
A Framework for Automatic Monitoring
of Norms that Regulate Time

Constrained Actions

Nicoletta Fornara1(B), Soheil Roshankish1, and Marco Colombetti2

1 Università della Svizzera italiana, via G. Buffi 13, 6900 Lugano, Switzerland
{nicoletta.fornara,soheil.roshankish}@usi.ch

2 Politecnico di Milano, piazza Leonardo Da Vinci 32, Milano, Italy
marco.colombetti@polimi.it

Abstract. This paper addresses the problem of proposing a model of
norms and a framework for automatically computing their violation or
fulfilment. The proposed model can be used to express abstract norms
able to regulate classes of actions that should or should not be performed
in a temporal interval. We show how the model can be used to formal-
ize obligations and prohibitions and for inhibiting them by introducing
permissions and exemptions. The basic building blocks for norm specifi-
cation consists of rules with suitably nested components. The activation
condition and the regulated actions together with their time constrains
are specified using the W3C Web Ontology Language (OWL 2). Thanks
to this choice, it is possible to use OWL reasoning for computing the
effects that the logical implication between actions has on the fulfilment
or violation of the norms. The operational semantics of the model is
specified by providing an unambiguous procedure for translating every
norm and every exception into production rules.

1 Introduction

In this paper, we present the T-NORM model (where T stands for Temporal), a
model for the formalization of relational norms that regulate classes of actions
that agents perform in the society and that put them in relation to other agents,
like for example paying, lending, entering a limited traffic area, and so on. Our
proposal is strictly related to the specification of the operational semantics of
such a model to make it possible to provide monitoring and simulation services
on norms specifications. Specifically, the proposed model can be used to automat-
ically compute the fulfilment or violation of active obligations and prohibitions
formalized to regulate a set of actions that should or should not be performed in
a temporal interval. The fact that the actions regulated by the norms are time
constrained is an important distinguishing feature of the proposed model. We

Funded by the SNSF (Swiss National Science Foundation) grant no. 200021 175759/1.
Proc. of the COINE 2021 co-located with AAMAS 2021, 3rd May 2021, London, UK.
All Rights Reserved.

c© Springer Nature Switzerland AG 2022
A. Theodorou et al. (Eds.): COINE 2021, LNAI 13239, pp. 9–27, 2022.
https://doi.org/10.1007/978-3-031-16617-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16617-4_2&domain=pdf
https://doi.org/10.1007/978-3-031-16617-4_2


10 N. Fornara et al.

would like to stress that the type of norms that can be represented with the
proposed model are assumed to be static, in the sense that they do not change
dynamically over time. What is represented in the model is that a norm may
be activated over time and subsequently its activation may generate fulfilments
and/or violations. Another important aspect of the model is that once a set of
obligations and prohibitions are formalized they may be further refined by the
definition of permissions and exemptions.

In NorMAS literature [16] it is possible to find numerous formal models
for the specification of norms, contracts, commitments and policies. Many of
them can be used for regulating the performance of actions or for requiring the
maintenance of certain conditions, but very often those actions and conditions
may only be expressed using propositional formulae. This choice makes it difficult
to express the relation between the regulated actions (or conditions) and time.
This is an important limit in the expressiveness of those models, because there
are numerous real examples of norms and policies whose relation with time
intervals is important for their semantics; for example in e-commerce, deadlines
(before which a payment must be done) are fundamental for computing the
fulfilment or violation of contracts.

When temporal aspects are important for the specification of norms and
for reasoning on the evolution of their normative state, one may decide to use
temporal logics (e.g. Linear Temporal Logic LTL) to express and reason about
time-related constraints. Unfortunately, this solution has important limitations
when it is necessary to use automatic reasoning to compute the time evolution
of the normative state, as discussed in [12].

In our approach we propose to formalize some components of the norms,
i.e. their activation condition and the regulated actions together with their time
constrains using semantic web languages, specifically the W3C Web Ontology
Language (OWL 2, henceforward simply OWL)1. This is for two reasons. First,
it should be easier for those who want to formalize norms with our model to
use a standard language that is fairly well known and taught in computer sci-
ence graduate courses. Second, this language has a formal semantics on which
automatic reasoning can be performed. Moreover, OWL is more expressive than
propositional formulae2, which are used in many other norm models. The idea
of formalizing policies using semantic web languages is spreading also thanks
to the success of the ODRL (Open Digital Rights Language) policy expression
language3, which has been a W3C Recommendation since February 2018.

Our idea is to propose a model of norms that norm designers can use for
formalizing the intuitive meaning of having an obligation or a prohibition. That
is, when something happens and certain conditions hold, an agent is obligated
or prohibited to do something in a given interval of time. What is innovative

1 https://www.w3.org/TR/owl2-overview/.
2 Description Logics (DLs), which are a family of class (concept) based knowledge

representation formalisms, are more expressive than propositional logic, and they
are the basis for ontology languages such as OWL [10].

3 https://www.w3.org/TR/odrl-model/.

https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/odrl-model/


A Framework for Automatic Monitoring of Norms 11

with respect to other approaches is that instead of explicitly labelling a norm as
an obligation or a prohibition, we let the norm designer explicitly express what
sequence of events will bring to a violation or a fulfilment; this way, there is
practically no limit to the types of normative relations that can be expressed.
To do so the norm designer needs to be able to describe triggering events or
actions and their consequences. The resulting model will let the norm designer
to specify norms as rules nested into each other.

The main contributions of this paper are: (i) the definition of a model of
norms that can be used to specify numerous types of deontic relations, i.e. dif-
ferent types of obligations and prohibitions, and their exceptions; (ii) the defi-
nition of its operational semantics (by combining OWL reasoning and forward
chaining) that can be used to automatically monitor or simulate the fulfillment
or violation of a set of norms; (iii) the proposal of a set of different types of
concrete norms, that can be used to evaluate the expressive power of a norms
model.

This paper is organized as follows: in Sect. 2 the main goals that guided
the design of the norms model are presented. In Sect. 3 the T-NORM model
is introduced and in Sect. 4 its operational semantics is provided. In Sect. 5 the
architecture of the framework for computing the fulfillment or violation of norms
and its implementation are presented. Finally, in Sect. 6 the proposed model is
compared with other existing approaches.

2 Design Goals

In this section we list the main goals that guided us in the design of the proposed
model and in the definition of its operational semantics.

Our first goal is to propose a model of norms able to regulate classes of
actions; for example, we want to be able to formalize a norm that regulates all
the accesses to a restricted traffic zone of a metropolis and not only the access
of a specific agent. This objective is not achieved by those models, like ODRL
and all its extensions or profiles [3,6] where the policies designer has to specify
the specific debtor of every policy instance.

Our second goal is to define a model of norms able to regulate classes of
actions whose performance is temporally constrained. For instance, the following
norm regulates all the access to an area and the subsequent action of paying
is temporally constrained by a deadline, which in turn depends on the access
instant of time: “when an agent enters in the limited-traffic area of Milan,
between 7 a.m. and 7 p.m., they have to pay 6 euros within 24 h”. The first and
the second goal will bring us to define a model for expressing norms that may
be applied multiple times to different agents and may be activated by numerous
events happening in different instants of time.

Starting from the experience that we gained by using the model of obliga-
tions, prohibitions and permissions presented in our previous paper [6], we have
developed a third goal for our model. The goal is to propose a model made of
basic constructs that can be combined by a norm designer to express different



12 N. Fornara et al.

types of deontic relations without the need to introduce a pre-defined list of
deontic types, like obligation, prohibition, and permission. This has the advan-
tage that whenever a new kind of norms is required, like for example the notion
of exemption or the notion of right, there is no need to introduce a new type
into the model with its operational semantics. With the model proposed in this
paper, it is possible to use few basic constructs and combine them in different
ways to express the obligation to perform an action before a given deadline or
the prohibition to perform an action within an interval of time. Our idea is to
allow norm designers to explicitly state what behaviour will bring to a violation
and what behaviour will bring to a fulfilment, regardless of whether they are
formalizing an obligation or a prohibition. Moreover, in this new model, per-
missions are not treated any more as first-class objects, but they are formalized
as exceptions to prohibitions, while exemptions are formalized as exceptions to
obligations.

Our fourth goal is to provide an operational semantics of our model of norms
that will make it possible to monitor or simulate the evolution of their state.
Our goal is mainly to be able to automatically compute if a policy is active (or
in-force) and then if it becomes fulfilled or violated on the basis of the events
and actions performed by agents. Monitoring is crucial from the point of view of
policy’s debtor for checking if their behaviour is compliant and it is relevant for
policy’s creditors to react to violations. Simulation may be used for evaluating in
advance the effects of the performance of certain actions. Another useful service
that can be provided on a set of policies is checking their consistency, checking
for example if a given action is contemporarily obligatory and prohibited. This
can be done at design time by using model-checking techniques, but it is not
among the objectives of our model. However, by proposing a model that allows
us to track how the state of the norms evolves over time, it will be possible to
detect inconsistencies that occur at a precise instant of time during the execution
of their monitoring process.

3 The T-NORM Model of Norms

The idea that has guided us in the definition of the T-NORM model is to give
norm designers a tool to describe what sequence of events or actions would bring
an agent to the violation or fulfilment of a norm. This approach has the advan-
tage of providing norm designers with a model that in principle can be used
to define any type of deontic relationship, like obligations, prohibitions, permis-
sions, exemptions, rights and so on. This is a crucial difference with respect to
the models having a pre-defined set of deontic types, like it is the case for ODRL,
OWL-POLAR [13], and also our previous proposal of a model for monitoring
obligations, prohibitions, and permissions [6].

The intuitive meaning of having an obligation (resp. a prohibition) that we
want to capture is the following one: when an activation event happens and some
contextual conditions are satisfied, it is necessary to compute some parameters
(for example the deadline) and to start to monitor the performance of a specific



A Framework for Automatic Monitoring of Norms 13

regulated action or class of actions. In turn, if an action, which matches the
description of the regulated one, is performed before another event (for example
a time event that represents a deadline), then the obligation is fulfilled (resp. the
prohibition is violated); otherwise, if the regulated action cannot be performed
anymore (for example because the deadline has elapsed) the obligation is violated
(resp. the prohibition is fulfilled).

To capture this intuitive meaning we decided to represent norms as rules
that determine the conditions under which a fulfilment or violation is generated.
Below, we discuss how different types of norms can be represented in this way.
Then in the next section we describe how T-Norm norms can be translated into
production rules, thus assigning an unambiguous operational semantics to our
norm formalism.

The idea of representing norms in the form of rules is not new in NorMAS
literature [7]. However, in order to explicitly specify the sequence of events that
bring to a violation or a fulfilment, we propose a model of norms where the
basic building blocks for norm specification consists of rules with properly nested
components. Thanks to this choice, as we will discuss in Sect. 4, the operational
semantics of our model of norms can be easily expressed using productions. Our
idea is to express the meaning of having an obligation or a prohibition by nested
rules of the following form:

NORM Norm_n

[ON ?event1 WHERE conditions on ?event1

THEN

COMPUTE]

CREATE DeonticRelation(?dr);

ASSERT isGenerated(?dr,Norm_n); [activated(?dr,?event1);]

ON ?event2 [BEFORE ?event3 WHERE conditions on ?event3]

WHERE actor(?event2,?agent) AND conditions on ?event2

THEN ASSERT fulfills(?agent,?dr); fullfilled(?dr,?event2)|

violates(?agent,?dr); violated(?dr,?event2)

[ELSE ASSERT violates(?agent,?dr); violated(?dr,?event3)|

fulfills(?agent,?dr); fulfilled(?dr,?event3]

In the proposed model the first (optional) ON...THEN component is used for
expressing conditional norms, i.e. norms that start to be in force when a certain
event happens and where the temporal relation between the activating event
and the regulated action is crucial in the semantics of the norm. For example
in Norm01 (“when an agent enters in the limited-traffic area of Milan between 7
a.m. and 7 p.m., they have to pay 6 euros within 24 h”) the event of entering in
the limited-traffic area must occur for the obligation to pay to activate; moreover
the entering instant is fundamental for computing the deadline of the payment.
The second ON...THEN component is used for expressing the actions regulated
by the norm and the consequences of their performance or non-performance.

In the T-NORM model, a norm activation can generate many different deon-
tic relations. In other approaches, like for example in [1], a norm generates norm
instances. We prefer to use the term deontic relation because it can also be used



14 N. Fornara et al.

to denote obligations and prohibitions that are not created by activating a norm,
but for example by making a promise or accepting an agreement.

In the ON ?event WHERE and in the BEFORE ?event WHERE components, the
norm designer has to describe the conditions that a real event has to satisfy to
match a norm. In our model all the relevant events and actions are represented
in the State Knowledge Base. The data for managing the evolution of the state
of norms, for example the deontic relation objects, are stored in the Deontic
Knowledge Base. Obviously, the formalism chosen for representing the data in
the State KB and the Deontic KB determines the syntax for expressing: the
conditions, which are evaluated on the State KB, and the actions (after THEN),
which are performed on the Deontic KB. Differently from other approaches,
where the context or state of the interaction is represented by using propositional
formulae [1,9], we decided to formalize the State KB and the Deontic KB by
using semantic web technologies, in particular the W3C Web Ontology Language
(OWL). This choice has the following advantages:

– events and actions are represented with a more expressive language, indeed
OWL is a practical realization of a Description Logic known as SROIQ(D),
which is more expressive than propositional logic;

– in the definition of the conceptual model of the State KB it is possible to
reuse existing OWL ontologies making the various systems involved in norm
monitoring interoperable;

– it is possible to perform automatic reasoning (OWL can be regarded as a
decidable fragment of First-Order Logic) on the State KB and deducing
knowledge from the asserted one. In particular, this is important when the
execution of an action logically implies another one. For example, the repro-
duction of an audio file implies its use, therefore if the use is forbidden so
is its reproduction. This is a crucial advantage because instead of creating
special properties that allow you to express which actions imply other ones
(like for example it has been done in ODRL with the implies property4) it
is sufficient to reason on the actions performed by using OWL reasoners.

In the specification of conditions, OWL classes are represented using unary
predicates starting with a capital letter and OWL properties are represented
using binary predicates starting with a lowercase letter. If an event is described
with more conditions, they are evaluated conjunctively, variables (starting with
?) are bound to a value, and a negated condition is satisfied if there is no element
in the KB that matches it. In the example reported in this paper, the conceptual
model of the events represented in the State KB is formalized with the Event
Ontology in OWL [4,6], which imports the Time Ontology in OWL5 used for
connecting events to instants or intervals of time, and the Action Ontology for
representing domain-specific actions, like the PayAction class. The conceptual
model of the Deontic KB is formalized with the T-Norm Ontology in OWL6.

4 https://www.w3.org/TR/odrl-model/#action.
5 https://www.w3.org/TR/owl-time/.
6 https://raw.githubusercontent.com/fornaran/T-Norm-Model/main/tnorm.owl.

https://www.w3.org/TR/odrl-model/#action
https://www.w3.org/TR/owl-time/
https://raw.githubusercontent.com/fornaran/T-Norm-Model/main/tnorm.owl


A Framework for Automatic Monitoring of Norms 15

In the second component of norms, the BEFORE condition and the ELSE branch
are optional. The BEFORE part is mainly used for expressing deadlines for obliga-
tions. Although an obligation without a deadline cannot be violated and there-
fore it is not an incentive to perform the obligatory action, the BEFORE part is
not compulsory. The ELSE branch is followed when the regulated action cannot
happen anymore in the future, for example if it has to happen before a given
deadline (in this case event3 is a time event) and the deadline expires without
event2 being performed. In principle other conditions, beside BEFORE, can be
used to express other temporal operators but they are not introduced in this
version of our model. In the consequent (THEN) parts of a norm, it is possible to
specify that:

– (COMPUTE) the value of some variables (for example the deadline that depends
on the activation time) are computed using arithmetic operations and the
value of variables obtained when matching the antecedent;

– (CREATE) new individuals belonging to a certain class and having certain
properties have to be created in the Deontic KB for making the monitoring
of norms feasible. Each conditional norm, when activated, can generate several
deontic relations;

– (ASSERT) the value of certain properties of existing individuals created by the
norm may be set.

The debtor of a deontic relation is the agent that is responsible for its viola-
tion or fulfilment; usually it is the actor of the regulated action. In legal systems
there are exceptions to this general rule (for example for actions performed by
minors or people with mental impairment or in cases of strict liability), but we
leave this aspect for future works. Specifying the debtor is important because it
is the agent to whom sanctions will apply (this aspect is not addressed in the
current paper).

The creditor of a deontic relation is the agent to whom the debtor owns the
performance or non-performance of the regulated action. In certain cases it may
be difficult to establish the creditor of a deontic relation (for example who is the
creditor of the prohibition of running a red light?); we leave for future works the
analysis of this aspect.

3.1 Expressive Power of the Model

By using the T-NORM model we are able to express different types of norms.
First of all it is possible to formalize conditional and direct (or un-conditional)
obligations and conditional and direct prohibitions. Moreover, every conditional
norm (whether it is an obligation or a prohibition) when activated will bring
to the creation of specific deontic relations or to the creation of general deontic
relations. Every specific deontic relation regulates the performance of an action
by a specific agent, differently every general deontic relation regulates the per-
formance of a class of actions that can be concretely realized by different agents,
and therefore can generate many violations or fulfilments.



16 N. Fornara et al.

There exist models, which are not focused on regulating time-constrained
actions, where (coherently with deontic logics) prohibitions are merely formalized
as obligations to not perform the regulated action. However, when the regulated
actions are time constrained it is crucial to react to their performance but also
to their non-performance in due time. Think for example to the prohibition
expressed by Norm02: “Italian libraries cannot lend DVDs until 2 years are passed
from the distribution of the DVD”. This prohibition cannot be expressed as an
obligation to not lend certain DVDs in a specific time interval, because while
an obligation is fulfilled by the performance of a single instance of an action, a
prohibition is not fulfilled by a single instance of refraining from the performance
of an action. In the T-NORM model the main difference between obligations
and prohibitions is that the performance of the regulated action brings about a
fulfilment in the case of obligations and a violation in the case of prohibitions.

To illustrate the flexibility of our model, we shall now present examples of
different types of norms. Due to space limitation we will not formalize them all.
Norm01 is an example of conditional obligation and each one of its activations
creates one specific deontic relation to pay 6 euros for the owner of every vehicle
that entered in the limited-traffic area. Norm01 may be formalized with the T-
NORM model in following way:

NORM Norm01

ON ?e1

WHERE RestrictedTrafficAreaAccess(?e1) AND vehicle(?e1,?v) AND

owner(?v,?agent) AND atTime(?e1,?inst1) AND

inXSDDateTimeStamp(?inst1,?t1) AND ?t1.hour>7 a.m. AND ?t1.hour<7p.m

THEN

COMPUTE ?t_end.hour=?t1.hour+24

CREATE DeonticRelation(?dr01_n);TimeEvent(?tev_end_n);

Instant(?inst_end_n);

ASSERT isGenerated(?dr01_n,Norm01);activated(?dr01_n,?e1);

debtor(?dr01_n,?agent);end(?dr01_n,?tev_end_n);

atTime(?tev_end_n,?inst_end_n);

inXSDDateTimeStamp(?inst_end_n,?t_end);

ON ?e2 BEFORE ?tev_end_n

WHERE PayAction(?e2) AND reason(?e2,?e1) AND recipient(?e2,Milan)

AND price(?e2,6) AND priceCurrency(?e2,euro) AND actor(?e2,?agent).

THEN ASSERT fulfills(?agent,?dr01_n); fulfilled(?dr01_n,?e2)

ELSE ASSERT violates(?agent,?dr01_n); violated(?dr01_n,?tev_end_n)

where a counter n is incremented each time the norm is activated, so that
each activation creates a different deontic relation.

Norm02 (“Italian libraries cannot lend DVDs until 2 years are passed from the
distribution of the DVD”) is an example of conditional prohibition, its activation
creates a general deontic relation every time a new DVD is distributed. The
general deontic relation created for each specific DVD regulates the actions of
all the agents registered in Italian libraries.

The third type of norms is a conditional prohibition that generates specific
deontic relations, an example of this type of norm is Norm03: “a person who has



A Framework for Automatic Monitoring of Norms 17

a positive swab to Covid-19 cannot leave the house for the next 15 days”. The
fourth type of norm is a conditional obligation that generates general deontic
relations, like for example in Norm04: “when the school bell rings, students have
5min to enter their classroom”.

An example of unconditional prohibition is given by Norm05: “when the red
light is on it is prohibited to pass the traffic light”. This prohibition is uncondi-
tional because there is no need to react to its activation by performing specific
actions. For enforcing this prohibition it is enough to check the state of the red
light every time an agent pass the traffic light and if the red light is on there is
directly a violation. Finally, the following Norm06: “the lecturer of a course has
to organize 2 exams per year” is an example of unconditional obligation.

Finally, we present an example of conditional obligation where the obliged
action should be performed before another event that is not a time event (there
is not a deadline). Norm07 is: “When an agent enters into a supermarket parking
between 7 a.m. and 7 p.m., they have to pay 2 euros for every hour of the parking
unless they did some shopping at the supermarket”.

It is important to mention an important constraint for the use of the model:
the regulated action must have an actor, this actor is the debtor of the deontic
relation and is the agent who will fulfill or violate the deontic relation.

3.2 The Model of Exceptions

The meaning of having the permission to perform an action has been widely
studied in the literature and different types of permission have been analyzed. In
[8] the important distinction between strong and weak permission has been dis-
cussed. Having the weak permission to do an action is equivalent to the absence
of the prohibition to do such an action. Differently, we have the strong permission
to do an action when there is the explicit permission to do such an action; usu-
ally strong permissions are used to explicitly derogate to existing prohibitions.
A similar notion is that of exemption, which is used to derogate obligations. In
the T-Norm model we introduce one construct, the exception, that can be used
for modelling both permission and exemption and can be iterated at any level
of depth.

By using the T-Norm model we can specify different types of exceptions. The
first type is represented by exceptions to norms activation. When some specific
conditions on the event that activates the norm are met, the consequent deontic
relation has not to be generated. An example of this type of exception to Norm01
is: “ambulances do not have to pay for entering into the limited traffic area”. In
this case a check on the type of the vehicle inhibits the creation of the obligation
to pay, thus creating an exemption.

The exceptions of the second type are those to deontic relations, i.e. when
some specific conditions on the regulated event are satisfied the generation of
violation/fulfilment is inhibited. An example of this type of exception to Norm02
is: “school teachers can always borrow every DVD from the library”. In this case,
a check on the position of the borrower can be used to prevent the violation of
the prohibition, that is, for creating a permission. This type of exception cannot



18 N. Fornara et al.

be expressed by inhibiting the activation of the norm (using the first type of
exception) because the condition (being a school teacher) is on the borrower,
who is not part of the activating event of the prohibition.

Both these types of exceptions could be expressed by adding some specific
conditions to the antecedent of a norm. However, this solution requires to mod-
ify an already enforced norm by adding further conditions. This is not a good
solution because it implies changing a previously defined norm every time an
exception is introduced. A better solution consists in expressing exceptions with
a construct that is external to norms. Our idea is to introduce a construct that
is able to inhibit the activation or the fulfilment/violation of a norm when the
activating or the regulated event happens and some further conditions are met.
Therefore, we formalize exceptions with a construct whose effects is to inhibit
the activation of one of the components of a norm. Given that an exception
is strictly related to a norm, we assume that it has access to all the variables
introduced in the related norm, to which it simply adds some more conditions.
An exception is expressed in one of the following ways on the basis of its type:

EXCEPTION TO Norm_n TYPE 1

ON ?event1

WHERE conditions on event1

THEN exceptionToNorm(Norm_n,?event1)

EXCEPTION TO Norm_n TYPE 2

ON ?event2

WHERE conditions on event2 AND isGenerated(?dr,Norm_n)

THEN exceptionToDR(?dr,?event2)

For example the formalization of an exception of the fist type to Norm01 for
ambulances is:

EXCEPTION TO Norm01

ON ?e1 WHERE Ambulance(?v)

THEN exceptionToNorm(Norm01,?e1)

These types of exceptions cannot be formalized by simply deleting a norm or
a general deontic relation, because they suspend the effects of norms only in par-
ticular situations. For example, Norm01 applies to all vehicles except ambulances
and Norm02 applies to all library subscribers except school teachers.

By analysing real cases of norms, we realized that there exists a third type of
exceptions whose effect is to inhibit the fulfilment or violation of specific deontic
relations. These exceptions are different from those of the second type because
they are triggered by an event that is not the one regulated by the norm. For
example an exception to the Covid-19 Norm03 is: “if the house is on fire then
everybody is allowed to leave it”. This exception is activated by an event (the
house is on fire) that is different from the action that is regulated by the norm
(leaving the house). We model those exceptions in the following way:



A Framework for Automatic Monitoring of Norms 19

EXCEPTION TO Norm_n TYPE 3

ON ?event_n

WHERE conditions on event_n AND isGenerated(?dr, Norm_n) AND

NOT fulfills(?agent,?dr) AND NOT violates(?agent,?dr)

THEN exceptionToDR(?dr,?event_n)

For example the exception to Norm03 is formalized as7:

EXCEPTION TO Norm03 TYPE 3

ON ?en

WHERE Fire(?en) AND place(?en,?house) AND residence(?house,?agent) AND

isGenerated(?dr,Norm03) AND activated(?dr,?e1) AND

affectedPerson(?e1,?agent) AND NOT fulfills(?agent,?dr) AND

NOT violates(?agent,?dr)

THEN exceptionToDR(?dr,?en)

It is also possible to have exceptions to exceptions that will inhibit the acti-
vation of the three types of exceptions described above.

4 Operational Semantics of the Model

In this section, we will show how the model of norms proposed so far can be used
to monitor the temporal evolution of normative states on the basis of the events
occurred in the interaction among agents. Our goal is to compute the violation
or fulfilment of norms on the basis of actual events.

The operational semantics of the T-NORM model can be specified by pro-
viding an unambiguous procedure for translating the model into a target formal-
ism that already has an operational semantics. As target formalism we choose
production rules, because their structure and behavior make it fairly easy to
translate norms into them. Production rules, often simply called productions or
rules, have been investigated in computer science, and in particular in the AI
literature related to knowledge representation and reasoning [2]. A production
rule has the form:

IF conditions THEN actions.
It has two parts: an antecedent set of conditions that are tested on the current

state of the working memory and a consequent set of actions that typically
modify the working memory.

The operational semantics of a production rule system is given in the W3C
Recommendation of the RIF Production Rule Dialect8 by means of a labeled
terminal transition system. Such an operational semantics depends on the adop-
tion of a conflict resolution strategy for selecting the rule instance that must
fire when more than one rule is applicable. Our conflict resolution strategy is

7 Where affectedPerson is the property that connects the event of having a positive
swab with the tested person and it is used for connecting the activation event of the
norm with the activation of the exception.

8 https://www.w3.org/TR/rif-prd/#Operational semantics of rules and rule sets.

https://www.w3.org/TR/rif-prd/#Operational_semantics_of_rules_and_rule_sets


20 N. Fornara et al.

as follows. Firstly, use the priority among rules (for example, as we will discuss
later, production rules for representing exceptions have higher priority than pro-
duction rules for expressing norms). Secondly, when two or more rules have the
same priority, use the order conflict resolution strategy, i.e., pick the first appli-
cable rule in order of presentation. This choice will not influence the final state
reached by the working memory because the actions of the production rules used
for expressing norms will never remove knowledge from the State KB, they have
effects only on the Deontic KB.

We will now describe the procedure for translating every norm written using
the T-Norm model into three production rules and every exception into one pro-
duction rule. In particular, every norm (Norm n) translates into three production
rules according to the following procedure:

1. Create one production rule equal to the fist ON...THEN part in the norm. Add,
among the conditions part of this production rule, the condition for managing
exceptions of the first type (i.e. NOT exceptionToNorm(Norm n,?e1), this
condition is satisfied if in the working memory there is not an exception to
Norm n that matches with the activation event.

2. Create one production rule equal to the second ON...THEN part in the norm.
Add, among the conditions part of this production rule, the condition for
managing the exception of the second and third type
(i.e. NOT exceptionToDR(?dr,?e2) AND NOT exceptionToDR(?dr,?en)), the
conditions for checking that the regulated action is performed before event3
(that for obligations may represent a deadline) and after the activation of the
norm, and the conditions for checking that the deontic relation, which can be
matched with the rule, is generated by Norm n and it is not already fulfilled
or violated.

3. Create one production rule for expressing the ON...ELSE part in the norm. This
rule is fired when the regulated action (represented in the norm with variable
event2) can no longer be performed before the event represented with the
variable event3. That is, when event3 has occurred (e.g. the deadline has
passed) and the regulated action (e.g. the payment) has not been executed.
The procedure adds, among the conditions of this production rule, the con-
dition for checking that event3 is happened and that the deontic relation,
generated by Norm n, is not already fulfilled nor violated. As for the previous
rule, the procedure adds also the conditions for managing the exception of
the second and third type.

Every exception to a given norm (Norm n) translates into one production
rule thanks to another automatic procedure. Since each exception has access
to all variables introduced in the related norm, the conditions in the norm are
merged with the conditions of the exception during the creation of the production
rule. In particular, conditions on e1 (asserted in the corresponding norm) are
added to the conditions of the production rule created from exception of the
first type. Conditions on e2 (asserted in the corresponding norm) are added to
the conditions of the production rule created from exception of the second type.



A Framework for Automatic Monitoring of Norms 21

Production rules that represent first-, second-, and third-type exceptions must
fire before production rules that express norms, so they have a higher priority
than the latter. Since production rules, used to formalise exceptions to norms,
act before the production rules of the norms themselves, they are able to inhibit
the norm for certain events.

Exceptions to exceptions are able to inhibit an exception to norm for cer-
tain events. They must fire fistly, thus production rules for representing excep-
tions to exceptions must have higher priority than the production rules for
expressing exceptions to norms. In order for one exception to exception to
inhibit the activation of one specific exception to Norm n, it is required to
add to the production rule of the latter a further condition for checking that
does not exist an exception to exception for its activation event, i.e. NOT
exceptionToException(Norm n,?e).

The conditions of the production rules are evaluated on a working memory,
which consists of: (i) the State KB where all the relevant events happened and the
actions performed by the agents are recorded, those events are represented using
the OWL Event Ontology ; and (ii) the Deontic KB, where all the information
for managing the evolution of the state of norms is stored.

Given that the working memory contains an OWL ontology, it is possible to
use OWL reasoning on its content for computing for example that the perfor-
mance of an action implies another one. This is a crucial aspect of the proposed
normative model because without any further addition, it is possible to reason
on the effects that the logical implication between actions has on norms fulfil-
ment or violation. In fact, we obtain that the obligation to perform an action is
fulfilled by any action that implies the regulated one. This is because we have
the following chain of implications: action a1 implies action a2 and a2 produces
a fulfilment, so the performance of a1 leads to a fulfilment. For example, since
selling an object to someone involves a transfer of ownership, a sale will fulfill
the obligation to transfer ownership of an object to someone. Similarly, the pro-
hibition to perform an action is violated by the performance of any action that
implies the regulated one. For example, since the reproduction of an audio file
implies its use, if the use of a particular audio file is prohibited its reproduction
will lead to an violation. Finally, the permission to perform a generic action
implies the permission to perform all the more specific actions implied by the
generic one. This is because the specific action implies the more generic one that
will activate the exception that in turn inhibits the norm. For example, if an
agent has permission to transfer the ownership of a product, through OWL rea-
soning it is possible to infer that she also has permission to sell or give someone
else the product.

5 Architecture of the Framework and Its Implementation

The architecture of the framework designed to compute the fulfillment or vio-
lation of a set of norms (formalized with the T-NORM model) is depicted in
Fig. 1. In the proposed framework, we take advantage of two types of computa-
tion: OWL reasoning on the State KB and forward chaining realized by means



22 N. Fornara et al.

of production rules. OWL reasoning and forward chaining are combined in a safe
manner because they alternate. In particular, the main steps of a software able
to simulate the evolution of the norms state over time, is as follows:

1. Every time an event or an action occurs its representation is added to the
State KB, then an OWL reasoner is executed on the working memory. We
assume that only events that happen at the current instant of time can be
inserted in the State KB ;

2. Then run the forward chaining engine on the working memory resulting from
the previous step using the production rules generated from the norms and
from the exceptions and store the resulting State KB together with the Deon-
tic KB in the working memory;

3. Updates the variable that keeps track of the current instant of time to the
next significant time instant9 and go back to point 1.

Fig. 1. Architecture of the framework designed to compute the fulfillment or violation
of norms.

In our model we need to combine OWL reasoning and forward chaining
because it is not possible to use only OWL reasoning for computing the violation
or fulfilment of norms. In fact, when norms regulate time constrained actions, it
is necessary to deduce that the non-performance of the regulated action before
a deadline implies violation or a fulfilment. Given that OWL reasoning works
on an open world assumption, inferences of this type cannot be drawn directly.
One possible solution to this problem is computing the closure of specific classes
using an external routine as proposed in [5]. The advantage of using production

9 An instant of time is significant when its occurrence is significant for at least one
norm, e.g. it is the time instant in which a deadline expires or the time instant at
which an event or an action occurs.



A Framework for Automatic Monitoring of Norms 23

rules is a clear separation of two different types of computation, each one used
coherently with its nature, and having a more declarative solution where the
semantics of norms is expressed with production rules instead of using Java
code.

We tested the described framework by implementing a Java prototype that
uses Pellet10, an open-source Java based OWL reasoner, and the JENA general
purpose rule engine11 for realizing forward chaining on production rules. The
reason why we chose to use the JENA framework is that, differently from other
rule-based systems like DROOLS (used in [1]) or Jess (used in [7]), its rule engine
natively supports rule-based computations over an OWL ontology serialized as
an RDF graph. JENA provides forward chaining realized by means of an internal
RETE-based interpreter.

To test the framework, the various type of norms discussed in Sect. 3.1 were
manually translated into a set of production rules written using rule syntax and
structure of the JENA rule-based reasoner. The translation is done following
the procedure described in Sect. 4. Given that the JENA rule engine does not
natively support the possibility to specify the priority among rules, we intro-
duced a variable called salience whose value change from 0 to 2 and a new
builtin called isSalince(n) that can be used in production rules for checking
if the value of the salience variable is equal to n.

In order to simulate the evolution in time of the state of the norms, a set of
real actions matching with the activation condition of the norms or with their
regulated actions have been inserted in the State KB. As depicted in Fig. 2, in
order to check the fulfillment or violation of the different deontic relations created
by the various activation of Norm01, we entered three accesses to the restricted
traffic zone in the State KB. For one of these accesses (access3) we have entered
the corresponding payment and therefore the deontic relation that obliges the
owner of the vehicle to pay becomes fulfilled. For another access (access2) we
do not enter the corresponding payment and thus, when the deadline expires,
the deontic relation that expressed the obligation to pay becomes violated. For
the last of the accesses (access1), the vehicle is an ambulance, so thanks to the
exception, the obligation to pay is not even created. The Java project developed
for simulating the fulfillment or the violation of Norm01, the three production
rules generated starting from Norm01 and the production rule generated from
the exception to Norm01 (see Sect. 3.2) are available on GitHub12.

6 Related Work

In the literature, there are various proposals where models of norms and poli-
cies are formalized using different languages and where different frameworks
are investigated with the goal of providing various services. Useful services are:
searching of policies having certain characteristics [11], anticipating conflicts
10 https://github.com/stardog-union/pellet.
11 https://jena.apache.org/documentation/inference/#rules.
12 https://github.com/fornaran/tnorm.Norm01.

https://github.com/stardog-union/pellet
https://jena.apache.org/documentation/inference/#rules
https://github.com/fornaran/tnorm.Norm01


24 N. Fornara et al.

Fig. 2. Fulfillment/violation of the different deontic relations created by the activations
of Norm01.

among policies [13], monitoring [6] or compliance checking [3], and simulation
for performing a what-if reasoning [14].

One of the pioneer techniques for normative reasoning is deontic logic [17].
Despite deontic logic approaches present some limitations, for example the trig-
gering and regulated actions are usually expressed with simple propositional for-
mulae [9], some of their basic concepts and insights are still used in many recent
approaches where other formal languages are used. In order to pursue inter-
operability among different normative systems, it is crucial to use a standard
language for the formalization of norms. Today’s there are two standards: the
previously mentioned ODRL policy expression language, which is a W3C Recom-
mendation and the OASIS standard LegalRuleML13, which defines a rule inter-
change language for the legal domain and is formalized using RuleML. ODRL
has many connections with the model proposed in this paper as it is a language
for expressing obligations, prohibitions, and permissions. A great limitation of
ODRL is not having an operational semantics that allows to compute the ful-
fillment or the violation of policies. In our previous work [6] we proposed to
extend the ODRL information model to express its operational semantics using
finite state machines implemented using production rules. In this work we have
moved further away from ODRL, in order to overcome some limitations. Firstly,
in ODRL it is not possible to specify generic policies applicable every time to a
different agent. In ODRL the debtor of a policy can only be a specific agent. Dif-
ferently, thanks to our abstract model for policies specification, it is possible to
apply one policy to all the agents who will perform a certain action (for example
having a positive swab) or who plays a certain role. Secondly, we do not con-
sider exceptions (and in particular permissions) at the same level of obligations
and prohibitions. From our perspective exceptions are derived concepts and they

13 https://www.oasis-open.org/committees/legalruleml/.

https://www.oasis-open.org/committees/legalruleml/


A Framework for Automatic Monitoring of Norms 25

exist only if there is a corresponding basic level construct that expresses obliga-
tions and prohibitions. Finally, while ODRL has a fixed set of deontic types, in
our model we focus on specifying the sequence of events that bring to a viola-
tion or to a fulfillment. An important aspect that the T-NORM and the ODRL
model have in common is the use of semantic web technologies. Although they
use them for different purposes: ODRL uses the OWL language for the specifi-
cation of the policy meta-model, while in the T-NORM model, as well as in the
OWL-POLAR model [13], the OWL language is used for modeling the actions
performed by agents and consequently to express the activation conditions and
the actions regulated by the norms.

We now continue our comparison by focusing on models of norms that
are expressed using semantic web languages and/or by using production rules,
although none of them combines OWL reasoning and productions as we do. Two
features that make our model innovative are: the formalization of the relation
between norms and time constraints and the possibility to directly describe what
sequence of events or actions would bring an agent to the violation or to the fulfil-
ment of a norm. In the OWL-POLAR framework [13], similarly to our approach,
the state of the world is represented using an OWL ontology. Differently, poli-
cies activation is computed by translating the conjunctive semantic formulae,
used for describing what is prohibited, permitted or required by the policy, into
SPARQL queries that are evaluated on the state of the world. In this work we
propose a straighter approach where norms conditions are directly evaluated on
the state of the world without the need of translations. An interesting aspect of
the OWL-POLAR framework that we plan to investigate in our future works, is
the mechanism for anticipating possible conflicts among policies, and for conflict
avoidance and resolution.

In [1] one type of norm is defined as a tuple that can generate a norm instance
that in turn can be fulfilled or violated. A norm specifies a target condition that
describes the state that fulfills the norm and a maintenance condition used for
defining the conditions that, when they no longer subsists, lead to a violation.
In this approach count-as rules are used to introduce institutional facts, regu-
lated by norms, starting from brute events. Differently from our model, where
it is possible to model different type of deadlines, in this approach only a time-
out property, i.e. a deadline for the reparation of the violation of a norm, is
taken into account. In [1] an interesting violation handling norm is formalized
that is activated when another norm is violated. Similarly to our approach the
monitoring is realized using a production system that concretely is implemented
using DROOLS, but no discussion is offered on the advantages of using OWL
reasoning and on how to combine it with forward-chaining realized by means of
production rules.

Another interesting proposal is the KAoS policy management framework [14].
In KAoS Semantic Web technologies are used for policy specification and man-
agement, in particular policy monitoring and enforcing is realized by a compo-
nent that compiles OWL policies into an efficient format. In the literature there
are other interesting approaches where norms are specified as rules but they are



26 N. Fornara et al.

not taking advantage of the use of semantic web technologies. For example in
[15] norms are generators of commitments for the agents playing a certain role in
an artificial institution. In [7] norms have a type, they may have a deadline, and
given that their form is: preconditions → postconditions, those norms are easily
expressible with Jess rules14. Finally in [3] an extension of the ODRL language
is proposed to capture the semantics of business policies thanks to their transla-
tion into Answer Set Programming for making it possible to realize compliance
checking. An interesting aspect of this work is that the result of compliance
checking can be positive or negative with an explanation of the aspects of the
policy that caused the non-compliance.

In our future work, we plan to investigate the application of sanctions or
rewards and to study the formalization of the notion of institutional power, and
we plan to further investigate the expressive power of the model for specifying
other types of deontic relations.

Acknowledgement. The research reported in this paper has been funded by the
SNSF (Swiss National Science Foundation) grant no. 200021 175759/1. We acknowl-
edge the contribution to this research by Mr Marco Sterpetti during his master thesis
at Politecnico di Milano.

References

1. Alvarez-Napagao, S., Aldewereld, H., Vázquez-Salceda, J., Dignum, F.: Normative
monitoring: semantics and implementation. In: De Vos, M., Fornara, N., Pitt, J.V.,
Vouros, G. (eds.) COIN -2010. LNCS (LNAI), vol. 6541, pp. 321–336. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21268-0 18

2. Brachman, R., Levesque, H.: Knowledge Representation and Reasoning. Morgan
Kaufmann Publishers Inc., San Francisco (2004)

3. De Vos, M., Kirrane, S., Padget, J., Satoh, K.: ODRL policy modelling and com-
pliance checking. In: Fodor, P., Montali, M., Calvanese, D., Roman, D. (eds.)
RuleML+RR 2019. LNCS, vol. 11784, pp. 36–51. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-31095-0 3

4. Fornara, N. : Specifying and monitoring obligations in open multiagent systems
using semantic web technology. In: Elci, A., Kone, M.T., Orgun, M.A. (eds.)
Semantic Agent Systems. Studies in Computational Intelligence, vol. 344. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-18308-9 2

5. Fornara, N., Colombetti, M.: Representation and monitoring of commitments and
norms using OWL. AI Commun. 23(4), 341–356 (2010)

6. Fornara, N., Colombetti, M.: Using semantic web technologies and production rules
for reasoning on obligations, permissions, and prohibitions. AI Commun. 32(4),
319–334 (2019)

7. Garcia-Camino, A., Noriega, P., Rodriguez-Aguilar, J.P.: Implementing norms in
electronic institutions. In: Proceedings of the Fourth International Joint Conference
on Autonomous Agents and Multiagent Systems, AAMAS 2005, pp. 667–673, New
York, NY, USA. ACM (2005)

14 Jess is a rule engine for the Java platform.

https://doi.org/10.1007/978-3-642-21268-0_18
https://doi.org/10.1007/978-3-030-31095-0_3
https://doi.org/10.1007/978-3-030-31095-0_3
https://doi.org/10.1007/978-3-642-18308-9_2


A Framework for Automatic Monitoring of Norms 27

8. Governatori, G., Olivieri, F., Rotolo, A., Scannapieco, S.: Computing strong and
weak permissions in defeasible logic. J. Philos. Log. 42(6), 799–829 (2013)

9. Governatori, G., Rotolo, A.: A conceptually rich model of business process com-
pliance. In: Proceedings of the Seventh Asia-Pacific Conference on Conceptual
Modelling - Vol. 110, pp. 3–12. Australian Computer Society Inc. (2010)

10. Horrocks, I.: OWL: A description logic based ontology language. In: van Beek, P.
(ed.) CP 2005. LNCS, vol. 3709, pp. 5–8. Springer, Heidelberg (2005). https://doi.
org/10.1007/11564751 2

11. Oltramari, A., et al.: PrivOnto: a semantic framework for the analysis of privacy
policies. Seman. Web 9(2), 185–203 (2018)

12. Panagiotidi, S., Alvarez-Napagao, S., Vázquez-Salceda, J.: Towards the norm-
aware agent: bridging the gap between deontic specifications and practical mech-
anisms for norm monitoring and norm-aware planning. In: Balke, T., Dignum, F.,
van Riemsdijk, M.B., Chopra, A.K. (eds.) COIN 2013. LNCS (LNAI), vol. 8386, pp.
346–363. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07314-9 19

13. Sensoy, M., Norman, T.J., Vasconcelos, W.W., Sycara, K.P.: OWL-POLAR: a
framework for semantic policy representation and reasoning. J. Web Sem. 12, 148–
160 (2012)

14. Uszok, A., et al.: New developments in ontology-based policy management: increas-
ing the practicality and comprehensiveness of KAoS. In: POLICY 2008, 2–4 June
2008, Palisades, New York, USA, pp. 145–152. IEEE Computer Society (2008)

15. Viganò, F., Fornara, N., Colombetti, M.: An event driven approach to norms in
artificial institutions. In: Boissier, Q., et al. (eds.) AAMAS 2005. LNCS (LNAI),
vol. 3913, pp. 142–154. Springer, Heidelberg (2006). https://doi.org/10.1007/
11775331 10

16. Villata, G.E.S. (Ed): Special Issue: Normative Multi-agent Systems, Volume 5 of
Journal of Applied Logics - IfCoLog Journal. College Publications (2018)

17. von Wright, G.H.: Deontic logic. Mind, New Series 60(237), 1–15 (1951)

https://doi.org/10.1007/11564751_2
https://doi.org/10.1007/11564751_2
https://doi.org/10.1007/978-3-319-07314-9_19
https://doi.org/10.1007/11775331_10
https://doi.org/10.1007/11775331_10

	A Framework for Automatic Monitoring of Norms that Regulate Time Constrained Actions
	1 Introduction
	2 Design Goals
	3 The T-NORM Model of Norms
	3.1 Expressive Power of the Model
	3.2 The Model of Exceptions

	4 Operational Semantics of the Model
	5 Architecture of the Framework and Its Implementation
	6 Related Work
	References




