
The Biobjective Consistent Traveling
Salesman Problem
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Abstract. This article deals with the problem of designing a route for
each day of a time period to minimize the total travel cost and the dis-
crepancy in the service time to customers visited on different days. In
this paper we allow waiting times for the vehicle at customer locations.
The literature already includes exact and heuristic approaches for the
variant where the first objective is minimized and the second objective is
constrained by a given threshold. The variant do not allow waiting times
at customer locations, and it is known as Consistent Travelling Salesman
Problem. We are not aware of any previous algorithm in the literature
to tackle the biobjective problem, and this article describes three com-
pact formulations for it. Each formulation is suitable for approaching the
problem through the well-known weighted-sum method for multiobjec-
tive optimization, where some Pareto optimal solutions are sequentially
determined by systematically changing the weights among the objective
functions. We perform a computational study applying the formulations
to tackle instances adapted from the TSPLIB library.

Keywords: Travelling Salesman · Time consistency · Branch and cut

1 Introduction

The Traveling Salesman Problem (TSP) is an NP-Hard problem that has been
extensively studied in the literature. Given a depot and a set of customers, it
consists of finding a minimum-cost circuit so that a vehicle visits each customer
exactly once. The Consistent Travelling Salesman Problem (CTSP) is a variant
of the TSP introduced by [2] where a time period is given (say, a week), each
customer requires service on some (known in advance) days, and one TSP must
be solved for each day. The novel requirement in the CTSP is that customers
desire to be served consistently in time when visited in different days, meaning
that the service times should be similar for each customer. For example, giving
service to a customer in the early morning on Monday and in the late evening on
Thursday is undesirable. In the literature this requirement has been modelled as
a hard constraint (see e.g. [7,8]). Indeed, an input threshold T is given in advance
to limit the maximum allowed time inconsistency for each customer visited in
several days, and then the routes should be determined to ensure it. While
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there are articles where waiting times of the vehicle at the customer locations
are forbidden before the services start, better solutions are found when waiting
times are allowed. For that reason, in this paper, we assume that the vehicle
is allowed to wait along the route. Under this assumption the mathematical
problem is more complex since a solution is not only a route for each day, but
also the waiting time at each customer location served each day.

Given a route for each day and the waiting times at each customer location,
we consider two characteristics. One characteristic is the total travel cost of
the routes, not including waiting times. The other feature is the maximum of
the time difference between the visits in different days to a customer, over all
the customers. The CTSP looks for a solution, minimizing the first feature,
while it limits the second feature to T with a hard constraint. However the
real-world problem has a multicriteria nature and a CTSP solution also admits
other characteristics, like the travel cost of the route in each day (perhaps even
including the waiting times), or the maximum waiting time between when a
vehicle arrives to a customer and when the service starts at the customer. To
reduce the complexity of the exposition in this article, we restrict our analysis
to two characteristic, thus leading to a bicriteria optimization problem. The
models and implementations can be easily adapted to also include the other
characteristics.

Since the two characteristics (the total travel cost and the time inconsis-
tency at customers) evolve in different directions, there does not exist a feasible
solution that minimizes the two objective functions simultaneously. In this con-
text, solving the bicriteria problem is finding a Pareto optimal solution, which
is a set of routes that cannot be improved in any of the objectives without
degrading the other objective. Since there may be a huge number of Pareto
optimal solutions, we only aim at generating supporting non-dominated Pareto-
optimal solutions, i.e., solutions with objective values on the convex hull of the
Pareto frontier. As typically followed when approaching a bicriteria optimiza-
tion problem, our article models and solves a single-objective problem where the
two selected characteristics are linearly combined with a generic weight α, the
standard weighted-sum method in multicriteria optimization to generate some
Pareto-optimal solutions (see e.g. [5]). We propose three mathematical program-
ming formulations for the single-objective problem and analyse computational
experiments using a modern solver to find optimal solutions. The formulations
can also be adapted to work on more sophisticated approaches to generate all
the Pareto-optimal solutions (see e.g. [3,4]).

2 Problem Definition

Let G = (V,A) be a complete directed graph where V = {0, 1, ..., n} is the set
of nodes, with 0 representing the depot and 1, ..., n representing the customers.
Each arc (i, j) ∈ A is associated with two variables: cij and tij representing
the travel cost and travel time, respectively, to go from node i to node j. We
use K = {1, ...,m} to represent the time period (for example, the days of a
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Fig. 1. Optimal solution with α = 0. Travel cost: 8414. Time inconsistency: 1667

Fig. 2. Optimal solution with α = 0.1. Travel cost: 8415. Time inconsistency: 640

week). Each day k ∈ K is associated with a subset of nodes Vk, representing the
customers to be visited in that day, with 0 ∈ Vk. The day k is also associated
with a set of arcs Ak = {(i, j) : i, j ∈ Vk, i �= j} ⊆ A. Let Gk = (V k, Ak) be the
graph on which a Hamiltonian circuit must be computed to define the route on
day k. We assume that waiting times are allowed between the vehicle arrives at
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Fig. 3. Optimal solution with α = 0.27. Travel Cost: 8572. Time inconsistency: 211

Fig. 4. Optimal solution with α = 0.3. Travel Cost: 8652. Time inconsistency: 0

a customer location and before the service starts. To evaluate the two selected
characteristics of a problem solution into a single objective function, let α be a
given weight in the interval [0, 1] so the cost of the solution is 1 − α times the
travel cost plus α times the maximum time discrepancy over all the customers.
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Fig. 5. Pareto frontier

Figures 1, 2, 3 and 4 show the optimal solutions for different values of α using
an instance introduced in [7]. It is the burma14 instance with 13 customers, with
travel costs computed from geographic coordinates. Three days are considered
(i.e., |K| = 3) and every customer requires a visit on each day with probability
0.7. In each figure, we use a different colour for each day, and show a pair of
numbers near each customer. The left number is the waiting time of the vehicle
at the customer before service starts, which is the right number. The tiny number
on an arc shows the travel cost of that arc. Figure 1 corresponds to the solution
when α = 0, hence the time inconsistencies are not penalized and the result
is equivalent to solving three independent TSPs. Figure 2 shows the optimal
solution of the problem when α = 0.1; the maximum time difference is reduced
from 1667 to 640 increasing the travel cost of the routes by only one unit. It is
worth mentioning that a solution with the same travel cost could be obtained
with the approach in [8] and with any threshold T in the interval [640, 1666].
As expected, the more importance we place on time consistency in the objective
function, the smaller the maximum time difference and the higher the total path
cost. Figure 3 shows the solution when α = 0.27, with travel cost equals to 8572
and the maximum time difference reduced to 211. Figure 4 shows the solution for
a decision maker accepting a cost of 8652 to reduce the maximum time difference
to zero, i.e. there is no inconsistency for any customer. Although α could still
be increased to the value 1, no better solution is generated. Figure 5 shows the
eight Pareto-optimal points for this bicriteria problem burma14. The four points
along the blue line (frontier) correspond to the optimal solutions depicted in the
previous figures, which are non-dominated Pareto solutions.
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3 Mathematical Formulations

In this section we describe three formulations. The three formulations are based
on a binary variable xk

a which takes the value 1 if the vehicle in day k ∈ K
traverses the arc a ∈ Ak and 0 otherwise. As standard in the literature, with
S ⊆ V k we define δ+k (S) := {(i, j) ∈ Ak : i ∈ S, j /∈ S} and δ−

k (S) := {(i, j) ∈
Ak : j ∈ S, i /∈ S}. We denote the successors of a node i in day k as δ+k (i)
instead of δ+k ({i}) and the predecessors of node i in day k as δ−

k (i) instead of
δ−
k ({i}), in addition to xk(B) instead of

∑
a∈B xk

a where B ⊆ Ak. We also define
a continuous variable T to represent the maximum time inconsistency of any
customer. Therefore the objective function is:

minimize (1 − α) ·
∑

k∈K

∑

a∈Ak

cax
k
a + α · T (1)

Constraints shared by the three formulations are:

xk(δ+k (i)) = xk(δ−
k (i)) = 1 i ∈ V k (2)

xk
a ∈ {0, 1} a ∈ Ak. (3)

Formulation 1 uses an additional continuous variable zki to represent the visit
time on day k to customer i, and a big value Mk to upper bound the duration
of the route in day k. Consequently the problem is formulated as (1)–(3) and

zkj ≥ zki + t(i,j) · xk
(i,j) − Mk · (1 − xk

(i,j)) k ∈ K, i, j ∈ V k \ {0}, i �= j (4)

zkj ≥ t(0,j) · xk
(0,j) k ∈ K, j ∈ V k \ {0} (5)

zpi − zqi ≤ T p, q ∈ K, i ∈ V p ∩ V q \ {0}. (6)

The constraints (4) are commonly used in vehicle routing problems when dealing
with time constraints, they are known as Miller-Tucker-Zemlin inequalities (see,
e.g. [1]), and they imply that zkj ≥ zki + t(i,j) when xk

(i,j) = 1 with i, j ∈ V k \
{0}. Constraints (5) force the same to the depot. Finally time consistency is
established with the inequality (6).

Formulation 2 uses a different variable gk(i,j) with k ∈ K, (i, j) ∈ Ak to
represent the arrival time at customer i on day k only if j is the next location
to visit. The expression

∑
a∈B gka is abbreviated as gk(B) for all B ⊆ Ak.

gk(δ+k (j)) − gk(δ−
k (j)) ≥

∑

i∈V k\{j}
t(i,j)x

k
(i,j) k ∈ K, j ∈ V k \ {0} (7)

0 ≤ gka ≤ Mk · xk
a k ∈ K, a ∈ Ak \ δ+k (0) (8)

gp(δ+p (i)) − gq(δ+q (i)) ≤ T p, q ∈ K, i ∈ V p ∩ V q \ {0}(9)

Constraints (7) imply the duration of the route to customer j to be greater than
or equal to the duration of the route to its predecessor i plus the time that
the vehicle needs to make the journey from i to j. Equations (8) set the value
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of gka to zero whenever xk
a = 0. The remaining constraints (9) establish just

like constraints (6) in the previous formulation, the time consistency. As in the
previous formulation, there are big values Mk for all k ∈ K.

Formulation 3 is based on three families of mathematical variables. A first
family consider a multi-commodity flow on each day with f ik

a representing the
path from the depot 0 to each customer i ∈ Vk on each day k ∈ K. A second
set includes yk

i representing the idle time of the vehicle at customer i on day k.
A third family includes wik

j representing the idle time on the variable wik
j if j

precedes i. Each feasible solution must verify:

f ik(δ+k (0)) − f ik(δ−
k (0)) = 1 (10)

f ik(δ+k (i)) − f ik(δ−
k (i)) = −1 (11)

f ik(δ+k (j)) − f ik(δ−
k (j)) = 0 j ∈ V k \ {0, i} (12)

0 ≤ f ik
a ≤ xk

a a ∈ Ak (13)
yk
j − Nk

j · f jk(δ−
k (i)) ≤ wik

j ≤ Nk
j · f ik(δ−

k (j)) i, j ∈ V k \ {0} (14)

0 ≤ wik
j ≤ yk

j i, j ∈ V k \ {0} (15)
( ∑

a∈Ap

taf
ip
a +

∑

j∈V p\{0}
wip

j

)

−
( ∑

a∈Aq

taf
iq
a +

∑

j∈V q\{0}
wiq

j

)

≤ T
p, q ∈ K
i ∈ V p ∩ V q \ {0}.

(16)

We take Nk
j as an upper bound on the maximum idle time at customer i in day

k. The Eqs. (10)–(13) guarantee the existence of a path from the depot to each
customer requiring a visit in each day. Inequalities (14)–(15) force wik

j to take
the value yk

j if j precedes i on day k, and it is zero otherwise. Constraints (16)
establish the time consistency.

Formulations 1 and 2 have a weak linear programming relaxation, not only
due to the big values involved in the constraint definitions, but also because the
well-known subtour elimination constraints are poorly imposed, as [6] demon-
strate. Indeed, the two compact formulations can be strengthened by including
the following exponential set of inequalities:

xk(δ+k (S)) ≥ 1 S ⊂ V k \ {0}. (17)

These inequalities are already implicit in Formulation 3, which has a better
linear-programming relaxation when compared to the ones of Formulations 1
and 2, as computationally confirmed in the next section.

4 Preliminary Computational Results

We have implemented computer codes to solve the formulations using Gurobi
9.1.2 through its Python API on a personal computer with Intel(R) Core(TM)
i7-10700 CPU @ 2.90 GHz, 24 GB RAM, and Windows 10 Pro. We tested the
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computer codes on benchmark instances from [7]. These instances were generated
with |K| = 3 and 5 days, and with a probability for each client to require service
on each day of freq = 0.5, 0.7 or 0.9. For example, an instance generated with
freq = 0.5 means that a customer requires service in about half of the days in
the time period K. The instances also include three options for the threshold T
to limit the time inconsistency in the CTSP, but it is no longer meaningful in our
bicriteria problem. Recall that T is unknown in our problem. Instead, we created
three instances by using α = 0, 0.1 and 0.3. The magnitude of the inconsistency
makes useless to solve the problem with larger values for α on these benchmark
instances.

We created five computer codes. Codes F1, F2 and F3 are associated with
Formulations 1, 2 and 3, respectively. Formulations 1 and 2 were extended with
the use of the Subtour Elimination Constraints (17), leading to codes F1+SEC
and F2+SEC. Recall that Formulation 3 has these inequalities implicitly. We
report computational results on tables with results from the five codes on each
instance. The tables report three columns with characteristics of the instances.
Column Incons shows the value of the maximum time difference obtained in the
solution (i.e., the value of T in the best solution found). Column Travel shows
the total travel cost of the routes. Column Obj shows the value of the obtained
objective function 1 where the penalty α affects. In addition, for each code, each
table reports two columns. Column Time shows the number of seconds taken by
the MILP solver to solve the formulation with a time limit of one hour. Column
%-gap is the difference between Obj and linear programming bound at the root
node, divided by Obj and multiplied by 100.

Tables 1, 2 and 3 show how Formulations 1 and 2 benefit significantly from
the use of the Subtour Elimination Constraints (17), it can be observed that
Formulation 1 reaches the time limit in 21 of the 54 instances, however, applying
the subtour elimination in the linear relaxation, the amount of reached time
limits is reduced to only 1 case, in addition to reducing the execution time in
the remaining cases. Similarly occurs with Formulation 2, where by applying
the linear relaxation the number decreases from 31 to 3 time limits reached. In
both cases the %-gap is significantly reduced. On the other hand Formulation 3
performs better than Formulations 1 and 2 since it reaches the time limit in 18
instances. However, it does not behave better than Formulations 1 and 2 when the
subtour elimination constraints are added (i.e., codes F1+SEC and F2+SEC).
Quite interestingly, the codes F1+SEC, F2+SEC and F3 produced the same
linear programming bounds, never larger than 2%. In terms of computational
times F1+SEC is the clear winner followed by F2+SEC. In overall terms, the
problem becomes more difficult to solve regardless of the formulation as |K|,
freq or α increases. When the value of days or the number of nodes to visit
each day increases, it is simply a bigger problem. On the other hand, increasing
the weight α of the inconsistency T in the objective function makes the instance
harder to be solved.
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5 Conclusions

This article introduces and addresses a bicriteria optimization variant of the
Consistent Travelling Salesman Problem. While waiting times are forbidden in
the Consistent Travelling Salesman Problem, our variant allows waiting times
for the vehicle at customer locations. This paper describes three Integer Linear
Programming models that are suitable to enumerate some Pareto solutions using
the weighted-sum method known in Multiobjective Optimization. The first and
second formulations outperform the third formulation when they are strength-
ened with the subtour elimination constraints. As a future direction of research,
we plan to implement a Benders’ Decomposition Approach for the third for-
mulation. Although in principle generating inequalities also consume time, the
advantage of working with a multicriteria problem is that the valid inequali-
ties generated when using a weight α are also valid for a different weight α′.
This advantage can be used both for the subtour elimination constraints and for
the Benders’ cuts, thus potentially saving computational time when solving a
sequence of problems.
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