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Abstract. Norms represent behavioural aspects that are encouraged
by a social group of agents or the majority of agents in a system. Nor-
mative systems enable coordinating synthesised norms of heterogeneous
agents in complex multi-agent systems autonomously. In real applica-
tions, agents have multiple objectives that may contradict each other or
contradict the synthesised norms. Therefore, agents need a mechanism
to understand the impact of a suggested norm on their objectives and
decide whether or not to adopt it. To address these challenges, a utility-
based norm synthesis (UNS) model is proposed which allows the agents
to coordinate their behaviour while achieving their conflicting objectives.
UNS proposes a utility-based case-based reasoning technique, using case-
based reasoning for run-time norm synthesising in a centralised approach,
and a utility function derived from the objectives of the system and its
operating agents to decide whether or not to adopt a norm. The model
is evaluated using a traffic junction scenario and the results show its effi-
cacy to optimise multiple objectives while adopting synthesised norms.

Keywords: Norms synthesis - Multi-objective - Heterogeneous
multi-agent systems

1 Introduction

Multi-agent systems (MAS) are complex systems consisting of agents which are
autonomous entities with their own objectives, and can act dynamically. Agents’
objectives can be represented by tasks they want to achieve, these tasks can
be unintentionally supportive to other agents’ objectives or incompatible with
them [8]. Aside from the ability of the agents to have multiple objectives, agents
may have heterogeneous types, in which each type has its own characteristics,
preferences or category [7]. Moreover, agents can operate in open system settings
where they can move freely inside and outside of the system. MAS is applied in
many real world applications such as traffic systems [1,7], computer networks
[4], smart energy grids [9] and the internet of things systems [13]. However, in
such systems, it is not only crucial to model the heterogeneity, openness and
autonomy of the agents, but also it is essential to consider the agents’ behaviour
coordination.
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Norms are behaviour guidelines imposed by a society or social group to reg-
ulate agents’ actions. For example, in a traffic system, one norm is to slow down
when seeing a senior driver because he might be more cautious than other drivers
and drive slowly. Another example is represented in the norm of leaving the right
(fast) lane empty when there is an ambulance. Accordingly, norms representa-
tion helps agents to achieve their objectives in an acceptable manner within their
social groups without compromising their autonomy. This would facilitate group
decision making, cooperation, and coordination between agents [12].

Multi-agent systems that encapsulate norms concepts such as prohibitions,
obligations and permissions are called Normative Multi-Agent Systems (Nor-
MAS) [2]. NorMAS rely on norms for regulating the behaviour of agents while
reserving their autonomy property [2]. Norms have dynamic nature, and so each
norm’s life cycle begins with norm synthesis (which relies on creating and com-
posing a set of norms [11]) and ends with norm disappearance [6].

Various efforts of researchers were directed to proposing a reliable norm syn-
thesising mechanisms that can be used to synthesise norms at run-time and/or
in an open system. The challenge of an open environment is that agents can
enter and leave the system freely, and so a special technique is needed for align-
ing all of the agents with the system norms, particularly for the new agents
entering the system. Moreover, synthesising norms at run-time would demand
an online strategy for triggering new norms creation and update according to
the changing environment. IRON [11], a state-of-the-artwork, was one of the
most prominent mechanisms that showed its efficacy in synthesising norms at
run-time in an open NorMAS. However, it has two main limitations. First, the
synthesising strategy used may produce biased norms. For example, in a traffic
junction scenario, IRON can synthesise a norm that obligates the driver to stop
when he is at an intersection and there is another vehicle to his right trying
to cross at the same time. Although this norm will ensure avoiding the colli-
sion of the vehicles, this will cause the left lane to have higher congestion and
traffic density than the right lane because vehicles in the right lane would have
higher priority to pass. Second, IRON does not consider whether the synthesised
norms contradict the objectives of the system or other norms or not. If the norm
synthesised in the previous traffic junction example is applied while having an
emergency vehicle (ambulance) in the left lane, it will be against the system’
objectives; if it aims to minimise the total waiting time of emergency vehicles.
An example of contradicting norms is seen when it is a norm that a driver drives
at an average or slow speed when having a child on board, and also the same
car might drive too fast when the child has an emergency. So, in this case, two
different unmatchable norms appear: (i) a car drives slowly if a child is on board,
and (ii) a car drives too fast in case of having an emergency case.

In this paper, we overcome the limitations of IRON and the other related
work by proposing UNS, a utility-based norm synthesise model. UNS coor-
dinates norms and objectives, handle unmatchable norms, and support fairer
technique of norm synthesising. In UNS, a utility-based case-based reasoning
technique is proposed to facilitate the coordination of norms and objectives of
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agents and the system. UNS uses the case-based reasoning algorithm to syn-
thesise norms. The utility function determines the necessity of norms adoption
and elicits the suitable norm when there are unmatchable norms. Two norms
are called unmatchable norms, when only one of them should be applied at the
same time and context. For example, consider norm n,, which suggests to stop
if there is a car on the left side of a junction, and norm ny, recommending to
stop if there is a car on the right side of a junction. Although by applying these
two norms a collision would be avoided, a deadlock situation will be created as
well. The utility function is constructed based on the objectives of the system to
ensure that they are considered in the process of norms reasoning. UNS is eval-
uated using a simulated traffic scenario in SUMO and results show the system’s
capability of synthesising and reasoning norms at run-time while reaching the
system’s objectives.

The remainder of this paper is as follows: Sect. 2 covers the related work and
the essential state-of-the-art work (IRON) needed to understand our model. The
problem statement is defined and formulated in Sect. 3. In Sect. 4, the proposed
model (UNS) is illustrated, and then it is empirically evaluated in Sect. 5. Finally,
in Sect. 6, the conclusion and future work are elaborated.

2 Related Work

Synthesising norms is more challenging in open and run-time NorMAS. In open
systems, the challenge is to transfer norms to new agents entering the system and
make use of the norms adopted by other agents before leaving the system. Mah-
moud et al. [10] address this challenge by proposing a potential norms detection
technique (PNDT) for norms detection by visitor agents in open MAS. They
implemented an imitating mechanism which is triggered if the visitor agents,
who are monitoring the norms of the host agents, discovered that their norms
are in-compliant with the norms of the other host agents. However, PNDT tech-
nique used a fixed set of norms, which are commonly practised by the domain,
ignoring the dynamic nature of norms.

In run-time NorMAS, it is challenging to define a dynamic set of norms
and initiate it. Moreover, real run-time applications would not only demand
synthesising new norms but would also require handling the whole norms life-
cycle including norms refinement and disappearance. One of the efforts directed
towards run-time norms revision was carried out in [3], in which a supervision
mechanism for run-time norms revision was proposed, addressing the challenge
of norms modification when weather changes or when accidents happen. How-
ever, the norms revision mechanism is developed using a primary defined pool
of norms and situations. In the revision process, the model just substitutes the
norms depending on the situation; limiting the norms to a static set of norms.
Accordingly, the dynamism is in altering the chosen norms set depending on
an optimisation mechanism constructed based on the system’s objectives and
does not handle the changes and evolution of the norms. In [5], Edenhofer et al..
present a mechanism for dynamic online norm adaption in a heterogeneous dis-
tributed multi-agent system for handling colluding attacks from agents with bad



Run-Time Norms Synthesis in Multi-objective Multi-agent Systems 81

behaviour. The agents interact together and build a trust metric to represent
the reputation of the other agents. The main focus of this paper is identifying
the bad agents and showing that using norms improves the system’s robustness.
Although this work is based on an open, heterogeneous and distributed envi-
ronment, it does not identify how norms can be revised and updated in this
context.

IRON machine was developed by Morales et al. and presented in [11]. It
addresses the limitations of the other previously mentioned works, as the main
aim of TRON is to synthesise norms online using an effective mechanism that
not only synthesises norms in run-time but also revises these synthesised norms
according to their effectiveness and necessity and further dismisses the inefficient
norms. IRON simulates multi-agent systems, in which norms are synthesised for
coordinating the behaviour of agents, and handles conflicting situations that
can occur, such as collisions of vehicles in a traffic scenario. As presented in
[11], IRON is capable of run-time norm synthesising and addressing the issues
of using static norms, however, the idea of coordinating norms and objectives is
not addressed.

Accordingly in this paper, we will propose UNS which is not only responsible
for online-norm synthesis in open multi-agent systems but also guarantees objec-
tive consideration in the process of norm reasoning by the aid of utility-based
technique.

As this work represents a series of the closest and comprehensive efforts
exerted towards online norm synthesis for MAS, in the following sub-section an
extended elaboration for IRON strategy and algorithm will take place and will
be further used as the baseline of our model.

2.1 Intelligent Robust On-line Norm Synthesis Machine (IRON)

TRON machine is composed of a central unit that is responsible for detection
of conflicts, synthesises of new norms to avoid conflicts, evaluation of the syn-
thesised norms, refinement of norms, and announcement of the norm set to the
agents. To simplify the illustration of the responsibilities of IRON, we will use a
traffic junction example with two orthogonal roads scenario. The vehicles repre-
sent the agents, each occupying a single cell and moving in a specific direction
per time-step.

— In conflicts detection, conflicts are detected when a collision occurs between
two or more vehicles. The occurrence of a collision will trigger IRON to syn-
thesise new norm to avoid future collisions of similar cases. As for norms syn-
thesising, norms are created based on a case-based reasoning algorithm. In
the algorithm, the conflicting situation at time ¢ is compared to the conflicting
vehicles’ context at time ¢ — 1. Then a norm is created using the conflicting
views as a precondition for applying the norm and prohibiting the ‘Go’ action
in this context. The synthesised norm is then added to a norms set and commu-
nicated to the agents (vehicles) of the system. For example, in Fig. 2, if vehicle
A and B collided at the intersection (grey cell) then the context and action of
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A or B is chosen randomly by the system to create a new norm. If A is chosen
the new norm will be n = if(left(<), front(—), right(<)) — proh(‘Go’).
The left() attribute in the precondition of the norm stores the direction of the
left neighbour vehicle of vehicle A. While the right() attribute stores the direc-
tion of the right vehicle to vehicle A, which is in this case vehicle B. Similarly,
the front() attribute would store the direction of the front vehicle, however,
because there is nothing in front of the vehicle the symbol (—) is used.

— Norms Evaluation is carried out by measuring necessity and effectiveness
of a norm and comparing it to a threshold. Necessity is measured according
to the ratio of harmful violated norms, which are norms that resulted in
conflicts when violated, compared to the total number of violated norms.
The methodology used in the calculations is akin of reinforcement learning,
in which the norm’s necessity reward NN R is calculated by:

my, (n) X wy, )

NNR =
myg (n) X wy, +my,(n) x wy,

my, (n): Number of violations which led to conflicts

wy,: Weight that measure the importance of harmful applications

my, (n): Number of violations which did not led to conflicts

wy,: Weight that measure the importance of harmless applications

The effectiveness of norms is measured based on the extent to which the norm
is successful (i.e. which resulted in the minimum number of conflicts). The
norm’s effectiveness reward NER is calculated by:

ma, () X wa, @)

NER =
mag(n) X wae +mag(n) X wag

ma, (n): Number of applied norms which led to conflicts

wa.: Weight that measure the importance of unsuccessful applications
mag(n): Number of applied norms which did not led to conflicts

wa,: Weight that measure the importance of successful applications

— Norms refinement is carried out by generalisation or specialisation of
norms. Norms are mapped in a connected graph that expresses the rela-
tionships between them. In other words, the graph shows the child and
parent norms and their links. Norms generalisation is applied when two or
more norms have acceptable necessity and effectiveness results compared to a
threshold, which is primarily specified before the system run, for time-interval
T. Specialisation or deactivation of norms is conducted when the effectiveness
and necessity of the norm or its children have been below the threshold for
time-interval T

— Norms communication is the final step, in which the norms are communi-
cated to the agents.

The main flow of activities that are carried out in the scenario of the traffic
junction (similar to Fig. 2), is as follows. Vehicles (agents) movements take place
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per time-step, however, prior to these movements, the vehicles check the norms
set for applicable norms. Applicable norms are norms with preconditions that
matches the context (local view) of the agents. When a new collision is detected,
a random agent/vehicle is chosen and then its context is added as a precondition
of a new norm that prohibits the ‘GO’ action. Afterwards, this norm is added
to the norms set (initially empty). In addition, norms evaluation and refinement
are carried out per time-step, in which all the views at time-step t are revised to
determine the set of applicable norms for each of the views. The retrieved set of
applicable norms is divided into four subsequent sets: (i) applied norms that led
to conflicts (ii) applied norms that did not lead to conflicts (iii) violated norms
that led to conflicts (iv) violated norms that did not lead to conflicts. Then set
(i) and (ii) are used to calculate the effectiveness of each of the norms, while set
(iii) and set (iv) represent the main inputs for the necessity calculation. Finally,
norms refinement is conducted.

3 Problem Statement

Let us consider a norm-aware multi-objective multi-agent system that is com-
posed of a finite set of mobile agents as Ag = {ag1,ags, ..., ag, }. Each agent ag;
has a type t,q,, set of properties F,g,, set of objectives O,g4, and set of adopted
norms Ngg,. In addition, the system itself has its own set of objectives Oy and
set of norms Ny, where Oy, € O, and Nyg, € N.

The norms are created by a centralised unit in the system in the form of a
pair (a, 6(ac)) and then messaged to the agents. « represents a precondition for
triggering the norm applicability. This precondition reflects a specific context of
the agent co,g,, which is the local view of the agent ag; that defines its direct
neighbours Ng,y, = {ag1,ags, ...,agr} and their properties such as their moving
direction in the traffic scenario example. So, coug, = {Pag, : a9k S NGag, }-
6 symbolises a deontic operator (obligation, prohibition or permission) with a
specific action acqq, of agent ag; which will apply the norm. For example, if an
action is beneficial for an agent then it is obligated and if an action is harmful
it is prohibited.

The central unit synthesises new norms after a conflicting state ¢ arises
between agents and uses the synthesised norm in future similar cases to avoid
conflicts. Conflicting state ¢ belongs to set of conflicts C, a conflict is considered
detected when two agents or more carry out actions that result in a problem. The
norm is synthesised by comparing the view at conflicting situation at time-step
t, Vi to the view before the conflict occurrence V;_;. The series of views that
represent different situations at each time-step are added in a ViewTransition V'
set (i.e. V; € Vand Vi_; € V).

In such a system, there are three main problems to be tackled. First, the
process of synthesising norms should ensure fairness (i.e. created norms cannot
be biased towards specific agents’ situation). For example, if there is a norm
created to coordinate the behaviour of two vehicles ag; and ags in an intersection,
this norm cannot always give priority to the vehicles on the right, because this
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will make the vehicles in the left lane always delayed. Second, when there is more
than one applicable norm in the same context, often unmatchable ones, only one
should be applied to avoid a deadlock situation. For example, in a scenario of
vehicles crossing a junction, if there were two norms created: nq for stopping if
there was a vehicle on the right, and 74 for stopping if there is a vehicle on the
left, a decision should be made to apply one of these unmatchable norms only.
Third, the agent’s norms Ny, and objectives Oy, should be coordinated to
ensure that the norms’ compliance does not contradict reaching the objectives.

4 UNS: Utility-Based Norm Synthesis Model

UNS is a utility-based norm synthesis mechanism implemented in a normative,
open, run-time, multi-objective, multi-agent system. UNS aims at reaching three
main goals. First, to synthesise norms while supporting fairness during norm cre-
ation. Second, to handle unmatchable synthesised norms. Finally, to coordinate
the objectives of agents with the synthesised norms. Figure 1 shows the architec-
ture of UNS. It shows the five main responsibilities of UNS that take place per
time-step at run-time: conflicts detection, norms synthesising, norms reasoning,
norms evaluation and refinement.

UNS
[ Norms that need refinement \
Norms ’ - Norms
[ Refinement TN [ Evaluation ]
@ Normative Network I

| ) Norms
: ‘ Synthesising

4 Conflicts set
Conflicts Monitoring Sensors Norms utility Function
P F Monitoring FF Reasoning v

System Objectives

\L_

Agents set

©©©©© So

Fig. 1. Utility-based norm synthesis model architecture (components coloured in grey
are inherited from IRON) (Color figure online)

Conflicts detection, norms evaluation and refinement are inherited from
IRON and integrated in UNS. The details of the steps carried out by UNS
are as follows:
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4.1 Conflicts Detection

At each time-step t as agents take actions, a set of monitors (e.g. traffic cameras)
M = {mi,ma,...,m, } monitor these actions to detect any conflicts. A conflict
c is detected when more than one agent actions contradict at the same view
v;, where v; € V. For example, in a traffic system, if vehicles standing before
a junction in opposite directions decided to move (do a ‘Go action’) towards
the same position, a collision will occur and so a conflict will arise. To detect
conflicts, views V are sent as a parameter to the ConflictDection function
(see Algorithm 1, line 6). A conflict object definition is composed of responsible
agents Ag” C Ag, context of these agents (which is the local views of each of
these agents), and the views transition of a state s between time-step t and ¢t —1,

(V5,_1s05,)-

4.2 Norms Synthesising

Case-based reasoning technique is used for norm synthesising. When a new con-
flict arises, a new case is created and then compared to similar cases and the best
solution is chosen accordingly. In case that no similar case is found a new random
solution is created for this case and added to the set of cases. In this manner,
after conflicts are detected, UNS carries out the norms synthesising steps for
each of these conflicts (see Algorithm 1, line 7 to line 17). All the agents respon-
sible for the conflict are retrieved in Ag" (e.g. all the vehicles that collided in
the same intersection are considered as responsible agents). For each of these
agents’ context at ¢t — 1 if an applicable norm was not found (applicable norms
are norms that have the same context as a pre-condition of the norm and the
same agent action prohibited in the norm), a new norm creation process takes
place (line 13). A new norm is composed of agents’ context coqq, and prohibited
action facyg,. Getting the context of the agent at the previous time-step as a
precondition of a norm and prohibiting the action that resulted in a conflict
avoids future conflicts that might rise in similar situations. After the norm is
created it is added to the system’s norms set 2 (line 14).

UNS Supporting Fairness: In IRON norms synthesising was carried out by
creating norms as a solution for only one randomly chosen agent from the agents
involved in a conflict. However, in UNS we have proposed a norm synthesising
process, which considers all the contexts of the agents involved in a conflict. For
example, in IRON if two vehicles had a conflict in an intersection, the norm will
be created based on prohibiting a Go action of only one of the two vehicles.
Although this will decrease the probability of creating unmatchable norms, it
will not ensure fairness as one side will always have priority of moving over the
other side.

4.3 Norms Reasoning

The norm reasoning process must meet systems’ objectives and handle unmatch-
able norms simultaneously. This is reached through defining a utility function U
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Algorithm 1. UNS Strategy
1: for each t do

2: Input: 2,V

3: Output: 2

4: /*Conflicts Detection*/

5: //Inherited from TRON

6: conflicts < Con flictDetection(V)

7: /*Norms Synthesis*/

8: for each c € conflicts do

9: Ag" — AgentsInCon flictContexts(c)
10: for each ag;, € Ag" do

11: COqg;, — GetAgentContext(ag;)

12: if hasApplicableNorm(coag,) == false then
13: n — CreateNorm(coag,,0(acag;))
14: 2—02Un

15: end if

16: end for

17: end for

18: /*Norms Reasoning*/
19: for each V411 € V do

20: N, — GetApplicableNorms(V')

21: if N,.size > 1 then

22: Utilities|] < null //comment:Utilities[k] = (ag;,n,U;)
23: for each n € N, do

24: Utilities.add(calculateUtility(n), n)

25: end for

26: ag. — getAgent(max(Utilities))

27: agz.apply Applicable N orm()

28: end if

29: end for

30: /*Norms Evaluation*/
31: //Inherited from IRON
32: /*Norms Refinement*/
33: //Inherited from IRON
34: end for

that is constructed based on the system’s objectives O and is used during the
norm selection.

Utility Function Construction: In this paper, the utility function is con-
structed by adding the objectives with a maximisation function and subtracting
the objectives with a minimisation function. For example, if Oy include two
objectives O5 = {01,02} and 07 is to minimise all vehicles’ average waiting time
and o9 is to minimise the average waiting time of emergency vehicles specifically,
then the system utility function U will be defined as:

U=—-01—0y=—1%(01+ 02) (3)
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The utility function introduced can be considered as a type of unweighted
additive utility function. In which using an additive approach is supported by
the indifference property assumed between the objectives as all objectives need
to be reached. Moreover, due to the equal preference to satisfying all of the
objectives and eliminating any prioritisation no weights are needed. The general
format of the defined utility function is:

|X| | M|
U= ZU(%‘) - Zu(mj) (4)

The | X| is the number of the system objectives that needs to be maximised,
and |M]| is the number of the system objectives that needs to be minimised.
u(x;) reflects the sub-utility gained from the maximisation of objective x;, while
u(m;) presents the sub-utility gained from the minimisation of objective m;.

Accumulated Utility Calculation: At each time-step before the agents start
moving (taking actions) UNS determines the set of applicable norms NN, in each
view V; (see Algorithm 1, line 20). If more than one norm is applicable for the
same view V3, then UNS carries out the steps in Algorithm 1 (from line 22 to
line 27) to choose the norm with the highest utility and dismisses the rest of
the norms. For example, if we have a traffic scenario as seen in Fig. 2, where
vehicle A, agi, and vehicle B, ags, are willing to move to the same junction
(coloured in grey) at time ¢, the stored view at time ¢ will be represent by (V).
UNS will retrieve the set of applicable norms N, = {nl,71}, where nl: is to
stop if there is a vehicle on the right and 7l is to stop if there is a vehicle
on the left. nl is suggested for vehicle A and 71 is suggested for vehicle B.
If both vehicles apply the norms then none of them will move, which result
in a deadlock state. So, a decision must be made to choose only one of the
two unmatchable norms. Accordingly, an empty array of struct is initialised
(in line 21). The struct is composed of ag; (which is the responsible agent), n
(which is the applicable norm for this agent ag; situation), and U; (which is the
calculated utility gained by the system if this norm n is applied). For each of
the applicable norms in N, the utility function is calculated (line 23). However,
in our utility calculation strategy, we calculate an accumulated utility function,
which does not only consider the utility gained by the agent applying the norm,
but also considers all the agents that are indirectly affected by the norm adoption
decision. For example, in Fig.2, if vehicle A will be the agent that will apply
the norm and will stop if there is a vehicle on the right, it will force vehicles
C, D, E and F to stop as well. While if vehicle B decides to apply the norm nl
and to stop, vehicle G will be forced to stop as well. Based on this justification,
to ensure gaining the actual maximum utility, UNS aggregates the utility of all
the agents that are affected directly and indirectly with the norms adoption or
dismissal. Then, the norm that gives the maximum utility is applied (lines 26
and 27), and the rest of the norms are dismissed.
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Fig. 2. A traffic junction composed of two orthogonal roads

4.4 Norms Evaluation and Refinement

The norm evaluation and refinement processes are inherited from IRON (illus-
trated in Sect.2.1). These processes are used to evaluate norms at run-time
using efficiency and necessity equations (Egs. 1 and 2). If a norm’s efficiency and
necessity does not reach a certain threshold its refinement takes place and it is
specialised or deactivated. Also, if a norm’s efficiency and necessity exceeds a
specified threshold it can be generalised.

5 Empirical Evaluation

In this section we show UNS capability to synthesise norms that support fairness,
to handle unmatchable norms and to coordinate norms and objectives.

5.1 Empirical Settings

We simulate a traffic-based scenario, with a 19 x 19 grid as a road network with
a junction of two orthogonal roads (see Fig.2). Each road has two lanes; one
for each direction. In Fig.2, the cells coloured in grey show the four cells that
represent the intersections. Vehicles are the agents and they have two main types:
ordinary vehicles and high priority vehicles to represent heterogeneity. The ratio
of generating priority vehicles to ordinary vehicles is 12:100 respectively. Also, as
it is an open MAS, vehicles can enter and leave the road network freely. Vehicles
move per time-step aiming to reach their final destination which was randomly
generated by the simulator at the beginning of the trip of the vehicle. In each
time-step, the system randomly chooses the number of new vehicles (between
2 to 8 vehicles) to be emitted to start their trip. The system aims at avoiding
conflicts (i.e., the collisions between vehicles) through the synthesised norms.
Norms are defined as a pair that includes the agent context and the prohibited
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action. The agent context is the local view of the vehicle describing the direction
of vehicles on its left, front, and right, which we call neighbouring vehicles. For
example, in Fig. 2 the vehicles in the local context of vehicle F' are vehicles A,
C and D. The action prohibited is a ‘Go action’ to avoid vehicle movement
in future similar contexts. UNS synthesises norms and adds them to a norm
set that is initially empty at the beginning of the simulation. When a stable
normative system is reached the system converges. The system has two main
objectives, minimising the average waiting time for all vehicles and minimising
the total waiting time of priority vehicles. The utility function used in the norm
reasoning is constructed based on the previous two objectives as follows:

th + th
X+Y

Xwt: Total waiting time of ordinary vehicles

Yu+: Total waiting time of priority vehicles

X: Number of ordinary vehicles

Y: Number of priority vehicles

— 1 ( + Yur) ()

5.2 Experiment Results

To evaluate UNS’s performance, three main scenarios are tested with the settings
illustrated in the previous sub-section with varying violation rate of norms, which
represents the ratio of agents obeying the adoption of the norms. UNS will be
compared to IRON machine (explained in Sect.2.1). The average waiting time
for all vehicles and the total waiting time of priority vehicles are reported to
show the performance of UNS and IRON. Moreover, the number of collisions is
used to reflect the efficiency of the synthesised norms in avoiding conflicts. We
present the moving average of the results at every 50 time-steps obtained from
10 runs of simulation as plotted in Fig. 3, 4, and 5.

5.3 Scenario A (Violation Rate 10%)

Figure 3(a) shows the average waiting time of all vehicles in UNS compared to
the average waiting time of all vehicles in IRON. The average waiting time is
decreased in UNS, particularly from time-step 322. Moreover, it can be noted
that from time-step 322 almost the average waiting time in UNS is constant
with an average value of 1.5 time-steps. As results show, UNS has minimised
the average waiting time of the vehicles and so fulfilling the first objective of the
system.

Figure 3(b) shows the total time taken by priority vehicles per time-step in
UNS compared to IRON. The average total waiting time of priority vehicles
using UNS is 8.09 time-steps, while the average total waiting time of priority
vehicles reached in IRON is 12 time-steps. Moreover, Fig. 3(a) and (b) do not
only emphasise how UNS can coordinate objectives and norms, but the noticed
stability and uniformity of the results show the reliability of UNS which is nec-
essary in real-applications.
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Figure 5(a) presents the total number of collisions per time-step, which shows
UNS is able to successfully synthesise norms at run-time to handle collisions. The
results show UNS outperforms the synthesised norms set in IRON. Furthermore,
observations showed that in a lot of time-steps UNS reached zero collisions, unlike
TRON. The average number of collisions in UNS is 0.08 while the average number
of collisions in IRON is 0.17. Also, comparing the total number of collisions, the
total number of collisions in UNS is 51% lower than IRON, which shows the
efficacy of the norm synthesis process.

5.4 Scenario B (Violation Rate 7T0%)

Figure4(a) shows the average waiting time of all vehicles in UNS compared to
IRON. The average waiting time in this scenario is increased to 2.45 time-steps
compared to scenario A. However, UNS still outperforms IRON, in which its
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average waiting time per time-step decreased from 2.75 to 2.53 time-steps. This
unexplained decrease in IRON shows the essence of the primary definition of the
system objectives and its incorporation in the model. Moreover, the results show
that even with a high violation rate the system objectives can be achieved using
UNS.

Figure 4(b) shows that UNS and IRON have quite similar range of total wait-
ing time for priority vehicles. However, UNS outperforms IRON as the average
of the total waiting time of priority vehicles is 8.92 time-steps using UNS and
9.24 time-step using IRON.

The results also show that although the violation rate has increased by 60%
compared to scenario A, the average total waiting time of priority vehicles in UNS
has only increased by 9.30%. Furthermore, the number of collisions occurred in
this scenario using UNS is 4.66% fewer compared to IRON as seen in Fig. 5(b).
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5.5 Scenario C (Violation Rate 0%)

When using 0% violation rate with IRON simulation, IRON is not able to con-
verge and continue the simulation. The reason behind this is that the system
reaches a deadlock when all vehicles obey to the norms. Although, IRON strat-
egy in synthesising norms relies on creating only one norm at a time, it might
synthesises two unmatchable norms at different instances that when applied in
the same conflict causes a deadlock. For example, if one norm is to stop if there
is a vehicle on the right hand side and the second norm is to stop when there
is a vehicle on the left, two lanes of the vehicles standing at the beginning of a
junction will stop endlessly, when there is no violation. However, this situation
does not arise in UNS because it handles unmatchable norms and if more than
one norm is applicable, the utility for both norms is calculated and only one
norm is applied (i.e. in the previous example, one vehicle will ‘Stop’ and the
other will ‘Go’).

In all scenarios, UNS synthesises more norms than IRON. This is due to syn-
thesising all the norms that would contribute in avoiding collision in a specific
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situation, supporting the idea of fairness. For example, in one of the runs IRON
synthesised 15 norms, while UNS synthesised 17 norms. For example, UNS syn-
thesises norm ng, ng = (left(—), front(—), right(<), Proh(Go)) and norm ny,
ny = (left(>), front(—),right(—), Proh(Go)), both contributing in avoiding a
collision. However, IRON only synthesises n, which will always give priority to
vehicles on the right side of the intersection, and consequently cannot support
fairness.

6 Conclusion and Future Work

In this paper, we proposed a centralised utility-based norm synthesis (UNS)
model which aims at coordinating objectives of the system with the synthe-
sised norms in real-time. Norms in UNS are created to resolve conflicts that
occur between agents and they are synthesised using case-based reasoning tech-
nique. UNS uses a utility function constructed based on the system objectives
for norm reasoning. This ensures that when agents come to applying the synthe-
sised norms, unmatchable norms and coordinated objectives of the system are
handled. In addition, to ensure the effectiveness of the synthesised normative
system the norms evaluation and refinement technique is inherited from IRON
strategy [11]. The model was evaluated using a traffic scenario of two intersect-
ing roads and results were compared with IRON. Results showed the efficiency
of the model to meet the objectives of the system while synthesising norms in
real-time. As future work, in addition to applying the model on another applica-
tion domains two main directions will be followed. First, to use a decentralised
architecture that involves the coordination of the agents in the process of norm
synthesis. This would facilitate building several sets of norms according to each
agent group’s learning and objectives. Second, to transfer the norm reasoning
process to be carried out in the level of agents rather than the system to ensure
the agent’s autonomy in the decision-making process.
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