Metric learning ·
Re-labeling

1 Introduction

The LIDC-IDRI (Lung Image Database Consortium and Image Database
Resource Initiative) [1] is a leading source of public datasets. Since the intro-
duction of LIDC, it is used extensively for lung nodule detection and cancer
prediction using learning-based methods [4,6,11,12,15–17,21,23].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Zamzmi et al. (Eds.): MILLanD 2022, LNCS 13559, pp. 42–51, 2022.
https://doi.org/10.1007/978-3-031-16760-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16760-7_5&domain=pdf
https://doi.org/10.1007/978-3-031-16760-7_5


Re-thinking and Re-labeling LIDC-IDRI 43

When searching papers in PubMed1 with the following filter: (“deep learn-
ing” OR convolutional) AND (CT OR “computed tomography”) AND (lung OR
pulmonary) AND (nodule OR cancer OR “nodule malignancy”) AND (prediction
OR classification), among 53 papers assessed for eligibility of nodule malignancy
classification, 40 papers used LIDC database, 5 papers used NSLT (National
Lung Screening Trial) database2 [10,18,19] (no exact nodule location provided),
and 8 papers used other individual datasets. LIDC is therefore the most popular
benchmark in cancer prediction research.

A careful examination of the LIDC database, however, reveals several poten-
tial issues for cancer prediction. During the annotation of LIDC, characteristics
of nodules were assessed by multiple radiologists, where the rating of malignancy
scores (1 to 5) was based on the assumption of a 60-year-old male smoker.
Due to the lack of clinical information, these malignancy scores were subjective.
Although a subset of LIDC cases possesses patient-based pathological diagnosis
[13], its nodule-level binary labels can not be confirmed.

Since it is hard to recapture the pathological ground truth for each LIDC nod-
ule, we apply the extra SCH-LND dataset [24] with pathological-proven labels,
which is used not only for establishing a truthful and fair evaluation benchmark
but also for transferring pathological knowledge for different clinical indications.

In this paper, we first assess the nodule prediction performances of LIDC
driven model in six scenarios and their fine-tuning effects using SCH-LND with
detailed experiments. Having identified the problems of the undecided binary
label assignment scheme on the original LIDC database and unstable transfer
learning outcomes, we seek to re-label LIDC nodule classes by interacting with
the SCH-LND. The first re-labeling strategy adopts the state-of-the-art nod-
ule classifier as an end-to-end annotator, but it has no contribution to LIDC
re-labeling. The second strategy uses metric learning to learn similarity and dis-
crimination between the nodule pairs, which is then used to elect new LIDC
labels based on the similarity ranking in a pairwise manner between the under-
labeled LIDC nodule and each nodule of SCH-LND. Experiments show that
the models trained with re-labeled LIDC data created by metric learning model
not only resolve the bias problem of the original data but also transcend the
performance of our model, especially when the new labels of the uncertain sub-
set are added. Further statistical results demonstrate that the re-labeled LIDC
data suffers class imbalance problem, which indicates us to build a larger nodule
database with pathological-proven labels.

2 Materials

LIDC-IDRI Database: According to the practice in [14], we excluded CT
scans with slice thickness larger than 3 mm and sampled nodules identified by at
least three radiologists. We only involve solid nodules in SCH-LND and LIDC
databases because giving accurate labels for solid nodules is of great challenge.
1 https://pubmed.ncbi.nlm.nih.gov/.
2 https://cdas.cancer.gov/datasets/nlst/.

https://pubmed.ncbi.nlm.nih.gov/
https://cdas.cancer.gov/datasets/nlst/


44 H. Zhang et al.

Extra Dataset: The extra dataset called SCH-LND [24] consists of 180 solid
nodules (90 benign/90 malignant) with exact spatial coordinates and radii. Each
sample is very rare because all the nodules are confirmed and diagnosed by
immediate pathological examination via biopsy with ethical approval.

To regulate variant CT formats, CT slice thickness is resampled to 1mm/pixel
if it is larger than 1 mm/pixel, while the X and Y axes are fixed to 512× 512
pixels. Each pixel value is unified to the HU (Hounsfield Unit) value before
nodule volume cropping.

3 Study Design

Fig. 1. Illustration of the study design for nodule cancer prediction. Case 1: training
from scratch over the LIDC database after assigning nodule labels according to the
average malignancy scores in 6 scenarios. Case 2: training over extra data based on
accurate pathological-proven labels by 5-fold cross-validation. Case 3: testing or fine-
tuning LIDC models of Case 1 using extra data.

The preliminary study follows the instructions of Fig. 1 where two types of cases
(Case 1 and Case 2) conduct training and testing in each single data domain
and one type of case (Case 3) involves domain interaction (cross-domain testing
and transfer learning) between LIDC and SCH-LND. In Case 1 and Case 3, we
identify 6 different scenarios by removing uncertain average scores (Scenarios A
and B) or setting division threshold (Scenarios C, D, E, and F) to assign binary
labels for LIDC data training. Training details are described in Sect. 5.1.

To evaluate the model performance comprehensively, we additionally intro-
duce Specificity (also called Recallb, when treating benign as positive sample)
and Precisionb (Precision in benign class) [20], besides regular evaluation metrics
including Sensitivity (Recall), Precision, Accuracy, and F1 score.

Based on the visual assessment of radiologists, human-defined nodule fea-
tures can be easily extracted and classified by a commonly used model (3D
ResNet-18 [5]), whose performance can emulate the experts’ one (Fig. 2, Case
1). Many studies still put investigational efforts for better results across the
LIDC board, overlooking inaccurate radiologists’ estimations and bad model
capability in the real world. However, once the same model is revalidated under
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Fig. 2. Performance comparisons between different Cases or Scenarios (Scen) in Fig. 1.
For instance, ‘A:(12/45)’ represents ‘Scenario A’ that treats LIDC scores 1 & 2 as
benign labels and scores 4 & 5 as malignant labels. FT denotes fine-tuning using extra
data by 5-fold cross-validation based on the pre-trained model in each scenario.

the pathological-proven benchmark (Fig. 2, Case 3, Scenario A), its drawback is
objectively revealed that LIDC model decisions take up too many false-positive
predictions. These two experimental outcomes raise a suspicion that whether the
visual assessment of radiologists might have a bias toward malignant class.

To resolve this suspicion, we compare the performances of 6 scenarios in Case
3. Evidence reveals that, under the testing data from SCH-LND, the number of
false-positive predictions has a declining trend when the division threshold moves
from the benign side to the malignant side, but the bias problem is still serious
when reaching Scenario E, much less of Scenario A and B. Besides, as training
on the SCH-LND dataset from scratch can hardly obtain a high capacity model
(Fig. 2, Case 2), we use transfer learning in Case 3 to get the model fine-tuned
on the basis of weights of different pre-trained LIDC models.

Observing the inter-comparison within each scenario in Case 3, transfer learn-
ing can push scattered metric values close. However, compared with Case 2, the
fine-tuning technique would bring both positive and negative transfer, depending
upon the property of the pre-trained model.

Thus, either for training from scratch or transfer learning process, the radi-
ologists’ assessment of LIDC nodule malignancy can be hard to properly use.
In addition to its inevitable assessment errors, there is a thorny problem to
assign LIDC labels (how to set division threshold) and removing uncertain sub-
set (waste of data). We thus expect to re-label the LIDC malignancy classes
with the interaction of SCH-LND, to correct the assessment bias as well as uti-
lize the uncertain nodules (average score = 3). Two independent approaches are
described in the following section.
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4 Methods

We put forward two re-labeling strategies to obtain new ground truth labels
on the LIDC database. The first strategy generates the malignancy label from
a machine annotator: the state-of-the-art nodule classifier that has been pre-
trained on LIDC data and fine-tuned on SCH-LND to predict nodule class. The
second strategy ranks the top nodules’ labels using a machine comparator: a
metric-based Network that measures the correlation between nodule pairs.

Considering that the knowledge from radiologists’ assessments could be a
useful resource, in each strategy, two modes of LIDC re-labeling are proposed.
For Mode 1 (Substitute): LIDC completely accepts the re-label outcomes
from other label machines. For Mode 2 (Consensus): The final LIDC re-
label results would be decided by the consensus of label machine outcomes and
its original label (Scenario A). In other words, this mode will leave behind the
nodules with the same label and discard controversial ones, which may cause
data reduction. We evaluate the LIDC re-labeling effect by using SCH-LND to
test the model which is trained with re-labeled data from scratch.

4.1 Label Induction Using Machine Annotator

The optimized model with fine-tuning technique can correct the learning bias
initiated by LIDC data. Some fine-tuned models even surpass the LIDC model
performance in large scales of evaluation metrics. We wonder whether the cur-
rent best performance model can help classify and annotate new LIDC labels.
Experiments will be conducted using two annotation models from Case 2 and
Case 3 (Scenario A) in Sect. 3.

4.2 Similar Nodule Retrieval Using Metric Learning

Fig. 3. The second strategy of LIDC re-labeling that using a metric learning model to
search for the most similar nodules and give new labels.

Metric learning [2,7] provides a few-shot learning approach that aims to learn
useful representations through distance comparisons. We use Siamese Network
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[3,9] in this study which consists of two networks whose parameters are tied to
each other. Parameter tying guarantees that two similar nodules will be mapped
by their respective networks to adjacent locations in feature space.

For training a Siamese Network in Fig. 3, we pass the inputs in the set of
pairs. Each pair is randomly chosen from SCH-LND and given the label whether
two nodules of this pair are in the same class. Then these two nodule volumes are
passed through the 3D ResNet-18 to generate a fixed-length feature vector indi-
vidually. A reasonable hypothesis is given that: if the two nodules belong to the
same class, their feature vectors should have a small distance metric; otherwise,
their feature vectors will have a large distance metric. In order to distinguish
between the same and different pairs of nodules when training, we apply con-
trastive loss over the Euclidean distance metric (similarity score) induced by the
malignancy representation.

During re-labeling, we first pair each nodule from SCH-LND used in training
up with an under-labeled LIDC nodule and sort each under-labeled nodule part-
ner by their similarity scores. Then the new LIDC label is awarded by averaging
the labels of the top 20% partner nodules in the ranking list of similarity scores.

5 Experiments and Results

5.1 Implementation

We apply 3D ResNet-18 [5] in this paper with adaptive average pooling (output
size of 1× 1× 1) following the final convolution layer. For the general cancer
prediction model, we use a fully connected layer and a Sigmoid function to output
the prediction score (binary cross-entropy loss). While for Siamese Network, we
use a fully connected layer to generate the feature vector (8 neurons). Due to
various nodule sizes, the batch size is set to 1, and group normalization [22] is
adopted after each convolution layer.

All the experiments are implemented in PyTorch with a single NVIDIA
GeForce GTX 1080 Ti GPU and learned using the Adam optimizer [8] with
the learning rate of 1e–3 (100 epochs) and that of 1e–4 for fine-tuning in trans-
fer learning (50 epochs). The validation set occupies 20% of the training set in
each experiment. All the experiments and results involving or having involved
the training of SCH-LND are strictly conducted by 5-fold cross-validation.

5.2 Quantitative Evaluation

To evaluate the first strategy using machine annotator, we first use Case 2 model
to re-label LIDC nodules (a form of 5-fold cross-validation) other than the uncer-
tain subset (original average score = 3). The re-labeled nodules are then fed into
the 3D ResNet-18 model, which will be trained from scratch and tested on the
corresponding subset of SCH-LND for evaluation. The result (4th row) shows
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Table 1. Performances of different re-labeling methods based on each mode of re-
labeling strategies. Under-labeled LIDC data are chosen by their original average score.

Row Baselines Method Training Testing Sensitivity Specificity Precision Precisionb Accuracy F1

1 Case 3-A LIDC Extra 0.9778 0.2333 0.5605 0.9130 0.6056 0.7126

2 Case 2 Extra Extra 0.6333 0.6000 0.6129 0.6207 0.6167 0.6230

3 Siamese Extra Extra 0.6667 0.6000 0.6250 0.6429 0.6333 0.6452

LIDC re-labeling

Strategy Mode Method Under-label Sensitivity Specificity Precision Precisionb Accuracy F1

4 Annotator Substitute Case 2 1;2;4;5 0.5778 0.5667 0.5714 0.5730 0.5722 0.5746

5 Case 3-A 0.4630 0.6667 0.5814 0.5538 0.5648 0.5155

6 Consensus Case 2 0.8778 0.3667 0.5809 0.7500 0.6222 0.6991

7 Case 3-A 0.8556 0.3778 0.5789 0.7234 0.6167 0.6906

8 Comparator Substitute Siamese 1;2;4;5 0.6111 0.6556 0.6395 0.6277 0.6333 0.6250

9 1;2;3;4;5 0.6778 0.6667 0.6703 0.6742 0.6722 0.6740

10 Consensus 1;2;4;5 0.8000 0.3778 0.5625 0.6538 0.5889 0.6606

11 1;2;3;4;5 0.7333 0.5889 0.6408 0.6883 0.6611 0.6839

that although this action greatly fixes label bias to a balanced state, this group
of new labels can hardly build a model tested well on SCH-LND. Contrary to
common sense, the state-of-the-art nodule classifier makes re-label performance
worse (5th row), which is much lower than that of learning from scratch using
SCH-LND (2nd row), indicating that the best model optimized with fine-tuning
technique is not suitable for LIDC re-labeling. The initial two experiments adopt-
ing Mode 2 (Consensus) achieved better comprehensive outcomes than Mode 1
(Substitute) but with low Specificity (Table 1).

Metric learning takes a different re-label strategy that retrieves similar nod-
ules according to the distance metric. Metric learning on a small dataset can
obtain a better performance (3rd row) compared with general learning from
scratch (2nd row). The re-label outcomes (8th and 9th row) also show great
comprehensive improvement over baselines by Mode 1, where the re-labeling of
uncertain nodules (average score = 3) is an important contributing factor.

Overall, there is a trade-off between Mode 1 and Mode 2. But Mode 2 seems to
remain the LIDC bias property because testing results often have low Specificity
and introduce data reduction. Re-labeling by consensus (Mode 2) may integrate
the defects of both original labels and models, especially for malignant labels,
while re-labeling uncertain nodules can help mitigate the defect of Mode 2.

We finally re-labeled the LIDC database with the Siamese Network trained
using all of SCH-LND. As shown in Fig. 4, our re-labeled results are in broad
agreement with the low malignancy score ones. In score 3 (uncertain data), the
majority of the nodules are re-labeled to benign class, which explains the better
performance when the nodules of score 3 are assigned to benign label in Scenario
E (Fig. 2, Case 3). The new labels correct more than half of the original nodule
labels with score 4 which could be the main reason leading to the data bias.

5.3 Discussion

Re-labeling through metric learning is distinct from the general supervised model
in two notable ways. First, the input pairs generated by random sampling for
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Fig. 4. Statistical result of LIDC re-labeling nodules (benign or malignant) in terms
of original average malignancy scores, where the smooth curve describes the simplified
frequency distribution histogram of average label outputs. For each average score of 1,
2, 4, and 5, one nodule re-labeling example with the opposite class (treat score 1 and
2 as benign; treat 4 and 5 as malignant) is provided.

metric learning provide a data augmentation effect to overcome overfitting with
limited data. Second, under-labeled LIDC data take the average labels of top-
ranked similarity nodules to increase the confidence of label propagation. These
two points may explain why general supervised models (including fine-tuning
models) perform worse than metric learning in re-labeling task. Unfortunately,
after re-labeling, the class imbalance problem emerged (748 versus 174), while
bringing up new limits in model training performance in the aforementioned
experiments.

Moreover, due to the lack of pathological ground truth, the relabel outcomes
of this study should always remain suspect until the LIDC clinical information
is available. Considering a number of subsequent issues that LIDC may arise,
sufficient evidence in this paper explores the motive for us to promote the ongoing
collection work of a large pathological-proven nodule database, which is expected
to become a powerful open-source database for the international medical imaging
and clinical research community.

6 Conclusion and Future Work

The LIDC-IDRI database is currently the most popular public database of lung
nodules with specific spatial coordinates and experts’ annotations. However,
because of the absence of clinical information, deep learning models trained
based on this database have poor generalization capability in lung cancer pre-
diction and downstream tasks. To challenge the low confidence labels of LIDC,
an extra nodule dataset with pathological-proven labels was used to identify the
annotation bias problems of LIDC and its label assignment difficulties. With the
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robust supervision of SCH-LND, we used a metric learning-based approach to re-
label LIDC data according to the similar nodule retrieval. The empirical results
show that with re-labeled LIDC data, improved performance is achieved along
with the maximization of LIDC data utilization and the subsequent class imbal-
ance problem. These conclusions provide a guideline for further collection of a
large pathological-proven nodule database, which is beneficial to the community.
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7. Kaya, M., Bilge, H.Ş: Deep metric learning: a survey. Symmetry 11(9), 1066 (2019)
8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint

arXiv:1412.6980 (2014)
9. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot

image recognition. In: ICML Deep Learning Workshop, vol. 2. Lille (2015)
10. Kramer, B.S., Berg, C.D., Aberle, D.R., Prorok, P.C.: Lung cancer screening with

low-dose helical CT: results from the national lung screening trial (NLST) (2011)
11. Liao, Z., Xie, Y., Hu, S., Xia, Y.: Learning from ambiguous labels for lung nodule

malignancy prediction. arXiv preprint arXiv:2104.11436 (2021)
12. Liu, L., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Multi-task deep model with margin

ranking loss for lung nodule analysis. IEEE Trans. Med. Imaging 39(3), 718–728
(2019)

13. McNitt-Gray, M.F., et al.: The lung image database consortium (LIDC) data collec-
tion process for nodule detection and annotation. Acad. Radiol. 14(12), 1464–1474
(2007)

https://doi.org/10.1007/978-3-319-59050-9_20
https://doi.org/10.1007/978-3-319-59050-9_20
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2104.11436


Re-thinking and Re-labeling LIDC-IDRI 51

14. Setio, A.A.A., et al.: Validation, comparison, and combination of algorithms for
automatic detection of pulmonary nodules in computed tomography images: the
LUNA16 challenge. Med. Image Anal. 42, 1–13 (2017)

15. Shen, W., et al.: Learning from experts: developing transferable deep features for
patient-level lung cancer prediction. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R.,
Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 124–131. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46723-8 15

16. Shen, W., Zhou, M., Yang, F., Yang, C., Tian, J.: Multi-scale convolutional neural
networks for lung nodule classification. In: Ourselin, S., Alexander, D.C., Westin,
C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 588–599. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-19992-4 46

17. Shen, W., et al.: Multi-crop convolutional neural networks for lung nodule malig-
nancy suspiciousness classification. Pattern Recogn. 61, 663–673 (2017)

18. National Lung Screening Trial Research Team: The national lung screening trial:
overview and study design. Radiology 258(1), 243–253 (2011)

19. National Lung Screening Trial Research Team: Reduced lung-cancer mortality
with low-dose computed tomographic screening. N. Engl. J. Med. 365(5), 395–
409 (2011)

20. Wu, B., Sun, X., Hu, L., Wang, Y.: Learning with unsure data for medical image
diagnosis. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 10590–10599 (2019)

21. Wu, B., Zhou, Z., Wang, J., Wang, Y.: Joint learning for pulmonary nodule seg-
mentation, attributes and malignancy prediction. In: 2018 IEEE 15th International
Symposium on Biomedical Imaging (ISBI 2018), pp. 1109–1113. IEEE (2018)

22. Wu, Y., He, K.: Group normalization. In: Proceedings of the European Conference
on Computer Vision (ECCV), pp. 3–19 (2018)

23. Xie, Y., et al.: Knowledge-based collaborative deep learning for benign-malignant
lung nodule classification on chest CT. IEEE Trans. Med. Imaging 38(4), 991–1004
(2018)

24. Zhang, H., Gu, Y., Qin, Y., Yao, F., Yang, G.-Z.: Learning with sure data for
nodule-level lung cancer prediction. In: Martel, A.L., et al. (eds.) MICCAI 2020.
LNCS, vol. 12266, pp. 570–578. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-59725-2 55

https://doi.org/10.1007/978-3-319-46723-8_15
https://doi.org/10.1007/978-3-319-19992-4_46
https://doi.org/10.1007/978-3-030-59725-2_55
https://doi.org/10.1007/978-3-030-59725-2_55


Weakly-Supervised, Self-supervised,
and Contrastive Learning



Universal Lesion Detection
and Classification Using Limited Data
and Weakly-Supervised Self-training

Varun Naga1, Tejas Sudharshan Mathai1(B), Angshuman Paul2,
and Ronald M. Summers1

1 Imaging Biomarkers and Computer-Aided Diagnosis Laboratory,
Radiology and Imaging Sciences, Clinical Center, National Institutes of Health,

Bethesda, MD, USA
mathaits@nih.gov

2 Indian Institute of Technology, Jodhpur, Rajasthan, India

Abstract. Radiologists identify, measure, and classify clinically signifi-
cant lesions routinely for cancer staging and tumor burden assessment. As
these tasks are repetitive and cumbersome, only the largest lesion is identi-
fied leaving others of potential importance unmentioned. Automated deep
learning-based methods for lesion detection have been proposed in liter-
ature to help relieve their tasks with the publicly available DeepLesion
dataset (32,735 lesions, 32,120 CT slices, 10,594 studies, 4,427 patients, 8
body part labels). However, this dataset contains missing lesions, and dis-
plays a severe class imbalance in the labels. In our work, we use a subset of
the DeepLesion dataset (boxes + tags) to train a state-of-the-art VFNet
model to detect and classify suspicious lesions in CT volumes. Next, we
predict on a larger data subset (containing only bounding boxes) and iden-
tify new lesion candidates for a weakly-supervised self-training scheme.
The self-training is done across multiple rounds to improve the model’s
robustness against noise. Two experiments were conducted with static
and variable thresholds during self-training, and we show that sensitiv-
ity improves from 72.5% without self-training to 76.4% with self-training.
We also provide a structured reporting guideline through a “Lesions” sub-
section for entry into the “Findings” section of a radiology report. To our
knowledge, we are the first to propose a weakly-supervised self-training
approach for joint lesion detection and tagging in order to mine for under-
represented lesion classes in the DeepLesion dataset.
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1 Introduction

Radiologists evaluate tumor burden and stage cancer in their clinical practice
by detecting, measuring and classifying clinically significant lesions. Computed
tomography (CT) and positron emission tomography (PET) studies are usu-
ally the preferred imaging modalities for lesion assessment [1]. In CT volumes
acquired with or without contrast agents, lesions have diverse appearances and
asymmetrical shapes. The lesion size is measured using its long and short axis
diameters (LAD and SAD) according to the RECIST guidelines. Lesion size is
a surrogate biomarker for malignancy and impacts the ensuing course of patient
therapy. According to guidelines, lesions are clinically meaningful if their LAD
≥10 mm [2]. Assessment standardization is complicated by a number of factors,
such as observer measurement variability, the variety of CT scanners, differ-
ent contrast phases, and exam protocols. Moreover, a radiologist must identify
the same lesion in a prior study and assess the treatment response (shrinkage,
growth, unchanged) [1,2]. Another confounding factor is the chance of smaller
metastatic lesions being missed during a busy clinical day.

To alleviate the radiologist’s repetitive task of lesion assessment, many state-
of-the-art automated approaches [3–7] have been developed to universally detect,
classify, and segment lesions with high sensitivity on a publicly available dataset
called DeepLesion [8]. DeepLesion contains eight (8) lesion-level tags for only
the validation and test splits. As seen in Fig. 1(a), there is a profound lesion
class imbalance in this dataset (validation and test) with large quantities of cer-
tain labels (lung, abdomen, mediastinum, and liver) in contrast to other under-
represented classes (pelvis, soft tissue, kidney, bone). Since tags are unavailable
for the DeepLesion training split, little research has been done on lesion classifi-
cation [9,10] and these approaches are not easily reproduced due to the need for
a sophisticated lesion ontology to generate multiple lesion tags (body part, type,
and attributes). Moreover, DeepLesion is not fully annotated as only clinically
significant lesions were measured while others remain unannotated [6–8]. These
imbalances inhibit the development of efficient CT lesion detection and tagging
algorithms. Approaches that use a limited dataset and exploit any unannotated
or weakly-annotated data are desirable for clinical use cases, such as interval
change detection (lesion tracking) [11–13] and structured report generation.

To that end, in this paper, we design a method that can use a limited DeepLe-
sion subset (30% annotated split) consisting of lesion bounding boxes and body
part labels to train a state-of-the-art VFNet model [14] for lesion detection and
tagging. Our model subsequently utilizes a larger data subset (with only bound-
ing boxes) through a weakly-supervised self-training process, in which the model
learns from its own predictions and efficiently re-trains itself for lesion and tag
prediction. The self-training process is performed over multiple rounds with each
round designed to improve model robustness against noise through the inclusion
of new data points (box + tags) predicted with high confidence along with the
original annotated (box + tags) training data. The final model is used for detec-
tion and tagging of lesions, and we provide a clinical application of our work by
describing a structured reporting guideline for creating a dedicated “Lesions”
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Fig. 1. (a) Distribution of body part labels in the annotated DeepLesion dataset (30%,
9816 lesions, 9624 slices). (b) and (c) Model predictions before and after self-training
(ST) respectively. Green boxes: ground truth, yellow: true positives, and red: false
positives (FP). The top row shows a decrease in FP with ST. The middle row shows a
“Kidney” lesion that was initially missed with no ST, but found after ST. The last row
shows the predicted class corrected from “Lung” to “Mediastinum” after ST. (d) Four
lung nodules were detected by the model. The top-3 lesion predictions, their labels,
and confidence scores were entered into a structured “Lesions” list for inclusion in the
“Findings” section of a radiology report. Lesions below a 50% confidence are shown
in red. Lesion 2 was annotated in the original DeepLesion dataset, while Lesion 1 was
not. Our model correctly detected lesion 1. but it was considered a FP. Lesion 3 had
a lower confidence score than Lesion 4, and hence was not entered in the “Lesions”
sub-section. (Color figure online)

sub-section for entry into the “Findings” section of a radiology report. The
“Lesions” sub-section contains a structured list of detected lesions along with
their body part tags, detection confidence, and series and slice numbers. To
our knowledge, we are the first to present a joint lesion detection and tagging
approach based on weakly-supervised self-training, such that under-represented
classes in DeepLesion can be mined.
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2 Methods

Data. The DeepLesion dataset [8] contains annotated keyslices with 2D bound-
ing boxes that demarcate lesions present in that slice. Contextual information
in the form of slices 30 mm above and below the keyslice were also provided, but
these were not annotated. Annotations were done through RECIST measure-
ments with long and short axis diameters (LAD and SAD) [8]. The dataset was
divided into 70% train, 15% validation and 15% test splits. Eight (8) lesion-level
tags (bone - 1, abdomen - 2, mediastinum - 3, liver - 4, lung - 5, kidney - 6, soft
tissue - 7, and pelvis - 8) were available for only the validation and test splits.
The lesion tags were obtained through a body part regressor [15], which provided
a continuous score that represented the normalized position of the body part for
a CT slice in a CT volume (e.g., liver, lung, kidney etc.). The body part label for
the CT slice was assigned to any lesion annotated in that slice. In our work, we
used the limited annotated 30% subset of the original dataset for model training.
Figure 1(a) shows the labeled lesion distribution in the limited 30% data subset.
This was then sub-divided into 70/15/15% training/validation/test splits. The
test set was kept constant and all results are presented for this set.

Model. In this work, we used a state-of-the-art detection network called Varifo-
cal Network (VFNet) [14] for the task of lesion detection and classification as seen
in Fig. 2(a). VFNet combined a Fully Convolutional One-Stage Object (FCOS)
detector [16] (without the centerness branch) and an Adaptive Training Sample
Selection (ATSS) mechanism [17]. A Varifocal loss was used to up-weight the
contribution of positive object candidates and down-weight negative candidates.
Moreover, a star-shaped bounding box representation was utilized to extract
contextual cues that reduced the misalignment between the ground truth and
the predicted bounding boxes. VFNet was trained to predict a lesion’s bound-
ing box and body part label in the CT slice. We also conducted experiments
with a Faster-RCNN model [18] for the overall task of lesion detection (without
tagging). However, we noticed that Faster RCNN showed an inferior detection
performance compared to VFNet (see supplementary material). Once a model
had been trained, Weighted Boxes Fusion (WBF) [19] was used to combine the
numerous predictions from multiple epochs of a single model run or from multi-
ple runs of the same model. As these predictions clustered together in common
image areas with many being false positives (FP) that decrease the overall pre-
cision and recall metrics, WBF amalgamated the clusters into one. Our aim was
to improve VFNet’s prediction capabilities for under-represented classes through
the mining of data in DeepLesion.

Weakly Supervised Self Training. At this point, the VFNet model that was
trained on limited DeepLesion data (30% annotated subset) was then used to
iteratively mine new lesions in DeepLesion’s original training split. This split
contained only the annotated bounding boxes of a lesion in a CT slice without
the lesion tags (body part labels), and only clinically significant lesions were
measured leaving many others unannotated. These clinically meaningful bound-
ing boxes served as weak supervision for our model. After the VFNet model was
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trained on the limited DeepLesion data, it generated predictions including the
bounding boxes, class labels, and tag confidence scores for each lesion. Mined
lesions were filtered, first by only considering mined lesions that had a 30%
overlap with the originally annotated bounding boxes in the ground truth, and
second by only using mined lesions that surpassed a tag confidence threshold (see
Sect. 3). Once the mining procedure was complete, the lesions that met these two
criteria were added back into the training data, effectively allowing the model to
train on some of its own predictions. After lesion mining, the model was trained
from scratch, and this procedure was repeated for four mining rounds. We also
experimented with training VFNet from a previous mining round’s checkpoint
weights, but we noticed that the results were worse than training from scratch.

Fig. 2. (a) VFNet model in the self-training pipeline takes CT slices annotated with
GT as inputs and predicts lesion bounding boxes (Bn), classes (Cn), and confidences
at a mining round n. Lesions are filtered by their confidences and IoU overlap with GT,
and then fed back to the model for re-training. (b)-(c) Comparison of a static threshold
(TS) vs variable threshold (TV ) used in self-training. Green boxes: GT, yellow: TP, and
red: FP. The first row shows a “soft tissue” lesion detection with TV showing fewer
FP. The second row shows a “Bone” lesion that was missed by TS , but identified
with TV . The third row reveals an incorrect “Abdomen” prediction with TS that was
subsequently corrected to “Kidney” by TV . (d) Comparison of the mean recall at
precisions [85,80,75,70]% for the experiments with static ES and variable EV thresholds
respectively. (Color figure online)
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3 Experiments and Results

Experimental Design. In the weakly-supervised self-training setting, we
designed two experiments to detect and classify lesions with our limited dataset.
In the first experiment ES , we set a static lesion tagging confidence threshold (TS)
of 80% and a 30% box IoU overlap. Lesions that had predicted class confidences
≥ TS and overlaps ≥ 30% were incorporated into later mining rounds. Through
this experiment, we hypothesized that only high quality mined lesions would be
collected across the rounds that would directly lead to an efficient detector. In our
second experiment EV , a variable lesion tagging confidence threshold TV was set
along with a 30% box IoU overlap. A higher confidence threshold of 80% was set for
the first mining round, and it was progressively lowered by 10% over the remaining
rounds. The belief was that although good quality mined lesions would be found
in the first round, larger lesion quantities would also be collected across the rounds
with a reduced threshold. The results of these experiments were compared against
an experiment EN where the model underwent no self-training. Consistent with
prior work [6,7,20], our results at 4 FP/image and 30% IoU overlap on the 15%
test split are presented in Figs. 1 and 2 and Table 1. Implementation details for
the model are in the supplementary material.

Results - No Self-training. The model in our no self-training experiment EN

achieved a mean sensitivity of 72.5% at 4FP with the lowest sensitivities for under-
represented classes, such as “kidney” (∼54%) and “Bone” (∼56%) respectively,
and the highest recalls for over-represented classes, such as “Lung” (∼87%) and
“Liver” (∼83%). Generally, classes with more data (see Fig. 1) seemed to perform
better with the exception of “Abdomen” class. We believe the “Abdomen” class
performed relatively poorly as it was a “catch-all” term for all abdominal lesions
that were not “Kidney” or “Liver” masses [8]. Anatomically however, the two

Table 1. VFNet sensitivities on the task of lesion detection and tagging. The recalls
were calculated at 4FP and at 30% IoU overlap.

Mining round Bone Kidney Soft tissue Pelvis Liver Mediastinum Abdomen Lung Mean (95% CI)

No self training

No self-training 55.9 54.8 73.3 75.4 82.9 79.6 69.7 87.5 72.5 (71.8%-73.0%)

# Lesions used 179 353 476 612 912 1193 1506 1640 -

Static threshold of 80% across 4 rounds of self-training

Round 1 (80%) 58.8 58.1 75.2 79.0 85.0 85.5 69.7 88.1 74.9

Round 2 (80%) 52.9 61.3 75.2 75.4 79.3 83.4 73.0 88.9 73.7

Round 3 (80%) 47.1 61.3 71.4 78.3 85.0 80.0 69.7 87.3 72.5

Round 4 (80%) 58.8 59.7 73.3 72.5 83.9 83.4 71.2 87.5 73.8 (73.3%–74.3%)

# Lesions mined 26 129 541 517 929 1049 708 2515 -

Variable threshold [80, 70, 60, 50%] across 4 rounds of self-training

Round 1 (80%) 58.8 58.1 75.2 79.0 85.0 85.5 69.7 88.1 74.9

Round 2 (70%) 61.8 66.1 69.5 76.8 85.5 82.1 70.6 89.4 75.2

Round 3 (60%) 44.1 56.5 75.2 78.3 87.1 81.3 73.9 89.1 73.2

Round 4 (50%) 61.8 64.5 73.8 75.4 89.6 83.0 72.7 90.5 76.4 (75.9%–76.9%)

# Lesions mined 115 473 1187 1438 2089 2936 3003 4249 -
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organs are in close proximity and axial slices often show cross-sections of both
the kidney and liver within the same slice (c.f. Fig. 1(b) second row). A confusion
matrix provided in the supplementary material confirmed our belief as it showed
that the “Abdomen”, “Liver” and “Kidney” lesions were most often confused with
each other.

Results - Weakly Supervised Self-training. First, results from our static
threshold experiment ES are discussed. In contrast to EN , sensitivities at round
4 either improved or were maintained for 7/8 classes except for the “Pelvis” class.
The average sensitivity improved by 1.3% compared against EN , and those of the
individual classes improved by 1.4% on average. In rounds 2 and 3 of self-training,
a drop in mean sensitivity was observed, but the performance recovered by round
4 to within 1.1% of the mean sensitivity from round 1. We also see a greater
number of “Lung”, “Mediastinum” and “Liver” lesions mined (¿900) in contrast
to the “Bone” (26) and “Kidney” (129) lesions. Despite additional lesions being
mined, we saw that only 3/8 classes (“Bone”, “Kidney”, “Abdomen”) improved
when the recalls at round 4 were compared against round 1.

From our variable threshold experiment EV (commencing at 80% confidence),
average recalls improved by 3.9% in contrast to EN , and all 8/8 classes either
improved or maintained their performance. As the “Kidney” class performed the
worst in EN , it saw the biggest increase of 9.7% in EV . On average, the individual
class sensitivities improved by ∼4%, which was bigger than that seen with ES .
An assessment over 4 rounds revealed a general trend of sensitivity improvement.
While the recall dipped moving from round 2 to round 3 for certain classes, it
recovered by round 4 and surpassed round 1 by 1.5%. Table 1 also shows that
the number of mined lesions for “Bone” and “Kidney” classes are significantly
lower in the dataset in contrast to the other classes, such as “Lung” and “Liver”.
The number of lesions mined after 4 rounds of self training is shown in Table 1.
The supplementary material shows the number of lesions mined at each round.

For quantitative comparison of ES and EV results across rounds, we plot-
ted the precision-recall curves for each mining round in Fig. 2(d). The model’s
mean recall at [85,80,75,70]% precision was evaluated to gauge the performance
at higher True Positive (TP) rates, and we saw EV outperforming ES . By round
4, EV had outperformed ES by ∼3%. Additionally, the recall increased between
mining rounds except for round 4, which saw a slight decrease by 1%. How-
ever, the overall performance had improved from round 1 by 4.2%, which sug-
gested that additional rounds of self-training with a variable threshold TV helped
improve recall. Qualitative analysis in Figs. 1 and 2 showed that EV improved
recall by finding missed lesions, along with correct classification of lesion tags
and a reduction in FP. We also saw improved performance on under-represented
classes, such as “Kidney” and “Bone”, as seen in Figs. 2(b) and 2(c).

4 Discussion and Conclusion

Discussion. As shown in Figs. 1 and 2, self-training improved model perfor-
mance in lesion detection and tagging. We saw an improvement in sensitivities
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across classes for the variable threshold experimentEV in comparison to the static
threshold experiment ES . We believe that EV found a balance between data qual-
ity and quantity, making it ideal for the self-training procedure as the lowering of
thresholds across rounds inEV allowed the model to identify high-quality data ini-
tially while additional training data was progressively included over the remaining
rounds to provide data variety. But as shown in Fig. 1(a) and Table 1 in the supple-
mentary material, the model performance suffers from the under-representation
of classes, such as “Bone” and “Kidney”, in the dataset. For these classes, sen-
sitivities varied without consistent improvements (c.f. Table 1) due to greater
lesion quantities being mined for over-represented classes as opposed to the under-
represented classes. Balancing the lesion quantities in these classes, which would
drastically decrease the amount of training data, could shed some light on the
performance of these low data quantity classes in self-training. Another solution
involves a custom adjustment of loss weights for the under-represented classes in
the VFNet loss function, which would penalize the model when it performs poorly
on under-represented classes and mediate the class imbalance effect. Addition-
ally, as evidenced by the confusion matrices in the supplementary material, it was
evident that the model confused the “Abdomen”, “Liver” and “Kidney” classes
often. We believe that the “Abdomen” and “Soft Tissue” labels are ambiguous
and non-specific labels that broadly encompass multiple regions in the abdomen.
As these labels were generated using a body part regressor, future work involves
the creation of fine-grained labels, and examining the performance of “Abdomen”,
“Kidney”, and “Pelvis” classes. Furthermore, the DeepLesion dataset contains
both contrast and non-contrast enhanced CT volumes, but the exact phase infor-
mation is unavailable in the dataset description. Comparison against prior work
[9,10] was not possible as MULAN [10] is the only existing approach to jointly
detect and tag lesions in a CT slice. However, it used a Mask-RCNN model that
needed segmentation labels, which we did not create in this work. Furthermore,
MULAN also provided detailed tags, which would require a sophisticated ontol-
ogy derived from reports to map them to the body part tags used in this work. To
mitigate this issue, we tested our approach against Faster RCNN, but our VFNet
model fared better at lesion detection (c.f. supplementary material). Prior to this
study, limited research discussed the presentation of results from detection mod-
els in a clinical workflow. In Fig. 1(d), we present a structured reporting guideline
with the creation of a “Lesions” sub-section for entry into the ’Findings’ section of
a radiology report. This sub-section contains a structured list of detected lesions
along with their body part tags, confidences, and series and slice numbers.

Conclusion. In this work, we used a limited DeepLesion data subset (30%
annotated data) containing lesion bounding boxes and body part labels to train a
VFNet model for lesion detection and tagging. Subsequently, the model predicted
lesion locations and tags on a larger data subset (boxes and no tags) through
a weakly-supervised self-training process. The self-training process was done
across multiple rounds, and two experiments were conducted that showed that
sensitivity improved from 72.5% (no self-training) to 74.9% (static threshold) and
76.4% (variable threshold) respectively. In every round, new data points (boxes +



Universal Lesion Detection and Classification Through Self-training 63

tags) predicted with high confidence were added to the original annotated (boxes
+ tags) training data, and the model was trained from scratch. We also provide a
structured reporting guideline for the clinical workflow. A “Lesions” sub-section
for entry into the “Findings” section of a radiology report was created, and it
contained a structured list of detected lesions, body part tags, confidences, and
series and slice numbers.
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Abstract. One of the core challenges facing the medical image com-
puting community is fast and efficient data sample labeling. Obtaining
fine-grained labels for segmentation is particularly demanding since it
is expensive, time-consuming, and requires sophisticated tools. On the
contrary, applying bounding boxes is fast and takes significantly less
time than fine-grained labeling, but does not produce detailed results. In
response, we propose a novel framework for weakly-supervised tasks with
the rapid and robust transformation of bounding boxes into segmentation
masks without training any machine learning model, coined BoxShrink.
The proposed framework comes in two variants – rapid-BoxShrink for
fast label transformations, and robust-BoxShrink for more precise label
transformations. An average of four percent improvement in IoU is found
across several models when being trained using BoxShrink in a weakly-
supervised setting, compared to using only bounding box annotations as
inputs on a colonoscopy image data set. We open-sourced the code for
the proposed framework and published it online.

Keywords: Weakly-supervised learning · Segmentation ·
Colonoscopy · Deep neural networks

1 Introduction

Convolutional neural networks (CNNs) have achieved remarkable results across
image classification tasks of increasing complexity, from pure image classification
to full panoptic segmentation, and have become, as a consequence, the standard
method for these tasks in computer vision [19]. However, there are also certain
drawbacks associated with these methods. One of them is that in order to achieve
satisfactory results, a data set of an appropriate size and high-quality labels
are needed [21]. The costs and time associated with labeling increase with the
complexity of the task, with image classification being the cheapest and image
segmentation being the most expensive one. All of these challenges especially
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apply to medical artificial intelligence (MAI) applications since they depend on
the input and feedback by expensive domain experts [22].

In this work, we present a novel approach for fast segmentation label prepos-
sessing, which is decoupled from any particular artificial neural network archi-
tecture. The proposed algorithmic framework can serve as a first approach for
practitioners to transform a data set with only bounding box annotations into a
prelabeled (i.e., semantically segmented) version of the data set. Our framework
consists of independent components such as superpixels [23], fully-connected
conditional random fields [14] and embeddings. This makes it easy to add our
framework to an existing machine learning pipeline.

To evaluate the proposed framework, we select an endoscopic colonoscopy
data set [4]. Multiple experiments show that our framework helps to consider-
ably reduce the gap between the segmentation performance and efficiency of a
neural network that is trained only on bounding boxes and one trained on fully
segmented segmentation masks.

The main contributions of this work are:

– We propose the BoxShrink framework consisting of two methods. One for a
time-efficient and one for a more robust transformation of bounding-boxes
into segmentation masks. In both methods there is no need to train a model.

– We publish our bounding-box labels for the CVC-Clinic data set for future
research in the area of weakly-supervised learning.

– We open-source our code and publish it online.1

2 Related Work

In this Section, we further define weakly-supervised learning and separate it from
other approaches such as semi-supervised learning. Also, we localize our work
among those which use similar components.

To reduce the need for resources such as time and money, various learning
methodologies were introduced such as semi-supervised and weakly-supervised
learning [30]. Semi-supervised learning leverages labeled data, e.g. for segmenta-
tion tasks correctly and fully segmented images and the availability of a larger
amount of unlabeled data [16]. Weakly-supervised learning on the other hand,
exploits noisy labels as a weak supervisory signal to generate segmentation masks.
These labels can be provided in different forms such as points [3], or image-level
labels [27], being the more simpler ones, or more complex ones such as scribbles
[15,24], or bounding boxes [6,11]. A similar work [29] to ours also utilizes super-
pixel embeddings and CRFs, but their method requires an additional construc-
tion of a graph of superpixels and a custom deep neural network architecture. Our
method, on the other hand, is easier to integrate into existing pipelines. Also, in
contrast to many other weakly-supervised approaches [10,28], we do not apply
CRFs as a postprocessing step on the output of the model but as a preprocessing
step on the input, hence, we leave the downstream model untouched. Furthermore,
the proposed framework does not require special hardware such as GPU or TPU
for the label preprocessing step.
1 https://github.com/michaelgroeger/boxshrink.

https://github.com/michaelgroeger/boxshrink
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Fig. 1. The impact of varying the threshold ts, i.e., a hyperparameter of the BoxShrink
framework for tuning the final segmentation quality, where (a) shows two data samples
from the data set after the superpixel assignment step (Sect. 3.2), and (b) demonstrates
pseudo-masks after the FCRF postprocessing. As seen from this experiment, having a
higher threshold might generate better masks but increases the risk of losing correct
foreground pixels.

3 Boxshrink Framework

This section presents our proposed BoxShrink framework. First, we define its
main components: superpixel segmentation, fully-connected conditional random
fields, and the embedding step. We then explain two different settings of the
framework, both having the same goal: to reduce the number of background
pixels labeled as foreground contained in the bounding box mask.

3.1 Main Components

Superpixels aim to group pixels into bigger patches based on their color sim-
ilarity or other characteristics [23]. In our implementation, we utilize the SLIC
algorithm proposed by [1] which is a k-means-based algorithm grouping pixels
based on their proximity in a 5D space. A crucial hyperparameter of SLIC is the
number of segments to be generated which is a upper bound for the algorithm on
how many superpixels should be returned for the given image. The relationship
between the output of SLIC and the maximum number of segments can be seen
in the supplementary material.

Fully-connected-CRFs are an advanced version of conditional random
fields (CRFs) which represent pixels as a graph structure. CRFs take into account
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a unary potential of each pixel and the dependency structure between that pixel
and its neighboring ones using pairwise potentials [25]. Fully-connected-CRFs
(FCRFs) address some of the limitations of classic CRFs, such as the lack of cap-
turing long-range dependencies by connecting all pixel pairs. Equation 1 shows
the main building block of FCRFs which is the Gibbs-Energy function [13].

E(x) =
N∑

i=1

ψu(xi) +
N∑

i<j

ψp(xi, xj), (1)

where the first term ψu(xi) measures the unary potential, that is, the cost if
the assigned label disagrees with that of the initial classifier, the second term
ψp(xi, xj) measures the pairwise potential, which is the cost if two similar pixels
disagree on their label x. The input is over all pixels N . We use FCRFs to smooth
the output pseudo-mask.

Superpixel Embeddings are a key component of the robust-BoxShrink
variant. The embedding function M produces a numerical representation of every
superpixel ki ∈ K by returning an embedding vector. Formally, this operation
can be depicted M : Rm → R

n. Practically, this can be done by feeding each
superpixel ki separately into a CNN model, such as a Resnet-50 [9] pretrained on
ImageNet [7]. By doing so, we obtain a 2048-dimensional vector representation
for every superpixel. It allows us to get an aggregated representation of the
foreground and background, by computing the mean embedding of all foreground
and background superpixels in the training data set. These mean vectors are then
used to assign superpixels either to the foreground or background class based on
their cosine similarity.

3.2 rapid-BoxShrink

We first split each image into superpixels using the SLIC algorithm for the rapid -
BoxShrink strategy. We overlap the superpixels with the provided bounding
box mask and build a new mask based on those superpixels, which overlap
the bounding box mask to a certain threshold. This approach is based on the
assumption that the object of interest is always fully contained in the bounding
box. The results depend on the number of segments generated which can be seen
in the supplementary materials and the chosen threshold shown in Fig. 1. To
this end, as shown in the supplementary material in Algorithm 1, to make the
final pseudo-mask more smooth, we run a FCRF as described in Sect. 3.1 on the
thresholded superpixel mask.

3.3 robust-BoxShrink

Leveraging the availability of superpixels, we also explore the use of embed-
dings to shrink the number of background pixels in the pseudo-mask. We seg-
mented each image in the training data set into superpixels and then assigned
them either to the foreground or background group by applying the threshold-
ing approach as we have done it in the rapid -BoxShrink variant (Sect. 3.2). To
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Fig. 2. Overview of the robust-BoxShrink method assuming the mean embedding vec-
tors are given. First, we generate a superpixel mask based on the rapid-BoxShrink
approach but without utilizing the FCRF. Then, we extract each foreground super-
pixel on the boundary between foreground and background. Feeding each superpixel
into a pretrained ResNet model yields one 2048-dimensional embedding vector per
superpixel. Next, we calculate the cosine similarity score of each embedding and the
mean background and foreground embedding. Based on the highest score we either
keep the superpixel as foreground or assign it to the background class. Finally, we
apply a FCRF on the resulting superpixel mask. The dashed line indicates that this
approach can be run iteratively.

generate the pseudo-masks, we start with the bounding box mask and segment
the image using again the thresholding technique. This yields F superpixels for
the foreground and B superpixels for the background. Then we go along the
boundary foreground superpixels Fo and assign them either to the background
or foreground class, depending on their cosine similarity score to the mean back-
ground and foreground embedding. The whole process can be seen in Fig. 2. The
Algorithm 2, which can be found in the supplementary materials, summarizes
the main steps of the robust-BoxShrink method.

4 Experiments

This Section presents qualitative and quantitative experiments for both versions
of the BoxShrink framework.

Data Set. For all our experiments we utilize the endoscopic colonoscopy frames
for polyp detection data set (CVC-Clinic DB) [4], it consists of 612 endoscopy
images, each having a size of 288 × 384 × 3. The data set comes along with
binary ground truth segmentation masks, which we utilize for the evaluation of
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Fig. 3. Qualitative model prediction masks on four random samples from the CVC-
Clinic test set. The setting on which the model was trained on is indicated on top.

our weakly-supervised framework and to infer the bounding boxes. This data set
was featured in multiple studies [2,8].

4.1 Qualitative and Quantitative Experiments

For our experiments, we utilize two popular deep learning architectures for seg-
mentation tasks - U-Net [20] and DeepLabV3+ [5].

Settings. We have four settings, using: (1) Bounding boxes as labels which
serves as our lower baseline, (2) labels generated with the rapid -BoxShrink label
transformation strategy, (3) labels generated with the robust-BoxShrink label
transformation strategy, and (4) a fully-supervised upper baseline with segmen-
tation masks as labels.

Quality Measure. We use the Intersection over Union (IoU) score as an eval-
uation measure. The IoU, also called Jaccard similarity J between two sets A
and B, is a commonly used measure of how well the prediction aligns with the
ground truth in image segmentation [18]. As the equation below shows, the IoU
is computed by dividing the intersection of two masks by their union.

J(A,B) =
|A ∩ B|
|A ∪ B| . (2)

Results. We present the quantitative results in Table 1. In line with other pub-
lications, we also share situations where our presented Framework fails. Figure
5, which can be found in the supplementary materials shows some examples.
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Figure 3 shows some good prediction masks from the test set made by models
trained on the aforementioned four different settings.

4.2 Reproducibility Details

We split the CVC-Clinic DB data set into 80% training data, 10% validation
data and 10% test data. For splitting, we use the implementation from sklearn
[17] with a random state of 1. To generate the superpixel masks, we set the
maximum number of segments s to 200, a threshold ts of 0.6 for all training
images and use the implementation from skimage [26]. To get the embeddings,
we use a maximum number s of 250 segments and a threshold ts of 0.1 to not
loose too much of the foreground. To smooth the superpixel masks we use the
FCRF implementation provided by the pydensecrf package.2 Note that we do not
train the FCRF (similar to [10]) and set the FCRF hyperparmeters of the x/y-
standard deviation for the pairwise Gaussian to 5 and for the pairwise bilateral
to 25. We set the rgb-standard deviation to 10. To determine the best performing
model, we use the intersection over union (IoU) during training on the validation
set. After the training, the best performing model is kept and evaluated once on
the test set. Both, the test and validation set consist of ground truth masks. We
generate all models using the segmentation-models PyTorch library.3

For our experiments we select ResNet-18, ResNet-50, and VGG-16 backbones
pretrained on the ImageNet data set paired with U-Net and DeepLabV3+ as a
decoder. We use the Sigmoid function as an activation function and the Adam
[12] optimizer with a learning rate of 0.0001. As the loss function we utilize the
Cross-Entropy Loss. During training, we apply step-wise learning rate scheduling
where we decay the learning rate by 0.5 each 5 epochs. We train the ResNet-18 &
VGG-16 architecture for 25 epochs and the ResNet-50 architecture for 15 epochs.
The training is being done on a 16 GB Nvidia Tesla P-100. We use a batch size
of 64 when using the ResNet-18, 32 for the VGG-16 architecture and 16 when
using ResNet-50. For both methods, rapid -BoxShrink and robust-BoxShrink, we
return the initial bounding box mask if the total mask occupancy, that is the
ratio of the bounding box and the total image is less than 0.1 or the IoU between
the pseudo mask and the bounding box mask is less than 0.1.

5 Discussion

In this Section, we further discuss the application and future work of the pro-
posed weakly-supervised framework.

The choice between rapid-BoxShrink and robust-BoxShrink depends
on multiple factors - the time budget and expected label transformation quality.
In our experiments, we observe that rapid -BoxShrink takes on average only 0.5
seconds to transform the labels for a singe data sample, where robust-BoxShrink

2 https://github.com/lucasb-eyer/pydensecrf.
3 https://github.com/qubvel/segmentation models.pytorch.

https://github.com/lucasb-eyer/pydensecrf
https://github.com/qubvel/segmentation_models.pytorch
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Table 1. Experimental results on the CVC-Clinic data set. All models are evaluated
on the ground truth segmentation mask in the validation and test set. The label format
indicates the initial input label on which the model was either trained or our proposed
frameworks were applied to. The results are averages of six runs; we also report the
corresponding standard deviation for each setting. This is being done to deliver a more
consistent picture because of the random initialization of the decoder part and the
stochasticity of the optimizer. The best performing results for our proposed methods
are marked in bold. Higher IoU is better.

Segmentation model Label format Backbone Validation (IoU) Test (IoU)

U-Net Bounding Boxes VGG-16 0.749± 0.023 0.772± 0.030

U-Net (rapid-BoxShrink) Bounding Boxes VGG-16 0.769± 0.026 0.807± 0.028

U-Net (robust-BoxShrink) Bounding Boxes VGG-16 0.775± 0.013 0.824± 0.010

U-Net Segment. Masks VGG-16 0.796± 0.025 0.829± 0.025

U-Net Bounding Boxes ResNet-18 0.691± 0.051 0.729± 0.060

U-Net (rapid-BoxShrink) Bounding Boxes ResNet-18 0.730± 0.021 0.781± 0.024

U-Net (robust-BoxShrink) Bounding Boxes ResNet-18 0.755± 0.021 0.808± 0.021

U-Net Segment. Masks ResNet-18 0.800± 0.032 0.859± 0.044

U-Net Bounding Boxes ResNet-50 0.785± 0.010 0.810± 0.010

U-Net (rapid-BoxShrink) Bounding Boxes ResNet-50 0.807± 0.018 0.851± 0.019

U-Net (robust-BoxShrink) Bounding Boxes ResNet-50 0.813± 0.015 0.852± 0.012

U-Net Segment. Masks ResNet-50 0.889± 0.012 0.920± 0.016

DeepLabV3+ Bounding Boxes VGG-16 0.746± 0.033 0.766± 0.034

DeepLabV3+ (rapid-BoxShrink) Bounding Boxes VGG-16 0.779± 0.023 0.817± 0.0201

DeepLabV3+ (robust-BoxShrink) Bounding Boxes VGG-16 0.767± 0.0187 0.809± 0.024

DeepLabV3+ Segment. Masks VGG-16 0.832± 0.049 0.858± 0.051

DeepLabV3+ Bounding Boxes ResNet-18 0.723± 0.025 0.758± 0.021

DeepLabV3+ (rapid-BoxShrink) Bounding Boxes ResNet-18 0.743± 0.021 0.787± 0.026

DeepLabV3+ (robust-BoxShrink) Bounding Boxes ResNet-18 0.759± 0.005 0.806± 0.002

DeepLabV3+ Segment. Masks ResNet-18 0.808± 0.010 0.844± 0.012

needs on average 3 seconds to complete the label transformation, the processing
time can be further optimized in future versions. However, from our extensive
experiments (Sect. 4.1), we can conclude that robust-BoxShrink tends to outper-
form rapid -BoxShrink in the weakly-supervised setting. The difference between
the two variants is smaller for bigger models with rapid -BoxShrink being once
better than robust-BoxShrink for the VGG-16 architecture. One explanation
could be that bigger models are more robust to the label noise than smaller
ones. We want to point out however, that the margin between the two is still
overlapped by the standard deviations of both methods.

Future Work. We want to further integrate the framework into the training
pipeline by, e.g., adjusting the mean foreground and background embeddings as
the model gets better. Also, we have evaluated our approach on a medium-sized
data set with binary class segmentation. For a more detailed quality evalua-
tion, an analysis of BoxShrink’s performance on multi-class problems and bigger
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data sets is required. Lastly, starting with BoxShrink pseudo-masks instead of
bounding box annotations directly could also improve existing state-of-the-art
weakly-supervised learning algorithms.

6 Conclusion

In this work, we presented BoxShrink, a weakly-supervised learning framework
for segmentation tasks. We successfully demonstrate the effectiveness of the
BoxShrink framework in the weakly-supervised setting on a colonoscopy medical
image data set, where we employ bounding-box labeling and output the segmen-
tation masks. Compared to the fully-supervised setting, our weakly-supervised
framework shows nearly the same results. Finally, we open-sourced and published
the code and bounding boxes for the CVC-Clinic data set .
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74 M. Gröger et al.

10. Huang, Z., Wang, X., Wang, J., Liu, W., Wang, J.: Weakly-supervised semantic
segmentation network with deep seeded region growing. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 7014–7023
(2018)

11. Khoreva, A., Benenson, R., Hosang, J., Hein, M., Schiele, B.: Simple does it: weakly
supervised instance and semantic segmentation. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 876–885 (2017)

12. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)
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Abstract. The role of chest X-ray (CXR) imaging, due to being more
cost-effective, widely available, and having a faster acquisition time com-
pared to CT, has evolved during the COVID-19 pandemic. To improve
the diagnostic performance of CXR imaging a growing number of studies
have investigated whether supervised deep learning methods can provide
additional support. However, supervised methods rely on a large num-
ber of labeled radiology images, which is a time-consuming and complex
procedure requiring expert clinician input. Due to the relative scarcity of
COVID-19 patient data and the costly labeling process, self-supervised
learning methods have gained momentum and has been proposed achiev-
ing comparable results to fully supervised learning approaches. In this
work, we study the effectiveness of self-supervised learning in the context
of diagnosing COVID-19 disease from CXR images. We propose a multi-
feature Vision Transformer (ViT) guided architecture where we deploy a
cross-attention mechanism to learn information from both original CXR
images and corresponding enhanced local phase CXR images. By using
10% labeled CXR scans, the proposed model achieves 91.10% and 96.21%
overall accuracy tested on total 35,483 CXR images of healthy (8,851),
regular pneumonia (6,045), and COVID-19 (18,159) scans and shows sig-
nificant improvement over state-of-the-art techniques. Code is available
https://github.com/endiqq/Multi-Feature-ViT.

Keywords: Self-supervised learning · Vision transformer ·
Cross-attention · COVID-19 · Chest X-ray

1 Introduction

The rapid spread of COVID-19 outbreak caused a surge of patients to emer-
gency departments and hospitalization. Compared to CT, chest X-ray (CXR) has
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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several advantages such as its wide availability, exposure to less radiation, and
faster image acquisition times. Due to this CXR has become the primary diag-
nostic tool for improved management of COVID-19. However, the interpretation
of CXR images, compared to CT, is more challenging due to low image resolution
and COVID-19 image features being similar to regular pneumonia. Computer-
aided diagnosis via deep learning has been investigated to help mitigate these
problems and help clinicians during the decision-making process [20,21,24]. Most
supervised deep learning methods rely on a large number of labeled radiology
images. Medical image labeling is a time-consuming and complex procedure
requiring expert clinician input.

Semi-supervised learning methods have been proposed to provide a solu-
tion to scarcity of data in the context of COVID-19 diagnosis. [22] proposed
a multi-feature guided teacher-student distillation approach. Most recently self-
supervised learning methods, which utilize all the unlabeled data during learning,
have been investigated for COVID-19 diagnosis [8,9,19]. [8] achieved 79.5% accu-
racy and 86.6% area under the receiver operating characteristic curve (AUC) on
426 COVID-19 scans while using 1% of the labeled data for the pretext task. [9]
reported a mean average precision of 41.6% for 1,214 COVID-10 test data. [19]
reported 99.5% accuracy using 607 COVID-19 scans. While these initial results
on self-supervised learning are promising most of the prior work was evaluated
on limited COVID-19 scans.

In order to break the challenges associated with scarcity of training data and
to boost classification performance, we propose a new self-supervised learning
approach where the proposed framework exploits local phase enhanced CXR
image features to significantly improve the learning performance, specially when
the data is limited. Our contributions and findings include the following: 1) We
developed MoCo-COVID, a Vision Transformer(ViT) with modified Momentum
Contrast (MoCo) pretraining on CXR images for self-supervised learning. This
is the first study pretraining a ViT using MoCo for COVID-19 diagnosis from
CXR images. 2) We demonstrated the performance of MoCo-COVID can be
significantly improved by leveraging the local phase-based enhanced CXR scans
specially in low data regime. 80.27% and 93.24% overall accuracy were achieved
tested on 799 and 14,123 COVID-19 scans while using 1% of the labeled local
phase-based enhanced data for the training. 3) A novel objective function was
proposed using knowledge distillation to provide better generalization. 4) We
developed a multi-feature ViT architecture based on cross-attention mechanism
(MF-ViT CA) to further improve accuracy. The proposed MF-ViT CA achieves
95.03% and 97.35% mean accuracy on two large-scale test datasets including
14,922 COVID-19 scans and outperforms state-of-the-art semi-supervised learn-
ing and self-supervised learning methods.

2 Methods

Datasets: All images were collected from six public data repositories, which
are BIMCV [12], COVIDx [30], COVID-19-AR [6], MIDRC-RICORD-1c [28],
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COVID-19 Image Repository [31] and COVID-19-NY-SBU [5]. Our dataset con-
sists of a total of 33,055 CXR scans from 18,252 patients with three classes: nor-
mal, pneumonia, and COVID-19. These images were split into two datasets: 1)
Dataset-1: A subset containing 12,108 CXR scans with a balanced distribution
of classes (Fig. 1(b)). Dataset-1 was split into 60% training, 20% as validation,
and 20% as testing dataset. No subject overlaps among train, validation, and
test datasets. The test data in this dataset is referred to as Test-1. 2) Dataset-
2: Includes 20,947 CXR scans from 8,181 patients and has a larger number of
scans in COVID-19 class. Dataset-2 only serves as an additional test dataset,
referred to as Test-2, for evaluating the robustness of the proposed methods.

Fig. 1. (a) Top row original CXR images. Bottom row MF (x, y) images. The first two
columns are from subjects who are diagnosed with COVID-19. The last column is from
a healthy subject. (b) Class distribution of the evaluation datasets.

Image Enhancement: Local phase-based image analysis methods are more
robust to intensity variations, usually arising from patient characteristics or
image acquisition settings, and have been incorporated into various medical
image processing tasks [1,15,32]. The enhanced local phase CXR image, denoted
as MF (x, y), is obtained by combining three different local phase image features:
1-Local weighted mean phase angle (LwPA(x, y)), 2-Weighted local phase energy
(LPE(x, y)), and 3-Enhanced local energy attenuation image (ELEA(x, y)).
LPE(x, y) and LwPA(x, y) image features are extracted by filtering the CXR
image in frequency domain using monogenic filter and α-scale space deriva-
tive (ASSD) bandpass quadrature filters [21]. ELEA(x, y) image is extracted,
processing the LPE(x, y) image, by modeling the scattering and attenuation
effects of lung tissue inside a local region using L1 norm-based contextual reg-
ularization method [21]. We have used the filter parameters reported in [21] for
enhancing all the CXR images. Investigating Fig. 1(a) we can see that struc-
tural features inside the lung tissue are more dominant for COVID-19 CXR
images compared to healthy lung (last column Fig. 1(a)). The enhanced local
phase CXR images (MF (x, y)) and the original CXR images are used to train
proposed self-supervised learning methods explained in the next sections.
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MoCo-COVID-Self-Supervised Pretraining Using MoCo: We introduce
a MoCo-COVID framework (Fig. 2(c)). During the self-supervised training, a
CXR image is first transformed via two random augmentations(Aug.1 and
Aug.2) into images xq and xk. xq is passed through an encoder network, while xk

is passed through a momentum encoder network. We choose ViT-Small (ViT-S)
[7] with 6 heads as the backbone, instead of 12 heads used by MoCo v3, to have
a lower parameter count, and a faster throughput [3]. Sine-cosine variant [29]
is added to the sequence as positional embedding. The representations gener-
ated by each network are then passed into the projection head followed by a
prediction head. The projection head has three layers and the prediction head
has two layers. Each layer follows with batch normalization (BN) and a rectified
linear unit (ReLU) except the last layer of both projection head and prediction
head. Then the InfoNCE contrastive loss function [18] is adopted to promote the
similarity between the representations rq and rk:

L(rq, rk) = −log
exp(rq.rk + /τ)

∑K
i=1 exp(rq.rk, i/τ)

, (1)

where τ is a temperature hyperparameter and K is the number of currently stored
representations. The momentum coefficient follows a cosine schedule changing
from 0.9 to 0.999 during the MoCo-COVID pretraining.

Multi-Feature Fusion Vision Transformer via Cross Attention: Figure 2-
(a) illustrates the architecture of our proposed Multi-Feature Vision Transformer
with cross-attention (CA) block (MF-ViT CA), which consists of two branches
and a CA block. CXR-branch is used for processing the original CXR image, Enh-
branch is used for processing the enhanced local phase CXR image (MF (x, y)),
and CA block for extracting information from both branches. During the forward
pass, an original CXR image and corresponding MF (x, y) image is first passed
to the pretrained MoCo encoder in parallel to obtain a tensor of dimension 197 ×
384 for each image. These two tensors are then fed as inputs to our CA block. In
the CA block, the CLS token of one branch fuses with patch tokens of the other
branch using CA mechanism, and after fusion the CLS token concatenates with
its own patch tokens again to produce an output in the same dimension of input
tensor for each branch, described more details in below. The outputs of cross-
attention and MoCo encoder are then combined via element-wise summation
for each branch. The CLS token of dimension 1 × 384 from each branch as a
compact representation, which encodes the information from both the original
CXR image and MF (x, y) image, is fed into a linear projection layer with three
units. After that, the outputs of the two projection functions are fused using an
element-wise summation.

Loss Function: We used hard-label distillation, which is a variation of distil-
lation introduced by [27], for training CA block. In our study, CXR-branch and
Enh-branch, which are obtained with the MoCo-COVID-pretrained ViT-S by
using original and enhanced CXR scans (denoted as cxr and enh in Eq. 2), are
considered as the teacher models. The CA block is considered as the student
model. The objective function with this hard-label distillation is:
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Fig. 2. (a) Proposed multi-feature fusion ViT architecture using the cross attention
block which is shown in (b). (c) The proposed MoCo-COVID architecture.

LhardDistill
global =

1
3
LCE(ψ(Zs), y) +

1
3
LCE(ψ(Zs), ytcxr

) +
1
3
LCE(ψ(Zs), ytenh

). (2)

where Zs is the logits of the student model and ψ is the softmax function. The
idea is to use both the real target y and the target generated by the teachers
yt = argmaxcZt(c), where Zt is the logits of the teacher models. For a given
image, the predicated label associated with the teacher may change due to data
augmentation during the forward pass. Thus, the teacher model is aiming at
producing predicted labels that are similar but not identical to true label.

The major benefit of the proposed hard label distillation is being parameter-
free compared to soft distillation in [11]. In our study, the probability distribution
has the correct class at a very high probability, with all other class probabilities
close to 0. The problem with these weak probabilities is they do not capture
desirable information for the student model to learn effectively. To address this
issue, we proposed this hard label distillation loss function by adding two distil-
lation losses, which are losses between the predicted label of teacher model and
logits of student model. Distillation loss would soften the distributions predicted
by the teacher model so that the student model can learn more information,
and this is especially useful when dealing with small datasets [11]. And the pro-
posed objective function ensures the student model inherits better quality from
the teacher model and mitigates the over-confidence issue of neural networks by
improving the generalization.
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Cross-Attention (CA) Mechanism: The proposed CA mechanism is inspired
by [2], which is designed for fusing multi-scale features from two branches. In
our study, we intend to extract information from two types of images via cross-
attention, and thus we removed projection function used in [2] for changing the
dimension of feature maps. Figure 2(b) presents the structure of our proposed
cross-attention. Similar to [2], we utilize the CLS token at each branch to fuse
with patch tokens from the other branch and then project it back to its own
branch in order to exchange information among the patch tokens from the other
branch. Since the CLS token already learns the extracted information from all
patch tokens in its own branch, interacting with the patch tokens from the
other branch helps to include information from different feature inputs. In the
following section, we provide a detailed explanation about the CA mechanism
for the CXR-branch. Enh-branch follows the same process.

CXR-Branch-CA: An illustration of CA for CXR-branch is presented in the
Fig. 2(b). Firstly, the CLS tokens from CXR-branch, denoted as cxr, concate-
nates the patch tokens from the Enh-branch to form x

′cxr shown as Eq. 3.

x
′cxr = [ xcxr

cls ‖ xenh
patch ] (3)

Then, the CA is performed between xcxr
cls and x

′cxr using linear projections to
computer queries, keys and values (Q, K and V), where CLS token is the only
information used in query. And it uses the scaled dot product for calculating the
attention weights between Q and K and then aggregates V. The CA can be
expressed as below:

Q =xcxr
cls Wq, K = x

′cxrWk, V = x
′cxrWv,

CA = softmax(QKT /
√

D/h)V, (4)

In the Eq. 4, Wq, Wk,Wv ∈ R
C×(C/h) are learnable parameters, where C and

h are the embedding dimension and number of heads. We use the three heads in
the cross attention in this study. In the end, the new CLS token of CXR-branch,
which is obtained by cross attention and residual shortcut, concatenates with
patch tokens from CXR-branch as the output of CXR-branch shown as below:

ycxr
cls = xcxr

cls + CA, zcxr = [ ycxr
cls ‖ xcxr

patch ] (5)

3 Experiments and Results

MoCo-COVID Pretraining: We pretrained our MoCo-COVID end-to-end
for both original CXR image (denoted as CXR-ViT-S) and MF (x, y) (denoted
as Enh-ViT-S), on all training dataset without label information. MoCo-COVID
pretraining initialization was performed using the weights obtained on ImageNet-
initialized models for a faster convergence [23]. Data augmentation included
resizing to a 224 × 224 gird, random rotation (10 ◦C), and horizontal flipping
similar to [25]. We maintained hyperparameters related to momentum, weight
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decay, and feature dimension from MoCo v3 [3]. To be specific, the model was
optimized by AdamW [17], a weight decay parameter of 0.1 and batch size of
16 on 2 NVIDIA GTX 1080 using PyTorch’s DistributedDataParallel framework
[14]. We pretrained for 300 epochs (40 warm-up epochs) with a cosine linear-
rate scheduler and set the initial learning rate as lr× BatchSize/4 , where lr is
1.5e−4.

We fine-tuned models with different fractions of labeled data. Label fraction
represents the percentage of labeled data retained during fine-tuning. For exam-
ple, a model fine-tuned with 1% label fraction meaning the model will only have
access to 1% of the training dataset as labeled dataset, and the remaining 99%
are hidden from the model as unseen data. The label fractions of training dataset
are 0.25% (18 scans), 1% (72 scans), 10% (728 scans), 30% (2184 scans), and
100%. Fine-tuning was repeated five times for each label fraction. Label fractions
less than 100% are random samples from the training dataset.

We conducted two fine-tuning ablations, which are linear probing (LP) and
end-to-end fine-tuning (FT). LP means the pretrained weight values of the
MoCo-COVID encoder were frozen and, after removing the projection and pre-
diction heads, a new linear classifier with randomly reinitialized weights was
added and fine-tuned using labeled data. FT allowed the entire model including
MoCo-COVID encoder to fine-tune not just the newly added classifier. The mod-
els were fine-tuned using 90 epochs. All fine-tunings used the cosine annealing
learning rate decay [16] and SGD [13] optimizer.

Ablations of Multi-Feature ViT Using Cross-Attention Mechanism
(MF-ViT CA): The weights of the CXR-branch and Enh-branch are initialized
to the MoCo-COVID pretrained weight values of CXR-ViT-S FT and Enh-ViT-
S FT respectively, and the weights of the CA block are randomly reinitialized
with a uniform distribution [10]. The CA block was fine-tuned using labeled
data with hard-label distillation. We compared the proposed MF-ViT CA with
a model, where it also has two MoCo-COVID pretrained branches (CXR branch
and Enh branch) without using cross-attention block, denoted as MF-ViT LP.
During the fine-tuning, we only fine-tuned the linear layers of CXR-branch and
Enh-branch.

Baselines: As baseline comparison we report results from MoCo-CXR [25],
which uses MoCo v2 pretrained Dense121, when trained using original CXR
and enhanced local phase CXR images (MF (x, y)). We report end-to-end fine-
tuning protocol (FT) results for MoCo-CXR [25] and the network architecture
was optimized to achieve the best results using our dataset to provide a fair
comparison. Finally, we also compare our results against [22] semi-supervised,
and fully supervised methods where MF (x, y) were used.

Quantitative Results: Quantitative results are displayed in Table 1. The pro-
posed MF-ViT CA architecture achieved the best accuracy compared to the rest
of the self-supervised learning models when label fractions were more than 1%.
MF-ViT CA performed significantly better (paired t-test p< 0.05) when tested
on Test-2 data compared to Test-1 data proving the robustness of the method
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when tested on large scale COVID-19 data (14,123 images). The proposed Enh-
ViT-S FT model had the highest accuracy for label fraction less than 10%. We
can also observe that end-to-end fine-tuning protocol (FT) results are significant
improvements over linear probing (LP) protocol in the proposed MoCo-COVID
model. The accuracy of the baseline architecture MoCo-CXR [25] and all the pro-
posed architectures improve when enhanced local phase CXR images (MF (x, y))
were used as an input. Finally, we have also observed that the CA mechanism
significantly improves the results of the proposed MF-ViT LP model (paired
t-text p< 0.05) (Table 1). From the results, we observe that the MF-ViT CA
yields a statistically significant gain (paired t-text p< 0.05) compared to MF-
TS [22] at 0.25% (18 scans) and 1% label fractions (72 scans). This indicates
that the proposed models provide high-quality representations, better general-
ization capability, and transferable initialization for COVID-19 interpretation
for minimal label fractions and when evaluated on large test data.

Table 1. Accuracy results obtained from Test-1 and Test-2 data. Green shaded region
corresponds to the highest scores obtained. * indicates statistical improvement com-
pared with second best self-supervised learning method (p< 0.05) using paired t-test.

Method
0.25% 1% 10% 30% 100%

Test1 Test2 Test1 Test2 Test1 Test2 Test1 Test2 Test1 Test2

MoCo-CXR[25]-pretrained end-to-end Dense121

FT CXR 65.16 73.85 78.85 77.52 90.23 84.57 92.86 90.62 94.74 93.70

FT Enh 73.60 81.85 83.12 90.87 90.40 95.84 91.57 95.95 93.73 96.50

MoCo-COVID Pretrained (ours)

CXR-ViT-S LP 72.64 74.18 77.35 78.33 83.76 81.71 85.10 83.88 86.93 86.15

Enh-ViT-S LP 79.97 91.71 84.06 94.00 87.81 94.87 89.10 95.85 90.51 94.14

CXR-ViT-S FT 73.00 73.37 78.23 81.13 88.59 85.94 91.66 89.48 93.26 92.19

Enh-ViT-S FT 80.27 93.24* 84.10 94.00 89.09 95.33 91.43 96.23 92.62 96.57

Multi-Feature Model (ours)

MF-ViT LP 69.01 65.22 67.20 69.72 86.72 85.20 91.06 92.02 92.53 95.01

MF-ViT CA 79.88 89.91 82.72 92.57 91.10* 96.21 93.27 96.84* 95.03 97.35*

Semi-Supervised Learning

MF-TS[22] 77.13 80.93 82.27 86.57 90.73 95.65 92.68 96.35 - -

Fully-Supervised Learning

XNet[4] - - - - - - - - 94.38 89.20

InceptionV4[26] - - - - - - - - 93.98 88.92
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4 Conclusion

Our large quantitative evaluation results obtained using the largest COVID-19
data collected from different sites, show the significant improvements achieved
using the local phase image features for self-supervised learning. Although we
did not have access to the CXR machine type and non-image patient informa-
tion (BMI, age, sex) we believe the large data used in this work represents images
with varying image acquisition settings and intensity variations. Our quantitative
results show significantly improved accuracy values over the investigated base-
lines proving the robustness of our proposed methods. Future work will include the
extension of the method for diagnosing different lung diseases from CXR images.
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Abstract. The availability of large scale data with high quality ground
truth labels is a challenge when developing supervised machine learning
solutions for healthcare domain. Although, the amount of digital data in
clinical workflows is increasing, most of this data is distributed on clin-
ical sites and protected to ensure patient privacy. Radiological readings
and dealing with large-scale clinical data puts a significant burden on the
available resources, and this is where machine learning and artificial intel-
ligence play a pivotal role. Magnetic Resonance Imaging (MRI) for muscu-
loskeletal (MSK) diagnosis is one example where the scans have a wealth
of information, but require a significant amount of time for reading and
labeling. Self-supervised learning (SSL) can be a solution for handling the
lack of availability of ground truth labels, but generally requires a large
amount of training data during the pretraining stage. Herein, we propose
a slice-based self-supervised deep learning framework (SB-SSL), a novel
slice-based paradigm for classifying abnormality using knee MRI scans.
We show that for a limited number of cases (<1000), our proposed frame-
work is capable to identify anterior cruciate ligament tear with an accu-
racy of 89.17% and an AUC of 0.954, outperforming state-of-the-art with-
out usage of external data during pretraining. This demonstrates that our
proposed framework is suited for SSL in the limited data regime.

Keywords: Self-supervised learning · Group masked model learning ·
Masked autoencoders · Knee abnormality · Transformers · MRI

1 Introduction

Knee abnormality can arise from a variety of factors including aging, physical
injury, and joint disease. MRI is the standard-of-care for diagnosis of knee abnor-
malities [21], where the image contains a wealth of information and the scanning
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protocols are safe from a clinical perspective. Knee MRI exams are among the
most widely performed scans in MSK radiology [14]. MSK conditions arise from
a variety of reasons (including sports injury and lifestyle choices) effecting adults
and pediatrics. Both the amount of information within a knee MRI scan, and
the number of such scans performed on a daily basis put a huge burden on the
radiologist and the clinical workforce dealing with MSK related conditions and
knee abnormalities In recent years, machine learning is the technology of choice
in radiology for automated image analysis and abnormality identification [2].
However, the clinical translation of this technology is facing challenges such as
lack of adequate annotations and training data. In particular, manual segmenta-
tion and data labeling is a labor intensive and tedious task, which is also effected
by inter-rater variability. The probability of error, accounting for the day-to-day
workload on radiologists, is high and this is where machine learning can benefit
the most by identifying the most critical cases needing immediate attention.

In contrast to Convolutional Neural Networks (CNNs), transformer-based
deep learning models have shown to perform better due to an inherent design
incorporating attention and parallel computing [17]. The success of transformer
based networks in the field of natural language processing (NLP) is phenome-
nal and became the default choice in most recent NLP applications. The recent
introduction of vision transformer [10], has resulted in the translation of some of
this success to vision tasks. Training self-supervised vision transformers for med-
ical applications could alleviate some of the problems associated with acquiring
high quality ground truth labels and hence, accelerate the research in computer
aided diagnosis. However, such networks require a large training data. Therefore,
in Computer Vision (CV) problems, the default practice is to use a pretrained
model on a large supervised data like ImageNet-1K, before fine tuning for a
specific downstream task with limited data [4].

Recently, self-supervised pretraining of deep neural networks without using
any labels has outperformed supervised pretraining in CV [3,5]. This phenome-
nal shift in CV is less investigated in medical image analysis domain. We argue
that recent SSL approaches are ideally suited for medical image analysis, since
medical data are an order of magnitude smaller than natural images due to sev-
eral reasons, including privacy concerns, expensive annotation, rarity of certain
diseases, etc. Hence for medical applications, SSL can lead the way for a wider
adoption of such techniques in domains where labels are not available or are
difficult to acquire [1]. Therefore, the purpose of this study is to investigate:
1) is ImageNet-1K pretraining needed for medical imaging? 2) can we perform
self-supervised pretraining on a small medical data and outperform large scale
out of distribution supervised pretraining? If successful this will form the basis
for SSL for medical imaging in limited data regimes. Towards this, we propose
a slice-based self-supervised deep learning framework (SB-SSL) for abnormality
classification using knee MRI, where our main contributions are:

– We propose a novel slice based self-supervised transformer model (SB-SSL)
for knee abnormality classification using magnetic resonance imaging data.
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– The model is pretrained from scratch on limited data without labels and fine
tuned for the downstream knee abnormality classification task with state-of-
the-art performance.

– Our experimental results show that, when trained using the group masked
model learning (GMML) paradigm, SSL can be successfully applied for med-
ical image analysis with limited data/label.
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Fig. 1. Proposed self-supervised learning approach.

2 Related Works

In [6], a deep learning based method was presented for the detection of abnor-
malities in knee MRI. The publicly available MRNet data was presented, along
with an AlexNet [16] based model for classifying abnormalities, meniscal tear,
and anterior cruciate ligament (ACL) tear. This was among the first approaches
where deep learning was applied to this task, and since then has been used in
multiple studies to further improve the classification performance [11,13,20,24].

A CNN based self supervised training paradigm was developed, where solv-
ing the jigsaw puzzle was used as the pre-text task [20]. In the downstream
task, ACL tear was classified with an accuracy of 76.62% and an area under the
curve (AUC) of 0.848 using the sagittal plane. In [24], efficiently-layered network
(ELNet) was proposed where the model reduced the number of parameters com-
pared to AlexNet, and utilized individual slice views for classification of meniscus
(coronal) and ACL (axial) tears. An accuracy of 0.904 with an AUC of 0.960 was
achieved in detecting the ACL tear. This performance was improved by adding
a feature pyramid network and pyramidal detail pooling to ELNet [11]. An AUC
of 0.976 and an accuracy of 0.886 was achieved in ACL tear classification task.
However, both these methods are based on supervised training. Meniscus tears
were identified using a deep learning model and compared with manual eval-
uation [13]. An accuracy of 95.8% was achieved for an internal validation set,
however the model was not evaluated on any of the publicly available data.

In general, it should be noted that for methods that report higher perfor-
mance, training is based on the availability of ground truth labels. Whereas for
self supervised training, which could alleviate this burden, the model perfor-
mance drops. We propose, for the first time, a transformer based self-supervised
framework for knee abnormality classification using MRI. Our innovative train-
ing paradigm use self-supervised training and shows that such a framework can
be effectively used even when the size of training data is relatively small.
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3 Methodology

In this work, we introduce a general slice-based self-supervised vision transformer
for knee MRI medical records. The system diagram of the proposed approach is
shown in Fig. 1. Transformers [25] have shown great success in various NLP and
CV tasks [3–5,7–9,22,27] and are the basis of our proposed framework.

3.1 Vision Transformer

Vision transformer [10] receives, as input, a feature map from the output of a
convolutional block/layer with K kernels of size p × p and stride p × p. The
convolutional block takes an input image x ∈ RC×H×W and converts it to
feature maps of size

√
n × √

n × K, where C, H, and W are the number of
channels, height, and width, of the input image, (p × p) is the patch size, and n
is the number of patches, i.e., n = H

p × W
p . Learnable position embeddings are

added to the patch embeddings as an input to the transformer encoder to retain
the relative spatial relation between the patches.

The transformer encoder consists of L consecutive Multi-head Self-Attention
(MSA) and Multi-Layer Perceptron (MLP) blocks. The MSA block is defined by
h self-attention heads, where each head outputs a sequence of size n×d. The self
attention mechanism is based on a trainable triplet (query, key, and value). Each
query vector in Q ∈ Rn×d for a given head is matched against a set of key vectors
K ∈ Rn×d, scaled by the square root of d to have more stable gradients as the
dot product of q and k tend to grow large in magnitude, resulting in vanishing
gradients and a slowdown of learning. After applying softmax, the output is then
multiplied by a set of values V ∈ Rn×d. Thus, the output of the self-attention
block is the weighted sum of V as shown in Eq. 1. The output sequences across
heads are then concatenated into n × (d × h), and projected by a linear layer to
a n × K sequence. The MLP block consists of two point-wise convolution layers
with GeLU [12] non-linearity.

SelfAttention(Q,K,V) = Softmax(
QKT

√
d

)V. (1)

3.2 Self-supervised Pretraining

We leverage the strength of the transformers and train it as an autoencoder with
a light decoder employing GMML [4,5]. Starting with the vanilla transformer
autoencoder, the model is pretrained as an autoencoder to reconstruct the input
image, i.e., D(E(x)) = x, where x is the input image, E is the encoder which
is vision transformer in our case, and D is a light reconstruction decoder. Due
to the strength of transformers, it is expected that the model will perfectly
reconstruct the input image after a few training epochs. Indeed, this is attributed
to the fact that without a proper choice of constraints, autoencoders are capable
of learning identity mapping, i.e., memorizing the input without learning any
useful discriminative features.
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To promote the learning of context and learn better semantic representations
of the input images from the transformer-based autoencoder, we apply several
transformations to local patches of the image. The aim is to recover these masked
local parts at the output of the light decoder. In doing so, especially with a high
percentage of corruption (up to 70%), the model implicitly learns the semantic
concepts in the image and the underline structure of the data in order to be
able to recover the image back. Image in-painting is a simple but effective pre-
text task for self-supervision, which proceeds by training a network to predict
arbitrary transformed regions based on the context.

The objective of image reconstruction is to restore the original image from
the corrupted image. For this task, we use the �1-loss between the reconstructed
image and the original image in an end-to-end self-supervised trainable system
as shown in Eq. 2. Although, �2-loss generally converges faster than �1-loss, it is
prone to over-smooth the edges for image restoration [26]. Therefore, �1-loss is
more commonly used for image-to-image processing.

L(W) =
b∑

k

⎛

⎝
H∑

i

W∑

j

1[Mk
i,j=1]|xk

i,j − x̄k
i,j |

⎞

⎠ , (2)

where W denotes the parameters to be learned during training, b is the batch
size, M is a binary mask with 1 indicating the manipulated pixels, and x̄ is the
reconstructed image. To further improve the performance of the autoencoder, we
introduced skip connections from several intermediate transformer blocks to the
decoder. These additional connections can directly send the feature maps from
the earlier layers of the transformers to the decoder which helps to use fine-
grained details learned in the early layers to construct the image. Besides, skip
connections in general make the loss landscape smoother which leads to faster
convergence. Further, the reconstructed image x̄ is obtained by averaging the
output features from the intermediate blocks from the transformer encoder (E(.))
and feeding the output to a light decoder (D(.)) represented mathematically as
x̄ = D

(∑
i∈B Ei(x̂)

)
, where Ei(.) is the output features from block i and B is

a pre-defined index set of transformer blocks that are included in the decoding
process. Herein, we set B to {6, 8, 10, 12}.

As for the decoder, unlike CNN-based autoencoders which require expen-
sive decoders consisting of convolutional and transposed convolution layers, the
decoder in the transformer autoencoder can be implemented using a light decoder
design. Specifically, our decoder consisted of two point-wise convolutional layers
with GeLU non-linearity and a transposed convolutional layer to return back
to the image space. Since the backbone, i.e., vision transformer, and the light
decoder are isotropic, some of the transformer blocks may act as decoder and
hence, heavy and computationally expensive type of decoders are not required.

4 Experimental Results

To demonstrate the effectiveness of our proposed self-supervised vision trans-
former on medical images, we employed the MRNet dataset [6]. The dataset
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consists of 1,370 knee MRI records, split into a training set of 1,130 records of
1,088 patients and a validation set of 120 records of 111 patients. Each MRI is
labeled according to the presence/absence of meniscus tear, ACL tear, or any
other abnormality in the knee. In this work, we tackled the ACL tear identifi-
cation problem using the Sagittal plane. The dataset is highly imbalanced with
only 208 MRIs representing ACL tear.

4.1 Implementation Details

In our work, we employed the ViT Small (ViT-S) variant of the transformer [23]
with 256×256 input image size. For optimization of the transformer parameters
during self-supervised pre-training, we used the Adam optimizer [19] with a
momentum of 0.9. The weight decay follows a cosine schedule [18] from 0.04 to
0.4, and a base learning rate of 5e−4. All models were pre-trained employing 4
Nvidia Tesla V100 32 GB GPU cards with 64 batch size per GPU.

Simple data augmentation techniques were applied like random cropping,
random horizontal flipping, random Gaussian blurring, and random adjusting of
the sharpness, contrast, saturation, and the hue of the image. The augmented
image was further corrupted by randomly replacing patches from the image with
zeros, with a replacement rate of up to 70% of the image pixels.

For fine-tuning, we drop the light decoder and fine tune the pre-trained model
by passing the volume, slice by slice, to the transformer encoder. The outputs
of the class tokens corresponding to each slice are then concatenated to obtain
y ∈ Rf×K , where f is the number of slices. After that, the features y are fed to
a fully connected layer with K nodes followed by GeLU non-linearity, followed
by a linear layer with 2 nodes corresponding to the presence/absence of the ACL
tear. As the dataset is highly imbalanced, we used oversampling on the training
set to balance the dataset. Specifically, we over-sample the minority class, i.e.,
presence of ACL tear, to match the number of the majority class. Finally, we
applied the same optimization parameters and data augmentations used for the
self-supervised training.

Further, we employed ensemble learning [15]. Generally, neural networks have
high variance due to the stochastic training approach that makes them sensitive
to the nature of the training data. The models may find a different set of weights
each time they are trained, which in turn may produce different predictions. To
mitigate this issue, for each experiment, we trained 5 models with different weight
initialization and combined the predictions from these models. Not only this
approach reduced the variance of the predictions, but also resulted in predictions
that were better than any single model.

4.2 Results

It is well known that transformers are data-hungry which make them hard to
train, mostly, due to the lack of the typical inductive bias of convolution opera-
tions. Consequently, the common protocol for self-supervised learning with trans-
formers is to pretrain the model on a large scale dataset, such as ImageNet or
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even larger datasets. We compare our proposed approach with the state-of-the-
art SSL methods when the pretraining and the fine-tuning are performed only on
the MRNet dataset. Table 1 shows that our method outperforms the state-of-the-
art with a large margin with an improvement of 12.6% top-1 validation accuracy
on the ACL tears classification task employing the sagittal plane. Most impor-
tantly, without using any external data, our proposed approach outperforms the
competitors that are pre-trained with ImageNet-1K marking a milestone for the
medical domain. The receiver operating characteristic (ROC) curve for three
transformer variants, ViT-Tiny, ViT-Small, and ViT-Base are shown in Fig. 2,
where ViT-T performs the best.

Table 1. Comparison with SOTA on ACL tears clas-
sification employing sagittal plane.

Method Backbone # params

ACL Tear (Sagittal plane)

Accuracy
AUC

(%)

Training using only the given dataset

Random Init CNN 77M 71.67 0.754

Random Init ViT-S 21M 70.00 0.721

[20] CNN 77M 76.62 0.848

[20] + noise CNN 77M 75.83 0.817

SB-SSL (Ours) ViT-T 5M 85.83 0.952

SB-SSL (Ours) ViT-S 21M 88.33 0.954

SB-SSL (Ours) ViT-B 86M 89.17 0.954

Transfer learning from ImageNet-1K dataset

MRNet [6] AlexNet 61M 86.63 0.963

0 0.2 0.4 0.6 0.8 1

False Positive Rate (FPR)

0

0.2

0.4

0.6

0.8

1

T
ru

e 
P

o
si

ti
v
e 

R
at

e 
(T

P
R

)
ViT-Tiny (ViT-T)

ViT-Small (SiT-S)

ViT-Base (ViT-B)

Fig. 2. ROC curves of the clas-
sification of ACL tears employ-
ing different vision transformer
architectures.

4.3 Ablation Studies

In this section, we investigate the effect of different recipes of the proposed
approach, such as the effect of longer pretraining, the size of the model, and
the type of image corruption during the pretraining stage. Further, we show the
interpretability of the system by visualizing the attention of the trained models.

Effects of Longer Pretraining and Model Size. In Fig. 3, we show the per-
formance of the proposed approach when pretrained for longer duration across
different vision transformer architectures. The x-axis represents the number of
self-supervised pretraining epochs, with zero indicating that the model was not
pretrained, i.e., training from scratch. From the reported results, it is evident
that the training from random initialization has produced a lower accuracy as the
amount of data available is insufficient to train the transformer. The results sig-
nificantly improved when the models were pretrained without any external data
by 25.8%, 18.3%, and 13.3% employing ViT-T, ViT-S, and ViT-B, respectively,
compared to training from scratch. Another observation is that pre-training the
self-supervised for longer and employing bigger transformer architectures con-
tribute positively to the performance of the proposed approach.
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Fig. 3. Top-1 validation accuracies and AUC of the MRNet validation set across dif-
ferent vision transformer architectures. The x-axis represents number of epochs used
for pretraining.

(a) Zeros (b) Ones (c) Noise

Fig. 4. Samples of different types of corruption. The rows represent the original
images, corrupted images, and the reconstructed images after the pretraining stage,
respectively.

The Effects of Different Types of Corruption: We first investigate the effect
of training a vanilla transformer autoencoder, where the model is pretrained as
an autoencoder to reconstruct the input image. As expected, after finetuning, the
performance was similar to the performance of the model trained from scratch.
Following, we investigate the effect of applying different types of image inpainting
including: random masking by replacing a group of connected patches from the
image with zeros, ones, or noise. Samples of the different types of corruption are
shown in Fig. 4 along with the reconstructed images after the pretraining stage.
The performance when pretraining the models with different types of corruption
is on par, with noise being marginally better than others.

Attention Visualization. To verify that the model is learning pertinent fea-
tures, in Fig. 5, we provide visualizations of the self-attention corresponding to
the class token of the 10th layer of the vision transformer. To generate the atten-
tion for an image, we compute the normalized average over the self-attention
heads to obtain a 16×16 tokens. The tokens are then mapped to a color scheme,
up-sampled to 256 × 256 pixels, and overlaid with the original input image. For
visualization, we selected the mid slice of randomly selected MRI volumes from
the MRNet validation set. We observe that the attention is clearly focusing on
the area of interest, corresponding to the main part of the MRI slice on which
the detection of ACL tears is performed.
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Fig. 5. Self-attention visualizations from the ViT-S model finetuned on the ACL tears
task employing the sagittal plane.

5 Conclusion

We proposed a novel framework SB-SSL, pre-trained in a self-supervised manner
for knee abnormality classification. We established a new benchmark in SSL for
MRI data, where pretraining on a large supervised data was not required. The
state-of-the-art performance, with an accuracy of 89.17% in ACL tear classifica-
tion, shows that our proposed method can be employed in MR image classifica-
tion even when the data are limited and ground truth labels are not available.
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Abstract. Current contrastive learning methods use random transfor-
mations sampled from a large list of transformations, with fixed hyper-
parameters, to learn invariance from an unannotated database. Following
previous works that introduce a small amount of supervision, we pro-
pose a framework to find optimal transformations for contrastive learn-
ing using a differentiable transformation network. Our method increases
performances at low annotated data regime both in supervision accuracy
and in convergence speed. In contrast to previous work, no generative
model is needed for transformation optimization. Transformed images
keep relevant information to solve the supervised task, here classifica-
tion. Experiments were performed on 34000 2D slices of brain Magnetic
Resonance Images and 11200 chest X-ray images. On both datasets, with
10% of labeled data, our model achieves better performances than a fully
supervised model with 100% labels.

Keywords: Contrastive learning · Semi-supervised learning ·
Transformations optimization

1 Introduction

When working with medical images, data are increasingly available but annota-
tions are fewer and costly to obtain. Self-supervised methods have been devel-
oped to take full advantage of the non-annotated data and increase performances
in supervised tasks at low annotated data regime. As part of self-supervised
methods, contrastive learning methods [1,2,11,12] train an encoder on non-
annotated data to learn invariance between transformed versions of images.
Contrastive learning methods are also used with medical images. For instance,
the authors of [1] learn local and global features invariance while those of [5]
introduce a kernel to take metadata into account in contrastive pretraining.

In most works, the transformations used to learn invariance are randomly sam-
pled from a given list. While many works study the impact of removing some trans-
formations on supervised task performance [2,12], not much investigation has been
done on optimizing the transformations and their hyper-parameters. Some authors
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Zamzmi et al. (Eds.): MILLanD 2022, LNCS 13559, pp. 96–105, 2022.
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[11,15] focus on the role of transformations but without explicit transformations
optimization. The work of [11] proposes a formal analysis of transformations com-
position to select admissible transformations while [15] explores the latent spaces
of specific transformations. The authors of [16] introduce a generative network to
learn transformations distribution present in the data to use complementary trans-
formations in self-supervised tasks. Unlike our work (see Sect. 2) they need a pre-
training step before the contrastive one to learn transformations distribution.

Within supervised training (not self-supervision), some works have proposed
to optimize data augmentation. In [4], a pre-training step using reinforcement
learning is required. The work of [17] shows that data augmentation should be
applied on both discriminator and generator optimization steps but no optimiza-
tion is performed on augmentation choice. The authors of [8,9] learn a vector
containing augmentations probability. They also present a transformations opti-
mization strategy. Unlike our approach (see Sect. 2), transformation parameters
are discretized. Optimization is performed on the probability of choosing a family
of transformations and a set of parameters.

While supervision is also introduced in contrastive learning in [6,18], few
authors used it in order to influence the choice of transformations. Among them,
the authors of [14] introduce a transformation generator (a flow-based model
based on [7]) to generate transformed images in new color spaces minimizing
mutual information while keeping enough information for the supervised task.
As transformations only impact color spaces, their application to gray scale
images, in particular medical images, is very limited. Furthermore, consistently
synthesizing anatomically relevant images with generative models can be diffi-
cult [3]. To the best of our knowledge, the approach in [14] is the only existing
method optimizing a transformation generator for contrastive learning.

As in [14], the present work uses a small amount of supervision (10%) for
transformation optimization. We introduce a differentiable framework on trans-
formations that needs no pre-training, and, unlike [14], is applicable to both
color and gray scale images. Our contributions are the following:

– We propose a semi-supervised differentiable framework to optimize the trans-
formations of contrastive learning.

– We demonstrate that our method finds relevant transformations for the down-
stream task, which are easy to interpret.

– We show that our framework has better performances than fully supervised
training at low data regime and contrastive learning [2] without supervision.

2 Transformation Network

Contrastive learning methods train an encoder to bring close together latent
representations of positive pairs of images while pushing away representations of
negative pairs of images. As in simCLR [2], positive pairs are two transformations
of the same image while negative pairs are transformed versions of different
images.
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Transformations used in most methods are chosen at random from a fixed
given list. However, as shown in [14], using positive (transformed) images, that
are very similar to each other (i.e., high mutual information), might entail a sub-
optimal solution since it would not bring additional information to the encoder.
By using a small amount of supervision, transformations can be optimized in
order to contain relevant information for the targeted supervised task.

In this work, we focus on classification tasks. We introduce a transforma-
tion network (M) that minimizes the mutual information between images of a
positive pair without compromising the supervised task performance. For each
image of the training set, M , implemented as a neural network, outputs a set
of parameters (Λ) defining the transformations to apply (TΛM

). As in [2,15],
the latent space of the encoder (f) is optimized using a projection head (g)
into a lower dimension space where a contrastive loss function (INCE) is mini-
mized. Supervision is added on the latent space using a linear classifier (p) that
minimizes a classification loss function (L). Figure 1 shows a schematic view of
the architecture used (X denotes an image from the training set and XM its
transformed version).

Fig. 1. Proposed architecture (red color indicates a trainable element, blue color indi-
cates a non-trainable element). (Color figure online)

2.1 Optimizing Transformations

We consider a finite set of intensity and geometric transformations acting on
images. Each transformation is parameterized by a vector of parameters (for
example, the parameter vector of a rotation around a fixed point only contains
its angle). The transformation function (TΛM

) is the composition of transfor-
mations applied in a fixed order. The transformation network (M) outputs the
transformation function parameters. We propose to train M to find the optimal
transformations for the semi-supervised contrastive problem. The network M
maps an image to the space of parameter vectors, normalized to [0, 1]. The order
of the transformations in the composition is not optimized, but the impact of
this order has been studied and results are shown in Sect. 3.

Let λk be the vector of parameters for a given transformation, then the
transformation function, noted as TΛM

, is parameterized by Λ = [λ1, · · · , λK ]
(where K is the number of transformations considered).

The optimal transformations for the semi-supervised contrastive problem is
then obtained via M , which is thus responsible for finding the optimal Λ∗

M .
In contrast with [2], we only transform one version of the image batch. Our
experiments show better results in this setting. The optimization goes as follows.
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Transformation Network Optimization Steps: (i) M generates a batch
of ΛM vectors defining a transformation TΛM

. For every image X in a batch,
a transformed version is generated: XM = TΛM

(X). (ii) The transformed and
untransformed data batches are passed through the encoder f , the projection
head g and the linear classifier p. (iii) The contrastive loss −INCE (see below,
Eq. 2) gradient is computed to update the weights of the network M aiming to
minimize mutual information and classification loss function.

Encoder Optimization Steps: (i) From the previous optimization steps of M ,
one transformed version of the data is generated. Latent projections of the trans-
formed and untransformed data are generated using encoder f and projection
head g. (ii) The contrastive loss gradient is computed and parameters of f , g
and p are updated. This brings closer positive pairs and further away negative
ones, and ensures that transformed images are properly classified.

Formally, these steps aim to solve the following coupled optimization problem
where contrastive and classification loss functions are taken into account:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minM α0INCE

(
g ◦ f(XM ), g ◦ f(X)

)
+ α1L

(
p ◦ f(XM ), y

)

minf,p,g −α2INCE

(
g ◦ f(XM ), g ◦ f(X)

)
+ α3L

(
p ◦ f(XM

)
, y

)

+α4L
(
p ◦ f(X), y

)
(1)

where αi are weights balancing each loss term and y are the classification labels
when available. The term INCE is the contrastive loss function as in [2]:

INCE(XM i,Xi) = −
∑

i

log

(
esim(g(f(XMi)),g(f(Xi)))

∑
j,j �=i esim(g(f(XMi)),g(f(Xj)))

)

(2)

where the index i defines positive pairs, j negative ones, and sim is a similarity
measure defined as sim(x, x′) = xT x′

τ where τ is a fixed scalar, here equal to 1.
Finally, L is the binary cross entropy loss function for the supervised constraint.

2.2 Differentiable Formulation of the Transformations

A fundamental difference of the proposed transformation optimization, com-
pared to [8,9,14], is the use of explicit transformations differentiation. Dur-
ing training, gradient computations of Eq. 1 involve the derivative of TΛM

with
respect to the weights (w) of M : dw(TΛM

) = dTΛM
◦ dwM . This requires the

explicit computation of the derivatives of T with respect to its parameters Λ and
the differential calculus for each transformation composing T . Thus, we introduce
specific formulations and normalized parameterization for the transformations
used in our experiments.

We use the following transformations: crop (Crop), Gaussian blur (G), addi-
tive Gaussian noise (N), rotation (R) around the center of the image, horizontal
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(Flip0) and vertical (Flip1) flips. Table 1 lists the expressions of these transfor-
mations. The final transformation function is defined as:

TΛ = (R ◦ Flip1 ◦ Flip0 ◦ Crop ◦ N ◦ G)(X,Λ) (3)

and TΛ thus depends on 7 parameters (the crop has 2 parameters) which are
generated by M .

Table 1. Differentiable expressions of the transformations used, parameterized by λ ∈
[0, 1], where S is the sigmoid function, s the size of our images, erfinv the inverse of

the error function 2π− 1
2

∫ ∞
x

e−u2
du, U the uniform distribution and x is a point of the

image grid. We fix the maximum Gaussian blur standard deviation to σmax = 2.0 and
the maximum additive noise standard deviation to σ̃max = 0.1.

Flip around axis e F lip(X, λ, e)(x) = (1 − λ)X(x) + λX(x − 2〈x, e〉e)
Crop centered at cλ = [λ1s, λ2s] Crop(X, λ)(x) = X(x) × S( s

8
− ||x − cλ||∞)

Gaussian blur with kernel gλσmax G(X, λ) = gλσmax ∗ X

Rotation R(X, λ)(x) = X

((
cos(λ2π) − sin(λ2π)

sin(λ2π) cos(λ2π)

)

x

)

Additive Gaussian noise N(X, λ) = X + λσ̃max × √
2 erfinv(U [−1, 1])

2.3 Experimental Settings

Dataset. Experiments were performed on BraTs MRI [10] and Chest X-ray [13]
datasets. The Chest X-ray dataset is composed of 10000 images. BraTs volumes
were split along the axial axis to get 2D slices. Only slices with less than 80% of
black pixels were kept. This resulted in 34000 slices. For both datasets, we studied
the supervised task of pathology presence classification (binary classification,
present/not present). In medical imaging problems, it is common to have labels
only for a small part of the dataset. We thus choose 10% of supervision in all
of our experiments. We randomly selected three hold-out test sets of 1000 slices
for BraTs experiments. With the Chest dataset, we used the provided test set
of 1300 images, from [13], evenly split in three to evaluate variability.

Implementation Details. For every experiment with the BraTs dataset, the
encoder f is a fully convolutional network composed of four convolution blocks
with two convolutional layers in each block. Following the architecture proposed
in [13], the encoder f for experiments on the Chest dataset is a Densenet121.
The network M is a fully convolutional network composed of two convolutional
blocks with one convolutional layer. The projection head g is a two-layer percep-
tron as in [2]. On BraTs dataset (resp. Chest dataset), we train with a batch size
of 32 (resp. 16) for 100 epochs. In each experiment, the learning rate of f is set
to 10−4. When optimizing M with (resp. without) supervision, M learning rate
is set to 10−3 (resp. 10−4). When using 10% of labeled data for the supervision
task, on relatively small databases (105 images), there is a risk of overfitting on
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the classification layer (p in Eq. 1). Contrastive and supervision loss terms need
to be carefully balanced while optimizing both the encoder and the transfor-
mation generator. To evaluate the impact of hyper-parameters, we carried out
experiments with (α0, α2) ∈ {1, 0.1} and (α1, α3, α4) ∈ {1, 10}. Linear evalua-
tion results (see Sect. 2.4) on BraTs dataset after convergence are summarized in
Table 2. Results in Sect. 3 are shown with the best values found for each method.

Table 2. 3-fold cross validation mean linear evaluation AUC after convergence with
different αi values (standard deviation in parentheses).

αi values AUC

Optimizing M α0,2 = 1, α3,4 = 1, α1 = 10 0.884 (0.042)

α0 = 0.1, α1,3,4 = 10, α2 = 0.1 0.868 (0.030)

α0 = 0.1, α1 = 10, α2 = 1, α3,4 = 1 0.887 (0.013)

Random M α2 = 1, α3,4 = 1 0.874 (0.000)

α2 = 0.1, α3,4 = 10 0.820 (0.037)

α2 = 1, α3,4 = 10 0.883 (0.003)

Base simCLR [2] 0.730 (0.020)

The fully supervised experiments described in Sect. 3 are optimized with the
same encoder architecture and one dense layer followed by a sigmoid activation
function for the classification task. For the fully supervised experiments we used
a learning rate of 10−4.

Computing Infrastructure. Optimizations were run on Tesla NVIDIA V100
cards.

2.4 Linear Evaluation

To evaluate the representation quality learned by the encoder, we follow the
linear evaluation protocol used in the literature [2,12,14]. The encoder is frozen
with the weights learned with our framework. One linear layer is added, after
removing the projection head (g), and trained with a test set of labeled data,
not used in the previous training phase. This means that we first project the
test samples in the latent space of the frozen model and then estimate the most
discriminative linear model. The rationale here is that a good representation
should make the classes of the test data linearly separable.

3 Results and Discussion

To assess the impact of each term in Eq. 1 we performed optimization using the
following strategies:
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Random (without M , without supervision): each image is transformed with
parameters generated by a uniform distribution: Λ = U (

[0, 1]7
)
, and α1,3,4 = 0.

Random with supervision (without M , with supervision): we add the super-
vision constraint to the random strategy. We set α2 = 1 and α3,4 = 10.

Self-supervised (with M , without supervision): while setting α1, α3 and α4 to
0, we optimize Eq. 1.

Self-supervised with supervision constraint (with M and supervision):
setting α1 = 10 and α0,2,3,4 = 1, we optimize Eq. 1.

We split the data into pre-training and test sets. Data from the pre-training
set are further split into training and validation sets for the perturbator/encoder
optimization. For optimizations with supervision constraint (self-supervised and
random), all pre-training data are used for self-supervision and a small set of
labeled data is used for the supervision constraint. For variability analysis, three
optimizations were performed by changing the supervision set. With the BraTs
dataset, as slices come from 3D volumes, we split the data ensuring that all slices
of the same patient were in the same set.

Linear evaluation was performed on the four optimization strategies with
the hold-out test set. Performances were evaluated with the weights obtained at
different epochs. We aim to evaluate if our method outputs better representations
during training. In Fig. 2, we show performances (mean and standard deviation)
on three different test sets for both datasets. We also trained the encoder on
the classification task in a fully supervised setting with 10% and 100% labeled
data. For the fully supervised training, we used data augmentation composing
the tested transformations randomly. Each transformation had a 0.5 probability
of being sampled. We performed linear evaluation on the frozen encoder with
the hold-out test set and report the obtained AUC as horizontal lines in Fig. 2.
Figure 2 also reports linear evaluation results of the base simCLR optimization as
in [2] where only one image is transformed by a random composition of the tested
transformations. As with the fully supervised experiments, each transformation
had a 0.5 probability of being sampled.

Figure 2 shows that optimizing M with supervision helps to have better rep-
resentations for both datasets. It also shows that optimizing with only 10% of
labeled data allows us to reach the same quality of representation as the fully
supervised training with 100% of labels.

To investigate the impact of the supervised loss function, we launched an
experiment with the supervised contrastive loss introduced in [6] using only 10%
of labeled data. After convergence, we obtained a mean AUC of 0.52 ± 0.12
compared to 0.93 ± 0.01 with our method.

On the Chest X-ray database, strong results were obtained in [13] using a
network pretrained on ImageNet. Optimizing M with 10% supervision on this
ImageNet pretrained network has a smaller impact compared to random trans-
formations (0.96 ± 0.001 for both approaches). However, ImageNet pretrained
networks can only be used with 2D slices whereas our strategy could be easily
extended to 3D volumes.
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Fig. 2. Linear evaluation results comparing with other methods (left BraTs dataset
with batch size 32, right Chest dataset with batch size 16).

Relevance. When optimizing without supervision, the network M needs to
minimize the mutual information and it can therefore generate transformations
that create images that are very different from the untransformed images but
that do not contain relevant information for the downstream task, in particular
for medical images. Without the supervision constraint, the optimal crop can
be found, for instance, in a corner, leading to an image with a majority of zero
values (i.e., entirely black), thus useless for the supervised task. The supervision
constraint helps M to generate relevant images that keep pathological pixels (see
some examples in Fig. 3).

Fig. 3. Two examples (row 1 and 2) of generated transformations in the BraTs dataset
with different optimization strategies (red contour highlights the tumor). (Color figure
online)

Runtime. The addition of the network M increases the training computational
time of around 20–25% which is balanced by a performance gain.
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Transformation Composition Order. As in [2], the transformation order
is fixed. We launched an additional experiment with a different transforma-
tion order for both simCLR and our method. Linear evaluation results after
convergence are respectively: 0.730 ± 0.020 and 0.760 ± 0.027 for simCLR and
0.926 ± 0.020 and 0.923 ± 0.021 for our method. The transformation order has
thus little impact on our results and, above all, our method substantially out-
performs simCLR in both experiments.

4 Conclusions and Perspectives

We proposed a method to optimize usual transformations employed in con-
trastive learning with very little supervision. Extensive experiments on two
datasets showed that our method finds more relevant transformations and
obtains better latent representations, in terms of linear evaluation. Future works
will try to optimize the transformations composition order. Furthermore, in a
weakly-supervised setting, we could also investigate constraining latent space
representations of non labeled data with pseudo-labels and nearest neighbor
clustering.
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Abstract. We propose a novel semi-supervised learning approach for
classification of histopathology images. We employ strong supervision
with patch-level annotations combined with a novel co-training loss to
create a semi-supervised learning framework. Co-training relies on multi-
ple conditionally independent and sufficient views of the data. We sepa-
rate the hematoxylin and eosin channels in pathology images using color
deconvolution to create two views of each slide that can partially fulfill
these requirements. Two separate CNNs are used to embed the two views
into a joint feature space. We use a contrastive loss between the views
in this feature space to implement co-training. We evaluate our app-
roach in clear cell renal cell and prostate carcinomas, and demonstrate
improvement over state-of-the-art semi-supervised learning methods.

Keywords: Histopathology · Semi-supervised learning · Co-training

1 Introduction

Convolutional neural networks (CNNs) are commonly used in histopathology.
Because digital whole slide images (WSIs) in pathology are much larger than
typical input sizes for CNNs, workflows typically first tile the WSI into many
smaller patches. There are two main approaches for training classification mod-
els with WSIs: strong and weak supervision. Strong supervision uses labels for
the individual tiles, which requires expert annotation at a high cost [7]. Weak
supervision applies multiple instance learning with slide level labels [6,10,12,20].
Weakly supervised methods have become popular due to the ease of obtaining
labels for learning directly from pathology reports [5]. However, successful model
training with weak learning requires thousands of WSIs, and strong supervision
is still essential when a smaller number of WSIs are available for learning.

Expert annotation at the tile level is infeasible to obtain beyond a small
number of WSIs. Semi-supervised learning (SSL) seeks to leverage unlabeled
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data to improve the accuracy of models when only a limited amount of labeled
data is available. One of the recent trends in SSL, consistency regularization [9,
16], has also found application in the classification of histopathology images.
Teacher-student consistency [19] has been used to supplement tile-level labels
for quantifying prognostic features in colorectal cancer [17] and in combination
with weak supervision for Gleason grade classification in prostate cancer [11].
The MixMatch model [3] has been tested on histology datasets with open-set
noise [13]. Weak/strong data transformation consistency (FixMatch) [18] has
been applied to detection of dysplasia of the esophagus [13]. State-of-the-art SSL
methods rely on enforcing prediction/representation consistency between various
transformations of the data. Whereas consistency under model perturbations
has been proposed [16], it is a less explored area. On the other hand, the co-
training [4] approach to SSL can provide excellent results when multiple views
of each sample are available that meet the criteria of sufficiency (each view
should be able to support accurate classification on its own) and conditional
independence given the label of a sample.

Hematoxylin (H) and Eosin (E) are chemical stains that are used to highlight
features of tissue architecture in formalin-fixed and paraffin-embedded tissue sec-
tions. H and E provide complementary information for pathologists. H is a basic
chemical compound that binds negatively charged nucleotides in DNA and RNA
to provide a blue color. In contrast, E is acidic and reacts with basic side chains
of amino acids resulting in pink coloration. Whereas proteins bind to DNA and
RNA lead to overlapping H and E staining in the cell nucleus and cytoplasm,
the extracellular matrix and vascular structures supporting cancer cells interact
primarily with E since they are devoid of DNA and RNA. In contrast to RGB
channels that cannot easily be linked to a biological interpretation, H and E
allow separation of nuclei versus cytoplasm and extracellular matrix. Therefore,
we hypothesize that H and E stains, when separated into their own channels,
can provide two views that can, to a large extent, satisfy the co-training assump-
tions. We also formulate a novel contrastive co-training with H and E views. We
validate our approach on a dataset of 53 WSIs from clear cell renal cell carcinoma
(ccRCC) patients for histologic growth pattern (HGP) classification and of 45
WSIs from prostate cancer patients for cancer vs. benign gland classification.
We demonstrate that our approach outperforms state-of-the-art SSL methods.
We perform further experiments to explain the suitability of H and E channels
for co-training as opposed to RGB channels.

2 Stain Based Contrastive Co-training

2.1 Stain Separation

We adopt an approach that separates an H&E image in the RGB space into
individual H and E stain channels using non-linear pixel-wise functions derived
from dominant color profiles of each stain [15]. Concretely, we use the following
approximate transformation between the two spaces:
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[
H
E

]
=

[
1.838 0.034 −0.760

−1.373 0.772 1.215

] ⎡
⎣ log10 255/R

log10 255/G
log10 255/B

⎤
⎦ . (1)

The H and E channels are normalized to the range [0, 1] after the transformation.

Fig. 1. H&E RGB image is separated into H and E channels and processed separately
to generate two feature sets fH and fE trained with the proposed contrastive loss.

2.2 Contrastive Co-training

We propose two ResNet models [8] (same architecture, separate parameters) for
H and E channels, respectively (Fig. 1). Existing co-training methods enforce
consistency of prediction between classifier outputs operating on different views
of the data. The disadvantage of this approach is that the individual classifiers
only make use of their respective views and are sub-optimal. Instead, we propose
a contrastive loss in the feature space to implement co-training and define a single
classifier which uses a combined view by averaging the features from the two
channels (Fig. 1). Our approach is inspired by recent works that use contrastive
learning to create a shared feature space between multimodal data [21,22]. We
use a contrastive loss to create a shared feature space between features extracted
by the H and E networks. Let fH(x) and fE(x) denote the H and E features for
input tile x, respectively. We use a triplet loss

Lc.t.(xi) = max (‖ fH(xi) − fE(xi) ‖2 − ‖ fH(xi) − fE(xk) ‖2 +m, 0) , (2)

where random k �= i, ‖ a ‖2 denotes the L2 norm of vector a, and m is the margin
hyperparameter. The triplet loss encourages (fH , fE) pairs from the same H&E
tile xi to be mapped closer together than (fH , fE) pairs from mismatched input
tiles xi and xk. Note that the output of the model is a linear+softmax layer
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applied to 0.5(fH +fE). Therefore, pushing the features fH and fE closer for the
same tile also implicitly minimizes the difference between individual predictions,
similar to co-training, if the final layer were applied to fH and fE alone.

Let L = {xj , yj} denote the labeled training set where yi is the label corre-
sponding to input tile xi. Let U = {xi} denote the unlabeled training set. The
overall learning strategy combines supervised learning with cross-entropy on the
labeled dataset with the triplet loss (2) on the entire dataset:

L =
∑
xj∈L

yj log ŷj + λ
∑

xi∈L∪U

Lc.t.(xi), (3)

where ŷj denotes the output of the model for input xj and λ is a hyperparameter
controlling the relative contributions from the labeled and unlabeled losses.

3 Experiments

3.1 Datasets

ccRCC. H&E slides from ccRCC patients at our institution were retrieved from
the pathology archive and scanned at 40× magnification. HGPs in 53 WSIs were
annotated by drawing polygons around them in QuIP [2] by a GU-subspecialty
trained pathologist. HGPs were divided into nested vs. diffuse (non-nested) his-
tologic classes [1]. Diffuse HGPs are associated with a higher risk of cancer
recurrence and metastatic progression. Each WSI contains multiple polygons.
Images were downsampled by a factor of 2× and a tile size of 400 × 400 pixels
was chosen to capture the visual characteristics of the HGPs after discussion
with pathologists (Fig. 2). We sampled overlapping tiles by choosing a stride of
200 pixels. We extracted 3014 tiles with nested HGPs and 2566 tiles with diffuse
HGPs from the annotated polygons. We separated the WSIs into training, valida-
tion and testing sets to ensure a realistic experimental setting. This separation
resulted in 2116/1990 nested/diffuse tiles for training, 386/246 nested/diffuse
tiles for validation and 512/330 nested/diffuse tiles for testing. The validation
set was used for choosing hyperparameters as discussed below. The test set was
for final model evaluation. Tiles from same patient were in the same set. For
the SSL experiments, we divided the annotated polygons from the training set
into 10 groups and randomly picked one group to draw labeled tiles from in each
run of our experiments. This is a more realistic and challenging scenario than
randomly choosing 10% of the training tiles as labeled data because tiles from
the same polygon usually represent a smaller range of variations for learning.

Prostate Cancer. We collected 6992 benign gland images and 6992 prostate
cancer images from our institution as training set using the same process as with
the ccRCC dataset. The tile size was chosen as 256 × 256, which is sufficient to
characterize gland features. The validation and test sets are from the The Cancer
Genome Atlas Program (TCGA). We collected 477 benign and 472 cancer tiles
from 18 cases. In each experiment, we randomly selected 8 cases for validation
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ccRCC nested ccRCC diffuse Prostate benign Prostate cancer

Fig. 2. Examples of ccRCC and prostate gland tiles.

and 10 cases for testing. Examples of prostate gland images are shown in Fig. 2.
For SSL, we randomly divided training images into 20 groups and used one
group as labeled data. The image sets from our institution are available through
a material transfer agreement and the TCGA set is publicly available.

3.2 Model Selection, Training and Hyperparameters

Considering the small number of training samples, we chose ImageNet pretrained
ResNet18 [8] for all experiments. ResNet is a state-of-the-art model which has
better performance with less parameters. For models that use single channel
inputs, i.e., the H and E CNN pathways in Fig. 1, we summed the convolutional
weights of the R, G and B channels in the first layer of ResNet18. The final layer
of the ResNet18 was also changed for binary classification.

We used color jittering, random rotation, crop to 256×256 (ccRCC) or 224×
224 (prostate) pixels, random horizontal/vertical flip and color normalization as
data augmentation. For validation and test tiles, we performed center crop and
color normalization to follow the same data format as in training. For the co-
training model, H and E channels have independent color jitters but the rest of
the augmentations are common, e.g., the same random rotation angle is applied
to the H and E channels from the same tile. The rationale for independent color
jitters is that color variations due to the amount of H or E chemical tissue stains
used are common in practice, which leads to independent brightness variations
in these channels.

We used the Adam optimizer with an initial learning rate of 10−3(100% label
only) or 10−4 and used a decaying learning rate. A batch size of 64 was used in
ccRCC dataset and 128 in prostate cancer dataset. Hyperparameters in (3) were
chosen as λ = 0.2 × p and m = 40, where p is the percentage of training data
used as labeled data. All hyperparameters were chosen to optimize accuracy over
the validation set, including experiments on other state-of-the-art models. Batch
normalization was applied to the features before computing the contrastive loss.

For comparison with other state-of-the-art SSL methods, we used consistency
regularization [9,16], MixMatch [3] and FixMatch [18]. The same augmentations
discussed above were used for the SSL experiments. We ran all experiments for
250 epochs in ccRCC experiments and 100 epochs in prostate cancer dataset and
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chose the epoch with the best validation accuracy. Each experimental setting was
run 5 times to calculate mean accuracy and standard deviation.

We used Python 3.7.11 + Pytorch 1.9.0 + torchvision 0.10.0 + CUDA 10.2 on
virtual environment and ran on NVIDIA TITAN X and NVIDIA TITAN RTX.
We also used Python 3.9.0 + Pytorch 1.7.1 + torchvision 0.8.2 + CUDA 11.0 and
ran on NVIDIA RTX A6000. With batchsize fixed to 64, co-training experiment
on ccRCC occupied around 5300 MB memory on GPU and needed 1.5–2.0 min
for each epoch. The code is available at https://github.com/BzhangURU/Paper
2022 Co-training.

3.3 Results

We compared proposed co-training with H and E views to a baseline ResNet18
model that uses RGB H&E images as input, as well as other state-of-the-art
SSL methods, such as MixMatch and FixMatch, considering they are already
widely used in histopathology image analysis [13]. The approaches were com-
pared under two settings: using 100% of the available labeled tiles in training set
for supervised learning and using only a subset (10% in ccRCC, 5% in prostate)
of the available tiles for supervised learning. The proposed model also employed
the unsupervised co-training loss with 100% of the training data (unlabeled)
to set up an SSL method. Mean accuracy and standard deviation over 5 runs
reported for all methods are shown in Table 1 for both datasets.

Table 1. Mean accuracy and standard deviations of different models for the test sets
in ccRCC and prostate experiments. Best performing model results for the 100% and
10%/5% labeled data setting are shown in bold.

ccRCC model Test accuracy Prostate model Test accuracy

100% label RGB ResNet 84.8± 2.4% 100% label RGB ResNet 77.5± 2.5%

100% label H/E co-train 92.0± 2.6% 100% label H/E co-train 79.1± 2.0%

10% label RGB ResNet 76.9± 5.9% 5% label RGB ResNet 73.4± 1.0%

10% label RGB consis 86.8± 3.3% 5% label RGB consis 74.7± 1.3%

10% label RGB MixMatch 85.9± 5.7% 5% label RGB MixMatch 73.7± 5.0%

10% label RGB FixMatch 88.3± 3.8% 5% label RGB FixMatch 78.2± 3.8%

10% label H/E co-train 92.3± 2.1% 5% label H/E co-train 78.7± 1.9%

We note that the contrastive co-training strategy improved test accuracy,
by a large margin in the case of ccRCC, when 100% of the labeled data were
used for supervised training (row 2 vs. 1, Table 1), which suggests it provides a
strong regularization effect against overfitting. Note that training accuracy for
the fully supervised RGB ResNet and H/E co-train models were 99.97 ± 0.02%
and 99.78±0.15%, respectively, in the ccRCC dataset. The same models achieve
98.34 ± 0.64% and 98.32 ± 0.55% training accuracy in prostate cancer. The
fact that test accuracies on prostate cancer are lower than on ccRCC for all

https://github.com/BzhangURU/Paper_2022_Co-training
https://github.com/BzhangURU/Paper_2022_Co-training
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models is likely due to domain shift. In ccRCC dataset, all training, validation
and test sets come from our institution. While in prostate cancer dataset, only
training set comes our institution, the validation and test set come from TCGA
dataset. Another possible reason is the fact that sometimes the gland size in
prostate cancer is much smaller than the size of tiles, which could carry much
less distinguishable features.

As expected, the proposed co-training strategy significantly outperforms the
baseline approach (row 7 vs. 3, Table 1) under the limited labeled data setting.
Consistency regularization based SSL methods significantly improve the accu-
racy of RGB ResNet baseline when a limited amount of training data is available
(rows 4–6 vs. 3, Table 1). In line with results from computer vision, FixMatch
even surpasses the baseline model trained with the entire labeled dataset. How-
ever, our proposed method outperformed all other SSL methods we compared
against including FixMatch for both datasets. We note that hyperparameters
for all SSL methods were independently fine-tuned to obtain the best validation
accuracy. Finally, contrastive co-training was able to reach the same accuracy
levels independent of the amount of labeled data that was used for supervised
training (rows 2 and 7, Table 1).

3.4 Co-training View Analysis

In this section, we further study the suitability of the H and E channels for
co-training in the context of the ccRCC dataset. First, we explore whether the
H and E channels are sufficient on their own to provide a basis for accurate
classification in a supervised setting. We train models that only use the H or
only use the E channel as input. The 100% labeled results in Table 2 show that
both channels carry sufficient information for the classification problem at hand.
This is especially true for the E-channel, which is particularly informative for
the nested vs diffuse classification task. However, as expected, the accuracy for
both channels drops significantly when the labeled data is limited.

Table 2. H-only and E-only models test accuracy for the ccRCC dataset.

Model Accuracy Model Accuracy

100% label H ResNet 79.4 ± 3.7% 10% label H ResNet 73.5 ± 4.0%

100% label E ResNet 94.0 ± 1.4% 10% label E ResNet 82.3 ± 7.0%

We next explore if the H and E channels are better suited for co-training
than R, G and B channels due to a higher degree of independence. We trained
an image-to-image regression model using the U-Net architecture [14] between
various channels, e.g., predicting the E-channel from the H-channel of the same
tile. The final layer of the U-Net architecture was chosen to be linear, and we
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used the mean square error function for training. Table 3 reports the coefficient
of determination (R2) achieved for various input/output channel combinations.
We observe that the H and E channels are harder to predict from each other
(lower R2) compared to the R, G and B channels, hence demonstrating a higher
degree of independence and suitability for co-training.

Table 3. Coefficient of determination (R2) of image mapping between various channels
on ccRCC validation set at epoch with the lowest MSE.

Experiments R2 value Experiments R2 value

H ⇒ E 0.5223 E ⇒ H 0.4613

R ⇒ G 0.8464 G ⇒ R 0.7833

R ⇒ B 0.8207 B ⇒ R 0.7713

G ⇒ B 0.8522 B ⇒ G 0.8824

3.5 Ablation Studies

We also conducted ablation studies to separately analyze the role of the con-
trastive loss and the H and E channel selection in terms of classification accuracy
on ccRCC. Omitting the contrastive loss from training while using the H and E
channel inputs lowered the accuracy from 92.0 ± 2.6% to 84.7 ± 5.2% for 100%
labeled data and from 92.3 ± 2.1% to 78.7 ± 8.0% for 10% labeled data. In the
next ablation experiment, we used various pairs from the RGB channels as the
basis for our co-training method, and compared with ResNet using the same
pair as input, e.g., using only the R and B channels to form 2-channel images as
input for ResNet. Results are reported in Table 4. Unlike the H and E models,
we observe that the results are approximately the same, which is expected con-
sidering the higher level of dependence among RGB channels shown in Sect. 3.4.
These observations suggest that the benefit of the proposed model is due to
the contrastive co-training loss applied to the H and E view inputs rather than
simply due to the change in the input space or the contrastive loss individually.

Table 4. Ablation study on ccRCC. Test set accuracy of ResNet and co-training models
taking only 2 channels from RGB as input with 10% labeled data in training.

Model Accuracy Model Accuracy Model Accuracy

RB ResNet 77.5 ± 6.6% RG ResNet 80.2 ± 6.4% GB ResNet 78.4 ± 9.7%

R/B co-train 78.2 ± 4.5% R/G co-train 79.8 ± 5.6% G/B co-train 76.6 ± 7.3%
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4 Conclusion

We proposed a novel co-training approach for pathology image classification that
leverages deconvolution of an H&E image into individual H and E stains. We
demonstrated the advantages of the proposed approach over fully supervised
learning and other state-of-the-art SSL methods in the context of ccRCC and
prostate cancer. The proposed method could be used after segmentation of can-
cer regions from a WSI to drive prognostic markers. In future work, we will
investigate finer-grained classification for further improved prognostic value.

Since our proposed approach uses a complementary learning strategy to con-
sistency regularization approaches that use data transformations, a potential
avenue for future research is to combine them for further improvements. Another
potential direction for further research is to investigate whether a more sophisti-
cated separation into H and E stain channels can provide improved results with
co-training. Methods based on Cycle-GAN have been used for stain-to-stain
translation such as H&E to immunohistochemistry and they could also be used
for separation of H and E stains. However, this would require the acquisition of
additional datasets with H only and E only stains for the discriminators.
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Abstract. Training deep learning models on medical datasets that per-
form well for all classes is a challenging task. It is often the case that a
suboptimal performance is obtained on some classes due to the natural
class imbalance issue that comes with medical data. An effective way to
tackle this problem is by using targeted active learning, where we itera-
tively add data points that belong to the rare classes, to the training data.
However, existing active learning methods are ineffective in targeting
rare classes in medical datasets. In this work, we propose Clinical (tar-
geted aCtive Learning for ImbalaNced medICal imAge cLassification) a
framework that uses submodular mutual information functions as acqui-
sition functions to mine critical data points from rare classes. We apply
our framework to a wide-array of medical imaging datasets on a variety
of real-world class imbalance scenarios - namely, binary imbalance and
long-tail imbalance. We show that Clinical outperforms the state-of-
the-art active learning methods by acquiring a diverse set of data points
that belong to the rare classes.

1 Introduction

Owing to the advancement of deep learning, medical image classification has
made tremendous advances in the past decade. However, medical datasets are
naturally imbalanced at the class level, i.e., some classes are comparatively rarer
than the others. For instance, cancerous classes are naturally rarer than non-
cancerous ones. In such scenarios, the over-represented classes overpower the
training process and the model ends up learning a biased representation. Deploy-
ing such biased models results in incorrect predictions, which can be catastrophic
and even lead to loss of life. Active learning (AL) is a promising solution to
mitigate this imbalance in the training dataset. The goal of AL is to select data
points from an unlabeled set for addition to the training dataset at an additional
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labeling cost. The model is then retrained with the new training set and the pro-
cess is repeated. Reducing the labeling cost using the AL paradigm is crucial in
domains like medical imaging, where labeling data requires expert supervision
(e.g., doctors), which makes the process extremely expensive. However, current
AL methods are inefficient in selecting data points from the rare classes in med-
ical image datasets. Broadly, they use acquisition functions that are either: i)
based on the uncertainty scores of the model, which are used to select the top
uncertain data points [26], or ii) based on diversity scores, where data points
having diverse gradients are selected [3,25]. They mainly focus on improving the
overall performance of the model, and thereby fail to target these rare yet criti-
cal classes. Unfortunately, this leads to a wastage of expensive labeling resources
when the goal is to improve performance on these rare classes.

2330 2181

852 849

25810

5292

2443
873 708

Fig. 1. Motivating examples of two main
class imbalance scenarios occurring in medi-
cal imaging. Left: Long-tail imbalance (Dia-
betic retinopathy grading from retinal images
in APTOS-2019 [10]). Right: Binary imbal-
ance (Microscopic peripheral blood cell image
classification in Blood-MNIST [1]). Red boxes
in both scenario denote targeted rare classes.
(Color figure online)

In this work, we consider two
types of class imbalance that recur
in a wide array of medical imag-
ing datasets. The first scenario is
binary imbalance, where a subset
of classes is rare/infrequent and the
remaining subset is relatively fre-
quent. The second scenario is that
of long-tail imbalance, where the
frequency of data points from each
class keeps steeply reducing as we
go from the most frequent class to
the rarest class (see Fig. 1). Such
class imbalance scenarios are par-
ticularly challenging in the med-
ical imaging domain since there
exist subtle differences which are
barely visually evident (see Fig. 1).
In Sect. 3, we discuss Clinical, a
targeted active learning algorithm that acquires a subset by maximizing the sub-
modular mutual information with a set of misclassified data points from the rare
classes. This enables us to focus on data points from the unlabeled set that are
critical and belong to the rare classes.

1.1 Related Work

Uncertainty Based Active Learning. Uncertainty based methods aim to
select the most uncertain data points according to a model for labeling. The
most common techniques are - 1) Entropy [26] selects data points with max-
imum entropy, 2) Least Confidence [28] selects data points with the lowest
confidence, and 3) Margin [24] selects data points such that the difference
between the top two predictions is minimum.

Diversity Based Active Learning. The main drawback of uncertainty based
methods is that they lack diversity within the acquired subset. To mitigate this,
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a number of approaches have proposed to incorporate diversity. The Coreset

method [25] minimizes a coreset loss to form coresets that represent the geometric
structure of the original dataset. They do so using a greedy k -center clustering. A
recent approach called Badge [3] uses the last linear layer gradients to represent
data points and runs K-means++ [2] to obtain centers that have a high gradient
magnitude. The centers being representative and having high gradient magnitude
ensures uncertainty and diversity at the same time. However, for batch AL,
Badge models diversity and uncertainty only within the batch and not across
all batches. Another method, BatchBald [15] requires a large number of Monte
Carlo dropout samples to obtain significant mutual information which limits its
application to medical domains where data is scarce.

Class Imbalanced and Personalized Active Learning. Closely related to
our method Clinical, are methods which optimize an objective that involves a
held-out set. GradMatch [13] uses an orthogonal matching pursuit algorithm
to select a subset whose gradient closely matches the gradient of a validation
set. Another method, Glister-Active [14] formulates an acquisition function
that maximizes the log-likelihood on a held-out validation set. We adopt Grad-

Match and Glister-Active as baselines that targets rare classes in our class
imbalance setting and refer to it T-GradMatch and T-Glister in Sect. 4.
Recently, [16] proposed the use of submodular information measures for active
learning in realistic scenarios, while [17] used them to find rare objects in an
autonomous driving object detection dataset. Finally, [19] use the submodular
mutual information functions (used here) for personalized speech recognition.
Our proposed method uses the submodular mutual information to target select-
ing data points from the rare classes via using a small set of misclassified data
points as exemplars, which makes our method applicable to binary as well as
long-tail imbalance scenarios.

1.2 Our Contributions

We summarize our contributions as follows: 1)We emphasize on the issue of binary
and long-tail class imbalance in medical datasets that leads to poor performance
on rare yet critical classes. 2)Given the limitations of current AL methods on med-
ical datasets, we propose Clinical, a novel AL framework that can be applied to
any class imbalance scenario. 3) We demonstrate the effectiveness of our frame-
work for a diverse set of image classification tasks and modalities on Pneumonia-
MNIST [12], Path-MNIST [11], Blood-MNIST [1], APTOS-2019 [10], and ISIC-
2018 [4] datasets. Furthermore, we show that Clinical outperforms the state-of-
the-art AL methods by up to ≈ 6%−10% on an average in terms of the average
rare classes accuracy for binary imbalance scenarios and long-tail imbalance sce-
narios. 4) We provide valuable insights about the choice of submodular functions
to be used for subset selection based on the modality of medical data.

2 Preliminaries

Submodular Functions: We let V denote the ground-set of n data points V =
{1, 2, 3, ..., n} and a set function f : 2V −→ R. The function f is submodular [5] if it
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satisfies diminishing returns, namely f(j|X ) ≥ f(j|Y) for all X ⊆ Y ⊆ V, j /∈ Y.
Facility location, graph cut, log determinants, etc. are some examples [9].

Submodular Mutual Information (Smi): Given a set of items A,Q ⊆ V,
the submodular mutual information (MI) [6,8] is defined as If (A;Q) = f(A) +
f(Q)− f(A∪Q). Intuitively, this measures the similarity between Q and A and
we refer to Q as the query set. [18] extend Smi to handle the case when the target
can come from a different set V ′ apart from the ground set V. In the context of
imbalanced medical image classification, V is the source set of images and the
query set Q is the target set containing the rare class images. To find an optimal
subset given a query set Q ⊆ V ′, we can define gQ(A) = If (A;Q), A ⊆ V and
maximize the same.

2.1 Examples of SMI Functions

For targeted active learning, we use the recently introduced Smi functions in [6,8]
and their extensions introduced in [18] as acquisition functions. For any two data
points i ∈ V and j ∈ Q, let sij denote the similarity between them.

Graph Cut MI (Gcmi): The Smi instantiation of graph-cut (Gcmi) is defined
as: IGC(A;Q) = 2

∑
i∈A

∑
j∈Q sij . Since maximizing Gcmi maximizes the joint

pairwise sum with the query set, it will lead to a summary similar to the query
set Q. In fact, specific instantiations of Gcmi have been intuitively used for
query-focused summarization for videos [27] and documents [20,21].

Facility Location MI (Flmi): We consider two variants of Flmi. The first
variant is defined over V(Flvmi), the Smi instantiation can be defined as:
IFLV (A;Q) =

∑
i∈V min(maxj∈A sij ,maxj∈Q sij). The first term in the min(.)

of Flvmi models diversity, and the second term models query relevance.
For the second variant, which is defined over Q (Flqmi), the Smi instan-

tiation can be defined as: IFLQ(A;Q) =
∑

i∈Q maxj∈A sij +
∑

i∈A maxj∈Q sij .
Flqmi is very intuitive for query relevance as well. It measures the representation
of data points that are the most relevant to the query set and vice versa.

Log Determinant MI (Logdetmi): The Smi instantiation of Logdetmi

can be defined as: ILogDet(A;Q) = log det(SA) − log det(SA − SA,QS−1
Q ST

A,Q).
SA,Q denotes the cross-similarity matrix between the items in sets A and Q.

3 CLINICAL: Our Targeted Active Learning Framework
for Binary and Long-Tail Imbalance

In this section, we propose our targeted active learning framework, Clinical

(see Fig. 2), and show how it can be applied to datasets with class imbalance.
Concretely, we apply the Smi functions as acquisition functions for improving a
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model’s accuracy on rare classes at a given additional labeling cost (B instances)
without compromising on the overall accuracy. The main idea in Clinical, is to
use only the misclassified data points from a held-out target set T containing data
points from the rare classes. Let T̂ ⊆ T be the subset of misclassified data points.
Then, we optimize the Smi function If (A; T̂ ) using a greedy strategy [23].

Misclassified Instances 

Large Imbalanced Dataset Selected Subset  
with lesser imbalance

Targeted Active Learning
using SMI Functions

argmax

Misclassified Instances 

Large Imbalanced Dataset Selected Subset  
with lesser imbalance

Targeted Active Learning
using SMI Functions

argmax

Fig. 2. The Clinical framework. We use a set of misclassified instances T̂ as the query
set Q in the SMI function. We then maximize If (A; T̂ ) in an AL loop to target the
imbalance and gradually mine data points from the rare classes.

Note that since T̂ contains only the misclassified data points, it would contain
more data points from classes that are comparatively rarer or the worst perform-
ing. Moreover, T̂ is updated in every AL round, this mechanism helps the Smi

functions to focus on classes that require the most attention. For instance, in
the long-tail imbalance scenario (see Fig. 1), Clinical would focus more on the
tail classes in the initial rounds of AL. Next, we discuss the Clinical algorithm
in detail:

Algorithm: Let L be an initial training set of labeled instances and T be the
target set containing examples from the rare classes. Let U be a large unlabeled
dataset and M be the trained model using L. Next, we compute T̂ as the
subset of data points from T that were misclassified by M. Using last layer
gradients as a representation for each data point which are extracted from M,
we compute similarity kernels of elements within U , within T̂ and between U
and T̂ to instantiate an Smi function If (A; T̂ ) and maximize it to compute an
optimal subset A ⊆ U of size B given T̂ as target (query) set. We then augment
L with labeled A (i.e. L(A)) and re-train the model to improve the model on
the rare classes.
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Algorithm 1. Clinical: Targeted AL for binary and long-tail imbalance
Require: Initial Labeled set of data points: L, unlabeled dataset: U , target set: T , Loss

function H for learning model M, batch size: B, number of selection rounds: N

1: for selection round i = 1 : N do
2: Train M with loss H on the current labeled set L and obtain parameters θi

3: Compute T̂ ⊆ T that were misclassified by the trained model M
4: Use Mθi to compute gradients using hypothesized labels {∇θH(xj , ŷj , θ), ∀j ∈ U}

and obtain a pairwise similarity matrix X. {where Xij = 〈∇θHi(θ), ∇θHj(θ)〉}
5: Instantiate a submodular function f based on X.
6: Ai ← argmaxA⊆U,|A|≤BIf (A; T̂ )

7: Get labels L(Ai) for batch Ai, and L ← L ∪ L(Ai), U ← U − Ai

8: T ← T ∪ AT
i , augment T with new data points that belong to target classes.

9: end for
10: Return trained model M and parameters θN .

4 Experiments

In this section, we evaluate the effectiveness of Clinical on binary imbalance
(Sect. 4.1) and long-tail imbalance (Sect. 4.2) scenarios. We do so by compar-
ing the accuracy and class selections of various Smi functions with the existing
state-of-the-art AL approaches. In our experiments, we observe that different
Smi functions outperform existing approaches depending on the modality of the
medical data. We show that the choice of the Smi based acquisition function
is imperative and varies based on the imbalance scenario and the modality of
medical data.

Baselines in all Scenarios. We compare the performance on Clinical against
a variety of state-of-the-art uncertainty, diversity and targeted selection meth-
ods. The uncertainty based methods include Entropy, Least Confidence

(Least-Conf), and Margin. The diversity based methods include Core-

set and Badge. The targeted selection methods include T-Glister and T-

GradMatch. We discuss the details of all baselines in Sect. 1.1. For a fair com-
parison with Clinical, we use the same target set of misclassified data points T̂
as the held out validation set used in T-Glister and T-GradMatch. Lastly,
we compare with random sampling (Random).

Experimental Setup: We use the same training procedure and hyperparam-
eters for all AL methods to ensure a fair comparison. For all experiments, we
train a ResNet-18 [7] model using an SGD optimizer with an initial learning rate
of 0.001, the momentum of 0.9, and a weight decay of 5e−4. For each AL round,
the weights are reinitialized using Xavier initialization and the model is trained
till 99% training accuracy. The learning rate is decayed using cosine annealing
[22] in every epoch. We run each experiment 5× on a V100 GPU and provide
the error bars (std deviation). We discuss dataset splits for each our experiments
below and provide more details in Appendix. B.



CLINICAL: Targeted AL for Imbalanced Medical Image Classification 125

4.1 Binary Imbalance

Datasets: We apply our framework to 1) Pneumonia-MNIST (pediatric chest X-
ray) [12,29], 2) Path-MNIST (colorectal cancer histology) [11,29], and 3)Blood-
MNIST (blood cell microscope) [1,29] medical image classification datasets. To
create a more realistic medical scenario, we create a custom dataset that simu-
lates binary class imbalance for each of these datasets for our experiments. Let
C be the set of data points from the rare classes and D be the set of data points
from the over-represented classes. We create the initial labeled set L (seed set)
in AL, |DL| = ρ|CL| and an unlabeled set U such that |DU | = ρ|CU |, where ρ
is the imbalance factor. We use a small held out target set T which contains
data points from the rare classes. For Path-MNIST and PneumoniaMNIST, we
use ρ = 20, and for Blood-MNIST, we use ρ = 7 due to the small size of the
dataset. For Pneumonia-MNIST, |CL|+ |DL| = 105, |CU |+ |DU | = 1100, B = 10
(AL batch size) and, |T | = 5. Following the natural class imbalance, we use
the ‘pneumonia’ class as the rare class. For Path-MNIST, |CL| + |DL| = 3550,
|CU |+ |DU | = 56.8K, B = 500 and, |T | = 20. Following the natural class imbal-
ance, we use two classes from the dataset (‘mucus’, ‘normal colon mucosa’) as
rare classes. For Blood-MNIST, |CL| + |DL| = 228, |CU | + |DU | = 1824, B = 20
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Fig. 3. AL for binary imbalanced medical image classification on Pneumonia-MNIST
[12] (first row), Path-MNIST [11] (second row), and Blood-MNIST [1] (third row).
Clinical outperforms the existing AL methods by ≈ 2%−12% on the rare classes acc.
(left col.) and ≈ 2%−6% on overall acc. (center col.). Smi functions select the most
number of rare class samples (right col.)
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and, |T | = 20. Following the natural class imbalance, we use four classes from
the dataset (‘basophil’, ‘eosinophil’, ‘lymphocyte’, ‘neutrophil’) as rare classes.

Results: The results for the binary imbalance scenario are shown in Fig. 3.
We observe that the Clinical consistently outperform other methods by ≈
2%−12% on the rare classes accuracy (Fig. 3(left column)) and ≈ 2%−6% on
overall accuracy (Fig. 3(center column)). This is due to the fact that the Smi

functions are able to select significantly more data points that belong to the
rare classes (Fig. 3(right column)). Particularly, we observe that when the data
modality is X-ray (Pneumonia-MNIST), the facility location based Smi variants,
Flvmi and Flqmi perform significantly better than other acquisition functions
due to their ability to model representation. For the colon pathology modality
(Path-MNIST), Gcmi and Flqmi functions that model query-relevance signifi-
cantly outperform other methods. Lastly, for the blood cell microscope modality
(Blood-MNIST), we observe some improvement using Flqmi, although it selects
many points from the rare classes.

4.2 Long-Tail Imbalance

Datasets: We apply Clinical to two datasets that naturally show a long-tail
distribution: 1) The ISIC-2018 skin lesion diagnosis dataset [4] and 2) APTOS-
2019 [10] for diabetic retinopathy (DR) grading from retinal fundus images. We
evaluate all AL methods on a balanced test set to obtain a fair estimate of accu-
racy across all classes. We split the remaining data randomly with 20% into the
initial labeled set L and 80% into the unlabeled set U . We use a small held-out
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Fig. 4. Active learning for long-tail imbalanced medical image classification on ISIC-
2018 [4] (first row) and APTOS-2019 [10] (second row). Clinical outperforms the
state-of-the-art AL methods by ≈ 10%−12% on the average long-tail accuracy (left
col.) and ≈ 2%−5% on overall accuracy (center col.). Smi functions select the most
number of long-tail class samples (right col.)
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target set T with data points from the classes at the tail of the distribution
(long-tail classes, see Fig. 1). For ISIC-2018, we use the bottom three infrequent
skin lesions from the tail of the distribution as long-tail classes (‘bowen’s dis-
ease’, ‘vascular lesions’, and ‘dermatofibroma’). We set B = 40 and |T | = 15.
For APTOS-2019 we use the bottom two infrequent DR gradations as long-tail
classes (‘severe DR’ and ‘proliferative DR’) (see Fig. 1). We set B = 20 and
|T | = 10.

Results: We present the results for the long-tail imbalance scenario in Fig. 4. We
observe that Clinical consistently outperform other methods by ≈ 10%−12%
on the average long-tail classes accuracy (Fig. 4(left column)) and ≈ 2%−5%
on the overall accuracy (Fig. 4(center column)). This is because the Smi func-
tions select significantly more data points from the long-tail classes (Fig. 4(right
column)). On both datasets, we observe that the functions modeling query-
relevance and diversity (Flvmi and Logdetmi) outperform the functions mod-
eling only query-relevance (Flqmi and Gcmi).

5 Conclusion

We demonstrate the effectiveness of Clinical for a wide range of medical data
modalities for binary and long-tail imbalance. We empirically observe that the
current methods in active learning cannot be directly applied to medical datasets
with rare classes, and show that a targeting mechanism like Smi can greatly
improve the performance on rare classes.
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Abstract. Over recent years, deep learning algorithms have gained prominence
in medical image analysis research. Like other connectionist systems, such net-
works have been found to be prone to catastrophic forgetting effects. This makes
generalization a challenge as new additions to prediction requirements at runtime
would invariably require retraining on not only the new dataset, but also substan-
tial portions of older task data. This is a difficult task in clinical imaging where
retention of datasets over extended time is challenged by legal and infrastructure
constraints. Thus, there is a requirement of algorithmic designs that address for-
getting as a part of base and incremental task learning. This has been cast as an
incremental learning problem recently. We propose a novel approach to the incre-
mental class addition problem, where a retention of limited numbers of exemplars
of old classes helps reduce forgetting instead of large scale data storage, using
a strategy of incremental time augmentation with Mobius transformations and
weighted distillation objectives to correct evolving class imbalance effects.

Keywords: Knowledge distillation · Incremental learning · Mobius
augmentation

1 Introduction

Deep learning based methods have become common in medical imaging research
[31, 35]. In realistic situations, clinical imaging systems often do not have access to
all the required data initially but data arrives in incremental chunks over time, acquired
withmultiple devices and across different centers. This problem is pronounced in health-
care systems in low and middle countries (LMIC) where data acquisition and quality
assurance infrastructure may not be as developed. Such cases of variable data acces-
sibility require machine learning algorithms to be robust to adaptations on new data
distributions over time and be generalizable to novel classes of data, in order to remain
clinically significant and reliably aid diagnostic efforts throughout their shelf lives under
evolving requirements. This requirement for continual adaptation in deep networks for
clinical imaging implies a need to ensure that model parameters remain relevant to both
old and new tasks in incremental data regimes. This needs to occur without storing large
numbers of exemplars from past classes over subsequent learning schedules [33] owing
to constraints on long-term storage of clinical data in terms of fairness [36], legal and
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privacy issues [37]. Thus the ideal joint training condition of optimizing models with all
datasets ever used at each incremental retraining is challenging in clinical imaging.

Prior Work. Adaptation of existingmodels to learn new classeswas attempted by trans-
fer learning [2]. Transfer learning, despite helping prior learning to enhance future task
learning, was found to inefficiently balance old and new task knowledge. Studies show
a decline in past performances or catastrophic forgetting [1], as information pre-viously
learnt is lost causing high validation losses on past data. Recent work has pursued miti-
gation of forgetting in deep networks with parameter expansion [3], exemplar replay [4],
generative rehearsal [5, 6] and weight regularization [7]. Knowledge distillation, where
representations learnt by a model are transferred to another, are often used in model
compression [8]. It has been used for incremental learning as the representation from
one learning session can help regularize a future session, with the old tasks’ logits reg-
ularizing the learning on new data. Such methods include Learning without Forgetting
(LwF) [4] with distillation and cross-entropy objectives, iCaRL [10] which incremen-
tally learns representations, learning using human insights [11] where distillation and
gaze-based salience enable model compression, progressive retrospection (PDR) [12]
using distillation from both old and new models. In clinical imaging, data availability is
often not immediate and models learning incrementally over time without affecting past
performance have been researched [32], such as pixel regularization for MRI segmenta-
tion [13], modelling Alzheimers progression [14], weight consolidation and distillation
[15, 34], hierarchical continual learning [16] etc. While data augmentation has been
extensively used in machine learning [9, 17], there has been relatively little research on
runtime augmentation on examples retained in incremental learning. We study Mobius
transformations for incremental time augmentation in histology imaging. Mobius trans-
formations have been studied in projective geometry [18], design of com-plex valued
networks [19], optimizing deep compositional spatial models [20], extending sample-
level diversity [21], hyperbolic networks [22] and approximating Choquet integrals [23].
We extend Mobius functions to data augmentation regimes in histology for incremental
learning and study their interaction with distillation methods.

Contributions. Wepropose a novel approach for incremental learningwithout storing a
large number of samples in the analysis of histology images, using a dataset of colorectal
carcinoma images [24] to show a proof-of-concept. This is achieved by propagating
sample diversity through anovel online augmentation over a limited number of past tasks’
samples, while performing aweighted cross-distillation over the logits of the past classes
while training on new class data for the available model. Our key contributions are: a) a
concept of incremental time data augmentation strategy usingMobius transformations b)
weighted cross-distillation for continual learning of new classes c) an online adaptation
of Mobius augmentation in incremental learning tasks.

We first describe Mobius transformations and its interpretation as a composition of
elementary operations like translation, rotation and so on, which individually form the
basis of many sample-level data augmentation methods. Next, we describe our distil-
lation approach where class specific accuracy is used to apportion importance to the
over-all past logits vector. The combination of the two steps involves a few samples
from old classes being subjected to an online augmentation using Mobius transforma-
tion to improve representation of previously seen classes as the model is optimized for
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new classes. During the optimization over new classes, the old class logits after being
weighted without images being stored, and summed up to reflect an overall representa-
tion of old tasks allow the model to have a snapshot of the past learning and prevent a
catastrophic perturbation to the parameter space along with cross-entropy optimization
that enables the new task learning to account for both old class knowledge and the new
class sample information.

2 Methodology

Datasets.Anonymized colorectal cancer HE stained tissue slides were obtained using an
Aperio ScanScope scanner at 20× magnification. These are digitized and anonymized
images of formalin-fixed paraffin embedded human colorectal adenocarcinomas and
made publicly available through the pathology archives at the UniversityMedical Center
Mannheim [24]. These slides contain contiguous tissue areas that aremanually annotated
and tessellated.These are converted to 150×150×3RGBpatches.Overall, 5000 images
were obtained for different tissue classes. In this study, 8 classes with 625 samples
each were considered: 1. Tumor epithelium; 2. Simple stroma (homogeneous with tumor
stroma, extra-tumoral stroma and smooth muscle); 3. Complex stroma (single tumor
cells and immune cells); 4. Debris (necrosis, hemorrhage and mucus); 5. Immune cells
(immune cell conglomerates and sub-mucosal lymphoid follicles); 6. Normal mucosal
glands; 7. Adipose tissue; 8. Background.

Problem Definition. Consider a problem where the model needs to be trained in anM-
stage fashion, with each stage being a classification taskwith classes asXt= {Xt,i}Kt i = 1,
t ε [1, M], with each X being a class and includes samples xt ε Xt and Kt being the
number of classes in each stage t. The classifier learning in stage t-1, after incrementally
being optimized over the classes at the tth stage, shouldn’t show marked de-clines in
inference capacity over validation set instances from (t−1)th stage or prior stages. Here,
we design an incremental learning experiment with four classes in the initial training
stage and four in the incremental stage (M = 2, K1 = K2 = 4).

This study is modelled as a sequential class learning task as above, with a propor-
tion of classes being learnt as ‘base classes’ during an initial training stage. Next, the
remaining classes are learnt as ‘incremental classes’ in a subsequent learning stage,
leading to a multistage learning system over a temporal interval. The base classes are
the tumour epithelium (TE), simple stroma (SS), Immune cells (IC) and Adipose tissue
(AT). The incrementally learnt classes include complex stroma (CS), debris (De), normal
mucosal glands (NMG) and background (BG). The former are used to optimize for the
initial task (Task 1) and the latter help train the model trained over base classes for the
incremental task (Task 2), thus simulating a continual learning scenario (Figs. 1 and 2).
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Fig. 1. Sample images from the colorectal histology dataset used (top); Mobius transformed
augmented examples during incremental learning (bottom)

Fig. 2. Interpretation of Mobius transformations as a composition of basic transformations
enables an algorithmic implementation to plug into the incremental learning step at real-time.

Mobius Augmentation. Many sample-level data augmentation methods at training
time belong to a set of affine transformations, which includes a group of mappings
like rotation, scaling, translation and flipping. Such operations can be modelled as a
bijective mapping in a complex plane as z → az + b, where the variable z, parameters
a, b ε C, the set of complex numbers. A generalization of this mapping considers the
presence of non-zero imaginary parts of the complex numbers in the transformation and
the affine mapping being performed in the Argand plane [19]. This expands the superset
of possible image transformations with valid label preservation. The denominator of a
linear transformation z → az + b can be assumed as unity. This can also be obtained
by treating the denominator as a complex number cz + d, such that the real part of this
complex quantity is unity and the imaginary part is zero. This hints at the next stage of
abstraction by introducing a denominator with non-zero real and imaginary components
(c, z �= 0). This creates a group of transformations in the set of complex numbers:

f (z) = (az + b)/(cz + d) (1)

where a, b, c, d ε C and ad – bc �= 0 is the invertibility condition. This encapsulates a
superset of basic mappings including inversion, translation, rotation and flipping and is
termed aMobius transformation if z ε C, f(z) is not constant and cz+ d �= 0 [19]. A point
z is mapped from one complex plane to another using parameters a, b, c, d. This can
pro-ceed without an explicit imaginary part defined for the complex entity z, as every
real number can have a form x + iy, where x ε R, and y = 0. This enables us to define
points on the image to estimate a,b,c and d. We choose 3 points at random on the image
space with different combinations allowing for a different output at the conclusion of the
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mapping operation with label information preserved. This allows expansion in sample
diversity per input in available datasets, with a much larger set of possible modifications
for a particular class compared to existing sample-level methods. With a transformed
appearance in 2D, the Mobius augmentation improves model generalization and robust-
ness to noise and dataset shifts. Assuming 3 points in the initial plane as z1, z2, z3 and
in a target plane as w1, w2, w3, then considering the preservation of anharmonic ratios
[19]:

(w − w1)(w2 − w3)

(w − w3)(w2 − w1)
= (z − z1)(z2 − z3)

(z − z3)(z2 − z1)
(2)

(w − w1)

(w − w3)
= (z − z1)(z2 − z3)(w2 − w1)

(z − z3)(z2 − z1)(w2 − w3)
(3)

where,

w = (Aw3 − w1)

A − 1

A = (z − z1)(z2 − z3)(w2 − w1)

(z − z3)(z2 − z1)(w2 − w3)

This implies that we can express the transformation function in a reduced form as:

f (z) = w = (Aw3 − w1)

A − 1
= az + b

cz + d
(4)

Then, we obtain the values of coefficients a, b, c, d in terms of the chosen points (z1, z2,
z3) and (w1, w2, w3) through substitution in equations (1), (3) and (4):

a = w1w2z1 − w1w3z1 − w1w2z2 + w2w3z2 + w1w3z3 − w2w3z3 (5a)

b = w1w3z1z2 − w2w3z1z2 − w1w2z1z3 + w2w3z1z3 + w1w2z2z3 − w1w3z2z3 (5b)

c = w2z1 − w3z1 − w1z2 + w3z2 + w1z3 − w2z3 (5c)

d = w1z1z2 − w2z1z2 − w1z1z3 + w3z1z3 + w2z2z3 − w3z2z3 (5d)

Based on Liouville’s theorem [25], a Mobius transformation can be expressed as a
composition of translations, orthogonal transformations and inversions, encompassing a
superset of a number of common augmentation operations in deep learning. This helps
us design an algorithmic framework for real-time generation of Mobius transformations
using values of a, b, c, d from (5a, 5b, 5c, 5d) to form subspaces of compositions on
basic transformations from a superset of the generalized Mobius transformation. While
an infinite number ofMobius samples can be obtained, the number of samples is bounded
by randomly assigned cutoffs at runtime within [1, R], where R is the maximum number
of samples allowed by memory constraints. We set R at 250 based on our RAM settings.
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Weighted Distillation. Representations learnt by models can also be thought of as rep-
resenting a ‘dark knowledge’ [8] about themodel-data dynamics in a compact vec-torized
form. This process was termed as knowledge distillation since the heavier models’ learn-
ing is ‘distilled’ into an essential, compact representation that can be used in the other
tasks. We use this vector as a ‘memory’ of past class learning to regularize incremental
training. Based on the initial learning, we retain class averaged logits per class by saving
to memory the validation logits at the conclusion of the training sched-ule of the initial
(Task 1) training. Next, we compute the weighted logits by applying weighting factors
to logits of individual classes, the weights being numerical inverses of class-specific
validation accuracies. This allows our distillation logits to reflect class-wise biases in
proportion to their difficulty for the model to learn. The initial classes’ training employs
a cross-entropy loss. The probability vector of the initial task, is p = softmax (z) ε 1,
where z is the set of logits. The objective in the initial training stage:

Lcrossent(y, p) = −
∑K1

i=1
yi · log(pi) (6)

Here pi is the predicted probability score vector for each class in the new task, yi is
the associated ground truth in a one-hot encoding form. In next sessions, a distillation
term is added to the objective, to enable representation of past knowledge in the learn-ing
process (y′y are final layer class scores for new task classes before softmax steps):

Ldistillation
(
zold , y

′) = −
∑N

i=1
softmax(

zold
T

). log(softmax

(
y′
i

T

)
) (7)

Logits and predictions are scaled with a temperature term T in a softening process.
Softening with a temperature hyperparameter helps reduce the disparity between the
class label with the highest confidence score in the probability vector with respect to the
other class labels and helps better reflect inter-class relationships at the representation
learning stage. Considering the overall logit vector for old classes, after weighting as
zold, class-specific logits are weighted to obtain a sum of class-weighted logits as:

zold =
∑k1

i=1
ui · zi (8)

The logits from individual classes zi, i ε [1,K1] are calculated by averaging pre-
soft-max probability values (after sigmoid activation) for examples from each of K1
classes. The weights (u1,u2,…,uk1 ) are computed as inverse of class-specific accuracy
on valida-tion sets of the initial classes. The idea is to boost logits from classes which
are inherently difficult to learn for the model (lower the class-specific accuracy, higher
the class weight). This reduces the disparity among classes in their contribution towards
the overall sessional representation vector to be saved as an imprint of Stage 1 learning.
Overall, the net incremental objective for learning beyond initial sessions is ( = 0.5):

L = γLcrossent + (1 − γ )Ldistillation (9)
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3 Experiments, Results and Discussion

The experiment is split into two sequential tasks, labeled Task 1 and Task 2. The initial
task proceeds with a standard cross-entropy objective and Task 2, the incremental task
utilizes a joint loss with a cross-entropy term and a distillation loss. We utilize a ResNet-
50 feature extractor, removing layers subsequent to the last residual block and adding
to the last residual block a fully-connected (FC) layer of 512 units, followed by a FC
layer with 4 units (number of classes) and loss heads. The pre-softmax layer generates
probability scores by a sigmoid operation. An 80:20 split is used for the train:test split
on the dataset. Input images are resized to 224 × 224 and a batch size of 50 is used
with a learning rate of 0.001 and adaptive moment optimization (Adam) [26]. Task 1
models are trained for 150 epochs on a (N,label) set for all N frames. In Task 2, models
are trained for 150 epochs on (N’, label, logit) tuples- N’ having Mobius transformed
versions of selectively retained old samples besides new class data. Note that we don’t
perform training time data augmentation except for the retained samples in incremental
training. This is a departure from most machine learning efforts in clinical imaging but
our aim is to analyze specific effects of Mobius transformations on incremental learning
performance with distillation and otherwise. Thus, boosting base model accuracy is not
aimed in the study.We set T = 4.0 after grid search in T ε [1, 5]. Two 32GBNvidia V100
GPUs, 512MBRAMused with ResNet 50 based models with ~24.8 million parameters,
average training time of 102s per epoch in both tasks. Mobius augmentation modules
and deep models are coded in Python 3.7.1 and Tensorflow 2.0 respectively.

Table 1. Accuracy (%) for task 1/Stage 1 classes, after Task 1 is trained for, and after task 2 is
incrementally added in Stage 2. The difference in accuracies on the validation set of Task 1 classes
represents forgetting on them due to Task 2 addition

Stage Stage 1 Stag e 2 ΔAcc
TE SS IC AT Avg(T1) TE SS IC AT Avg(T2) T2-T1

Our(MT+wKD) 91.66 90.40 87.35 88.72 89.53 90.33 87.50 85.46 87.15 87.61 1.92
Our(MT+KD) 91.66 90.40 87.35 88.72 89.53 84.67 83.15 81.25 80.67 82.44 7.09

Our (KD) 91.66 90.40 87.35 88.72 89.53 77.20 72.33 70.54 73.25 73.33 16.20

Our (MT+FT) 91.66 90.40 87.35 88.72 89.53 75.24 68.10 67.11 70.77 70.31 19.22

Ours (FT) 91.66 90.40 87.35 88.72 89.53 55.45 48.67 47.05 51.10 50.57 38.96
LwF.ewc [15] 91.66 90.40 87.35 88.72 89.53 72.50 68.95 64.71 67.90 68.51 21.02

LwM [11] 91.66 90.40 87.35 88.72 89.53 76.95 73.85 69.20 73.35 73.34 16.19

PDR [12] 91.66 90.40 87.35 88.72 89.53 73.09 70.21 67.33 70.55 70.30 19.23

For the incremental task (Task 2), we use data from the 4 classes that are incremen-
tally added.Mobius transformations for augmentation are exclusively applied to retained
exemplars from Task 1 classes. Guided by memory constraints, we choose the top 20
examples for retention sorting by the magnitude of the class confidence scores after
the validation set if passed through the trained models after Task 1. Trivially, including
a greater number of samples can improve performance as theoretically shown in [2],
with full joint training being an upper bound on incremental performance. Local storage
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conditions constrain our memory buffer available and we need to economise on memory
similar to several clinical imaging workflows worldwide. Thus, we stop at 20 instances
for retention sets. The reduction in forgetting (Table 1) is pronounced for weighted dis-
tillation methods with a ΔAcc (difference in overall accuracy on Task 1 validation set
before and after Task 2 training) of 1.92. In Table 1,methods using bothweighted distilla-
tion and Mobius augmentation are labeled as ‘Our(MT+wKD)’, and as ‘Our(MT+KD)’
if using unweighted distillation. ‘Our(MT+FT)’ is the method where finetuning is com-
bined withMobius augmentation. For incremental tasks and in the overall accuracies for
all classes after Task 2 training concludes, significant gains are seen with methods using
Mobius operations to retained exemplars for initial task classes before interspersing
with incremental class batches both for distillation and finetuning approaches. Overall,
a clear advantage is seen when using distillation compared to finetuning alone. The best
results are seen for combined distillation and Mobius aug-mentation before incremental
optimization. This underscores the value of augmentation of old retained samples. This
is different from most distillation-based methods that retain some old samples without
incremental augmentation for retained samples while data augmentation is used only in
initial sessions and the new incremental data.

Baselines from literature are used with ResNet-50 backbones and original incremen-
tal training configurations molded to suit the two-task incremental aspect of our study.
Table 2 shows the performance of final model on Task 2. While one may convention-
ally expect to have near equal accuracies across methods, we see slight differences in
prediction accuracies within same Task 2 classes. The forward transfer effects of Task
1 training coupled with distillation based regularization is more optimal when using an
intermediate Mobius augmentation step on old examples creating a diverse sample set
for incremental training. Distilled models perform better on the new task overall due
to distillation induced regularizations on parameter shifts unlike the unregularized opti-
mization in finetuning (FT). We also compare (Table 2; right) Mobius transformation
based incremental augmentation (MT) with other augmentation ideas like cutout [27],
Adatransform [28], AutoAugment [17], Population Based Augmentation (PBA) [29],
RandAugment [30], rotation with 20° steps and translation with a 10px window. This
comparison ofΔacc values showsMobius augmentation outperforming several sample-
levelmethods in reducing forgetting by augmenting old task samples prior to incremental
training. Future work can focus on studying the efficacy of Mobius transforms on other
tasks like segmentation, comparing to generative augmentation methods and exploring
Mobius augmentation in combination with concurrent methods in literature.
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Fig. 3. Illustration of our overall pipeline. The initial training is performed (left) followed by
a curation of old task exemplars, a Mobius augmentation step and interspersing with new class
batches, followed by incremental task training under joint cross-entropy and distillation (right).

Table 2. Accuracy (%) for Task 2/Stage 2 classes. Benefits of forward transfer on new class data
is evident (left); ΔAcc comparison of Mobius transforms and existing methods for augmentation
on select old task exemplars over distillation and finetuning.

4 Conclusion

We presented a novel method of data augmentation using Mobius transformations. Sub-
sequently, we explore the value of the generalized Mobius transformations for perform-
ing augmentation of an exemplar set in a distillation-based incremental learning setting,
introducing a new concept of incremental augmentation for retained exemplars. All of
this was validated on a real-world dataset of colorectal carcinoma histology images.
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Abstract. Avoiding out-of-distribution (OOD) data is critical for train-
ing supervised machine learning models in the medical imaging domain.
Furthermore, obtaining labeled medical data is difficult and expensive
since it requires expert annotators like doctors, radiologists, etc. Active
learning (AL) is a well-known method to mitigate labeling costs by select-
ing the most diverse or uncertain samples. However, current AL methods
do not work well in the medical imaging domain with OOD data. We
propose Diagnose (avoiDing out-of-dIstribution dAta usinG submod-
ular iNfOrmation meaSurEs), an active learning framework that can
jointly model similarity and dissimilarity, which is crucial in mining in-
distribution data and avoiding OOD data at the same time. Particularly,
we use a small number of data points as exemplars that represent a query
set of in-distribution data points and another set of exemplars that rep-
resent a private set of OOD data points. We illustrate the generalizability
of our framework by evaluating it on a wide variety of real-world OOD
scenarios. Our experiments verify the superiority of Diagnose over the
state-of-the-art AL methods across multiple domains of medical imaging.

1 Introduction

Deep learning based models are widely used for medical image computing. How-
ever, it is critical to mitigate incorrect predictions for avoiding a catastrophe
when these models are deployed at a health-care facility. It is known that deep
models are data hungry, which leads us to two problems before we can train
a high quality model. Firstly, procuring medical data is difficult due to lim-
ited availability and privacy constraints. Secondly, acquiring the right labeled
data to train a supervised model which has minimum dissimilarity with the test
(deployment) distribution can be challenging [19]. This difficulty is particularly
because the unlabeled dataset consists of out-of-distribution (OOD) data caused
due to changes in data collection procedures, treatment protocols, demographics
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of the target population, etc. [4]. In this paper, we study active learning (AL)
strategies in order to mitigate both these problems.

Current AL techniques are designed to acquire data points that are either the
most uncertain, or the most diverse, or a mix of both. Unfortunately, this makes
the current techniques susceptible to picking data points that are OOD which
gives rise to two more problems: 1) Wastage of expensive labeling resources,
since expert annotators need to filter out OOD data points rather than focusing
on annotating the in-distribution data points. 2) Drop in model performance,
since OOD data points may sink into the labeled set due to human errors. To
tackle the above problems, we propose Diagnose, an active learning framework
that uses the submodular information measures [7] as acquisition functions to
model similarity with the in-distribution data points and dissimilarity with the
OOD data points.

1.1 Problem Statement: OOD Scenarios in Medical Data

Scenario A: Scenario B: Scenario C:
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Fig. 1. The out-of-distribution (OOD)
images in three scenarios are contrasted
with the in-distribution (ID) images. A:
Inputs that are unrelated to the task. B:
Inputs which are incorrectly acquired. C:
Inputs that belong to a different view of
anatomy. Note that these scenarios become
increasingly difficult as we go from A →
C since the semantic similarity between
OOD and ID increases.

We consider a diverse set of four OOD
scenarios with increasing levels of dif-
ficulty. We present three scenarios in
Fig. 1. We present the details for each
scenario in the context of image classi-
fication below:

Scenario A - Unrelated Images:
Avoid images that are completely
unassociated for the task. For instance,
real-world images mixed with skin
lesion images (first column in Fig. 1).

Scenario B - Incorrectly Acquired:
Avoid images that are either cap-
tured incorrectly or post-processed
incorrectly. For instance, incorrectly
cropped/positioned images, blurred
images, or images captured using a dif-
ferent procedure etc. (second column
in Fig. 1). OOD images of this type
are harder to filter than scenario A
since there may be some overlap with
the semantics of the in-distribution
images.

Scenario C - Mixed View: Avoid images captured with a different view of
the anatomy than the deployment scenario. For example, images from a coronal
or sagittal view are OOD when the deployment is on axial view images (third
column in Fig. 1). Note that this scenario is further challenging than scenario B
since only the viewpoint of the same organ makes it ID or OOD.
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1.2 Related Work

Uncertainty Based Active Learning. Uncertainty based methods aim to
select the most uncertain data points according to a model for labeling. The most
common techniques are - 1) Entropy [21] selects data points with maximum
entropy, and 2) Margin [18] selects data points such that the difference between
the top two predictions is minimum.

Diversity Based Active Learning. The main drawback of uncertainty based
methods is that they lack diversity within the acquired subset. To mitigate this,
a number of approaches have proposed to incorporate diversity. The Coreset
method [20] minimizes a coreset loss to form coresets that represent the geo-
metric structure of the original dataset. They do so using a greedy k -center
clustering. A recent approach called Badge [2] uses the last linear layer gradi-
ents to represent data points and runs K-means++ [1] to obtain centers each
having high gradient magnitude. Having representative centers with high gra-
dient magnitude ensures uncertainty and diversity at the same time. However,
for batch AL, Badge models diversity and uncertainty only within the batch
and not across all batches. Another method, BatchBald [11] requires a large
number of Monte Carlo dropout samples to obtain reliable mutual information
which limits its application to medical domains where data is scarce.

Active Learning for OOD Data. To the best of our knowledge, only a small
minority of AL methods tackle OOD data. Our work is closest to and inspired
from Similar [12], which uses the Scmi functions (see Sect. 2) for simulated
OOD scenarios on toy datasets with thumbnail images (CIFAR-10 [14]) and
black and white digit images (MNIST [15]). In contrast, Diagnose tackles a
wide range of real-world OOD scenarios in the medical imaging domain. Another
related AL baseline is Glister-Active [10] with an acquisition formulation that
maximizes the log-likelihood on a held-out validation set.

1.3 Our Contributions

We summarize our contributions as follows: 1) We emphasize on four diverse
OOD data scenarios in the context of medical image classification (see Fig. 1). 2)
Given the limitations of current AL methods on medical datasets, we propose
Diagnose, a novel AL framework that can jointly model similarity with the
in-distribution (ID) data points and dissimilarity with the OOD data points.
We observe that the submodular conditional mutual information functions that
jointly model similarity and dissimilarity acquire the most number of ID data
points (see Fig. 3, 3, 4). 3) We demonstrate the effectiveness of our framework for
multiple modalities, namely, dermatoscopy, Abdominal CT, and histopathology.
Furthermore, we show that Diagnose consistently outperforms the state-of-the-
art AL methods on all OOD scenarios. 4) Through rigorous ablation studies,
we compare the effects of maximizing mutual information and conditional gain
functions.
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2 Preliminaries

Submodular Functions: We let V denote the ground-set of n data points V =
{1, 2, 3, ..., n} and a set function f : 2V −→ R. The function f is submodular [5]
if it satisfies the diminishing marginal returns, namely f(j|A) ≥ f(j|B) for all
A ⊆ B ⊆ V, j /∈ B. Different submodular functions model different properties.
For e.g., facility location, f(A) =

∑

i∈V
max
j∈A

Sij , selects a representative subset

and log determinant, f(A) = log det(S) selects a diverse subset [8], where S is a
matrix containing pariwise similarity values Sij .

Table 1. Instantiations of Submodular Information Measures (SIM).

(a) SMI and SCG functions.

SMI If (A;Q)

FLMI
∑

i∈U
min(max

j∈A
Sij ,max

j∈Q
Sij)

LogDetMI log det(SA) − log det(SA−
SA,QS−1

Q ST
A,Q)

SCG f(A|P)

FLCG
∑

i∈U
max(max

j∈A
Sij− max

j∈P
Sij , 0)

LogDetCG log det(SA − SA,PS−1
P ST

A,P)

(b) SCMI functions.

SCMI If (A;Q|P)

FLCMI
∑

i∈U
max(min(max

j∈A
Sij , max

j∈Q
Sij)

−max
j∈P

Sij , 0)

LogDetCMI log
det(I−S

−1
P SP,QS

−1
Q ST

P,Q)

det(I−S
−1
A∪PSA∪P,QS

−1
Q ST

A∪P,Q
)

Submodular Information Measures (SIM): Given a set of items A,Q,P ⊆
V, the submodular conditional mutual information (Scmi) [7] is defined as
If (A;Q|P) = f(A ∪ P) + f(Q ∪ P) − f(A ∪ Q ∪ P) − f(P). Intuitively, this
jointly measures the similarity between Q and A and the dissimilarity between
P and A. We refer to Q as the query set and P as the private or conditioning
set. Kothawade et al. [13] extend the SIM to handle the case when Q and P can
come from a different set V ′ which is disjoint from the ground set V. In the con-
text of medical image classification in scenarios with OOD data, V is the source
set of images, whereas Q contains data points from the in-distribution classes
that we are interested in selecting, and P contains OOD data points that we
want to avoid. As discussed in [12], we can use the Scmi formulation to obtain
the submodular mutual information (Smi) by setting Q ← Q and P ← ∅. The
Smi is defined as: If (A;Q) = f(A) + f(Q) − f(A ∪ Q). Similarly, the submod-
ular conditional gain (Scg) formulation can be obtained by setting Q ← ∅ and
P ← P. The Scg is defined as: f(A|P) = f(A ∪ P) − f(P). To find an optimal
subset given Q,P ⊆ V ′, we can define gQ,P(A) = If (A;Q|P), A ⊆ V and max-
imize the same. In Table 1, we present the instantiations of various Scmi, Scg
and, Scmi functions with the naming convention abbreviated as the ‘function
name’ + ‘CMI/MI/CG’. The submodular functions that we use include ‘Facility
Location’ (FL) and ‘Log Determinant’ (LogDet) [7,13].
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Unlabelled Dataset with ID
and OOD Images

Query Set with ID
Images

Private Set with
OOD images

Selected Subset
Updated Labelled Set

argmax
Get Labels

Fig. 2. One round of active learning using Diagnose. We optimize the Scmi function
to jointly model similarity with the query set I with ID images and dissimilarity with
the private set O with OOD images.

3 Leveraging Submodular Information Measures
for Multiple Out-of-Distribution Scenarios

In this section, we present Diagnose (see Fig. 2), a one-stop framework that uses
the Scmi functions as AL acquisition functions to tackle OOD scenarios (Fig. 1).
The main idea in our approach is to exploit the joint modeling of similarity and

Algorithm 1. Diagnose: Avoiding OOD using SIM
Require: Initial labeled set: L, Initial set of ID points: I ← L, Initial set of OOD

points: O ← ∅ large unlabeled dataset: U with ID and OOD points, Loss function
H for learning model M, batch size: B, number of selection rounds: N

1: for selection round i = 1 : N do
2: Train Mθi with loss H on the current labeled set L.
3: GU ← {∇θiH(xj , ŷj , θi), ∀j ∈ U} {Compute gradients using hypothesized labels}

4: GI , GO ← {∇θiH(xj , yj , θi), ∀j ∈ I, O} {Compute gradients using true labels}
5: X ← Cosine Similarity ({GI ∪ GO}, GU ) {X ∈ R

|I∪O|×|U|}
6: Instantiate a Scmi function If based on X .
7: Ai ← argmaxA⊆U,|A|≤BIf (A; I|O)
8: Get labels L(Ai) for batch Ai and L ← L ∪ L(Ai), U ← U − Ai

9: I ← I ∪ AI
i , O ← O ∪ AO

i {Add new ID points to I and new OOD points to
O}

10: end for
11: Return trained model M and parameters θ.

dissimilarity in Scmi functions to acquire the desired in-distribution (ID) data
and avoid the out-of-distribution (OOD) data. We do so by maintaining two sets,
viz.: I containing the ID data points, and O containing the OOD data points
that we have encountered so far in the batch active learning loop. Next, we
assign the query set Q ← I and the private set P ← O in the Scmi formulation
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(see Sect. 2). Using last layer gradients as a representation for each data point,
we compute the similarity matrix X between the unlabeled set U and {I ∪ O}.
We then optimize the resulting function If (A; I|O) instantiated by X using a
greedy strategy [17]. In any AL round i, we use the ID data points from newly
acquired labeled set AI

i ⊆ Ai to augment I ← I∪AI
i , and new OOD data points

AO
i ⊆ Ai to augment O ← O∪AO

i . Note that Ai ← AI
i ∪AO

i . In our experiments
(see Sect. 4), we also use the corresponding Smi formulation If (A; I), and the
Scg formulation f(A|O) as acquisition functions. We summarize Diagnose in
Algorithm 1 and discuss its scalability aspects in Appendix C.

4 Experimental Results

In this section, we evaluate the effectiveness of Diagnose on three diverse med-
ical imaging OOD data scenarios (A - C) with increasing levels of difficulty. We
discuss these scenarios in detail in Sect. 1.1. For evaluation, we compare the test
accuracy and the number of in-distribution data points selected by the Scmi
functions and existing state-of-the-art baselines in each round of active learning
(see Fig. 3). We conduct ablation studies for each OOD data scenario to study
the individual effect of only using a query set via the Smi functions and only
using the private set via the Scg functions. We present the ablation study for
one of the scenarios in (see Fig. 4). In a nutshell, our experiments show that
jointly modeling of similarity and dissimilarity using the Scmi functions not
only outperforms the existing AL baselines but also the Smi and Scg functions
across multiple OOD scenarios in medical data.

Baselines in All Scenarios: We compare the performance on Diagnose
against a variety of state-of-the-art uncertainty, diversity and targeted selec-
tion methods. The uncertainty based methods include Entropy and Margin.
The diversity based methods include Coreset and Badge. For Glister, we
maximize the log-likelihood with the set of ID points I, for a fair comparison
with the Scmi based acquisition functions. We discuss the details of all baselines
in Sect. 1.2. Lastly, we compare against random sampling (Random).

Experimental Setup: We use the same training procedure and hyperparame-
ters for all AL methods to ensure a fair comparison. For all experiments, we use
a ResNet-18 [6] model instantiated using (n + 1) classes, where n is the number
of ID classes and all other classes are grouped as a single OOD class. We train
this model using an SGD optimizer with an initial learning rate of 0.001, the
momentum of 0.9, and a weight decay of 5e-4. For each AL round, the weights
are reinitialized using Xavier initialization and the model is trained till 99%
training accuracy. The learning rate is decayed using cosine annealing [16] in
every epoch. We run each experiment 5× on a V100 GPU and provide the error
bars (std deviation). We discuss dataset splits for each of our experiments below
and provide more details in Appendix B.3.
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Fig. 3. Active learning with medical OOD scenarios. Top row: Scmi vs Baselines. Bot-
tom row: Number of ID points selected by each method. First column - Scenario
A: We observe that facility location functions that balance representation and query-
relevance are ideal for scenario A. Particularly, Flcmi consistently outperforms base-
lines by ≈5%–7%. Second column - Scenario B: The Scmi functions (LogDetcmi,
Flcmi) outperform baselines by ≈4%–5%. Third column - Scenario C: We observe
that LogDetcmi outperforms the baselines by ≈2%–4%. LogDetcmi selects the most
number of ID points in all scenarios.

4.1 Scenario A - Unrelated Images

Dataset: In this scenario, we apply Diagnose to avoid data points that are
unrelated to the medical imaging domain. We use the Derma-MNIST (der-
matoscopy of pigmented skin lesions) [9,22] skin lesion image classification
dataset as in-distribution (ID) data and CIFAR-10 [14] as OOD data. We create
an initial labeled set |L| = 140 using only ID data and an unlabeled set U con-
taining both ID data (|IU | = 1061) and OOD data (|OU | = 5000) with AL batch
size B = 30.

Results: We present results for the unrelated images OOD scenario in Fig. 3
(first column) and observe that the Flcmi consistently outperforms both uncer-
tainty (Entropy, Margin) and diversity based (Badge, Coreset) methods
by ≈5%–7% on overall accuracy. Moreover, we observe that Flcmi outperforms
LogDetcmi which suggests that using a submodular function like facility loca-
tion that models representation is useful for scenarios where the OOD data is
obviously unrelated to the ID data. This also entails that a representative subset
is imperative for obtaining a high accuracy on dermatoscopy modality datasets.

4.2 Scenario B - Incorrectly Acquired Images

Dataset: We apply Diagnose to avoid CT scan images that are incorrectly
prepared. Examples include images that are blurry, overexposed, underexposed
or incorrectly cropped. We use OrganA-MNIST (Abdominal CT scans in an
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Fig. 4. Ablation studies comparing the performance of Scmi functions with Smi func-
tions (left plot) and Scg functions (right plot) for scenario B. We see that Scmi func-
tions outperform their Smi and Scg counterparts, particularly in later rounds of AL.

Axial plane) [9,22] organ image classification dataset as ID data. Following [3],
we obtain OOD data by simulating different pre- and post-processing errors on
CT scans such as inappropriate brightness, incorrect padding, cropping, and
blurry images. We create the initial labeled set |L| = 110 using only ID data
and an unlabeled set U containing both ID data (|IU | = 1650) and OOD data
(|OU | = 8000) with AL batch size B = 30.

Results: We present results for the incorrectly prepared medical images
OOD scenario in Fig. 3 (second column). We observe that the Scmi func-
tions (LogDetcmi, Flcmi) outperform baselines by ≈4%–5%. The log deter-
minant based functions that balance between diversity and query-relevance
(LogDetcmi, LogDetmi) select the most number of ID data points and per-
form well in this scenario.

Ablation Study: Interestingly, the conditional gain functions (Flcg,
LogDetcg) do not select as many ID points but still perform at par with the
Smi functions (see Fig. 4). This suggests the need for conditioning in difficult
OOD scenarios where the ID and OOD points have a high semantic similar-
ity. Hence, jointly maximizing the conditional gain and mutual information is
imperative, as done in the Scmi functions.

4.3 Scenario C - Mixed View Images

Dataset: We apply Diagnose to avoid Abdominal CT scan images that are
captured from a different view of the anatomy. We use OrganA-MNIST (axial
plane) [9,22] organ image classification dataset as ID data, and a combination of
OrganC-MNIST (coronal plane) [9,22] and OrganS-MNIST (sagittal plane) [9,
22] as OOD data. We create the initial labeled set |L| = 50 using only ID
data an unlabeled set U containing both ID data (|IU | = 750) and OOD data
(|OU | = 8000) with AL batch size B = 30.

Results: We present results for the mixed view medical images OOD scenario in
Fig. 3 (third column). We observe that LogDetcmi outperforms the baselines by
≈2%–4%. We observe from scenarios B and C that the log determinant functions
select significantly more ID data points from the unlabeled set and outperform
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other methods when the modality is CT. This entails that selecting a diverse
subset is one of the key factors for CT modality data.

5 Conclusion

We demonstrate the effectiveness of Diagnose across a diverse set of out-of-
distribution (OOD) scenarios in medical data. We observe that Scmi functions
outperform other baselines along with Smi and Scg functions. Which submodu-
lar function works best depends on the modality of medical data and the type of
OOD scenario. Importantly, we note that jointly maximizing both components,
mutual information and conditional gain, works the best for scenarios with OOD
data. Lastly, as expected, we observe a drop in accuracy gain as the difficulty of
OOD scenarios increases.
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Abstract. Accurate geometry representation is essential in developing
finite element models. Although generally good, deep-learning segmen-
tation approaches with only few data have difficulties in accurately seg-
menting fine features, e.g., gaps and thin structures. Subsequently, seg-
mented geometries need labor-intensive manual modifications to reach a
quality where they can be used for simulation purposes. We propose a
strategy that uses transfer learning to reuse datasets with poor segmen-
tation combined with an interactive learning step where fine-tuning of
the data results in anatomically accurate segmentations suitable for sim-
ulations. We use a modified MultiPlanar UNet that is pre-trained using
inferior hip joint segmentation combined with a dedicated loss function
to learn the gap regions and post-processing to correct tiny inaccura-
cies on symmetric classes due to rotational invariance. We demonstrate
this robust yet conceptually simple approach applied with clinically val-
idated results on publicly available computed tomography scans of hip
joints. Code and resulting 3D models are available at: https://github.
com/MICCAI2022-155/AuToSeg.

Keywords: Segmentation · Finite element modeling · Transfer
learning

1 Introduction

Precise segmentation of medical images such as computed tomography (CT)
scans, is widely used for generating finite element (FE) models of humans for
patient-specific implants [2]. A requirement in generating FE models is a proper
geometrical representation of the anatomical structures [9]. In our case, an accu-
rate segmentation of the hip joint (HJ) should essentially detail the shape and
boundaries of the femur and hip bones and identify the inter-bone cavities. The
segmented geometries should be closed, non-intersecting, and without spikes.
As manual segmentation is labor-intensive and time-consuming [9], automated
segmentation tools are usually necessary to generate accurate FE models.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Zamzmi et al. (Eds.): MILLanD 2022, LNCS 13559, pp. 153–162, 2022.
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Convolutional Neural Networks with encoder-decoder structures are widely
used for auto semantic segmentation, among which the most successful one is the
UNet structure [10]. The architecture uses skip connection on high-resolution
feature maps in the encoding path to include more fine-grained information.
Although more recent models are proposed on segmenting natural images, e.g.,
DeepLabV3+, UNet still provides some of the best segmentation results in med-
ical images [1]. Therefore, the variation of UNet, e.g., 3D UNet, is a straight-
forward way to segment 3D medical data like CT scans and has shown its
state-of-the-art performance [3]. Applying 3D convolutions directly to large 3D
images may overflow memory. Therefore, 3D models are usually trained on small
patches, which results in a limited field of view and subsequent loss of global
information. As an alternative with far less memory usage, the MultiPlanar
UNet (MPUNet) model was proposed by Perslev et al. [8] which uses a 2D UNet
to learn representative semantic information.

Most studies on auto-segmentation of the HJs focus on designing more pow-
erful neural networks that separate anatomical structures with little manual
intervention [12,13]. These studies focus primarily on the bone morphology and
not on the inter-bone gaps. The consequence is that although they reach fairly
high Dice scores, the segmentation results are anatomically inaccurate and are
unsuitable for generating HJ 3D models. This limits the usability of the existing
deep learning models for FE simulations [7].

We require the deep learning models to provide anatomically correct segmen-
tation of the bones and the existing gap in the HJ as shown in Fig. 1 [12,13].
Due to the limited number of accurate training data, we propose a deep learning-
based strategy for enhancing publicly available poorly annotated scans using only
a few accurately segmented data to learn an accurate model and in our case the
gap regions in HJ. Besides using the idea of MultiPlanar, our backbone model
is a standard UNet with batch normalization. Therefore, the proposed pipeline
is both parameter and memory efficient.

Fig. 1. Illustration of gap generation: inferior ground truth of a training image from
public dataset (A) and results by fine-tuned model (B). Results on a test image with
model trained only on public dataset (C) with erroneous prediction detection (D) and
fine-tuned (E)

To enforce the cartilage gap with few annotated data, we apply MPUNet
with a dedicated loss function penetrated more on the gap regions combined with
transfer learning and a post-processing step. Our framework uses an interactive
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learning pipeline involving pre-training MPUNet on a public dataset with inferior
HJ segmentation to learn general semantic features of the bones [5]. The model
is then fine-tuned using a few highly accurate segmentation to learn the correct
labeling of the gaps. We show that our proposed approach allows the model to
learn the gap and generate anatomically accurate segmentation, using the pre-
trained model and only four accurate segmentations for fine-tuning. Our work
is validated on a set of HJs from which we construct FE models and report the
Dice with the manually corrected segments used for biomechanical models.

2 Method

Our strategy for accurate HJ segmentation with very few accurate training
images relies on the following: (i) we use the idea of MPUNet that segments
3D medical images using 2D models while preserving as much spatial informa-
tion as possible by segmenting different views of the data. (ii) we use a relatively
simple yet powerful backbone model for performing the segmentation to avoid
overfitting and memory issues. (iii) we pre-train the model using publicly avail-
able datasets with poor labels, which are then fine-tuned with a very small set
of accurately annotated data. (iv) we use a dedicated weighted distance loss to
enforce the gap between the bones. (v) we introduce a post-processing step that
solves the internal problem of MPUNet on images with symmetric features.

Model : As a baseline model, we use the MPUNet proposed by Perslev et al. [8]
to segment the 3D HJs using 2D UNet while preserving as much 3D information
as possible by generating views from different perspectives. During training, the
model f(x; θ) takes a set 2D image slices of size w × h, from different views,
and outputs a probabilistic segmentation map P ∈ Rw ×h×K for K classes for
each slice. Standard pixel-wise loss function is then applied for back-propagation.
Our experiment uses a standard categorical cross-entropy loss augmented by the
weighted distance map. We found no improvement using a class-wise weighted
cross-entropy loss or the dice loss. In the inference phase, we run 3D reconstruc-
tion in each view separately over the segmentation results on all the parallel
slices to get the volume back. This results in a volume probability map of size
m × w × h × K for each view. Unlike original MPUNet [8] which suggests train-
ing another fusion model using validation data, we simply sum over the results
(P ) from different views followed by an argmax over last dimension to get the
final label map. This strategy achieves good results on the validation data.

Transfer Learning : The accurate segmentation and fast convergence rely par-
tially on pre-training the model using publicly available datasets with poor label-
ing, which is subsequently fine-tuned with a small set of accurate data. We detail
two modifications that differ from standard transfer learning settings. First, we
also transfer the weight in the last softmax layer for a much faster convergence
because we work on exactly the same classes as before. Then, instead of freezing
encoder and only fine-tuning decoder, it is necessary to explicitly learn encoder
to detect the gap, as the gap must be encoded correctly first.
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Weighted Distance Map: For the model to be fined-tuned to learn the gap
between the bones, we enforce a voxel-wise weight-map w(x) to the loss function
based on the distances to the border of the foreground classes. This strategy was
initially suggested in the original UNet paper, which we employ in a modified
version for 3D data [8,10]. We define w(x) as follows,

w(x) = wc(x) + w0 · e− (d1(x)+d2(x))2

2σ2 (1)

where d1 and d2 denotes the distance to the border of the nearest foreground
class and the second nearest foreground class respectively. We follow original
UNet paper and set w0 = 10 and σ = 5. wc : Ω → R is used to balance the class
frequencies, which we do not enforce, thus we set wc = 1 for every c.

During fine-tuning, the corresponding slice of the 3D weight map is sampled
together with the images and labels. We apply an element-wise multiplication of
the weight map with the cross-entropy loss of predictions and labels on each pixel
before reduction. Figure 2 (left & middle) shows an example training slice. Note
that we do not plot the prediction since it consists of multi-class probabilities.

Fig. 2. (left) A sample training slice of true labels overlaid on top of raw image. (mid-
dle) Corresponding weight map computed with Eq. (1) overlaid on top of label bound-
aries. (right) Results of training with weight map calculated over eroded labels(orange
contour), which shows a smoother and more complete contour near the boundaries
than the results trained without erosion (blue contour). (Color figure online)

We also notice that the model is prone to overfitting to the gap, producing
a broader gap than usual if we assign higher weights only to the gap regions in
Eq. (1). Instead, we would like to assign more weight to the boundaries around
the gap to avoid false negatives. This is accomplished by applying a mathematical
erosion to the labels over a ball with a radius of 3 voxels before calculating the
weight map, as demonstrated in Fig. 2 (middle). To compensate for the increased
value of d1 + d2 introduced by erosion, we double w0 to 20.

Sampling Strategies: Sampling and interpolation are necessary to retrieve cor-
responding 2D slices from a 3D medical image viewed from a random orientation
other than the standard RAS axes. We follow the idea in [8] by sampling pixel
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with dimension d ∈ Z+ on isotropic grids within a sphere of diameter m ∈ R+

centered at the origin of the scanner coordinate system in the physical scanner
space. We differ in that these two numbers are chosen as the 75 percentile across
all axes and images during training but as maximum value during inference. This
ensures both efficient training and complete predictions near the boundaries.

Post-processing : Although MPUNet is both parameter and memory efficient,
the model is trained on 2D slices with a possibly limited field of view near the
boundaries. Furthermore, it is trained to segment the input viewed from differ-
ent perspectives by sampling from planes of various orientations. This introduces
some rotational invariance but makes it hard to distinguish between symmet-
ric classes with very similar semantic features. For example, it is hard to be
consistent with the left and right femurs when viewing the input from various
perspectives. Therefore, some part of the left femur near the boundaries is mis-
classified as the right femur respectively, and vice versa, as shown in Fig. 3.

Fig. 3. Segmentation (left) with post-processing (right) where falsely predicted sym-
metric groups are recovered.

In order to solve this problem automatically, we propose a symmetric con-
nected component decomposition. We only keep the largest connected compo-
nent for each symmetric class pair while assigning the corresponding symmetric
class value to all the other components. By doing this instead of just removing
small components, those parts predicted as the left femur on the right femur are
mapped correctly to the right femur, and vice versa. We then apply a standard
connected component decomposition while keeping only the largest connected
component for each foreground class to remove floating points (false positives).

We acknowledge that our post-processing is highly task-specific but could
also be generalized to other segmentation tasks with symmetric classes that
share similar semantic features and are disconnected from each other.

3 Data and Experiments

We use 35 CT scans from The Cancer Imaging Archive and crop the region
of interest on the images to roughly cover the area around the HJs, including
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the sacrum, both hip bones, and both proximal femurs [4]. Each scan comprises
(415 ± 47) × (244 ± 30) ×(266 ± 29) voxels, with a voxel size of (0.78 ± 0.11) ×
(0.77 ± 0.1) × (0.96 ± 0.17) mm3. For the pre-training step, we use 10 scans
and their associated inferior segmentations from a publicly available dataset
of segmented CT pelvis scans with annotated anatomical landmarks (CTPEL)
[5,12]. We only use two scans with accurate segmentation to fine-tune the model
in the first place, In the next step, two other unseen scans are used to get
the segmentation results of the model. Then, we manually correct these two
results and fine-tune the model again. The second fine-tuning process could be
re-iterated, but four images is sufficient to obtain accurate results. We evaluate
the segmentation results of our approach with minimal required fine-tuning data.
A clinical expert evaluated the segmentation results of the 21 test cases.

Interactive Learning Setup: Using prior anatomical knowledge that each
class should be disconnected by at least a certain distance, contradicting cases in
the model output indicate false positives (collisions) on at least one of the classes.
We thus apply another Euclidean transform over the output segmentation P
such that each point in a predicted foreground class is mapped to the nearest
distance to other foreground classes. We can then find those collision points set
E by applying a threshold ε to the distance map, as shown in Fig. 1(D).

E = {x|P (x) �= 0 ∧ d(x) ≤ ε} (2)

Since E only roughly captures the collision points, directly setting them to back-
ground will not be accurate and may introduce false negatives. However, the size
of it (|E|) can be used as a metric for model performance without ground truth
to decide when to terminate the interactive learning process. In our experiment
where ε = 2, the model without fine-tuning gives |E| ≈ 24803, while fine-tuning
with two and another two accurate data reduces |E| to 1000 and 200 respectively.

Pre-processing : We pre-process the data by first filtering out all negative
values in the volume because both bones and cartilages should have positive
Hounsfield unit values. We then apply a standardization based on the equation
Xscale = (xi−xmean)/(x75−x25), where x25 and x75 are the 1st and 3rd quartiles
respectively. This removes the median and scales the intensity based on quartiles
and is more robust to outliers. No other pre-processing is applied to avoid any
manual errors that can easily propagate in a neural network.

Experimental Setup: The network is trained on NVIDIA GeForce RTX 3090
with a batch size of 10 using the Adam optimizer for 40 epochs with a learn-
ing rate of 1e–5 and reduced by 10% for every two consecutive epochs without
performance improvements. We apply early stopping if the performance of five
consecutive epochs does not improve. Pre-training takes approximately one day,
while fine-tuning takes about six hours to reach convergence.

Augmentations: We follow MPUNet by applying Random Elastic Deforma-
tions to generate images with deformed strength and smoothness [11] and assign
a weight value of 1/3 for the deformed samples during training [8].
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4 Results

To have suitable geometries for FE models, the auto-segmentation framework
must separate bones and generate accurate results near the boundaries, which
is essential for generating cartilage layers for HJ. Therefore, any standard eval-
uation metric such as the Dice score could be misleading. Hence, our results,
including the bone outlines and the existing gap in the joints, are first validated
by a senior consultant radiologist as our clinical expert.

The clinical expert initially scrolls through all the segmented slices to verify
the bone contours and the gaps between the hip and femoral bones. Then, he
verifies the anatomical shape and smoothness of the reconstructed 3D model.
This procedure justifies our method in obtaining precise HJ geometries.

Figure 3 illustrates the results of the fined-tuned model on the test set and
demonstrates the effect of post-processing, where it shows that the misclassified
regions in symmetric classes are successfully recovered by the post-processing
step. With the distance weight applied to loss, the model can detail the gap
accurately. The final result is accurate and requires little or no human inter-
vention for subsequent simulation experiments, e.g., FE analysis. Results in 3D
are available at GitHub Repo. As an example, we have generated the cartilage
geometry on the segmented HJ with a method proposed by [6] to analyze the
stress distributions as shown in Fig. 4. The results show a smooth stress pattern
indicating that our method’s output is suitable for use in FE simulations.

Table 1. Test results with various design choices

Dice ↑ GapDice ↑ HD (#voxels) ↓
Ours 98.63 ± 0.56 96.47 ± 1.60 3.67 ± 1.13

NoPretrain 97.82 ± 0.59 95.13 ± 1.42 5.26 ± 2.10

NoWeight 98.12 ± 0.47 94.35 ± 2.19 4.58 ± 1.50

3DUNet 93.36 ± 1.84 87.48 ± 3.01 7.02 ± 1.09

Ours(2) 97.59 ± 0.74 95.19 ± 1.14 5.18 ± 2.08

NoPretrain(2) 90.80 ± 9.29 91.13 ± 8.53 11.20 ± 7.19

NoWeight(2) 96.28 ± 2.91 93.91 ± 1.74 6.30 ± 2.95

Fig. 4. Smooth von Mises
stress pattern

4.1 Numerical Validation and Ablation Study

Although numerical results could be misleading regarding the final FE simula-
tions, we include them as a validation and ablation study of our several design
choices. Table 1 shows the numerical validations on the test set, including nine
images with manually corrected ground truth segmentations. We test the perfor-
mance by varying one of the design choices each time while keeping the others
fixed. (i) The strategy mentioned in Sect. 2 (ours), (ii) Training without using
ten inaccurate public data (NoPretrain), (iii) Training without enforcing dis-
tance weight map (NoWeight), (iv) Using 3D UNet as the backbone (3DUNet).
We also test and report the performance in the first stage when fine-tuned with
only two manually corrected data except for (iv) because of its poor performance.

https://github.com/MICCAI2022-155/AuToSeg
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Besides the standard Dice score, we are especially interested in the surface
and gap regions. Therefore, two more evaluation metrics are introduced. We
use Hausdorff distance (HD) as surface measurement by computing the largest
distance between the result and the nearest point on the ground truth.

HD(P, Y ) = max(max
p∈P

min
y∈Y

‖p − y‖2, max
y∈Y

min
p∈P

‖p − y‖2) (3)

We also propose a GapDice in Eq. (4) to measure the average Dice score
between the segmentation result and the ground truth only around the gap
regions. Given the segmentation results P and ground truth segmentation Y ,
we compute the Euclidean distance transformation map Yd of Y , corresponding
to the d1 + d2 term from Eq. (1). The gap region G is defined as the locations
where Yd < ε. Dice score between P and Y is calculated in the standard way
inside G. Here we choose ε = 10 as we found it to be a good indicator of both
the gap and boundary regions. Figure 2 (middle) shows the region computed by
eroded labels, which is also an indication of G. Please refer to GitHub Repo for
generated G.

GapDice(P, Y ) =
2 ∗ |P ∩ Y ∩ G|

|P ∩ G| + |Y ∩ G| (4)

The results show that MPUNet (all the first three models) works significantly
better than 3D UNet in a data scarcity setting. Our pipeline outperforms in
all three metrics. Especially, although the difference of the Dice score is not
significant in our fine tuned model with four manually corrected data, pretraining
on inaccurate data and enforcing the weight map shows a significantly better
GapDice score and HD, which is vital for further simulation. The benefit of
pretraining is much clearer in the first round when fine-tuned with only two
accurate data, which is crucial to have minimal manual work to be fine tuned
again. We acknowledge that the ground truth for test data is manually modified
over the results from our pipeline, giving a bias when comparing multiple models,
but the general goal is to show that our pipeline suits well for further simulation.

5 Conclusion

We presented an auto-segmentation framework for accurate segmentation from
CT scans considering the bone boundaries and inter-bone cavities. Our frame-
work uses a modified MPUNet pre-trained on a public dataset with coarse seg-
mentation and fine-tunes with very few data with accurate segmentation in a
transfer and interactive learning setup. We demonstrate that our simple yet
robust model can detail crucial features such as the gap where the cartilage
resides.

This work is tested out on HJ CT scans and provides anatomically accurate
segmentation, which has both been verified by a clinical expert and shown supe-
rior numerical results, reaching an overall Dice score above 98% and above 96%
around gap regions. Our method can be used to enhance anatomically incorrect
and poorly annotated datasets with a few accurately annotated scans. The FE

https://github.com/MICCAI2022-155/AuToSeg
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analysis shows that the generated models produce smooth stress patterns with-
out any geometry-related artifacts. Thereby, the segmentation result of this work
can be used for generating FE models with little or no manual modifications.
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Abstract. Detection of the asymmetry (AS) and architectural distor-
tion (AD) on mammograms is important for early breast cancer diag-
nosis. However, this is a challenging task because there are very limited
mammography data containing these two lesions. In this paper, we tackle
this problem by presenting a novel transfer learning framework of Super-
vised mass-Transferred Pre-training (STP) followed by Supervised Con-
strained Contrastive Fine-tuning (SC2F). While STP can leverage the
commonly available mass data to help with detecting the rarely avail-
able AS and AD as pre-training, SC2F can depart the mass, AS, and AD
in the embedding space as far as possible with a carefully designed con-
strained contrastive loss. In addition, a novel detection network - AsAd-
Net, is proposed for the AS and AD detection. The validation results
on the largest-so-far AS and AD dataset show state-of-the-art (SOTA)
detection performance.

Keywords: Mammogram · Asymmetry · Architectural distortion ·
Contrastive learning · Transfer learning · Detection

1 Introduction

Breast cancer accounted for 11.7% of the total new cancer cases diagnosed world-
wide in 2020, surpassing lung cancer as the most common cancer for the first
time [25]. Developing a Computer-Aided Diagnosis (CAD) system that can reli-
ably improve the efficiency of mammogram interpretation is of great importance.
As shown in Fig. 1, the mass, calcification, asymmetry (AS), and architectural
distortion (AD) are the four typical lesion findings that radiologists use as indi-
cations for potential breast cancer on mammograms. Among them, the mass
and calcification are more commonly seen, while the AS and AD are consider-
ably more limited, found in approximately 7% of all mammograms [3]. An AS
refers to an area of increased density in one breast compared to the correspond-
ing region in the contralateral breast [11]. An AD is defined as distorted normal
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Zamzmi et al. (Eds.): MILLanD 2022, LNCS 13559, pp. 163–173, 2022.
https://doi.org/10.1007/978-3-031-16760-7_16
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Fig. 1. Examples of different lesion types on mammograms: (a) mass, (b) asymmetry
(AS), (c) architectural distortion (AD), (d) calcification.

architecture with no definite mass visible. A key observation is that from both
mammography appearance and pathology point of view, the AS and AD are
more related to the mass and distinctively different from the calcification, with
some actually being caused by the mass.

Compared to the mass and calcification, few studies focus on detecting the
AS and AD, mainly attributed to the scarcity of high-quality labeled data. In
the public dataset DDSM [4], there are only 155 cases of combined ASs and ADs
out of a total of 2,620 cases. Previous research based on such a small dataset
only leads to preliminary results [2,31]. Thus, we collaborate with three hospitals
to build the largest-so-far AS and AD dataset, which contains 1,004 pixel-level
labeled ASs and ADs mammograms out of a total of 29,159 mammograms.

We propose a comprehensive transfer learning framework with Supervised
mass-Transferred Pre-training (STP) followed by Supervised Constrained Con-
trastive Fine-tuning (SC2F) to tackle this problem. During STP, since the AS
and AD are related to the mass both radiographically and pathologically [3],
we pre-train a detector with the AS and AD data together with the sufficiently
available mass data by detecting the mass, AS, and AD as a joint class first and
pushing samples from all classes towards one “root” cluster in the embedding
space. Then, in SC2F phase, a carefully designed constrained contrastive learn-
ing step optimally separates the mass, AS, and AD apart. However, a general
distance-based contrastive learning that pulls samples indefinitely far is against
their radiographic feature that the AS and AD are related to the mass. Thus,
we propose a novel constrained contrastive learning in SC2F that departs the
mass, AS, and AD samples in the embedding space as far as possible while still
constraining them in the same “root” cluster from STP. In addition, a novel
AsAdNet with dual-view inputs is designed for detecting the AS and AD.

The main contributions of this paper include 1) a novel transfer learning
framework of STP + SC2F which uses the sufficiently available mass data to
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help solve the data scarcity problem of the AS and AD as pre-training, 2) a novel
constrained contrastive learning technique in SC2F that separates the mass, AS
and AD in the embedding space under certain constraints as fine-tuning, 3) a
novel AsAdNet for the AS and AD detection on mammograms, and 4) based on
our best knowledge, we achieve state-of-the-art (SOTA) performance on the AS
and AD detection on our collected largest-so-far dataset.

2 Related Work

Mass and calcification are the two most common lesions in mammography, and
many efficient works have been proposed to detect them [6,29,30]. In comparison,
the AS and AD are rare and related works mainly focus on image/patch-level
classifications [10,12,18,21,27,33]. Oyelade et al. [23] provides the most up-to-
date survey of the AD detection and states that Ari et al. [2] is the existing
baseline. To the best of our knowledge, Zeng et al. [31] proposes the best-so-far
approach for the AS detection.

Most contrastive learning works have been conducted within the realm of
self-supervised learning [1,8,9,15,16,22,28,32], involving different forms of con-
trastive loss [13]. The recent work of SimCLR-v2 [9] shows that self-supervised
contrastive learning can compete with its supervised counterpart after fine-
tuning on downstream tasks. The work of SupCon [19] generalizes the contrastive
loss to the supervised setting. Contrastive InfoNCE loss [14] proves its effec-
tiveness for representation learning. In medical imaging, Cao et al. [5] applies
contrastive pre-training followed by a supervised fine-tuning for mammography
screening.

3 Method

Overall Framework. The overall architecture of the STP + SC2F framework
is illustrated in Fig. 2. We first pre-train a fully supervised AsAdNet to detect
the mass, AS, and AD as one class in STP. Then, we use a novel constrained
contrastive learning to depart them in SC2F as fine-tuning. We define mammo-
gram images with pixel-level labels as Ipixel ∈ R

H×W and their corresponding
labels as Lpixel ∈ R

H×W×2. H,W are the height and width of images. L
(:,:,1)
pixel = 1

indicates the background pixel while L
(:,:,2)
pixel = 1 indicates the foreground.

STP. AsAdNet detects the mass, AS, and AD as one class without distinguish-
ing between them. The general idea is to transfer the largely available mass
knowledge onto the detection of the rarely available AS and AD. We want to
push samples from the three classes towards one “root” cluster in the embedding
space, with optimizing the model parameters Θ:

min
Θ

N∑

n=1

Epixel(f(In
pixel;Θ), Ln

pixel), (1)
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Fig. 2. The architecture of STP + SC2F framework. The pre-trained AsAdNet in STP
is transferred into SC2F as the magenta arrow shows.

where N is the batch size, f(·) is the detection model parameterized by Θ and
Epixel is the pixel-wise focal loss as in Eq. 3.

E
(w,h,n)
pixel = −

2∑

c=1

α(c)(1 − P
(c)
prob)

γL
(c)
pixellog(P (c)

prob) (2)

Epixel = − 1
H × W × N

W∑

w=0

H∑

h=0

N∑

n=0

E
(w,h,n)
pixel (3)

where Pprob ∈ R
H×W×2 is the probability map generated by AsAdNet as illus-

trated in Fig. 4; α(c) = α, if c = 2, while αc = 1 − α, if c = 1, α is a weight set
empirically to balance the loss of the foreground (c = 2) and the background
(c = 1); γ is a customized exponent. After the training converges, we add a
projection branch onto the AsAdNet to provide a feature vector Pproj ∈ R

2×1

(before softmax). Details for the projection branch is illustrated in Fig. 4. AsAd-
Net with the projection branch is further trained on all positive (mammograms
with the mass, AS, or AD) and negative (mammograms with no lesion) samples.
After the training finishes, the center of “root” cluster μall ∈ R

2×1 is calculated
as: μall = 1

M

∑M
m=1 Pm

proj , where M is the number of all positive samples.

SC2F. We transfer the trained AsAdNet together with the projection branch
in STP and fine-tune them with the proposed constrained contrastive loss to
separate the mass, AS, and AD. A contrastive loss can divide the embedding
space within one “root” cluster into three sub-clusters for the mass, AS, and
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Fig. 3. Visualization of the probability vectors (predicted by the AsAdNet projection
branch) on the mass and the AS samples from the test set. (a) detecting the mass and
the AS as one class as in STP, (b) contrastive loss that maximizes L2 distance, and (c)
the proposed constrained contrastive loss.

AD. For clarification, we show visualizations for the mass and AS in Fig. 3 as
an example. As shown in Fig. 3(a), the first step training in STP pushes the
mass and AS samples into one “root” cluster in the embedding space with no
clear distinction between them. However, as shown in Fig. 3(b), after applying a
contrastive loss with L2 distance, the two sub-clusters are separated too far, and
that is against the radiographic fact that the AS is indeed related to the mass.
Hence, we propose a novel constrained contrastive loss that separates the three
sub-clusters as far as possible while still constraining them in the same “root”
cluster.

For a mini-batch of N samples with two N/2 pairs, when the pairs are from
the same class (e.g., mass), we use an L2 loss to minimize their intra-class dis-
tance in the embedding space. Otherwise, when they are from different classes
(e.g., mass and AS), the projection branch in AsAdNet generates a feature vec-
tor for a mass sample Pmass

proj ∈ R
2×1 and an AS sample P a

proj ∈ R
2×1. Instead

of directly optimizing a large distance between Pmass
proj and P a

proj , we optimize a
large angle between Pmass

proj − μall and P a
proj − μall. In this way, we set Pmass

proj

and P a
proj as far as possible, under the constraint that Pmass

proj and P a
proj are still

close to μall, so that they remain in the same “root” cluster. The inter-class
constrained contrastive loss is defined as:

Econ =
〈
Pmass

proj − μall, P
a
proj − μall

〉

− ‖Pmass
proj − μall‖2 · ‖P a

proj − μall‖2 · (−1) (4)

where 〈, 〉 is the inner product of two vectors. The angle between Pmass
proj − μall

and P a
proj −μall is back-propagated to be π. As shown in Fig. 3(c), the proposed

constrained contrastive loss separates the sub-clusters of the mass and AD as
far as possible but still remains them in the “root” cluster as in Fig. 3(a).

AsAdNet. An important nature of mammograms is that they always appear in
pairs, with an image of the right breast and a corresponding one of the same view
from the left. This symmetry helps with abnormality detection. Hence, inspired
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Fig. 4. Overview of the AsAdNet with the projection branch. AsAdNet is for lesion
detection and the projection branch is for constrained contrastive learning.

by [26,29,30], we build a dual-view detection network - AsAdNet. The detailed
network structure is shown in Fig. 4. It requires dual-view inputs from each patient
- the main input (e.g., right craniocaudal, RCC) which AsyDisNet outputs detec-
tion results on, and the auxiliary input (e.g., left craniocaudal, LCC) which is used
to provide the symmetry information to help with the detection on the main input
and will be warped and flipped before being sent into the AsAdNet. The BBox
Alignment binarizes the probability map under various thresholds before align-
ing bounding boxes on the selected-high-probability regions. We train the AsAd-
Net with probability map using pixel-wise focal loss instead of the final detection
results, which performs better based on our experiments.

4 Experiment Design

Our data for training and validation is collected from three collaborative hos-
pitals at distinct geographical locations using Siemens and Giotto equipment
following the American College of Radiology standard and dated from 2011 to
20181. A standard mammography screening case has two X-ray projection views
for each breast, a craniocaudal (CC) view and a mediolateral oblique (MLO)
view. The pixel-level labels are manually annotated by a junior radiologist (<5
years of experience) and fine-tuned by a senior radiologist (>10 years of expe-
rience). Public dataset DDSM [4] contains only 155 cases of combined ASs and
ADs out of a total of 2,620 cases, while MIAS [24] has fewer than 30 pairs. The
DDSM and MIAS are much smaller than our dataset, and their data distribution
is not consistent with screening scenarios. Hence, they are not included in our
study. For training, we use 2,584 mammograms fully labeled with masses, 526
with ASs, 248 with ADs, and 25,139 mammograms with no lesion. In the test-
ing, we collect 128 mammograms fully labeled with the AS, 102 mammograms
with the AD, 432 mammograms with the mass, and 3,660 mammograms with
no lesion.

The ratio between the training and validation set is 8:1. Input mammograms
are resized to 1008 × 800, keeping the original aspect ratio. The initial learn-
ing rate is 1 × 10−5 with 8 warming-up steps and is reduced to 1 × 10−6 after

1 This study was approved by the ethics and institutional review board.
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30 epochs. Adam optimizer [20] is used with a weight decay of 5×10−4. We train
models with 2 NVIDIA V100 GPUs with 32G memory for each. All implemen-
tation is with Python3.7 and PyTorch 1.1.0. During the STP phase, the batch
size for the training is set as 12, and it is set as 6 for the SC2P. In Eq. 2, α and
γ are set as 0.25 and 2, respectively. It takes about 4.8 h to finish the training
and validation after 80 epochs in total. The system might produce unreliable
results when test mammograms are from equipment vendors different from our
collaborative hospitals. When no GPU is available, the system might fail.

We evaluate the model performance with Free-Response Operating Charac-
teristic (FROC) [7]. Different detection results are acquired by applying various
thresholds. Following prior works’ definition [26,30], an AS or AD is correct if
it has an IoU of over 0.2 with the pixel-level label2. We evaluate the sensitivity
with various numbers of false-positive-per-image (FPPI) at 0.1, 0.5, 1, and 2.

5 Experimental Results

Table 1. Comparison of the proposed AsAdNet with other methods.

Methods FPPI for AS FPPI for AD

0.1 0.5 1.0 2.0 0.1 0.5 1.0 2.0

Mass SOTA [30] 0.138 0.462 0.601 0.689 0.142 0.437 0.575 0.697

AS baseline [31] 0.154 0.488 0.598 0.711 – – – –

AD baseline [2] – – – – 0.155 0.464 0.602 0.688

Vanilla AsAdNet SEP 0.159 0.498 0.646 0.732 0.166 0.534 0.649 0.700

Vanilla AsAdNet 0.155 0.491 0.612 0.719 0.157 0.508 0.615 0.695

Ours SEP 0.165 0.503 0.663 0.742 0.173 0.548 0.675 0.750

Ours 0.172 0.513 0.662 0.746 0.179 0.554 0.676 0.753

Ours 95% CI ±0.002 ±0.003 ±0.002 ±0.001 ±0.003 ±0.003 ±0.002 ±0.000

5.1 Comparison with Other Methods

Detailed results of various methods are shown in Table 1. The proposed method
(Ours SEP trains two AsAdNets for detecting the AS and AD respectively while
Ours trains one AsAdNet for detecting the AS and AD at the same time) is com-
pared with the Mass SOTA [30], AS baseline [31] and AD baseline [2]. For com-
parison reasons, we re-implemented methods as in [2,30,31] and applied them to
our datasets. The difference between Ours and Vanilla AsAdNet is that Ours is
with STP + SC2F while Vanilla AsAdNet directly trains the network structure
in Fig. 4 with images and labels. Due to the space limitation, only the 95% con-
fidence interval of the Ours is shown. Other methods’ 95% confidence intervals
are similar. We can see that the proposed Vanilla AsAdNet structure performs

2 Our cooperating medical institutes also agree with this definition.
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Table 2. Ablation study for the STP and SC2F.

FPPI for AS FPPI for AD

0.1 0.5 1.0 2.0 0.1 0.5 1.0 2.0

STP ImageNet 0.151 0.466 0.595 0.708 0.149 0.457 0.588 0.676

AsAd Pretrain 0.160 0.497 0.651 0.738 0.160 0.533 0.665 0.719

Ours 0.172 0.513 0.662 0.746 0.179 0.554 0.676 0.753

SC2F No Fine-tuning 0.155 0.491 0.612 0.719 0.157 0.508 0.615 0.695

FC Layer 0.156 0.498 0.609 0.731 0.162 0.509 0.626 0.713

DenseNet [17] 0.158 0.495 0.618 0.724 0.160 0.513 0.621 0.705

Contrastive [L2] 0.154 0.488 0.598 0.710 0.154 0.508 0.606 0.692

Ours 0.172 0.513 0.662 0.746 0.179 0.554 0.676 0.753

better than the Mass SOTA [30], AS baseline [31], and AD baseline [2]. Training
the Vanilla AsAdNets SEP on the AS and AD separately achieves higher FROC
than training the AS and AD together in Vanilla AsAdNet because one network
for each facilitates specific feature mining. However, with the proposed STP and
SC2F, Ours demonstrates better ability than Ours SEP. This is because that
both the STP and SC2F benefit from the mixing of the mass, AS, and AD. Over-
all, Ours out-performs all other method with noticeable margin, which indicates
the value of our proposed STP, SC2F and AsAdNet.

5.2 Ablation Study

We show ablation study results in Table 2. To demonstrate the value of the
proposed STP, we replace it with ImageNet, which uses ImageNet pre-trained
parameters in AsAdNet. Besides, we also experiment on AsAd Pretrain, which
uses the AS and AD for pre-training without including the mass data. We can
see that the ImageNet performs worst, as it does not include the medical images
in the pre-training, while AsAd Pretrain under-performs Ours as it includes only
the AS and AD in the pre-training. It can be concluded that the proposed STP
that leverages the largely available mass data to transfer knowledge onto the
detection of the rarely available AS and AD is helpful.

To show the value of the proposed SC2F, we replace it with No Fine-tuning,
which directly trains one AsAdNet to detect the AS and AD. FC Layer uses
fc layers to regress the lesion type. DenseNet uses a DenseNet [17] to classify
the detected ROI. Contrastive [L2] uses L2 distance loss for contrastive learning.
Details are listed in Table 2. We see that Ours out-performs all other alternatives
with a noticeable margin, which indicates that the proposed SC2F effectively
separates samples from different classes as far as possible in the embedding
space while still constraining them in the same “root” cluster from STP.
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6 Conclusions

We present a novel framework of STP + SC2F with a detection model AsAd-
Net to solve the AS and AD detection on mammograms. Our experiments on
29,159 mammograms prove that both leveraging mass data in pre-training and
applying constrained contrastive learning for fine-tuning can effectively improve
the detection performance. Superior results have been achieved in comparison
with previously reported SOTA approaches. The overall approach is scalable and
applicable to hospitals’ Picture Archiving and Communication System (PACS).

One limitation is that the current method can not train with weakly labeled
data like medical reports, and we plan to improve on this subject in the future.
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Abstract. Radiologists routinely detect and size lesions in CT to stage
cancer and assess tumor burden. To potentially aid their efforts, multi-
ple lesion detection algorithms have been developed with a large public
dataset called DeepLesion (32,735 lesions, 32,120 CT slices, 10,594 stud-
ies, 4,427 patients, 8 body part labels). However, this dataset contains
missing measurements and lesion tags, and exhibits a severe imbalance
in the number of lesions per label category. In this work, we utilize a
limited subset of DeepLesion (6%, 1331 lesions, 1309 slices) containing
lesion annotations and body part label tags to train a VFNet model to
detect lesions and tag them. We address the class imbalance by conduct-
ing three experiments: 1) Balancing data by the body part labels, 2)
Balancing data by the number of lesions per patient, and 3) Balancing
data by the lesion size. In contrast to a randomly sampled (unbalanced)
data subset, our results indicated that balancing the body part labels
always increased sensitivity for lesions ≥1 cm for classes with low data
quantities (Bone: 80% vs. 46%, Kidney: 77% vs. 61%, Soft Tissue: 70%
vs. 60%, Pelvis: 83% vs. 76%). Similar trends were seen for three other
models tested (FasterRCNN, RetinaNet, FoveaBox). Balancing data by
lesion size also helped the VFNet model improve recalls for all classes in
contrast to an unbalanced dataset. We also provide a structured report-
ing guideline for a “Lesions” subsection to be entered into the “Findings”
section of a radiology report. To our knowledge, we are the first to report
the class imbalance in DeepLesion, and have taken data-driven steps to
address it in the context of joint lesion detection and tagging.

Keywords: CT · Universal lesion detection · Class imbalance · Deep
learning · DeepLesion

1 Introduction

Tumor burden assessment and staging of cancer is critical for patient treat-
ment [1,2]. The first step towards this goal is lesion localization, which enables
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lesion size measurement and assessment of malignancy risk. Typically, in clinical
practice, computed tomography (CT) and positron emission tomography (PET)
are preferred for lesion analysis [1]. Radiologists scroll through a volume to find
lesions of size ≥10 mm and treat them as suspicious for metastasis [1,2]. They
also identify lesions across multiple patient visits and track their progression
(growth, shrinkage, or unchanged status) based on treatment response. Lesions
can have heterogeneous shapes, sizes, and appearances in CT, and this further
compounds assessment as there are a variety of imaging scanners and inconsistent
exam protocols in use at different institutions. Moreover, sizing lesions during
a busy clinical day is cumbersome for a radiologist due to observer measure-
ment variabilities, especially when treatment guidelines for examining metastasis
evolve, and some potentially metastatic lesions can be missed.

Recently, many automated approaches have been proposed for universal
lesion detection [3–9] on the DeepLesion dataset with state-of-the-art results.
The DeepLesion dataset contains 32,735 lesions annotated by radiologists in
32,120 axial CT slices from 10,594 studies of 4,427 patients. The dataset is
divided into 70% train, 15% validation, and 15% test splits respectively. Eight
(8) lesion-level tags (bone, abdomen, mediastinum, liver, lung, kidney, soft tissue,
and pelvis) are available for only the validation and test splits. Prior works utilize
the entire dataset for development and testing, while only a handful have gone
beyond lesion detection and addressed clinical issues [8–11]. However, as shown
in Fig. 1(a), there is a severe class imbalance in the DeepLesion dataset with
over-representation of certain classes (lung, abdomen, mediastinum, and liver)
in contrast to other under-represented classes (pelvis, soft tissue, kidney, bone).
This imbalance has not been addressed in prior work; e.g., in [3], public datasets
for lung nodules (LUNA dataset [12]), liver tumors (LITS dataset [13]), and
lymph nodes (NIH Lymph Node dataset [14]) were added to improve detection.
However, this solely increased the data quantities (and detection performance)
of the over-represented classes without affecting the under-represented classes.
Tackling class imbalances has potential clinical implications, such as improving
interval change detection (lesion tracking over time) [8,9].

In this paper, we addressed the class imbalance in the DeepLesion dataset by
using only the annotated subset (30%) to train a state-of-the-art VFNet model
[15] for lesion detection and classification. In a limited data-driven manner, we
conducted experiments that balanced the training data according to: 1) the
body part that the lesion was identified in, 2) the number of lesions observed
in a patient, and 3) the size of the lesions. Through balancing the data by the
body part label, we have shown a consistent increase in detection sensitivity for
under-represented (UR) classes along with a minimal sensitivity drop for over-
represented (OR) classes. This trend was also seen with other detectors, such
as Faster RCNN [16], RetinaNet [17], and FoveaBox [18]. Additionally, we saw
recalls for all classes improve with the VFNet model through our experiment that
balanced the lesions according to their size. Moreover, we provide a structured
reporting guideline by creating a dedicated “Lesions” sub-section for entry into
the “Findings” section of a radiology report. The “Lesions” sub-section contains
a structured list of detected lesions along with their body part tags, detection
confidence, and series and slice numbers. To the best of our knowledge, we are the
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first to show a class imbalance in the DeepLesion dataset and have taken data-
driven steps to address it in the context of lesion detection and classification.

Fig. 1. (a) shows the lesion distribution per body part label in the DeepLesion dataset
[22] with certain over-represented and under-represented classes. (b) shows the number
of patients with a specific number of lesions annotated. (c) Compared to the unbalanced
dataset DU , our dataset DBP balanced the number of lesions across the different body
part classes (orange). (d) shows the lesion distribution for patients who were divided
into two groups: G1 had patients with 1–2 lesions and G2 had patients with 3+ lesions.
Compared to DU , dataset DN (orange) had an equal number of lesions in G1 and
G2. The number of patients in each group was not balanced. (e) shows the lesion
distribution categorized by the short axis diameter (SAD) length. Compared to DU ,
in dataset DS the number of lesions with SAD ≥ 1 cm and SAD < 1 cm were balanced
(orange). (f) Four lesions were detected in the chest area. Green boxes: GT, yellow
boxes: TP, red boxes: FP. The top-3 predictions, their labels, and confidence scores
were compiled into a structured “Lesions” sub-section for entry into the “Findings”
section of a radiology report. Only lesions that were predicted with confidences ≥50%
are shown. Figure is best viewed electronically in color. (Color figure online)
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2 Methods

In this section, we briefly describe the neural networks that were employed for
lesion detection and tagging. Our goal is to improve an existing model’s robust-
ness against class imbalances using data-driven approaches.

State-of-the-Art Detectors. Various state-of-the-art detectors were employed
for lesion detection and tagging in CT slices. Notably, we used: 1) VFNet [15],
2) Faster RCNN [16], 3) RetinaNet [17], and 4) FoveaBox [18]. Faster RCNN is a
two-stage anchor-based detector in which region proposals for regions-of-interest
(ROI) were generated by the first stage, followed by a second stage that classified
these proposals and regressed the bounding box coordinates. RetinaNet [17] is
an anchor-free detector that utilized the focal loss to solve a common class imbal-
ance problem in detection, wherein proposals were sampled in non-informative
ROIs of the image instead of salient object locations. FoveaBox used a ResNet-50
backbone to generate feature maps from the input and a fovea head network that
estimated the coordinates in an image that may be potentially covered by an
object ROI. Finally, VFNet combined a Fully Convolutional One-Stage Object
(FCOS) detector [19] (without the centerness branch), an Adaptive Training
Sample Selection (ATSS) mechanism [20], which selected high quality ROI can-
didates during training, and a novel IoU-aware varifocal loss [15] to detect ROI.
After model training was completed, Weighted Boxes Fusion (WBF) [21] was
used to combine the numerous predictions and improve the precision/recall met-
ric. Supplementary material contains implementation details for the models.

3 Experiments

Dataset. The NIH DeepLesion dataset [22] contains keyslices that were anno-
tated with 1–3 lesions per slice and 30 mm of context above and below the
keyslice was provided. Annotations were made using RECIST measurements [2],
from which 2D bounding boxes were extracted for each lesion. Eight (8) lesion-
level tags (bone - 1, abdomen - 2, mediastinum - 3, liver - 4, lung - 5, kidney
- 6, soft tissue - 7, and pelvis - 8) were available for only the validation and
test splits. The lesion tags were obtained through a body part regressor [23],
which provided a continuous score that represented the normalized position of
the body part for a slice in a CT volume (e.g., liver, lung, kidney etc.). The body
part label for the slice was assigned to any lesion annotated in that slice [22,23].
As the DeepLesion dataset contained multiple visits of the same patient, only
lesions from the first patient visit were kept [8] to maintain uniqueness during
training. This process left 26,034 lesions from 25,568 slices in the dataset. Next,
we removed lesions that did not contain a body part label (the training split)
leaving us with a limited dataset DL containing 8,104 lesions from 7,953 slices.
DL contained ∼24.75% of the original DeepLesion dataset, and was split into
60% training, 20% validation, 20% testing splits with unique patients in each
split. This 60% training split was still unbalanced and in our experiments (see
below), we utilized only ∼6% of DeepLesion (1331 lesions, 1309 slices).
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Experimental Design. The unbalanced lesion distribution per body part label
in Fig. 1(a) and distribution of lesion quantities per patient in Fig. 1(b) led us
to design four experiments with a limited annotated dataset DL. In the first
experiment EBP , we generated a dataset balanced by body part label DBP ; As
seen in Figs. 1(a) and 1(c), the body part label with the lowest data quantity
(“Bone”) was identified and the data quantities in the remaining labels were
matched to the lowest quantity. The intent was to emphasize that all lesion
classes were equally likely during training through sample selection. In the second
experiment EN , we created a dataset balanced by the number of lesions DN any
given patient had. From Fig. 1(b), there are a large number of patients with
1–2 lesions and fewer patients with 3+ lesions. For EN , we first created two
groups (G1 and G2) and sampled patients for each group such that each group
contained the same number of lesions as shown in Fig. 1(d). The aim was to
provide a balanced number of lesions per patient such that the model witnessed
patients with varying number of lesions at test time with equal likelihood. Our
third experiment ES was clinically oriented, and we produced a dataset balanced
by the lesion size DS . Lesions with SAD ≥ 10 mm were collected in one group
while those with SAD < 10 mm were present in the second group. The objective
was to create a dataset with equal numbers of lesions divided according to their
size as both smaller and larger lesions are equally likely at test time. In our
fourth and final experiment EU , we generated an unbalanced dataset DU with a
random sample of the training split of DL, such that it had similar distributions
(random) of labels as shown in Figs. 1(c)–(e).

4 Results and Discussion

Results.Table 1 and Fig. 2 display the results of our experiments at 4 FP and 30%
IoU overlap [24] on lesions with SAD ≥ 1 cm, which are generally more clinically
significant lesions. Table 1 in the supplementary material reflects our experimen-
tal results on lesions with SAD < 1 cm. In contrast to the experiment with unbal-
anced data DU , our experiment balancing body part labels EBP improved recalls
for 4/4 under-represented (UR) classes (Bone: 80% vs. 46%, Kidney: 77% vs. 61%,
Soft Tissue: 70% vs. 60%, Pelvis: 83% vs. 76%) across all the models tested. These
results are evident for both SAD ≥ and < 1 cm. Among the over-represented (OR)
classes, we see consistent improvements for the “Lung” category across all mod-
els and for “Mediastinum” label for all models except FoveaBox. However, the
“Abdomen” and “Liver” categories show a decrease in sensitivity across all models.
The sensitivity reduction is expected as the number of training samples used for
OR classes have been reduced as shown in Fig. 1(c). Although to understand this
phenomenon better, we calculated the confusion matrices for each experiment (see
supplementary material) using the VFNet model. From the DeepLesion dataset
description [22], the “Soft Tissue” class encompassed lesions found in the muscle,
skin, or fat, while the “Abdomen” class was a “catch-all” term for all abdominal
lesions that were not “Kidney” or “Liver” masses. Anatomically however, “Kid-
ney” and “Liver” are organs in close proximity to one another and axial slices often
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show cross-sections of both organs in the same slice. This is reflected in the confu-
sion matrix as the “Abdomen”, “Kidney” and “Liver” labels are confused with
each other most often. Comparing EU with EN (balancing by lesion number),
recalls improved for only 1/4 UR classes (Kidney) for Faster RCNN and FoveaBox,
and 2/4 UR classes for RetinaNet (Kidney and Soft Tissue) and VFNet (Kidney,
soft tissue) respectively. For the OR classes, only “Liver” improved for VFNet, 2/4
classes improved for Faster RCNN and FoveaBox (Abdomen, Lung) respectively,
and 3/4 classes improved for RetinaNet (Mediastinum, Lung, Liver). Compared
againstEBP , recalls were lower for all UR classes except for VFNet, which did well
on 2/4 classes (Soft Tissue and Pelvis). For the OR classes, 2/4 classes improved for
Faster RCNN (Abdomen, Liver), 3/4 classes improved for VFNet and RetinaNet
(Abdomen, Mediastinum and Liver), and all 4 classes improved for FoveaBox.

Table 1. Detection sensitivities of different detectors based on different experiments
are shown @ 4 FP and an IOU of 0.3 for lesions with a SAD ≥ 1 cm.

Experiment Bone Kidney Soft Tissue Pelvis Abdomen Mediastinum Lung Liver

EU - Faster R-CNN [16] 23.3 40.5 50.4 67.5 57.7 79.6 66.8 77.3

EBP - Faster R-CNN [16] 63.3 75.1 58.1 68.5 55.6 83.3 74.9 69.8

EN - Faster R-CNN [16] 16.6 49.3 44.1 63.2 65.5 78.7 72.6 76.9

ES - Faster R-CNN [16] 30.0 49.7 51.7 56.4 61.1 74.8 74.5 73.1

EU - RetinaNet [17] 21.7 38.4 48.2 55.8 70.5 82.8 76.1 75.9

EBP - RetinaNet [17] 66.7 66.7 60.3 59.8 62.3 85.3 79.7 71.0

EN - RetinaNet [17] 27.5 53.1 26.1 49.6 68.7 86.2 77.4 76.5

ES - RetinaNet [17] 26.2 22.4 25.0 21.1 51.9 61.7 58.8 58.2

EU - FoveaBox [18] 28.3 46.4 54.2 59.2 64.8 88.3 69.2 76.7

EBP - FoveaBox [18] 65.0 67.9 66.7 63.4 56.2 84.5 76.9 70.0

EN - FoveaBox [18] 18.3 56.5 46.9 34.1 70.1 85.1 74.7 71.5

ES - FoveaBox [18] 41.66 40.9 46.3 47.6 71.1 86.8 75.1 74.9

EU - VFNet [15] 46.7 61.6 60.0 76.0 76.8 85.6 70.8 77.7

EBP - VFNet [15] 80.0 77.6 70.7 83.4 69.5 87.7 78.9 76.3

EN - VFNet [15] 28.8 63.3 63.6 73.5 69.6 78.8 68.2 91.0

ES - VFNet [15] 51.6 67.0 67.3 87.2 82.1 89.8 82.7 82.1

In contrast to the EU experiment, in the ES experiment (balancing by lesion
size), VFNet recalls were always better across all classes for both SAD ≥ 1 cm and
< 1 cm. Only one UR class showed improved recall for RetinaNet and FoveaBox
(Bone) respectively, while 3/4 UR classes did better for Faster RCNN (Bone, Kid-
ney, Soft Tissue). In the OR classes, RetinaNet did worse on all classes, and 2/4 OR
classes showed improvements for Faster RCNN and FoveaBox (Abdomen, Lung).
In contrast to theEBP experiment, sensitivitieswere lower for all URclasses except
for the “Pelvis” class with VFNet. For the OR classes, RetinaNet did not show
improvements for any class, 2/4 classes improved for Faster RCNN (Abdomen,
Liver), and 3/4 classes improved for FoveaBox (Abdomen, Mediastinum, Liver).
Compared against the EN experiment, sensitivities were worse for all UR classes
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(a) VFNet (b) Faster RCNN (c) FoveaBox (d) RetinaNet

Fig. 2. Columns (a)–(d) show outputs of the various models on slices from CT volumes
of two different patients. The first row of each pairing represents the model output after
being trained on an unbalanced DU dataset, while the second row shows results when
trained on a dataset balanced by body part labels DBP . Green boxes: GT, yellow boxes:
TP, red boxes: FP. The predicted classes and confidence scores are also shown. The
first pair shows that models trained with DU did not identify and classify a “Bone”
lesion correctly (first row), whereas one trained on DBP did (second row). Particularly,
VFNet trained on DBP predicted correctly with a confidence on 97%. The second pair
shows fewer FP for VFNet with DBP , and a missed detection for FoveaBox (last row).
(Color figure online)

with RetinaNet. They were better for 2/4 UR classes for FoveaBox (Bone and
Pelvis), and 3/4 UR classes for Faster RCNN (Bone, Kidney, Soft Tissue). On the
OR classes, recall was worse for all classes with RetinaNet, improved for 1/4 OR
classes with Faster RCNN (Lung), and 3/4 classes for VFNet (Abdomen, Medi-
astinum, Lung) and all classes for FoveaBox.

Discussion. In contrast to previous work, we have shown that through effective
data exploration of the DeepLesion dataset, the recalls for all models across all
the under-represented classes were improved. Specifically, our EBP experiment
(balancing data by body part labels) displayed this clear improvement. We also
saw an increase in sensitivity for the OR classes “Lung” and “Mediastinum“
with Faster RCNN, RetinaNet and VFNet respectively. The “Abdomen” and
“Liver” classes were confused with each other most often. We contend that
the “Abdomen” and “Soft Tissue” labels were generated through a body part
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regressor, and are ambiguous and non-specific labels that broadly encompass
multiple regions in the abdomen. In fact, after we asked a radiologist to re-
classify a random sample of 100 lesions with the original term “Abdomen”, we
identified multiple lesions that should be assigned new labels such as “Liver”,
“Pancreas”, “Spleen”, “Muscle”, “Stomach” etc. There are many other anno-
tated lesions in DeepLesion for whom the assigned labels may change upon
manual inspection. In our experiment EN (balancing by number of lesions), we
did not see a consistent trend of improvement and hypothesize that this is due
to not simultaneously balancing the lesions by the body part labels. Balancing
the data by both body part labels and number of lesions proved difficult as it
was difficult to categorize patients when they had multiple lesions with different
labels. In our ES experiment (balancing the lesion size), the recalls for all classes
improved with the VFNet model.

We were unable to compare against prior works as limited approaches exist
to jointly detect and tag lesion [10,11]. One approach [11] used a Mask-RCNN
model that required segmentation labels, which we did not create in this work.
Furthermore, this approach also provided more descriptive tags, which would
require a sophisticated ontology derived from radiology reports (unavailable in
DeepLesion dataset) to map them to the body part tags used in this work.
To circumvent this issue, we implemented other detection models to prove our
consistent results. We also present a clinically useful structured reporting guide-
line by creating a dedicated “Lesions” sub-section for entry into the “Findings”
section of a radiology report. The “Lesions” sub-section contains a structured
list of detected lesions along with their body part tags, detection confidence, and
series and slice numbers. Furthermore, DeepLesion contains both contrast and
non-contrast enhanced CT volumes, but the exact phase information is unavail-
able in the dataset. Thus, we have not been able to balance the data according
to the phase of the CT volume, and this is a limitation of our work. For future
work, we plan to conduct an experiment that upsamples the classes with low
data points, and balance the data by both the body part label and lesion size.

5 Conclusion

In this paper, we have shown that the DeepLesion dataset exhibits a severe
imbalance in the number of lesions per body part label. It also contains missing
annotations and label tags. We have utilized a limited data subset (6%, 1331
lesions, 1309 slices) to train a VFNet model to detect lesions and tag them. We
conducted three experiments to address the class imbalance and have shown a
consistent increase in recalls for UR labels through our experiment EBP (Bone:
80% vs. 46%, Kidney: 77% vs. 61%, Soft Tissue: 70% vs. 60%, Pelvis: 83% vs.
76%) in contrast to EU . We have also shown that FasterRCNN, RetinaNet, and
FoveaBox perform similarly. In addition, we have shown that balancing data
by lesion size helped the VFNet model improve recalls for all classes. To our
knowledge, we are the first to show a class imbalance in the DeepLesion dataset
and have taken data-driven steps to address it in the context of lesion detection
and classification.
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Abstract. Anomaly detection in medical imaging plays an important
role to ensure AI generalization. However, existing out-of-distribution
(OOD) detection approaches fail to account for OOD data granularity in
medical images, where identifying both intra-class and inter-class OOD
data is essential to the generalizability in the medical domain. We focus
on the generalizability of outlier detection for medical images and propose
a generic Cascade Variational autoencoder-based Anomaly Detector
(CVAD). We use variational autoencoders’ cascade architecture, which
combines latent representation at multiple scales, before being fed to a
discriminator to distinguish the OOD data from the in-distribution data.
Finally, both the reconstruction error and the OOD probability predicted
by the binary discriminator are used to determine the anomalies. We com-
pare the performance with the state-of-the-art deep learning models to
demonstrate our model’s efficacy on various open-access natural and medi-
cal imaging datasets for intra- and inter-class OOD. Extensive experimen-
tal results on multiple datasets show our model’s effectiveness and gener-
alizability. The code will be publicly available.

Keywords: Anomaly detection · Cascade Variational autoencoder ·
Medical images · OOD detection

1 Introduction

Despite recent advances in deep learning that have contributed to solving vari-
ous complex real-world problems [5], the safety and reliability of AI technologies
remain a big concern in medical applications [6,20]. Deep learning models for med-
ical tasks are often trained with known classes, which are called in-distribution
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Fig. 1. ID, Intra- and Inter-class OOD examples for medical images. Compared to
natural images, medical OOD samples exhibit more subtle intra-class variations (e.g.,
normal vs pneumonia in the 1st row and benign vs malignant in the 2nd row).

(ID) data, but fail to identify the cases with significant quality variances, unseen
classes, and unknown categories, which are out-of-distribution (OOD) inputs.
To ensure the reliability of deep models’ predictions, it is necessary to identify
unknown types of data that are different from the training data distribution.
Therefore, anomaly detectors should be able to distinguish unpredictable out-
liers based the learnt knowledge of ID. However, the core challenges for medical
anomaly detection are – (1) the OOD data is usually unavailable during training;
(2) there are infinite numbers of variations of OOD data; and (3) different types
of OOD data can be identified with varying difficulties. To facilitate future per-
formance measurement and quantification, we categorize the outliers into inter-
class and intra-class OOD types based on the variation difference. As exempli-
fied in Fig. 1, inter-class OOD data are from categories different from the ID data1,
e.g. a skin cancer image v.s. a lung X-ray image; intra-class OOD data belong to
the same category as the ID data but different classes, e.g. a normal skin image v.s.
a skin image with cancer. Therefore, inter-class OOD data often has larger vari-
ations from the ID data, whereas the intra-class OOD data is close to ID data.
Thus, identifying intra-class OOD data is more difficult than the inter-class OOD
data given subtle differences with ID data.

Models based on Variational Autoencoders (VAEs) and Generative Adver-
sarial Networks (GANs) are promising as the deep generative models can learn
latent features of training data and generate synthetic data with similar fea-
tures to known classes [9]. Although VAEs are theoretically elegant and easy
to train with nice manifold representations, they usually produce blurry images
that lack detailed information [3,13,14,23]. GANs usually generate much sharper
images and have been used for anomaly detection [22], such as AnoGAN [19] and

1 By default, we mean a category can contain several distinct classes. For example, a
Chest Xray category can include different types of diseases.
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GANomaly [1]. However, GANs often face challenges in training stability and
sampling diversity [8]. [7] proposed to use an ensembles of GANs for more stable
performance, which adds the model complexity. Besides, there are hybrid mod-
els that detect anomalies by combining a VE/VAE with a GAN [3,12]. More-
over, many other approaches have contributed to OOD detection, for example,
UTRAD [4], a Transformer-based OOD detection method is also developed, but
aiming for 3D medical images. Nonetheless, OOD detectors that consider the
outliers’ granularity are still lacking. Although [10] also detects both the inter-
and intra-class OOD data, but different from our definitions, the work focuses
on skin lesion data specifically and defines its inter-class variation as the varia-
tions in visual appearance across separate lesion diseases, which belongs to our
intra-class OOD detection.

To cope with the OOD unavailability and uncertainty challenges, we adopt an
unsupervised way to design our anomaly detector. For intra-class OOD data, we
expect the model can be sensitive to minor variations and thus screen the dissim-
ilar inputs. To acquire such high identification of hard OOD cases, we propose
a Cascade Variational autoencoder based Anomaly Detector (CVAD) to learn
both coarser and finer features inspired by [3,15], which have demonstrated effec-
tiveness in enhancing the reconstruction ability by using a cascade architecture.
Based on the observation, we design a similar cascased VAE architecture back-
bone, with which CAVD gains superior reconstructions and learns good-quality
features to threshold out the OOD data. To enhance the detection ability of inter-
class OOD data, we further train a binary discriminator with the reconstructed
data as the fake OOD category. In this paper, our contributions are three-fold:

– We propose a specifically designed medical OOD detector – CVAD. By uti-
lizing a cascade VAE to learn latent variables of in-distribution data, CVAD
owns good reconstruction ability of in-distribution inputs and obtains dis-
criminative ability for OOD data based on the reconstruction error.

– We adopt a binary discriminator to further separate the in-distribution data
from the OOD data by taking the reconstructed image as fake OOD samples.
Thus, our model has better discriminative capability for the inter-class as well
as intra-class OOD cases.

– We conduct extensive experiments on multiple public medical image datasets
to demonstrate the generalization ability of our proposed model. We evaluate
comprehensively against state-of-the-art anomaly detectors in detecting both
intra-class and inter-class OOD data, showing improved performance. The
implementation technical report including original code and usage instruc-
tions has been publicly available.

2 Method

2.1 CVAD Architecture

Figure 2 shows the design of CVAD. Inspired by the GAN’s architecture, we
adopt a cascade VAE architecture as the “generator” for modeling ID repre-
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Fig. 2. Proposed CVAD architecture - a cascade VAE as the generator and a separate
binary classifier (D) as the discriminator.

sentations and a separate classifier as the “discriminator” to strengthen OOD
discrimination.

Generator: Different from the standard VAE, our “generator” has two encoders
E1, E2 and two decoders D1, D2. To learn the high-level features, a deep and
standard VAE architecture constructed by E1 and D1 formulates the deep latent
variables z1 by sampling parameters μ1 and σ1 of size K. Meanwhile, the low-
level features are learnt by the branch VAE. Instead of using the original input,
branch VAE utilizes the concatenation of two intermediate features from E11

and D11. Given original input variables x, the input of branch VAE can be
represented as f(x). The encoder of branch VAE E2 is simpler than E1 whereas
the decoder D2 owns the same architecture as D12. This branch VAE formulates
latent Gaussian distributions with parameters μ2, σ2 of size 4K. After sampling,
two sets of latent variables, i.e., z1, z2 are acquired and decoded to image contexts
x

′
1 and finer details x

′
2 respectively. x is the combination of x

′
1 and x

′
2.

Discriminator: Since the “generator” itself has no awareness of distinguishing
outliers, we add a binary discriminator D to distinguish the reconstructed image
x

′
from the original input image x. As x

′
shares very similar features with x

after the first-stage training of the image generator, the discriminator is much
more sensitive to minor differences from the in-distribution data, enhancing the
accuracy of identifying both intra-class OOD data and inter-class OOD data.

2.2 Combined Loss Function

Instead of training CVAD in an adversarial way, we train the generator and the
discriminator in two stages. The reason is that training with adversarial losses
often leads to much sharper reconstructions but ignores the low-level information
of ID data, incurring high reconstruction errors and potential dangerous decisions
for medical applications. Therefore, CAVD is designed to first train the image
generator and then the binary discriminator to detect OOD data. This non-
adversarial training enables CVAD to inherit the merit of VAEs and avoid the
instability of GANs.
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To optimize the generator, we minimize two objectives for the primary VAE
part in Eq. 1 and the branch VAE part in Eq. 2, KL refers to Kullback-Leibler
divergence.

L(x;φ1, θ1) = −Ez1∼qφ1 (z1|x)[log pθ1(x|z1)] + DKL(qφ1(z1|x)||pθ1(z1)) (1)

L(x;φ2, θ2) = −Ez2∼qφ2 (z2|f(x))[log pθ2(x|z2)] +DKL(qφ2(z2|f(x))||pθ2(z2)) (2)

Therefore, the “generator” loss can be formulated as Eq. 3. α1 and α2 to balance
the weights of the two individual terms.

LG = α1L(x;φ1, θ1) + α2L(x;φ2, θ2) (3)

The binary discriminator is trained to distinguish true/fake images using binary
cross entropy.

An anomaly score S is defined in Eq. 4 based on errors during inference
and includes two parts: the reconstruction error LG output by the “generator”
and the probability of being the anomaly class SD output by the discriminator.
Instead of simply adding the two parts together, we first scale the “generator”
reconstruction errors into [0,1] for the whole dataset and get the average score
value to avoid assigning imbalanced weights between the two parts:

S = 0.5 ∗ (
LG − LGmin

LGmax − LGmin

+ SD) (4)

2.3 Network Details

As illustrated in Fig. 2, our generator has a standard VAE part which consists
of E11, E12, D11 and D12 and a branch VAE composed by a shallow encoder
E2 and a decoder D2. The primary VAE is a symmetric network with five 4× 4
convolutions with stride 2 and padding 1 followed by five transposed convolu-
tions. Respectively, E11 stands for the first three convolution layers; E12 refers
the last two convolution layers; D11 is for the first three transposed convolution
layers and D12 means the last two transposed convolution layers. The input of
the branch VAE is the intermediate features of E11 and the middle decoded
features of D11. E2 here is a convolution layer which has a same 4 × 4 kernel
with stride 2 and padding 1. D2 shares the same decoder architecture as D12.
All convolutions and transposed-convolutions are followed by batch normaliza-
tion and leaky ReLU (with slope 0.2) operations. We used a base channel size
of 16 and increased number of channels by a factor of 2 with every encoder
layer and decreased the number of channels to half for each decoder layer. The
latent dimension K of z1 is set as 512 and z2 is with 4K, i.e., 2048 dimensions.
The parameters are selected empirically as we found that smaller latent dimen-
sions weaken the fine-grained details learning and larger latent dimensions are
resource-expensive to train. The binary discriminator is composed of five convo-
lution layers with the same settings as above and a final fully connected layer
to make a binary prediction. After a sigmoid function, the final ID/OOD class
probability is obtained.
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Table 1. AUC scores predicted by OOD detectors for inter-class identification on
RSNA, IVC-Filter and SIIM datasets. Bold indicates the best performance. The total
number of samples of each dataset is reported in the bracket of Details column.

Dataset Details Methods AUROC score
InterClass1 InterClass2 InterClass3

RSNA In-class: normal (8,851)
Intra-class: pneumonia (9,555), abnormal (11,821)
InterClass1: BIRD (37,715)
InterClass2: SIIM (33,125)
InterClass3: IVC-Filter (1,258)

AE [18] 0.677±0.006 0.608±0.005 0.616±0.004

VAE [2] 0.752±0.004 0.604±0.007 0.613±0.006

DeepSVDD [17] 0.838±0.005 0.834±0.004 0.604±0.006

GANomaly [1] 0.733±0.005 0.816±0.004 0.597±0.007

f-AnoGAN [19] 0.842±0.001 0.693±0.001 0.682±0.002

CVAD (ours) 0.863±0.003 0.803±0.004 0.703±0.005

IVC-Filter In-class: type 11 (196)
Intra-class: type 0-10, 12,13 (1,062)
InterClass1: BIRD (37,715)
InterClass2: SIIM (33,125)
InterClass3: RSNA (30,227)

AE [18] 0.372±0.051 0.342±0.041 0.237±0.051

VAE [2] 0.666±0.026 0.400±0.039 0.706±0.027

DeepSVDD [17] 0.861±0.051 0.724±0.060 0.883±0.102

GANomaly [1] 0.803±0.018 0.827±0.190 0.922±0.072

f-AnoGAN [19] 0.911±0.020 0.625±0.043 0.864±0.042

CVAD 0.984±0.002 0.911±0.017 0.985±0.001

SIIM In-class: benign (32,541)
Intra-class: malignant (584)
InterClass1: BIRD (37,715)
InterClass2: IVC-Filter (1,258)
InterClass3: RSNA (30,227)

AE [18] 0.572±0.004 0.013±0.000 0.752±0.005

VAE [2] 0.712±0.006 0.021±0.002 0.759±0.003

DeepSVDD [17] 0.980±0.001 0.992±0.000 0.804±0.002

GANomaly [1] 0.688±0.005 0.989±0.000 0.442±0.006

f-AnoGAN [19] 0.951±0.001 0.924±0.002 0.606±0.003

CVAD 0.983±0.001 0.978±0.001 0.869±0.003

3 Experiments

3.1 Datasets and Implementation Details

We conducted extensive experiments on multiple open-access medical image
datasets for intra- and inter-class OOD detection. In total, we used three med-
ical image datasets – RSNA Pneumonia dataset [21], inferior vena cava filters
(IVC-Filter in short) on radiographs [11] and SIIM-ISIC Melanoma dataset [16]
(identify melanoma in lesion images) and one natural image datasets – Bird
Species2. Column Details of Table 1 lists the class information and number of
images for each dataset and the corresponding usage. Bird dataset was only used
as inter-class OOD for detection validation, which is an extension evaluation of
medical OOD detectors in identifying OOD inputs from a very different domain,
e.g., natural world objects. To unify the OOD detection pipeline and facilitate
evaluation, we resized both the medical images and the validation inter-class
OOD images to a unified 256× 256× channel size. To train the anomaly detec-
tors, we split the ID data into training and valuation parts in the ratio of 80%
v.s. 20%. All the OOD data will only be used during evaluation phase. We imple-
mented our model by setting both α1 and α2 as 1. We evaluated our anomaly
detection model performance in terms of standard statistical metrics - (i) area
under the receiver operating characteristic (AUROC, AUC in short); (ii) True
Positive rate (TPR); (iii) False positive rate (FPR). To classify ID and OOD
classes, a threshold should be defined for the anomaly scores. Notably, the AUC
2 https://www.kaggle.com/gpiosenka/100-bird-species.

https://www.kaggle.com/gpiosenka/100-bird-species
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Table 2. Intra-class OOD detection results (FPR, TPR and AUC values) of various
anomaly detectors trained on RSNA, IVC-Filter and SIIM datasets. Best results are
highlighted. Standard deviations are calculated via 10 rounds of bootstrapping estima-
tions.

Methods RSNA IVC-Filter SIIM
↓FPR ↑TPR ↑AUC ↓FPR ↑TPR ↑AUC ↓FPR ↑TPR ↑AUC

AE [18] 0.318±0.014 0.461±0.009 0.566±0.004 0.198±0.104 0.350±0.075 0.436±0.040 0.420±0.024 0.714±0.030 0.673±0.006

VAE [2] 0.473±0.001 0.462±0.001 0.487±0.001 0.489±0.097 0.707±0.076 0.542±0.080 0.442±0.008 0.740±0.006 0.676±0.023

DeepSVDD [17] 0.508±0.021 0.413±0.023 0.421±0.009 0.503±0.106 0.672±0.042 0.500±0.075 0.276±0.036 0.683±0.050 0.740±0.010

GANomaly [1] 0.524±0.005 0.678±0.015 0.576±0.005 0.446±0.172 0.627±0.227 0.518±0.103 0.553±0.103 0.495±0.108 0.418±0.016

f-AnoGAN [19] 0.365±0.033 0.541±0.029 0.614±0.005 0.419±0.077 0.611±0.054 0.544±0.042 0.381±0.000 0.624±0.033 0.721±0.015

CVAD (ours) 0.327±0.016 0.646±0.017 0.696±0.005 0.541±0.094 0.706±0.091 0.582±0.031 0.376±0.020 0.766±0.021 0.749±0.010

value is threshold-invariant, while the TPR and FPR are determined by the
selection of the anomaly threshold. We adopted the Geometric Mean (G-Mean)
method to determine an optimal threshold for the ROC curve by tuning the deci-
sion thresholds and reported the resulting FPR and TPR values. To be fair and
thorough, we ran all the experiments on both intra-class OOD and inter-class
OOD to further analyze the performance of anomaly detectors on the specific
type of OOD detection.

3.2 Results

We set the vanilla AE and VAE architectures as baselines and compared our
CVAD model with several representative models with varying architectures –
a classifier-based approach DeepSVDD [17], and two GAN-based methods, i.e.,
GANomaly [1] and f-AnoGAN [19]. Table 1 primarily presents the inter-class
OOD performance and Table 2 shows the models’ performance for the intra-class
OOD detection.

Results for Inter-class OOD Detection. To fairly evaluate all the models, we
test them on multiple inter-class OOD data types and present the corresponding
AUC scores in Table 1. CVAD obtains the highest AUC values on RSNA and
SIIM datasets (except for inter-class2), and performs the best for IVC-Filter
dataset across three inter-class OOD detection evaluations. Especially, CVAD
remains highest ability to detect Bird OOD data, which indicates its potentials
in excluding the OOD samples that are from very different domains. Generally,
the inter-class OOD detection of CVAD is satisfied with stable performance.

Results for Intra-class OOD Detection. On the RSNA dataset, CVAD
achieves the best AUC score 0.696 (+0.275 from DeepSVDD’s AUC score 0.421,
+0.120 from GANomaly’s AUC score 0.576, +0.082 from f-AnoGAN’s AUC score
0.614); for IVC-Filter, CVAD obtains the highest AUC values 0.582; for SIIM
dataset, although DeepSVDD and f-AnoGAN show competitive performance,
CVAD acquires the optimal AUC score 0.749. Overall, CVAD performs stably
and effectively for intra-class OOD detection, while the other methods fail to
maintain their advantages over all the tasks (both inter- and intra-class OOD
detection) .
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Table 3. AUC scores predicted by the “generator” CVAD_G, the discriminator
CVAD_D and CVAD for inter-class identification on RSNA, IVC-Filter and SIIM
datasets respectively.

Dataset Methods AUROC score
IntraClass InterClass1 InterClass2 InterClass3

RSNA CVAD_G (ours) 0.602±0.006 0.854±0.003 0.517±0.004 0.601±0.005

CVAD_D (ours) 0.672±0.005 0.793±0.003 0.809±0.003 0.679±0.005

CVAD (ours) 0.696±0.005 0.863±0.003 0.803±0.004 0.703±0.005

IVC-Filter CVAD_G (ours) 0.568±0.031 0.981±0.003 0.787±0.023 0.983±0.002

CVAD_D (ours) 0.543±0.041 0.661±0.018 0.925±0.011 0.834±0.013

CVAD (ours) 0.582±0.031 0.984±0.002 0.911±0.017 0.985±0.001

SIIM CVAD_G (ours) 0.746±0.010 0.995±0.000 0.995±0.000 0.827±0.004

CVAD_D (ours) 0.724±0.008 0.874±0.002 0.055±0.001 0.862±0.005

CVAD (ours) 0.749±0.010 0.983±0.001 0.978±0.001 0.869±0.003

Effectiveness of CVAD’s Components. We here demonstrate the impor-
tance of each component of CVAD. Table 3 shows the performance difference
under the intra-class and three inter-class OOD data situations. CVAD_G rep-
resents the “generator”, CVAD_D stands for only using the predictions of the dis-
criminator. CVAD balances the two components’ prediction. As can be observed,
CVAD_G and CVAD_D show certain variations for different cases. For exam-
ple, CVAD_D generally works better than CVAD_G for RSNA dataset but
behaves worse than CVAD_G in SIIM scenario. Nevertheless, each component
owns its unique OOD discriminative ability, and combining their advantages
entitles CVAD the capability of capturing both intra-class and inter-class dis-
similarities. For which sake, CVAD has better generalization and can perform
well and stably under different situations.

Anomaly Detection. Figure 3 shows two experimental results for RSNA
dataset. Each row stands for one case and each column represents a specific type
of input data. From left to right, they are in-distribution data, intra-class OOD
data, inter-class OOD1 data, inter-class OOD2 data and inter-class OOD3 data,
respectively. The corresponding anomaly score predicted by CVAD is on top of
each example. Higher anomaly scores mean more likely the inputs are OOD. As
can be seen in Fig. 3, the two intra-class OOD samples (2nd column) are alike
as the in-distribution data but the inter-class OOD examples show very differ-
ent appearance from in-distribution data. Correspondingly, the anomaly scores
of intra-class OOD are close to the scores of ID samples and difficult to sepa-
rate whereas the intra-class OOD cases with clear variations are assigned higher
anomaly scores and are easy to identify. This phenomenon further demonstrates
the challenges of identifying intra-class OOD data.
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Fig. 3. Anomaly scores output by CVAD for different types of input data (experiments
for RNSA dataset). Columns from left to right, ID, intra-class OOD, inter-class OOD1,
inter-class OOD2, inter-class OOD3.

4 Conclusion

We propose an effective medical anomaly detector CVAD that can reconstruct
coarse and fine image components by learning multi-scale latent representations.
The high quality of generated images enhances the discriminative ability of the
binary discriminator in identifying unknown OOD data. We demonstrate the
OOD detection efficacy for both intra-class and inter-class OOD data on various
medical and natural image datasets. Our model has no prior constraints on the
input images and application scenarios for OOD, thus can be applied to detect
OOD samples in a generic way for multiple scenarios. A detailed technical report
about the code implementation and parameter usages of CVAD has been publicly
available for easy reproduction.
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Abstract. Glaucoma is a threatening eye disease that can cause blind-
ness. It is common to use visual field (VF) tests and optical coherence
tomography (OCT) images for monitoring glaucoma. However, it is hard
to utilize both VF tests and OCT images because of the limitation of
data. The missing data can be a challenge for deep learning models.
Moreover, the instability of VF tests also leads to a degradation of the
dataset. It can make models learn wrong patterns. Therefore, we pro-
pose a deep learning model to predict future VF based on both previous
VF tests and OCT images regardless of the missing data. To deal with
unstable VF data, a distance-based loss function is introduced. As the
result, our proposed model shows a significant improvement in the future
VF prediction task.

Keywords: Visual field · Future prediction · Deep learning

1 Introduction

Glaucoma is an eye disease that damages the optic nerve [11]. It is one of the main
causes of blindness worldwide, especially in the elderly group [5]. To monitor the
development of glaucoma, doctors commonly conduct visual field (VF) tests. How-
ever, the VF test is a time-consuming process. The test can give poor reliability
since it depends on patient comprehension or cooperation. Thus, the damaged
point on VF tests can be shuffled between test times (Fig. 1). The unreliable data
can degrade the performance of the deep learning model since the mean square loss
function requires the accurate ground truth at the point-wise level.

Besides the VF test, the OCT test also can be used to keep track of glaucoma
[10]. The advantages of the OCT test are fast and reliable. However, the OCT
test is expensive. For that reason, there is less OCT data available compared to
VF data. In order to exploit both VF and OCT data, we have to deal with the
missing data issue.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Zamzmi et al. (Eds.): MILLanD 2022, LNCS 13559, pp. 199–205, 2022.
https://doi.org/10.1007/978-3-031-16760-7_19
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Fig. 1. The instability of VF tests.

The previous studies mainly used a series of VFs to predict glaucoma progres-
sion. Yousefi et al. [13] introduced a Gaussian model for glaucoma progression
detection while a 3D convolution model is applied in [9]. For the future VFs pre-
diction task, several deep learning models are exploited [2,12]. An RNN model
is used in [6] while Berchuck et al. [2] proposed a VAE model. However, those
works only utilize VFs data. To exploit both VFs and OCT images, a deeply-
regularized latent-space linear regression model is introduced in [1,14]. However,
the limitation of medical data still remains.

In this research, we propose a deep learning model to predict future VF.
We use both the VF test and OCT test as input. Our model can deal with the
missing data problem by providing mask data. On the other hand, a new loss
function is introduced to handle the instability of VF tests.

2 Method

The model is based on the baseline model [7] which combines Convolution Neural
Network (CNN) and Long Short-Term Memory (LSTM) [4]. The input includes
previous VF tests, OCT images, and mask information. The OCT images are the
set of RNFL thickness maps, horizontal tomograms, and vertical tomograms. The
baseline model includes two main parts. The CNN part is a ResNet-50 extractor
[3], which is used for extracting features from OCT images. Then, the series of
image features and VF data are fed into an LSTM module. Instead of using
Mean Square Error (MSE), a weighted MSE is applied to handle noisy data.
Firstly, each VF test is evaluated to detect noisy data. Based on that, we assign
the weight of VF tests for training. The good samples have weights of 1 while
the noisy samples have lower weights. It helps the model pay less attention to
noisy data so the effect of noise is reduced.

While the baseline model only accepts paired data (both VF and OCT data
are available), our model can deal with missing data by using mask informa-
tion. The missing OCT images are filled as black images. The mask informa-
tion is a vector that indicates whether that OCT image is missing or available.
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Commonly, we define 1 as available and 0 as missing data in masks. In our case,
we use the weights obtained from the weighted MSE as values for masks (Fig. 2).
It is more helpful since those values reflect the impact of each VF test during
training. Consequently, it helps our model to pay less attention to noisy VF tests.
The mask information is fed into the LSTM module along with OCT features
and VF data.

Fig. 2. The overview of the proposed model.

2.1 Distance-Based Loss

The weighted MSE is good for detecting noisy data. However, it can only handle
noisy data at the sample level. In the VF test, the result strongly depends on
patient cooperation. It gives small deviations to the results. Therefore, it is
possible that the damaged points are not in the same position between different
test times. But we can assume that the deviations are narrow. Thus, we propose
a new loss function, called distance-based loss, to deal with this issue. This loss
function can relax the point-wise criterion while comparing the ground truth and
VF prediction. As the result, the distance-based loss can perform better than
the MSE in such cases.

The distance-based loss can be described in Fig. 3. Firstly, we should detect
the damaged point in the VF test. In our case, we apply a fixed threshold.
The normal sensitivity is 32.8 dB [8]. Therefore, we consider that all the points
below 30 are considered damaged points. Next step, we define a set of neighbors
of damaged points. These neighbors are regions where deviations can occur.
Since the deviations are small, only the next-to points of damaged points are
set as neighbors (distance is 1). After that, we calculate the difference between
the ground truth and VF prediction of each point in neighbor regions. We set
a lower weight, β, for the points that have negative differences (the predicted
value is lower than the ground-truth value, β < 1). For the other points, we
set weights as 1. Finally, we apply the weighted MSE with those weights. Note
that, the distance-based loss is more efficient than the weighted MSE loss used
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Fig. 3. The distance-based loss.

in the baseline model. While the same weight is applied to all points in the case
of weighted MSE loss, the distance-based loss gives different weights for each
point. For training the proposed model, we use both the weighted MSE loss and
the distance-based loss:

Lmain = α1LweightedMSE + α2Ldistance−based (1)

where α1 and α2 are weights for each loss.

3 Experiments

3.1 Dataset and Implementation

Our dataset includes 1527 paired 30-2 visual field maps and OCT tests from 266
patients. The average age of patients is 57 years old. The number of visits of
each patient is 5.7 on average. The visual field test and OCT test can be taken
on different dates. Therefore, we consider a paired visual field - thickness map as
the time interval between two tests is less than 6 months. All left eyes are flipped
horizontally (for RNFL thickness maps, horizontal tomograms, and visual field
maps). The visual field data is normalized with zero centering. All the image
data are resized to 224 × 224.

For training, we apply common data augmentation techniques (shift, scale,
and rotate). With limited data, our model is trained with only 15 epochs to avoid
overfitting, the Adam optimizer is used. The initial learning rate is 0.001 and is
divided by 10 after 7 epochs. We use cross-validation with 5 folds to get the final
results. The weights for each loss are 1 and 1.7 for α1 and α2, respectively. In
distance-based loss, β is set to 0.7. For more detail, the source code can be found
at the Github repository https://github.com/QuangBK/future VF prediction.

https://github.com/QuangBK/future_VF_prediction
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3.2 Results

The metrics we use for experiments are Root Mean Square Error (RMSE) mean
absolute error (MAE) as below:

RMSE =
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√
√
√
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We first do an ablation study in Table 1. The results show that both mask
information and distance-based loss are helpful. The MAE and RMSE scores
are improved with them. Moreover, it is true that the OCT images can increase
the performance compared with using only VFs data.

Table 1. The ablation study.

Input Missing data Distance-based loss MAE RMSE

VFs ✗ ✗ 3.33± 1.38 4.60± 1.77

VFs ✓ ✗ 3.29± 1.38 4.54± 1.77

VFs + images ✗ ✗ 3.31± 1.50 4.58± 1.84

VFs + images ✓ ✗ 3.16± 1.30 4.48± 1.73

VFs + images ✓ ✓ 3.14± 1.37 4.43± 1.77

In comparison, we refer to Berchuck’s [2] and Park’s [6] works. Note that,
we use the same input (224 × 224 OCT images) for all compared methods. In
Table 2, the baseline model with only weighted MSE loss can outperform the two
compared methods. Our proposed method with mask information and distance-
based loss gives the best performance with an MSE of 3.14 and an RMSE of 4.43.
To verify the statistical significance of the results, we apply one-sided Wilcoxon
tests with p < 0.05.

Table 2. The comparison of MAE and RMSE results (dB).

Model MAE RMSE

Berchuck et al. [2] 4.76± 2.09 6.34± 2.44

Park et al. [6] 3.51± 1.46 4.81± 1.83

Baseline 3.31± 1.37 4.58± 1.77

Our model 3.14± 1.35 4.43± 1.77
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4 Conclusion

In this study, we propose a deep learning model for predicting future VF maps
from previous VFs and OCT images (RNFL thickness maps, horizontal tomo-
grams, and vertical tomograms). Several techniques are applied to deal with the
limited data in the medical domain. Firstly, we use mask information to handle
the missing data problem. Next, since VF data is not reliable, a distance-based
loss is introduced. It helps to reduce the noise at the point-wise level during train-
ing with noisy VF data. The quantitative results show that our model achieves
the best performance compared to other methods.
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Field Digest. Haag-Streit AG, January 2016

9. Shon, K., Sung, K.R., Shin, J.W.: Can artificial intelligence predict glaucoma-
tous visual field progression? A spatial-ordinal convolutional neural network model.
Am. J. Ophthalmol. 233, 124–134 (2022). https://doi.org/10.1016/j.ajo.2021.06.
025. https://www.sciencedirect.com/science/article/pii/S0002939421003548

https://doi.org/10.1016/j.xops.2021.100055
https://www.sciencedirect.com/science/article/pii/S2666914521000531
https://www.sciencedirect.com/science/article/pii/S2666914521000531
https://doi.org/10.1038/s41598-019-54653-6
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1136/bjophthalmol-2015-307223
https://bjo.bmj.com/content/100/1/86
https://doi.org/10.1038/s41598-019-44852-6
https://doi.org/10.21203/rs.3.rs-1236761/v1
https://doi.org/10.21203/rs.3.rs-1236761/v1
https://doi.org/10.1016/j.ajo.2021.06.025
https://doi.org/10.1016/j.ajo.2021.06.025
https://www.sciencedirect.com/science/article/pii/S0002939421003548


VF Prediction with Missing and Noisy Data Based on Distance-Based Loss 205

10. Tan, O., et al.: Detection of macular ganglion cell loss in glaucoma by Fourier-
domain optical coherence tomography. Ophthalmology 116(12), 2305-2314.e2
(2009). https://doi.org/10.1016/j.ophtha.2009.05.025. https://www.sciencedirect.
com/science/article/pii/S0161642009005442

11. Weinreb, R.N., Aung, T., Medeiros, F.A.: The pathophysiology and treatment of
glaucoma: a review. JAMA 311(18), 1901–1911 (2014)

12. Wen, J.C., et al.: Forecasting future Humphrey visual fields using deep learning.
PLoS ONE 14(4), 1–14 (2019). https://doi.org/10.1371/journal.pone.0214875

13. Yousefi, S., et al.: Detection of longitudinal visual field progression in glaucoma
using machine learning. Am. J. Ophthalmol. 193, 71–79 (2018). https://doi.org/
10.1016/j.ajo.2018.06.007. https://www.sciencedirect.com/science/article/pii/
S000293941830271X

14. Zheng, Y., et al.: Glaucoma progression prediction using retinal thickness via latent
space linear regression. In: Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2019, pp. 2278–2286.
Association for Computing Machinery, New York (2019). https://doi.org/10.1145/
3292500.3330757

https://doi.org/10.1016/j.ophtha.2009.05.025
https://www.sciencedirect.com/science/article/pii/S0161642009005442
https://www.sciencedirect.com/science/article/pii/S0161642009005442
https://doi.org/10.1371/journal.pone.0214875
https://doi.org/10.1016/j.ajo.2018.06.007
https://doi.org/10.1016/j.ajo.2018.06.007
https://www.sciencedirect.com/science/article/pii/S000293941830271X
https://www.sciencedirect.com/science/article/pii/S000293941830271X
https://doi.org/10.1145/3292500.3330757
https://doi.org/10.1145/3292500.3330757


Image Quality Classification for Automated
Visual Evaluation of Cervical Precancer

Zhiyun Xue1(B), Sandeep Angara1, Peng Guo1, Sivaramakrishnan Rajaraman1,
Jose Jeronimo2, Ana Cecilia Rodriguez2, Karla Alfaro3, Kittipat Charoenkwan4,

Chemtai Mungo5, Joel Fokom Domgue6,7,8, Nicolas Wentzensen2, Kanan T. Desai2,
Kayode Olusegun Ajenifuja9, Elisabeth Wikström10, Brian Befano11,

Silvia de Sanjosé2, Mark Schiffman2, and Sameer Antani1

1 National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
zhiyun.xue@nih.gov

2 National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
3 Basic Health International, San Salvador, El Salvador

4 Department of Obstetrics and Gynecology, Chiang Mai University, Chiang Mai 50200,
Thailand

5 Department of Obstetrics and Gynecology, University of North Carolina-Chapel Hill School
of Medicine, Chapel Hill, NC, USA

6 Cameroon Baptist Convention Health Services, Bamenda, North West Region, Cameroon
7 Department of Obstetrics and Gynecology, Faculty of Medicine and Biomedical Sciences,

University of Yaoundé, Yaoundé, Cameroon
8 Department of Epidemiology, The University of Texas MD Anderson Cancer Center,

Houston, TX, USA
9 Obafemi Awolowo University Teaching Hospital Complex, Ile Ife, Nigeria

10 Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
11 Information Management Services, Calverton, MD, USA

Abstract. Image quality control is a critical element in the process of data col-
lection and cleaning. Both manual and automated analyses alike are adversely
impacted by bad quality data. There are several factors that can degrade image
quality and, correspondingly, there are many approaches to mitigate their negative
impact. In this paper, we address image quality control toward our goal of improv-
ing the performance of automated visual evaluation (AVE) for cervical precancer
screening. Specifically, we report efforts made toward classifying images into four
quality categories (“unusable”, “unsatisfactory”, “limited”, and “evaluable”) and
improving the quality classification performance by automatically identifyingmis-
labeled and overly ambiguous images. The proposed new deep learning ensemble
framework is an integration of several networks that consists of three main com-
ponents: cervix detection, mislabel identification, and quality classification. We
evaluated our method using a large dataset that comprises 87,420 images obtained
from 14,183 patients through several cervical cancer studies conducted by dif-
ferent providers using different imaging devices in different geographic regions
worldwide. The proposed ensemble approach achieved higher performance than
the baseline approaches.
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1 Introduction

Cervical cancer is mainly caused by persistent infection of carcinogenic human papil-
lomavirus (HPV). It is one of the most common cancers among women. Its morbidity
and mortality rates are especially high in low- and middle-income countries (LMIC).
Besides HPV vaccination, effective approaches to screening and treatment of precan-
cerous lesions play an important role in the prevention of cervical cancer. Precancer is
a term that refers to the direct precursors to invasive cancer, which are the main tar-
get of cervical screening. In LMIC, due to the limited resources of medical personnel,
equipment, and infrastructure, visual inspection of cervix with acetic acid (VIA) is a
commonly adopted method for screening for cervical precancer (and treatable cancer).
While it is simple, inexpensive, quick to get a result, and does not require expert per-
sonnel training, VIA has fairly mediocre intra- and inter- observer agreement and may
result in over-treatment and under-treatment [1].

One way to improve VIA screening performance may be to combine it with a low-
cost imaging device incorporated with computerized technology that uses predictive
machine learning and image processing techniques, called automated visual evaluation
(AVE) for the purpose of this discussion [2]. Our proof-of concept work [2, 3] that was
demonstrated on two cervical image datasets showed the promise of AVE in LMIC as an
adjunctive tool for VIA for screening, or triage of HPV-positive women if such testing is
available. Subsequent work has revealed possible problems in implementation [4]. For
instance, image quality control, among others, is a key issue.

There are many factors that can adversely affect or degrade image quality. Some
are related to clinical or anatomical aspects of cervix, such as the visibility of the trans-
formation zone where cervical cancers tend to arise, and the presence of occlusion due
to vaginal tissue, blood, mucus, and medical instruments (e.g., speculum, cotton swab,
intrauterine device). Some of these are related to the technical aspect of imaging device
and the illumination condition, such as blur, noise, glare, shadow, discoloration, and low
contrast, among others. While it is important to train care providers to take high-quality
pictures, it is also of importance to develop automated techniques to limit, control, and
remedy the image quality problem in existing data sets as well as during acquisition.
To this end, we have been working on several aspects, such as filtering out non-cervix
images [5], identifying green-filtered images and iodine-applied images [6], separating
sharp images from non-sharp images [7], and deblurring blurry images [8].We also have
beenworking on analyzing the effects of several image quality degradation factors on the
performance of AVE. These include carrying out experiments to quantitively examine
and evaluate the AVE results on different levels of image noise and the effectiveness of
denoising on AVE [9].

In real-world images, there are often multiple types of degradation existing simul-
taneously which may vary within as well as across datasets. It may be very difficult
to synthesize (mimic) certain types of degradation let alone a combination of multi-
ple degradation types which is significantly harder. Therefore, we have been interested
in developing a general image quality classifier using the data labeled by expert clini-
cian annotators based on their judgment. For the quality grading, the annotators were
guided by predetermined criteria comprising several factors. They were developed by
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researchers at National Cancer Institute (NCI) who contributed the first-round qual-
ity filtering. Using this guide, NCI researchers assigned image quality labels (“unus-
able”, “unsatisfactory”, “limited”, and “evaluable”) for images in six datasets that were
obtained from different studies, geographical areas, and sources. The guide was specif-
ically designed to reduce the workload and labor time of collaborating gynecologists
for annotating images with respect to diagnostic review (for AVE disease grading and
treatability analysis), i.e., cutting down the number of low(bad)-quality images among
the images to be reviewed by the gynecologists. We noted that the images had a large
variance in appearance within each dataset and across datasets. The combined dataset
contains 14,183 patients and 87,420 images. We aimed to develop a 4-class quality
classifier using this multi-source data.

It is common for a large real-world dataset to be noisy and have mis-annotations
due to fatigue, misunderstanding, and highly ambiguous samples. Therefore, using all
the available training data sometimes may not be the best choice for achieving good
generalization. In our dataset, there might be high degrees of ambiguity between some
samples in the adjacent classes such as “unsatisfactory” and “limited”, and “limited”
and “evaluable” (as implied in the descriptions of labeling criteria in Sect. 2). We also
happened to notice the existence of mislabeled images in the training dataset during
random visual browsing. Like labeling itself, manual label cleaning for a large dataset is
tedious and labor-intensive. To deal with noisy labels and reduce their negative effects
on model performance, one can: 1) design a network that takes weak supervision into
consideration; and 2) identify mislabeled or highly ambiguous data automatically. In
this paper, we focus on the latter. That is, in addition, to develop an image quality
classifier, we are interested in removing/cleaning data used in training to produce better
generalization performance.

There are priorworks in the literature aiming formislabel identification. Themajority
of them monitor the training process and extract certain measures that can be used to
represent the difference between clean and mislabeled samples from the training process
[10–13]. For example, based on the observation that the curve of the training accuracy
with the increase of training epochs is different between clean and bad samples, the
authors in [10] developed an iterative approach in which a model was retrained by using
only the samples having the lowest loss at the current iteration. Another such example is
[11], which proposed amethod to use the area under the margin (AUM) value to measure
the difference in the training dynamics (as a function of training epochs) between the
correctly and incorrectly labeled samples. [11] also developed an effectiveway (using so-
called indicator samples) to find a suitable threshold value to separate the AUMvalues of
correctly labeled samples from those of in-correctly labeled samples. For our application,
we selected and applied a method [14] that is based on an alternative idea. It identifies
label errors by directly estimating the joint distribution between noisy observed labels
and unknown uncorrupted labels based on the model prediction probability scores [14].
We integrated this algorithm into our image quality classification ensemble framework.

The main contribution of our work is: we developed a new approach that utilizes
ensemble methods for both mislabel identification and quality classification for uterine
cervix images. We also carried out comparison and ablation experiments to demonstrate
the effectiveness of the proposed approach. In the following sections, we first introduce
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the large dataset collected frommultiple sources and the criteria used for manual quality
annotation, next present the whole quality classification framework that contains three
main components, then describe experimental tests, comparison, and discussion, and at
last conclude the paper.

2 Image Quality Labeling Criteria and Data

In this section, we describe the criteria used for AVE image quality annotation and the
image datasets that were labeled.

2.1 The Labeling Criteria

These labeling criteria aim to be used for guiding an image taker or health worker
for their first round of image quality examination, i.e., to be used for annotating an
image based on the technical quality and the ability to see acetowhite areas, not based
on anatomical considerations (e.g., squamous-columnar junction (SCJ) observability).
There are four image quality categories: unusable, unsatisfactory, limited, and evaluable.
Images labeled as “limited” or “evaluable” will be used for diagnostic review. The brief
guidelines for each category are as follows.

• Unusable:The image is one of the following types: non-cervix, iodine, green-filtered,
post-surgery, or having an upload artifact.

• Unsatisfactory: The image is not “unusable”, but image quality does not allow for
evaluation, e.g., has too much blur, is zoomed out/in too much.

• Limited: The quality is high enough to allow evaluation of the image, but the image
has flaws, e.g., off-center, low light, some blur, obstruction.

• Evaluable: The quality is high and there are no major technical flaws. If in doubt,
then classify the image as “limited”

2.2 Datasets

The images that were annotated were obtained from 6 cervical cancer studies conducted
by different providers with different imaging devices at different regions/countries: NET,
Dutch Biopsy (Bx), ITOJU [15], Sweden, Peru, and SUCCEED [16]. The name of the
device and the principal investigator (PI) of each study is listed in the Appendix Table 4.
For images from the NET study, they were collected from four countries (El Salvador,
Kenya, Thailand, and Cameroon) with different image id prefixes. ITOJU study was
carried out in Nigeria and SUCCEED (the Study to Understand Cervical Cancer Early
Endpoints and Determinants) was conducted in US. The images within each dataset
or across datasets have a large appearance variance with respect to not only cervix or
disease related factors (such as woman’s age, parity, and cervix anatomy and condition)
but also non-cervix or non-disease related factors (such as illumination, imaging device,
clinical instrument, zoom, and angle). In these datasets, one patient may have a varied
number of images in one visit or multiple visits. Appendix Table 5 lists the number of
annotated images from each study and the number of images in each quality category.
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In each study, the number of images may vary significantly among quality categories.
However, the total numbers of images in the combined dataset across the categories are
not highly imbalanced. The reason that Dutch Bx, Sweden and Peru datasets contain
a significant percentage of unusable or unsatisfactory images is because many of them
are green-filtered or Lugol’s iodine applied images or close-up images. Although green
filter and iodine solution are not usually used in VIA, it is a common practice to use them
in colposcopy examinations for visual evaluation of cervix. In addition, practitioners in
colposcopy tend to take close-up images to check, show or record regions-of-interest,
but significantly zoomed-in images are not considered adequate for AVE use as each
image is evaluated individually by AVE. A few examples of images in each category are
shown in the Appendix Fig. 3.

3 Methods

Figure 1 shows the overall diagram of the proposed method. It consists of three main
components: 1) cervix detector; 2) quality classifier; and 3) mislabel identifier. The
mislabel identifier is based on the result of the quality classifier trained with cross
validation.We used three quality classifiers and three correspondingmislabel identifiers.
We applied ensemble learning on both the results ofmislabel identification and the results
of quality classifications. In this study, we aim to remove/clean bad samples from the
training and validation sets only, not the test set. The cleaned training and validation
sets (the candidates that are identified by all three mislabel identifiers are removed) are
then used to train three quality classifiers respectively. The final label of classification
is generated by combining the output probability scores of the three classifiers. In the
following, we provide more details for each main component.

Fig. 1. Diagram of the proposed approach.

3.1 Cervix Detection

Since the cervix is the region of interest and the image may contain a significantly
large area outside of the cervix, we developed a cervix locator using RetinaNet [17],
a one-stage object detection network. We trained the model with a set of images in a
different study (Costa Rica Vaccine Trial, conducted by the National Cancer Institute,
USA [18]) whose cervices were manually marked and were not used for image quality
evaluation/labeling. The detected cervix region was then cropped out and resized before
being passed to a classifier. Since not all the images will have a cervix detected (for
example, there are images that are not cervix images), all those images in the test set
that have no cervix detected by the detector are predicted as “unusable”.
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3.2 Quality Classification

Image classification has been actively and extensively studied in the literature. Since the
debut of AlexNet, many new algorithms or architectures have been developed in this
decade of the fast-growing era of deep learning. There are two broad types of neural net-
works: 1) convolutional neural network (CNN) based, and 2) Transformer based. Using
an ensemble of different architectures can utilize the complementary characteristics of
the networks and achieve better performance. For our application, we selected three
network architectures. Two of those were recent algorithms that have achieved state-
of-the-art performance on large general-domain datasets: ResNeSt (ResNet50) [19] and
Swin Transformer (Swin-B) [20]. We also added a simpler and smaller ResNet network
(ResNet18) for comparison. For all three networks, we initialized their weights using
ImageNet pre-trained models and fine-tuned them using our cervix images and labels.
To combine the outputs of the three networks, we used the following ensemble method:
the class whose average output probability value from all three networks is the largest
value among the 4 classes is selected as the final label.

3.3 Mislabel Identification

We applied the algorithm of confident learning (CL) [14] for identifying bad samples in
the training data. CL aims to identify mislabels by estimating label uncertainty, i.e., the
joint distribution between the noisy and true labels. It uses predicted probability outputs
from a classification model for the estimation and is data-centric instead of model-
centric. Due to its model-agnostic characteristics, CL can be easily incorporated into our
ensemble classification framework. To compute predicted probabilities, K-fold cross-
validation is used. In CL, the class imbalance and heterogeneity in predicted probability
distributions across classes are addressed by using a per-class thresholdwhen calculating
the confident joint [14]. In [21] which uses CL to identify mislabeled images in the
ImageNet dataset and all the candidates were reexamined and relabeled by annotators, it
showed that many of the candidates were not considered mislabeled by the annotators.
Hence, to improve the precision, we used CL for all three classification networks and
selected the candidates that were recommended for elimination by all three identifiers.

4 Experimental Results and Discussion

We randomly split the images at the patient level within each dataset into train-
ing/validation/test set at the ratio of 70/10/20. Table 1 lists the number of original images
in the training/validation/test set in each category in each dataset, respectively. After
cervix detection, there were 503, 71, and 141 images that had no cervix detected in
training, validation, and test set respectively. Most of these no-cervix-detected images
have ground-truth label of “unusable” and a few are of label “unsatisfactory”. For the
141 test images that the cervix detector did not have output, they were all assigned with
the prediction label of “unusable” (since the criteria for labeling an image as “unusable”
include a “non-cervix” image).

For all the classification models (ResNeSt50, ResNet18, and Swin-B), the input
images were resized to 224 × 224, and the weights were initialized with corresponding
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Table 1. The number of original images in training/validation/test set.

Unusable Unsatisfactory Limited Evaluable Total No-cervix detected

Train 17734 18083 14376 10836 61029 503

Validation 2726 2609 2078 1548 8961 71

Test 5069 5230 4041 3090 17430 141

ImageNet pre-trained model weights. Both ResNeSt50 and ResNet18 models used the
same following hyperparameters: 1) cross-entropy losswith label smoothing; 2) 64 batch
size; and 3) Adam optimizer (β1= 0.9, β2= 0.999) with a learning rate of 5x10–5. For
Swin-B, we used: 1) cross-entropy loss function; 2) batch size of 8; 3) Adam optimizer
with a learning rate cosine scheduler (initial learning rate was 5× 10−5 and the number
of warm-up epochs was 5). All three networks used augmentation methods that include
random rotation, scaling, center cropping, and horizontal and vertical flip. Each model
was trained for 100 epochs and the model at the epoch with the lowest loss value on the
validation set was selected.

For identifying bad samples using CL, we created 4-fold cross-validation set using
the original training and validation sets and trained 4models for each classifier. The label
uncertainty of both training and validation sets was estimated from their predictions from
the 4 models. For pruning, the “prune by noise rate” option was used. The number of
mislabeled candidates generated by using each network from the training and validation
set is given in Table 2. The number of images in the intersection is much smaller than
that generated by any of the networks (6,455 vs. i.e. 13,038).

Table 2. The number of identified mislabel candidates.

Set Unusable Unsatisfactory Limited Evaluable Total

ResNet18 Train 981 3037 4380 3464 11862 13602

Val. 145 417 664 514 1740

ResNeSt50 Train 1441 3534 5371 3518 13864 15930

Val. 197 565 758 546 2066

Swin-B Train 1126 3226 4095 2947 11394 13038

Val. 141 486 625 392 1644

Intersection Train 614 1346 1953 1722 5635 6455

Val. 114 186 257 263 820
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Table 3. The classification performance on the test set (with/without bad sample removal from
the training and validation set).

Acc Recall Spec. Prec. F1 MCC Kappa

Using original train and validation sets

ResNeSt50 0.742 0.724 0.914 0.734 0.728 0.642 0.650

ResNet18 0.733 0.710 0.910 0.726 0.715 0.628 0.637

Swin-B 0.756 0.744 0.919 0.749 0.746 0.665 0.671

Ensemble 0.766 0.750 0.921 0.760 0.754 0.676 0.682

Using cleaned train and validation sets

ResNeSt50 0.752 0.734 0.917 0.751 0.740 0.659 0.664

ResNet18 0.746 0.722 0.914 0.747 0.730 0.648 0.654

Swin-B 0.759 0.746 0.920 0.759 0.751 0.671 0.674

Ensemble 0.769 0.752 0.923 0.771 0.759 0.683 0.687

We used the following metrics to evaluate multi-class classification performance:
accuracy and average values of recall, specificity, precision, F1 score, Matthew’s cor-
relation coefficient (MCC), and Kappa score, respectively (using the one-vs-rest app-
roach). Table 3 lists the test set values of the above metrics for each network before and
after the removal of identified mislabeled candidates from the training/validation sets.
From Table 3, we observed that: 1) when the same set is used to train, the ensemble
classifier achieves higher performance than any of the individual classifier; and 2) all
the classifiers that are trained with the training data that excludes the mislabeled can-
didates obtain slightly better performance than those trained using the original data.
These observations demonstrate the advantages and effectiveness of ensemble learning,
as well as using more data to train may not be helpful and data quality is important.
The overall improvement (ensemble plus mislabeled candidate removal) over the best
baseline individual model (SwinB) is around 2.7% w.r.t. MCC ((0.683–0.665)/0.665).
As shown by [21], some identified candidates may not be indeed mislabeled after the
manual re-evaluation. However, to us, it is acceptable to exclude data that are in fact
correctly labeled from the training process if it improves the generalization performance.

Figure 2 shows the t-SNE plot of the features extracted fromResNet18model trained
using the original training set as well as the features of the mislabeled candidates and the
cleaned training set from the same t-SNE plot. It shows that the cleaned one has a better
separation between classes than the original one, indicating the identified candidates
may be ambiguous samples. The classification confusion matrix calculated from the
test set for the ensemble classifier trained by using the cleaned training/validation set
is given in the appendix. From the labeling guidelines in Sect. 2, we expect the main
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ambiguity to exist between the classes of “evaluable” and “limited” or the classes of
“limited” and “unsatisfactory”. It is confirmed by the confusion matrix (Fig. 4). As the
images predicted with “limited” and “evaluable” will pass the quality check and be used
for diagnostic evaluation, we also examined the binary class (“limited + evaluable”
vs. “unusable + unsatisfactory”) classification performance by generating the 2-class
confusionmatrix from the 4-class one. Its accuracy, F1 score andMCC are: 0.885, 0.859,
and 0.762, respectively.

Fig. 2. T-SNE plots of training set

5 Conclusions

The quality of cervix images is important to the succeeding image analysis and visual
evaluation for cervix cancer screening. In this paper, we report one of our efforts toward
controlling the image quality, i.e., automatically filtering out images of unacceptable
quality. To this end, we developed amulti-class classifier using a large, combined dataset
that was labeledwith four quality categories. Due to factors including ambiguities among
classes and the variance in user understanding and interpretation, it is common for a large
dataset to have noisy labels. Therefore, we also aimed to improve the generalization
performance by identifying and removing bad samples from the training/validation set.
By integrating confident learning and ensemble learning, our proposed method achieved
better prediction performance than the baseline networks.
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Appendix

Table 4. The device and PI of each dataset

Prefix Device PI

NET El Salvador Screening
population

Samsung J8 Karla Alfaro
kalfaro@basichealth.org

Kenya Screening
population

Samsung J8 Chemtai Mungo
chemutai.mungo@gmail.com

Thailand Colposcopy
clinic

Samsung J8 Kittipat Charoenkwan
kittipat.c@cmu.ac.th

Cameroon Screening
population

Samsung J8 Joel Fokom Domgue
fokom.domgue@gmail.com

Dutch Bx GYFZ Colposcopy
clinic

Digital SLR
Camera

Nicolas Wentzensen

ITOJU HFLD Screening
population

Mobile ODT
Eva

Kanan T. Desai and Kayode
Olusegun Ajenifuja
ajenifujako@yahoo.com
kanan_desai2004@yahoo.com

Sweden PUBG Colposcopy
clinic

Colposcopes Elisabeth Wikström
elisabeth.wikstrom05@gmail.com

Peru PUBL Colposcopy
clinic

Colposcope Jose Jeronimo

SUCCEED SBX Colposcopy
clinic

Digital SLR
Camera

Nicolas Wentzensen

Table 5. Number of images in each dataset in each quality category

Prefix Patients Images Unusable Unsatisfactory Limited Evaluable

NET BSPR 82 249 0 24 111 114

FARH 73 356 0 91 173 92

JBKV 159 449 3 26 201 219

ZRQB 157 439 1 6 41 391

Dutch Bx GYFZ 1036 7886 3839 288 1376 2383

ITOJU HFLD 1388 19060 177 3991 7633 7259

Sweden PUBG 878 2221 1072 362 566 221

Peru PUBL 9736 55082 20423 20820 9568 4271

SUCCEED SBX 674 1678 14 314 826 524

Total 14183 87420 25529 25922 20495 15474
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Fig. 3. Examples of images in each quality category.

Fig. 4. The classification confusion matrix of the test set
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Abstract. In this work, a parameter-efficient attention module is pre-
sented for emotion classification using a limited, or relatively small, num-
ber of electroencephalogram (EEG) signals. This module is called the
Monotonicity Constrained Attention Module (MCAM) due to its capa-
bility of incorporating priors on the monotonicity when converting fea-
tures’ Gram matrices into attention matrices for better feature refinement.
Our experiments have shown that MCAM’s effectiveness is comparable
to state-of-the-art attention modules in boosting the backbone network’s
performance in prediction while requiring less parameters. Several accom-
panying sensitivity analyses on trained models’ prediction concerning dif-
ferent attacks are also performed. These attacks include various frequency
domain filtering levels and gradually morphing between samples associ-
ated with multiple labels. Our results can help better understand different
modules’ behaviour in prediction and can provide guidance in applications
where data is limited and are with noises.

Keywords: Monotonicity Constrained Attention · EEG · Emotion
classification · Deep learning · Parameter efficient model

1 Introduction

Due to improved computational methodologies alongside affordable access to effi-
cient and powerful computational and neuroimaging hardware, there has been
significant enthusiasm for the development of techniques for analyzing, predict-
ing, and understanding human behavior through brain signals recorded from
neuroimaging devices. One of the most popular and widespread neuroimaging
techniques is electroencephalography (EEG), which is appealing for a variety of
reasons, including that electroencephalograms can capture excellent time reso-
lution as far as neuroimaging techniques go while being recorded on pragmatic
devices that are portable, available, and affordable.
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As stated in [21], EEG classification algorithms can be roughly divided into
the following five categories: i) conventional classifiers [18–20,28], ii) matrix and
tensor based classifiers [6], iii) transfer learning based methods [3,8], iv) deep
learning algorithms and advanced statistical approaches [5,23], and v) multi-
label classifiers [3,22,31]. Although many effective classification methods exist,
particularly those utilizing deep learning techniques, many potential concerns
remain for developing practical algorithms which can be deployed for general
contextual use. Three such problems include: 1) large open-sourced EEG data
sets are limited, making deep neural networks with a lot of parameters challeng-
ing to train and generalize effectively; 2) brain signals such as scalp EEG are
known to have a high signal-to-noise ratio, effectively polluting the training and
generalizability of the models [2,17,25]; and 3) the result from large and deep
networks – while accurately predictive—can be challenging to interpret [1,4].

One solution to the above three concerns (1)–(3) is to construct parameter-
efficient models that can be trained on relatively small and potentially noisy data
sets while being lightweight enough to allow for physically/medically/clinically
interpretable solutions. We note that good candidates for such approaches are
attention modules in neural networks such as in [7,10,32,33]. Thus this work,
inspired by the self-attention mechanism and Gram feature matrix in the context
of neural style transfer [9], presents the Monotonicity Constrained Attention
Module (MCAM) that can dynamically construct the attention matrix from
the feature Gram matrix. With MCAM, one can set constraints on different
prior monotonic patterns to guide neural networks for selectively emphasizing
informative features and suppressing unfavorable ones, leading to an efficient,
accurate, and ultimately more easily interpretable framework.

2 Related Work

Attention Mechanism: Many attention mechanisms exist for refining deep
features in the framework of neural network models. Among them, the Squeeze-
and Excitation (SE) attention module [10] and Convolutional Block Attention
Module (CBAM) [33] are two representatives. The former helped win the last
ImageNet contest in 2017. The latter performed attention operations both spa-
tially and channel-wise. Both the two attention modules can be applied to any
existing network. More recently, starting from the research done in [7] with
attention matrix computed from query-key-value (QKV) feature branches, vari-
ous types of self-attention mechanism are growing fast in different fields such as
computer vision (CV), e.g. [16,27] and speech processing, e.g. [13,24].

Our Work: With the setting of limited and noisy data, our primary contri-
butions can be summarized as follows: 1) We have developed a Monotonicity
Constrained Attention Module (MCAM) suitable for EEG-based emotion clas-
sification when data is limited. Our experiments show that MCAM can help
achieve performance comparable to other SOTA modules requiring fewer train-
able parameters. 2) MCAM opens a portal in the backbone network so that one
can conveniently incorporate priors on the monotonicity of the learned function
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that can effectively convert feature-based Gram matrices into attention matri-
ces for better feature refinement. 3) For better interpretation, extra sensitivity
analysis on MCAM’s prediction concerning different attacks is also performed
to investigate the various influences caused by inserting attention modules.

3 Proposed Method

The mechanism of our proposed attention module is summarized in Fig. 1. First,
the Gram matrix C [29] is computed using the deep channel features X. Next,
a function f : [−1, 1] → [0, 1] is constructed in the module, which is meant to
‘learn’ the mapping that effectively translates C element-wise to an attention
matrix A for better classification. As the key component of MCAM, we use a
3-layer MLP for approximating f during training.

Fig. 1. The Monotonicity Constrained
Attention Module (MCAM). Here ‖·‖2

denotes the standard L2-norm.

To understand the effect the trained
function f has for incorporating prior
information between feature correlation
and attention, we test different constraints
for regularizing the monotonicity of f . In
this manuscript, three configurations of
MCAM are considered: 1) M1 , no con-
straint on f ’s monotonicity at all; 2) M2 ,
f should be non-decreasing on [−1, 0] and
non-increasing on [0, 1], meaning the prior
that less (positively or negatively) corre-
lated features should contribute more to
the corresponding value in A; and 3) M3 ,
f should be non-increasing on [−1, 0] and non-decreasing on [0, 1] meaning the
prior that the more correlation (positively or negatively) should result in more
attention strength through A.

The monotonicity constraint is defined using a uniform grid {ti}, i =
0, · · · , N , on [−1, 1], where for case M2 the loss becomes:

N/2∑

i=0

1
2
(|f ′(ti)| − f ′(ti)) +

N∑

i=N/2

1
2
(|f ′(ti)| + f ′(ti)) , (1)

and for case M3 becomes:

N/2∑

i=0

1
2
(|f ′(ti)| + f ′(ti)) +

N∑

i=N/2

1
2
(|f ′(ti)| − f ′(ti)) . (2)

Here f ′ is estimated using a simple first order finite difference scheme. Finally,
the resulting attention matrix A incorporates into the deep feature refinement
via the expression X + XA as shown in Fig. 1.
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4 Experiments

Backbone–EEGNet: EEGNet is a compact convolutional neural network for
EEG-based brain-computer interfaces which was proposed by [15]. We choose
EEGNet as the backbone for benchmarking different attention modules for two
main reasons: 1) It is one representative model that is parameter efficient, thus
very suitable for small datasets; 2) Its simple design allows for accessible exami-
nations and interpretations on the effects of attention modules considered in this
paper.

Data Collection: DEAP dataset [12] is a well known database for benchmark-
ing various emotion classification and analysis methods [11,14,26,30]. The dataset
contains 32-channels EEG signals and 8-channels peripheral physiological signals
from 32 volunteers who were asked to watch 40 1-min videos and report their emo-
tion scores (varying from 1 to 9) in the four categories: valence, arousal, domi-
nance, and liking. We will only be using the 32-channels EEG for experiments.

Data Preprocessing: We are interested in the within-subject classification
task in this study. Setting the threshold at 5, we convert emotion scores
from valence/arousal categories to form a 4-class classification family, com-
prised of {HVHA, HVLA, LVHA, LVLA} for each subject. The first three
seconds of each trial are baseline data and are used to normalize the rest via
x(t) ← x(t)/max(|x(t ≤ 3)|). Note that Subject 23 is excluded in the following
experiments because this subject has only three emotion labels.

Experiment Setting: For each subject, the data is split into three parts. The
first 5000 time points (from ∼0 s to ∼39 s) will be used in training, the following
5000–6000 (from ∼40 s to ∼47 s) will be used for validation, and the remaining
segments (from ∼47 s to ∼63 s) are used for testing.

Note that in order to mitigate the problems associated to limited data and
imbalanced labeling, a data generator is used to randomly crop segments of 1 s
to provide batches for feeding the network during training and validation. Within
each batch, the generator guarantees that each label is associated with about 25%
of the total samples generated. For a valid and consistent comparison among dif-
ferent models, the test set will be cropped into non-overlapping segments of 1 s. For
each subject and each attention module compared, training is repeated 10 times.
During each training repetition, the best model in terms of validation accuracy
is reloaded to make predictions on the testing set, and one instance of the per-
formance under that configuration is stored. For all experiments, the following
hyperparameters are used: the backbone EEGNet’s dropout rate is set to 0.5, the
batchsize is set to 256, and the optimization is performed with an Adam optimizer
using a learning rate of 10−3. For training with the proposed MCAM, the weight
for the extra loss constraining monotonicity is set at 0.1. These hyperparameters
were selected from our pre-experiments with a small amount of data. Same hyper-
paramters were used for all experiments. The code used for our experiments will
be made available at https://github.com/dykuang/BCI-Attention.

https://github.com/dykuang/BCI-Attention
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Table 1. Mean (±std) performance with different attention modules inserted.

Method EEGNet +QKV +CBAM +SE +M1 +M2 +M3
Params 3020 4109 3200 3102 3061 3061 3061
Acc.(%) 93.9±5.4 93.5±5.0 94.3±4.7 95.4±3.8 95.0±4.7 93.9±6.1 95.0±4.2

Spec.(%) 97.7±1.9 97.4±2.3 97.9±1.7 98.2±1.5 98.0±1.9 97.5±2.6 97.9±2.0

F1(%) 94.0±5.4 93.5±5.0 94.3±4.6 95.4±3.8 94.9±4.7 93.8±6.2 95.0±4.2

Benchmark: We summarize commonly used classification metrics in Table 1,
using EEGNet as the backbone, and inserting all attention modules at the same
location in our benchmark.

Table 2. One sided paired T-tests
on the F1-score, using the follow-
ing abbreviations:. A: EEGNet,
B: +CBAM, C: +SE, D: +M1 , E:
+M2 , F: +M3 , µ: mean F1 score.

H0 H1 p-value
µA = µF µA < µF 0.018
µB = µF µB < µF 0.038
µF = µC µF < µC 0.115
µD = µF µD < µF 0.437

Notice that the QKV type self-attention
performs the worst, demonstrating no improve-
ment. We hypothesize this is due to limited
training data, as pointed out in [7]. For the
remainder of this section, we focus only on the
attention modules where performance is equiv-
alent to, or higher than the backbone model.
For a more quantitative comparison, we also
perform paired T-tests and collect the result-
ing p-values in Table 2. At a significance level
of α = 0.02 the alternative hypothesis H1 is
accepted, i.e. EEGNet+M3 has a higher F1-

score than EEGNet alone. At significance level of α = 0.05, EEGNet+M3 has a
higher F1-score than EEGNet+CBAM. Note that there is not enough evidence
(at the significance level of 0.05) to reject the null hypothesis for the rest tests.
That is, EEGNet+M3 performs similarly to EEGNet+SE and EEGNet+M1 .

Fig. 2. Mapping from the Gram matrix’s entries Cij to the attention matrix’s entries
Aij by MCAM. This plot was made from the 10 models trained from Subject 24’s data.

Finally we can check the different monotonic patterns learned for different
subjects during training. Figure 2 shows one example of the monotonic pattern
mapping from Cij to Aij learned with different prior constraints.
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4.1 Models’ Scalp Attention Pattern

Fig. 3. Scalp map with backbone EEGNet’s kernel weights for spatial attention pattern
in the first depthwise convolution layer. First row: mean values calculated from 10
trained models. Second row: the standard deviation associated with the result from
the first row.

The insertion of different attention modules can potentially change the spatial
attention pattern of the backbone EEGNet. For comparison, we can visualize the
scalp map with EEGNet’s kernel weights (normalized to [−1, 1]) for its spatial
attention pattern, i.e., kernel weights in the first depthwise convolution layer. As
one can observe from Fig. 3, global patterns vary from model to model, though
they share the same backbone network. Locally speaking, except for the case
+M2 , the value pair learned for channels T8 and T7 have different signs, while
the case +CBAM learned the opposite pattern compared to the rest. With the
exception of +M1 , all other configurations show a locally isolated island in the
Fp1 area. All three variations of MCAM considered here also show a similar
attention pattern around the O2 area. The standard deviation shown can be
interpreted loosely as corresponding to each model’s confidence in the value of
its coincident kernel weights. Models compared here show high confidence in
most areas, where areas of low confidence offer an interesting opportunity for
deeper analysis and potentially clinical interpretation. It is also worth noting
that, similar to the mean value patterns, the global patterns for standard devia-
tion appear quite different across different models. Whether or not these patterns
can be tied to clinical findings remains a question. On the other hand, robust
algorithms that can help encode one’s prior knowledge about clinical patterns
into the models’ weights is also an import research direction.

4.2 Models’ Sensitivity of Prediction on Inputs’ Frequency

Low pass filters are frequently used in applications to suppress noise as a pre-
processing step. This section examines how frequency information in the input
affects the trained model predictions with different modules inserted. With the
same test data, first, a lowpass filter is used at different frequencies, and then the
accuracy of different model predictions is tracked on this filtered input. Figure 4
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demonstrates the result for subject 12 and subject 24. Of note is that different
models show the same trend given the same data, but the trends vary across
different subjects. For subject 12, a noticeable drop in performance is observed
when inputs are lowpass filtered below 50Hz, while stable performance is recov-
ered when the frequencies are set below 30Hz. For subject 24, a noticeable drop
in performance is seen at 60Hz, while the performance trace decreases slowly
as frequencies go lower. In the case of subject 24, suppressing high-frequency
noise using lowpass filters seems to compromise model performance. While each
model decreases in performance as higher frequencies are filtered out, the con-
figuration of EEGNet+M2 has an opposite trend in the range of 20–40Hz. This
observation raises what seems to serve as a cautionary tale that it is crucial to
take care when smoothing data in the frequency domain, as the response may
be complicated and hard to predict a priori.

Fig. 4. The track of performance when inputs are lowpass filtered to different frequen-
cies. Left: Subject 12, Right: Subject 24. The frequency used for the plot are 10Hz,
20Hz, 30 Hz, 40Hz, 50 Hz, 60Hz and 64Hz.

4.3 Model Sensitivity on Morphisms Between Samples

Considering two samples xi and xj each associated with a different label i and
j in the N classification problem, we define a morphism gj

i parameterized by
u ∈ [0, 1] such that xi = gj

i (0) ∗ xi and xj = gj
i (1) ∗ xi. The abstract operation

∗ will be made explicit below, as an example. We further note that in the above
setting, a value uj

i always exists such that the model’s confidence score (usually
represented by the softmax value from the last dense layer’s output) for label
i first drops below its score for label j. The lower the value of uj

i is, the more
likely the model under examination will change its prediction on sample xi from
label i to label j.

For visualization, we set uj
i as a point in polar coordinates (ρ, θ) = (uj

i ,
2πvj

N−1 )
where vj = 0, · · · , N − 2 is some indexing for different j. These points will serve
as the vertices of an N −1 polygon. The resulting summation Si =

∑
j �=i uj

i then
represent how likely a model is to choose label i against all other labels under the
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Fig. 5. Visualization of how different models tend to change prediction labels under
the linearly interpolating morphism. The samples for making the plot were taken from
subject 24. The colored number shown are the actual number of Si. For example,
1.56/6 = 0.26 recovers the percentages shown in the donut plot. (Color figure online)

considered morphism g. Furthermore, if uj
i + ui

j = 1 then
∑N−1

i=0 Si =
N(N−1)

2 ,
in which case we can check the values of Si, i = 0, · · · , N − 1 among different
models on the same selected “representative” samples per label for comparing
their “preferences” among candidate labels under the chosen morphism g.

As a demonstration of the above concept, we choose the simple discrete linear
interpolation for g, defined by gj

i (u) ∗ xi = (1 − u)xi + uxj as the morphism
operation, where samples {xi} are selected so that all considered models have
correct predictions on them. The resulting summaries are shown in Fig. 5. Each
donut plot of the above two rows is the visualization of Si for a specific model.
The last row gives an example of expanding more detailed information per slice
by visualizing a triangle (3-polygon) for each label. All models being compared
here assign the lowest values to the HVLA category, meaning models are more
likely to assign other labels for the input HVLA sample when g morphs it away
to other samples of different labels. Also, note that both the backbone model and
the case when CBAM is inserted have the largest value for LVLA. The insertion
of the SE module, MCAM (M1 ) and MCAM (M2 ) assign the highest value to the
HVHA category. Of further note is that the two configurations of MCAM (M2
and M3 ) are surprisingly similar considering that their monotonicity mapping
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in the Gram matrix C’s element to attention matrix A are opposite (see Fig. 2).
Additionally, we examine how the scores Si for i = 0, 1, 2, 3 are spread across the
four labels by checking the standard deviation (std), thus indicating how each
model distributes their prediction “preference” among the 4 categories given
the selected input samples and morphism g. Here we find that the std for the
backbone EEGNet is 0.269, while the insertion of CBAM and SE raises the std to
0.274 and 0.292, respectively, where the distributions are notably more skewed.
However, MCAM (M1 ) has an std of 0.271, which is the close to the case where
no attention module is inserted at all, while MCAM (M2 ) has by far the lowest
value std of 0.164 followed by a std of 0.215 for the MCAM (M3 ).

5 Conclusion

We have constructed a parameter-efficient attention module called MCAM for
emotion classification tasks with limited EEG data. MCAM allows one to put
constraints on the embedded function’s monotonicity for mapping a deep feature
Gram matrix to form an effective attention matrix during feature refinements.
Experiments show that MCAM’s effectiveness is comparable to state-of-the-art
attention modules with additional benefits. Additionally, a sensitivity analysis
with different levels of lowpass filtering has been conducted, along with a novel
morphing analysis designed to improve insight into the model’s behavior through
visualization. Future work will focus on designing more generalizable and inter-
pretable models on limited and corrupted data sets.
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Abstract. In patients with diabetic and other peripheral neuropathies,
the number of nerve fibers that originate in the dermis and cross the
dermal-epidermal boundary is an important metric for diagnosis of early
small fiber neuropathy and determination of the efficacy of interventions
that promote nerve regeneration. To aid in the time-consuming and often
variable process of manually counting these measurements, we propose an
end-to-end fully automated method to count dermal-epidermal boundary
nerve crossings. Working with images of skin biopsies immunostained to
identify peripheral nerves using current standard operating procedures,
we used image segmentation neural networks to distinguish between the
dermis and epidermis and an edge detection neural network to identify
nerves. We then applied an unsupervised clustering algorithm to iden-
tify nerve crossings, producing an automated count. Since our dataset
is very small—containing less than one hundred images—we use pre-
trained models in combination with several image augmentation meth-
ods to improve performance on training and inference. The model learns
from a human expert’s training data better than a human trained by the
same expert.

1 Introduction

Automated systems for aiding clinical diagnoses and treatment research have
been long sought after both to increase the speed of procedures as well as offer
consistent quantification. In particular, semantic segmentation finds applications
in many parts of the clinical process.

For the specific challenge of detecting neuropathy, there are already several
methods that can automatically identify nerve-like structures.Al-Fahdawi et al. [7]
showed that this task can be automated using image preprocessing and edge detec-
tion on corneal images. More recent work using deep learning shows improvements
over these traditional methods [13]. In particular, several groups have applied U-
Nets, an architecture designed for semantic segmentation, to skin biopsies, exactly
the problem we approach here [2,10]. In [2], the authors additionally use U-Nets
for tracing nerves in skin biopsies. However, in order for the U-Net to work, they
enhanced the manually-traced nerves in the training set images with a 6-pixel-
wide boundary in order to make the problem simpler for the U-Net. In our work,
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we found that U-Nets perform less well than using a state-of-the-art edge detector
for nerve tracing, and no enhancement of the nerve traces was necessary.

We build off of these previous approaches using a similar deep learning seman-
tic segmentation method. However, to overcome the problem of very limited data,
we employ further methods to ensure that the model will have good performance
on unseen data.

In addition, to achieve a fully automated system for detecting neuropathy
and measuring nerve growth in images of skin biopsies, we factor the task into
two sub-tasks: identifying nerve fibers in the skin, and identifying the dermal-
epidermal boundary. For each sub-task, we employ a specialized model, and we
combine their results using an unsupervised method to obtain the final nerve
crossing annotations.

2 Methods

2.1 Dataset

The dataset consists of 94 images of skin biopsies collected from 13 HIV-infected
patients and 11 control participants as part of a study on HIV infection and
neuropathy in the United States. Each 1600 × 1200 image contains a portion
of the biopsy at 20× magnification. Many focal layers are flattened into a single
image to capture depth. A human expert traced the nerves and the boundary
between the dermis and epidermis.

Given the limited number of training examples, we perform the following ran-
dom data augmentations during training: horizontal and vertical translation from
–100 to 100 pixels, rotation from –10 to 10◦, shearing from –5 to 5◦, orientation
(the image can be rotated to 0, 90, 180, or 270◦), cropping, and horizontal and
vertical flipping. For cropping, 800×800 patches are taken from each 1600 × 1200
image; this size generates different images with each application of the augmenta-
tion algorithm while still retaining enough of the dermis and epidermis to be useful
for the model. Similarly, the other applied image augmentations ensure that each
training example has an essentially unique configuration of pixels, while retaining
vital information about skin structure and not distorting the image beyond what
an expert technician would normally be able to work with.

The augmentation algorithm is applied as the model is training such that
a random set of parameters is generated and applied for each transformation.
As a result, the model is trained on a unique version of every image with each
iteration. In combination with this online approach, the wide array of random
image augmentation methods is one of the primary ways that we improve the
model’s generalization and prevent over-fitting.

2.2 Nerve Labeling

In our dataset, nerve labels are about three pixels wide and constitute only a
very small portion of the image. Conventional semantic segmentation models
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Fig. 1. Architecture of holistically-nested edge detection (HED)

suffer when there is an extreme class imbalance, failing to capture pixel-level
details. After experimenting with various models, we decided to approach the
task with an edge detection model.

Architecture. We use the Holistically-Nested Edge Detection (HED) [12] sys-
tem. A simple illustration of the HED architecture is shown in Fig. 1. HED
is a feed-forward deep convolutional neural network based on VGGNet [11].
The model consists of a series of VGG modules with an increasing number of
kernels. The input image is processed by these modules sequentially and the
multi-channel output of each VGG module is compressed to a single-channel
side-output by a convolutional layer with a 1 × 1 kernel. These 1 × 1 convolu-
tion layers also serve as weights of the side-outputs. Each side-output focuses on
a different scale of edges as deeper VGG modules, with larger receptive fields,
capture larger edges. The final edge map is generated by fusing the side-outputs
by one 1 × 1 convolution layer.

Loss Function. The loss function we used to train our model is Dice Loss,
a commonly used loss for segmentation. Let P be the two-dimensional model
output and T be the ground truth. The equation for Dice Loss is

LDice(P, T ) = 1 − 2 ∗ ∑
i,j PijTij + 1

∑
i,j Pij +

∑
i,j Tij + 1

Training Procedure. Due to the scarcity of labeled data and the sparsity
of learning signals in each image, we perform transfer learning to improve the
model’s performance and reduce training time. We adopted the HED model pre-
trained on BSDS500 dataset [1] from pytorch-hed [9] and fine-tune it on our
dataset. The pretrained model was already able to identify the majority of the
nerves but also labeled other non-nerve edges. Hence fine-tuning on our data
corrected this. We set the learning rate to 10−4 and a weight decay penalty
of L2 = 10−3, determined by grid search cross-validation. The weight decay
parameter is especially important in our case in order to minimize over-fitting
on our small dataset. We trained the model for 200 epochs with a learning rate
scheduler, which decreases the learning rate when the loss flattens.
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2.3 Dermis-Epidermis Boundary Detection

As is the case with the segmentation of nerve fibers, labeling the boundary line
between the dermis and epidermis can be very difficult due to class imbalance.
However, this boundary is not as easily detected as nerve fibers, since the bound-
ary is not as clearly defined.

To circumvent this problem, we reformulate the labeling scheme: instead of
labeling the boundary between the dermis and epidermis, we only task the model
with labeling the dermis. From this label, a boundary line between the dermis
and epidermis can be generated using standard image processing techniques. In
order to transform the labeling scheme, we manually extend the line in the given
label to surround the whole dermis, then flood-fill the dermis region. An example
is shown in Fig. 2.

(a) Input Image (b) Label (line scheme) (c) Label (dermis scheme)

Fig. 2. An example label for the dermis

Therefore, using the transformed data, the task can be formulated as binary
classification between dermis and non-dermis regions, a straightforward task
for semantic segmentation, and the categories are relatively balanced. We use a
DeepLabV3 model, a recent state-of-the-art approach for semantic segmentation
[4]. In particular, we use a pre-trained instance of the model with a ResNet-101
[8] backbone, which we then fine-tune on our dataset.

Architecture. The model is a deep residual convolutional neural network with
atrous (also referred to as dilated) convolutions, a key feature that allows the
model to have a wider receptive field in the later layers without sacrificing feature
map resolution, which is essential for semantic segmentation [4]. Atrous spatial
pyramid pooling, a method similar to spatial pyramid pooling but using filters
with various atrous rates, further improves the model’s capacity to process both
global contexts as well as small-scale detail.

Loss Function. We use the standard binary cross-entropy loss function eval-
uated on a per-pixel basis at the output for training the model on the dermis.
To evaluate performance, we use the Dice coefficient, which is discussed in more
detail in subsequent sections.
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Training Procedure. Since the number of training examples is small, we lever-
age a version of the model that is pre-trained on PASCAL Visual Object Classes
dataset [6], a set of natural images with 20 categories.

From grid search using cross-validation over learning rate and L2 penalty,
we use an initial learning rate of 3 × 10−4 and an L2 weight decay penalty of
10−3, which again helps to minimize over-fitting. The model is trained on the
labeled dermis data using binary cross-entropy loss for 300 iterations, using the
same learning rate schedule as above. For fine-tuning, we wrap the model with
an initial and final convolutional layer and train the whole model end-to-end on
the dataset. In this case, the initial convolutional layer has 3 input channels and
3 output channels, with a kernel size of 3 and padding width of 1 to maintain the
resolution of the input. The output convolutional layer uses a kernel size of 1 with
21 input channels and 1 output channel, in order to reduce the dimensionality
of the pretrained model’s output.

2.4 Nerve Crossing Identification

Our approach for counting nerve crossings consists of three steps: transforming
dermis label to dermis-epidermis boundary, clustering intersections, and filtering
out invalid crossings. All parameters in this section were optimized by running
the same process on the ground truth data and the model output on the same
images, and maximizing their consistency.

Transform Dermis Label to Boundary. To obtain a boundary line for the
segmented dermis label, we first smooth the boundary by applying a Gaussian
filter with σ = 10 pixels onto the dermis map and binarizing it with a threshold
of 0.6. Then, we scan the map for enclosed areas smaller than 0.2 of the image
in the dermis map and flip the label for all pixels in that area. This step removes
noisy patches from the model’s prediction within the dermis. Finally, we extract
the dermis-epidermis boundary by selecting the pixels close to the edge of the
dermis area with a controllable boundary width. An example is shown in Fig. 3.

Fig. 3. An example of transforming dermis label to boundary line

Cluster Intersections. In this step, we extract the overlapping pixels of the
filtered nerve labels and the dermis-epidermis boundary. The coordinates of the
overlapping pixels is then clustered by Density-Based Spatial Clustering of Appli-
cations with Noise (DBSCAN) [5] with ε = 3 and the minimum number of points
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in a cluster set to 4. Each cluster is considered a crossing, and the coordinate
of each crossing is calculated by averaging all pixels coordinated in the corre-
sponding cluster.

Filter Crossings. For each crossing, we count the number of nerve pixels in a
17 × 17 pixel area centered at the crossing. We filtered out crossings that have
less than 5 nerve pixels on both sides of the boundary. This step filters out nerve
fibers that do not cross into the dermis but border it.

3 Experimental Setup

3.1 Evaluating the Nerve Tracing Model

The first evaluation metric we used is Dice score. For each image with P as the
set of nerve pixels predicted by our model and T as the set of nerve pixels labeled
by a human expert, the Dice score is calculated as:

Dice(P, T ) =
|P ∩ T |

(|P | + |T |)/2

However, this metric is not very effective in measuring the quality of the
model’s output. The target label was manually labeled and was not precise on a
pixel level. For example, the hand-drawn label does not adapt to nerve fibers with
different widths, so pixels on the edge of a thick nerve fiber might not be labeled.
The effect of a mislabeled pixel prominently affects the Dice score because of the
scarcity of nerve labels. This results in the model’s predictions getting poor Dice
scores on visually identical nerve labels. The width of nerve fibers is irrelevant
for identifying the crossings. Thus, we designed a more forgiving scoring metric
based on a Dice score that tolerates predicted pixels to be k pixels off the ground
truth. We counted predicted pixels that are k pixels away from any ground truth
pixel as TPk (True Positive within k)and defined a modified Dice score as:

Modified Dice(k, P, T ) =
|TPk|

(|P | + |T ∪ TPk|)/2

When k is 0, the normal Dice score is a special case of this measure.
For nerve labeling, we compared the accuracy of three models: A U-Net pre-

trained for abnormality segmentation on a dataset of brain MRI volumes [3]
fine-tuned on our dataset, a randomly initialized Holistic Edge Detector (HED)
(i.e., trained from scratch on our data), and HED pre-trained on BSDS500 and
fine-tuned on our data. The hyperparameters for training the networks were
determined by grid search as above (learning rate and weight decay). We trained
the models for 200 epochs using data augmentation, and evaluated the models’
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predictions on the test set using the Dice score and the modified Dice score with
k set to 1 and 3. All models were trained on two NVIDIA GeForce GTX 1080
Ti’s in about an hour.

3.2 Evaluating Dermis Model

For the dermis models, we compared the performance of three versions: the
same U-Net model as above, a randomly initialized DeepLabV3 model, and
a pre-trained DeepLabV3 fine-tuned on our dataset. Each is similarly tuned
and trained using grid search over the hyperparameters. The U-Net model was
trained on four NVIDIA GeForce GTX 1080 Ti cards in about half an hour. The
DeepLabV3 model trained on a single NVIDIA GeForce GTX 3090 for 1.5 h.

4 Results

We evaluate our model at two levels. For the end-to-end counting pipeline, we
use 5-fold cross validation and compare the results of the model with that of a
human expert using Pearson correlation. To evaluate the individual components,
for the sake of time, we train on a subset of the data for each model and compare
their performance on a held-out portion. For this comparison, we use 84 training
images and 10 held-out images.

4.1 Nerve Labeling Results

The results of the nerve models on the 10 held-out images are shown in Table 1.
Under all evaluation metrics, the HED model pre-trained on BSDS500 dataset
outperforms the pre-trained U-Net model and randomly initialized HED model.

Table 1. Nerve labeling scores shown in format mean (standard deviation)

Model Dice score Modified dice score k = 1 Modified dice score k = 3

U-Net 0.585 (0.083) 0.814 (0.085) 0.918 (0.079)

HED not pretrained 0.549 (0.083) 0.778 (0.089) 0.885 (0.085)

HED transfer learning 0.611 (0.067) 0.845 (0.054) 0.950 (0.036)

4.2 Dermis Labeling Results

The resulting performance of each dermis model on the 10 held-out images is
shown Table 2. The DeepLabV3 model shows a clear performance increase over
U-Net, with a slight improvement (numerically) by using transfer learning.
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Table 2. Dermis labeling scores shown in format mean (standard deviation)

Model Dice score

U-Net 0.958 (0.027)

DeepLabV3 not pretrained 0.979 (0.012)

DeepLabV3 transfer learning 0.986 (0.007)

4.3 Crossing Count Results

The results of the correlation comparison on the whole pipeline on each of the
5 folds are shown in Table 3. Each line indicates a model trained on a subset of
the data and its correlation with the training expert on held-out data, so each
score represents the model’s generalization performance.

Table 3. Correlation between model prediction and ground truth over each fold. p-
values below 0.001 are shown as 0.

Fold Correlation p

1 0.835 0.00

2 0.465 0.04

3 0.772 0.00

4 0.931 0.00

5 0.760 0.00

The model’s counts were correlated with the training expert at an average
of 0.753 with standard deviation 0.156 over the 5 folds. To compare the model’s
performance with a second expert, we obtained another set of counts on the 10
validation images used for the evaluation of the components, and trained the
pipeline on the 84 training images. The two experts’ counts were correlated with
each other at 0.467 (p = 0.173), while our model is correlated with the training
expert at 0.834 (p = 0.002). This demonstrates that the model correlates strongly
with the training expert—even more than the second expert, who was trained
by the first!

Examples of the model results are shown in Fig. 4. Overall, the model pro-
duces quality output that resembles the expert’s label and gives a more con-
sistent count than a human expert. Most variations are caused by the model
making a different but reasonable judgment of the dermal-epidermal boundary,
for example in the second image pair.
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Fig. 4. Comparison between model output (left) and training target labeled by expert
(right) on the test set. Blue: nerves; Green: dermal-epidermal boundary; Red: nerve
crossings. (Color figure online)

5 Discussion

We proposed a fully automated, end-to-end system for detecting and counting
nerve fibers in the skin which cross the dermal-epidermal boundary. We found
that the model was highly correlated with the expert’s labeling of the data, while
a second evaluator was not statistically significantly correlated with the expert.
Finally, using augmentation and cross-validation we show that even with very
limited training data, the model still has good performance and generalization.
A possible direction for future work is to generalize the model to different mag-
nifications and microscope resolutions—this is not automatically handled by the
model since varying these factors does not preserve the proportion of physical
distance to pixel distance. One approach which does not require any changes to
the model is to take a picture of a ruler with the microscope at the desired mag-
nification and resolution to obtain this physical to pixel distance measure, and
scale the input image accordingly. Another opportunity for improvement is to
generalize to different colors of stains used in the samples, since this could vary
between labs. These limitations could be simply solved by obtaining and training
on more data, but perhaps other methods such as scale and color augmentations
could be investigated.
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