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Preface

The increasing availability of information, together with current complex logistics
operations have led to the need of better optimization proposals. Recently, important
efforts and initiatives from all sides of optimization have been undertaken to
improve logistics operations with sophisticated algorithms and information systems.
This resulted in advances in several logistics sectors, such as maritime shipping,
urban logistics, warehousing, production and supply chain management. Computational
logistics, as the driver between decision making and operations, has become a key
component for economic and industrial growth.

Computational logistics covers the management of logistic activities and tasks
by the combined use of computational technologies, advanced decision support and
optimization techniques. It is applied in several areas such as the flow and storage
of goods and services, as well as the flow of related information. In this context,
modeling and algorithmic approaches are developed, verified, and applied for planning
and execution complex logistics tasks, including identification of the most efficient
routing plans and schedules to transport passengers or distribute goods. The models and
algorithms are integrated with computing technologies, not only for getting satisfactory
results in reasonable times, but also exploiting interactivity with the decision maker
through visual interfaces, and for extracting knowledge from data to improve future
decision making. This promotes the joint effort of practitioners and scholars for better
understanding and solving the logistics problems at hand.

The International Conference on Computational Logistics (ICCL) is a forum
where recent advances in the computational logistics research area are presented and
discussed. This volume offers a selection of 32 peer-reviewed papers out of 64
contributions submitted to the 13th ICCL edition, held at the University Pompeu
Fabra, Barcelona, Spain, during September 21–23, 2022. The papers show various
directions of importance in computational logistics, classified into five topic areas
reflecting the interest of researchers and practitioners in this field. The papers in this
volume are grouped according to the following parts:

1. Maritime and Port Logistics
Maritime and port logistics are the backbone of global supply chains and interna-
tional trade. The performance and functioning of its related activities are remarkably
influenced by the quality of its planning and management. In ICCL 2022, the con-
tributions that fall into this category relate to, among others, berth allocation, bulk
logistics, crane scheduling, and various real-world maritime applications.

2. Vehicle Routing and Urban Logistics
Vehicle Routing is a well-known family of optimization problems that constitutes
an important part of real-world transport and logistics activities. Due to the many
specific real-world features, there is a strong necessity of modeling and develop-
ing efficient solution approaches that permit advancements in this area. Addition-
ally, the progress in urban transport as well as the development of cities and other
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regions require current systems to be adapted and updated to cope with changes that
involve new transportation means, such as drones, integrated planning, and inter-
modal transport. The papers in this category relate to a diverse range of topics,
such as waste collection, school bus routing, green routing, drone-assisted delivery,
long-haul transportation, and last mile delivery, among others.

3. Warehousing and Location
Warehousing is an important piece of the supply chain and logistics puzzle.
Warehousing and inventory storage affect everything from sourcing raw materials
and, efficiently managing inventory, to getting orders delivered to customers on
time. Though the principles of warehousing have not changed much over the years,
warehousing solutions have evolved. In the same vein, the location of warehouses
impact on all other logistics operations. Contributions considering cross-docking,
block stacking, palletizing, warehouse layouts, energy savings and facility location
fall into this category.

4. Supply Chain and Production Management
The management of supply chains and production covers different relevant logistics
operations. The works included in this category pursue the efficient organization
and management of the diverse resources and operations involved. Thus, the papers
that appear in this category relate to a range of topics concerning distribution, work-
force management, lot sizing, production scheduling, risk tolerance, freight costs,
information sharing and collaboration, and other supply chain-related topics.

The ICCL 2022 was the 13th edition of this conference series, following the
earlier ones held in Shanghai, China (2010, 2012), Hamburg, Germany (2011),
Copenhagen Denmark (2013), Valparaiso, Chile (2014), Delft, The Netherlands (2015),
Lisbon, Portugal (2016), Southampton, UK (2017), Salerno, Italy (2018), Barranquilla,
Colombia (2019) and Enschede, The Netherlands (2020, 2021). The editors thank all the
authors for their contributions as well as the program committee and reviewers for their
invaluable support and feedback.We trust that the present volume supports the continued
advances within computational logistics and inspires all participants and readers to its
fullest extent.

November 2022 Jesica de Armas
Helena Ramalhinho

Stefan Voß
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Hybrid Berth Allocation for Bulk Ports
with Unavailability and Stock Level

Constraints

Xiaohuan Lyu(B) and Frederik Schulte(B)

Department of Maritime and Transport Technology, Delft University of Technology,
Mekelweg 2, 2628 CD Delft, The Netherlands

{X.Lyu-1,F.Schulte}@tudelft.nl

Abstract. Berth allocation is fundamental to port-related operations
in maritime shipping. Port managers have to deal with the increasing
demands either by expanding the terminals or by improving efficiency to
maintain competitiveness. Port expansion is a long-term project, and it
requires much capital investment. Thus, the question of how to enhance
the efficiency of berth allocation has received much research interest.
Research on the Berth Allocation Problem (BAP) in container ports
is quite advanced. However, only limited research focuses on BAP in
bulk ports, although some similarities exist. Contributing to Operations
Research approaches on the BAP, this paper develops a hybrid BAP
mixed-integer optimization model dedicated to bulk ports. In addition
to considering the handling characteristics of bulk ports, we also incor-
porate more practical factors such as unavailability and stock levels. The
objective of the proposed model is to minimize the demurrage fee for all
vessels under consideration of unavailability and stock constraints. We
use the commercial software CPLEX to obtain the optimal solutions for
a set of distinct instances, explicitly considering the situation of multiple
cargo types on one vessel, which provides a better fit for the loading or
discharging operations in real-world bulk ports. This is the first study to
our knowledge that dedicates itself to the BAP in bulk ports and con-
siders unavailability and stock constraints simultaneously. Our solutions
can provide timely and effective decision support to bulk port managers.

Keywords: Berth Allocation Problem · Bulk ports · Unavailability ·
Stock levels · Optimization · Mixed-integer program

1 Introduction

Over the past decades, the tonnage of bulk cargo carried by sea shipping has
increased sharply. Based on [21], in 2020, the international dry bulk trade and
tanker trade was 8.085 billion tons, accounting for 75.9% of the world’s total
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cargo load. The ever-growing demand makes efficient loading or discharging of
vessels a great challenge, and it has generated many research interests recently.
Generally, the Berth Allocation Problem (BAP) is concerned with the optimal
decisions on assigning a berthing position and berthing time to the calling vessels.
Operation Research (OR) methods and techniques contribute significantly to
the BAP in container ports and provide strong managerial support for port
managers [23] and [22]. However, research dedicated to BAP in bulk ports has
received relatively little attention.

Although the BAPs in bulk ports are similar to those in container ports,
some unique characteristics differentiate them. A significant difference is that the
bulk vessels can only be allocated to the berthing position where the installed
handling equipment can serve the cargo type on the vessel. In other words, berth
assignments at bulk ports are more restrictive than container ports. [24] establish
innovative models and solution algorithms specifically for BAP in bulk ports,
which highlights the specific features of bulk port operations, that is, the cargo
type of vessels and the equipped handling facilities of berths. Furthermore, the
cargo type restricts the berthing position and influences the service starting and
completion time. For instance, specific cargo can be discharged from the vessel
only when its storage places can accommodate the corresponding quantity. [2]
model stock level constraints but not consider the time-variant property of the
stock that is changing with the loading or discharging process. Besides, [10]
and [19] stress that the unavailability of berths frequently appears in practice
because of extreme weather or maintenance requirements. However, few studies
have focused on the BAP model for bulk ports with stock level restrictions, let
alone combing it with unavailability considerations.

This paper presents a Mixed-Integer Programming (MIP) model for the
hybrid BAP in bulk ports, which explicitly considers the constraint of time-
variant stock level and practical unavailability. We use the commercial software
CPLEX to obtain solutions for a set of instances, and the results show the effec-
tiveness of the proposed model.

2 Related Work

Operational problems related to BAP have been widely investigated within the
context of container ports. For more details, we recommend readers to refer to
[3] and [4].

The layout of the terminals is generally categorized as discrete, continuous,
and hybrid. As shown in Fig. 1, in the continuous BAP, the calling vessels can
berth at any position along the quay line. In the discrete BAP, the quay line
is separated into different berths, and the calling vessels can only occupy at
most one berth. Obviously, the continuous case can better use the quay, but
it also increases calculation complexity. While the hybrid BAP allows the con-
tinuous case and the discrete case to happen simultaneously; thus, it is more
flexible. In Table 1, we list the related work on BAP in bulk ports. We group
them according to four feature categories: objective, type, method, and practical
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Fig. 1. Three types of the berthing layout.

considerations. Two different main objectives are identified: time-based and cost-
based. Type refers to three layouts as illustrated in Fig. 1. The solution method
can be divided into heuristics or exact algorithms. The practical considerations
include the integrated problem, stock level, night operation permission, specific
cargo type, unavailability, and tidal constraints.

Some studies focus on the optimization of individual berth allocation. [25]
model and solve the hybrid BAP in bulk ports to minimize the duration time
of all vessels. In bulk ports, specialized equipment is required to handle specific
types of cargo; for instance, liquid bulk is generally discharged using pipelines
installed at only certain sections along the quay. Thus, the BAP model for bulk
ports has to incorporate the cargo type on the vessel and the handling equipment
fixed on the berths. The authors propose an exact solution based on generalized
set partitioning and a heuristic method based on squeaky wheel optimization to
obtain near-optimal solutions for the large problem size. Some practical factors
that can influence the decision-making process of berth allocation have been con-
sidered in the literature. [8] and [6] address the continuous BAP considering the
constraints of tides which can influence the departure time of full loaded vessels.
Since the stock level of the specific cargo type must be kept in some range for
safety consideration, the decision to load or discharge vessels should also consider
stock level. [2] propose an integer linear programming model based on discrete
BAP, which considers not only tidal effects but also the stock level. A Simu-
lated Annealing-based (SA) algorithm is designed to find reasonable solutions
for difficult instances. [9] propose a continuous BAP model with the objective
to maximize the daily throughput of the terminal and, at the same time, mini-
mize the delay of ships’ departure. In fact, all the studies mentioned above aim
to minimize the berthed time of vessels. [19] present a discrete BAP with the
objective to minimize the costs (demurrage) incurred. The maintenance of the
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berth, another practical factor, is also considered in the model, which means
that some berths cannot receive vessels at a particular time.

The other operational problems are often interrelated to the decisions of berth
allocation; thus, there are some papers studying integrated BAP. [14] and [15]
study the integrated problem of berth allocation and handling equipment assign-
ment, but they are focused on container transshipment terminals. [17] address
the integrated berth allocation with handling equipment assignment. [18] develop
a Decision Support System (DSS) for the port authority to make decisions on
berth and ship unloader assignment to minimize the waiting time, operating
time, and ships priority deviation. [5] integrate the BAP with yard management
by considering constraints of the storage position in berth allocation operation.
Real bulk port data is used to validate the model, and the results show that the
model can work with up to 40 vessels within reasonable computational time. [20]
discuss how to combine the berth and yard assignment to be a single large-scale
optimization problem with the objective to minimize the total service time for all
vessels berthing at the port. A branch-and-price algorithm is proposed to solve
the integrated problems. [12] propose a novel machine learning-based system
to coordinate the berthing and yard activities. Based on that, they also insert
vessel-specific buffer time to increase the robustness of the results in response
to disruption [13]. [26] establish a systematical planning model from berth allo-
cation to yard storage in dry bulk terminals. They also incorporate the tidal
time windows in the modal to increase the applicability of the proposed method
in real-world terminals. Following the trend of sharing economy, some scholars
have seen the potential of collaboration among terminals within one port [16].
[7] consider the continuous BAP and [10] study the discrete BAP for multiple
continuous quays in bulk terminals.

3 Model Formulation

This section first describes the berth allocation process in bulk ports and then
introduces the relevant notations. Next, it develops a Mixed-Integer Program-
ming (MIP) model and the linearized formulation.

3.1 Problem Description

Figure 2 shows an illustrative example of the process for berth allocation in bulk
ports. In this context, we consider a set of vessels N = {1, 2, . . . , |N |} that will
call at the port within the planning horizon T = {0, 1, . . . , |T |}. We discrete the
quay into a set of berths M = {1, 2, . . . , |M |}. The berth features (e.g., length,
draft, and installed equipment) limit the vessels they can serve. We define Mi

to represent the set of berths that vessel i can be served. In practice, the stock
level of each cargo type has to be satisfied during loading or discharging opera-
tions. For example, the vessel cannot be discharged if the terminal’s stock level
of the corresponding cargo carried by some vessels would exceed the capacity,
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Table 1. An overview related to the literature on the BAP in bulk ports

Reference Objective Type Method Practical considerations

Time Cost D C H ES HS I S N M U T

Perez and Jin [17] � � � �
Ernst et al. [8] � � � �
Lassoued and Elloumi [11] � � �
Barros et al. [2] � � � � �
Umang et al. [25] � � � � �
Robenek et al. [20] � � � �
Pratap et al. [18] � � � � �
Hu et al. [9] � � �
Unsal and Oguz [26] � � � �
Peng et al. [16] � � � � � �
Cheimanoff et al. [6] � � � �
Ribeiro et al. [19] � � � �
Cheimanoff et al. [7] � � � � �
Krimi et al. [10] � � � � �
Andrade and Menezes [1] � � � � �
Bouzekri et al. [5] � � � � �
de Leon et al. [12] � � �
de Leon et al. [13] � � � �
This paper � � � � � � �

Type: D (Discrete), C (Continuous), H(Hybrid)

Method: ES (Exact Solution), HS (Heuristic Solution)

Feature: I (Integrated with other problems), S (Stock level), N (Night operation permis-

sion), M (Multiple cargo types on one vessel), U (Unavailability), T (Tide)

even though the berth is idle. These vessels can only wait until there is suffi-
cient capacity. Determined by the length of the vessels and berths, we allow one
vessel to occupy two berths simultaneously. Some unavailability constraints may
arise due to weather conditions or facility breakdown; for instance, cranes must
undergo planned maintenance in order to stay in a good performance. To sum
up, the hybrid BAP model for bulk ports in this paper incorporates the following
points:

(1) One vessel is allowed to occupy two berths under the setting of the hybrid
layout.

(2) The unavailability time window of each berth is considered, which can be
caused by weather conditions, maintenance requirements, or other stochastic
factors.

(3) Each vessel has the earliest and the latest service time. This time window is
related to the expected arrival time and the priority of the vessel.

(4) The stock level of each cargo type changes with the loading or discharging
process, and the stock level of the corresponding cargo type should be within
the range of deadstock and capacity.
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Fig. 2. The berth allocation process in bulk ports

3.2 Notation

Sets

– N : Set of all vessels, N = {0, 1, · · · , |N |};
– M : Set of berths, M = {0, 1, · · · , |M |};
– Mi : Set of berths that can serve vessel i determined by cargo types;
– T : Set of time periods, T = {0, 1, · · · , |T |};
– Θ: Set of product types, Θ = {0, 1, · · · , |Θ|};

Parameters

– li: the length of vessel i;
– riθ: rate of operation of vessel i on cargo type θ;
– qiθ: quantity of cargoes on vessel i for cargo type θ;
– ti: expected arrival time of vessel i;
– hi: processing time of vessel i;
– gi: laytime of vessel i;
– ci: hourly demurrage cost of vessel i;
– [αi, βi]: start time window for vessel i (αi is related to arrival time of vessel,

and βi is related to priority and roud-trip duration)
– wlθ: dead inventory level of cargo type θ;
– whθ: capacity of the inventory level of cargo type θ;
– w0θ: current inventory level of cargo type θ at the start of planning horizon;
– bk: the position of berth k;
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– Lk: the maximum length of berth k;
– [sk, ek]: berth k is available to serve vessels from time sk to ek;

Decision Variables

– xik: equal to 1 if berth k is the start section of vessel i, and 0 otherwise;
– yijk: equal to 1 if vessel i and vessel j are both assigned to berth k and vessel

i is processed before vessel j, and 0 otherwise;
– sti: the starting time of vessel i;
– zik: equal to 1 if vessel i is berthed at k and k + 1, and 0 otherwise, k ∈

[0, 1, . . . , |M | − 1];
– γit: equal to 1 if vessel i is berthed at time t, and 0 otherwise;
– ξθ

it: equal to 1 if cargo type θ of vessel i are operated at time t, and 0 otherwise;

3.3 Model

With the notation defined above, we propose the formulation of the hybrid BAP
in bulk ports with unavailability and stock constraints, which specifically con-
siders the situation of multiple cargo types on one vessel.

min z =
∑

i∈N

ci(cti − ti − gi)+ (1)

Subject to:
∑

k∈Mi

xik = 1 +
∑

k∈M\{|M |}
zik ∀i ∈ N (2)

sti ≥ ti ∀i ∈ N (3)

sti ≤ γit ∗ t + M(1 − γit) ∀i ∈ N, t ∈ T (4)

sti + hi ≥ γit ∗ (t + 1) ∀i ∈ N, t ∈ T (5)
∑

t∈T

γit ≥ hi ∀i ∈ N (6)

cti ≥ sti + hi ∀i ∈ N (7)
∑

i∈N

stj ≥ cti − M(1 − yijk) ∀i ∈ N, j ∈ N, i �= j, k ∈ M (8)

yijk + yjik ≤ 0.5(xik + xjk) ∀i ∈ N, j ∈ N, i �= j, k ∈ M (9)

yijk + yjik ≥ xik + xjk − 1 ∀i ∈ N, j ∈ N, i �= j, k ∈ M (10)

xik + xi,k+1 ≥ 2zik ∀i ∈ N, k ∈ M\{|M |} (11)
∑

k∈M\{|M |}
zik ≤ 1 ∀i ∈ N (12)

lixik ≤
∑

k∈M

Lkxik ∀i ∈ N, k ∈ M (13)
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∑

θ∈Θ

ξθ
it = γit ∀i ∈ N, t ∈ T (14)

γiθ ∗
∑

t∈T

ξθ
it ≥ qiθ ∀i ∈ N, θ ∈ Θ (15)

wlθ ≤ w0θ +
∑

i∈N

m=t∑

m=0

γiθ ∗ ξθ
it ≤ whθ ∀t ∈ T, θ ∈ Θ (16)

xik ∗ sk ≤ sti ≤ xik ∗ (ek − hi) ∀i ∈ N, k ∈ M (17)

αi ≤ sti ≤ βi ∀i ∈ N (18)

xik ∈ {0, 1} ∀i ∈ N, k ∈ M (19)

yijk ∈ {0, 1} ∀i ∈ N, j ∈ N, i �= j, k ∈ M (20)

ξθ
it ∈ {0, 1} ∀i ∈ N, t ∈ T, θ ∈ Θ (21)

zik ∈ {0, 1} ∀i ∈ N, k ∈ M\{|M |} (22)

γit ∈ {0, 1} ∀i ∈ N, t ∈ T (23)

The objective function (1) is to minimize the demurrage fee of all vessels.
Constraint (2) ensures each vessel i occupies at least one berth. Constraint (3)–
(7) restrict the completion time and the start time of Vessel i. Constraints (8)–
(10) are no overlapping restriction for vessels that be served at the same berth.
Constraints (11)–(13) allow vessels to occupy two berths. Constraints (14)–(16)
ensure that the current inventory during the loading or discharging of vessels
can satisfy the requirement of stock of specific cargo type. Some practical factors
which restrict the starting time and completion time of vessels are considered
in this model. Constraint (17) represents the available time window of berths.
Constraint (18) is the available time window of vessels. Constraints (19)–(23)
specify the range of decision variables. The objective function (1) is nonlinear.
Thus, they need to be linearized by defining an additional decision variable
μi = (cti − ti − gi)+. The related additional constraints are defined as follows:

μi ≥ 0 ∀i ∈ N (24)

μi ≥ cti − ti − gi ∀i ∈ N (25)

Therefore, the model can be reformulated as a mixed-integer linear program
as follows:

min z =
∑

i∈N

ciμi (26)

Subject to Constraints (2)–(25).

4 Numerical Experiments

In this section, the MIP model proposed in Sect. 3.3 is tested using the CPLEX
solver with the computational limit of 600 s. All tests are running on an Intel
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Core i5 (1.7 GHz) processor and use the version of CPLEX 12.8.0 under the
C++ environment. We introduce the instance generation first and then analyze
the model’s performance under four different scenarios.

4.1 Generation of Instances

We generate 12 instance sizes with different |M | and |N | as well as the con-
sideration of unavailability and multiple cargo types within the time horizon of
one week, as shown in Table 2. The unavailability can be incurred by mainte-
nance requirements for facilities, extreme weather, or other unforeseen factors.
The length of vessels and berths are generated following a uniform distribution
of [80, 180] and [120, 160]. The other detailed attributes related to the vessel are
generated randomly, including arrival time, processing time, laytime, demurrage,
night operation permission, and the cargo tonnage and type they carried.

Table 2. Information about the generated instances

Instance |N | |M | Unavailability Multiple cargo types

I1 6 3 No Single

I2 6 3 Yes Single

I3 12 3 No Single

I4 12 3 Yes Single

I5 18 3 No Single

I6 18 3 Yes Single

I7 6 5 No Multiple

I8 6 5 Yes Multiple

I9 12 5 No Multiple

I10 12 5 Yes Multiple

I11 18 5 No Multiple

I12 18 5 Yes Multiple

4.2 Results Analysis and Discussion

As highlighted in Sect. 2, the night berthing permission is considered in our
model; thus, for those vessels that cannot be operated during the night (assumed
from 1 am to 6 am), the following constraints (27) and (28) are added:

sti − γiq ∗ t − M(1 − γiq) < 0
∀i ∈ N, q ∈ [p ∗ 24 + 1, p ∗ 24 + 5], p ∈ [0, 31], t = p ∗ 24 + 1

(27)

cti ≥ γiq ∗ t

∀i ∈ N, q ∈ [p ∗ 24 + 1, p ∗ 24 + 5], p ∈ [0, 31], t = p ∗ 24 + 5
(28)

Table 3 shows the result of the expected demurrage fee and the computational
time. The proposed MIP model can find the optimal solutions for all 12 instances
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by applying CPLEX, with up to 18 vessels and 5 berths. In Fig. 3, we compare the
demurrage fee in four scenarios which differentiate in whether consider multiple
cargo types and unavailability or not. We find that berths’ unavailability can
always significantly increase the demurrage fee, especially when the berths are
busy. However, the multiple cargo types on the same vessel have no significant
impact when the port is idle, but it will obviously increase demurrage fees when
the port is busy.

Table 3. Computational results for the proposed MIP model

Instance Obj ($) Time (s) Instance Obj ($) Time (s)

I1 4347.00 1.64 I7 4036.50 2.28

I2 7762.50 1.27 I8 4657.50 0.80

I3 4968.00 11.36 I9 3283.15 2.50

I4 5267.00 19.17 I10 4621.50 4.89

I5 7464.00 179.38 I11 6110.00 24.34

I6 8393.50 240.02 I12 29330.00 306.67

Fig. 3. The comparison of demurrage fee under four different scenarios

4.3 Managerial Insights and Policy Implications

This paper proposes a hybrid BAP model for bulk port managers to decide
when and where to operate on the calling vessels considering the constraints of
the unavailability of facilities and the stock level. With the experimental results
in Sect. 4.2, the following implications are provided for the bulk port managers:
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(1) In practice, unavailability of berths happens frequently, caused by many
practical factors, such as extreme weather and facility maintenance. The
BAP model, which ignores the unavailability, does not work in many prac-
tical applications and even makes the port into trouble. In addition, the
unavailability of berths can significantly influence the berth allocation plan
and further impact the total demurrage fee. Thus, the bulk port managers
should consider the unavailability when making decisions on berthing plans.

(2) Constraints (27) and (28) are for satisfying the requirement of individual
vessels on night berthing permissions and thus improve the customer service
level of the ports.

(3) Whether to consider stock level constraints largely depends on the actual
situation of the ports. When the storage is approaching capacity, it is neces-
sary to consider the stock level limitation in berth allocation. Otherwise, the
vessel must wait until there is enough storage space, which can also make
the ports into trouble.

5 Conclusions

Prior work on mathematical models and algorithms has solved the basic BAP in
bulk ports. In [24], for instance, the author reports the specific features of berth
operations in bulk ports that distinguish them from container ports. However,
these studies have either ignored some practical constraints (e.g., unavailabil-
ity of berths and storage) or have not considered the multiple cargo types on
one vessel, which can make it hard to apply those approaches under real-world
conditions. In this work, we propose a hybrid BAP model for bulk ports with
unavailability and stock level constraints, and we consider the case of multiple
cargo types on one vessel specifically. We show the effectiveness of the proposed
model by conducting numerical experiments on a set of distinct instances. The
hybrid BAP extends earlier work of [25], providing a better fit for the load-
ing or discharging operations in real-world bulk ports. The commercial software
CPLEX can obtain optimal solutions with up to 18 vessels within 600 s. Most
notably, this is the first study to our knowledge that dedicates itself to the BAP
in bulk ports and considers unavailability and stock constraints simultaneously.
Our solutions provide timely and effective decision support to port managers.
However, our model can not solve large-scale instances by CPLEX within a rea-
sonable computing time. Future work should therefore develop some algorithms
for larger instances.
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Abstract. Both the quadratic semi-assignment problem and the berth
allocation problem are about assigning items (vessels) to sets (berths)
and have various applications from floor layout planning to schedule
synchronization in public transit networks and maritime logistics. In this
paper, a hybrid, modular solution strategy, in which an adaptive improve-
ment technique is embedded into a genetic algorithm, is proposed and
has been applied to both problems. For the purpose of self-adaptivity, all
important parameters of the procedure are embedded in the employed
genomes and evolve while the procedure is executed. In addition to the
hybrid strategy, a simple branch and bound brute force method is imple-
mented to find the optimal solution for small instances. Computational
experiments show that the presented procedure finds the optimal solu-
tion for randomly generated 20 × 5 instances in less than a millisecond.
These instances are the largest QSAP instances for which we could find
optimal solutions within several hours’ time.

Keywords: Quadratic semi-assignment · Berth allocation · Genetic
algorithm · Metaheuristics · Maritime logistics

1 Introduction

The Quadratic Semi-Assignment Problem (QSAP) can be considered to be a
generalization of the quadratic assignment problem (QAP). Whereas in the QAP,
a one-to-one mapping between n items and n locations is required, in the QSAP,
m items are to be assigned to n sets. Whilst some sets can have more than one
item assigned to them, other sets can have no items allocated to them.
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Berth allocation problems can also be considered to be an assignment prob-
lem, similar to the QSAP, in the sense that a number of vessels arriving at
a container terminal are to be allocated to available berthing spaces, with the
objective of minimizing the total service time. Inspired by the fact that a feasible
solution for both problems can be represented by a single vector, showing the set
(berth) that each item (vessel) is allocated to, we propose a self-adaptive hybrid
strategy which can be utilized to tackle both problems. The proposed strategy
is modular and has been adopted to solve randomly generated instances of both
the QSAP and a basic formulation of the Dynamic Berth Allocation Problem
(DBAP).

The proposed strategy consists of six components, namely; (i) an integration
of best-improvement and regret-based construction methods, (ii) an integration
of regret-based and ranked-based crossover operators, (iii) a local search tech-
nique, (iv) a perturbation mechanism, (v) a facilitating hash-based method for
having quick access to the worst solution in the pool to replace it, and (vi) a self-
adaptive module managing the interaction of other components. For the purpose
of self-adaptivity, all important parameters of the procedure are embedded in the
employed genomes and evolve while the procedure is executed. Due to this self-
adaptive feature, and the fact that evolutionary operations like refreshment and
crossover operations crossbreed the parameters, the procedure has been termed
the Self-Adaptive Crossbreed Algorithm (SACA).

The rest of this paper is organized as follows. In Sect. 2, the problem for-
mulation for both the QSAP and the DBAP is provided. The related work is
outlined in Sect. 3 and Sect. 4 describes the SACA. Computational experiments
are in Sect. 5, and Sect. 6 presents the concluding remarks.

2 Problem Formulation

Basic formulations for both the QSAP and the DBAP, with an emphasis on their
similarities, are discussed in this section. The QSAP, based on the generalised
formulation originally presented in [12], can be defined as follows. There are m
items that are to be allocated to n sets. With i and j showing the items, and h
and k showing the sets to which these two items are assigned, respectively, the
cost component Cijhk shows the cost of such allocations. The QSAP is formulated
as follows.

Minimize Z =
m∑

i=1

n∑

h=1

m∑

j=1

n∑

k=1

Cihjk × Xih × Xjk

Subject to:
n∑

h=1

Xih = 1 ∀i = 1, . . . ,m

Xih ∈ {0, 1} ∀i = 1, . . . ,m ∀h = 1, . . . , n

In this formulation, Xih = 1, if and only if item i is allocated to set h, and
the first constraint ensures that each item is allocated to at most one set. It
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should be noted that the QSAP can be seen as the problem of synchronizing
schedules in a public transit network. In effect, assuming cost Cijhk is incurred
for allocating schedule h to route i, and schedule k to route j, the objective is
to allocate routes to schedules that will result in the lowest total cost [11,12].

The DBAP, as presented in [15], is similarly defined as follows. There are m
vessels arriving at a container terminal at times Ai. They are to be allocated to
n berthing points, each becoming available at the time Sj . The handling time of
vessel i at berth j is shown with Tij . Furthermore, each vessel can be allocated
to exactly one berth, and the service time of a vessel at a berth cannot be
interrupted. Whilst several alternative DBAP formulations have been proposed
in the literature [9,10,18], the original mixed integer formulation of [15], wherein
the end of berth availability times are not considered, is used here. Nevertheless,
with small modifications, the SACA will be able to solve alternative variations
of the DBAP.

As can be seen, solutions to both the QSAP and the DBAP can be encoded
in a vector v = (v1, v2, . . . , vm), where vi shows the set (berth) that item (vessel)
i is allocated to. Hence, the objective is to find a vector v∗, which minimizes the
total allocation cost (service time). It should be noted, however, that distinct
modules of the SACA are responsible for the objective function calculation of
the QSAP and the DBAP.

3 Related Work

In this section, the related metaheuristics and practical applications of both the
QSAP and the Berth Allocation Problem (BAP), with a focus on evolutionary
and self-adaptive techniques, are briefly surveyed.

The QSAP has several practical applications in scheduling, clustering, and
partitioning problems. These applications of the QSAP in real-life problems are
discussed in [17,23,25], and [8]. For instance, in [25], the problem of recon-
structing neuronal structures in over-segmented electron microscopy images is
addressed. The neuronal image reconstruction problem was formulated as a
QSAP with a quadratic function that calculates whether pairs of segments should
be placed in the same cluster or in distinct clusters.

In [23], the problem of improving transfer quality in public mass transit
networks is formulated as a QSAP. The problem consists of performing small
changes to the public transit timetables to optimize transfer possibilities in the
overall network. The authors solved the problem to optimality using CPLEX on
small instances formulated based on real data from the Westpfalz Verkehrsver-
bund, Germany. In [17], the routing of ambulances in a dynamic disaster envi-
ronment was studied, where there can be uncertainty in the number of casualties
involved and their locations. This problem involves the selection of a path for
each ambulance, which was modelled as a QSAP. The authors solved the path
selection problem using a Tabu Search (TS), where the initial solution was cal-
culated by a simple regret heuristic.

Finally, a small-scale faculty-wide examination timetabling problem is mod-
elled as a QSAP in [8]. To solve the students’ examination scheduling problem,
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the authors introduced a simulated annealing with a local search procedure that
included six operators. The proposed solution approach was applied to a data
set created based on real data from the Faculty of Economics and Management
at the Otto-von-Guericke-University Magdeburg, Germany.

To the best of our knowledge, there are two studies that have focused on
metaheuristics for the QSAP. In [12], three improvement procedures for a TS
algorithm is investigated and the results are compared with a simulated anneal-
ing method in terms of solution quality and computation time. In [22] a poly-
nomial algorithm, which finds an approximate solution for the QSAP, and com-
putes an estimate for the accuracy of the resulting solution, is introduced. The
authors conducted a computational experiment to analyse the errors, find pos-
terior accuracy estimates, and evaluate the proposed polynomial algorithm com-
plexity. While [13] focuses more on modeling and problem description aspects,
a local search is proposed, too.

It is worth mentioning that, in the absence of further metaheuristic
approaches for the QSAP, a large number of self-adaptive and decomposition-
based heuristics have recently been proposed for the QAP in [2,3], and [26].
Furthermore, a generic parallel evolutionary framework with an application to
the QAP, as well as the job-shop and flowshop scheduling problems, has been
reported in [1]. Having described related methods to the QSAP, the metaheuris-
tics applied to the DBAP are reviewed next.

The BAP is used to solve the problem of allocating and scheduling incoming
container vessels to berthing positions at minimum total weighted turnaround
time of the vessels [19]. The BAP can be studied from either a static or a dynamic
point of view, giving rise to the Static BAP (SBAP) and Dynamic BAP (DBAP).
The difference between these two BAP classes is that, in the latter, the ships
arrive while work is in progress [15]. In the former, the ships are already in the
port when the berths become available. In this study, the DBAP, wherein the
quay is viewed as a discrete set of berthing locations, is considered. It is worth
noting that a comprehensive survey of berth allocation and quay crane schedul-
ing problems can be found in [6]. A modeling approach for a real-world berth
allocation problem using the QSAP is described in [13]. While this approach has
been used in practice, the fact that this idea was widely ignored in academia
also stimulates further studies to shed light on these different concepts. The idea
to use a quadratic term in the objective reflects, among others, the interaction
of positioning vessels at different berths and considering the movement of trans-
shipment containers from one vessel into the yard and then to another vessel for
further transport.

For solving the DBAP in the public berth system, Genetic Algorithm (GA)-
based heuristics, which employed only two different types of chromosome repre-
sentations, were proposed in [21]. To validate the proposed heuristic, the authors
evaluated it against a Lagrangian relaxation-based heuristic on randomly gener-
ated DBAP instances. The GA solutions performed well on small- and large-size
instances. A GA-based heuristic was also developed in [4] to solve the DBAP. To
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validate the model, computational experiments were performed on data retrieved
from the 2020 report on the port authority of Algeciras, Spain.

In [5], two GA-based metaheuristics that included an approximated dynamic
programming method as a local search procedure, were introduced. The pro-
posed metaheuristics were evaluated against two versions of the GA without a
local search procedure: a standard GA and a standard memetic algorithm (MA).
The computational results showed that incorporating a local search procedure
in the MA yielded better solutions. The BAP is also solved by means of an
optimization-based GA (OBGA) heuristic in [24]. In the OBGA, an optimiza-
tion step was embedded right after the genetic operations were completed and
before the next generation selection step. The OBGA was compared with a GA
heuristic without an optimization component. The former outperformed the lat-
ter with regards to objective function variance and minimum values, especially as
the problem size increased. The BAP was solved by applying a hybrid heuristic
that combined a TS metaheuristic with a path relinking procedure in [20]. The
proposed TS was based on the one of [10], with an additional neighbourhood
structure to guide the search. To validate the proposed hybrid heuristic, its solu-
tions were evaluated against those obtained in [10] and by the exact resolution
of the mathematical model set partitioning problem introduced in [7]. The com-
putational experiments showed that the proposed hybrid heuristic outperformed
the algorithm proposed in [10] and found the optimal solution for some of the
instances.

In [14], a multi-objective GA is introduced to solve the BAP, with the objec-
tive of prioritizing daytime workloads and reducing delayed and nighttime work-
loads. In the computational experiments, the authors tested four sets of algo-
rithmic parameters, namely crossover and mutation probabilities, elite ratio, and
the priority assessment window.

The key contribution of our study is the introduction of a generalised, modu-
lar and self-adaptive approach that can solve complex semi-assignment problems
in maritime logistics. As the berth allocation is one of the most complex port
tasks with the highest impacts on final costs, finding a generalized solution app-
roach that can be easily tailored to perform well on multiple (harder) variations
of the berth allocation and quay crane assignment [16] problems, is of high
importance.

4 The SACA

As stated, the SACA has six main components. In this section, a general descrip-
tion of the SACA is presented first and then its pseudocode is presented in
Algorithm 1. Following this, all of its components are described in detail.

As is seen in Algorithm 1, following general initializations in line 1, the SACA
fills a solution pool via utilising construction and local search modules in lines
2 to 5. Next, in each iteration of the while loop starting at line 6, a solution is
extracted from the pool and based on the encoded parameters in the solution,
one of the REFRESH, CROSSOVER, or PERTURB actions is performed.
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Data: poolSize, timeLimit
Result: The best found solution

1 Perform initialization;
/* fill the solution pool for the first time */

2 for i ← 1 to poolSize do
3 s ← ConstructSolution();
4 s ← LocalSearch(s);
5 Add s to the solution pool p;

6 while A termination criterion is not met do
7 xw ← GetPoolWorstSolution(p);
8 Take a solution, x1, from p, using roulette-wheel selection;
9 Based on the embedded parameters in x1 choose an Action;

10 switch Action do
11 case REFRESH /* Generate a fresh solution */

12 x2 ← ConstructSolution() ;
13 x2 ← LocalSearch(x2) ;
14 if Cost (x2) < Cost (xw) then
15 Update the pool by replacing xw with x2;

16 break;

17 case CROSSOVER /* Apply one of the crossover */

18 Take another solution, x2, from p, using roulette-wheel
selection;

19 x3 ← DoCrossover(x1, x2);
20 x3 ← LocalSearch(x3);
21 if Cost (x3) < Cost (xw) then
22 Update the pool by replacing xw with x2;

23 break;

24 case PERTURB /* Augmented local search */

25 x2 ← Perturb(x1);
26 x2 ← LocalSearch(x2) ;
27 if Cost (x2) < Cost (xw) then
28 Update the pool by replacing xw with x2;

29 break;

30 Return the best solution found;

Algorithm 1: The Self-Adaptive Crossbreed Algorithm (SACA)

While in the REFRESH action, a brand new solution is generated,
CROSSOVER and PERTURB operators apply problem-specific crossover and
perturbation modifications on solution(s) selected from the pool. It should be
noted that in all three actions, a local search is applied to the output solution
and the final solution only enters the pool if it has a higher quality than the
worst solution in the pool.
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Following an overall description of the SACA, in the following subsections,
first the solution encoding is explained and, next the six modules of the SACA
are described in detail.

4.1 Solution Encoding

The SACA represents a solution genome in two parts, as shown in Fig. 1. Whereas
the first part of the genome shows the encoded solution, v, indicating the assigned
set to each item, the second part is about governing the procedure and the way in
which the procedure should improve the genome. With this in mind, parameters
inside the genome allow the algorithm to execute itself in a self-adaptive manner.

Fig. 1. The genome representation in the SACA

There are seven guiding pieces of information in each genome. The first piece
determines the chance that the regret-based method is used in each step of the
construction method [12]. Since either the local best-improvement or regret-
based method can be used in each step of the construction method, one minus
this value will show the chance of using the best-improvement method.

The second piece shows the number of perturbations required. The larger
this number is, the more the initial solution for which local search is supposed
to occur becomes distinct from the corresponding solution. The third piece shows
the chance of applying the second crossover. It is worth noting that if it has been
decided that a crossover should occur and the first does not, the second should.

Once a solution is selected from the pool, one of three specific actions, guided
by the next three pieces, are performed. In effect, the fourth piece shows the
probability that this solution is replaced with a refreshed solution generated by
the construction method. The fifth piece shows the chance of an augmented local
search occurring. By augmented local search we mean a local search that follows
a perturbation. The term augmented is used to distinguish this local search from
the ordinary local search employed. After all, a local search automatically occurs
after each crossover as well as after the application of the construction method.
An augmented local search, however, is aimed at rectifying a perturbed solution.
Finally, for each solution selected, if neither a refreshment nor an augmented
local search occur, a crossover operation occurs. Hence, the sixth piece indicates
the chance of applying a crossover operator with respect to an augmented local
search and refreshment.

Since in the first crossover operation, a percentage of genes are uniformly
fixed to the two parents and the rest are fixed one by one to a parent which
provides a better gene with respect to a regret-based criterion (see Sect. 4.3),
the sixth piece shows the initial percentage of genes fixed to the two parents.
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4.2 The Integration of a Best-Improvement and a Regret-Based
Construction Method

The employed construction method has two operating modes, based on the input
parameter, isRegretBased, as shown in Algorithm 2. In effect, after allocating the
very first item to a set with the minimum aggregate cost to all other sets, it will
iterate over all items in the while loop starting at line 8. In the case that the
isRegretBased is true, the procedure selects the item with the highest regret, and
assigns its minimum set to it. The regret value for an item is simply defined as
the difference between the best and second best set allocation for an item [11].

In the case that isRegretBased is false, the best-improvement method is
applied by simply selecting the item with minimum partial cost, and assign-
ing the minimal set to it. It is worth noting that ties are broken randomly
throughout this procedure.

4.3 The Integration of Regret-Based and Ranked-Based Crossover
Operators

Similarly, the crossover operator has two operating modes, based on the input
parameter. In a regret-based crossover, a percentage, say 80%, of items are fixed
in the parent and offspring solutions. For the remaining 20%, the procedure
selects the item with highest regret and assigns its minimum set to it. A ranked-
based crossover, however, simply iterates over all items in parent solutions and
incrementally constructs the offspring solution by selecting the items from the
parent which incur the partial minimal cost.

4.4 The Local Search

Generally, a local search uses a neighborhood for each solution, which in some
sense includes close solutions to that solution. An improving solution among
such a neighborhood is selected, if possible. The improved solution replaces the
current solution and the process of creating its neighbors and finding an improved
solution to once again replace the current solution continues. Termination occurs
when the current solution cannot be improved by any of its neighbors. To make
the local search less intensive with respect to execution time, the neighborhood
in the QSAP, in line with some other algorithms in the literature, have all been
considered as solutions which have only one different allocation pair (item-set)
in comparison to the current solution.

The local search fills the initial pool and occasionally generates some solutions
for replacing the current solution. It also avoids unnecessary calculations by only
performing updating calculations when required.

4.5 The Perturbation Method

The perturbation method needs the number of perturbations which have to be
performed. Assuming k perturbations are required, k random items swap their
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Data: isRegretBased
Result: The newly created solution

1 Initialize candidate items list, L as an empty list;
2 forall the items i do
3 πi ← null;
4 Add i to L ;

5 (i0, s0) ← Item and set with minimum aggregate cost to all other sets ;
6 πi0 ← s0;
7 Remove i0 from L ;
8 while L is not empty do
9 i∗ ← null;

10 s∗ ← null ;
11 forall the items in L do
12 if isRegretBased then
13 i∗ ← the item with max regret across all sets ;
14 s∗ ← the set with min partial cost for i∗ ;

15 else
16 i∗ ← the item with min cost across all sets ;
17 s∗ ← the set with min partial cost for i∗ ;

18 πi∗ ← s∗;
19 Remove i∗ from L ;

20 Return π ;

Algorithm 2: The solution construction method used in the SACA

sets with each other. When k = 4, for example, the first and second items first
swap their sets, then the second and third items do so, and then the third and
fourth items. Finally, the first and fourth items swap their sets. The larger the
value of k, the more changes that occur to the solution which is supposed to
go under local search. A small number for k causes the local search to easily
reverse those changes and reach the original solution wastefully. On the other
hand, selecting a large number for k is similar to creating a new solution using
the construction method. Since this piece, like several other pieces, have been
embedded in the genome, the procedure tries to adaptively find the value of k.

4.6 The Facilitating Heap-Based Module

The facilitating heap-based module is used for having quick access to the worst
solution in the pool. As an efficient implementation of a priority queue, in the
employed heap, the highest priority element is always kept at the root of a
complete binary tree. Since the heap is not a sorted structure, it is most suited
for cases in which we only need to update the maximum (minimum) element
of the list based on adding a new item to the list or removing the item with
maximum (minimum) value from the list.
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In our procedure, the reason for needing to have quick access to such a solu-
tion with maximum value is that any new solution that has a cost smaller than
the solution with the highest cost should replace it in the pool. In effect, after
filling the initial pool, every genome created by either the construction method,
the augmented local search, or crossover operations needs to be compared with
the worst solution in the pool and replaced if the new genome has a higher
quality than the worst solution.

4.7 The Managing Self-adaptive Module

The managing self-adaptive module manages the interaction of other components
with the use of adaptive pieces embedded in the genome. It decides whether (i) an
augmented local search, (ii) refreshment by the use of the construction method
or (iii) crossover operators are required. In the first case, it initially performs the
necessary perturbation and then executes a local search. In the second case, it
replaces the current genome with a fresh genome generated by the construction
method. In the third case, it selects another genome from the pool and manages
to perform one of the two crossover operators on the two genomes available.
In this case, deciding which crossover operator to select depends on the piece
embedded in the genome showing the probability of using the first crossover.
Upon creating a solution, if its quality is better than that of the worst solution
in the pool, the worst solution in the pool is replaced with the generated solution.

5 Computational Experiments

The SACA has been implemented in C++ and experiments have been performed
using an Intel Xeon 4.0 GHz processor on Amazon Web Services cloud and a
total of 30 and 50 randomly generated instances for the QSAP and the DBAP,
respectively. These instances contain 15 to 50 items (vessels) and 5 to 10 sets
(berths). The SACA has been run 10 times on each instance with a new seed.
In addition, the optimal solution is also computed via an effective branch and
bound method. The optimal value (OPT), the time to reach the optimal solution
(TOPT ), the best and average deviation percentage from the optimal solution
((S−OPT )/OPT ∗100) and the best and average times, in seconds, are reported
in Tables 1 and 2.

As can be seen in Table 1, while the SACA finds the optimal solution for
20×5 QSAP instances within milliseconds, the branch and bound method takes
around 23 h (84382.8 s) to find the optimal solution for an instance of the same
size.

Similarly, the SACA performs well in finding optimal solutions for the DBAP
instances, as shown in Table 2. It should be noted that the branch and bound,
compared to the QSAP, performs faster when applied to the DBAP. This could
be due to the fact that the DBAP is not only quicker in objective function
computation, but also the fact that the QSAP is relatively computationally
harder due to the larger input size.
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It is worth mentioning that the success of the SACA in finding optimal solu-
tions for both the DBAP and the QSAP has several practical implications. For
instance, the SACA could further be extended and customized for application to
alternative variations of the berth allocation problem, as well as integrated with
other problems regarding container terminals, such as quay crane assignment
problems [16].

6 Concluding Remarks

We revisited the quadratic semi-assignment problem and proposed a hybrid
search technique. The procedure proved to be efficient in finding optimal solu-
tions for small instances. Also, computational experiments could indicate that
different modules of the SACA, to different degrees, are all effective and syn-
ergetically contribute to solution quality. In terms of practical and managerial
implications, different assignment and scheduling problems arising at container
terminals [6], and their integration problems [16], could be solved much more
efficiently using the modular and self-adaptive features of the SACA. In effect,
the SACA should be seen as a viable approach for reaching high quality solutions
with low computational cost.

The QSAP had been used for quite some time for berth allocation in a real-
world setting. While academia had successfully investigated different directions,
the use of the QSAP is not ruled out and additional studies may prove its suit-
ability even more. Using the QSAP in public transport settings was documented
to some extent while other applications still led a niche existence. Our app-
roach is a first attempt to reopen the QSAP as a modeling and solution attempt
towards berth allocation. (We should note that the same argument holds for
using the resource-constrained project scheduling problem and this might be
another possible direction for future research).

The future direction for improving the procedures is twofold. First, in the
QSAP formulation, instead of using the same-size square matrix in each cell of
item-to-item matrices, matrices with different sizes should be employed. In this
case, the only restriction is that matrices sitting in the same row should have
the same number of columns and matrices sitting in the same column should
have the same number of rows. In this case, the procedure can not only handle
assigning items to sets but it can cope with situations in which each item has
its own separate fixed options from which one can be selected. Such a procedure
can handle the optimal assignment of different strategies to different decision
makers in cases where each decision maker has their own set of decisions. It is
worth noting that such a possible formulation suits system equilibrium rather
than user equilibrium.

Second, parallel computing can be employed to improve efficiency. In such
computing, several execution of processes can be carried out simultaneously.
Without dividing the problem into smaller ones for solving each at the same time,
each execution of the process can solve the same large problem with different
parameters and communicate with other execution processes the best solution
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Table 1. Comparison of average percent deviation from the optimal solution (OPT)
for randomly generated the QSAP instances

Problem n m OPT TOPT (s) %DEVbest Tbest(s) %DEVavg Tmax(s)

qsap15x5-01 15 5 292 50.14 0.000 0.000 0.000 10

qsap15x5-02 15 5 315 50.14 0.000 0.000 0.000 10

qsap15x5-03 15 5 294 50.14 0.000 0.000 0.000 10

qsap15x5-04 15 5 295 50.14 0.000 0.000 0.000 10

qsap15x5-05 15 5 287 50.14 0.000 0.000 0.000 10

qsap15x5-06 15 5 285 50.14 0.000 0.000 0.000 10

qsap15x5-07 15 5 305 50.14 0.000 0.001 0.000 10

qsap15x5-08 15 5 305 50.14 0.000 0.000 0.000 10

qsap15x5-09 15 5 305 50.14 0.000 0.000 0.000 10

qsap15x5-10 15 5 299 50.14 0.000 0.000 0.000 10

qsap15x7-01 15 7 275 3107.62 0.000 0.001 0.000 10

qsap15x7-02 15 7 283 3107.62 0.000 0.001 0.071 10

qsap15x7-03 15 7 273 3107.62 0.000 0.001 1.026 10

qsap15x7-04 15 7 282 3107.62 0.000 0.000 0.000 10

qsap15x7-05 15 7 288 3107.62 0.000 0.001 0.000 10

qsap15x7-06 15 7 271 3107.62 0.000 0.004 5.535 10

qsap15x7-07 15 7 266 3107.62 0.000 0.019 0.000 10

qsap15x7-08 15 7 295 3107.62 0.000 0.000 0.000 10

qsap15x7-09 15 7 273 3107.62 0.000 0.001 0.586 10

qsap15x7-10 15 7 275 3107.62 0.000 0.001 0.000 10

qsap20x5-01 20 5 575 84382.80 0.000 0.000 0.000 10

qsap20x5-02 20 5 573 84382.80 0.000 0.002 0.000 10

qsap20x5-03 20 5 592 84382.80 0.000 0.000 0.000 10

qsap20x5-04 20 5 590 84382.80 0.000 0.002 1.068 10

qsap20x5-05 20 5 588 84382.80 0.000 0.002 0.000 10

qsap20x5-06 20 5 591 84382.80 0.000 0.000 0.000 10

qsap20x5-07 20 5 588 84382.80 0.000 0.001 0.000 10

qsap20x5-08 20 5 541 84382.80 0.000 0.000 0.000 10

qsap20x5-09 20 5 600 84382.80 0.000 0.000 0.000 10

qsap20x5-10 20 5 579 84382.80 0.000 0.002 0.000 10

encountered [1]. Such a parallel computing method is easy to program and can
exploit multiple cores existing in the majority of current personal computers, and
cloud-based virtual machines. This easy-to-implement parallelism could keep the
entire hardware busy, adding to the SACA potential efficiency.
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Table 2. Comparison of average percent deviation from the optimal solution (OPT)
for randomly generated DBAP instances

Problem n m OPT TOPT (s) %DEVbest Tbest(s) %DEVavg Tmax(s)

bap15x5-01 15 5 47 <0.01 0.000 0.000 0.000 5

bap15x5-02 15 5 357 <0.01 0.000 0.000 0.000 5

bap15x5-03 15 5 78 <0.01 0.000 0.000 0.000 5

bap15x5-04 15 5 155 <0.01 0.000 0.000 0.000 5

bap15x5-05 15 5 86 <0.01 0.000 0.000 0.000 5

bap15x5-06 15 5 166 <0.01 0.000 0.000 0.000 5

bap15x5-07 15 5 137 <0.01 0.000 0.000 0.000 5

bap15x5-08 15 5 196 <0.01 0.000 0.000 0.000 5

bap15x5-09 15 5 143 <0.01 0.000 0.000 0.000 5

bap15x5-10 15 5 50 <0.01 0.000 0.000 0.000 5

bap15x7-01 15 7 208 <0.01 0.000 0.000 0.000 5

bap15x7-02 15 7 164 <0.01 0.000 0.000 0.000 5

bap15x7-03 15 7 68 <0.01 0.000 0.000 0.000 5

bap15x7-04 15 7 169 <0.01 0.000 0.000 0.000 5

bap15x7-05 15 7 31 <0.01 0.000 0.000 0.000 5

bap15x7-06 15 7 42 <0.01 0.000 0.000 0.000 5

bap15x7-07 15 7 53 <0.01 0.000 0.000 0.000 5

bap15x7-08 15 7 66 <0.01 0.000 0.000 0.000 5

bap15x7-09 15 7 102 <0.01 0.000 0.000 0.000 5

bap15x7-10 15 7 52 <0.01 0.000 0.000 0.000 5

bap20x5-01 20 5 49 <0.1 0.000 0.000 0.000 5

bap20x5-02 20 5 60 <0.1 0.000 0.000 0.000 5

bap20x5-03 20 5 409 <0.1 0.000 0.000 0.000 5

bap20x5-04 20 5 282 <0.1 0.000 0.000 0.000 5

bap20x5-05 20 5 142 <0.1 0.000 0.000 0.000 5

bap20x5-06 20 5 173 <0.1 0.000 0.000 0.000 5

bap20x5-07 20 5 196 <0.1 0.000 0.000 0.000 5

bap20x5-08 20 5 137 <0.1 0.000 0.000 0.000 5

bap20x5-09 20 5 125 <0.1 0.000 0.000 0.000 5

bap20x5-10 20 5 300 <0.1 0.000 0.000 0.000 5

bap40x10-01 40 10 99 <30 0.000 0.000 0.000 5

bap40x10-02 40 10 94 <30 0.000 0.000 0.000 5

bap40x10-03 40 10 162 <30 0.000 0.000 0.000 5

bap40x10-04 40 10 90 <30 0.000 0.000 0.000 5

bap40x10-05 40 10 176 <30 0.000 0.000 0.000 5

bap40x10-06 40 10 117 <30 0.000 0.000 0.000 5

bap40x10-07 40 10 69 <30 0.000 0.000 0.000 5

bap40x10-08 40 10 348 <30 0.000 0.000 0.000 5

bap40x10-09 40 10 247 <30 0.000 0.000 0.000 5

bap40x10-10 40 10 268 <30 0.000 0.000 0.000 5

bap50x10-01 50 10 282 >150 0.000 0.001 0.000 5

bap50x10-02 50 10 145 >150 0.000 0.000 0.000 5

bap50x10-03 50 10 203 >150 0.000 0.000 0.000 5

bap50x10-04 50 10 73 >150 0.000 0.000 0.000 5

bap50x10-05 50 10 80 >150 0.000 0.000 0.000 5

bap50x10-06 50 10 191 >150 0.000 0.000 0.000 5

bap50x10-07 50 10 301 >150 0.000 0.000 0.000 5

bap50x10-08 50 10 188 >150 0.000 0.000 0.000 5

bap50x10-09 50 10 337 >150 0.000 0.000 0.000 5

bap50x10-10 50 10 125 >150 0.000 0.000 0.000 5
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Abstract. We study the multi-port continuous berth allocation prob-
lem with speed optimization. This problem integrates vessel scheduling
with berth allocation at multiple terminals in a collaborative setting.
We propose a graph-based formulation and a branch-and-price method
to solve the problem. The results show that the branch-and-price pro-
cedure outperforms the baseline solver. In our computational study, we
highlight the trade-off between solution quality and computational com-
plexity, as a function of the segment length used to model a continuous
quay.

Keywords: Transportation · Maritime logistics · Container terminal ·
Exact methods

1 Introduction

The liner shipping industry is one of the major forms of international freight
transportation. Seaborne trade and container throughput has continued growing
steadily until 2019 and, despite the COVID-19 disruption in 2020, maritime trade
recovered and is projected to expand by 4.3 % in 2021. The world fleet is also
growing, not only in number of ships (more than 3 % in 2021), but also in size
(the carrying capacity of mega-vessels rose from 6 to almost 40 per cent in the
last 10 years) [1]. To accommodate the growing trade volume, ports and their
container terminals need to either expand their capacity or improve the efficiency
of their operations. Whereas the former usually requires a costly investment and
in some cases it is not physically possible, the latter can be explored by means
of operations research.

One of the key logistical operations in a container terminal is the berth
allocation [2]. This operation is mathematically modeled as the berth allocation
problem (BAP), where the aim is to assign berthing positions to incoming ships.
The BAP is NP-hard [3] and has been extensively studied in the literature [4].

Most BAP studies consider either a discrete or a continuous quay. In the
discrete variant, the quay is discretized into a set of berthing positions which can
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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only serve one ship at a time. In the continuous version, ships can berth at any
point within the quay as long as they respect a safety distance from other ships.
The literature studies on the continuous BAP have approached the modeling part
in different ways. Some studies use a continuous variable to define the berthing
position of the ship [5,6], whereas other studies divide the quay into segments of
short length (e.g., 10 m) and allow ships to occupy multiple consecutive segments
based on their length [7,8]. In practice, the position of the quayside bollards can
restrict the berthing positions for the ships, strengthening the latter modeling
approach. We observe that a solution to the discrete BAP is feasible for the
continuous BAP but it is not guaranteed that a solution to the continuous BAP
is feasible for the discrete version of the problem. As a result, the continuous BAP
provides a better or equal solution than the continuous one, but it is normally
harder to solve. Our study follows the second modeling approach and investigates
this trade-off between solution quality and computational complexity.

The main cost driver for a liner shipping company (i.e., carrier) is fuel con-
sumption. The relation between fuel consumption and the vessel’s sailing speed
is non-linear, which translates in the fuel consumption growing significantly at
higher speeds. Therefore, optimizing the sailing speed is one of the main priori-
ties for carriers. The mathematical problem that studies this operation is known
as the vessel scheduling problem (VSP) and has been actively researched in the
last two decades [9]. The VSP aims at defining the sailing speeds between con-
secutive ports (i.e., voyage leg) to optimize fuel consumption while guaranteeing
a service frequency on the route.

The optimization of the BAP and VSP have helped significantly improve the
efficiency of operations for terminal operators and carriers, but can potentially
lead to logistics issues in practice. On one hand, berth allocation is myopic as
most container terminals plan their berth independently from other terminals.
This is motivated by the competitive environment and reticence to share infor-
mation. As a result, if one of the terminals faces a congestion, delayed vessels
can propagate the delay to the next ports in their routes, leading to higher oper-
ational costs for both carriers and terminals [10]. On the other hand, the VSP
is mainly studied from the carriers’ perspective, and does not explicitly account
for the berth allocation at the terminals. Overseeing the berth assignments can
potentially result in longer turnaround times for vessels.

Recently, efforts have been made to address these issues by exploring collab-
orative schemes that take advantage of information sharing. In [11] we see the
first effort to integrate the BAP and VSP into the multi-port berth allocation
problem with speed optimization (MBAP), which aims at planning the berth
allocation of multiple terminals simultaneously while also optimizing the sail-
ing speed of the ships. The MBAP relies in a high level of collaboration, and
recent studies show that these types of collaborative problems can be mutually
beneficial to both the carriers and terminal operations [12,13].

To the best of our knowledge, the MBAP has only been studied considering
a strictly discrete quay. The contributions of this paper are three-fold: (i) we
present two mathematical formulations for the MBAP with a continuous quay
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based on a graph representation of the problem, (ii) we define a new set of
benchmark instances based on real port data, and (iii) we propose an efficient
exact method for the problem and demonstrate its performance over state-of-
the-art commercial solvers.

2 Problem Formulation

In this section, we present two graph-based formulations for the MBAP with
a continuous quay. We follow the modeling approach of diving the quay into

Table 1. Notation for the MIP formulation of the continuous MBAP

Sets and parameters

N Set of ships

P Set of ports

Tp Set of operational time instants at port p ∈ P

S Set of speeds

Lp Length of quay in port p ∈ P

Pi ⊆ P Set of ports planned to be visited by ship i ∈ N sorted in visiting
order

Ci. = {1, ..., c} Number of port calls for ship i ∈ N , one for each port visit

ρ(c) The port p ∈ P corresponding to port visit number c ∈ Ci for ship
i ∈ N

σ(p) The port visit c ∈ Ci corresponding to port p ∈ Pi for ship i ∈ N

xi,c
0 The ideal berthing position for ship i ∈ N at port visit c ∈ Ci

measured at the leftmost position of the ship

hi,c
0 Handling time at the ideal berthing position for ship i ∈ N at port

visit c ∈ Ci

EST c
i The expected start time of berthing for ship i ∈ N at port visit

c ∈ Ci

EFT c
i The expected finish time of berthing for ship i ∈ N at port visit

c ∈ Ci

LFT c
i The latest finish time of berthing for ship i ∈ N at port visit c ∈ Ci

β The relative increase in handling time per unit of distance

Δp,p′
Distance between ports p, p′ ∈ P

Θs Travel time per unit of distance at speed s ∈ S

Γ i
s Fuel consumption per unit of distance at speed s ∈ S fro ship i ∈ N

li Length of ship i ∈ N

F Fuel cost in USD per tonne

H Cost of handling time in USD per hour

Di Cost of delay time in USD per hour for ship i ∈ N

Ii Cost of waiting time in USD per hour for ship i ∈ N
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segments of small size as in [8], where ships can occupy multiple segments simul-
taneously based on their length. Table 1 summarizes the notation of the problem.

It is general practice, especially on the discrete version of the BAP, to define
a different handling time depending on the berthing position. For the study of a
continuous quay, we follow the method presented in [8] where deviations from a
preferred berthing position are penalized using a deviation factor β ≥ 0 (relative
increase in handling time per unit of distance, i.e., meters). Given the minimum
handling time hi,c

0 at the preferred berthing position, and the actual deviation
from the chosen position Δb (measured in meters). The handling time at a given
position b is computed as follows:

hc
i (b) = (1 + βΔb)hi,c

0 (1)

where Δb = |b − xi,c
0 |.

2.1 Network-Flow Formulation

Let G = (O,A) be a directed graph formed by the sets of nodes O and arcs A.
Additionally, we define the subset of arcs Ak ⊆ A which denote the arcs available
for a given ship k ∈ N .

We denote Bp to the set of quay segments of Φ meters for port p ∈ P . We
define a node n for each port p ∈ P , berthing position b ∈ Bp, and time instant
t ∈ Tp Therefore, visiting a node can be interpreted as berthing at position b

(left-most position) of port p at time instant t. Let hc,b
i be the handling time of

ship i at port visit c and berthing position b ∈ Bp and let bi,c
0 be the berthing

segment including position xi,c
0 .

hc,b
i = (1 + βΦ|b − bi,c

0 |)hi,c
0 (2)

Equation 2 defines the computation of hc,b
i and it is adapted from Eq. 1. Since

each node refers to a single position b, we can pre-compute the handling time
related to each node. The cost of a node ci

p,b,t for ship i is defined in Eq. 3

ci
p,b,t = H(hc,b

i ) + Di(dc
i ) (3)

where the delay dc
i of ship i at port visit c is given as dc

i = max(0, t+hc,b
i −EFT c

i ).
Given the sequence of ports to visit by each ship, arcs are added to connect

nodes of consecutive ports that correspond to feasible berths given the range
of feasible sailing speeds. We add an arc between (p, b, t) and (p′, b′, t′) for ship
i if the ports are consecutive in the ships route (p, p′ ∈ Pi, p ≺ p′), and if the
time difference allows to sail at a feasible speed (t + h

σ(p),b
i + Δp,p′

ΘMAX ≤ t′)
where ΘMAX is the fastest feasible speed. Note that there is, at most, one arc
between any pair of nodes. This arc corresponds to the speed level providing the
lowest waiting time at the next port while still arriving on time. We do not allow
the possibility of sailing faster to arrive to the same berthing time, as it does
not provide any benefit and it only incurs in both higher waiting and fuel costs.
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Additionally, the time instants of the nodes need to satisfy the time windows
EST c

i ≥ t and t′ + hσp′,b′
i ≤ LFT c

i , and the left-most berthing position should
consider the length of the ship b + lΦi ≤ Bp where lΦi is the number of berthing
segments that ship i ∈ N occupies given a segment of length Φ. The cost ci

a of
an arc a = ((p, b, t), (p′, b′, t′)) for ship i is defined in Eq. 4

ci
a = Ii(t′ − (t + h

σ(p),b
i + Δp,p′

Θs)) + F (Δp,p′
Γ i

s) (4)

where s ∈ S is the speed level associated with the arc.
Within the node set, we include o, d ∈ O as artificial source and sink nodes

respectively. Artificial source arcs are added for each ship connecting the source
node with all the nodes of the first port in the route. In the same way, we add
artificial sink nodes for each ship connecting the nodes from the last port in the
route with the sink node. Let δ+k (u) be the set of nodes that can be reached by
following a single outgoing arc a ∈ Ak from node u ∈ O for ship k ∈ N . Likewise,
let δ−

k (u) be the set of nodes that can be reached by following a single incoming
arc a ∈ Ak from node u ∈ O for ship k ∈ N . We use the notation [x; y] to define
an interval between x and y where y is included and [x; y) where y is not.

For each ship n ∈ N , port p ∈ P , berthing position b ∈ Bp and operating
time instant t ∈ Tp, we define the set C(n, p, b, t) ⊆ O that denote the graph
nodes for ship n whose berthing period covers time t and whose berthing position
covers segment b (i.e. nodes that are in conflict with any ship berthing at time
t and position b).

An example is depicted in Fig. 1 and the expression can be stated as follows:

C(n, p, b, t) :=

{
v = (p, b′, t′) ∈ O

∣∣∣b′ ∈
(

max(b−lΦn , 0); b
]
, t′ ∈

(
max(t−hσ(p),b′

n , 0); t
]}

Fig. 1. An example of the set C(n, p, b, t).

Finally, let xk
i,j be a binary variable deciding if arc (i, j) ∈ Ak is selected for

ship k ∈ N and let ck
i,j be the weight associated to the same arc. For simplicity,
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we add the cost of node i in the cost of the arc (i, j) to merge the node and arc
costs ck

i,j = ck
i + ck

i,j .

min
∑

k∈N

∑

(i,j)∈Ak

ck
i,jx

k
i,j (5)

∑

j∈δ+
k (o)

xk
o,j = 1 ∀k ∈ N (6)

∑

i∈δ−
k (d)

xk
i,d = 1 ∀k ∈ N (7)

∑

i∈δ−
k (j)

xk
i,j −

∑

i∈δ+
k (j)

xk
j,i = 0 ∀j ∈ O\{o, d}, k ∈ N (8)

∑

k∈N

∑

i∈C(k,p,b,t)

∑

j∈δ+
k (i)

xk
i,j ≤ 1 ∀p ∈ P, b ∈ Bp, t ∈ Tp (9)

xk
i,j ∈ {0, 1} ∀(i, j) ∈ A, k ∈ N (10)

The objective function (5) minimizes the cost of the selected arcs as in [13]
which is the weighted sum of operational costs, namely, waiting time cost, han-
dling time cost, delay time cost and fuel consumption cost. Constraints (6) and
(7) ensure that, for each ship, only one arc leaves from the source node and
arrives to the sink node respectively. Constraints (8) enforce flow conservation
ensuring that for each node, except the source and sink ones, there are as many
incoming as outgoing arcs. Constraints (9) avoid overlapping of ships in time
and space by ensuring that each berthing position is occupied by at most one
ship at each time instant. Finally, constraints (10) define the binary property of
the variable.

2.2 Set Partitioning Formulation

Only the set of constraints (9) is not independent between ships. We, therefore,
exploit the structure of the formulation and apply Dantzig-Wolfe decomposi-
tion [14] and transform the network-flow formulation into a set partitioning
problem (SPP) formulation where constraint (9) is handled in the master prob-
lem and each variable (i.e., column) refers to a whole feasible schedule of a ship
along its route. According to [15], the pure binary nature of the variables of the
network flow formulation allows us to impose binary conditions on the variables
of the new master problem.

min
∑

j∈Ω

cjλj (11)

∑

j∈Ω

Ai
jλj = 1 ∀i ∈ N (12)

∑

j∈Ω

Bp,b,t
j λj � 1 ∀p ∈ P, b ∈ Bp, t ∈ Tp (13)
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λj ∈ {0, 1} ∀j ∈ Ω (14)

The set of all columns is comprised in Ω and the decision variable λj is set to 1 if
column j ∈ Ω is chosen as part of the solution and 0 otherwise. We denote cj as
the cost related to column j ∈ Ω. In order to replicate the objective of the MIP
formulation, this cost consists of the idleness, handling cost, delay and bunker
consumption cost of the ship denoted by the column. Let Ai

j be a parameter
that is equal to 1 if column j ∈ Ω corresponds to ship i ∈ N and 0 otherwise.
Likewise, let Qp,b,t

j be a parameter that is equal to 1 if the ship of column j ∈ Ω is
occupying position b ∈ Bp at time instant t ∈ Tp at port p ∈ P and 0 otherwise.

The objective function (11) minimizes the cost cj of the columns which cor-
responds to the same weighted sum as the objective function of the network-flow
formulation. Constraints (12) ensure that one column is selected for each ship.
Constraints (13) guarantee that each berthing segment of each port is covered
by at most one ship at any time instant. Finally, constraints (14) set the binary
property of the decision variables.

3 Solution Method

To solve (11)–(14), we present a branch-and-price method. We notice that the
number of possible paths for each ship in the network is prohibitively large even
for small size instances. Therefore, we opt for exploring delayed column genera-
tion methods. Notice that, by decoupling the pricing problem into N independent
sub-problems, each of them results in a single shortest path problem. Given the
directed and acyclic nature of the network, the problem can be solved using
efficient label setting algorithms.

At each iteration, we solve the master problem with a restricted set of
columns and obtain the dual solution. With that solution, we solve each of the
pricing problems, and if a solution with a negative reduced cost is found, we add
the corresponding new column to the master problem. We keep iterating until
no more negative reduced costs are found.

3.1 Branching

Completing the column generation procedure gives us the optimal solution for
the linear relaxation of the problem, which does not guarantee the solution to
be integer. To achieve integer optimality, we need to embed column generation
in a branch-and-bound procedure. This whole process is also known as branch-
and-price, where column generation is performed at each node in the branch-
and-bound tree.

A poor branching strategy can lead to exploring an excessively large or unbal-
anced tree and therefore, slow convergence. This is the case when branching on
the path variables of the set partitioning formulation or arc variables from the
network-flow formulation. Moreover, branching in these variables can impose
additional restrictions in the pricing problem.
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We propose branching on a set of nodes that aims to create a balanced
partition. Given a fractional solution, we start by grouping the berthing times
and positions per ship and port visit. For each ship and port visit, we compute the
average and variance of their solution berthing times and positions. This results
in 2 · |N | · |Ci| candidates, and we select the case with the highest variance to
branch on. As an example, we assume that the case with the highest variance
is the berthing position of ship A at visit B, with an average berthing position
X. Then, our branching strategy enforces ship A to berth to the left or right of
position X at visit B. This branching strategy guarantees at least one candidate
and aims to provide a balanced branch-and-bound tree.

3.2 Computing Bounds

For some of the largest instances, even solving the root node with column gen-
eration can be computationally expensive. If the time limit is reached and the
column generation procedure has not converged, we can derive a valid lower
bound. In our case, given the convexity constraints of the master problem that
ensure the solution to contain one column per ship, our valid lower bound can be
computed as indicated in Eq. 15. Let z∗ be the solution to the master problem
at the last iteration and c̄j the minimum reduced cost of pricing problem of ship
j ∈ N , if negative, otherwise zero.

zLB = z∗ +
∑

j∈N

c̄j (15)

Once a percentage of the total time limit has reached and if the branch-
and price procedure has not converged, we solve the original integer version of
the problem with all the column generated in the branch-and-bound tree. This
allows to obtain an initial upper bound or tighten the current one.

4 Results

In this section we perform a computational comparison between the proposed
method applied to the set partitioning formulation, and a baseline commercial
solver applied to the network-flow formulation.

4.1 Instance Generation

The benchmark instances provided by [11,13] are defined for the discrete case of
the MBAP and are not rich enough to capture the aspects of the new variant of
the problem. For this reason, we propose a new set of instances for the continuous
MBAP.

We consider three different ship types: (i) feeder or small (ln :≤ 200 m),
(ii) medium (ln: 201–300 m), and large (ln :> 300 m). Larger vessels have a
larger dead-weight and load capacity which implies a higher fuel consumption
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in general. Therefore, we define a different speed-fuel consumption relation Γ i
s

for each ship type, as well a different minimum handling time hi,c
0 at each of the

port visits.
All instances consider 3 terminals located in 3 of the main ports in northern

Europe: (i) Rotterdam APMT (L1 = 1600 m), (ii) Bremerhaven NTB (L2 =
1800 m), and (iii) Hamburg EGH (L3 = 2100 m).

The duration of the ships’ time windows (i.e., EST c
i , EFT c

i , LFT c
i ) is based

on historical port call data.
We define six different ship patterns based on real port data, each having a

given type of ship and visiting either 2 or 3 ports in different orders. The set N
of ships for a given instance is sampled from the ship patterns.

Parameters such as the ideal berthing position for the ships or the position
and duration of external ships N̄ are selected at random. We assume that the
entire quay is available for berthing, unless an external ship is occupying it.
The distance between ports is computed based on the actual sea distance of the
maritime routes. Finally, we consider a set of 10 different speed levels, ranging
uniformly between 17–21.5 knots.

To generate the entire set of instances, we use 3 parameter values: (i) number
of ships to optimize, (ii) number of external ships per port, and (iii) the length
of the quay segments. Table 2 indicates the values used for each parameter. For
each combination of number of ships to optimize and number of external ships,
we generate three instances, each with a different randomized seed. Then, for
each instance, we divide the quay into segments of different length, resulting in
a final set comprising 432 instances.

Table 2. Parameter values used to generate the instance set.

Number of ships to
optimize

Number of external
ships per port

Segment length (m)

4–15 3–5 10, 20, 50, 100

4.2 Comparison of Exact Methods

We set an algorithm time limit of 1 h. In the case of the branch-and-price method,
we allocate 90 % of the time limit for the standard branch-and-price procedure
and 10 % to solve the integer problem with all the columns generated. The model
is entirely written in Julia [16] and using CPLEX v. 12.10 as the solver on a
single thread. It has been tested in a Xeon Gold 6226R with 64 GB of memory.
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The results are summarized in Table 3, where we compare the branch-
and-price method with the network-flow formulation solved by CPLEX. The
instances have been grouped per number of ships to optimize, and the segment
size. Each row comprises 9 instances. We compute the number of instances solved
to optimality, the average computational time, and the optimality gap. We also
compute the improvement in objective value with regards to the instances with
a coarser segment length.

From the results in Table 3, we observe that the proposed branch-and-price
method performs better than commercial solvers on the network-flow formula-
tion. In the case of CPLEX, it is able to solve a few instances faster than the
branch-and-price method, but we noticed that for instances with highly dense
graphs (see Table 4), CPLEX runs out of memory when building the model. The
average computational time in these cases corresponds to the runs of instances
where CPLEX was not interrupted due to memory issues. On the contrary,
branch-and-price finds a feasible upper bound for all instances within the time
limit. We can observe that the impact in the solution quality of having a shorter
segment length is significant. The operational costs can be reduced in more
than 7% in some cases with a segment of 10 m instead of 100 m. However, this
improvement comes at the expense of higher computational needs. From a prac-
tical perspective, solving the problem with a more coarse segment length could
be useful when quick solutions are needed, for instance, when facing a disruption
and needing to re-plan or when testing multiple scenarios.

Table 5 shows the average results grouped by segment length. Dividing the
quay in segments of 100 m allows the method to solve all the instances, while for
segments of 10 m, we can solve 74% of the instances maintaining a tight opti-
mality gap. Moreover, halving the segment length from 100 to 50 m helps saving
more than 2% in operational costs with an average run time of less than 5 min.
Regarding individual operational costs, we observe that using shorter segments
allows to achieve significant savings in waiting time and delay. The savings in
handling time are lower but still positive. However, we notice that the fuel con-
sumption costs increase marginally with shorter segments, suggesting that for
most instances ships already sail at the slowest speed. Therefore, we can argue
that, although using shorter segments does not necessarily translate into fuel
savings, it helps to save in overall operational costs, by using the resources at
the terminal more efficiently. As suggested in [13], the total savings arising from
this collaborative problem could be distributed efficiently among the participat-
ing carriers and terminal operators, resulting in cost savings for all players and
incentivizing further collaboration.
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Table 3. Computational results for the set of instances grouped by number of ships to
optimize and the length of the quay segments. “*” indicates that all instances reached
the memory limit.

Instance Branch-and-price CPLEX

Number

of ships

Segment

length (m)

Optimal

instances

(out of 9)

Optimality

gap (%)

Time (s) Objective

improve-

ment

(%)

Optimal

instances

(out of 9)

Optimality

gap (%)

Time (s)

4 10 9 0.00 114.0 −1.94 0 * *

4 20 9 0.00 30.4 −1.63 6 0.00 512.5

4 50 9 0.00 19.7 −1.10 9 0.00 74.5

4 100 9 0.00 17.0 − 9 0.00 7.9

5 10 9 0.00 43.9 −1.98 0 * *

5 20 9 0.00 24.1 −1.82 2 0.00 336.3

5 50 9 0.00 15.2 −0.93 9 0.00 119.3

5 100 9 0.00 13.8 − 9 0.00 13.2

6 10 9 0.00 76.3 −1.33 0 * *

6 20 9 0.00 25.8 −1.13 4 0.00 1447.4

6 50 9 0.00 18.2 −0.83 9 0.00 128.7

6 100 9 0.00 16.3 − 9 0.00 13.1

7 10 9 0.00 282.4 −1.44 0 * *

7 20 9 0.00 233.3 −1.29 0 * *

7 50 9 0.00 80.9 −0.78 9 0.00 289.3

7 100 9 0.00 25.6 − 9 0.00 30.1

8 10 9 0.00 63.3 −2.06 0 * *

8 20 9 0.00 20.6 −1.72 0 * *

8 50 9 0.00 28.6 −0.57 9 0.00 311.4

8 100 9 0.00 17.7 − 9 0.00 32.8

9 10 7 0.21 994.0 −7.89 0 * *

9 20 7 0.10 886.0 −7.46 0 * *

9 50 8 0.00 571.2 −6.74 8 0.00 495.3

9 100 9 0.00 217.7 − 8 0.00 48.6

10 10 6 0.21 1160.8 −6.31 0 * *

10 20 7 0.07 860.9 −5.94 0 * *

10 50 9 0.00 137.6 −1.73 9 0.00 585.1

10 100 9 0.00 38.2 − 9 0.00 58.0

11 10 7 0.12 1225.3 −6.70 0 * *

11 20 9 0.00 787.9 −6.26 0 * *

11 50 9 0.00 186.1 −1.29 9 0.00 919.2

11 100 9 0.00 42.8 − 9 0.00 84.4

12 10 6 0.15 1480.8 −5.68 0 * *

12 20 6 0.30 1189.8 −4.88 0 * *

12 50 9 0.00 278.8 −4.13 8 0.04 1328.5

12 100 9 0.00 123.1 − 8 0.00 117.8

13 10 7 0.14 1131.9 −2.78 0 * *

13 20 7 0.04 1150.2 −2.27 0 * *

13 50 9 0.00 373.6 −1.41 6 0.18 1268.3

13 100 9 0.00 75.9 − 8 0.00 105.5

14 10 2 1.17 2974.9 −2.05 0 * *

14 20 2 0.27 2595.2 −1.84 0 * *

14 50 9 0.00 428.6 −1.22 6 0.00 1501.7

14 100 9 0.00 155.0 − 6 0.00 172.2

15 10 0 1.69 3365.4 −2.41 0 * *

15 20 2 0.82 2606.4 −2.26 0 * *

15 50 9 0.08 1115.1 −2.17 6 0.62 2064.8

15 100 9 0.00 534.9 − 6 0.13 583.9
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Table 4. Average network sizes across instances with different quay segment lengths.

Segment length (m) Average number of nodes Average number of arcs

100 13,483 327,392

50 26,963 1,240,023

20 67,227 7,336,565

10 134,808 25,981,650

Table 5. Average operational cost savings compared to a segment length of 100m.

Segment
length (m)

Optimal
instances
(%)

Optimality
gap (%)

Time (s) Waiting
cost (%)

Delay
cost (%)

Handling
cost (%)

Fuel cost
(%)

Total (%)

10 74.1 0.46 1076.1 −9.12 −12.46 −0.87 0.45 −3.84

20 78.7 0.19 867.6 −6.81 −10.29 −0.70 0.51 −3.48

50 99.1 0.01 271.1 −5.13 −8.93 −0.62 0.19 −2.08

100 100.0 – 106.5 – – – – –

5 Conclusion

In this paper, we have studied a logistical problem that aims at simultaneously
optimize the vessel scheduling and their berthing assignment in their port visits.
We have modeled the continuous quay version of the problem as a network-flow
formulation which we have re-formulated into a a set partitioning formulation.
Decoupling the pricing problems per ship, allows to compute new columns by
solving a shortest path problem. The results highlight the better performance of
the proposed branch-and-price method compared to baseline solvers. Moreover,
we show that using shorter quay segments can lead to a better use of the terminal
resources and provide savings for carriers and terminal operators.

A natural next step for future work would be to study a different modeling
approach for the continuous MBAP using a continuous variable to define the
berthing position. Another aspect that deserves attention is the scalability of
the method where exploring approaches to reduce the size of the graphs can
help solving larger instances. Also, further research on possible valid inequalities
could help fasten the algorithm. Moreover, we could explore ways to embed
exact methods, such as the one presented, with heuristic procedures. This type
of matheuristic could provide high quality solutions in shorter computational
times.
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Abstract. Carbon Capture and Storage (CCS) is the process of captur-
ing CO2 before it enters the atmosphere, transporting it, and then stor-
ing the CO2 in a permanent underground storage site. CCS is projected
to play an important role for compliance with the temperature degree
goals set by the Paris Agreement, and with this in mind, we study the
so-called Ship-Based CCS Logistics Problem (SCLP). The SCLP deals
with designing a cost-effective ship-based logistics system to ensure that
CO2 captured from emission sources in the hinterland of loading ports
is transported to unloading ports nearby the final storage sites. As part
of this, one needs to determine the intermediate storage capacities at
the loading ports, ship fleet size and mix, fleet deployment and sailing
speeds along each chosen route. To solve the SCLP, we propose a new
mixed integer programming model, where candidate ship routes are gen-
erated as input. We use our optimization model to analyze three future
supply scenarios based on estimations of the volume of captured CO2

from emission sources in mainland Europe that is brought via ports of
Antwerp, Dunkirk, Rotterdam and Wilhelmshaven to Norwegian storage
sites. Our computational results show that the logistics cost per tonne
of CO2 will be around 10 Euros in low volume scenarios and drop to
about 8 Euros in high demand scenarios due to economies of scale. In
the considered high demand scenario for the year 2050 about 100 ships
are required that perform several thousand round trips per year within
the considered port network.

Keywords: Carbon capture and storage · Maritime logistics system ·
Optimization · Case study

1 Introduction

Under the Paris Agreement in 2015, almost 200 countries pledged to limit global
warming to well below 2 ◦C relative to preindustrial levels with the aim to keep
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warming even at 1.5 ◦C [22]. To reach this goal, global CO2 emissions need to
reach net-zero in the early 2050s [13]. Carbon Capture and Storage (CCS) might
be a central technology for reaching these goals, as it can be applied to many
industries. CCS is the process of capturing CO2 before it enters the atmosphere,
transporting it, and then injecting it in a permanent underground storage site.
The International Energy Agency (IEA) has found that to achieve the goals of
the Paris Agreement, nearly 15% of the cumulative emission reduction has to
come from CCS till 2070 [14].

There are only two operating CCS projects in Europe today, namely on
the offshore natural gas fields Sleipner and Snøhvit, both located in the coastal
waters of Norway. In the early 2000s CCS was widely supported as a CO2 miti-
gation option and Europe had more than 30 announced demonstration projects
in the power and industry sector. However, all these projects were later can-
celled, probably due to the public and private focus on short-term recovery after
the global financial crisis. Recently a new wave of CCS projects has emerged.
On a global scale, there are today 135 commercially intended CCS projects [10].
Out of these, only 27 are operational and most are in the early development
phase, and there is a clear need for more research to make the CCS projects
commercially viable [11].

With this in mind, we study the Ship-Based CCS Logistics Problem (SCLP).
The SCLP deals with designing a cost-effective ship-based logistics system to
ensure that CO2 captured from emission sources in the hinterland of loading
ports is transported to a set of unloading ports, from where it can be trans-
ported to the final storage sites. A source of inspiration for this is the Norwegian
Northern Lights Project, which considers the transportation and storage part of
the Norwegian full-scale CCS project known as Longship. Longship is designed
for capturing CO2 from industrial sources in the Oslo-fjord region and shipping
liquefied CO2 to an onshore terminal placed in Kollsnes on the Norwegian west
coast. From there, the liquefied CO2 is transported in offshore pipelines to a
storage site under the seabed in the North Sea for permanent storage. Long-
ship considers the CCS processes at two Norwegian industrial emission sources,
however the Northern Lights Project aims at offering transportation and storage
of CO2 as a service for other European emission sources as well. Therefore, we
consider in this paper the transportation of CO2 captured in northern Europe,
i.e., mainly in Germany and France.

The research on ship-based CCS logistics is relatively sparse. In the early
IPCC CCS report [12], both pipeline and ship transportation of CO2 were con-
sidered feasible. Aspelund et al. [2] present a study on technical solutions for
ship-based transportation of CO2, while Roussanaly et al. [19] use a CCS value
chain simulation tool to benchmark offshore pipelines and shipping to an off-
shore site in a base case for a range of distances and capacities. Kjärstadt et al.
[15] investigate CO2 transport options and associated costs for CO2 sources in
Scandinavia. Both costs for ship and offshore pipeline transportation are calcu-
lated as a function of volume and distance. The recent in-depth cost estimation
study [20] investigates the impact of the choice of CO2 shipping conditions of 7
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bar/−46 ◦C (low pressure) and 15 bar/−25 ◦C (medium pressure). They do an
analysis for yearly volumes of up to 20 megatonnes (MTPA) and transportation
distances up to 2000 km as in [19] and [21]. The analysis includes key elements
in the ship-based CO2 transport chain, where cost estimates are determined for
liquefaction, intermediate storage, shipping, and reconditioning.

While cost assessments have been the most common approach for analyzing
ship-based CCS, there has been a development in more recent times where opti-
mization models also have been used. Nam et al. [16] formulate a mixed integer
programming (MIP) model for the design of a ship-based offshore CCS system
in Korea. They divide the optimization problem into two subproblems: a CO2

liquefaction plant location problem and an offshore CO2 transportation problem.
The liquefaction plant location problem is solved first and aims at minimizing
the annual capital and operating cost by choosing an optimal number and loca-
tions for the liquefaction plants serving different CO2 sources. The results from
the CO2 liquefaction plant location problem are used as input in the subsequent
transportation problem, whereby multiple liquefaction plants are summarized
into one site as origin for the transportation problem and a fixed intermediate
storage capacity is considered. The goal of the transportation problem is to deter-
mine the optimal fleet size and mix of ships, fleet deployment and route service
frequency for the transportation of the CO2 from the liquefaction plants to the
offshore storage sites. System-wide supply chain optimization is focused in [6].
This work presents a MIP model to determine the optimal design of a European
supply chain for CCS. The model comprises offshore and onshore pipelines and
shipping to and from existing docks as transportation options and includes emis-
sions from European industrial emission sources such as steel industries, cement
plants and refineries. By determining cost-optimal transportation capacities and
modes for different capture scenarios, one ship type with a capacity of 10 000
tonnes and an average speed of 14 km per hour are assumed. The recent study
from Bjerketvedt et al. [3] takes a more operational approach than the previ-
ously described models and investigates the impact of operational fluctuations
and uncertainties on the design and expected cost of ship-based CO2 transport.
The model is a two-stage stochastic programming model for a single-source,
single-sink CCS chain. As for our problem, [3] makes investment decisions on
the capacities of liquefaction, storage and reconditioning. However, the ship size
is given and the model is based on only one ship operating. The ship’s sailing
time is considered uncertain due to changing weather conditions.

In this paper we extend the current literature on using optimization models
to solve and analyze the SCLP. More specifically, our contributions are as fol-
lows. First, we propose a new MIP model for the SCLP. Second, we use the MIP
on a real case where we study future capture scenarios from mainland Europe
with the Northern Lights storage infrastructure in Kollsnes, Norway, as the cho-
sen storage site. The case study is in alignment with the ambition of Northern
Lights, which is to offer flexible transportation and storage infrastructure for
CO2 across national borders. Analyzing the SCLP in this context gives valuable
insights into both operational and investment costs of a ship-based CCS logistics
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system for different volumes of CO2. It can thus be used as a tool in decision-
making regarding the choice of transportation technologies for CCS projects in
the future.

The outline of this paper is as follows. Section 2 provides a formal defini-
tion of the Ship-based CCS Logistics Problem (SCLP), while the proposed MIP
model for the SCLP is provided in Sect. 3. Section 4 presents our case study and
analyses, while concluding remarks are given in Sect. 5.

2 Problem Definition

In this section, we provide a formal definition of the Ship-based CCS Logistics
Problem (SCLP). The SCLP is the strategic planning problem of designing a
cost-effective ship-based transportation network for captured CO2 that is inter-
mediately stored at a given set of loading ports and brought from there to a set
of unloading ports nearby the final storage locations.

Accordingly, we categorize each port in the SCLP as either loading or unload-
ing port. Each loading port has an associated estimated supply of pressurized
CO2 that has been captured and transported through pipelines from the various
emission sources in its surroundings and hinterland. A given set of candidate
ship types is available for the seaborne transportation from the loading to the
unloading ports, each with a specific tank design pressure (low or medium pres-
sure), capacity, fuel consumption function and cost structure. Each ship type
has a given sailing speed range and the fuel consumption depends on the chosen
speed. There is also a given service time for loading and unloading a ship at a
port.

Before being transported, the CO2 must be liquefied and stored at the loading
ports. For this purpose, each port has a liquefaction unit and an intermediate
storage facility that needs to be selected among a set of candidate storage types.
The liquefaction unit has a cost structure dependent on the inlet pressure and
the storage tank design pressure. The storage types differ in capacities, costs
and tank design pressure (low or medium pressure). The same type of storage
is needed at the unloading ports. When a ship arrives at an unloading port,
the CO2 is unloaded to this intermediate storage. Before being injected into the
geological storage site, CO2 must be pressurized and reconditioned to make it
suitable for pipeline transportation. For this purpose, each unloading port has a
reconditioning unit with a given cost. The loading and unloading port facilities,
namely the storage as well as liquefaction (loading ports) or reconditioning units
(unloading ports), have different designs and capacities for the different pressure
configurations. These have to be compatible with the CO2 pressure configuration
and capacity of the chosen ships.

The goal of the SCLP is to minimize the total costs related to the ship-based
logistics system over a representative planning period (e.g., a year). The costs
can be divided into five parts. The first part is the cost of the chosen fleet of
ships, which consists of hiring and sailing costs. The hiring costs are the char-
tering costs of the ship fleet and include the crew costs. The sailing costs relate
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to the fuel consumption of the ships, which depend on the chosen sailing speed.
The second cost element is the storage cost, consisting of both investment and
operating costs. The last three cost elements are the costs for liquefaction, recon-
ditioning and loading/unloading, in which all three have associated investment
and operating costs dependent on the CO2 throughput of their respective ports.

The SCLP includes decisions at the strategic, tactical and operational level.
At the strategic level, there are decisions about fleet size and mix (i.e., number of
each candidate ship type), the capacity and type of the storage, liquefaction and
reconditioning facilities, including what pressure configurations to use at each
port. The tactical decisions include the deployment of the ships in the chosen
fleet, i.e., the number of times over the given planning horizon each ship type
should sail a given route, and the amount of CO2 transported between the ports
along the routes. Finally, since the sailing speed of the ships heavily influence the
fuel consumption, and hence the operating costs, we also include the operational
decisions about the sailing speeds along the routes. These decisions must be
made while ensuring that all supply of CO2 in a loading port is transported,
and the storage capacities at the ports are not violated at any time. We combine
these three levels of decision making into one holistic model to get a best possible
estimate of the total cost for the considered CCS supply chain. For this purpose,
the strategic investment and fleet decisions are complemented by tactical and
operational decisions of the transportation by ship to make sure that all relevant
cost of the resulting system are entirely included into the evaluation.

We make certain simplifications and practical assumptions to ensure that
the SCLP model is tractable yet useful. First of all, we assume a constant
steady-state supply of CO2 at the loading ports. Since the CO2 is captured
at multiple sources, we believe this is a reasonable assumption due to the law
of great numbers and because industry will provide a rather constant outflow
of CO2. We assume that the CO2 is arriving at the loading ports in a pressur-
ized state through pipelines, which heavily reduces the total transportation cost
due to lower liquefaction costs. We consider this also to be a fair assumption,
as pipelines are the most used mode of onshore transportation for large CO2

volumes [10]. We also assume that the unloading ports always have sufficient
capacity to receive, store and recondition the CO2 when a ship arrives. Finally,
to prevent interactions among different routes and to contribute to operational
feasibility, we assume that a given loading port will be serviced by only one
outgoing route that is operated by only one selected ship type.

3 Mathematical Model

In Sect. 3.1 we present our modeling approach and introduce the notation, before
the mathematical model is presented in Sect. 3.2. The complete notation used
for the model is shown in Table 1, whereas the subsequent section concentrates
on describing the most relevant notation only.
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3.1 Modeling Approach and Notation

The modeling is done with a strategic perspective, where decisions focus on fleet
size and mix as well as on the selection of intermediate storage capacities. The
tactical and operational modeling of the ship-based transportation follows [4]
and [5], where we pre-generate all feasible sailing routes as input to the model,
leaving the model with the decision of choosing on which routes among this set
of candidate routes to deploy the ships. A route in our model is a cycle that
includes a given subset of ports that are visited in the sequence that yields the
shortest path possible for visiting these ports. We consider cyclic routes as ships
will travel those routes consecutively several times within the planning horizon,
from which they have to return to their starting point after visiting the last port
in the route. The set of all candidate routes is denoted R, while the set of routes
that visit port i is denoted RN

i . Furthermore, the model handles the situation
where each ship type only can operate a subset of the routes. This is defined
through the set Rv, which includes all routes that are feasible for ships of type
v. The ports that are part of route r are defined by the set Nr, while the sets
NL

r and NU
r consist of the loading and unloading ports in route r, respectively.

Before ship transport, the CO2 is pressurized. Since several candidate pres-
sure states are feasible due to different available technologies, P defines the set of
candidate pressures for CO2 during ship transport (e.g., low and medium pres-
sure). Furthermore, while the set V includes all ship types that are available, the
set Vp is the set of ship types that operate at pressure state p.

Furthermore, a ship’s fuel consumption as a function of sailing speed typically
is non-linear and convex [18]. We follow the modeling approach of [1] where we
define a number of discrete sailing speed options, defined by the set S, and
approximate the fuel consumption, as well as the sailing time and costs, based
on linear combinations of these.

The model includes four types of decisions, i.e., 1) the fleet size and mix of
ships, 2) the capacities of the storages, 3) deployment of the ships (including
speed selection) and 4) the quantities loaded onto and unloaded from ships at
different ports. The four types of decisions are related to four types of variables.
The first decision is determined by the variable uvr, which is the number of ships
of type v that sail route r. The second decision variable is yipb, a binary variable
taking the value 1 if storage capacity b with pressure state p is chosen at port
i, 0 otherwise. The third decision relates to xvrs, which is the number of times
route r is sailed by ship type v at speed s. The fourth decision is handled by
qipvr, which denotes the total quantity transferred between ships of ship type v
and port i at a pressure state p on all round trips of a route r. To handle the
assumption that each loading port only can be included in one chosen route, the
binary variable avr is 1 if ships of ship type v sail route r, 0 otherwise. The last
variable hip is the number of times storage with pressure p in port i is visited.
An auxiliary variable zipb is used for linking hip and yipb.
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Table 1. Notation used in this study.

Sets

NU Set of unloading ports

NL Set of loading ports

N Set of ports, N = NL ∪ NU

R Set of candidate routes

NL
r Set of loading ports in route r, NL

r ⊆ NL

NU
r Set of unloading ports in route r, NU

r ⊆ NU

Nr Set of ports in route r, Nr = NL
r ∪ NU

r

V Set of ship types

Rv Set of candidate routes for a ship type v. Rv ⊆ R
RN

i Set of candidate routes that include port i, RN
i ⊆ R

Riv Set of candidate routes that visit port i and are feasible for ship type v,
Riv = RN

i ∩ Rv

Bi Set of candidate storage capacities for port i

S Set of sailing speed options for ships

P Set of optional pressure states to store and transport CO2

Vp Set of ship types that operate with pressure p, Vp ⊆ V
Parameters

CT
vrs Cost of sailing route r for ship type v at speed option s

CH
v Cost of hiring a ship of type v in the planning horizon

CL
p Fixed and variable costs per tonne liquefied CO2 in pressure state p

CR
p Fixed and variable costs per tonne reconditioned CO2 in pressure state p

CLU Fixed and variable costs per tonne CO2 loaded and unloaded to/from ships

CB
ipb Fixed costs of storage capacity b with pressure p at port i

KV
v Capacity of ship type v (tonnes of CO2)

KB
b Capacity of storage option b (tonnes of CO2)

PB Minimum storage capacity as the proportion of loading/unloading quantity per
visit in a port

Si Total CO2 supplied at port i during the planning horizon (tonnes CO2)

Tvrs Time to complete one round trip of route r by a ship of ship type v at speed s

T Length of the planning horizon (days)

MX
vrs Minimum number of round trips needed for a ship of type v to transport all the

supply on route r when sailing at speed s

MH
ip Number of visits needed if the ship with the least amount of storage capacity

needs to handle all the supply from port i with pressure p

Variables

uvr Number of ships of ship type v sailing route r during the planning horizon

yipb Binary variable; 1 if storage capacity b with pressure state p is used at port i, 0
otherwise

xvrs Number of times route r is sailed by ship type v at speed s

qipvr Total quantity transferred between ships of ship type v and a storage with
pressure p at port i on all round trips of route r

avr Binary variable; 1 if ship type v sails route r, 0 otherwise

hip Number of times the storage with pressure p in port i is visited

zipb Auxiliary variable that links hip and yipb, such that zipb is equal to hip if
storage capacity b with pressure type p is chosen in port i, and 0 otherwise
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3.2 Model Formulation

Using the notation introduced in Sect. 3.1, we can formulate the mathematical
model for the SCLP as follows.

The objective of the model is to minimize the total costs of the ship-based
logistics system. The objective function consists of five parts that are summed
up. The first part is the ship costs given by (1), where the first term calculates the
total sailing costs, while the latter is the total hiring costs for the selected ships.
Thereafter, the investment costs of the selected storages are presented in (2).
Finally, costs related to liquefaction, reconditioning, and loading and unloading
are presented in (3), (4) and (5), respectively.

min → w =
∑

v∈V

∑

r∈Rv

∑

s∈Sv

CT
vrsxvrs +

∑

v∈V

∑

r∈Rv

CH
v uvr (1)

+
∑

i∈N

∑

b∈Bi

∑

p∈P
CB

ipbyipb (2)

+
∑

i∈NL

∑

p∈P

∑

v∈Vp

∑

r∈Riv

CL
p qipvr (3)

+
∑

i∈NU

∑

p∈P

∑

v∈Vp

∑

r∈Riv

CR
p qipvr (4)

+
∑

i∈N

∑

p∈P

∑

v∈Vp

∑

r∈Riv

CLUqipvr (5)

The model needs to secure feasible and consistent transportation of CO2

between the loading and unloading ports, which is ensured by Constraints (6)–
(8). Constraints (6) make sure that the quantity loaded is equal to the quantity
unloaded at the ports in each route. Furthermore, ships cannot carry more CO2

than their capacities, which is ensured by Constraints (7). Finally, Constraints
(8) make sure that there is a sufficient number of ships of each ship type available
to sail the routes at the chosen sailing speeds.

∑

i∈NL
r

qipvr −
∑

i∈NU
r

qipvr = 0 p ∈ P, v ∈ Vp, r ∈ Rv (6)

KV
v

∑

s∈S
xvrs −

∑

i∈NL
r

qipvr ≥ 0 p ∈ P, v ∈ Vp, r ∈ Rv (7)

∑

s∈S
Tvrsxvrs − Tuvr ≤ 0 v ∈ V, r ∈ Rv (8)

Constraints (9) state that the total amount of CO2 supplied from a loading
port during the planning horizon must be shipped. In Constraints (10), the
number of times each storage at a port is visited, represented by variable hip, is
calculated. Constraints (11) ensure that at most one storage facility can be built
for each pressure state in a port. Constraints (12) make sure that each port gets
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a sufficient storage capacity for each pressure state, where the chosen capacity
must be at least PB times the average amount loaded or unloaded per ship visit
at the given port.

∑

p∈P

∑

v∈Vp

∑

r∈Riv

qipvr ≥ Si i ∈ NL (9)

∑

v∈Vp

∑

r∈Riv

∑

s∈S
xvrs = hip i ∈ N , p ∈ P (10)

∑

b∈Bi

yipb ≤ 1 i ∈ N , p ∈ P (11)

∑

b∈Bi

KB
b zipb − PB

∑

v∈V

∑

r∈Riv

qipvr ≥ 0 i ∈ N , p ∈ P (12)

Constraints (13)–(15) relate z, y and h variables with each other. From these
constraints, zipb = hip if storage capacity b with pressure type p is chosen in
port i (i.e., if yipb = 1), and zipb = 0 otherwise.

zipb ≤ MH
ip yipb i ∈ N , p ∈ P, b ∈ Bi (13)

zipb ≤ hip i ∈ N , p ∈ P, b ∈ Bi (14)

zipb ≥ hip − MH
ip (1 − yipb) i ∈ N , p ∈ P, b ∈ Bi (15)

Constraints (16)–(18) restrict the possible combination of routes in the solu-
tion. Constraints (16) ensure that avr becomes 1 if a route is sailed, while the
next constraints make sure avr is 0 if the corresponding route is not sailed. A
storage in a port can only be visited in one selected route sailed by one ship
type, which is ensured by Constraints (18). The variable domains are presented
in Constraints (19)–(25). Note that variables xvrs and hip are defined as con-
tinuous variables even though they represent a number of round trips or visits,
respectively. This is due to the strategic-tactical perspective of the SCLP where
those numbers take relatively high values due to the long time horizon and, thus,
do not have to be integer.

xvrs ≤ MX
vrsavr v ∈ V, r ∈ Rv, s ∈ S (16)

avr ≤ uvr v ∈ V, r ∈ Rv (17)
∑

v∈Vp

∑

r∈Riv

avr ≤ 1 i ∈ NL, p ∈ P (18)

uvr ∈ Z
+ v ∈ V, r ∈ Rv (19)

yipb ∈ {0, 1} i ∈ N , p ∈ P, b ∈ Bi (20)
xvrs ≥ 0 v ∈ V, r ∈ Rv, s ∈ S (21)
qipvr ≥ 0 i ∈ N , p ∈ P, v ∈ Vp, r ∈ Riv (22)
avr ∈ {0, 1} v ∈ V, r ∈ Rv (23)
hip ≥ 0 i ∈ N , p ∈ P (24)
zipb ≥ 0 i ∈ N , p ∈ P, b ∈ Bi (25)
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4 Computational Study

In the following, we introduce our case study in Sect. 4.1 and present the results
in Sect. 4.2.

4.1 Case Study and Input Data

The case study is prepared in order to explore the possibilities of connecting CO2

emission sources in the European mainland to storage sites located in the North
Sea. We use a representative planning horizon of one year (365 days). The case
study and the calculation of its input parameters are described in more detail
in the following.

Supply Scenarios and Ports: We use the supply scenarios from [17], which
estimate the future supply of CO2 of Germany, and allocate it to the ports
Antwerp, Rotterdam and Wilhelmshaven. We also add the supply scenario from
[9], which includes supply from Dunkirk. The supplies in each port for the years
2025, 2030 and 2050 are presented in Table 2. It should be noted that since
the 2020 scenario estimated in [17] is currently not achieved, we denote the
2020 estimations as our 2025 scenario, which is one year after the Northern
Lights project is planned to start its operations. Obviously, it is right now very
difficult to establish realistic scenarios for future CO2 supply volumes as using
CCS technology is just in its beginning. In the end, even though we associate
the identified volumes to particular years, it is of less relevance for our study
when these volumes are actually achieved. Instead, our three scenarios serve
the purpose of reflecting an initial situation, a ramp-up situation, and a mature
situation. In what years these volumes are actually achieved is probably more a
question of political regulations and technology adoption by industry. Finally, we
consider one unloading port in our case study. This is Kollsnes, close to Bergen,
Norway, which is the unloading port of the Northern Lights project.

Ship Types, Costs and Sailing Times: We define a set of candidate ship
types to choose among. Each ship type is defined by a combination of a pressure
state and a capacity. The relevant pressure states are defined based on [20],
where the alternatives are 7 bar (low pressure) and 15 bar (medium pressure).
Current CO2 shipping technology is based on ships with medium pressure tanks.

Table 2. CO2 supply scenarios, in megatonnes per annum (MTPA) [9,17]

Loading ports 2025 2030 2050

Antwerp 0.0 8.7 45.5

Dunkirk 3.0 5.0 10.0

Rotterdam 3.95 50.3 261.3

Wilhelmshaven 1.35 14.3 72.4

Total 8.3 78.3 389.2
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However, there is ongoing research into the development of low pressure ships,
and since we look at future supply scenarios, we include low pressure ships in
the case study too. The feasible capacities for ships of each pressure state are
also based on the analysis of [20]. For the low pressure state ships, we define 13
candidate ship types with capacities in the range from 2.5 to 50 kilotonnes (kt).
As emphasized in [20], the medium pressure ships have a capacity limitation of
10 kt, so we define four candidate medium pressure ship types in the range from
2.5 to 10 kt.

For each candidate ship type, we estimate the hiring costs over the planning
horizon. The hiring costs consist of two components: CAPEX (i.e., the cost of
acquiring or chartering the ship) and OPEX (e.g., cost of the crew and main-
tenance). These cost estimates are based on [7] and [20]. We also estimate the
sailing costs of the different ship types. These are dependent on the ships’ fuel
consumption, which again depends on the chosen speed, which we, based on [20],
assume can be selected within the range of 10 to 16 knots for all ship types. For
speed, we consider the three speed options of 10, 14 and 16 knots, where 14
knots is the design speed. The cost of fuel is set to 325 Euros per tonne [3].

The round trip times for the pre-generated candidate routes are generated
based on sailing distance, ship speed and time spent in ports for loading and
unloading, and is represented by the parameter Tvrs. For calculating the param-
eter, we assume that loading and unloading per port visit takes 12 h each, like
in [3] and [20].

Storage Capacities and Costs: The storage alternatives are chosen so that
they are aligned with the capacity alternatives for the candidate ship types.
Thereby, we follow [3] who argue that the storage should have about 20% more
capacity than the ship tanks to handle unforeseen events. Therefore, the set
of storage alternatives corresponds to the ship capacities, where each value is
multiplied by the parameter PB, which is set to 1.2.

The storage costs are calculated based on the storage capacity and the pres-
sure state. As for the ship hiring costs, the storage costs are subject to two
components, namely a depreciated share of the investment costs (CAPEX) and
some fixed OPEX. The investment costs are proportional with storage capacity
and are set to 478 and 800 Euros per tonne of capacity for 7 bar and 15 bar,
respectively [20]. The yearly fixed OPEX is set to 6% of the construction costs.

The liquefaction costs at the loading ports are calculated based on the
throughput of CO2. The throughput affects the required capacity of the liq-
uefaction facility, which in turn affects the construction costs. As for ships and
storages, the liquefaction facility construction cost represents a depreciated share
of the investment costs and the OPEX is set as a share of the initial construc-
tion costs. The construction cost is estimated as a function of yearly liquefaction
capacity. To estimate the construction costs, we use 15 and 13 Euros per tonne
CO2 of yearly liquefaction capacity for 7 bar and 15 bar, respectively [20]. Note
that with these numbers, we assume that the CO2 is pressurized when it arrives
at the liquefaction facility, which is the case when the CO2 comes from inland
emitters in pipelines. Conversely, if the input CO2 is at atmospheric pressure,
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which could be the case if the carbon capture takes place close to the liquefac-
tion, the costs will be higher as there are more extensive requirements due to
more pressurizing. The second part of the fixed costs is the yearly fixed OPEX,
which is set to 6% of the investment costs [20]. As the liquefaction process is
energy-intensive, there are also some variable costs [20]. These costs are subject
to the consumption and unit price of electricity. The electricity consumption is
20 kWh and 11.25 kWh per tonne of CO2 for liquefaction into 7 and 15 bar
pressure, respectively, while the price of electricity is assumed to be 0.08 Euros
per kWh.

The calculation of the reconditioning costs at the unloading ports is similar
as for the liquefaction at the loading ports, including facility investment costs,
OPEX and variable costs. Furthermore, the cost of reconditioning is very similar
for low and medium incoming CO2 pressure [7], thus we calculate the recondi-
tioning cost independent of pressure. Based on the work by [3], the investment
cost is set to 9 Euros per tonne of yearly CO2 reconditioning capacity. Moreover,
the OPEX is 4.6% of the investment costs and the variable cost is 0.41 Euros
per tonne of reconditioned CO2.

The costs of loading and unloading facilities in the ports are subject to invest-
ment costs and fixed OPEX. The investment cost is assumed linearly dependent
on yearly throughput, given by 2.33 Euros per tonne CO2. The fixed operational
costs are set to 2% of the investment costs [20].

4.2 Results

Here, we present and compare the results for the 2025, 2030 and 2050 supply
scenarios. To solve the model in Sect. 3, we use Gurobi (v. 9.1.2) on an Apple M1
processor. All scenario cases were solved to optimality in a matter of seconds.

The key performance measure that we are interested in is the cost per tonne
of CO2 for the downstream supply chain from the loading port to the final storage
site. This measure is computed by taking the total cost of a solution as computed
by the objective function components (1)–(5) and dividing this value by the
total CO2-supply in a scenario. As such, the cost involve ship costs, investments
in storage sites, as well as cost for liquefaction, reconditioning, and loading and
unloading. The resulting costs per tonne of CO2 are shown in Table 3. These cost
are 9.57, 8.23 and 7.99 Euros for the 2025, 2030 and 2050 scenario, respectively.
They show that there are significant economies-of-scale when setting up a ship-
based CCS logistics system given that the total CO2 supply in the three scenarios

Table 3. Cost per tonne of CO2 in different scenarios.

Scenario Cost per tonne

2025 9.57

2030 8.23

2050 7.99
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Table 4. Computational results for three demand scenarios.

Loading ports in route Supply (Mt) Ship capacity (kt) # Ships # Round trips Avg. speed (kts)

2025 scenario

Antwerp – – – – –

Dunkirk 3.00 45 1 66.67 10.96

Rotterdam 3.95 50 1 79.00 12.29

Wilhelmshaven 1.35 15 1 91.48 12.46

2030 scenario

Antwerp 8.7 45 3 193.00 10.00

Dunkirk 5.0 40 2 125.00 10.00

Rotterdam 50.3 50 15 1006.00 10.00

Wilhelmshaven 14.3 45 4 317.78 10.12

2050 scenario

Antwerp 45.5 50 14 910.00 10.11

Dunkirk 10.0 50 3 200.00 10.96

Rotterdam 261.3 50 76 5226.00 10.07

Wilhelmshaven 72.4 50 18 1448.00 10.35

increases from 8.3 megatonnes (MTPA) per year in 2025, via 78.3 in 2030, to as
high as 389.2 in 2050.

It should be noted that these costs do not constitute the full CCS-CO2 cost
since we do not consider the capturing at the emission sources, which constitutes
the CCS supply chain’s largest cost component, and the pipeline transportation
from these to the loading ports. The price of emitting one tonne of CO2 within
the European Emission Trading System (ETS) is around 80 Euros per December
2021 and increasing [8]. The viability of the ship-based CCS logistics system will
be based on the total supply chain costs. [6] estimate the costs for transporting
the CO2, including the inland transportation costs, to be between 6% and 18%
of the total supply chain costs.

Table 4 provides more details of the optimal solutions for the 2025, 2030 and
2050 scenarios, respectively. These include information about the chosen ship
types (in terms of capacity classes) and number of ships that are used to serve
the different loading ports, as well as the number of round trips and chosen sailing
speeds. It can be noted that all ship types selected in the optimal solutions and
referred to in the tables are low pressure ships.

When setting up such a ship-based logistics system, several trade-offs must be
considered. One consideration is whether to sail many round trips with smaller
ships or to sail fewer rounds with higher capacity ships. If smaller ships are
chosen, the ports will be visited more frequently, which allows also for smaller
storage capacities (and costs). Despite this, it can be noted from the results
in Table 4 that larger ships with capacities of 45 or 50 kt are preferred almost
everywhere. This shows that there are economies-of-scale also with regard to the
ship transportation. The exception is the ship type servicing Wilhelmshaven in
the 2025 scenario, which has a capacity of only 15 kt. This is due to the low
volumes in the given port in that scenario. We also observe that substantial
ship fleets are required in the 2030 and 2050 scenarios. Especially in the high
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demand scenario of 2050, a fleet of 111 CCS-ships is required that perform in
total 7784 round trips per year. The latter comes along with a very large number
of port calls. For example, as all round trips involve the single unloading port
Kollsnes, an average of 21 ship calls per day has to be handled at that port.
Under the assumed port stay time of 12 h per visit, at least 10 ships have to
be served in parallel throughout the whole year. Establishing the corresponding
port infrastructure is surely a challenge.

Another trade-off is whether to choose low sailing speeds, which results in
reduced fuel costs but a need for more ships, or whether to increase the sailing
speeds, which will have the opposite effect. Based on the results from Table 4,
we see that the chosen sailing speeds in most cases are close to its lower limit
of 10 knots. This indicates that it is more important to reduce the fuel costs by
reducing the sailing speed than having as few ships as possible. In a practical
setting, this also gives a fleet with extra capacity which provides robustness and
flexibility towards unforeseen events, e.g., where a ship breaks down or when the
sailing times increase due to bad weather.

Fig. 1. Composition of costs for the three scenarios.

Figure 1 shows a break down of the total costs of the different solutions. We
see that the cost of liquefaction of the CO2 at the loading ports constitutes a
share of 35–40% of the total costs (before the ship hiring costs at around 30%).
Since the liquefaction costs heavily depend on the electricity price, we have
performed a sensitivity analysis with regard to this. This analysis shows that an
increase in electricity costs of 70% results in an increase of the total costs of the
ship-based CCS logistics system by around 12% for the 2025 scenario and 14%
for the 2030 and 2050 scenarios.

5 Concluding Remarks

To reach the Paris Agreement’s two-degree goal, Carbon Capture and Storage
(CCS) can play a central role. For this, we have studied the Ship-Based CCS
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Logistics Problem (SCLP), which determines a cost-effective ship-based logistics
system to ensure that CO2 captured from emission sources in the hinterland of
loading ports is transported to a set of unloading ports, from where it can be
brought to final storage sites. As part of this, we determine the intermediate
storage capacities at loading ports, ship fleet size and mix, fleet deployment and
sailing speeds along each route. The problem is solved by formulating a mixed
integer programming (MIP) model, where candidate routes are pre-generated as
input.

We tested the model on three future supply scenarios based on estimations
of the volume of captured CO2 from emission sources in the hinterland of the
ports of Antwerp, Dunkirk, Rotterdam, and Wilhelmshaven in the years 2025,
2030, and 2050, while Kollsnes is the only unloading port. The results show that
there are significant economies-of-scale, as the transportation costs decrease with
increased volumes. The cost per tonne of transported CO2 is 9.57 Euros in the
2025 scenario with a total supply of 8.3 MTPA, 8.23 Euros in the 2030 scenario
with a total supply of 78.3 MTPA, and 7.99 Euros in the 2050 scenario with
a total supply of 389.2 MTPA. We also identified that a fleet of more than
100 CCS-ships is required in the 2050 scenario. These ships conduct almost 8000
round trips per year such that the involved ports have to establish infrastructure
for handling up to 20 ships per day. Putting this into relation to the alternative
of connecting mainland Europe and Norway by pipelines is subject of future
research. Further topics of future research are the transition from one scenario
to the next through a multi-period problem formulation and the handling of
uncertainty especially for the very volatile input parameters like CO2 supply
volumes or shipping cost rates.
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Abstract. This paper studies the Quay Crane Scheduling Problem
(QCSP). The QCSP determines how a number of quay cranes should
be scheduled in order to service a vessel with minimum makespan. Pre-
vious work considers the QCSP to be a combinatorially hard problem.
For that reason, the focus has been on developing efficient heuristics. Our
study shows, however, that the QCSP is tractable in the realistic setting,
where quay cranes can share the workload of bays. We introduce a novel
linear time algorithm that solves the QCSP and prove its correctness.

Keywords: Quay crane scheduling · Container terminals ·
Computational complexity

1 Introduction

In 2020 the global export of merchandise amounted to US$ 17.6 trillion [12]
of which maritime transportation and container shipping accounted for roughly
80% [10]. Due to the significant size of the industry, there is a constant need for
improvement, as even minor optimizations may yield massive economic results.
That being said, container shipping is a complex industry consisting of several
individual parties monitoring a number of sub-processes of their own.

Two central players are the container terminals and the carriers. The termi-
nals act as links between land and sea, while the carriers transport containers
between terminals. The key interface between them are quay cranes that load
and discharge containers to vessels. Both terminals and carriers benefit from a
minimum makespan of quay cranes operating a vessel [6].

The Quay Crane Scheduling Problem (QCSP) explores how a number of quay
cranes should be assigned and organized in order to service a vessel such that
a minimum makespan of the quay cranes is achieved. Quay cranes must adhere
to several ordering and separation constraints. Due to these constraints, the
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QCSP has been considered a hard combinatorial optimization problem since its
introduction by Daganzo [3]. In 2006, Lee et al. [8] proved a specific version of the
problem called the QCSNIP to be NP -complete. Due to this complexity result,
the use of heuristic algorithms in subsequent work has been widely justified as
computing an optimal schedule would be too time consuming in practice, e.g.,
[1,11].

In contrast to the QCSP, however, the QCSNIP assumes that a bay at most
can be serviced by a single quay crane throughout the whole schedule. This is
an unrealistic assumption. It is common practice of terminals to have several
quay cranes operating a bay during a schedule. They are merely restricted from
operating a bay or a pair of adjacent bays simultaneously [6].

In this paper, we show that the QCSP is tractable in the realistic setting,
where quay cranes can share the workload of bays. We introduce an algorithm
that solves the QCSP to optimality in linear time and prove its correctness. Our
results imply that it may be possible to formulate tractable and optimal quay
crane scheduling algorithms that model all aspects of the real problem including
variable separation distances, quay crane performance dependency on lift type,
and time to move quay cranes between bays.

The remainder of the paper is organized as follows. Section 2 provides a brief
introduction to the terminal domain. Section 3 reviews the existing literature rel-
evant to the scope of this paper. Section 4 defines the QCSP. Section 5 discusses
the validity of the QCSNIP model and corresponding proof as proposed by Lee
et al. Furthermore, a linear time algorithm guaranteeing optimal solutions is
proposed and its correctness is mathematically proven.

2 Container Terminals

Container terminals interact with carriers through service contracts. The con-
tracts may include a berthing time window, a guaranteed number of crane moves
to be processed during the port stay, and various handling fees. However, service
contracts do not specify the number of quay cranes assigned to work on a given
vessel, i.e., it is up to the terminal to decide the quay crane schedule as long
as it ensures the guaranteed number of containers moved in the given berthing
time window. As port fees are based on the time a vessel spends in a port, it
is in a carrier’s best interest to minimize this stay. In addition to a lower port
fee, a shorter stay would enable a vessel to catch up on delays or sail at lower
speeds, ultimately resulting in higher profits. Terminals also benefit from mini-
mizing port stays since the resulting high utilization of equipment assets results
in cost-efficient services [6].

A container terminal serves as a hub for shipment of containers. Containers
are either transported to the terminal from the sea side on vessels or from the
land side on trucks and trains. When containers are intermediately stored at
the terminal, they are stored in the yard. The yard is an area designated to
store containers in an organized manner. Containers are transported as needed
from the yard to the quay when a vessel is being loaded and vice versa when
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Fig. 1. A container terminal as seen from above (photo: Tom Fisk, 2019).

containers are being discharged from the vessel. Figure 1 shows a typical terminal
organization.

A container vessel is a large ship specifically made for transporting containers.
The layout of a vessel is split into bays, which are spaces on the ship that can
store containers. Containers are discharged and loaded onto a vessel using quay
cranes as illustrated in Fig. 2. All quay cranes of a berth section are mounted
on a single track of rails which runs along the wharf. As quay cranes are all
mounted on the same track, they can freely move to each side but are unable
to pass each other. Moreover, quay cranes are wider than vessel bays meaning
that two, and in rare cases three, adjacent bays cannot be operated by two quay
cranes simultaneously.

Fig. 2. A vessel being serviced by quay cranes.
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There exists a plethora of techniques and equipment that enable quay cranes
to load and discharge several containers at a time, e.g., twin-lifting, quad-lifting,
and dual cycling. The move productivity of the quay cranes depends on the lift
type and the skills of the human crane operator as well as the stowage condition
of the vessel. If quay cranes must move over high stacks, it slows them down. In
addition to moving containers, the quay cranes also spend time changing position
between bays, known as crane sets. Normally this takes a few minutes, but if
a quay crane passes the accommodation section, it must lift its arm possibly
adding half an hour to the operation [6].

Quay crane scheduling is the problem of managing the movement of quay
cranes, such that they operate as efficiently as possible. Part of this problem is
determining the number of quay cranes to assign to a vessel based on the mini-
mum number of crane moves defined in the service contract. Once this number
is determined, a schedule is produced. The schedule describes where quay cranes
should be positioned, which containers to load and discharge and when to exe-
cute these operations. The objective of the schedule is to process the vessel as
fast as possible while using as few resources as possible. Producing an optimal
schedule is considered a complex problem as there, as previously mentioned, are
several real life limitations that restrict the movement and operation of quay
cranes [6].

3 Literature Review

The scope of this paper is limited to the quay crane scheduling problem (QCSP)
and its various formulations in previous literature [2]. The QCSP was first intro-
duced by Daganzo [3]. The paper focuses on the general problem of processing
all arriving ships while minimizing delays. Exact and approximate solutions are
presented without considering operational constraints such as non-interference
and non-neighbouring constraints; constraints which prevents quay cranes from
passing each other on the same quay track and working on two adjacent bays at
the same time respectively.

Hereafter, Kim and Park [7] introduce non-neighbouring constraints, non-
interference constraints, precedence constraints, i.e., some operations precede
others and task-separation constraints, i.e., some tasks cannot be done simulta-
neously. The study formulates a mixed-integer programming model and proposes
a branch-and-bound (B&B) method in order to find an optimal solution. Addi-
tionally, a GRASP metaheuristic is proposed to overcome the computational
difficulty of the B&B method.

Subsequently, a paper stimulated by the work of Kim and Park [7] was writ-
ten by Lee et al. [8] in which a concise mathematical model for the quay crane
scheduling with non-interference constraints problem (QCSNIP) is formulated.
However, for unclear reasons, Lee et al. omit the non-neighbouring constraint
introduced by Kim and Park and imposes that the workload of a bay cannot
be split between quay cranes. Moreover, they analyse the computational com-
plexity of the problem and provide a proof of NP-completeness. In addition,
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the paper proposes a genetic algorithm that provides efficient performance and
near-optimal solutions.

Hereafter, Moccia et al. [9] observed that Kim and Park’s solutions [7] do
not guarantee non-interference for every instance. Following this, they introduce
travel time of quay cranes and propose a revised mixed-integer programming
model along with a branch-and-cut algorithm (B&C ) to handle inputs with
large solution spaces. A compact mathematical formulation of this model was
subsequently proposed by Sammarra et al. [11].

Eventually, Bierwirth and Meisel [1] found that the revised model proposed
by Sammarra et al. [11] may also obtain solutions that violate non-interference
constraints, which is resolved in their study by the introduction of temporal dis-
tance constraints between tasks. Consequently, optimality of the solution would
in some cases not be preserved. A heuristic that applies a B&B algorithm for
searching a subset of above average quality, unidirectional schedules is proposed.
Using the benchmark suite from Kim and Park [7], the heuristic found the best
known solution in every problem instance and computational effort was cut down
to a fraction of other methods proposed in previous work.

Subsequently, Fan et al. [4] introduce a key performance indicator called
Crane Intensity (CI ). CI indicates how well the workload is distributed among
quay cranes with regards to minimum idle and movement time, and is thus
argued to be an indicator of the quality of a quay crane schedule.

4 Problem Definition

This section defines the QCSP that is the scope of this paper. The QCSP is
restricted by the following constraints.

1. Quay cranes move on the same track and thus cannot pass each other (non-
interference).

2. Only one quay crane can work on a given bay at a time.
3. Quay cranes cannot work on two adjacent bays simultaneously (non-

neighbour-ing constraint).

In addition to these constraints, we assume that time is discretized into equally
sized time steps. In each time step a crane can make exactly one move, i.e.,
either loading a container to a bay or discharging a container from a bay. We
further assume that it takes no time to move cranes between bays. Under these
assumptions, an instance of the QCSP is defined by the following parameters.

B Total number of bays
C Total number of available quay cranes
mj Total number of containers to be moved in bay j (1 ≤ j ≤ B).

A solution to a QCSP is referred to as a schedule. A schedule defines for
each time step which bay each crane is assigned to. A schedule is feasible if
the constraints of the QCSP are satisfied and the crane assignment allows all
moves of each bay to be processed. The total number of time steps of a schedule
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is referred to as its makespan MS . A schedule for an instance of the QCSP is
optimal if it is feasible and no other feasible schedule for the instance has a
smaller MS . As an example, Fig. 3 shows a feasible and optimal schedule for a
QCSP instance with B = 7, C = 3, and the total number of containers to be
moved for each bay as shown in the figure, i.e., m1 = 2, m2 = 5, etc.

Fig. 3. An example of a feasible schedule of a QCSP instance.

5 Problem Complexity

Since its introduction by Daganzo [3], the QCSP has been considered a hard
combinatorial problem. Lee et al. show that a special decision version of the
QCSP, called the quay crane scheduling with non-interference constraints prob-
lem (QCSNIP), is NP-complete. The QCSNIP is restricted by the following
constraints.

1. Quay cranes move on the same track and thus cannot pass each other (non-
interference).

2. Only one quay crane can work on a hold1 at a time until it completes the
hold.

3. Compared with processing time of a hold by a quay crane, travel time of a
quay crane between two holds is small and hence it is ignored.

Lee et al. prove that the QCSNIP is NP-complete by reducing the set partitioning
problem to it. The decision version of the set partitioning problem is defined as

1 A hold is the part of a bay, which is under deck. In this context, a hold can be
considered equivalent to a bay.
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follows [5]; given a finite set of H positive integers, S = {s1, s2, ..., sH}, where
the sum of all elements is equal to D; can S be partitioned into two disjoint
subsets S1 and S2, such that

∑
si∈S1

=
∑

si∈S2
= D/2?

Lee et al. translate this problem into the QCSNIP by defining a hold for
each element in S and some auxiliary holds. The set partitioning problem then
becomes to find a schedule for two cranes, where the cranes work on subsets of the
holds corresponding to S1 and S2. The proof is innovative and to our knowledge
correct. Our main concern is that the QCSNIP substantially differs from the
QCSP such that the complexity result of the QCSNIP cannot be transferred to
the QCSP. In other words, the NP-completeness of the QCSNIP does not prove
NP-hardness of the QCSP.

The most important limitation is that the QCSNIP assumes that only one
quay crane can work on a hold at a time until it completes the hold, i.e., assump-
tion 2. By constraining the workload of any bay to be processed to completion
by one crane and one crane only, it is possible to let a bay of a vessel correspond
to an element of a set in the set partitioning problem. However, this is not a
realistic assumption. Several quay cranes often share the workload in a single
bay, but cannot do so at the same point in time [6,13]. Without this restriction,
Lee et al.’s reduction of the set partitioning problem to the QCSNIP is invalid.

Lee et al. also omit the non-neighbouring constraint, which ensures that a pair
of cranes will not simultaneously work on any pair of adjacent bays. However,
the removal of this constraint may not necessarily invalidate the reduction, as it
may be possible to add “separation” bays to their reduction without invalidating
it. Since the QCSP allows the workload of a bay to be split between quay cranes,
Lee et al.’s NP-completeness proof does not apply to a decision version of the
QCSP. In fact, below we show that the QCSP is tractable.

In the remainder of this section, we introduce the CreateSchedule algo-
rithm that can solve the QCSP to optimality in time that is linear in MS × C.

5.1 Makespan Lower Bounds

We first define lower bounds of the makespan MS as a function of the number
of cranes C assigned to the vessel.

The lower limit to MS is defined as the largest sum of moves of any two
adjacent bays, as only one bay of these adjacent bays can be processed by a
single crane at any given time. We refer to this pair of bays as the long crane,
LC , and the number of moves in the pair, mLC , is defined in Eq. (1).

mLC = max(mj + mj+1) 1 ≤ j < B. (1)
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To achieve an optimal schedule with MS equal to mLC , a sufficient amount of
quay cranes is required such that (i) a single quay crane can always operate the
LC at all times and (ii) all other bays are completed in a number of moves less
than or equal to mLC . This means that the sum of all moves of the vessel M
divided by the number of quay cranes needed, Cn, must be smaller than or equal
to mLC in order to optimally complete the vessel, as shown in Eq. (2).

M

Cn
≤ mLC , (2)

Equation (2) can be rewritten into Eq. (3).

M

mLC
≤ Cn. (3)

The number of quay cranes that can efficiently work in parallel on a given vessel
is referred to as crane intensity, CI and is defined in Eq. (4).

CI =
M

mLC
. (4)

Thus, as shown in Eq. (5), if a sufficient number quay of cranes, C, are available
for the processing of a given vessel (CI ≤ C) the lowest possible makespan will
be defined by mLC .

If CI ≤ C, then MS = mLC . (5)

On the other hand, if an insufficient number of quay cranes are available for
the processing of a given vessel (i.e., CI > C), the lowest possible makespan is
defined by the ceiling of the total number of moves of the vessel divided by the
number of available cranes as shown in Eq. (6).

If CI > C, then MS =
⌈M

C

⌉
. (6)

5.2 The CreateSchedule Algorithm

Next, we define a linear time scheduling algorithm for the QCSP called Cre-
ateSchedule. It returns schedules that achieve the lower bounds of the
makespan defined above and for that reason is optimal. The pseudocode of Cre-
ateSchedule is shown below. It returns a table of size B × MS containing
positions of all cranes to all points in time.
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The algorithm assumes that cranes and bays are sorted in an increasing
numerical order from left to right as illustrated in Fig. 2. Initially, it calculates
MS (line 8−11) in relation to CI as described in Sect. 5.1. Following this, every
crane is assigned a workload equal to the calculated MS . Through first iteration
of the inner and outer for-loop (line 15–20), the first crane with i = 1 is initially
assigned a single move in the leftmost non-empty bay of the vessel. The remaining
iterations of the inner for-loop (line 16–20) assigns crane 1 a workload equal to
MS , such that it will be assigned as many moves as possible in the subsequent,
non-empty bays. Note that the algorithm will confirm if a bay is empty in order
to continue with non-empty bays (line 17–18). Any further iterations of the outer
for-loop will assign any subsequent cranes, which will initially be assigned the
bay where the previous crane finished. Hereafter, the process of assigning moves
to quay crane is continued in an identical fashion, such that the crane can process
at most MS moves.

In relation hereto, as M might not be divisible by MS , it may not be possible
to assign every crane a workload equal to this. As a result, the last iteration of
the outer-loop, corresponding to the last crane, might not execute MS iterations
of the inner loop. As there might not be enough moves left in the vessel, this
results in this crane having a smaller workload than MS .

The time complexity of CreateSchedule is dependent on the calculated
makespan MS , which can be calculated in constant time. When assigning cranes
to bays, MS defines the amount of iterations of the inner loop (line 16−20). In
addition, the amount of cranes C define the number of iterations of the outer
loop (line 15–20). By extension, the time complexity of CreateSchedule is
O(C × MS ).
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Example
Given a vessel with M = 30, C = 3 and MS = 10, all cranes are assigned a
workload of 10 moves. Crane 1 is assigned the leftmost non-empty bay of the
vessel, i.e., bay 1 as shown in Fig. 4.

Fig. 4. Crane 1, assigned bay 1.

Hereafter, crane 1 is assigned workload from non-empty bays until it reaches
its capacity at bay 3 as shown in Fig. 5.

Fig. 5. Crane 1 starts in bay 1 and finishes in bay 3.

The subsequent crane 2 is initially assigned to bay 3 as crane 1 will not
complete it entirely. Crane 2 has its workload assigned in the subsequent, non-
empty bays until it reaches its capacity at bay 5. The following crane 3 is initially
assigned bay 5, as crane 2 will not complete it entirely. Crane 3 has its workload
assigned in the subsequent, non-empty bays until it reaches its capacity at bay
7 as shown in Fig. 6.

Fig. 6. All cranes are assigned.

Thus, all bays of the vessel are completed, resulting in a complete schedule
as presented in Fig. 7.
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Fig. 7. An example of a schedule.

5.3 Correctness Proof

CreateSchedule does not explicitly prevent interference of cranes, which
potentially leads to the constraints of the problem being broken. In other words,
it remains to prove that the algorithm’s assignment of cranes and workload does
not violate non-interference and non-neighbouring constraints.

Proposition 1. A schedule produced by CreateSchedule does not violate the
non-interference and non-neighbouring constraints of the QCSP.

Proof. For two arbitrary adjacent cranes i−1 and i, it holds that their workload
will only overlap in a single bay j. If crane i − 1 is attending bay j − 1, the bay
to the left of bay j, then crane i is not allowed to attend bay j. Let the moves
in bay j processed by crane i be represented by mi

j . We have that mi
j must be

less than or equal to the sum of moves processed by crane i− 1 from its starting
bay si−1 to bay j − 2 as shown in Eq. (7). As a consequence, crane i − 1 and i
will not violate non-interference and non-neighbouring constraints.

mi
j ≤

j−2∑

k=si−1

mi−1
k (7)

The moves processed by crane i in bay j are equal to the sum of moves in the
pair mj−1 and mj subtracted by the number of moves processed by crane i − 1
in the pair, mi−1

j−1 and mi−1
j , as shown in Eq. (8).

mi
j = (mj−1 + mj) − (mi−1

j−1 + mi−1
j ) (8)

Considering Eq. (8) above, let us define the two different cases of MS .
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First, consider the case where MS is defined by mLC (line 8−9). The work
processed by a crane i − 1 before arriving at the pair of bays, j − 1 and j, is
defined in Eq. (9), and is equal to the total capacity of a crane, mLC subtracted
by the moves to be processed in the pair, by crane i − 1.

j−2∑

k=si−1

mi−1
k = mLC − (mi−1

j−1 + mi−1
j ) (9)

When substituting Eq. (8) and (9) into Eq. (7), we get Eq. (10) that can be
rewritten into Eq. (11).

(mj−1 + mj) − (mi−1
j−1 + mi−1

j ) ≤ mLC − (mi−1
j−1 + mi−1

j ) (10)

(mj−1 + mj) ≤ mLC (11)

Equation (11) is true by the definition of LC as there cannot exist any pair of
bays of which the sum of moves exceed mLC .

Second, consider the case where MS is defined by �M
C � (line 10–11). The

work processed by a crane i − 1 before arriving at the pair of bays, j − 1 and
j, is defined by Eq. (12), and is equal to �M

C � subtracted by the moves to be
processed in the pair, by crane i − 1.

j−2∑

k=si−1

mi−1
k =

⌈M

C

⌉
− (mi−1

j−1 + mi−1
j ) (12)

When substituting Eq. (8) and (12) into Eq. (7), we get Eq. (13) that can be
rewritten into Eq. (14).

(mj−1 + mj) − (mi−1
j−1 + mi−1

j ) ≤
⌈M

C

⌉
− (mi−1

j−1 + mi−1
j ) (13)

(mj−1 + mj) ≤
⌈M

C

⌉
(14)

Equation (14) is true by the definition of CI . If we have fewer cranes than the
crane intensity suggests, then splitting M over all cranes would result in the
average workload of all cranes, i.e., �M

C �, being greater than mLC .
Thus, given any vessel and any number of cranes, the non-interference and

non-neighbouring constraints of the QCSP are satisfied by CreateSchedule.
�

5.4 Extensions of the QCSP

The QCSP is more realistic than the QCSNIP, but as described in Sect. 2, real
quay crane scheduling problems must take into account that time is spent moving
between bays and that the productivity of cranes depends on the lift type. It
is an open question whether these extensions of the QCSP makes it NP-hard.
However, we do not see any obvious reasons that it should be the case.
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Another issue is the operational scope of the QCSP. It does not consider in
which order containers are picked from the yard of the terminal and brought to
the quay cranes. From the terminal’s point of view, this an important aspect
of scheduling quay cranes as the schedule depends on where the containers are
stored in the yard.

From the carriers point of view, on the other hand, the QCSP makes perfect
sense. Recall that the relation between terminals and carriers is contractual.
Typically, the terminal guarantees a total number of moves within a given time
window [6]. In a situation, where the terminal fails to finish the vessel within the
agreed time window, the carrier wants to be able to assess whether a makespan
exists within this time window. The QCSP can answer this question, and it is
perfectly fine for the carrier to ignore how the containers are handled on the yard
as this is the terminal’s problem. For that reason, modern stowage tools used by
carriers include heuristics that are able to compute so-called crane splits. These
crane splits corresponds to solutions of the QCSP [6].

6 Conclusion

In this paper, we show that the QCSP is tractable in the realistic setting, where
quay cranes can share the workload of bays. This is done by proposing a linear
time algorithm that finds optimal solutions to the QCSP and providing a proof of
its correctness. Our findings imply that it may be possible to formulate tractable
and optimal quay crane scheduling algorithms that model additional aspects of
the real problem including variable separation distances, quay crane performance
dependency on lift type, time to move quay cranes between bays, and varying
processing time of containers.

Directions of future work include extending the QCSP with travel time of
quay cranes, relaxing the single move per unit of time assumptions, processing
time for various types of containers, and incorporating handling priority of cargo.
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Abstract. When a Container Terminal (CT) is being newly planned or
re-designed, the yard equipment must be selected before the yard lay-
out can be planned. Commonly, Rubber-Tired Gantry cranes (RTGs) are
selected for stacking the laden containers in the yard. These are avail-
able in different dimensions, typically designed to span over yard blocks
between five to nine containers wide. The lift heights usually support four,
five, or six containers that are stacked on top of each other. But what are
the implications of the selected RTG dimension on the yard productivity?
In a step-by-step analysis, the stacking density and yard productivity are
estimated for the different RTG dimensions. The yard area of the CT MSC
Valencia serves as an example and reference. It is shown that the stack-
ing density ranges from 233 to 320 Twenty-foot Ground Slot (TGS) per
hectare (ha) and from 853 to 1744 Twenty-foot Equivalent Unit (TEU)
per ha. When the simplistic rule of one RTG per yard block is applied,
with increasing RTG spans the yard productivity decreases from 360 to
240 moves per hour. An analysis of operational data indicates that the
crane cycle times differ slightly but are less relevant in daily operations.
It is concluded that RTG deployment strategies (avoiding idling times)
should be further investigated considering a range of commonly purchased
RTG dimensions. Furthermore, the impact of higher container stacks on
the number of reshuffles needs to be revisited in this context.

Keywords: Container yard layout · Equipment selection · Maritime
logistics

1 Introduction

In global supply chains, more than 80% of the traded volumes are transported
by sea [24]. Thus, shipping companies, port authorities, and terminal operators
play an integral role in interconnecting the global economy. An estimated 60%
of maritime trade by weight is classified as bulk, while an estimated 20% is
containerized trade, which allows for the standardized transport of, e.g., pro-
cessed products and manufactured goods [24]. The necessary infrastructure is
created, maintained, and updated by port construction projects, such as green-
field projects (i.e., creating a single new terminal or a whole new port), mod-
ernization projects (e.g., repairing the existing infrastructure), and expansion
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projects (e.g., adding berths, deepening existing berths, or adding yard area)
(cf., e.g., [21]). These infrastructure projects are planned and executed by port
planners [9]. Each change in the port and terminal infrastructure sets the ground
for future economic growth and affects the position of the port as a whole and
the terminals in particular in the global supply chains. CT operators can posi-
tion themselves differently in the market in terms of costs, reliability, speed, and
flexibility of the container handling processes [25]. However, the CT operators
are constrained by the terminal infrastructure that, once constructed, can only
be changed at high cost. This is both true for equipment operating on rails (cf.
[9]) and tires (cf. [17]). To ensure the longevity of the terminal infrastructure,
the pavement is reinforced at places of heavy-duty operations, e.g., RTGs only
operate on RTG runway beams that are constructed to sustain the weight of the
RTG [17]. Thus, the stacking equipment must be selected (but not necessarily
procured) before the infrastructure construction work commences.

Most commonly, RTGs are used for stacking the containers in the yard [26].
The required investment is lower than for Rail-Mounted Gantry cranes (RMGs)
because no rails are needed and the weight of the equipment is lower, requiring
less reinforcement for the pavement [2]. At the same time, they achieve a higher
stacking density than reach stackers or straddle carriers [2]. RTGs come in differ-
ent dimensions. While the overall weight of the RTG determines how much the
pavement requires reinforcement, the RTG span dictates the gap between the
two RTG runway beams. But which RTG spans and which RTG lift heights are
most commonly procured and, therefore, deserve special attention? In Table 1,
the latest purchase data from [28] is displayed. When in the original data the
span was provided in meters, the following rule of conversion was used:

s = 6.2m + 2.9m · r (1)

Here, s denotes the RTG span in meters, and r denotes the number of TGSs in
one bay. The two constant measurements are based on [15]. For example, when
comparing the weights of the RTGs which lift 1-over-51 with the models lifting
1-over-6, a difference of approximately 10t can be identified, with a total weight
ranging between 64.8t for the 5+12 wide 1-over-5 high RTGs up to 82.3t for
the 7+1 wide 1-over-6 high RTG [13]. Thus, the implications for construction
are imminent – heavier equipment requires better reinforced pavements. Yet
the question remains why one should opt for a certain RTG dimension. What
are the driving factors for choosing a specific RTG span and lift height? In this
publication, the consequences of the RTG span and lift height on the productivity
of the CT are examined analytically. In Sect. 2, the first general concepts of
yard layout planning are introduced. Then, in Sect. 3, the applied methods are
introduced and explained. The results and insights are discussed in Sect. 4. Last,
the conclusions are drawn in Sect. 5.
1 1-over-5 means that the containers can be stacked five containers high without block-

ing the RTG to lift another container over such a stack.
2 5+1 stands for a yard block 5 containers wide and an additional transfer lane, com-

pare also Fig. 1.
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Table 1. The number of RTGs delivered in 2021 or planned to be delivered in the next
two years as of November 2021 [28]

Lift height

1-over-3 1-over-4 1-over-5 1-over-6 Total

Span

<20 m - - 10 - 10

5+1 5 - - - 5

6+1 - 17 342 201 560

7+1 - 8 102 89 199

8+1 - 4 13 12 29

8+2 - 6 - - 6

9+1 - - 10 5 15

10+1 - - - 2 2

Total 5 35 477 309 826

2 Theoretical Background

In the process of choosing the stacking equipment for the yard, the stacking
density plays a major role [2,3,7]. A high stacking density is reached if more
container stacks are placed in the yard, typically measured in TGS/ha. The
yard capacity also takes the stacking height into account, leading to the sec-
ond stacking density metric of TEU/ha (e.g., [2]). The stacking density directly
impacts how fast a container can be retrieved from a stack: The more TGSs are
available, the lower the mean stacking height is for a set quantity of contain-
ers. The lower the mean stacking height is, the less likely it is that reshuffling
becomes necessary, minimizing the average time of retrieving containers [12].

When planning a port, first the annual throughput at the seaside of the CT
is determined; based on the figures, the required yard throughput is calculated
(expressed as TEU p.a.) [27]. The yard capacity (expressed in TEU) is inter-
related with the required annual yard throughput, as the demand and supply
approaches show.

In the demand approach, the required yard area is calculated for a given
stacking equipment and expected annual container volumes and dwell times
while considering a certain peak factor, e.g., for minor supply chain disturbances
[3]. Such an approach is helpful when the overall yard area is not fixed yet, e.g.,
because different plots of land are available or because the overall CT area can
be expanded into the sea or harbor basin by means of backfilling.

A second approach is the supply approach; here, the maximum annual con-
tainer volume achievable with a given number of TGSs is determined based on
the expected container dwell times, the mean stacking height, and a peak factor
[3]. This approach is useful when a plot of land has already been assigned, the
size is constrained (e.g., by a small harbor basin), and now the actual yard layout
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needs to be decided on – a question that also includes the selection of the yard
equipment.

While performing the calculations for the yard capacity, the actual stack-
ing density of the stacking equipment needs to be considered. Here, the RTG
dimensions do make a difference in the calculation. The lift height of the RTG
must support the assumed mean stacking height and limits the maximum height
of the container stacks at the terminal. The span of the RTG determines how
many TGSs can be placed side-by-side. In Fig. 1, the block design for an RTG
yard and the typical RTG movements are depicted. Every yard block consists of
the container stacking area organized into bays and rows, a transfer lane below
the portal for the yard trucks, two RTG lanes (the ones which are especially
reinforced), and a bypass lane. The RTG gantries on the RTG lane to reach
the different bays, then it trolleys between the different rows (this both moves
the operator cabin and the spreader within the portal), and finally it hoists and
lowers the spreader either with or without a container. The two RTG lanes, the
transfer lane, and the bypass lane are fixed in size and constitute the traffic area
of the yard block. Thus, the more container rows an RTG spans, the larger the
ratio of TGSs to the traffic area becomes, leading to a higher stacking density.
This claim is further examined and quantified in the remainder of this paper.

In the back-to-back design, two yard blocks share a bypass lane, and every
second yard block is mirrored along the x-axis. In Fig. 2, a simplified example
yard layout is depicted. The road network is colored in dark gray, and each yard
block colored in slate gray is provided with an identifier following the naming
convention from [23]. The spare area is colored in light gray.
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Fig. 1. The yard block structure and the RTG activities therein.
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Fig. 2. In a back-to-back RTG layout, two blocks facing each other share a bypass
lane.

Yet yard capacity is not everything – yard productivity is of similar impor-
tance. This term describes how fast containers can be stored in and retrieved
from the yard. Given the assumption that sufficient equipment is available for
horizontal transportation, the yard productivity can be simplified as the sum
of the productivity of all stacking cranes. Crane productivity is typically mea-
sured in productive container moves per hour [7,27]. Reshuffles are considered
unproductive and are thus not counted in this metric. Alternatively, often the
cycle times of stacking equipment are reported, e.g., measured in minutes or
seconds [1,27]. When double cycles3 are rare, the number of moves per hour is
approximated by dividing one hour by the average crane cycle time.

At the beginning of this section, it was argued that given a set number of
containers, a number of TGSs leads to a lower average container stack height
and thus fewer reshuffles. To capitalize on this, however, the number of moves
per hour must not increase notably. If the number of handled containers per
hour goes down notably with larger RTG models, the relatively lower number
of unproductive moves might not create the expected positive impact.

Yard productivity is influenced by many factors, and there is no straight-
forward approach to determine the expected moves per hour based only on the
layout information discussed so far. A major advantage of RTGs is that they
can be transferred between yard blocks, allowing great flexibility during peaks

3 A double cycle occurs when within one crane cycle both a truck-to-stack and a
stack-to-truck task are executed, also see [27].
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time [16]. This is especially true for the diesel models and partly for their elec-
trified counterparts [4]. Thus, at each yard block either no, one, or several RTGs
operate. The number of RTGs per yard block is limited by work safety concerns,
e.g., at most two RTGs per yard block are reported for a case in Hong Kong
[16]. Since all RTGs at a terminal are of the same size and run on the same
runway beams, they cannot bypass each other, leading to interference issues
well known and scientifically studied for RMG twin systems (e.g., [11]). Thus,
with an increasing number of RTGs in the same yard block, the productivity of
the equipment will eventually decrease. Moreover, transferring an RTG between
two yard blocks takes time; 10–15 min are plausible figures here [16]. During the
transfer, the road network is blocked, leading to longer cycle times for horizontal
transport. To avoid these problems of crane interference and transferring RTGs
between blocks, it is assumed that one RTG operates in one yard block. This
assumption is also close to the current operations at the chosen example, CT
MSC Valencia. They own 25 RTGs and have 22 yard blocks [23]. Given that
assumption, the number of yard blocks gains importance. The wider RTG spans
lead to fewer yard blocks for the same given yard depth, decreasing the number
of RTGs operated on the same plot of land. If the productivity of each RTG
is fixed at 15 moves per hour independently from its dimension (cf., e.g., [19]),
the yard productivity decreases accordingly. Following the assumption that each
Ship-To-Shore gantry crane (STS crane) accomplishes 30 moves per hour (cf.
[19]), there should be two RTGs for each STS crane. Due to the complexity of
equipment coordination in real operations, a ratio of 2.5 RTGs per STS crane
is rather advisable [20]. At a yard depth of 330 m, for the 9+1 spanning RTG,
only 16 yard blocks fit into the given plot of land, resulting in an average yard
productivity of 16 · 15 = 240 moves per hour. This corresponds to the seaside
productivity of eight STS crane; based on the assumption of 2.5 RTGs per STS
crane, only 6.4 of them can reach appropriate productivity levels. For the same
yard depth, a 5+1 wide RTG-based yard achieves 24 · 15 = 360 moves per
hour, corresponding to the productivity of 12 or 9.6 STS crane, respectively.
This means that with wider RTGs, the yard capacity increases but the yard
productivity decreases, potentially throttling the seaside productivity.

But is the lower number of RTGs the only negative impact on yard pro-
ductivity? As the equipment is larger, the speed of container handling might
be affected. The producers indicate that the speed of the motors for gantry-
ing, hoisting, trolleying, and lowering is identical, irrespective of the dimension
[13,15]. With larger RTG dimensions, however, the overall path a container is
trolleyed is longer. This raises the question of whether these longer distances
notably impact the crane cycle times and thus the crane productivity. This line
of argument is pursued further in the following.

3 Method

First, in Sect. 3.1, it is explained how the impact of the RTG dimension on the
stacking density and yard capacity is estimated. Afterwards, in Sect. 3.2, the
yard productivity is approximated.
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3.1 Method to Estimate Stacking Density

For each RTG dimension, the stacking density is calculated for a fixed plot of
land. This follows the perspective of the supply approach [3], with the difference
that the number of TGSs is varied with each layout alternative. The terminal
layout of MSC Terminal Valencia is used for reference [23]. This fixes the yard
area and provides the opportunity to validate the estimated stacking densities for
the commonly used RTG dimensions. Based on freely available satellite imagery
[5,8], the sizes of layout objects are taken. In Table 2, the generalized lengths and
widths used for further analysis are presented (also cf. [3]). It is assumed that
10 of the RTG lanes are used for laden containers and that the remaining lanes
are used for empty containers which are handled by empty container handlers
(see especially the year 2019 at [8]). These are thus out of scope for the further
analysis. In addition, the reference layout is slightly simplified by dropping reefer
racks and assuming a static yard block length. The yard area is determined by
the yard depth and yard width and amounts to 24 ha of the total 38 ha [23].
To compare the differences in number of TGSs fitting into the area, alternative
yard layouts based on the different RTG spans are constructed as follows:

Table 2. The assumed sizes of layout objects

Abbreviation Measurement name Length

TGSw width of TGS 2.438m

TGSl length of TGS 6.058m

sdTGS Safety distance for each TGS 0.3m

lt Truck lane width 4.0m

lRTG/trucks RTG lane width incl. safety distance to trucks 2.5m

lRTG/RTG RTG lane width incl. safety distance to other RTG 5.0m

yd Yard depth 330.0m

yw Yard width 725.0m

ybl Yard block length 335.0m

ybw Yard block width 50 TGS

1. Determine the yard block width for the number of r rows (cf. Fig. 1):

ybw(r) = lRTG/trucks + lRTG/RTG + lt + (TGSw + sdTGS) · r

2. For the back-to-back design (cf. Fig. 2), start with a yard block of the width
ybw(r) and then a bypass lane with a width of lt.

3. Afterwards, place two yard blocks and a bypass lane of the same dimensions
alternately until the yard depth yd is used up.

4. If the last yard block is not adjacent to a bypass lane, then drop it.
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This one-dimensional sequence of layout objects is then expanded into the sec-
ond dimension by starting with four truck lanes, then the first one-dimensional
sequence, another four truck lanes, then the same one-dimensional sequence, and
the last four truck lanes After the construction of the two-dimensional layout,
the number of positioned yard blocks (nyb) is counted. Then, the number of TGS
in the yard is derived:

nTGS = nyb · r · ybw
This constructive algorithm is executed for the RTG dimensions of 5+1 up to
9+1. An example of a layout created according to these instructions is depicted in
Fig. 2. Recently sold RTGs with spans of less than 20 m vary in actual dimensions
and cannot be easily grouped; RTGs with spans of 8+2 and 10+1 account for
less than 1% of total data and are thus ignored. The yard depth is slightly varied
to check for the sensitivity of the solution.

Given the number of TGS, the stacking density of the example terminal is
calculated. Now the heights of the container stacks come into play. The static
capacity is calculated by multiplying the number of TGS by the maximum stack-
ing height. This static capacity, however, does not take into account that RTGs
need to reshuffle within a bay and thus require some empty buffer slots, all
because RTGs do not gantry with containers [14]. The operational capacity for
each bay is thus its static capacity minus the lift height plus 1, e.g., for a 7+1
wide and 1-over-5 high RTG, the static capacity is 35 and the operational capac-
ity is 31 (also see [14]). Hence, the maximum average stacking height based on
the operational capacity not only changes with the lift height of the RTG but
also with the number of rows in a bay. In this step, the maximum stacking den-
sity based on the operational capacity for the lift heights of 1-over-4, 1-over-5,
and 1-over-6 is calculated.

3.2 Method to Estimate Yard Productivity

In the scope of this analysis, yard productivity is defined by the sum of the
productivity of all RTGs operating in the yard. We are especially interested
in the maximum yard productivity, i.e., how many moves per hour the RTGs
can achieve during a peak situation when they never need to wait for the next
stacking task. For the sake of simplicity, it is assumed that each RTG operates
independently. It is examined how long the crane cycle time of a larger RTG lasts.
For that purpose, operational data of RTGs spanning over six container rows
are examined and the influence of the RTG dimension on the time consumption
is estimated. The data is taken from [1] and re-interpreted in that regard. RTGs
perform three different types of stacking tasks [1]:

1. They move a container from a truck to a stack,
2. They move a container from a stack to a truck, and
3. They move a container from a stack to another stack.

In [1], the authors concentrated on the state of the spreader, including wait-
ing times that appear in daily operations. For further analysis, several states of
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spreaders are summarized, leading to five remaining groups. For each group, the
presented average data of all RTG models are summarized in boxplots. First,
the RTG moves to its next task by gantrying and trolleying (referred to as
Moving Empty by the original authors). Second, the RTG waits with an empty
spreader (Waiting Empty). Then, the container is picked up (Approaching Con-
tainer, Waiting for Lifting, Lifting Container, and Catching Container). After-
wards, the RTG trolleys to the right stack or the transfer lane (Moving with
Container). Last, the container is placed at its destination and the spreader is
hoisted again (Waiting with Container, Approaching Landing, Waiting for Land-
ing, Place Container, and Lift Empty). This comparison of time consumption
differentiates between the span-dependent and span-independent parts of the
container handling process. In a second analysis, the trolleying data from [1] is
analyzed. It is checked how much time on average it takes to trolley the spreader
to its target position. The trolleyed distances are converted to TGS based on
Eq. 1.

4 Results and Discussion

In Sect. 4.1, it is shown how the different RTG spans lead to different stacking
densities. Later, in Sect. 4.2, the impact of the RTG dimension and the lower
number of RTGs on the yard productivity is estimated.

4.1 Estimated Stacking Density

In Fig. 3, the stacking density for each RTG span is depicted. It is shown that the
number of TGS/ha varies notably between the different block widths, ranging
from 233 TGS/ha for an RTG span of 5+1 and a yard depth of 325 m up to
320 TGS/ha for an RTG span of 9+1 and a yard depth of 310 m. For a given
block width, a jigsaw pattern appears. With increasing yard depth, the stacking
density decreases until another yard block fits into the given area and a small
peak appears (see Fig. 3). In rare cases, the RTG span does not have an impact
at all, e.g., for the yard depth of 330 m and the yard block width of five or six
TGS. In most cases, however, the stacking density increases with the increasing
RTG span. The area utilization approximately increases by 16 TGS/ha with
every additional row under the RTG span. The figures for the 5+1 and 6+1
wide RTGs are comparable to previously reported results [3], indicating that
the measurements and the constructive algorithm are valid.

In Fig. 4, the maximum operational capacity is depicted. For each block
width, the yard depth most advantageous to the specific RTG span is selected
(cf. previous paragraph). When comparing the block widths of five and nine, the
yard capacity increases by 48% on average. When comparing the stacking height
of four with that of six, the yard capacity increases by 38% on average, thus lead-
ing to less capacity at the price of a higher chance of reshuffling. These results
show that considering the RTG dimensions adds some complexity to estimating
the stacking density.
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Previously, a yard capacity of approximately 1000 TEU/ha has been reported
for RTGs [2,22]. For this estimate, however, only block widths of up to eight con-
tainer rows and a stacking height of four have been considered [2]. The maximum
of 1,744 TEU/ha clearly surpasses the value and is also larger than the stacking
density of some of the RMG-based yard layouts [2]. This clearly indicates that
the choice of stacking equipment cannot be made solely based on the stacking
density. Instead, additional considerations, such as cost structures or opportu-
nities for automation, need to be taken into account [7,10,25].

Fig. 3. With increasing yard block width, the area utilization increases for each varia-
tion of the yard depth.

Fig. 4. The yard capacity increases with the stacking height and block width

4.2 Estimated Yard Productivity

The results of the operational data regarding crane cycle times are depicted in
Fig. 5. The RTG spends approximately 60 s on average to move to the target



84 M. Kastner and C. Jahn

location, possibly including gantrying. Then, approximately 60 s are spent wait-
ing. This time varies largely between the different RTGs, indicating that this
might change with the workload and/or the operational planning. Each of the
next three tasks takes approximately 30 s on average: The container is first picked
up, then trolleyed to its final destination, and only then is the spreader lowered.
Finally, the container is placed at its target position. Including the waiting times,
the total duration of a cycle amounts to 225 s, or 16 moves per hour. When the
time consumed in the state of Waiting Empty is dropped, a theoretical cycle
time of 155 s and 23 moves per hour on average are achievable. Such an average
cycle time is not only theoretically possible but is also backed up by previous
reports: When RTGs are switched on, they idle for one third of the time [18].

In Fig. 6, the trolleying times are shown. The arithmetic mean for the trol-
leying distance of one TGS lies at approximately 24 s and increases with the
number of TGSs. For six TGSs, the average trolleying time amounts to 39 s.
The ditched line indicates the data-fitted linear regression line for the following
formula:

tavg(d) = 21.44s + 3.1s · d (2)

Here, tavg(d) describes the arithmetic mean time consumed for trolleying a con-
tainer over the distance d, which is measured in TGS. When using this formula
to extrapolate the average time for trolleying nine TGS, this results in 49 s, just
10 s more than for six TGS. When it is assumed that all stacks are used at the
same frequency, for the 9+1 wide RTG, two thirds of the trolleyed distances
are the same as for the 6+1 spanning model, and only the remaining three TGS
require slightly longer trolleying times, leading to average trolleying times of only
five seconds more when moving a container. In comparison with the examined
waiting times of the previous paragraph, this seems negligible. Thus, the impact
of the RTG dimension on the crane cycle time and crane productivity is existent
but minor in nature.



Impact of RTG Crane Dimension on CT Productivity 85

Fig. 5. Consumed times for RTG activities based on [1]

Fig. 6. Consumed times for trolleying based on [1]

5 Conclusion and Outlook

The dimensions of the recently purchased RTGs differ notably. In this paper, two
analyses have been performed to estimate the impact of these dimensions on the
yard productivity at CTs. In the first step, alternative layouts have been designed
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and evaluated regarding the stacking density. The results have been partially
validated with previously reported figures and show that the stacking density
increases tremendously with larger RTG dimensions. The increase from 233 to
320 TGS/ha leads to a lower average stacking height and thus less expected
reshuffles given the same container throughput. With the decrease of reshuffles,
the percentage of productive moves per hour are expected to increase for each
RTG.

The exact increase depends on further assumptions regarding the inter-
changeability of containers; e.g., while loading a vessel, containers destined for
that vessel that share the same port of destination and weight class are exchange-
able [6,14]. Further work to examine the impact of different stacking heights
on yard productivity based on realistic operational data considering container
groups seems promising.

In the second step, the crane productivity of a single RTG has been calcu-
lated and the importance of its dimension is evaluated. Under the assumption
of identical velocities for each movement independent of the RTG dimension,
the longer trolleying distances for wider RTGs are negligible for the cycle times.
Under the second assumption that one RTG operates in only one yard block,
wider RTG spans lead to a lower number of yard blocks and thus less RTGs
operating at the same time. The lower number of RTGs decreases the yard pro-
ductivity significantly.

If a certain yard productivity is required that is higher than what can be
reached with one RTG per yard block, several RTGs need to operate in the same
yard block. This leads to known operational issues related to safety distances
and crane interference. Whenever the flexibility of RTGs to switch blocks is
capitalized on, the reassignment of RTGs between yard blocks adds operational
complexity. Further work to examine these operational issues while considering
several RTG dimensions is considered fruitful.

In Sect. 4.2, the line of argument was based on operational data of RTGs
spanning over six TGSs. The time consumption data of trolleying the container
have been extrapolated to an RTG spanning over nine TGSs (see Eq. 2). This
indicated a difference of only approximately three seconds per TGS and was
thus considered to be negligible. While the velocities indicated by the equip-
ment producers might be identical for all RTG dimensions, practitioners have
mentioned that larger RTGs tend to be less sturdy, potentially leading to longer
crane cycle times. Actual operational data from RTGs of all kinds of dimensions
are required to further back up these claims.
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Abstract. The first-mile problem, which refers to the design of trans-
port services that connect passengers to their nearby transit station,
has attracted growing attention in recent years. In this paper we con-
sider first-mile ride-sharing services and study the problem of optimally
determining the fleet size and assigning vehicles to transport requests. We
formulate the problem as a mixed-integer program and present a number
of numerical experiments based on a small-scale system to analyse differ-
ent configurations of the service, namely with and without fleet control
(FC). Result shows that a configuration with FC is superior in terms of
profits while service rates can be higher in a configuration without FC,
depending on the revenue-sharing mechanism.

Keywords: Fleet control · First-mile · Ride-sharing

1 Introduction

As the size of urban areas and population increase, and with them road con-
gestion and air pollution [1], ride-sharing services emerged as more sustainable
urban transportation solution, linked to e.g., a reduction in the number of pri-
vate cars on the road, emissions and road congestion [2]. Particularly, first-mile
ride-sharing services, that is transportation services that connect passengers to
their nearby transit station using shared vehicles, have attracted growing atten-
tion. According to the NYC taxicab data [3], there were 3 122 731 taxi trips to
the Pennsylvania Station in New York City in 2017 that is, on average 8 555
taxis traveled to this station every day. However, 70.1% of these trips had only
one passenger on board [4]. This leaves significant potential for the development
of shared trips to transit stations.

In this article we study the problem of dimensioning a first-mile ride-sharing
fleet and optimizing the process of order dispatching, which means assigning
transport requests to vehicles. The problem of dimensioning shared fleets has
recently been studied in a number of articles. In [5,7,9] the focus is on so-called
ride-hailing services, where each vehicle satisfies one request at a time (i.e.,
rides are not shared). In this paper, we focus on ride-sharing services, where
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each vehicle satisfies multiple requests simultaneously. In [6] the size of a fleet of
autonomous vehicles is determined. The autonomous vehicles are integrated into
a transit network, and run according to predefined patterns. On the contrary, in
our case, vehicles do not run according to predefined patters, but react to the
arrival of requests. In [8] the focus is on ride-sharing services. The authors develop
a method to determine how many vehicles are needed and where they should be
located in order to service all the requests. The method is designed for offline
use based on historical demand. In this article, we focus on online optimization
and do not require vehicles to be placed at pre-determined locations. Also in [10]
a ride-sharing service is considered. The authors use simulation to estimate the
minimal fleet size required for a system that connects a university campus to
a train station. This system requires predefined pickup and drop-off locations,
while our system does not have this requirement. Moreover, in [11] the authors
propose a vehicle-sharing network model to obtain the optimal and near optimal
solution fleet size for the urban-scale data. The method obtains a re-organization
of the taxi dispatching, without assuming ride-sharing. Instead we provide an
explicit mathematical model for the problem. Finally, unlike in [12], where the
authors consider elastic vehicle supply, which considers hiring privately-owned
freelance autonomous vehicles, we focus on controlling the fleet size without
hiring external fleets.

The main contribution of this work can be stated as follows:

– We propose a mixed-integer programming (MIP) problem for online optimiza-
tion of order dispatching and fleet size, which accounts for several constraints
such as desired arrival time and maximum waiting time. The model is flexible
enough to accommodate different ride-sharing business models.

– While existing studies focus mainly on metrics such as idle time, waiting time
[8] and costs [10], we use the model to assess different configurations of the
service. Particularly, we consider a configuration where the service provider
owns the fleet and hires drivers as well as configurations where the service
provider does not own the fleet but acts as a platform that optimally connects
passengers to vehicles. In this case the service provider shares revenues and
costs with the drivers and we assess two different sharing schemes.

– We test our model on a number of artificial instances generated to mimic the
different configurations of a small-scale service. Our model for online opti-
mization is used in a rolling horizon procedure with periodic re-optimizations
based on the arrival of new requests and updated system information (e.g.,
vehicles position).

The remainder of this article is organized as follows. In Sect. 2 we provide a
formal definition of the problem and introduce the corresponding mathematical
model. In Sect. 3 we describe our numerical experiments and present results.
Finally, we draw conclusions in Sect. 4.
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2 Problem Description and Mathematical Model

In this section we provide a description of the problem followed by a mathemat-
ical model.

A set of vehicles K, with each vehicle k ∈ K initially available at the respective
location o(k), is employed to provide first-mile ride-sharing services to a set of
customers from their respective location to a designated station d located at
o(d). The set of customers is partitioned into a set of mandatory customers
NP , representing the customers whose transportation request has been accepted
during a previous optimization phase but not yet fulfilled, and a set of new
customers NC whose requests have arrived recently and may or not be accepted.
We let o(i) be the location of request i ∈ NP ∪ NC . The company is to decide i)
which vehicles to dispatch, if not already dispatched, ii) which new requests to
accept and iii) how to assign ride-sharing requests to vehicles.

Each vehicle v has Vk passengers on board at the beginning of the operational
period. Vk is an input parameter determined by the requests assigned to vehicle
k in previous optimization phases. Let Q be the total capacity of a vehicle
(we assume a homogeneous fleet). Parameter Uk is equal to 1 if vehicle k has
been dispatched in any of the previous re-optimization phases, 0 otherwise. In
the latter case Vk is zero. The company bears a fixed cost C̄ for each vehicle
dispatched and a cost C per unit of travel time. Picking up new customer i ∈ NC

yields a revenue Pi. Such customers may however be rejected. The revenue for
customers in NP has been collected during a previous optimization phase, when
the request was accepted, and these customers are now treated as mandatory.

The operating period starts at time T . The travel time between locations
o(i) and o(j), with i ∈ K ∪ NP ∪ NC , j ∈ NP ∪ NC ∪ {d}, is Tij . Each
customer has a requested pickup time TP

i and arrival time TA
i and we let

TL := maxi∈NP ∪NC
{TA

i }. The difference between the requested pickup time
and the actual pickup time cannot be larger than Δ. Furthermore, each vehicle
has a latest arrival time Tk representing the earliest arrival time among the Vk

passengers already on board vehicle k at the beginning of the planning phase.
We introduce the following decision variables. Let xk

ij , for i ∈ {k} ∪ NP ∪
NC , j ∈ NP ∪NC ∪{d}, k ∈ K, be equal to 1 if vehicle k moves directly between
o(i) and o(j), 0 otherwise. Let tAk be the actual arrival time of vehicle k to
the station, for k ∈ K. Let tPi be the actual pickup time of customer i, for
i ∈ NP ∪ NC . Finally, let Sk be equal to 1 if vehicle k is dispatched in the
current re-optimization phase, 0 otherwise.

The problem is hence

max
∑

k∈K

∑

i∈NC

∑

j∈NC∪NP ∪{d}
Pix

k
ij −

∑

k∈K
C̄Sk (1a)

−
∑

i∈{k}∪NC∪NP

∑

j∈NC∪NP ∪{d}

∑

k∈K
CTijx

k
ij

s.t.
∑

j∈NC∪NP ∪{d}

∑

k∈K
xk
ij ≤ 1 ∀i ∈ NC (1b)
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∑

j∈NC∪NP ∪{d}

∑

k∈K
xk
ij = 1 ∀i ∈ NP (1c)

∑

i∈NC∪NP ∪{k}
xk
ij =

∑

i∈NC∪NP ∪{d}
xk
ji ∀j ∈ NC ∪ NP , k ∈ K (1d)

∑

j∈NC∪NP ∪{d}
xk
kj =

∑

j∈NC∪NP ∪{k}
xk
jd ∀k ∈ K (1e)

∑

i∈NC∪NP ∪K
xk
id ≤ 1 ∀k ∈ K (1f)

tPi + Tij ≤ tPj + TL(1 −
∑

k∈K
xk
ij) ∀i, j ∈ NC ∪ NP (1g)

T + Tkj ≤ tPj + TL(1 − xk
kj) ∀j ∈ NC ∪ NP , k ∈ K (1h)

tPi − TP
i ≤ Δ ∀i ∈ NC ∪ NP (1i)

tAk ≤ TA
i + TL(1 −

∑

j∈NC∪NP ∪{k}
xk
ji) ∀i ∈ NC ∪ NP , k ∈ K (1j)

tAk ≤ Tk ∀k ∈ K (1k)

tPj + Tjdx
k
jd ≤ tAk + TL(1 − xk

jd) ∀j ∈ NC ∪ NP , k ∈ K (1l)

Vk ≤ Q
∑

j∈NC∪NP ∪{d}
xk
kj ∀k ∈ K (1m)

∑

i∈{k}∪NC∪NP

∑

j∈NC∪NP

xk
ij + Vk ≤ Q ∀k ∈ K (1n)

Sk ≥
∑

j∈NC∪NP ∪{d}
xk
kj ∀k ∈ K (1o)

Sk ≥ Uk ∀k ∈ K (1p)

xk
ij ∈ {0, 1} ∀i ∈ {k} ∪ NC ∪ NP , j ∈ NC ∪ NP ∪ {d}, k ∈ K (1q)

tAk ∈ R
+ ∀k ∈ K (1r)

tPi ∈ R
+ ∀i ∈ NC ∪ NP (1s)

Sk ∈ {0, 1} ∀k ∈ K (1t)

The objective function (1a) represents the total profit made of the revenue of
picking up customers minus dispatching and traveling costs.

Constraints (1b) and (1c) state that new customers may be picked up at
most once, while mandatory customers must be picked up exactly once, respec-
tively. Mandatory customers are those already accepted during a previous re-
optimization phase. Constraints (1d) are flow conservation constraints, which
state that whenever a vehicle visits a customer it must also move to another
customer or to the station. Constraints (1e) state that, if a vehicle departs from
its original location o(k) it must terminate its journey at the station. Constraints
(1f) ensure that each vehicle travels to the station at most once.
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Constraints (1g) state that if customers j is picked up by vehicle k immedi-
ately after picking up customer i, then the actual picking up time of customer
i plus the travel time between customer i and j should be less or equal to cus-
tomer j’s actual pick up time. Constraints (1g) may be improved as described by
[13,14]. Similarly, (1h) define the pickup time when the vehicle comes directly
from its original location. Constraints (1i) ensure that the difference between
actual pick up time and the requested pick up time of each customer do not
exceed the maximum waiting time Δ. Constraints (1j) ensure that the arrival
time of vehicle k at the station is earlier than the requested arrival time of any
of the customers on board. For instance, if customer i is picked up by vehicle k,
the right-hand-side will always be equal to TA

i , which means the actual arrival
time of vehicle k needs to be less than or equal to the requested arrival time of
customer i. Constraints (1k) ensure that the actual arrival time of vehicle k is
earlier than the earliest requested arrival time Tk of the passengers already on
board at the beginning of the planning phase. Constraints (1l) define the rela-
tionship between pickup and arrival time. For example, if j is the last customer
picked up by the vehicle k before arrive at the station, then xk

jd takes value 1,
the left-hand-side becomes tPj + Tjd and the right-hand-side becomes tAk , which
means that the actual pick up time of j plus the travel time between customer
j and station should be equal to the actual arrival time of vehicle k. If j is not
the last customer picked up by the vehicle k before arrive at the station, then
the left-hand-side becomes tPj and the-right-hand side becomes tAk + TL, which
always holds. Altogether, constraints (1j) and (1k) define an upper bound on tAk
while (1l) define a lower bound.

Constraints (1m) state that the vehicles that already have customers on
board at the beginning of the planning period must be dispatched, while (1n)
ensure that the total capacity is not violated. Constraints (1o) set Sk to 1 as
soon as vehicle k is dispatched. Constraints (1p) ensure that the vehicles already
dispatched in previous re-optimization phases are still available in the current
re-optimization phase.

3 Numerical Experiment

In this section we report on the results of our numerical experiments. The scope
of the experiments is to assess, in terms of profits and service rates, two different
configurations of the service which we refer to as with fleet control (wFC) and
without fleet control (woFC). The former refers to a situation where the service
provider owns the fleet and bears all costs and profits. All vehicles are initially
idle and the provider decides which of them to dispatch, paying a fixed cost
for each dispatched vehicle which covers e.g., the salary of the driver, wear and
maintenance. In the configuration woFC the service provider does not own the
fleet and acts as platform that connects passengers to vehicles. In this case
vehicles are considered to be always available so that the provider does not pay
a fixed cost upon dispatching a vehicle. However, in this case, revenues are shared
between the driver and the service provider. Particularly, we test two different
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revenue-sharing schemes inspired by the business configuration adopted by Uber
[19]. In the first scheme, which we refer to as woFC-40, the company keeps 40%
of the trip fare (thus the driver keeps the remaining 60%) but bears variable
costs (e.g., fuel/charge). In the second scheme, which we refer to as woFC-25,
the company keeps only 25% [19] of the trip fare but does not cover variable
cost.

The different configurations are tested by using an appropriate setting of the
parameters in model (1). All problems are solved using the Python libraries of
GUROBI 9.5.0 a server equipped with Intel Core i5 CPUs and 16 GB of RAM.

3.1 Instance Generation

We test our model on a number of artificial randomly generated instances that
mimic the different configurations of the service. The instances are generated as
follows.

The business area is represented by a 4 × 3 rectangular area with the sta-
tion located at the center of the area (2, 1.5). We randomly generate travel
requests with their respective pickup location, pickup time, drop-off time, and
fare. Requests pickup locations are randomly generated in the 4×3 area. For each
request, the requested pickup time TP

i is randomly generated uniformly between
0 and 5 minutes, the requested arrival time TA

i is the sum of the requested pickup
time, the travel time between the pickup location i and the station d, and a ran-
dom generated buffer time between 5 and 10 minutes. Since the focal rectangular
area is continuous, travel times Tij are calculated using Euclidean distances and
assuming an average speed of 36 km/h following [15]. The unit cost C of the
transportation is set to 11.25$/h [16] and trip revenues Pi are computed using
an hourly rate set to 56.16$/h with a base fare of $2.5 following [17].

In the configuration wFC the fixed cost C̄ is set to $2.8 and represents mainly
the salary of the driver. This cost is obtained using Lyft salary – $33.75/h, see
[18] – as our reference and considering that our method re-optimizes every 5
minutes. Thus, the fixed cost C̄ for each re-optimization is $33.75/60*5 = $2.8.
In Sect. 3.2 we assess the impact of this parameter. In the configurations woFC-
40 and woFC-25, the trip fare is reduced to 0.4Pi and 0.25Pi, respectively to
mimic the corresponding revenue-sharing scheme. In the configuration woFC-
40 the company covers variable costs using the unit transportation cost C cost
described above, while in the configuration woFC-25 the company does not cover
transportation cost, so C = 0. In both cases the dispatching cost is C̄ = 0.

We generate instances with different number of customers and vehicles.
Particularly, we create instance classes named V |K|C|NC | with vehicles in
|K| ∈ {8, 10, 12, 20}, and customers, |NC | ∈ {6, 8, 12}. As an example, V 8C6
indicates a class of instance with 8 vehicles available for dispatch and 6 new cus-
tomers in each re-optimization phase. Such instances are perhaps representative
of a potential service in a small peripheral station or in a small urban context.
Finally, for each instance class we randomly generate 3 instances.

Finally, we consider a one-hour planning horizon with online re-optimization
every 5 minutes, leading to a total of 12 re-optimizations for each instance.
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It should be noted that at each re-optimization we update the status of the
system (i.e., vehicles positions and customers on board) and randomly select the
corresponding number of new customers, while considering previously accepted
customers as mandatory.

Figure 1 illustrates how information is updated between re-optimizations on
an instance with three vehicles and four new customers for each re-optimization
phase. Figure 1(a) illustrates the initial position of vehicles (yellow squares),
customers (blue circles) and customers that have been assigned to vehicles in the
previous re-optimization phases but have not yet been picked up (red circles)
– the station is identified by the black triangle. Figure 1(b) shows the routes
computed for the vehicles in the corresponding re-optimization phase. It can be
noticed that four customers (three new and one mandatory) have been assigned
to three vehicles in Route1, Route2, Route3 (their request has been accepted)
while one customer has not (the request has not been accepted). Figure 1(c)
shows the location and remaining portion of the route of the vehicles before
the next re-optimization phase, as well as the location of four new customers
(green circles) arrived in the system in the mean time and whose request will
be handled in the next re-optimization phase. The four customers assigned to
vehicles in the previous optimization phase are now on board the vehicles, while
the customer whose request was rejected has left the system. Thus the three
vehicles currently have customers on board and are on their way to the station.
Nevertheless, their routes may change in the next re-optimization phase in order
to pickup new customers.

3.2 Results

We report now on the performance of the different configurations of the service.
Figure 2 reports the dispatch rate, that is the percentage of vehicles dis-

patched. It can be noticed that in the case wFC, as intuition suggests, the dis-
patch rate generally increases with the number of customers and decreases with
the size of the fleet. When the fleet counts 20 vehicles, there is no case in which
the entire fleet is dispatched, indicating that the fleet is larger than needed. On
the contrary, in the configurations woFC all vehicles are dispatched, meaning
that they are not only available, but actually move from their original location
to perform some transportation task. It appears, therefore, that configurations
woFC may lead to using more vehicles than are actually necessary.

Figure 3 reports the service rate obtained with the different configurations,
that is the number of requests satisfied over the total number of requests received
in the one-hour planning horizon. It can be noticed that configuration woFC-25
competes and outperforms the configuration wFC. In the configuration woFC-
25 the company is insensitive to transportation costs and does not bear fixed
costs, therefore also solutions require a long travel time or would perhaps require
an additional vehicle – thus potentially inefficient in a model wFC – become
profitable. Such solutions become even more unappealing in the configuration
woFC-40 where transportation costs are still born by the company in exchange
for a higher revenue share.
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(a) Distribution

(b) Optimized Routes

(c) Movement

Fig. 1. Illustration of the solving process (Color figure online)
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Fig. 2. Dispatch rate for the configuration wFC and woFC. For each instance type the
results are the average over three different instances.

Finally, Fig. 4 illustrates that the configuration wFC leads to the highest
profits for the company, despite a slightly lower service rate compared to the
configuration woFC-25 (see Fig. 3). Both configurations woFC lead to worse
profits regardless of the revenue-sharing mechanism.

We report now on the impact of the fixed dispatch cost C̄ in the config-
uration wFC. This in turn sheds light on the effect of using different types
of vehicles, maintenance contracts, or salaries. Particularly, we assess dispatch
rate, service rate and profit with different values of the fixed dispatch cost
C̄ ∈ {1.4, 2.1, 2.8, 3.5}. Results are reported in Figs. 5, 6 and 7.

Figure 5 shows the intuitive pattern that, as the dispatch cost increases, the
dispatch rate decreases. We also observe that the dispatch rate increases with
the number of customers. Similarly, in Fig. 6 it can be observed that the service
rate increases as the fixed dispatch cost decreases. Nevertheless, the service rate
remains rather high for all values of the fixed cost, illustrating that the model is
able to find cost-efficient solutions also with fewer vehicles dispatched. Finally,
in Fig. 7 we also observe a similar trend, where profits are negatively affected by
fixed costs. The effect appears more severe as the number of customers grows.

3.3 Solution Time

Finally, we investigate the solution time. In our numerical experiments we solve
each instance in a rolling horizon process. The average solution time and opti-
mality gaps for different instances are reported in Table 1. Average values are
computed over three randomly generated instances obtained with same combi-
nation of |NC | and |K|, 12 re-optimization phases for each instances, and three
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Fig. 3. Service Rate for the configuration wFC and woFC. For each instance type the
results are the average over three different instances.

Fig. 4. Profit for the configuration wFC and woFC. For each instance type the results
are the average over three different instances.



Fleet Size Control in First-Mile Ride-Sharing Problems 101

Fig. 5. Dispatch rate with different fixed dispatch costs C̄. For each instance type the
results are the average over three different instances.

configurations, namely wFC, woFC-40 and woFC-25. Table 1 illustrates that all
instances can be solved to provable optimality within 0.5 seconds. There is thus
room for scaling up the problems to larger instances which represent more closely
a real-life scenario. To this end, Table 2 provides some insights on how the model
handles bigger instances. It can be noted that, with a fleet of 20 vehicles, the
quality of the solutions decreases with the number of customers.

Table 1. Optimality gap and solution time

Instance Solution time [s] Optimality gap

V8C6 0.03 0%

V8C8 0.04 0%

V8C12 0.11 0%

V10C6 0.03 0%

V10C8 0.05 0%

V10C12 0.14 0%

V12C6 0.04 0%

V12C8 0.06 0%

V12C12 0.18 0%

V20C6 0.06 0%

V20C8 0.08 0%

V20C12 0.41 0%
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Fig. 6. Service rate with different fixed dispatch costs C̄. For each instance type the
results are the average over three different instances.

Fig. 7. Profit with different fixed dispatch costs C̄. For each instance type the results
are the average over three different instances.

Table 2. Optimality gap and solution time on larger instances. For each instance size,
maximum and average are taken over three randomly generated instances.

Instance Avg. sol. time Avg. gap Max sol. time Max gap

V20C20 15.59 0% 300 14%

V20C25 39.54 2% 300 26%

V20C30 96.44 4% 300 41%
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4 Conclusion

In this paper we proposed a MIP model for optimal order dispatching and fleet
size control in a first-mile ride-sharing service. The model was used in a set
of numerical experiments, where we compared different configurations of the
service (i.e., business models), with and without fleet control and with different
revenue-sharing schemes. Results shows that the configuration with fleet control
(i.e., where the company owns the fleet) has a relatively high service rate and
outperforms the configurations without fleet control in terms of profits. Results
also show that fixed dispatch costs have a critical impact on both service rate and
profits. We can observe that, as the fixed cost increases, the number of vehicles
dispatched decreases and profits shrink. Nevertheless, service rates remain rather
high, showing that the model is able to find cost efficient solutions with fewer
vehicles. Finally, the tests illustrate that the model is flexible enough to adapt
to different configurations of the service and thus may serve real-life analysis of
ride-sharing services. As an example, the model could help assess revenue-sharing
mechanisms other than the ones studied in this article.
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Abstract. This paper deals with a real application encountered in the
construction sector, which consists in a new variant of the pickup and
delivery problem, including several constraints that have never been
combined in the same variant, denoted MTPDSPTW. This problem is
defined by a set of construction sites that have a delivery demand for con-
struction materials and also a waste removal request. Each construction
site has a certain profit which is computed according to the urgency of the
pickup and delivery demand. Each site can be visited several times dur-
ing the day, but the delivery must be done within a set of time windows
specified by each site. Heterogeneous vehicles with different availability
located at a massification and waste treatment platform must do mul-
tiple tours to serve the requests. The objective is to minimize the total
travel distance and to maximise the profit. The developed method is
based on the Iterated Local Search metaheuristic which uses a Random
Variable Neighborhood Descent (RVND) in the Local Search Procedure.
Different implementation schemes of the proposed method are tested
on set of data instances provided by our industrial partner. The results
show the effectiveness of ILS-RVND compared to ILS with a single local
search operator. ILS-RVND improves the results of the SBH heuristic by
13.15%.

Keywords: Vehicle routing · Pickup and delivery problem · Split
delivery · Vehicle routing problem with profile · Meta-heuristic ·
Iterated local search · Variable neighborhood descent

1 Introduction

In this paper, we address a real-word problem encountered in the constructions
sector and studied in the framework of the ADEME R&D project, denoted DILC.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. de Armas et al. (Eds.): ICCL 2022, LNCS 13557, pp. 105–119, 2022.
https://doi.org/10.1007/978-3-031-16579-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16579-5_8&domain=pdf
http://orcid.org/0000-0002-2822-0262
http://orcid.org/0000-0002-7199-4415
http://orcid.org/0000-0001-6778-2439
https://doi.org/10.1007/978-3-031-16579-5_8


106 W. Ramdane Cherif-Khettaf et al.

The project DILC aims to design an innovative platform for optimizing construc-
tion site logistics, that is adapted to multi-site ecocity construction projects. The
goal is to improve the rate of recycling wastes from the construction site, reduce
CHG impacts, and reduce the financial impact for the building companies. The
optimization lever studied in this project is the consolidation of the transporta-
tion flows and human resources through a physical platform that is modular,
removable and mobile, and the development of decision support tools to help
the platform managers to optimize their logistics.

The pooling platform aims grouping many delivery building materials from
different suppliers, receiving them in pallets according to a schedule correspond-
ing to the progress of construction activities on the construction sites. From
the received building materials, ready-to-use kits are prepared on the platform,
stored and delivered in pallets to the construction sites. The kit represents the
site supply unit, that is, a kit must be delivered in full. It is not possible to split
the kit into several deliveries. Each kit is characterized by its ID, the number
of pallets it contains, and its weight. The delivery request from the construction
sites may involve different kits, and the quantities of material delivery demands
are known to sometimes exceed the truck’s capacity, which requires to supply
the construction sites several times, so splitting the delivery demand is allowed
in our case. The quantity of waste is relatively inferior to the quantity of mate-
rial to be delivered, but can also be split. The platform must also manage the
removal of waste from construction sites to the platform. It should be noted that
in this study we are interested in Big-bag wastes that can be packed on pallets
and concern wastes that are produced with small and medium quantities such
as soft plastic, hard plastic, and cardboard. The removal of big-bag wastes can
be pooled with the delivery of building materials using a limited and heteroge-
neous tail-lift truck fleet, whose capacity is given in pallets. The vehicles perform
multiple trips between the platform and the construction sites to load the kits
at the platform, deliver them to the construction sites, collect waste from the
construction sites and unload these wastes in the recycling center located just
next to the platform.

The problem studied here is the routing optimization between the pooling
platform and the construction sites to mutualize the materiel delivery and the
waste removal, and more specifically we present a new variant of the well-known
pickup and delivery problem, named MTPDSPTW for the Multi-Trip Pickup
and Delivery Problem, with Split loads, Profits and Multiple Time Windows.

The MTPDSPTW belongs to the class of Vehicle Routing Problem with
Pickup and Delivery (VRPPD), which has been studied for more than 30 years
[9,10], and consists of transporting objects or people between origins and destina-
tions. More precisely, the problem studied in this paper is included in the class
VRP with Backhauls (VRPB) where objects or individuals are transported from
a depot to linehaul customers and from backhaul customers to a depot [9], and
the most adequate VRPB subclass with our problem is the VRP with Divisible
Deliveries and Pickups (VRPDDP), which is a special case of the VRPPD, where
each customer may have delivery and/or pickup requests that must be served
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with capacitated vehicles, and the pickup and the delivery quantities can be
served, if helpful, in two separate visits [8].

Many variants of VRPPD with several constraints have been proposed in the
literature to model real transportation problems (see for example [2,12]), but
very few papers have considered the combination of “pickups and deliveries”
and “split deliveries”.

We can notice the studies of [6,7], that considered the combination of the two
above constraints. The authors proposed a mixed integer programming (MIP)
formulation for this problem and a route construction heuristic based on a cheap-
est insertion criterion and parallel clustering. Other research focused on the one-
to-one pickup and delivery routing problem with split load, where every request
originates at one location and is destined for one other location [1]. The vehi-
cle routing problem with simultaneous deliveries and pickups with split loads
and time windows have been studied in [13,14]. The authors proposed a mixed-
integer programming model and a hybrid heuristic algorithm enhanced by a local
search, where the objective is to minimize both the number of vehicles required
and the total travel cost.

In short, we differ from the pickup delivery vehicle routing problems with split
load mentioned studies in that we consider, within the same problem, a limited
heterogeneous fleet of vehicles, profit, multi-trip and multiple time windows.
Combining these constraints into one vehicle routing variant poses significant
methodological challenges, and requires more sophisticated classes of neighbor-
hoods to be adequately solved via metaheuristics. Furthermore, this study follows
on from the work presented in [3], where a heuristic method named SBH were
presented to solve the MTPDSPTW. As such, the key contributions of this work
are:

– Modeling a real application in the construction sector as a new variant of
pickup and delivery problem named MTPDSPTW that allows simultane-
ously considering constraints that have never been previously combined in
the pickup and delivery variants studied in the literature. More specifically,
these are the constraints on heterogeneous fleet of vehicles, multi- trips, split-
ting demands, profit and time windows. Note that in our problem, profit is
associated with a pickup request and/or a delivery request, while in most
studies in the literature profit is associated with a customer and includes
both pickup and delivery re- quests.

– Efficient ILS-RVND approach that integrates an adaptation of classical neigh-
borhood search as relocate, 2-opt exchange, and swap. A new large neighbor-
hood operator that combines reinsertion and optimization of splitting used as
a local search operator and as a perturbation is also proposed. The ILS-RVND
enhances the SBH heuristic proposed in our previous research.

– Experimental analyses on real benchmark instances.

The remainder of the paper is organized as follows. In Sect. 2, we describe the
problem statement. Solving approaches are presented in Sect. 3. Section 4 sum-
marizes the computational results. Conclusions are given in Sect. 5.
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2 Problem Description

The MTPDSPTW can be defined on a complete, undirected graph G = (V,E),
where V = {0, . . . , n} is the set of vertices and E = {(i, j) : i, j ∈ V, i �= j} is
the set of edges. Vertex 0 is the pooling platform while the other vertices are the
construction sites. A travel time tij and cost cij are assigned to each edge (i, j).
A fleet of heterogeneous tail lift vehicles is located on the platform. The vehicle
fleet is composed by m vehicles with different capacities and time availability.
We denote by Qk the capacity in pallets of the kth vehicle k ∈ {1, . . . ,m}, Wk its
volume capacity in tons, and by Dk its maximum working time. Each site i ∈ V
has a pickup demand of the zth Big-bag waste denoted by piz, and a delivery
demand di

z′ of the z
′th kits. Note that, all demands are integer vectors. −→pi is in

this form (pi1, . . . , p
i
z) which indicates the pickup demand of each type of Big-bag

waste.
−→
di is represented as (di1, . . . , d

i
z′ ) that describes the delivery demand of

each type of kits. A kit can contain one or more pallets and the Big-bag waste
unit is the pallet. Thus, all demands of site delivery and pickup are expressed in
pallets. In the rest of the paper we denote by qt(

−−→
vect) the size of demand in pallets

(
−−→
vect can be −→pior

−→
di ). Sometimes, the demands of sites (delivery and/ or pickup)

are greater than the vehicle capacity (for example qt(
−→
di ) > Qk), then the site

can be served by the same vehicle with several trips or by several vehicles. Each
site can have a priority on its delivery demands or its pickup demands or both.
To satisfy these requirements, two real values ppi and pdi are associated with
each site i and correspond to the pickup profit and delivery profit, respectively.
Unlike the literature approaches where the profit is associated with customers,
in our model, the profit is associated with each demand.

Each vertex i ∈ V \ {0} has a service time si which corresponds to
the loading/unloading time on site, and a set of time windows TWi =
{[e1i , l

1
i ], [e

2
i , l

2
i ], . . . , [e

t
i, l

t
i ]} where epi p ∈ {1, . . . , t} is the earliest time to begin

service at the vertex i and lpi is the latest time to finish service at the vertex i.
Furthermore, we defined [e0, l0] as the single time window of the platform that
designates the earliest possible departure from the platform and the latest pos-
sible arrival at the platform. The service time s0 at the platform is given by the
sum of the loading time of kits and unloading time of Big-bag waste. This ser-
vice time is not considered for the first trip of each vehicle since the first vehicle
loading can be done independently of its tour. If a vehicle travels directly from
site i to site j. The service of site j starts at bj = max{ecj , bi + si + tij} where
ecj = min1≤k≤|TWj |{ekj | lkj − (bi + si + tij + sj) ≥ 0} designated the lower bound
of the most adequate time window. Note that waiting is not allowed because
construction site activities do not allow access to the sites beyond the imposed
time constraints.

A feasible solution to our problem is composed of a set of feasible trips
assigned to adequate vehicles. A feasible trip is a sequence of nodes that satisfies
the following set of constraints:

– Each trip must start and end at the pooling platform.
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– Each kit must be delivered in full, no possibility to split the kit into several
trips.

– The overall amount of materials delivered and wastes picked along the route
must not exceed the vehicle capacity (Qk, Wk).

– The total duration of each trip calculated as the sum of all travel duration
required to visit all the construction sites of the trip sequence, and service
time needed for each visit to a construction site during the tour could not
exceed Dk.

– Each site can be visited at most once during the trip while respecting one of
its time windows.

We seek to construct a feasible solution of a minimum number of trips, and
affecting one or several trips to the available vehicles such that:

– The total duration of each vehicle’s route, calculated as the sum of all its
trips duration, and the sum of the platform’s service times don’t exceed Dk

– Each vehicle must start at the pooling platform no earlier than e0 and finish
at the pooling platform no later than l0.

– No more than m vehicles are used;
– Each construction site may be visited several times with the same or different

vehicles, so splitting is allowed for delivery requests and pickup requests, and
some sites may not be visited at all.

– The sum of the quantities delivered to a given construction site must be less
than or equal to its delivery request and the sum of the quantities collected
from a given construction site must be less than or equal to its pickup request.
This means that the customer can be delivered and/or collected partially.

The objective is to minimize the total distance and maximize the profit,
knowing that the profit of a given customer is the sum of the profit of his
satisfied pickup demand and his satisfied delivery demand.

3 Solution Approaches

3.1 Iterated Local Search Algorithm

Since the considered problem is NP-hard and in order to solve large instances,
we develop an Iterated Local Search (ILS) metaheuristic. This type of method
was first used by Martin et al. [5], and has been clearly defined by Lourenço et
al. [4] and Stützle [11]. The iterated local search algorithm starts with an initial
solution and then finds a local optimum in a pre-defined neighborhood through
a local search procedure. The ILS applies perturbation operators to this solution
in order to move from this local optimum. An acceptance criterion is used to
determine which local optimum will be chosen for the next iteration. This pro-
cess is repeated until a stopping criterion is satisfied. The developed ILS uses
five procedures: (i) generation of an initial solution; (ii) a Local Search which
improves the solution initially obtained; (iii) a Perturbation Mechanism that
generates a new starting point through a perturbation of the solution returned
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by the Local Search; (iv) an Acceptance Criterion that specifies if the solution
should be accepted or not and (v) a Stopping Criterion that specifies when the
ILS procedure should stops. The proposed metaheuristic differs from traditional
ILS due to the nature of the neighborhoods used for solution improvement and
for perturbation. Three classical Local search operators are adapted to our prob-
lem, and a new larger neighborhood operator named Remove-split is proposed.
Remove-split operator removes all occurrences of a given client and seeks for a
good combination of insertions in different routes in order to cover the maxi-
mum of demand. Randomised version of the Remove-split operator is used in
the perturbation procedure. The general pseudo-code of the method is displayed
in Algorithm 1.

Algorithm 1. Iterated local search ILS
1: S0 ← GenerateInitialSolution
2: S∗ ← LocalSearch(S0)
3: repeat
4: S

′ ← Perturbation(S∗, history)
5: S∗′ ← LocalSearch(S

′
)

6: S∗ ← AcceptanceCriterian(S∗, S∗′
, history)

7: until termination condition met

Initial Solution. The initial solution is generated using sequential heuristic
called Score Based Heuristic (SBH). This heuristic inserts sites step by step
using a score calculated as the weight of 6 criteria. Suppose that i is the last site
inserted in the current trip, SBH looks for the next feasible site j minimizing
the score. The criteria used are the distance between j and i, the earliest date
of arrival in j, the maximum upper limit of the customer’s time windows j,
the total time available to serve the site j, and a delivery profit (respectively
collection) weighted by the cumulative quantity already delivered (respectively
cumulative quantity already collected) of the customer j. For more details on
this heuristic, please refer to [3].

Local Search Operators. The local search iteratively explores the solution
space to improve the quality of the solution. In this study we adapt relocate
operator, 2-opt operator, and swap move operator to deal with the constraints
of our problem. Furthermore, we propose a new operator named Remove-split
operator which consists in removing a given client from all routes and seeks for a
good combination of insertions in different routes in order to cover a maximum
of demand. The main difficulty in the exploration of the neighborhood consists
in the fact that the quantity to be satisfied in delivery and in pick-up of a given
client varies with the modification of its position. The variation of the quantities
to be collected and to be delivered of a given client implies the modification
of the service time of this client and thus the temporal constraints need to be
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verified for the vehicle and for other clients served by the same vehicle. Note
also that the presence of the multi-trip constraint implies the need to maintain
synchronization between all the trips of the same vehicle.

The proposed operators are further described below. Note that through the
paper we denoted by Dl

i and P l
i the demand request and the pickup request of

the customer i on route Rl, respectively.

– Relocate operator: This operator moves a customer to another position
in the same route or from the initial route to another. We are talking here
about intra- and inter-routes scenarios and rename it as All-relocate (see
Fig. 1). For intra-route relocate, we suppose that i and j are two customers
in Rl. The customer i is removed from its original position and inserted
following j then the new route Rl = (0, . . . , j, i, j + 1, . . . , 0). For inter-routes
relocate, let a customer i in Rl and j a customer in Rk. The customer i is
removed from Rl and inserted after j in Rk. The resulting routes are Rl =
(0, . . . , i − 1, i + 1, . . . , 0) and Rk = (0, . . . , j, i, j + 1, . . . , 0)

Fig. 1. All-relocate operator.

– Relocate-split operator: Suppose that a customer i ∈ Rl

⋂
Rk and a

customer j ∈ Rl. This operator removes the customer i from Rk, then
Rk = (0, . . . , i − 1, i + 1, . . . , 0) and it keeps Rl unchanged. It increases Dl

i by
Dk

i , seeks a customer j in Rl that can be inserted into Rk, with the quantity
Dk

i , and inserts j in Rk (see Fig. 2).
– 2-opt*exchange operator: Two customers i ∈ Rl and j ∈ Rk are chosen.

Then, the edges connecting i to i + 1 and j to j + 1 are removed and two
new edges are created adjoining i to j + 1 and j to i + 1 see Fig. 3. We have
implemented the intra- and inter-routes 2-opt*exchange operator.
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Fig. 2. A relocate split operation.

Fig. 3. 2-opt*exchange operator.

– Swap move operator: This operator consists in swapping two customers
from different routes. More formally, let i ∈ Rk, and j ∈ Rl. This operator
interchange the position of i and j. To balance the delivery and pickup quan-
tity, we choose a customer h ∈ Rk and we split the demand of h between
Rk and Rl see Fig. 4. We have implemented the intra- and inter-routes swap
move operator.
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Fig. 4. Swap move operator

– Remove-split operator
This operator consists of removing a customer i from all its current routes
and searches for a good combination of insertion of i in all routes in order
to cover the maximum demand of the client i. This problem can be viewed
as a knapsack problem with an additional constraint that limits the selection
to one position at most in each route. We thus use a greedy heuristic with
iteratively select the maximum ratio Sk. For each feasible position k of a
route Rl, we compute the ratio Sk(Rl) with Sk(Rl) = Qloadk/Dinsertk, where
Qloadk represents the maximum quantity in delivery and pickup demand that
could be inserted at position k of the route Rl, and Dinsertk represents the
additional distance related to the insertion of i at the position k of the route
Rl.
For example, in Fig. 5, customer i ∈ Rl

⋂
Rk

⋂
Rm is removed from all routes

and reinserted into Rk and RM . This subset of routes can contain the initial
routes of i or other routes.

Perturbation Mechanism. The perturbation mechanism is designed to escape
the current local optimum. It can affect the effectiveness of an ILS algorithm,
since a strong perturbation of the solution might deliver a similar result as pure
randomization, which can decrease opportunities to move toward the global opti-
mal solution. However, a small perturbation may be insufficient to get out of the
local optimum. Our perturbation mechanism is based on a randomised version
of our Remove-split operator. The description of the perturbation procedure can
be found in Algorithm2. Firstly, a number of perturbation MaxIter is fixed to
20% of the number of visited sites in input solution S (line 2). Next, in each
iteration, the algorithm removes randomly a site i from the current solution and
reinsert it randomly in one or more new feasible positions (line 6–15). Finally,
the input solution S will be sequentially perturbed MaxIter times.
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Fig. 5. Remove-split operator

Acceptance Criterion. Some research has proposed to accept solutions which
are worse than the best solution according to a definite acceptance criterion.
In this paper, simulated annealing acceptance criterion is used. In simulated
annealing, the probability p of accepting a solution S

′
worse than the current

solution S is:

p = e(−
f(S

′
)−f(S)
T ) (1)

where T is the current temperature parameter. The temperature updates are
governed by the cooling scheme, which computes the temperature value Ti+1 at
the instant i+1 as a function of the previous value Ti at instant i. In this paper,
the cooling scheme is defined by Ti+1 = α.Ti.

To determine the initial temperature T0 of each instance, we introduce a
parameter w ∈]0, 1[ to control T0 indicating that a solution w% worse than the
initial solution S0 will be accepted with a probability of 0.5.

3.2 ILS-RVND

The ILS-RVND metaheuristic is based on the same principle of classical ILS
described in the Sect. 3.1. The difference between the proposed metaheuristic
and traditional ILS lies in the nature of the neighborhoods utilised to improve
the solution. Instead of relying on local search, it exploits a randomized variable
neighborhood descent (RVND). The main steps of ILS-RVND are described by
the Algorithm 3. This metaheuristic executes MaxIt iterations (lines 4–22), where
a SBH heuristic generates an initial solution (line 5), which is subsequently
improved by the ILS (lines 8–17), which implements a local search by means of an
RVND (line 9) heuristic to ensure intensification as well as a set of perturbation
mechanisms (line 15) in the diversification phase. The parameter S∗ represents
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Algorithm 2. Perturbation procedure
1: Input: S
2: Output S

′

3: MaxIter = 20% of number of visited sites
4: Iter ← 0
5: while Iter �= MaxIter do
6: Choose uniformly at random a site i from list of visited sites LV S.
7: Remove i from all trips.

8: di ← qt(
−→
di ).

9: pi ← qt(−→pi ).
10: Determine the list of possible positions LP of i
11: while di! = 0 and pi! = 0 do
12: Choose randomly a position x from LP .
13: Insert i into x, let a (respectively b) the possible quantity of delivery to be

inserted in x (respectively quantity of pickup)
14: Update di and pi: di ← di − a and pi ← pi − b
15: end while
16: Remove i from the LV S
17: Iter ← Iter + 1
18: end while

the best solution and MaxIt corresponds to the maximum number of perturba-
tions allowed without improvements. Algorithm4 shows the pseudo code of the
RVND procedure. Firstly, an operator list (OL) containing the five operators
described in Sect. 3.1 is initialized (line 3). While the operator list is not empty,
an operator from OL is chosen randomly and then the best feasible solution is
determined (line 6). If the selected operator succeeded in improving the best
solution (line 7–10), the solution found by this operator will be considered as
the best solution and OL will be up to date. Otherwise, OP is removed from the
OL (line 11).

4 Computational Experiments and Discussion

The proposed algorithms are coded in Python programming language and exe-
cuted in a PC Intel Xeon(R) CPU E5-1603 V3 2.80 GHz with 32 GB of RAM
memory and operating system Windows 8. We conducted numerical experiments
on real data instances that were provided by our industrial partner. Experiments
were conducted on 5 data instances. The number of construction sites for the
considered instances is 100 and the number of vehicles is 10, each of these vehicles
is characterized by a maximum capacity Q = 16.

The characteristics of the instances are:

– The distance between two sites or between a site and the platform is between
1 and 150 km.

– Each site can be served in one, two, or three predefined time windows.
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Algorithm 3. ILS-RVND
1: Input: MaxIt, MaxIterILS
2: Output S∗

3: f∗ ← ∞
4: for i ← 1 to MaxIt do
5: S0 ← GenerateInitialSolution
6: S

′ ← S0

7: IterILS ← 0
8: while iterILS ≤ MaxIterILS do
9: S0 ← RV ND(N(.), f(.), S

′
)

10: if AcceptanceCriterion(S0, S
′
) then

11: S
′ ← S0

12: f(S
′
) ← f(S0)

13: IterILS ← 0
14: end if
15: if f(S

′
) ≤ f∗ then

16: S∗ ← S
′

17: f∗ ← f(S
′
)

18: end if
19: S

′ ← Perturbation(S
′
)

20: if f(S
′
) ≤ f∗ then

21: S∗ ← S
′

22: f∗ ← f(S
′
)

23: end if
24: IterILS ← IterILS + 1
25: end while
26: end for

Algorithm 4. RVND
1: Input: f(.), S
2: Output S∗

3: Initialize the operator List (OL)
4: while OL �= ∅ do
5: choose randomly a operator OP from OL
6: S

′ ← OP (S)

7: if f(S
′
) ≤ f(S) then

8: S ← S
′

9: Update OL
10: else
11: Remove OP from the OL
12: end if
13: end while
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– For each instance,20% of sites have a load of a delivery request lower than
1
3Q and 80% in [13Q,Q]. The load of a pickup request is lower than 2

3Q for
all sites, where Q is the pallet capacity of the vehicles.

To evaluate our method, we compared several ILS implementation schemes,
by varying the local search operators. Preliminary experiments allowed us to set
the parameters of our algorithm as follows: The parameter control of the cooling
scheme α was set to 0.9, and the percentage of destruction of the initial solution
w is fixed at 20%. Each instance is executed five times for each implementation
schema, and each run is limited to 1 h. The experimental results are presented in
Table 1, where Instance indicates the name of the instance, Sites is the number
of sites, #v is the number of vehicles, Sol. is the solution found by the SBH
heuristic, Time. is the time execution of the heuristic in seconds, Best S. is the
best solution found by the operator identified in the column header, Best t. is
the time in seconds to find the best solution in the best run. % gap. is the gap
between the heuristic solution and ILS solution, were computed using Eq. (2).

gap =
Heuristic solution − ILS solution

Heuristic solution
× 100 (2)

The results obtained show that ILS-RVND is more efficient than ILS based
on each local search operator independently. Indeed, the best improvements have
been found by ILS-RVND in the majority of cases, except the instance DILC100-
1 where the best solutions are obtained by the ILS-Relocate algorithm. The best
average gap between the solution found by the SBH heuristic and the ones found
by other algorithms is that found by ILS-RVND 13, 15%. However, the comput-
ing time of ILS-RVND is more important than the other algorithms. We also
notice that when ILS uses a single operator as a local search, the best results are
obtained by the “relocate” operator. The average gap obtained is 8, 83% against
5, 51% for ILS-2opt, 5, 38% for ILS-Swap, and 4, 3% for ILS-RemoveSplit. This
can be explained by the fact that the Relocate operator represents a complete
neighbourhood that allows both moving customers and changing the quantities
served to other customers. The Remove-split operator also generates a complete
neighbourhood, but the change in quantity only concerns the client that has
been removed. We think that it would be interesting in the future to improve
this operator by integrating the change in quantity of other customers within
the best routes chosen for the reinsertion of the deleted customer. Note also that
this operator is more time consuming, and therefore it is expected that it will
need more time to achieve competitive performance.
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Table 1. Performance comparisons between ILS-annealed with all local search opera-
tors and ILS-RVND.

Instance Sites #v SBH ILS-Relocate ILS-2 opt ILS-Swap ILS-RemoveSplit ILS-RVND

Sol Time Best S Best t %gap Best S Best t %gap Best S Best t % gap Best S Best t % gap Best S Best t % gap

DILC100-1 100 10 2133,253 2,791 1961,753 38,109 8,039 2053,356 43,821 3,745 2026,385 54,814 5,010 2104,962 774,597 1,326 1982,106 102,345 7,085

DILC100-2 100 10 578,448 2,926 523,031 55,635 9,580 534,823 46,362 7,542 534,902 37,454 7,528 510,285 3,167 11,784 451,616 206,281 21,926

DILC100-3 100 10 1224,264 2,637 1102,767 125,105 9,924 1150,493 41,049 6,026 1174,241 22,143 4,086 1204,424 145,448 1,621 1044,679 157,347 14,669

DILC100-4 100 10 1110,190 3,731 1031,348 75,082 7,102 1060,317 67,264 4,492 1055,999 30,932 4,881 1072,508 4,017 3,394 988,478 181,771 10,963

DILC100-5 100 10 1094,635 2,788 990,128 73,143 9,547 1031,329 58,158 5,783 1035,185 29,264 5,431 1057,642 612,511 3,379 972,840 161,108 11,126

Average 1228,158 2,975 1121,805 73,415 8,839 1166,064 51,331 5,518 1165,342 34,921 5,387 1189,964 307,948 4,301 1087,944 161,770 13,154

5 Conclusion

In this paper, we propose a metaheuristic approach for the Multi-Trip Pickup
and Delivery Problem, with Split loads, Profits and Multiple Time Windows.
The proposed algorithm, called ILS-RVND is based on Iterated Local Search
(ILS) and Randomized Variable Neighbor- hood Descent (RVND). Computa-
tional experiments were carried out on 5 real data instances provided by our
industrial partner. The experimental results obtained on these instances have
confirmed the effectiveness of ILS-RVND compared to other algorithms. As fur-
ther work, we will test our methods on newly designed data instances and on
other benchmark instances of some related problems. Next, we will relax our
problem and compare our results with those of the literature. Moreover, we will
consider other Local Search procedures and different perturbation mechanisms
to improve our method.
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Abstract. This article deals with the problem of designing a route for
each day of a time period to minimize the total travel cost and the dis-
crepancy in the service time to customers visited on different days. In
this paper we allow waiting times for the vehicle at customer locations.
The literature already includes exact and heuristic approaches for the
variant where the first objective is minimized and the second objective is
constrained by a given threshold. The variant do not allow waiting times
at customer locations, and it is known as Consistent Travelling Salesman
Problem. We are not aware of any previous algorithm in the literature
to tackle the biobjective problem, and this article describes three com-
pact formulations for it. Each formulation is suitable for approaching the
problem through the well-known weighted-sum method for multiobjec-
tive optimization, where some Pareto optimal solutions are sequentially
determined by systematically changing the weights among the objective
functions. We perform a computational study applying the formulations
to tackle instances adapted from the TSPLIB library.

Keywords: Travelling Salesman · Time consistency · Branch and cut

1 Introduction

The Traveling Salesman Problem (TSP) is an NP-Hard problem that has been
extensively studied in the literature. Given a depot and a set of customers, it
consists of finding a minimum-cost circuit so that a vehicle visits each customer
exactly once. The Consistent Travelling Salesman Problem (CTSP) is a variant
of the TSP introduced by [2] where a time period is given (say, a week), each
customer requires service on some (known in advance) days, and one TSP must
be solved for each day. The novel requirement in the CTSP is that customers
desire to be served consistently in time when visited in different days, meaning
that the service times should be similar for each customer. For example, giving
service to a customer in the early morning on Monday and in the late evening on
Thursday is undesirable. In the literature this requirement has been modelled as
a hard constraint (see e.g. [7,8]). Indeed, an input threshold T is given in advance
to limit the maximum allowed time inconsistency for each customer visited in
several days, and then the routes should be determined to ensure it. While
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there are articles where waiting times of the vehicle at the customer locations
are forbidden before the services start, better solutions are found when waiting
times are allowed. For that reason, in this paper, we assume that the vehicle
is allowed to wait along the route. Under this assumption the mathematical
problem is more complex since a solution is not only a route for each day, but
also the waiting time at each customer location served each day.

Given a route for each day and the waiting times at each customer location,
we consider two characteristics. One characteristic is the total travel cost of
the routes, not including waiting times. The other feature is the maximum of
the time difference between the visits in different days to a customer, over all
the customers. The CTSP looks for a solution, minimizing the first feature,
while it limits the second feature to T with a hard constraint. However the
real-world problem has a multicriteria nature and a CTSP solution also admits
other characteristics, like the travel cost of the route in each day (perhaps even
including the waiting times), or the maximum waiting time between when a
vehicle arrives to a customer and when the service starts at the customer. To
reduce the complexity of the exposition in this article, we restrict our analysis
to two characteristic, thus leading to a bicriteria optimization problem. The
models and implementations can be easily adapted to also include the other
characteristics.

Since the two characteristics (the total travel cost and the time inconsis-
tency at customers) evolve in different directions, there does not exist a feasible
solution that minimizes the two objective functions simultaneously. In this con-
text, solving the bicriteria problem is finding a Pareto optimal solution, which
is a set of routes that cannot be improved in any of the objectives without
degrading the other objective. Since there may be a huge number of Pareto
optimal solutions, we only aim at generating supporting non-dominated Pareto-
optimal solutions, i.e., solutions with objective values on the convex hull of the
Pareto frontier. As typically followed when approaching a bicriteria optimiza-
tion problem, our article models and solves a single-objective problem where the
two selected characteristics are linearly combined with a generic weight α, the
standard weighted-sum method in multicriteria optimization to generate some
Pareto-optimal solutions (see e.g. [5]). We propose three mathematical program-
ming formulations for the single-objective problem and analyse computational
experiments using a modern solver to find optimal solutions. The formulations
can also be adapted to work on more sophisticated approaches to generate all
the Pareto-optimal solutions (see e.g. [3,4]).

2 Problem Definition

Let G = (V,A) be a complete directed graph where V = {0, 1, ..., n} is the set
of nodes, with 0 representing the depot and 1, ..., n representing the customers.
Each arc (i, j) ∈ A is associated with two variables: cij and tij representing
the travel cost and travel time, respectively, to go from node i to node j. We
use K = {1, ...,m} to represent the time period (for example, the days of a
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Fig. 1. Optimal solution with α = 0. Travel cost: 8414. Time inconsistency: 1667

Fig. 2. Optimal solution with α = 0.1. Travel cost: 8415. Time inconsistency: 640

week). Each day k ∈ K is associated with a subset of nodes Vk, representing the
customers to be visited in that day, with 0 ∈ Vk. The day k is also associated
with a set of arcs Ak = {(i, j) : i, j ∈ Vk, i �= j} ⊆ A. Let Gk = (V k, Ak) be the
graph on which a Hamiltonian circuit must be computed to define the route on
day k. We assume that waiting times are allowed between the vehicle arrives at
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Fig. 3. Optimal solution with α = 0.27. Travel Cost: 8572. Time inconsistency: 211

Fig. 4. Optimal solution with α = 0.3. Travel Cost: 8652. Time inconsistency: 0

a customer location and before the service starts. To evaluate the two selected
characteristics of a problem solution into a single objective function, let α be a
given weight in the interval [0, 1] so the cost of the solution is 1 − α times the
travel cost plus α times the maximum time discrepancy over all the customers.
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Fig. 5. Pareto frontier

Figures 1, 2, 3 and 4 show the optimal solutions for different values of α using
an instance introduced in [7]. It is the burma14 instance with 13 customers, with
travel costs computed from geographic coordinates. Three days are considered
(i.e., |K| = 3) and every customer requires a visit on each day with probability
0.7. In each figure, we use a different colour for each day, and show a pair of
numbers near each customer. The left number is the waiting time of the vehicle
at the customer before service starts, which is the right number. The tiny number
on an arc shows the travel cost of that arc. Figure 1 corresponds to the solution
when α = 0, hence the time inconsistencies are not penalized and the result
is equivalent to solving three independent TSPs. Figure 2 shows the optimal
solution of the problem when α = 0.1; the maximum time difference is reduced
from 1667 to 640 increasing the travel cost of the routes by only one unit. It is
worth mentioning that a solution with the same travel cost could be obtained
with the approach in [8] and with any threshold T in the interval [640, 1666].
As expected, the more importance we place on time consistency in the objective
function, the smaller the maximum time difference and the higher the total path
cost. Figure 3 shows the solution when α = 0.27, with travel cost equals to 8572
and the maximum time difference reduced to 211. Figure 4 shows the solution for
a decision maker accepting a cost of 8652 to reduce the maximum time difference
to zero, i.e. there is no inconsistency for any customer. Although α could still
be increased to the value 1, no better solution is generated. Figure 5 shows the
eight Pareto-optimal points for this bicriteria problem burma14. The four points
along the blue line (frontier) correspond to the optimal solutions depicted in the
previous figures, which are non-dominated Pareto solutions.
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3 Mathematical Formulations

In this section we describe three formulations. The three formulations are based
on a binary variable xk

a which takes the value 1 if the vehicle in day k ∈ K
traverses the arc a ∈ Ak and 0 otherwise. As standard in the literature, with
S ⊆ V k we define δ+k (S) := {(i, j) ∈ Ak : i ∈ S, j /∈ S} and δ−

k (S) := {(i, j) ∈
Ak : j ∈ S, i /∈ S}. We denote the successors of a node i in day k as δ+k (i)
instead of δ+k ({i}) and the predecessors of node i in day k as δ−

k (i) instead of
δ−
k ({i}), in addition to xk(B) instead of

∑
a∈B xk

a where B ⊆ Ak. We also define
a continuous variable T to represent the maximum time inconsistency of any
customer. Therefore the objective function is:

minimize (1 − α) ·
∑

k∈K

∑

a∈Ak

cax
k
a + α · T (1)

Constraints shared by the three formulations are:

xk(δ+k (i)) = xk(δ−
k (i)) = 1 i ∈ V k (2)

xk
a ∈ {0, 1} a ∈ Ak. (3)

Formulation 1 uses an additional continuous variable zki to represent the visit
time on day k to customer i, and a big value Mk to upper bound the duration
of the route in day k. Consequently the problem is formulated as (1)–(3) and

zkj ≥ zki + t(i,j) · xk
(i,j) − Mk · (1 − xk

(i,j)) k ∈ K, i, j ∈ V k \ {0}, i �= j (4)

zkj ≥ t(0,j) · xk
(0,j) k ∈ K, j ∈ V k \ {0} (5)

zpi − zqi ≤ T p, q ∈ K, i ∈ V p ∩ V q \ {0}. (6)

The constraints (4) are commonly used in vehicle routing problems when dealing
with time constraints, they are known as Miller-Tucker-Zemlin inequalities (see,
e.g. [1]), and they imply that zkj ≥ zki + t(i,j) when xk

(i,j) = 1 with i, j ∈ V k \
{0}. Constraints (5) force the same to the depot. Finally time consistency is
established with the inequality (6).

Formulation 2 uses a different variable gk(i,j) with k ∈ K, (i, j) ∈ Ak to
represent the arrival time at customer i on day k only if j is the next location
to visit. The expression

∑
a∈B gka is abbreviated as gk(B) for all B ⊆ Ak.

gk(δ+k (j)) − gk(δ−
k (j)) ≥

∑

i∈V k\{j}
t(i,j)x

k
(i,j) k ∈ K, j ∈ V k \ {0} (7)

0 ≤ gka ≤ Mk · xk
a k ∈ K, a ∈ Ak \ δ+k (0) (8)

gp(δ+p (i)) − gq(δ+q (i)) ≤ T p, q ∈ K, i ∈ V p ∩ V q \ {0}(9)

Constraints (7) imply the duration of the route to customer j to be greater than
or equal to the duration of the route to its predecessor i plus the time that
the vehicle needs to make the journey from i to j. Equations (8) set the value
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of gka to zero whenever xk
a = 0. The remaining constraints (9) establish just

like constraints (6) in the previous formulation, the time consistency. As in the
previous formulation, there are big values Mk for all k ∈ K.

Formulation 3 is based on three families of mathematical variables. A first
family consider a multi-commodity flow on each day with f ik

a representing the
path from the depot 0 to each customer i ∈ Vk on each day k ∈ K. A second
set includes yk

i representing the idle time of the vehicle at customer i on day k.
A third family includes wik

j representing the idle time on the variable wik
j if j

precedes i. Each feasible solution must verify:

f ik(δ+k (0)) − f ik(δ−
k (0)) = 1 (10)

f ik(δ+k (i)) − f ik(δ−
k (i)) = −1 (11)

f ik(δ+k (j)) − f ik(δ−
k (j)) = 0 j ∈ V k \ {0, i} (12)

0 ≤ f ik
a ≤ xk

a a ∈ Ak (13)
yk
j − Nk

j · f jk(δ−
k (i)) ≤ wik

j ≤ Nk
j · f ik(δ−

k (j)) i, j ∈ V k \ {0} (14)

0 ≤ wik
j ≤ yk

j i, j ∈ V k \ {0} (15)
( ∑

a∈Ap

taf
ip
a +

∑

j∈V p\{0}
wip

j

)

−
( ∑

a∈Aq

taf
iq
a +

∑

j∈V q\{0}
wiq

j

)

≤ T
p, q ∈ K
i ∈ V p ∩ V q \ {0}.

(16)

We take Nk
j as an upper bound on the maximum idle time at customer i in day

k. The Eqs. (10)–(13) guarantee the existence of a path from the depot to each
customer requiring a visit in each day. Inequalities (14)–(15) force wik

j to take
the value yk

j if j precedes i on day k, and it is zero otherwise. Constraints (16)
establish the time consistency.

Formulations 1 and 2 have a weak linear programming relaxation, not only
due to the big values involved in the constraint definitions, but also because the
well-known subtour elimination constraints are poorly imposed, as [6] demon-
strate. Indeed, the two compact formulations can be strengthened by including
the following exponential set of inequalities:

xk(δ+k (S)) ≥ 1 S ⊂ V k \ {0}. (17)

These inequalities are already implicit in Formulation 3, which has a better
linear-programming relaxation when compared to the ones of Formulations 1
and 2, as computationally confirmed in the next section.

4 Preliminary Computational Results

We have implemented computer codes to solve the formulations using Gurobi
9.1.2 through its Python API on a personal computer with Intel(R) Core(TM)
i7-10700 CPU @ 2.90 GHz, 24 GB RAM, and Windows 10 Pro. We tested the
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computer codes on benchmark instances from [7]. These instances were generated
with |K| = 3 and 5 days, and with a probability for each client to require service
on each day of freq = 0.5, 0.7 or 0.9. For example, an instance generated with
freq = 0.5 means that a customer requires service in about half of the days in
the time period K. The instances also include three options for the threshold T
to limit the time inconsistency in the CTSP, but it is no longer meaningful in our
bicriteria problem. Recall that T is unknown in our problem. Instead, we created
three instances by using α = 0, 0.1 and 0.3. The magnitude of the inconsistency
makes useless to solve the problem with larger values for α on these benchmark
instances.

We created five computer codes. Codes F1, F2 and F3 are associated with
Formulations 1, 2 and 3, respectively. Formulations 1 and 2 were extended with
the use of the Subtour Elimination Constraints (17), leading to codes F1+SEC
and F2+SEC. Recall that Formulation 3 has these inequalities implicitly. We
report computational results on tables with results from the five codes on each
instance. The tables report three columns with characteristics of the instances.
Column Incons shows the value of the maximum time difference obtained in the
solution (i.e., the value of T in the best solution found). Column Travel shows
the total travel cost of the routes. Column Obj shows the value of the obtained
objective function 1 where the penalty α affects. In addition, for each code, each
table reports two columns. Column Time shows the number of seconds taken by
the MILP solver to solve the formulation with a time limit of one hour. Column
%-gap is the difference between Obj and linear programming bound at the root
node, divided by Obj and multiplied by 100.

Tables 1, 2 and 3 show how Formulations 1 and 2 benefit significantly from
the use of the Subtour Elimination Constraints (17), it can be observed that
Formulation 1 reaches the time limit in 21 of the 54 instances, however, applying
the subtour elimination in the linear relaxation, the amount of reached time
limits is reduced to only 1 case, in addition to reducing the execution time in
the remaining cases. Similarly occurs with Formulation 2, where by applying
the linear relaxation the number decreases from 31 to 3 time limits reached. In
both cases the %-gap is significantly reduced. On the other hand Formulation 3
performs better than Formulations 1 and 2 since it reaches the time limit in 18
instances. However, it does not behave better than Formulations 1 and 2 when the
subtour elimination constraints are added (i.e., codes F1+SEC and F2+SEC).
Quite interestingly, the codes F1+SEC, F2+SEC and F3 produced the same
linear programming bounds, never larger than 2%. In terms of computational
times F1+SEC is the clear winner followed by F2+SEC. In overall terms, the
problem becomes more difficult to solve regardless of the formulation as |K|,
freq or α increases. When the value of days or the number of nodes to visit
each day increases, it is simply a bigger problem. On the other hand, increasing
the weight α of the inconsistency T in the objective function makes the instance
harder to be solved.
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5 Conclusions

This article introduces and addresses a bicriteria optimization variant of the
Consistent Travelling Salesman Problem. While waiting times are forbidden in
the Consistent Travelling Salesman Problem, our variant allows waiting times
for the vehicle at customer locations. This paper describes three Integer Linear
Programming models that are suitable to enumerate some Pareto solutions using
the weighted-sum method known in Multiobjective Optimization. The first and
second formulations outperform the third formulation when they are strength-
ened with the subtour elimination constraints. As a future direction of research,
we plan to implement a Benders’ Decomposition Approach for the third for-
mulation. Although in principle generating inequalities also consume time, the
advantage of working with a multicriteria problem is that the valid inequali-
ties generated when using a weight α are also valid for a different weight α′.
This advantage can be used both for the subtour elimination constraints and for
the Benders’ cuts, thus potentially saving computational time when solving a
sequence of problems.
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Optimized Dispatch of Fire and Rescue
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Abstract. Adispatching problem for fire and rescue services is considered, where
firefighters have to be allocated to vehicles, and vehicles dispatched to an emer-
gency. A mathematical model for the problem is formulated, capable of managing
multiple alarm plans for each emergency considered. The model is solved both
exactly and heuristically, using input data from a fire and rescue service area in
Skåne, Sweden. The results show that the exact solution method might be too time
consuming in some cases, but that the heuristic in most cases finds the optimal
solution.

Keywords: Emergency logistics · Optimization · Heuristics · Fire and rescue
services

1 Introduction

When modeling fire and rescue services it is often assumed that the first unit to reach
an event site (e.g. a traffic accident) will take care of the event all by itself. This follows
from the common simplification that all vehicles will turnout from a station, and that all
stations have the capacity to handle all possible events. Thus, it is possible to optimize the
location of the stations, without regarding the specific manpower or equipment available
at a particular station (e.g. [1] and [2]).

In reality, it is common that the types and number of vehicles and personnel varies
between different fire stations. For some events, it is therefore necessary to receive a
response from multiple stations. For example, a fire in a high-rise building will require a
ladder unit, which might not be available at all stations. This has been regarded in some
cases, e.g. in [3] where more than one unit is needed, but they are all of the same type.
In [4] both engines and ladder units are modeled, but the specific abilities of the units
are disregarded, and the objective is to maximize the coverage. A more general model
is presented in [5], where each emergency, requires a specific set of vehicles, e.g. one
emergency might require two pumpers and one ladder, while another emergency needs
one pumper, one ladder, and one HAZMAT vehicle.

An additional complexity that is rarely considered in mathematical models is that
the existing station personnel (i.e. the firefighters) seldom can staff all the existing vehi-
cles. Thus, one fire station might not be able to supply all the necessary vehicles to an
emergency, even if they physically exist at the station, due to staff shortage. A decision
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then must be made regarding which vehicle should be dispatched from which station,
taking into account the number of firefighters at each station.

In this paper, fire and rescue resource requirements, i.e. vehicles and personnel, are
specifically modeled through the use of alarm plans. An alarm plan states the resource
requirements for handling a certain event, i.e. the number of firefighters and vehicles,
and which types of vehicles. The problem under consideration is to select which vehicles
to send to a specific event, and how to man these with firefighters.

The fire and rescue resource dispatching problem is not verywell studied in literature,
and often solved by rules of thumb in reality. There have been studies on which unit to
send [6] and how may units to dispatch [7]. In [8] two different unit types (engines and
ladders) are considered for two different events (serious and not serious), and there is a
possibility that units may be busy. This is in contrast to most models dealing with fire
and rescue resources, since the risk that a resource will be busy at a given point in time,
in most cases is very low. Thus, it is reasonable to assume that they will be available
when needed. As this is not true for emergency medical services (ambulances), there
has been additional work on the dispatching problem taking into account the potential
unavailability of resources, e.g. [9].

In the problem studied here, the unit types, the events and the alarm plans are gen-
eralized, so it is possible to model any number and types of resources and accidents.
Furthermore, the explicit modeling of allocating firefighters to vehicles in a dispatching
context has not been described previously (to the author’s knowledge).

The problem is further described, and a mathematical model is presented in Sect. 2.
Section 3 describes the solution strategies for solving themodel exactly and heuristically.
The two solution strategies are compared to each other in terms of solution quality and
speed, and the results are presented in Sect. 4. Section 5 discusses how the model can
be used practically, and Sect. 6 contains the conclusions and some thoughts on further
studies.

2 Problem Statement and Mathematical Model

When there is an incident requiring fire and rescue resources, it is necessary to deter-
mine who should go to the incident site, and which vehicles they should use. For each
incident there is at least one alarm plan, specifying the resource requirements. Here, a
mathematical model is used to select which vehicles that should go, andwhich firefighter
that should travel in which vehicle.

2.1 Alarm Plans

Different events, e.g. building fires or traffic accidents, require different sets of resources.
The resources considered here are staff (firefighters) and vehicles of different types. A
predefined set of resources needed to handle (the initial phase of) an event is denominated
an alarm plan. There is at least one alarm plan for each event, but there may be more
than one. As an example, in the test data used, a fire in a single-family building requires
two engines, one water supply vehicle and ten firefighters (personnel). An alternative
alarm plan for the event is one engine, one water supply vehicle, and one smaller first
response vehicle, as well as ten firefighters.
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2.2 A Staffing and Dispatch Problem

The problem considered is to select which vehicles and which staff to send to a specific
event. This also includes selecting which alarm plan to use, if there are more than one
plan defined for the event. The event is characterized by its type and its location. The
type will determine which alarm plans that are applicable. The location will determine
how long the expected travel times are for the different resources. Each vehicle thus has
an expected travel time to the event. Every firefighter has a preparation time, which is
the time required to get dressed, collect the necessary equipment, and man a vehicle.
The preparation time corresponds to the time span from when a firefighter receives the
alarm, until he or she is travelling towards the event. In Sweden, the preparation time is
often 90 s for full time firefighters and five minutes for part time firefighters. The latter
need time to travel from their workplaces or their homes to the fire station.

The time when a vehicle can leave a station will be determined by the person with
the longest preparation time that is allocated to the vehicle. For example, if a vehicle is
manned by four firefighters with a preparation time of 90 s, and one firefighter with a
preparation time of five minutes, the vehicle will leave the station after five minutes.

Consider the example in Table 1. There are four stations that can send resources to
a building fire. Each engine must be manned by five to seven firefighters. The ladders
(aerial appliance) must be manned by one to three firefighters, and the tank units (water
supply) by one to four firefighters. Full time fire personnel have a preparation time of
90 s and part time personnel have a preparation time of five minutes. The alarm plan
requires two engines, one ladder unit, one tank unit, and ten firefighters.

Table 1. Example of resources than can respond to a certain building fire

Station Vehicles Personnel Expected travel time

1 1 engine, 1 ladder, 1 tank 6 full time 5 min

2 1 engine, 1 ladder 5 part time 10 min

3 1 engine 5 part time 8 min

4 1 engine, 1 ladder, 1 tank 6 full time 50 min

One possible solution to the problem, which can be obtained in a greedy fashion, is
to man the engine from Station 1 with five firefighters. Then allocate one firefighter from
Station 1 to the ladder, and man the engine from Station 3 with five firefighters. Finally,
we have to select the tank from Station 4 and man it with one firefighter, since we have
already used all personnel at Station 1. The solution is not very good, since the tank unit
has a response time of over 50 min. A better solution can easily be found by utilizing
the ladder at Station 2 and the tank unit at Station 1 instead. However, to ensure that a
better solution is obtained, a more sophisticated method than greedy search is required.

It would also be possible to obtain better solutions by relaxing the constraint that an
engine has to be manned by at least five firefighters. The motivation for this constraint
is that it is common practice (in Sweden) to travel in a group of five people in the fire
engine. Some reasons for this are that the firefighters like to talk tactics and prepare
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mentally on the way to the event site, and also that they want to arrive at the same time.
As a result, when turning out from a smaller station, the firefighters sometimes have to
choose whether to bring the ladder or the tank unit, just like in the example. It should be
noted that not all fire and rescue services in Sweden operates like this. In fact, a new way
of planning and controlling the fire and rescue resources is spreading, where smaller
units manned by less firefighters are key factors to shorter response times [10].

2.3 A Mathematical Model

The model, from now on referred to as STAFDIS, solves the problem of selecting which
vehicles should respond to a certain event, and which firefighters (personnel) that should
man these vehicles.

Sets

E is the set of available vehicles, e ∈ E.
P is the set of available personnel, p ∈ P.
Ep is the set of available vehicles located together with person p ∈ P, e ∈ Ep ⊆ E.
Pe is the set of personnel located together with vehicle e ∈ E, p ∈ Pe ⊆ P
K is the set of defined alarm plans for the event, k ∈ K
N is the set of vehicle types, n ∈ N

Parameters

te = the expected travel time for vehicle e to the event
τ p = the preparation time for person p.
aen = 1 if vehicle e is of type n
dkn = the number of required vehicles of type n in alarm plan k
Pk = the required number of firefighters in alarm plan k
Ae = min number of people required for manning vehicle e
Be = max number of people that can travel with vehicle e

Variables

ye = 1 if vehicle e is used in the response
xpe = 1 if person p travels with vehicle e and is used in the response
zpe = 1 if person p travels as a passenger with vehicle e
wk = 1 if alarm plan k is used
Tp = response time for person p

Min
∑

p∈P Tp (1)

Tp ≥ (
te + τq

)(
xpe + xqe + zqe − 1

)∀p, q ∈ Pe; e ∈ E (2)

Aeye ≤
∑

p∈Pe

(
xpe + zpe

) ≤ Beye∀e ∈ E (3)
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∑

e∈Ep

(
xpe + zpe

) ≤ 1 ∀p ∈ P (4)

∑

k∈K
wk = 1 (5)

∑

k∈K
dknwk ≤

∑

e∈E
aenye ∀n ∈ N (6)

∑

p∈P

∑

e∈E
xpe ≥ Pkwk ∀k ∈ K (7)

xpe = zpe = 0 ∀p /∈ Pe; e ∈ E (8)

xpe, zpe ∈ {0, 1} ∀p ∈ P; e ∈ E (9)

ye,wk ∈ {0, 1} ∀e ∈ E; k ∈ K (10)

Tp ≥ 0 ∀p ∈ P (11)

The goal of the model is to select personnel and vehicles to satisfy one of the existing
alarm plans (in the set K) for the event under consideration, and to minimize the total
response time for the personnel active at the event (1). For this, decision variables ye and
xpe are used to determine if vehicle e should be used and if person p should travel with
vehicle e.

In the model, a person can also travel with a vehicle as a passenger, which is deter-
mined by variable zpe. This is utilized when the alarm plan does not require all the
personnel that are sent to the event, but personnel are still required to fulfill the min-
imum manning conditions (left hand side of (3)). Personnel travelling as passengers
will not contribute to the objective function (1). However, the preparation time of the
passengers may still affect the response time for active firefighters. This is modeled in
(2), which states that the response time for person p is as long as the travel time for the
vehicle in which person p is travelling, plus the preparation time for any of the other
personnel traveling in the same vehicle.

Constraint (4) states that a firefighter can only travel with one vehicle, and only as
either passenger or active personnel. (5) ensures that one single alarm plan is used, and
(6) controls that the correct amount of vehicles according to the selected alarm plan are
sent to the event. (7) makes sure that enough firefighters are sent to the event, and (8),
(9), (10) and (11) are variable declaration constraints.

A final note about the objective function; in (1), the sum of all active personnel’s
response times is minimized. Other possible options might be to minimize the maximum
response time for any resource, or aweighted combination of the first and the last person’s
response time. One reason for including all personnel is that it is very difficult to predict
the effect of the first and the last response in any new incident. For one building fire,
the first responder might be able to extinguish the fire easily, and for another, the only
thing to do is wait until more resources have arrived before work can start. The same
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goes for the last arriving unit, which may have a crucial impact on the response in some
cases, and a minor impact in other cases. What is true in most cases, is that every person
has some impact in managing the incident, and that an early arrival might reduce the
damages. Thus, here, the response time for all personnel is included in the objective
function to ensure that as many resources as needed arrive as quickly as possible.

3 Solution Strategy

3.1 Exact Solutions

The mathematical model, STAFDIS, can easily be implemented and solved with com-
mercial software, e.g. CPLEX 10 with Concert technology, which is done here. CPLEX
can solve realistic problem instances to optimality reasonably quick, from half a second
and rarely more than two minutes.

However, in some cases, the problem must be solved numerous times in a short
time interval. One example is if you want to use the same modelling principle in a
strategic model that can find optimal locations for the resources (or the corresponding
fire stations). In such a model, the geography would be divided into a set of zones, each
with forecasts of expected number of events of different types. In a solution strategy
for this type of location model, e.g. a metaheuristic or a decomposition scheme, it is
possible to isolate STAFDIS as a subproblem. In this, the locations of the resources are
fixed, but it still needs to be determined which resources should be assigned to which
event. To do this, STAFDIS must be solved as many times as there are zones multiplied
by the number of event types. For realistic problem instances, this number may become
very large, and the solution times required for exact solutions too long to be of practical
use.

Another example is when trying to quantitatively evaluate the preparedness (the
ability to handle emergencies now and in the future) in different parts of the area (see
e.g. [10]). This also includes determining the response times of the responding resources
to each emergency that is considered. To do that, it is necessary to knowwhich resources
that will respond, information that can be provided by STAFDIS. However, just like in
the case for location models, it is necessary to solve the model repeatedly and for many
zones and event types, which requires extremely short computational times.

3.2 A Backup Greedy Heuristic

In order to quickly find good solutions to the model, a backup greedy heuristic is con-
structed. The main objectives with the heuristic, apart from minimizing the objective
function, are to avoid clearly unintelligent solutions like the one described in Sect. 2.2,
and to be very quick.

The heuristic is based on a greedy philosophy, but looks one step further than greedy.
Instead of picking the vehicle with the shortest response time, the backup response time
is calculated and used as the greedy selection component. This time is the response time
for the next closest vehicle of the same type (should the closest one become unavailable,
e.g. due to personnel shortage).
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The heuristic starts without any selected vehicles, and then determines the vehicle
type that has the longest backup response time. The closest vehicle of this type is manned
with the minimum amount of firefighters. Then, the next vehicle type with the now
longest backup response time is manned, until all required vehicles have been manned.
If additional firefighters are required after this, they are added to already selected vehicles
if possible, or a new vehicle is manned.

The pseudocode for the heuristic can be found in Table 2. The notation used is the
same as in Sect. 2.3:

Sets

E is the set of available vehicles, e ∈ E.
P is the set of available personnel, p ∈ P.
Ep is the set of available vehicles located together with person p ∈ P, e ∈ Ep ⊆ E.
Pe is the set of personnel located together with vehicle e ∈ E, p ∈ Pe ⊆ P
K is the set of defined alarm plans for the event, k ∈ K
N is the set of vehicle types, n ∈ N

Parameters

te = the expected travel time for vehicle e to the event
τ p = the preparation time for person p.
aen = 1 if vehicle e is of type n
dkn = the number of required vehicles of type n in alarm plan k
Pk = the required number of firefighters in alarm plan k
Ae = min number of people required for manning vehicle e
Be = max number of people that can travel with vehicle e

Variables

ye = 1 if vehicle e is used in the response
xpe = 1 if person p travels with vehicle e and is used in the response
zpe = 1 if person p travels as a passenger with vehicle e
wk = 1 if alarm plan k is used
Tp = response time for person p

The backup greedy heuristic evaluates all alarm plans that exists for the event (Line
1), and selects the one that will provide the lowest objective functions value (Line 25).
First, a minimum set of vehicles is found, and the minimum required amount of crew is
allocated (the loop starting at Line 3). For each required vehicle type, the response time
and the backup response time are calculated (Lines 7 and 8).

The backup response time is a measure of how much the response time will increase
if one of the closest required vehicles cannot respond (e.g. due to staff shortage). E.g.
assume that there are four engines available, with expected response times 5, 10, 20,
and 40 min. If two engines are required for the event, the backup response time would
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Table 2. Pseudocode for a backup greedy heuristic for solving STAFDIS

1 FORALL k ∈ K

2 Let wk = 1; xpe, zpe = 0 ∀e ∈ E, p ∈ P; ye = 0 ∀e ∈ E and let Palloc = 0 be the
number of personnel allocated to the event

3 WHILE
(∑

k∈K dknwk >
∑

e∈E aenye ∃n ∈ N
)

4 Let E′ be the set of not utilized vehicles and N ′ the set of vehicles types that are still
required, where rn = the number of required vehicles of type n:
E′ ⊆ E such that ye = 0 ∀e ∈ E′, and
N ′ ⊆ N such that rn = ∑

k∈K dknwk − ∑
e∈E aenye > 0

5 Let PeA be the set of Ae available personnel with the shortest preparation times located
together with vehicle e ∈ E′:
PeA ⊆ Pe;

∣∣∣PeA
∣∣∣ = Ae; τp ≤ τq∀p ∈ PeA, q ∈ Pe; xpe,zpe = 0 ∀p ∈ PeA

6 Let Te = te + max
p∈PeA

{
τp

}
be the response time for vehicle e ∈ E′

7 Let Tni be the response times for vehicle type n, such that i = 1 is the closest vehicle of
type n, i = 2 the second closest etc.

8 Let Sn = Tnrn+1 − Tnrn be the backup response time for vehicle type n and let μ be the

vehicle type that satisfy max
n∈N ′

{
Sn

}

9 Let ε be the vehicle that satisfy min
e∈{E′|aeμ=1}

{
Te} and set yε = 1

10 Let Pcount = Aε.
WHILE Pcount ≥ 0

11 Of available personnel that can be allocated to ε, let ϕ be the person with the shortest

preparation time, i.e. that satisfy min
p∈{PεA|xpε=zpε=0}

{
τp

}

12 IF Palloc < Pk set xϕε = 1;Palloc = Palloc + 1;Pcount = Pcount − 1

13 ELSE set zϕε = 1; Pcount = Pcount −1

14 WHILE Palloc < Pk

15 Let Te be the current response time for vehicle e, and Ekap be the set of vehicles that have
capacity left to transport more people:

Te = te + max
p∈P

{
τp

(
xpe + zpe

)}
; Ekap ⊆ E such that

∑
p∈Pe

(
xpe + zpe

) ≤ Be

(continued)
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Table 2. (continued)

16 Of the vehicles that still have capacity left and co-located available personnel, let δ be the

vehicle with the shortest response time, i.e. the one that satisfy min
e∈Ekap

{
Te} where

∑
p∈Pe

∑
l∈Ep

(
xpl + zpl

) ≤ ∣∣Pe
∣∣

Furthermore, let ρ be the person that satisfy min
p∈Pδ

{
τp

}
where

∑
e∈Ep

(
xpe + zpe

) = 0. , i.e.

of available personnel located with δ, the one with the shortest preparation time

17 IF (yδ = 1 AND τρ − (Tδ − te) ≤ 1.5(Tδ − te)) set xρδ = 1; Palloc = Palloc + 1

18 IF (yδ = 0 AND
∣∣∣Pδ

∣∣∣ − ∑
p∈Pδ

∑
e∈E

(
xpe + zpe

) ≥ Aδ)

19 WHILE
(∣∣∣Pδ

∣∣∣ − ∑
p∈Pδ

∑
e∈E

(
xpe + zpe

)
< Aδ

)

20 Let ρ be the person that satisfy min
p∈Pδ

{
τp

}
where

∑
e∈Ep

(
xpe + zpe

) = 0

21 IF Palloc < Pk set xρδ = 1;Palloc = Palloc + 1

22 ELSE set zρ = 1

23 For all p ∈ P, let Tp = max
q∈Pe;e∈E

{(
te + τq

)(
xpe + xqe + zqe − 1

)}

24 Let Zk = ∑
p∈P Tp be the evaluation function value for alarm plan k and store all

necessary variable values

25 Let κ be the alarm plan that satisfy min
k∈K

{
Zk

}
; export all related variable values; end the

algorithm

be 20–10 = 10 min, i.e. the difference between the response times for the third and the
second closest resource.

The vehicle type with the longest backup response time is selected, and the vehicle of
this type with the shortest response time is manned with the minimum set of personnel
available that have the shortest preparation times (Lines 9–13). There might still be
personnel required when the necessary vehicles have been manned (Line 14). If so,
the heuristic tries to either fill already selected vehicles with more personnel without
increasing the response time too much (Line 17; here a factor of 1.5 is used, meaning
that the preparation time for the vehicle should not increase by more than 50%) or man
a new vehicle with a minimum set of personnel (Line 18–22). The response times for
all personnel used in the event (not the passengers) are calculated, and the evaluation
function value for the alarm plan is stored (Line 23–24). Finally, the alarm plan with the
lowest evaluation function value is selected (Line 25).

Revisiting the example in Table 1, the alarm plan required two engines, one ladder
and one tank unit. The backup greedy heuristic would start by manning the tank unit,
since this vehicle type has a backup response time of 45 min, i.e. if we cannot select
the tank unit at Station 1 we have to pick the one at Station 4. The engine type has a
backup response time of two minutes – the difference between Station 2 and 3 – since
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two engines are required, and it is at the moment possible to man both the engine from
Station 1 and the engine from Station 3, which makes the engine at Station 2 the backup
unit. The ladder unit type has a backup response time of five minutes.When the tank unit
at Station 1 has been manned by one firefighter, the heuristic will man the ladder unit
at the same station with one firefighter, thus making it impossible to utilize the engine
at Station 1 since it requires at least five firefighters to man. Therefore, the engines at
Station 2 and 3 are manned.

In the example above, the backup greedy heuristic manages to avoid a solution where
a unit from Station 4 has to be used, which is an improvement from a simpler greedy
type of solution strategy. However, in an exact solution, all the personnel at Station 1
would be allocated to the tank and the ladder units, since they together have the capacity
to transport seven firefighters. This would result in a total of six passengers (since the
engines require a minimum of five firefighters) who would not however contribute to
the objective function. The backup greedy heuristic stops trying to allocate personnel to
the event as soon as the required number has been reached, and thus would not find the
optimal solution in this case.

4 Computational Results

To evaluate the quality of the heuristic solutions, a large set of problem instances are
generated and solved both exactly and heuristically. An area consisting of five munici-
palities in the county of Skåne in Sweden, with a joint fire and rescue service, was used
for input data. The five municipalities have in all 11 fire stations comprising 23 units,
both full time and part time firefighters. The area was divided into squares with the side
250 m, in all 19732 squares. Each square has a forecast for eight types of expected
number of incidents; four types of fire incidents and four types of traffic accidents. For
each incident there exists two or three alarm plans.

STAFDIS is here solved as a subproblem to a location problem that aims to find the
best locations for the fire and rescue resources. A meta-heuristic is used to find location
solutions,moving vehicles and personnel (while ensuring that all personnel have vehicles
to travel with, and that there are at least the minimum required staff with each vehicle).
STAFDIS is used to determine dispatching strategies for each location solution, for each
forecasted incident in the area. This gives different problem instances for STAFDIS. In
total, 280 000 instances are solved.

To get a heuristic solution to the problem, the backup greedy heuristic, implemented
as a C++ program, is used. For exact solutions, CPLEX 10 is called from a C++ program
using ILOG Concert technology. The time it takes for CPLEX to produce a solution is
from 0.5 s with a cut-off at 120 s (the cut-off is reached in less than 0.6% of the runs).
The heuristic never finds a better solution than CPLEX and takes between 0.01–0.03 ms
to find a solution.

280 000 solutions are compared, for four different settings; ptr-locr, ptr-locs, ptp-locr
and ptp-locs. In the sets ptr-locr and ptr-locs, the firemen have preparation times 90 s,
5 min or 6 min, just like in reality (ptr = preparation time real). In ptp-locr and ptp-
locs (ptp = preparation time perturbed), the preparation times are slightly perturbed,
by adding a randomly drawn positive or negative number to each unit’s preparation
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time. The perturbed times range between 65 and 366 s, which makes the problem a
bit more challenging. In the locr-sets, the instance generation (which corresponds to
solving the location problem) starts with the current real location for the fire resources
(locr= location real), while in the locs-sets, the start solution for the location problem is
randomized, i.e. all units and personnel are randomly scattered over the area (although
personnel is always located together with a vehicle).

Table 3. Overall statistics from the experiments, reporting the objective function values.Response
times in seconds.

ptr-locr ptr-locs ptp-locs ptp-locr

CPLEX Heuristic CPLEX Heuristic CPLEX Heuristic CPLEX Heuristic

Mean 651.17 655.13 640.11 644.91 705.34 707.89 716.74 720.44

Median 631 636 614 619 666 668 687 691

Min 89 90 89 90 67 70 70 70

Max 1676 1676 1668 1668 1978 1994 1779 1782

Table 3 shows descriptive statistics from the computational experiments. It can be
seen that perturbated preparation times give longer response times, as can be expected.
Not as intuitive is the fact that randomized start locations for the units (e.g. compare
ptr-locr and ptr-locs) give shorter response times. This is because the meta-heuristic
solving the location problem works better with randomized start locations, compared to
the current stations. It is also evident that while the heuristic does not manage to get as
low average response times as CPLEX, the difference is not large.

The difference between CPLEX and the heuristic is further explored in Table 4 and 5.
Table 4 shows that while the heuristic solutions on average are a few seconds worse than
CPLEX, the median values indicate that most often equally good solutions are found.
This is confirmed by Table 5, Row 1, where it is clear that for three of the four settings,
in more than 50% of the instances, the heuristic finds as good solutions as CPLEX.
The setting ptp-locr seems to be most challenging for the heuristic, and it finds as good
solutions as CPLEX in 43.93% of the cases. However, in 86.75% (43.93 + 42.82) of the
instances, it finds a solution that is less than one percent worse. For the setting ptr-locr,
the heuristic finds a solution that is as good as the one produced by CPLEX in 62.06%
of the cases. The solution found by the heuristic is between 0.01% and 1.00% worse
than the CPLEX solution in 21.93% of the cases for the same setting.

Looking at the solution times (Row 14) in Table 5, CPLEX seems to find the solution
quicker in average in the cases where a randomized start solution is used for the location
problem; the locs-settings have shorter mean solutions times than the other two settings.
This might be due to the fact that in a start solution based on the current situation,
vehicles and firefighters are clustered to stations. Thus, there are more options available
when allocating firefighters to vehicles, then when the resources are scattered over the
area.
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Table 4. Overall differences in objective function values (Heuristic – CPLEX). Times in seconds.

ptr-locr ptr-locs ptp-locs ptp-locr

Mean 3.95 4.80 2.55 3.70

Median 0 0 0 1

Min 0 0 0 0

Max 202 155 141 155

Table 5. Comparison between CPLEX and the backup greedy heuristic. The numbers show the
amount of heuristic solutions that are a certain percentage worse than the solution generated by
CPLEX. E.g. Row 3 shows that 4.13–6.50% of the heuristic solutions are between 1 and 2%worse
than the equivalent CPLEX solution.

Row % from CPLEX sol ptr-locr ptr-locs ptp-locs ptp-locr

1 0 62.06 54.24 56.09 43.93

2 1 21.93 25.43 33.84 42.82

3 2 5.19 6.50 4.13 5.73

4 3 3.29 3.84 2.11 2.54

5 4 2.10 3.33 1.41 1.53

6 5 1.39 2.23 0.91 0.92

7 6 1.01 1.35 0.50 0.51

8 7 0.65 0.88 0.26 0.40

9 8 0.60 0.48 0.20 0.29

10 9 0.40 0.49 0.12 0.23

11 10 0.29 0.29 0.10 0.19

12 50 1.08 0.94 0.33 0.89

13 100 0.01 0.01 0.00 0.01

14 Mean solution time for CPLEX 2.47 s 1.72 1.65 s 2.24 s

Figure 1 shows the same results as Table 5. No clear difference in performance
between the settings can be discerned. For ptr-locr and ptr-locs, the heuristic might be
considered to performworse than for the ptp-settings, but ptr-locr also hasmost solutions
of the four settings, as good as CPLEX. For all four settings, 90% of the solutions found
by the heuristic are less than 3% worse than the solution found by CPLEX.
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Fig. 1. Comparing the heuristic with the exact solution method

5 Using the Model

For a given event with one or more specified alarm plans, the model will provide a
suggestion of which vehicles to dispatch and how to staff these vehicles, in order to
minimize the mean response time. In an operational setting, it would be acceptable for
an incident manager to wait for a few seconds before getting this suggestion, making it
possible to use an exact solutionmethodology. In the experiments here, themean solution
time for CPLEX was less than three seconds, which might be considered acceptable.
However, in some instances it took more than minute, which is too long. Thus, some
measures are needed to ensure that the solution time does not exceed a few seconds,
since waiting longer is not an option when managing accidents and other emergencies.

In an operational context, it would also be possible to update the expected travel
times for the resources. In the model now, a travel time matrix is used, providing quick
estimates of travel times from each zone to each other zone in the dataset. Given that
each zone is a square with 250 m sides, not too much would be gained by using more
exact locations of the resources and the event. However, it would be possible to update
the travel time estimation with real time information regarding traffic jams, closed roads,
whether conditions, etc., if such information exists.

If the model is to be used as a subroutine for a strategic location model or in pre-
paredness calculations, the computational times for the exact solutionmethod is too long.
Spending on average two seconds to solve the problem, and solving it for 19732 zones
and 8 event types would take approximately 88 h. Since this has to be done continuously
in the preparedness calculation case, or repeatedly as in the station location case, the
time to obtain solutions has to be decreased. Using the heuristic, solving the problem
takes on average 0.02 ms, which mean that solving for all zones and event types takes
about three seconds. Thus, it is more useful in a subroutine than the exact method.
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6 Conclusions

From the computational results, it can be concluded that the greedy backup heuristic
in most cases finds the optimal or a near optimal solution to the staffing and dispatch
problem. The heuristic is also quick enough to be useful as a subroutine for a more
extensive location problem solution algorithm, or in a quantitative preparednessmeasure.

However, since the heuristic does not always find the optimal solution to the sub-
problem, it may underestimate the value of a potential good solution being evaluated as a
strategic location option. Thus, a solution process for a location model using the backup
greedy heuristic, might produce inferior solutions compared to if the exact solutions to
the STAFDIS model were used. One interesting study might therefore be to compare
the effectiveness of the location problem solution algorithm when solving STAFDIS
exactly, compared to when it is solved heuristically.

Another possible study would be to construct a tailored exact algorithm to solve the
problem, which is quicker than general purpose solvers like CPLEX, or to expand the
backup greedy algorithm to a greedy based meta heuristic, like e.g. Greedy Randomized
Adaptive Search Procedure [11] or Fixed Set Search [12]. Another option might be to
combine the heuristic with e.g. CPLEX, and use the heuristic to get a good start solution,
and use that to warm-start the CPLEX solver.

When exploring new solution strategies, it would also be interesting to study the
problem complexity, which was not done here. While it may be a NP-hard problem,
this has not been proven. Related to this, it would also be interesting to study how the
heuristic performs when the problem size increases.
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Abstract. In this work, we present a real case application of a Rollon-
Rolloff Vehicle Routing Problem (RRVRP) that arises at a waste collec-
tion company in Northern Italy. Compared to other RRVRP applications,
where large containers are emptied and moved, our problem presents two
additional types of services regarding the collection of bulk waste mate-
rials. Moreover, the problem deals with customer selection based on an
objective function with two components: outsourcing costs incurred when
customers are given to a third-party logistic operator, and internal rout-
ing costs. We model the RRVRP as a Mixed Integer Program and we solve
it through a commercial solver and a simple but effective Iterated Greedy
algorithm. Computational results are provided on 30 real case instances.
Solutions provided by the Iterated Greedy are constantly better than the
ones implemented by the company, showing that relevant cost reduction
can be obtained with a limited computational effort.

Keywords: Rollon-Rolloff Vehicle Routing Problem · Industrial waste
collection · Iterated greedy

1 Introduction

The amount of waste generated in cities has been constantly increasing in the
last decades, due to population growth and urbanization. As a consequence, an
effective waste management is one of the key factors for having sustainable and
livable cities. Waste management should also be efficient, because it represents
around 20%-50% of the municipal costs [16]. Accordingly to Beliën, De Boeck
and Van Ackere [4], who provided an extensive literature review of the field,
waste collection is one of the phases with the highest cost in the waste manage-
ment process, requiring labour intensive activities and massive usage of trucks.
Therefore, an efficient routing is essential for the sustainability of the process.
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Golden, Assad and Wasil [7] divided waste collection problems into three
main categories:

– Residential collection, usually implemented in residential areas as a door-to-
door collection with small bins to be served (<660 L);

– Commercial collection, usually implemented for serving larger bins (between
660 L and 5000 L) located in predefined public areas, or in medium-small
commercial costumers sites;

– Industrial collection, where large volumes of waste have to be collected
(≥5000 L) and the servicing of a customer immediately fills the vehicle
capacity.

The first category of waste collection can be modeled as a capacitated arc rout-
ing problem, while the second one as a capacitated node routing problem. In both
cases, the problem differs from the classical Capacitated Vehicle Routing Prob-
lems (CVRP) because each vehicle may need more than one visit to waste disposal
facilities, given their limited loading capacity. Industrial collection differs from
the first two categories because the vehicles have a unit capacity and customers
entirely fill this capacity with a single request. In this last category, customers
also require different types of services for moving and emptying waste containers.
Those services can be categorized in the delivery of empty containers, the substi-
tution of full containers with empty ones, the retrieval of full containers and the
emptying of containers at disposal plants and their return to the customer. Indus-
trial waste collection is usually modeled with variants of the Rollon-Rolloff Vehi-
cle Routing Problem (RRVRP), which was firstly presented by Bodin et al. [6],
and then extended by Baldacci, Bodin and Mingozzi [3]. It was also adapted
to deal with problem specific constraints in Archetti and Speranza [1], Wy et
al. [17] and Aringhieri et al. [2], among others. Studies have been published also
on a generalization of the RRVRP [9] and on RRVRP with heterogeneous vehicle
fleets [5,8,12], all confirming the importance of routing efficiency in this area.

In this article, we present a real case application of the RRVRP with cus-
tomer selection and problem specific constraints to an industrial waste collection
problem faced by Iren Ambiente Spa, a company operating in a large part of
Northern Italy. The problem, as other RRVRP, is very complex since, in addition
to classical time constraints, it involves the pickup and delivery of different types
of containers, operational times at the customer sites depending on the requested
services, as well as other specific constraints such as container/customer and con-
tainer/vehicle incompatibilities. Moreover, in our problem we need to select a
subset of customers to be served given the available fleet capacity, and assign
the remaining ones to a third-party logistic operator, hence incurring an out-
sourcing cost. To the best of our knowledge, this feature has been presented, in
similar problems, only in [1]. Finally, we propose two additional types of services
regarding the collection of bulk waste materials (Fig. 1b), whose operation is
performed by the same fleet of vehicles that perform the typical RRVRP service
requests proposed by [3,6] (Fig. 1a).

The remainder of the article is structured as follows. In Sect. 2, we describe
the problem. In Sect. 3, we present a Mixed-Integer Linear Programming for-
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(a) Real case of container loading or un-
loading in industrial waste collection.

(b) Bulk waste material loading by a vehi-
cle equipped with an orange peel grapple5.

Fig. 1. Example of real waste collection service requests operated by the company.
(Source: https://www.irenambiente.it/raccolta-selezione-e-trattamento-rifiuti.)

mulation (MILP). Section 4 contains the description of the proposed heuristic
solution method. Both the MILP and the heuristic algorithm solutions are evalu-
ated in detail and compared with the real solutions implemented by the company
in Sect. 5. Finally, concluding remarks are provided in Sect. 6.

2 Problem Description

We are given a set N of customers with different types of requested services, a
set M of disposal plants and a depot d. Each requested service has an associated
outsourcing cost. The objective of the RRVRP that we face is to determine a
set of routes that perform either all the requested services or just a subset of
them, by minimizing the sum of (i) total cost due to service outsourcing and (ii)
internal operating costs of all routes. The routes should comply with a number
of operational constraints.

First of all, the service requests analyzed, usually defined in literature as
trip types (see, e.g., [3,6,17]), in our problem can be of seven types, grouped
in different sets (S, P,W,R, Y,G,B) whose details are provided below. The set
N of customers can be viewed as the union of all the service request sets, and
hence N = (S ∪ P ∪ W ∪ R ∪ Y ∪ G ∪ B). Containers are divided into a set B of
different container types. Each service request i ∈ N is associated with a specific
container type βi ∈ B, which represents the container requested by or collected
from the customer site, and an outsourcing cost Ci to be sustained in case the
request is not served by the routes but given to a third-party logistic operator.
Only for service requests i ∈ S,W,R,G,B a set of disposal facilities Mi ∈ M
to empty the container is defined, given the waste type filling the container and
the contracts with disposal companies. The service request types are:

– W : empty and return. A service request i ∈ W requires, at the customer site,
an empty vehicle to load a full container and to carry it to a disposal facility
m ∈ Mi to empty it. After that, the vehicle must return the same container
to the customer site. At the end of the service the vehicle is located at i and

https://www.irenambiente.it/raccolta-selezione-e-trattamento-rifiuti
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has no container on it. These are default requests to empty a customer-owned
container and are called T1 trips in [3,6].

– S: swap of a full container with an empty one of the same type. A service
request i ∈ S requires, at the customer site, a vehicle with an empty container
of the same type (βi) of the full container to be emptied. There, the vehicle
must unload the empty container, load the full one and reach a disposal
facility m ∈ Mi to empty it. At the end of the service the vehicle is located
at m with an empty container of type βi on it. These are the default service
requests to empty a container when this is not owned by the customer, and
are called T2 trips in [3,6].

– P : delivery of an empty container. A service request i ∈ P requires, at the
customer site, a vehicle to unload an empty container of the required type
(βi). At the end of the service the vehicle is located at i and has no container
on it. These requests are typical for new customers and represent the T3 trips
defined in [3,6].

– R: retrieve of a full container. A service request i ∈ R requires, at the cus-
tomer site, an empty vehicle to load a full container and reach a disposal
facility m ∈ Mi to empty it. At the end of the service the vehicle is located
at m and has an empty container of type βi on it. These represent the T4
trips in [3,6] and model the customer end of service.

– Y : retrieve of an empty container to bring it to the depot. A service request
i ∈ Y requires the vehicle to reach the customer without any container. At
the customer site the vehicle must load the empty container and reach the
depot d. At the end of the service the vehicle is located at d and has no
container on it since the empty container retrieved will not be available until
a formal control is performed. These are the BTY trips discussed in [17] and,
in our case, arise when a customer has a problem with a given container or
the customer is a container repairer, so a control at the depot is needed.

– G: collect bulk material from a container or from the ground, performed
through an orange peel grapple mounted on a hydraulic crane (See Fig. 1b).
A service request i ∈ G requires, at the customer site, a vehicle with the
equipment necessary to collect the bulk material from βi (the ground is con-
sidered as a type of container in B used for these requests) and to reach a
disposal facility m ∈ Mi to empty it. At the end of the service the vehicle is
located at m and can either reach the next service request j ∈ G or return
to the depot and change equipment if needed. Only a subset of vehicles can
serve these requests, because of the required equipment.

– B: load bulk waste material from a customer site on an empty container.
These requests are similar to those encountered in S, but the time to unload
the empty container and load the full one at the customer site is replaced
by a bulk waste loading time. A service request i ∈ B requires a vehicle at
the customer site with an empty container of the required type (βi). There,
the vehicle waits for the bulk material loading and then moves to a disposal
facility m ∈ Mi to empty it. At the end of the service the vehicle is located
at m and has an empty container of type βi on it.

Problem specific constraints that must be fulfilled are the following:
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– The fleet of available vehicles is heterogeneous and is composed of different
types of tractors that can carry different non-exclusive sets of containers;

– Each tractor can carry only one container at a time;
– Not all tractors can work with all containers types: only a subset Hβ of vehicle

types can serve a β container type, for β ∈ B;
– A vehicle visits a disposal plant only if required by the service request;
– Each route has a start time (e.g., 6:00) and an end time (e.g., 12:20) that can

not be exceeded (overtime duties are not allowed);
– Each customer has a time window in which it can be served;
– There is only one depot (d) that represents the spare containers repository

location. The number of containers available at the depot is considered unlim-
ited for all the container types.

Other problem parameters are:

– tij : travel time between nodes i, j ∈ V = (N ∪ M ∪ {d});
– τL: time required to load an empty/full container;
– τU : time required to unload an empty/full container;
– τG

βi
: time to load vehicle in G service requests with βi type of container;

– τB : time to load vehicle in B service requests;
– σm: time to empty a container at the disposal facility m;
– σG: additional time required in each disposal plant to empty a vehicle for

service requests of type G;
– σB: additional time required in each disposal plant to empty a vehicle for

service requests of type B.

Besides the outsourcing cost Ci of each customer i not directly served by the
company vehicles, there is a unit cost ck for each vehicle k. The cost of the route
performed by k is thus obtained by multiplying ck by the route duration.

In our real case study, the main objective is to reduce the number of cus-
tomers to be outsourced in order to serve as much customers as possible with the
higher service quality provided by the company, making a more efficient usage of
internal resources available. For this reason, in our instances outsourcing costs
are much larger than internal operating costs, also quantifying a penalty cost to
force outsourcing being disadvantageous.

3 Mathematical Model

To better fit the related RRVRP literature, from now on we will refer to cus-
tomer as a synonym for service requests. Indeed, in case a customer has multiple
requests, we can simply split it into multiple customers having the same location.

In the context of RRVPR, it is convenient to apply a reduction of the initial
problem by merging all operations into a service and a travel time (see, e.g., [2,
3,6]). In our case, this implies calculating the service time si required to serve
request i as shown in (1), and computing a new travel time Tij between two
nodes i and j (i, j ∈ N ∪ {d}) as shown in Table 1. The service time si considers
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all operations that have to be performed within the time window of the request.
The travel time Tij considers, instead, all the operations required to move from
one node to another (e.g., emptying, loading, unloading, containers’ change at
depot, etc.). This differentiates Tij from the simple travel time tij among nodes.

si =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

τU + τL ∀i ∈ S
τL ∀i ∈ R ∪ Y
τU ∀i ∈ P
minm∈Mi

{τL + tim + σm + tmi + τU} ∀i ∈ W
τG
βi

∀i ∈ G

τB ∀i ∈ B

(1)

Table 1. Time matrix Tij definition.

(i, j) Condition Equation

(d, j) j ∈ S ∪ P ∪ B τL + tdj

(d, j) j ∈ W ∪ R ∪ Y ∪ G tdj

(i, j) i ∈ W ∪ P, j ∈ W ∪ R ∪ Y tij

(i, j) i ∈ W ∪ P, j ∈ S ∪ P ∪ G ∪ B tid + τL + tdj

(i, j) i ∈ S ∪ R, j ∈ S ∪ P, βi = βj minm∈Mi
{tim + σm + tmj}

(i, j) i ∈ S ∪ R, j ∈ S ∪ P, βi �= βj minm∈Mi
{tim + σm + tmd + τU + τL + tdj}

(i, j) i ∈ S ∪ R, j ∈ G ∪ B minm∈Mi
{tim + σm + tmd + τU + τL + tdj}

(i, j) i ∈ S ∪ R, j ∈ W ∪ R ∪ Y minm∈Mi
{tim + σm + tmd + τU + tdj}

(i, j) i ∈ Y, j ∈ S ∪ P ∪ G ∪ B tid + τU + τL + tdj

(i, j) i ∈ Y, j ∈ W ∪ R ∪ Y tid + τU + tdj

(i, j) i ∈ G, j ∈ G minm∈Mi
{tim + σm + σG + tmj}

(i, j) i ∈ G, j ∈ S ∪ P ∪ B minm∈Mi
{tim + σm + σG + tmd + τU + τL + tdj}

(i, j) i ∈ G, j ∈ W ∪ R ∪ Y minm∈Mi
{tim + σm + σG + tmd + τU + tdj}

(i, j) i ∈ B, j ∈ W ∪ R ∪ Y minm∈Mi
{tim + σm + σB + tmd + τU + tdj}

(i, j) i ∈ B, j ∈ (S ∪ P, βi = βj) ∪ B minm∈Mi
{tim + σm + σB + tmj}

(i, j) i ∈ B, j ∈ (S ∪ P, βi �= βj) ∪ G minm∈Mi
{tim + σm + σB + tmd + τU + τL + tdj}

(i, d) i ∈ S ∪ R minm∈Mi
{tim + σm + tmd + τU}

(i, d) i ∈ Y tid + τU

(i, d) i ∈ B minm∈Mi
{tim + σm + σB + tmd + τU}

(i, d) i ∈ W ∪ P tid

(i, d) i ∈ G minm∈Mi
{tim + σm + σG + tmd}

To model the case when a set Mi of disposal plants is available for a service
request i ∈ S,W,R,G,B, si and Tij are calculated using the disposal plant
m ∈ Mi that minimizes respectively the service time si (1), in case of service
requests i ∈ W , or the time between nodes Tij (Table 1), in case of service
requests i ∈ S,R,G,B.
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Fig. 2. Problem complexity reduction: on the left an example of a real world feasible
route to serve customers with different service requests. Numbers on arcs represents
the order of the visits. On the right the same solution on the graph of the reduced
problem. All the vehicle operations are modeled in terms of service and travel times.

With this transformation, it is possible reduce the complex problem faced
by the company to a CVRP with profits and time windows, as shown next. In
Fig. 2 we illustrate an example of the problem reduction from a graph with the
depot, fours customers and one disposal facility to a graph considering only the
set of requests N and the depot, hiding in the definition of si and Tij most of
the real problem complexity.

The problem can therefore be defined on a complete graph G = (V ′, A′),
where the nodes V ′ = (N ∪ {d}) are the union of the service requests N =
(S ∪ R ∪ W ∪ P ∪ Y ∪ B ∪ G) and the depot {d}, and A′ is the set of arcs
connecting the nodes. Given the following parameters:

– K: set of vehicles (each performing a route);
– Pk: vehicle type associated to k;
– βi: type of container for service request i;
– Hβ : set of vehicles that can carry the container type β;
– [ei, li]: start and end of the time window of customer i;
– si: service time of customer i, calculated as shown in (1);
– Tij : travel time associated with arc (i, j) ∈ A′, calculated as shown in Table 1;
– [Ek, Lk]: min start time and max end time of the route performed by k;
– Ci: outsourcing cost for request i;
– ck: unit-time cost of vehicle k;

and the following variables:

– xijk =

{
1 if arc (i, j) is used by vehicle k

0 otherwise
∀i, j ∈ V ′, k ∈ K;

– θik ∈ R vehicle k start time of service at customer i;
– θdk ∈ R vehicle k end time;

it is possible to formulate the RRVRP by the following MILP:

min
∑

j∈N

Cj(1 −
∑

i∈V ′

∑

k∈K

xijk) +
∑

k∈K

(θdk − Ek)ck (2)
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s.t.
∑

i∈V ′

∑

k∈K

xijk ≤ 1 ∀j ∈ N (3)

∑

j∈N

xdjk ≤ 1 ∀k ∈ K (4)

∑

j∈V ′
xjik −

∑

j∈V ′
xijk = 0 ∀k ∈ K, i ∈ V ′ (5)

θik ≥ ei ∀i ∈ N, k ∈ K (6)
θik + si ≤ li ∀i ∈ N, k ∈ K (7)
(θik + si + Tij − θjk) ≤ (1 − xijk)Mij ∀i ∈ N, j ∈ V ′, k ∈ K (8)
(Ek + Tdj − θjk) ≤ (1 − xdjk)Mdj ∀j ∈ N, k ∈ K (9)
θdk ≤ Lk ∀k ∈ K (10)
xijk = 0 ∀i, j ∈ N, k ∈ K,Pk /∈ Hβj

(11)
θdk ≥ Ek ∀k ∈ K (12)
xijk ∈ {0, 1} ∀i, j ∈ V ′, k ∈ K (13)

where

Mij = max{li + Tij − ej ; 0} i, j ∈ N (14)
Mid = max{li + Tij − min

k∈K
{Ek}; 0} i ∈ N (15)

Mdj = max{max
k∈K

{Ek} + Tij − ej ; 0} j ∈ N (16)

are large constants used to linearize constraints (8) and (9), as shown in [15].
The objective function (2) is to minimize the sum of total outsourcing costs
and total internal operating costs. Constraints (3) ensure that each customer
can be visited at most by one route. Constraints (4) ensure that each vehicle
departs from the depot only once. Constraints (5) are the classical in-degree and
out-degree constraints. Constraints (6) and (7) model the time window require-
ments. Constraints (8) guarantee valid times between two consecutive services
i and j in a route by imposing that the start-time of the service at customer j
must be greater than or equal to the start-time of the service at the previous
customer plus the service time of the previous customer and the travel time. Con-
straints (9) are the same as constraints (8), but used when the previous node
is the depot. Constraints (10) impose the route time limit. Constraints (11)
impose the compatibility of vehicle and container by removing incompatible
assignments. Constraints (12) define a lower bound on arrival time at the depot,
to avoid a negative component in the objective function in case of empty routes,
and (13) define the domain of the variables.

4 Iterated Greedy Algorithm

In this section, we present an Iterated Greedy (IG) metaheuristic for the prob-
lem. The IG metaheuristic was originally proposed by Ruiz and Stützle [13] to
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Algorithm 1. Overview of the proposed Iterated Greedy (IG) metaheuristic.
Input: input data
Parameters: η0, δ
Output: a set of routes X ∗ = (R1, ..., R|K|).
1: X ∗ ← ConstructiveHeuristic()
2: for η0 = 1, ..., η0 do
3: X ′ ← Destruction(X ∗, δ)
4: X ′′ ← Construction(X ′)
5: if z(X ′′) < z(X ∗) then
6: X ∗ ← X ′′

7: end if
8: end for
9: return X ∗

Algorithm 2. Constructive heuristic used by IG metaheuristic.
Input: input data
Output: a set of routes X ∗ = (R1, ..., Rk).

1: X ∗ ← {}
2: candidateList ← N
3: for each criteria in [C1, C2, C3, C4, C5] do
4: X ′ ← {}
5: sortedCL ← SortService(candidateList, criteria)
6: for each service in sortedCL do
7: X ′ ← BestInsertion(X ′, service)
8: end for
9: if (z(X ′) < z(X ∗)) then

10: X ∗ ← X ′

11: end if
12: end for
13: return X ∗

solve a scheduling problem and since then has been successfully applied to sev-
eral optimization problems, either as a pure iterated destruction/reconstruction
algorithm or with an additional local search at each iteration (see, e.g., [14]).
The choice of an IG algorithm came after some preliminary experiments with
single-solution based metaheuristics, which often rely on local search to improve
candidate solutions. After trying classical neighborhoods and proposing new ones
designed for the problem, we noticed that the several constraints make it diffi-
cult to find a feasible move and an improving neighbor. Preliminary tests were
performed also with an IG with Variable Neighborhood Descent, providing solu-
tions comparable with the pure IG but in much higher computational times. For
this reason, in this article we present only the pure IG algorithm.

Algorithm 1 provides a pseudocode description of the proposed IG meta-
heuristic. The input of the algorithm is the input data defined in Sect. 3. The
best solution found by the heuristic is indicated by X ∗, where X ∗ = (R1, ..., R|K|)
denotes the set of routes forming a feasible solution.
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Algorithm 3. Destruction phase function used by IG metaheuristic.
Input: X , δ, input data

1: r0 = min {δ · |N |, ∑r∈X |Rr|}
2: for i = 1, ..., r0 do
3: X = X\ GetRandomService(X )
4: end for
5: return X

The metaheuristic starts with an initial solution built through a greedy con-
struction algorithm (Algorithm 2) and then goes through several iterations of
Destruction (Algorithm 3) and Reconstruction (Algorithm 4) phases where the
current best solution is partially destroyed and a new complete candidate solu-
tion is reconstructed by a greedy algorithm.

The greedy construction algorithm (Algorithm 2) selects all the requests
ordered according to five different criteria [C1, C2, C3, C4, C5] and tries to insert
them, one at a time, in the best feasible position. The SortService function
sorts requests in descending order, based on the values taken in the different
criteria: C1 prioritizes outsourcing cost (Ci); C2 prioritizes the closing time (−li);
C3 the opening time (−(li − ei)); C4 prioritizes the ratio between outsourcing
cost and opening time ( Ci

(li−ei)
); and finally C5 prioritizes the ratio between

outsourcing cost and closing time (Ci

li
). The BestInsertion procedure inserts

a service in the best feasible position, if any, i.e., it tries all positions in all routes
and inserts the service in the feasible position that less increases the cost, or does
not insert the service if no feasible position is available. The solution returned by
the constructive heuristic, X ∗, is the one that provides the minimal cost z(X ∗)
among the ones constructed using the five different criteria.

Then, for η0 iterations, a Destruction procedure (Algorithm 3) removes at
random δ% of the total number of requests from the current solution routes, while
a Reconstruction procedure (Algorithm 4) sorts all the outsourced requests
at random and tries to insert them in the best position among those that keep
the solution feasible. The possibility of the algorithm to remove all the requests
in the solution if they are less than δ% of the total number of requests was chosen
because we found it to be better than a simple restart with a completely new
solution. Indeed, this produces a complete random solution (Algorithm 3, line
2) that thus increases the diversification of the algorithm, while a restart would
have a more limited effect because of the sorting criterion in Algorithm 2.

The incumbent solution is updated every time the candidate solution has a
better objective function value (Algorithm 1, lines 5–6). As shown in the com-
putational experiments, even if the algorithm is simple it provides high quality
solutions for the problem in small computational times.



Industrial Waste Collection in Northern Italy 157

Algorithm 4. Reconstruction phase function used by IG metaheuristic.
Input: X , input data

1: candidateList ← N \ X
2: sortedCL ← RandomSorting(candidateList)
3: for each service in sortedCL do
4: X ← BestInsertion(X , service)
5: end for
6: return X

5 Computational Results

In this section, preliminary computational results on real instances are presented.
The instances were collected at Iren Ambiente Spa during two different months
on two different provinces. Times between nodes (requests sites, disposal plants
and depot) have been calculated by an implementation of the Open Source
Routing Machine [10], and increased by a 10%, a value empirically determined
to model the fact that tractors, and not cars, are used.

Both the MILP and the metaheuristic have been implemented in Python 3.9,
and tested on a single-core of an Intel(R) Xeon(R) Gold 6252N CPU running at
2.30GHz, equipped with 16 GB of memory under Windows 10 Pro N operating
system. The MILP has been modeled with PuLP version 2.6 [11] and solved
with Gurobi version 9.5.1 with a computational time limit (TL) of 3600 s. The
time limit for the metaheuristic has not been set, since the number of iterations
parameter η0 already controls the computational time. Moreover, as IG is a
non-deterministic algorithm, it was run 10 times for each instance. For the IG
the following parameter settings are used: η0 = 4000 and δ = 0.15. This value
of δ was the one, among different values, performing the best on average in
preliminary computational results.

An overview of the sizes and the number of service types of the instances is
given in Table 2, as well as the percentage of customers visited by the company
solution X R. Table 2 contains two sets of real instances, namely “RE” (Reggio
Emilia province) and “PC” (Piacenza province). The “RE” real life instance set
has mainly request types that are either swaps (S) or empty and return (W ).
The second set of instances, “PC”, comes from a smaller depot with less routes
available and a smaller number of requests that are mainly collection of bulk
waste through an orange peel grapple (G) and swaps (S).

The results obtained on these instances are shown in Tables 3 and 4. The
corresponding gap between the best dual bound and the best solution value found
within the TL for the MILP is reported as GAPM= |UBM−LBM|

|UBM| · 100, where UBM is
the cost of the incumbent solution found by the MILP and LBM is the best dual
bound achieved by the MILP within the TL. The improvement of the MILP or IG
solution with respect to the real cost sustained by the firm is defined as ZR−Z

ZR
·100

where ZR is the cost sustained by the company and Z is replaced by UBM if we
are computing the improvement of the MILP (IMPMR) or ZB and ZA if we are
computing the improvement of the best (IMPBR) or average (IMPAR) solution of
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Table 2. Real instances composition. Instances, collected in different areas and periods,
are divided in two sets: “RE” with usually more than 30 requests and a majority of W
and S types, and “PC” with less than 25 requests and a majority of G and S types.

Instance |K| |N | Service Types |XR|
|N| %Name (W, S, P, R, Y, G, B)

RE001 6 41 (4, 37, 0, 0, 0, 0, 0) 63.41%
RE002 5 38 (9, 28, 0, 0, 1, 0, 0) 63.16%
RE003 5 41 (6, 34, 0, 0, 0, 0, 0) 63.41%
RE004 5 41 (8, 32, 1, 0, 0, 0, 0) 63.41%
RE005 5 36 (8, 28, 0, 0, 0, 0, 0) 63.89%
RE006 5 38 (10, 28, 0, 0, 0, 0, 0) 60.53%
RE007 5 37 (6, 31, 0, 0, 0, 0, 0) 64.86%
RE008 5 35 (7, 28, 0, 0, 0, 0, 0) 62.86%
RE009 5 38 (10, 28, 0, 0, 0, 0, 0) 68.42%
RE010 3 24 (7, 17, 0, 0, 0, 0, 0) 75.00%
RE011 5 36 (9, 27, 0, 0, 0, 0, 0) 66.67%
RE012 6 39 (6, 32, 0, 1, 0, 0, 0) 64.10%
RE013 5 41 (10, 30, 0, 1, 0, 0, 0) 60.98%
RE014 4 27 (13, 12, 2, 0, 0, 0, 0) 70.37%

AVG 65,08%

Instance |K| |N | Service Types |XR|
|N| %Name (W, S, P, R, Y, G, B)

PC001 3 21 (3, 4, 0, 0, 0, 13, 1) 61.90%
PC002 3 18 (5, 4, 0, 0, 0, 9, 0) 66.67%
PC003 2 15 (2, 4, 1, 0, 0, 8, 0) 60.00%
PC004 2 19 (1, 3, 5, 0, 0, 10, 0) 57.89%
PC005 2 19 (4, 4, 0, 0, 0, 11, 0) 47.37%
PC006 2 16 (2, 1, 0, 0, 0, 13, 0) 50.00%
PC007 3 22 (4, 4, 1, 0, 0, 13, 0) 72.73%
PC008 3 18 (2, 6, 1, 1, 0, 8, 0) 77.78%
PC009 3 22 (3, 5, 0, 0, 0, 14, 0) 59.09%
PC010 4 18 (4, 7, 0, 0, 0, 7, 0) 66.67%
PC011 3 20 (2, 4, 0, 0, 0, 14, 0) 50.00%
PC012 3 14 (4, 2, 0, 0, 0, 8, 0) 42.86%
PC013 2 19 (2, 4, 0, 0, 0, 13, 0) 47.37%
PC014 3 21 (1, 9, 0, 0, 0, 11, 0) 66.67%
PC015 3 23 (6, 4, 1, 0, 0, 12, 0) 65.22%
PC016 3 15 (2, 3, 1, 0, 0, 9, 0) 60.00%

AVG 59,51%

the IG. Finally, the improvement of IG over the MILP solution is calculated as
IMPBM= UBM−ZB

UBM
· 100 and IMPAM= UBM−ZA

UBM
· 100 if we are comparing the best

and the average result of the IG respectively. Computational times, CPUM and
CPUIG, are reported in seconds throughout the section.

Each row in Tables 3 and 4 reports the cost sustained by the firm, IG and
MILP computational results for each one of the 30 test instances. The following
information is provided: the average percentage increase of customers visited by
the IG (Δ|X A|), the average (ZA) and best (ZB) objective function computed by
the IG along with the corresponding percentage improvements (IMPAR, IMPBR)
computed with respect to the real solution and (IMPAM, IMPBM) to the best
computed upper bound (UBM) produced by the MILP. Note that a negative
improvement means the compared method performed worse in that case. Finally,
the computation time of the IG (CPUIG) is reported as the average over 10 runs.

For most of the instances the solver provides solutions that are better than the
real ones, but, accordingly with VRP literature [15], the MILP seems not to have
good lower bounds, because, even after a hour of computation, the gap between
the upper and lower bound of the model (GAPM) is still large. This gap has been
calculated as a ratio between the difference of upper and lower bound provided
by the solver and the upper bound (and not the lower bound), because often the
lower bound found after the TL was still equal to 0. Given the poor performance
of the proposed MILP, we were not able to prove optimality for any solution,
but, for all “RE” instances and for 15 out of 16 “PC” instances the solver
was able to find better solutions than the ones provided by the company, with
an average improvement among the instances (IMPMR) of 12.09% and 30.13%
respectively. Also the IG obtained very good results with respect to both the
real cost sustained by the company and the MILP results. Indeed, for all “RE”
instances, the best results among 10 runs of IG had an average IMPBR among
the instances of 20.40% compared to the real cost sustained by the company
and of 9.46% compared to the MILP solution (IMPBM). For “PC” instances, on
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Table 3. “RE” instances with real cost sustained by the company, MILP’s and IG’s
results.

Instance
Name

ZR UBM CPUM[s] IMPMR GAPM ZB ZA Δ|X A| CPUIG[s] IMPBR IMPAR IMPBM IMPAM

RE001 1557.20 1234.93 3600.00 20.70% 100.00% 1037.84 1064.96 15.00% 42.98 33.35% 31.61% 15.96% 13.76%

RE002 1498.00 1237.21 3600.00 17.41% 100.00% 1109.71 1144.59 6.67% 32.88 25.92% 23.59% 10.31% 7.49%

RE003 1571.00 1540.81 3600.00 1.92% 96.50% 1397.65 1436.28 −5.38% 39.43 11.03% 8.58% 9.29% 6.78%

RE004 1522.00 1457.45 3600.00 4.24% 100.00% 1316.97 1346.39 −4.62% 40.71 13.47% 11.54% 9.64% 7.62%

RE005 1490.00 1287.15 3600.00 13.61% 100.00% 1152.50 1168.66 1.74% 29.73 22.65% 21.57% 10.46% 9.21%

RE006 1585.00 1187.67 3600.00 25.07% 95.46% 1121.30 1160.97 11.74% 32.85 29.26% 26.75% 5.59% 2.25%

RE007 1456.00 1219.83 3600.00 16.22% 100.00% 1083.11 1106.69 −1.25% 31.25 25.61% 23.99% 11.21% 9.28%

RE008 1098.00 999.49 3600.00 8.97% 96.00% 902.87 930.96 2.27% 28.47 17.77% 15.21% 9.67% 6.86%

RE009 1308.00 1213.64 3600.00 7.21% 100.00% 1149.94 1167.07 −4.62% 33.85 12.08% 10.77% 5.25% 3.84%

RE010 579.60 548.57 3600.00 5.35% 100.00% 513.57 524.45 0.00% 10.58 11.39% 9.51% 6.38% 4.40%

RE011 1346.00 1217.45 3600.00 9.55% 100.00% 1065.68 1082.53 1.25% 30.03 20.83% 19.57% 12.47% 11.08%

RE012 1508.20 1381.14 3600.00 8.42% 100.00% 1230.92 1250.76 −1.60% 37.19 18.38% 17.07% 10.88% 9.44%

RE013 1603.00 1470.63 3600.00 8.26% 96.34% 1324.30 1361.09 6.00% 39.20 17.39% 15.09% 9.95% 7.45%

RE014 801.80 623.40 3600.00 22.25% 100.00% 589.46 597.58 5.26% 15.48 26.48% 25.47% 5.44% 4.14%

AVG 12.09% 98.88% 2.32% 20.40% 18.60% 9.46% 7.40%

Table 4. “PC” real instances composition, real cost sustained by the company with
MILP’s and IG’s results.

Instance
Name

ZR UBM CPUM[s] IMPMR GAPM ZB ZA Δ|X A| CPUIG[s] IMPBR IMPAR IMPBM IMPAM

PC001 8148.50 5143.91 3600.00 36.87% 100.00% 5143.91 5144.00 23.08% 8.10 36.87% 36.87% 0.00% 0.00%

PC002 6148.50 4141.11 3600.00 32.65% 100.00% 4141.11 4141.11 16.67% 5.48 32.65% 32.65% 0.00% 0.00%

PC003 6113.70 3102.57 3600.00 49.25% 100.00% 3102.57 3102.57 33.33% 4.14 49.25% 49.25% 0.00% 0.00%

PC004 8105.00 6102.47 3600.00 24.71% 100.00% 6102.47 6102.47 18.18% 5.81 24.71% 24.71% 0.00% 0.00%

PC005 10105.60 7101.99 3600.00 29.72% 100.00% 7101.99 7399.27 30.00% 5.89 29.72% 26.78% 0.00% −4.19%

PC006 8081.50 9062.31 3600.00 −12.14% 100.00% 9062.31 9062.31 −12.50% 4.37 −12.14% −12.14% 0.00% 0.00%

PC007 6148.50 5138.72 3600.00 16.42% 100.00% 5137.54 5138.62 6.25% 8.92 16.44% 16.42% 0.02% 0.00%

PC008 4148.50 1144.75 3600.00 72.41% 100.00% 1144.64 1144.72 21.43% 4.37 72.41% 72.41% 0.01% 0.00%

PC009 9154.60 4147.41 3600.00 54.70% 100.00% 4147.41 4147.41 38.46% 8.85 54.70% 54.70% 0.00% 0.00%

PC010 6137.40 5118.69 3600.00 16.60% 100.00% 5118.69 5118.69 8.33% 5.93 16.60% 16.60% 0.00% 0.00%

PC011 10114.10 7109.56 3600.00 29.71% 100.00% 7109.56 7109.56 30.00% 7.59 29.71% 29.71% 0.00% 0.00%

PC012 8075.00 7060.46 3600.00 12.56% 100.00% 7060.46 7060.46 16.67% 3.72 12.56% 12.56% 0.00% 0.00%

PC013 10099.00 7087.72 3600.00 29.82% 100.00% 7087.72 7087.72 33.33% 6.07 29.82% 29.82% 0.00% 0.00%

PC014 7148.50 4145.56 3600.00 42.01% 100.00% 4144.91 4244.13 20.71% 8.04 42.02% 40.63% 0.02% −2.38%

PC015 8148.50 5142.42 3600.00 36.89% 100.00% 5141.32 5141.32 20.00% 9.67 36.90% 36.90% 0.02% 0.02%

PC016 6090.00 5077.10 3600.00 16.63% 100.00% 5077.10 5077.17 11.11% 4.37 16.63% 16.63% 0.00% 0.00%

AVG 30.13% 100.00% 19.69% 30.13% 29.84% 0.00% −0.44%

the other hand, IG best solutions among 10 runs provided a IMPBR of 30.13%,
although no improvement on average (IMPBM = 0.00%) among the instances.
This can be interpreted by supposing that both the MILP and IG probably found
optimal or near optimal solution on these smaller instances, but this cannot
be confirmed because of the weak lower bounds. If we look also at the average
results, it is possible to see the high quality results of the IG. Indeed, on the
small-size “PC” instances it provides almost always the same solution value of
the MILP, having IMPAM close to 0, while on larger instances, as the “RE” ones,
it performs way better having a IMPAM of 7.40%. Average IG results show also an
average increase of internally served customers compared to company solutions,
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even if in some “RE” instances a decrease seems to be beneficial for the objective
function, depending on the combination of outsourcing and internal operating
costs.

In addition to the high quality level of the solutions that the proposed IG is
able to found, we want to stress out also other two main advantages it presents:
the simplicity of both the algorithm construction and the parameters tuning,
having just one parameter δ driving the diversification in building the solutions
and one η0 driving the computational time, and its velocity, providing very good
solutions in less than 10s on “PC” instances and less than 40s on “RE” ones.

Finally, it is possible to notice that for instance PC006 we were not able to
improve the result empirically found by the company (IMPMR, IMPBR, IMPAR

are negatives in Table 4). A detailed study of the solutions provided by the
company revealed that this happens because the company sometimes applies
some movements not modelled in this study: in W customers that are far from
depot, if they have the possibility to do so, they make a temporary drop-off of
an empty container at the customer site, serve the W request and then pick-up
again the empty container to reach the next customer, without going back to the
depot to get another one if necessary. This sometimes allows large time savings,
as it happened on this particular instance.

6 Conclusions

In this article, we analysed an industrial waste collection case study that lies
in the field of Rollon-Rolloff Vehicle Routing Problems. Through data pre-
processing we have been able to reduce the size of the underlying graph and
hence model the problem as a Capacitated Vehicle Routing Problem with profits
and time windows. We first modeled the problem with a Mixed Integer Program-
ming formulation, and then we solved it through an Iterated Greedy algorithm.
We executed multiple experiments on real instances collected by the company.
Computational results show how the modelling of the problem and the use of a
simple Iterated Greedy metaheuristic can lead to significant improvements in the
operational costs. Moreover, the speed of the algorithm in providing high quality
solutions could make it possible, for the company, to use it as a Decision Support
System (DSS), to quickly simulate different scenarios and obtain near-optimal
solutions by changing input data and parameters instead of building empirical
lower-quality solutions. Indeed, given the complexity of the problem, customers
to be outsourced are now often predetermined by the company, which is now
evaluating to switch to a model-based planning. To achieve this, an integration
of the DSS with the company informative system is needed, as well as the imple-
mentation of features such as lunch break, the use of tractors with two trailers,
and the possibility of temporary drop-off of containers at customer locations.
We are planning to implement these features as future research work.
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Abstract. School transport is essential to guarantee the access and per-
manence of students in public schools, especially in rural regions, where
students are located in large areas with low density and roads are in
precarious situations. The present work aims to apply an Iterated Local
Search metaheuristic to route 13,664 students in the rural areas of Rio de
Janeiro state, Brazil. To reach this goal, the School Bus Routing Problem
is considered with a heterogeneous fleet to minimize the total cost, con-
sidering the vehicle capacity constraints and maximum travel distance.
The method is applied to the Rio de Janeiro State data to fill the gap
between school practices and academic models and quantify potential
economic gains. Computational experiments show that when comparing
the method’s results against the routes used in practice, a reduction of
40.5% in the average cost of the routes and 46.0% in the average mileage
per student is obtained.

Keywords: School Bus Routing Problem · Iterated Local Search ·
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1 Introduction

The right to school transport is guaranteed to public school students by the
Brazilian Federal Constitution of 1988. Considering the continental dimension
of Brazil and its geographic, cultural, and social diversity, the elaboration of
public policies at the national level becomes challenging. In addition to these
challenges, the economic crisis which began in Brazil in 2014 and the austerity
policies adopted resulted in budget cuts, including in the area of education and
investments in transport [11].

In this sense, the quality of education spending must be a priority, and the
application of optimization techniques can result in significant savings, improving
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efficiency with a high level of service. In most rural regions of Brazil, transport
network management activities – establishing routes, selecting students, and
selecting vehicles according to cost, safety, capacity, and travel time – are carried
out based on the experience and intuition of the responsible person, increasing
expenses, travel time and the number of vehicles used [24]. Furthermore, in the
rural context, the definition of routes is even more challenging since the students
are located in large areas with low density, and most roads are in precarious
situations [4]. In many cases, the maximum travel time restriction is reached
before vehicle capacity, due to the large distances between the students.

In this sense, the application of optimization techniques, in addition to
enabling significant savings, can increase the level of service offered to students.
The route optimization performed on vehicle fleets is known in the literature
as the Vehicle Routing Problem (VRP). The VRP is a combinatorial optimiza-
tion problem that consists of determining delivery or collection routes from one
or more warehouses, having as destinations points that represent customers or
cities, respecting established restrictions [13].

One of the VRP variants is the School Bus Routing Problem (SBRP). The
SBRP consists of routing a fleet of school vehicles, where students must be
picked up from their residences or pre-determined bus stops and taken to the
school [2]. In the SBRP, the depot is usually different from the school, vehicles
have a maximum capacity, and there is a restriction on the time the student will
stay in the vehicle [20]. In addition, in our application distances from the depot
to the first student and from the school to the depot are not considered due to
contractual reasons.

The SBRP is similar to the Open Vehicle Routing Problem (OVRP), with
vehicles’ capacity and distance restriction, classified as an NP-hard problem [20],
that is, there are no known algorithms capable of finding an optimal solution
in polynomial time [14]. For applications in real large-scale cases, where it is
required to consider specific characteristics and constraints, heuristics and meta-
heuristics are more suitable since they present high-quality solutions in a rea-
sonable time interval [26].

The first publication about the SBRP was done by Newton and Thomas [18].
Fifty years after this first publication on the subject, new approaches and algo-
rithms continue to emerge in the literature, given the potential improvement they
can bring to a real environment. The large gap that exists between school prac-
tices and academic models is also highlighted by Ellegood et al. [7]. The authors
highlight the need for further studies to quantify the benefits of optimization in
practice, considering potential economic and social gains.

To fill the gap between school practices and academic models [7] and quantify
potential economic gains, we considered real datasets. We apply an Iterated Local
Search (ILS) metaheuristic to route 13,664 students in the rural areas of Rio de
Janeiro state in Brazil. To reach this goal, the School Bus Routing Problem is
considered with a heterogeneous fleet to minimize the total cost, considering the
vehicle capacity constraints and maximum travel distance.
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The remainder of this paper is organized as follows. Section 2 describes the
SBRP. Section 3 reviews some works related to the SBRP and ILS. Section 4
presents our solution approach. Section 5 discusses data collection steps and
presents the obtained results with a comparison with the routes currently used.
Finally, Sect. 6 presents the concluding remarks of this work.

2 Problem Description

We can define the SBRP according to Hou et al. [9] over a graph with a set
of nodes and arcs G = (V,E), where V = {0, 1, 2, 3, . . . , n, n + 1} is the set of
nodes and A = {(i, j), i, j ∈ V | i �= j} is the set of arcs. When taking students
to the school, node 0 corresponds to the depot and node n + 1 corresponds to
the school. The inverse happens when bringing the students home. The node
set C = {1, 2, 3, . . . , n} represents the bus stops. Each stop i has a number
of students qi to be served. The nodes representing the school and the depot
have no associated demand. Each arc (i, j) has an associated distance di,j . A
heterogeneous fleet of vehicles is located at the depot and the set of vehicle types
is represented by M = {1, 2, 3, ...,K}. Each type of vehicle k has a capacity Qk,
a fixed cost fk and a variable cost per unit of distance traveled vk. The number
of vehicles of type k is represented by hk.

The objective of the problem is to determine a set of routes with the minimum
total cost satisfying the following constraints:

– Each vehicle leaves the depot (or the school), visits a series of stopping points
and ends the route at the school (or depot).

– Each stopping point must be visited only once.
– The number of students served by a vehicle cannot exceed its capacity.
– The total travel time for students cannot exceed the maximum travel time or

distance allowed D.
– The number of vehicles of type k used cannot exceed hk.

3 Literature Review

3.1 School Bus Routing Problem

Two literature reviews, recently published about SBRP, reviewed 93 papers [7,
20]. In the following, we will highlight more recent works that are not present in
these surveys.

Rosa [23] proposed a methodology to geocode the address of schools and
students, calculate the distance and travel time and apply a tool to obtain the
routes. The tool uses the Adaptive Large Neighborhood Search (ALNS) meta-
heuristic. The author considered the same environment as this work, students
from the rural area of the state of Rio de Janeiro. The first stage of the proposed
methodology, geocoding of schools and students, allowed the development of the
computational tests presented in this paper.
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Oudouar et al. [19] proposed an approach that consists of generating routes
for each school using a basic heuristic, such as Clarke and Wright or Path Scan-
ning, and a clustering algorithm for selecting bus stops. The authors applied the
method in real instances of up to 108 students.

In the paper of Avilés-Gonazélez et al. [1], the authors presented the imple-
mentation of Simulated Annealing (SA) for SBRP resolution. They used an
experiment design technique to obtain statistical support in the selection of
parameters. The authors applied the algorithm in a real instance with 41 stu-
dents and 21 possible stopping points.

Lysgaard et al. [16] used a multistart heuristic and then a framework for
mixed integer linear programming. The algorithm was applied in real instances
from the literature of up to 101 students. Hou et al. [8] developed a metaheuristic
that uses three neighborhood exploration structures to iteratively improve the
solution.

Calvete et al. [3] proposed a metaheuristic that makes a partial allocation of
students and defines the routes that minimize the total cost. Then, a refinement
is made to allocate the remaining students and obtain a feasible solution. The
algorithm was applied in instances from the literature with up to 800 students.
In 15.18% of the instances, the method obtained a better result than the one
from the literature and, in 66.07% of the instances, the same result was found
from the literature.

3.2 Iterated Local Search

Some authors have used Iterated Local Search (ILS) in SBRP. The ILS uses
a local search to obtain the local minima of a function and, at each iteration,
uses a perturbation in the previously obtained locally optimal solution [15]. The
strength of the perturbation must be calibrated so that it is not so strong that the
solution space is randomly explored and not so weak that the algorithm returns
to the solution already visited. The algorithm comprises four components: initial
solution, local search, perturbation method, and acceptance criterion.

Dang et al. [6] used ILS in a hybrid metaheuristic to generate a set of solu-
tions and then applies a Set Partitioning (SP) formulation to try to find the
optimal route. The SP model is solved by CPLEX and used in instances from
the literature. Hou et al. [9] also used a hybrid metaheuristic of ILS with SP and
applied in a real instances of the Wuxi City in China, with up to 790 students.

With application in a Brazilian state, the work of Porto et al. [22] proposed a
routing method to create better routes that serve students from rural schools in
the city of Governador Valadares, in the state of Minas Gerais. The authors con-
sidered routing each school, in which the best result was obtained with a heuris-
tic that combined ILS and Random Variable Neighborhood Descend (RVND).
Routing for multiple schools was also considered, where the method with the
best result was the Record-to-Record. The authors do not consider maximum
travel time or distance in the tests performed.
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4 Solution Approach

Considering the potential of the application of the ILS in the SBRP and the
results obtained in the literature, we choose this metaheuristic as the solution
method for the scenario studied.

A solution is represented by a set of vectors, where each vector represents a
route to a vehicle. Plus, part of the solution is a vector with distance, total load,
cost, and vehicle capacity for each route. Figure 1 shows a solution composed
of three routes: R1, R2, and R3. Route information Ri is stored in position i
for the distance, load, vehicle, and cost vectors. All routes start and end with
element 1 which represents the school or depot. For the trip to the school, the
distance to the first student is not considered when calculating the route distance
and cost. For the return trip, the distance from the last student to the depot
is also disregarded. Those are real aspects of the problem. In the government
and drivers contract, the payment is done by km, but only when at least one
student is transported. In the example, Route R1 has a total distance of 25km
and has four students allocated (6, 3, 8, and 2). For this route, a vehicle with a
capacity of eight was allocated, which is equivalent to a Kombi according to the
available fleet. Finally, the route has a total cost of 32.50. The total distance,
load, capacity, and cost of the instance are the sum of the information from R1,
R2, and R3 routes.

Distance Load Capacity Cost

R1 1 6 3 8 2 1 25.0 4 8 32.5

R2 1 5 10 7 11 12 9 14 13 16 1 45.9 9 15 73.4

R3 1 4 15 1 68.7 2 8 89.3

Fig. 1. Solution representation

The constructive algorithm builds the solution from a random choice of the
first student to be included in the route. The algorithm uses the nearest neighbor
technique from this first student, inserting in the route the student that was not
yet visited and that presents the shortest distance to the last element inserted in
the route. In addition to the vehicle’s maximum capacity, the route must respect
the maximum distance or travel time.

To explore the search space, we use classic neighborhood structures of the
VRP with intra-route, and inter-route movements [25]. Intra-route moves refer
to the Shift, Swap, and Relocate structures. Inter-route moves implemented were
Swap and Relocate. The Shift move corresponds to position inversion of consec-
utive elements of a route. Swap is position inversion of non-consecutive elements
in the same or different routes. Finally, Relocate deletes an element from the
route with reinsertion in another position on the same or different routes.
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In addition to the above movements, we include in the local search the
exchange of the route vehicle. As the vehicle type is chosen randomly in the
construction, the inclusion of this neighborhood allows the adjustment of the
vehicle used in each route according to the number of students allocated.

Seeking to explore the neighborhoods in a systematic way, we use a Variable
Neighborhood Descent (VND). Proposed by Mladenovic and Hansen [17] and
using First Improvement strategy, when the cost of a neighbor is less than the
current solution, the current solution is replaced, and the search returns to the
first neighborhood. Otherwise, the search moves to the next neighborhood.

During the Local Search, we decided to allow the violation of the vehicle’s
capacity. This option was made because the search space could be limited when
obtaining only feasible solutions. For cases where the vehicle load exceeds its
capacity, the excess load is penalized, and this value is added to the solution’s
total cost. However, infeasible solutions are never considered as the best solution
found during the ILS execution.

An essential element of the ILS is perturbation. In this work, the perturbation
applies a limited number of random moves, from the same neighborhoods of the
local search.

As acceptance criteria, we use the simulated annealing rule, where the cur-
rent solution s∗ is replaced by the candidate solution s∗′

given the probability
e−(f(s∗′

)−f(s∗))/T , where T > 0 is the current temperature [12]. The tempera-
ture starts with an initial value Ti and decreases on each iteration following the
expression T = T ×r, where 0 < r < 1 is the cooling rate. In this work, to define
the initial and final temperatures, we use the method proposed by Pisinger and
Ropke [21], where the initial and final temperatures are adjusted so that the
main algorithm accepts pi% of solutions that show up to pi% of deterioration
and end up accepting pf% of solutions with up to pf% deterioration. The cooling
rate r is defined considering the number of iterations to be performed.

5 Application

5.1 Scenario

The state of Rio de Janeiro is composed of 92 municipalities and it has an esti-
mated population of 17,366,189 people in a territorial area of 43,750,426 km2 [10].
According to the latest historical series released by the State Center for Statis-
tics, Research and Training of Public Servants of Rio de Janeiro (CEPERJ),
the rural population corresponded to 3.4% of the state population in the 2010
demographic census [5].

In 2019, the Rio de Janeiro state had 17,200 students registered to use rural
school transport distributed in 357 schools and 83 municipalities. All students
are picked up and dropped off daily at their homes or nearby places when access
is impossible. The location of boarding points and schools was made available
through their latitudes and longitudes. The shift in which the student is enrolled
was also made available, which can be morning, afternoon, night, or full time
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(morning + afternoon). Students were identified in the databases through codes,
preserving their identities and not providing personal data.

5.2 Data Collection and Treatment

The directors of each school define students’ latitudes and longitudes manu-
ally, according to the methodology proposed by Rosa [23]. Before applying the
algorithm, the data went through a treatment step to identify inconsistencies.

– We exclude all student records in which latitude and/or longitude were equal
to zero or outside the standard format. This step resulted in the deletion of
2072 records.

– We exclude records of students whose latitude and longitude provided a loca-
tion outside the state of Rio de Janeiro. A total of 586 records were discarded.

– All students from shifts in which more than 70% of students had the same
location were excluded. It was assumed that the registration was not per-
formed correctly for these cases. This step resulted in the deletion of 878
records.

Instances. After processing the data, 13,664 students remained in the base. We
divided these students into school and shift, generating one instance each. We
divided the dataset into two blocks, the first considering the full shift indepen-
dently, i.e., students from a shift could not be taken to school or to their homes
with students from other shifts. The second block includes full-time students so
that they would be taken to school together with the students from the morning
shift, and at the end of the day, they would return to their homes with the stu-
dents from the afternoon shift. Considering all scenarios, there is a total of 1,012
instances. Figure 2 shows the distribution of instances in size categories (number
of students). On the horizontal axis, it is possible to observe the intervals of the
number of students considered for each category. The number of instances of
each category is indicated on the vertical axis.

Considering the first block, the largest instance is from the morning shift
of school E199. In this instance, 389 students should be routed. In the second
block, school E199 also represents the largest instance. However, when including
the morning shift with full-time students, 534 students should be routed.

Distance Matrix. To determine the distances between each boarding point
to the respective schools, we use the Open Street Maps API with a script in
Python. The use of the API was necessary to obtain the real distances. In addi-
tion, we consider an asymmetric distance matrix, taking into account the differ-
ence between the distances of the round-trip path. Considering the asymmetric
matrix is relevant in the rural context since the path between the students’ resi-
dences and the school often involves roads and highways. Although no law defines
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the maximum time or distance of the route taken by students, the government
establishes a maximum time of 2 h or 120 km, considering an average speed of
60 km/h.

Fleet. The data provided showed that schools used up to four types of vehi-
cles: kombi, van, minibus, and bus. Table 1 presents the capacity and cost per
kilometer of each vehicle. In the government contracting rule, fixed costs are not
considered, only variable costs. For this reason, the route cost calculation is done
by multiplying only the vehicle’s cost per km by the total distance of the route.
To determine the fleet available for each instance, we consider that each type of
vehicle would have a sufficient number to serve all students.

Table 1. Vehicle characteristics

Vehicle Capacity Cost by Km

Kombi 8 1.3

Van 15 1.6

Microbus 22 1.8

Bus 45 2.5

5.3 Computational Experiments

The main code was written in Julia 1.6.1, executed on a machine with Intel R©

Core
TM

i7-8700K CPU @ 3.70 GHz, 64 GB of RAM, using only one thread,
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and Ubuntu 20.04 LTS operating system. The development environment used
was Visual Studio Code 1.59.

The first ILS round was carried out with all instances available to calibrate
the parameters. We use ten seeds for each instance. We created 27 scenarios with
different parameters configurations. For the SA parameters we used the following
configurations: (50%–1%), (50%–5%), (50%–10%), (35%–1%), (35%–5%), (35%–
10%), (20%–1%), (20%–5%), and (20%–10%). Configuration (50%–1%) means
that the algorithm starts with a 50% chance of accepting a solution with up
to 50% deterioration, and the probability decreases with each round until the
probability is 1%. The number of iterations of the ILS, which is also used to
calculate the cooling rate of SA, was set to {50, 75, 100}. Finally, the number
of moves considered in the perturbation was set to five.

Considering the lowest total cost obtained among all the instances, the high-
est total cost, and the average of costs, the best results were obtained with 100
iterations and the following acceptance probabilities: (50%–1%), (20%–1%), and
(20%–5%). Since the results obtained were the same for three configurations, we
choose to use configuration (50%–1%). This choice was made to obtain larger
diversification in the first rounds of the algorithm. A new round was carried out
to verify the variation on the results given the number of perturbation moves,
considering 1, 3, 5, 7, and 9 moves. We obtained the best solutions consider-
ing with five moves. Thus, the final configuration used in the experiments was
(50%–1%) for the SA, 100 iterations in the ILS and 5 moves in the perturbation.

To compare the results with the real planning, we selected 79 routes in the
dataset. For these cases, we have the information about the students allocated in
each route, school, shift, vehicle, total kilometers, and route cost. We group the
routes into combinations of school and shift to compare the number of routes
used in real-life and the number proposed by the ILS.

For the ILS results, we considered the average total cost of the solutions.
Figure 3 shows the comparison between the number of routes, average mileage,
average cost, average mileage per student, and percentage of vehicle occupancy.
The ILS obtained lower costs in 84% of cases and, considering all scenarios, the
average cost of the routes drops from 136.91 to 81.33, a reduction of 40.5%.
The number of routes, and therefore the number of vehicles needed, decreased
by 8.8%, from 79 to 72. The average distance of the routes decreased by 44%,
and the average distance per student decreased by 46%. Finally, the percentage
of vehicle occupancy increased from 68% to 73%, indicating a better use of
the fleet.

For cases where the ILS did not return a cost less than the original value,
we observe the most significant difference in the E164 M instance with a 10%
increase in total distance, approximately 16 km. Concerning the total cost, the
increase was 5%. The comparison between the results presented by the ILS and
the real routes shows the potential of the method used, fulfilling the objective of
providing cost reduction considering significant restrictions to ensure the comfort
and safety of students, such as reduction of the average mileage per student and
the non-use of vehicles above 100% of occupancy.
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After validating the results, we applied the method to all 1,012 instances.
Figure 4 shows a summary of the results obtained in terms of cost and devia-
tion between the average of the solutions and the best solutions. We divide the
instances into groups according to the number of students (horizontal axis of the
graph) and, for each group, the following are presented:

– Average Cost*: average of the best costs obtained for the instances in the
group

– Average Cost**: average of the average costs obtained for the instances of
the group

– Cost Deviation: percentage difference between Average Cost* and Average
Cost**

Considering the use of different types of vehicles on the routes, we see in Fig. 5
that the most used vehicles were the Kombi and Van, for 56% and 22% of the
routes, respectively. This data is justified when we evaluate together with Fig. 2,
which shows a greater number of instances with up to 36 students. Also in this
sense, these two smaller vehicles are responsible for transporting 50% of students.
Finally, we found that only the vehicle Kombi had an average occupancy lower
than 80%. This result is expected because, for all routes with less than 8 students,
this type of vehicle is allocated, since it is the minimum capacity.

Presenting the results closer to an application, Fig. 6 shows an illustration of
the average cost per municipality through a heat map. The municipality with
the lowest average cost obtained 3.92, and the municipality with the highest
cost 1,272.63. The map shows a concentration of municipalities with the highest
average cost in the northwest Rio de Janeiro.
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Figure 7 shows the illustration of the average distance per student in each
municipality. The municipality with the lowest indicator had 0.78 km/student,
and the municipality with the highest indicator had 133.8 km/student. The aver-
age vehicle occupancy is shown in Fig. 8. The municipalities with the lowest
occupancy are concentrated in the metropolitan region, with 12.5% occupancy.
There is a larger concentration of municipalities with an occupancy percentage
above 72% in the Northwest Fluminense and Serrana regions.

Analyzing the computational times, we obtained the results for instances
with up to 292 students in up to 52 s, on average. From the instance with 292
students, we observed an exponential increase in computational time.

Still, for the largest instance, with 534 students, we obtained the results in
207 s (3.45 min). It can be noticed then that, for the context of planning and
defining the routes, we obtained the results in low computational time, being
the application of the method possible in practice.
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Fig. 7. Average distance per student

Fig. 8. Average occupancy

6 Conclusions and Future Works

The main objective of this paper was to apply the Iterated Local Search to define
rural school transport routes in the state of Rio de Janeiro. For this, we analyze
the real location data of students and schools, and after processing the data, we
applied the method to the routing of 13,664 students.
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Considering the SBRP classification criteria, the application case has as a
sub-problem the generation of routes with a single school since the routing is
done by each school, not allowing mixed loading. In addition, the data used are
from rural areas, characterized by low population density, resulting in greater dis-
tances between homes and school units. Thus, in addition to the vehicle capacity,
the maximum distance to be covered was also used to restrict the problem.

We analyzed the available data of 79 real routes, allowing comparison with
the results of the application of the ILS. The results showed an 8.8% reduction
in the number of vehicles needed. The reduction in the average cost of the routes
was 40.5%, and the average mileage per student was reduced by 46%. With the
validation of the method, we applied the algorithm to the totality of the data,
considering 1,012 instances. There was a concentration of municipalities with the
highest cost in the state’s northwest region. Regarding the average mileage per
student, the municipality with the highest indicator had 133.8 km/student. We
conclude, therefore, that the algorithm used provides, in low computational time,
results that can be assessed by the government as alternatives for reformulating
rural school transport routes, bringing financial gains, and increasing the level
of service for students.

We suggest, as future work, the consideration of different scenarios of problem
characteristics, such as multiple schools and mixed loading. If the variations
are performed using the same data set as this study, there is the possibility of
presenting comparative analyses. In addition, the variation of the parameters
used in the ILS is indicated, including local search and perturbation strategies.
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and Stefan Voß2
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Abstract. In the context of port communities, one of the most com-
monly used technological developments are Port Community Systems
(PCS). The typical service offer of a PCS includes information exchange,
electronic exchange of customs declarations and responses, control, track-
ing and tracing of the goods, and statistics. However, it has been argued
that it is necessary to evolve the existing PCS into a renewed version,
more suitable to the novel requirements posed by both developed and
emerging economies, also incorporating the surge of new technologies.
Such renovation should care for integrating new value-added services
to the aforementioned typical PCS service offer. Therefore, we pro-
pose a new hinterland intermodal routing service to be included to the
regular PCS functionality. Such new service is based on the develop-
ment of a built-in optimization model, delivering a sustainable and cost-
effective intermodal transport network. The proposed hinterland inter-
modal routing service could help mitigating the environmental impact
of the Colombian hinterland transport and the national transportation
costs, increasing the nation’s competitiveness and sustainability through
a value-added service of a PCS.

Keywords: Freight transport · Intermodality · Port community
systems · Intermodal routing service · Optimization model

1 Introduction

Electronic collaboration is a key business process differentiator. Particularly
in logistics, it facilitates transactions and enhances performance and visibility,
hence improving the competitiveness of firms in the global markets [7]. The port
industry is not an exception, and the electronic collaboration trend increases day
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by day [8,38]. In the context of port communities, one of the most commonly
used technological developments are Port Community Systems (PCS) [20,45].
A PCS can be defined as an inter-organizational system for promoting com-
mercial services and information exchange between the port to their customers
and a variety of stakeholders, such as forwarders, carriers, importers, exporters,
customs, among others [20,24,45]. This solution has been used for more than
30 years in different countries to achieve competitiveness in their foreign trade
activities [20,31]. The typical services of a PCS are [20]:

– Information exchange between transport operators in the port and for hinter-
land connections, the port users, customs, port and other authorities, com-
monly known as Electronic Data Interchange (EDI). Easy, fast and efficient
EDI information exchange, re-use and centralisation, is assumed to be avail-
able 24/7/365.

– Electronic exchange of customs declarations and customs responses, and cargo
releases between private parties and customs.

– Electronic handling of all information regarding import and export of con-
tainerized, general and bulk cargo for the port community.

– Status information and control, tracking and tracing goods through the whole
logistics chain.

– Processing declarations of dangerous goods with the responsible authorities.
– Processing of maritime and other statistics.

Previous studies [33,35] call for the need to evolve the existing PCS and adapt
them to new markets, due to the increase of new technologies and the growth
of emerging economies around the world. Moreover, [35,36] report special fea-
tures, mostly related to the freight hinterland transport processes, to consider in
order to increasingly fit the PCS value offer to specifications posed by emerging
economies, as is the case of Colombia. One way to meet the specifications of
emerging economies and evolve PCS is to include new services as added value.
Thus, we propose a hinterland intermodal service as an added value service for
the current PCS, taking into account that intermodal freight transport is essen-
tial for economical development, assuming given aims to efficiently combine the
use of different types of transport, to generate cost efficiencies and environmental
savings [10].

In this study, we propose a prototype for a hinterland transportation routing
module developed for emerging economies, although of good service for any other
contexts. Such prototype measures the impact of use of an intermodal transport
network by executing an optimization model. We use the case of Colombia as a
testbed and the results of the optimization model are to be used as inputs for
the PCS intermodal service.

The paper is composed of the following sections: Sect. 2 includes a description
of the current situation of the freight transport in Colombia. Section 3 exposes
a brief description of the related works around freight transport optimization.
Section 4 discusses the model description for the optimization of the freight trans-
port system in Colombia with the use of intermodality. Section 5 provides the
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generic system design of the hinterland transport module design for a PCS,
with a proposed PCS architecture and a PCS prototype scheme. Finally, Sect. 6
presents the main conclusions and further research directions.

2 Colombian Hinterland Freight Transport

In 1991, Colombia experienced structural changes regarding its logistic activities
and its port communities, because of the issue of different laws and policies. One
of the most significant laws was Law 001, which modified the Colombian Port
Regime and privatized the ports of the country. The main objective was to
modernize the system, reduce tariffs and improve port efficiency. The current
port system consists of 122 facilities, of which 5 correspond to regional port
companies, 7 are private service companies, 9 are public service companies, 10
are coastal docks for smaller ships, 44 are approved docks, and 47 are other kinds
of port facilities. The main maritime ports are: the regional port companies of
Barranquilla, Cartagena, Buenaventura and Santa Marta [1]. Also, note that
although there is rail transport in Colombia, this is only used for a single type
of cargo (coal) and is privatized. The hinterland movement of freight is done
mostly by road transport or, in some specific cases, by river transport [1,34].

2.1 Road Transport

As mentioned above, the road transport in Colombia is predominant with respect
to other types of transport such as rail and river. Investments in Colombia are
mostly allocated in infrastructure for the road transport, after a misguided pol-
icy which historically put aside other transport modes, most probably due to
economic bets towards endogenous industrialization that set competitiveness
as a low priority issue [16]. During the 20th century, the Colombian govern-
ment, as the central country policy maker, historically failed to promote the
transportation industry; on the contrary, country politicians, on one hand, were
tied to particular business interests, which determined that the deployment of
transportation in Colombia, the structure of communication and infrastructure
projects, depended on patronage and relationships with specific sectors [9]. On
the other hand, we saw the desire of the political class to implement changes,
but without a proper budget management nor the skills to solve extant con-
flicts, i.e., the lack of articulation of the railway lines or the deterioration of
these due to technical malpractice. At the times, road transport made up for
the insufficiencies of the railway and waterways by facilitating the unification of
distribution and consumption centers in the internal market [43]. Currently, the
biggest issue of the country regarding freight transport is oriented to network
transport. Instead of having a primary network oriented to connect large cities,
and large cities with ports and border crossings, it is avoiding cities that are
not in the region. Colombia has a primary network traced after 1925 following
the vagaries of topography, with higher fuel costs and precarious security. The
problem of the Colombian primary road network is not only quantitative (delay
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in investment), but also qualitative (dysfunctional for trade) [5]. However, the
main objective of the Ministry of Transport is the formulation and adoption
of policies, plans, programs, projects and economic regulation regarding trans-
portation, transit and infrastructure of the road, maritime, river, rail and air
transport modes and technical regulation [29].

2.2 River Transport

In Colombia most of the investments in infrastructure and river transport are
made to the Magdalena River. As for the costs of river transport, fuel costs are
about 50% to 60% of the total costs of river transport services, in both cases:
passenger and freight transport. Taxes on river freight transportation are based
on the usage rates of river infrastructure, port taxes, fuel taxes and income
taxes. The taxes on fuels are similar to those applied to road transport. There is
a significant difference in the fuel used for maritime ships, which is exempt from
the aforementioned taxes [30].

2.3 Environmental Impact

Freight transport is one of the biggest generators of CO2 emissions around the
world, and in the same way generates other types of impacts such as the decrease
in soil quality, or river erosion. In Colombia, it is expected that the transport
sector will increase its energy consumption from 330,000 TJ in 2010 to close to
1,000,000 TJ in 2040, including the effects of the scraping plan. In this scenario,
CO2 emissions could increase from 24 to 64 million tons of CO2 in the same
period [40].

2.4 Intermodal Freight Transport

Nowadays, Colombia has a low productivity in the transport sector. Much of
this is reflected by the high informality of road freight transport, only 25% of
the companies are formal. Added to this, the average age of the vehicle fleet
is among the highest in Latin America [2]. The average age of the vehicle fleet
turns out to be approximately 23 years, while in countries such as Germany
it is approximately 4 years, United Kingdom 5 years and in Latin American
countries such as Peru and Brazil it is approximately 13 years [2]. This implies
problems of road and cargo safety and congestion on the highways. In addition,
the environmental damage is higher, because the CO2 emissions generated by
this aged vehicle fleet are 1.4 times higher than newer vehicles; proportionally,
the transport costs are higher and the quality of the service provided decreases
[12]. In addition, port community stakeholders report barriers associated to the
hinterland transport in Colombia, such as the lack of loading and unloading
areas. This impacts the transport costs, tending to be quite high in the country.
While in countries like the United States for every 100 dollars sold, 8 dollars are
paid, in Colombia, it turns out to be for every 100 dollars sold, 15 dollars are
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paid [15]. Another problem regarding the hinterland freight transport is that, on
average, the hours expected to transport from an origin to a destination in the
same region is 7.4 h, affecting the competitiveness and quality of service provided
to the client. The South Central-Amazon region represents a major logistical
challenge for the arrival of merchandise, which takes around 18 h [15], as well as
for the hiring of a vehicle. Currently, the hinterland freight transport in Colombia
is as follows: The cargo arrives at the port, which we call the port of origin, in
which the documentation, inspection, unloading, transport of merchandise, and
dispatch are carried out. The carrier arrives at the port providing a document
that authorizes the entrance to the port to unload a certain amount of cargo.
Once everything is verified and approved, the quantity is deducted from the
inventory and the truck is removed from the port and starts the journey to its
point of destination of the cargo. Once this is reached, the cargo is unloaded.

3 Related Work

This section presents a summary review of influential researches about
approaches and procedures used for the design and adaptation of mathemat-
ical models that fit the needs of intermodal transport service or network.

Intermodal transport services are well known around the port industry (prac-
titioners) and among scholars [10]. However, not necessary practitioners and
scholars consider the same variables in order to optimize the hinterland transport
system available in a country [10,18]. Our study is based on the collaboration
between scholars and practitioners to create a holistic mathematical model that
can support a service platform (PCS) while considering specific needs of port
communities.

Our study is based on the linear programming model provided by Sun and
Lang [44], which consider the allocation of routes to transport different products
through an intermodal transport network. Its formulation allows for character-
istics such as an intermodal transport network based on the use of rail networks
with flexible service time. In addition, this work takes into account carbon diox-
ide emissions, as a factor for the analysis of the objective function in terms of the
cost implied by these emissions. Another important study is proposed by Bier-
wirth et al. [6] in which they deal with intermodal transport using road and rail
networks for the shipment of large volumes of goods. This case study is applied
to the distribution system of a company in Europe, where the impact of costs
and the impact of optimal modal split are studied.

Macharis and Bontekoning [25] present a classification of Operations Research
(OR) models and techniques implemented in intermodal transport. In this study,
the objectives and specific decisions of different operators are categorized, accord-
ing to the type of decision makers, like, transport operator, network operator,
terminal operator and intermodal operator. Verma and Verter [46] propose a bi-
objective analytical framework to establish the most appropriate cargo shipment
plan for regular and hazardous materials in an intermodal rail/truck transport
network. Also [11] provide a mixed-integer linear programming model to examine
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the impact of planning transport modes and the management of empty containers
in intermodal transport, with the aim of minimizing the total cost of transporting
empty containers. In 2015, Li et al. [23], proposed an intermodal freight trans-
port network model and a multilevel freight transport planning approach for a
container flow control problem. In this research, mode changes are applied in the
intermodal terminals, as limitations in the physical logistics infrastructure, time-
dependent transport times, and train and barge programming. In order to meet
dynamic transport demands and traffic conditions, a backward horizon control
approach is proposed and various scenarios are analyzed through the execution of
several simulation experiments. The research of [4] proposes a model of sustainable
cargo planning with multiple objectives, taking into account several decisions such
as the mode of transport (intermodal transport selection), additional services and
subcontracting, cargo allocation, transshipment operations, minimization of the
total transport cost and CO2 emissions, and simultaneously maximize customer
satisfaction. This is a research applied in real life, to a large-scale international
logistics company in Turkey. We should note in passing that a whole bunch of
research links this topic to information systems as, e.g., the port-IO system of [17].

Nevertheless, most of the studies about intermodal freight transport systems
focus on single cost targets and present hypothetical case studies instead of
real-life applications [10,41]. Most of the available studies coincide in using a
single directional load flow from the origin to the destinations. It is necessary to
consider that both, the export and import of merchandise, must be taken into
account in intermodal linear programming models, while satisfying bidirectional
demands between cities. Another important aspect are the transshipment oper-
ations in ports and terminals, exchange of cargo in ports, usually not taken into
account in most models.

4 Model Description

As mentioned above, several studies have been carried out demonstrating the effi-
ciency of intermodal transport based on reduction of costs and environmental
impact. One of these works is [22], showing how costs are impacted, specifically
by the truck - train combination commonly used in European intermodal trans-
port. The trends in the literature show mostly the difference between costs using
an intermodal network and using only a road transport network. It is found that
intermodal transport tends to decrease total costs much faster if the distance
and amount of cargo increase, indicating economies of scale, while in the road
mode it tends to remain constant.

In the study by Murphy and Hall [37] they evaluate not only the costs of the
modes of transport used, but also the cost and duration of the transfers between
modes, since the particular benefits related to the modal segments in each trip
may not compensate the costs and duration of the transfers in terminals or points
with high congestion or limited technological and fixed capacity.

Similarly, greenhouse gas (GHG) emissions, like the total transportation
costs, are lower due to the use of an intermodal transport network. In a study
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conducted by Impala [19], in which they compare the scenario in which only
trucks are used (basic scenario) and a scenario were trucks and barges are used
(intermodal scenario) a considerable reduction is evidenced. Furthermore, it was
found that the intermodal scenario represents lower GHG emissions compared
with the basic scenario (calculated “per kg” base units). However, this study
only considered a limited corridor (just one route) and specific products handled
by the company [19].

4.1 Transport Network Description

As mentioned above, the freight transport in Colombia has a strong dependence
on road transport, since the infrastructure available in other alternate modes,
such as river and railways, underperforms or is insufficient. Because of the former,
the current logistic performance of the country has been deteriorated. In order
to improve the logistic performance of the country we propose an intermodal
transport network, since total costs (e.g. per ton-kilometer) tend to decrease
much faster if the distance and the amount of the freight transported increases,
while in road transport it tends to remain constant [22]. Another factor on which
this configuration is significant is regarding the environmental impact. The GHG
emissions come mostly from transport activities. The creation of this network is
expected to produce lower emissions due to the use of an intermodal transport
compared to the current Colombian scenario with exclusive use of land transport.
In order to analyze this problem, a linear programming model was developed.

The linear programming model of transport route selection for the intermodal
scenario aims to minimize costs [28]. For this reason it is very important to aim
to implement strategies that reduce these costs, increase profits and are able to
be nationally and internationally competitive, and that implies being attentive
to changes and challenges in adopting intermodal transport schemes to distribute
the goods and meet the expectations of customers under criteria of costs, time
and environmental impact.

It is important to highlight that the environmental impact is becoming an
issue of interest for the transport companies in Colombia, mainly, because of the
increase of awareness culture towards environmental sustainability. According to
the latest results, green logistics projects have been incorporated into logistics
processes. 34.1% of the transport companies in Colombia have been working
on environmental efficiency projects; 50.5% of these efforts have focused on the
renewal and maintenance of the vehicle fleet and on the adequate schedule of
docks, achieving a substantial reduction in emissions of CO2, approximately
30.1% [15].

In this study, the cities of Barranquilla (BAQ), Cartagena (CTG), Santa
Marta (ST), and Buenaventura (BUV) as origin cities were selected (main ports).
As destinations were selected departments and big cities with great participa-
tion in transport flows such as Bogota (BOG), Cundinamarca (CUN), Valle
del Cauca and Cali (VCU), Santander and Barrancabermeja (SAN), Antio-
quia, Medellin and Caldas (ANT), and Nariño (NAR). All along the river, the
terminals located in Gamarra (GAM), Puerto Berrio (PTB), Barrancabermeja
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(BARR), and Puerto Salgar (PTS) were taken into consideration. Figure 1 shows
the current hinterland routes (connection of each node by road) vs. the inter-
modal alternative.

Fig. 1. Nodes and ports considered for the study (AS-IS) - (TO-BE)

4.2 Model Assumptions

For the linear programming model, the following assumptions are taken into
account:

– The transport modes to be considered for the model are the river mode (tug-
boats with barges) and road transport (3-axle truck, 2-axle tractor, 5-axle
semi-tractor trailer (3S2) and 6-axle semi-tractor trailer (3S3)). The differ-
ence between each type of mode is also related to their capacity; because
of this, it will be established how many vehicles or barges are required to
transport the cargo from its origin to its destination.

– The capacities corresponding to the trucks are as follows: The 3-axle truck
has a fixed capacity of 28 tons, the 2-axle tractor has a capacity of 32 tons,
the 5-axle semi-tractor trailer (3S2) has a capacity of 48 tons and the 6-axle
semi-tractor trailer (3S3) has a capacity of 52 tons. Regarding the capacity for
the barges, each barge has a fixed capacity of 1200 tons and a configuration
of six barges per tugboat is allowed to transit in the Magdalena river.

– The cargo transport route must satisfy the demand of a node at a minimum
cost. Each node represents an origin or a destination. The route allows a
node of interchange or intermodal transshipment. The case can be presented,
in which the set of origin cities is not able to satisfy the demand, due to
omissions of influential nodes or adverse cases not contemplated in the model.

– The cargo transport route must satisfy the demand of a node with mini-
mum environmental impact. The CO2 emitted in the routes during transport
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activities represent the majority of the total carbon dioxide emissions. In con-
trast, the amounts of CO2 emission of the terminal and port operations turn
out to be negligible [21].

– The rail network of the country is not taken into account for the modeling,
since the infrastructure and the privatization of the networks limits the use
of the rail system for any type of cargo other than coal. According to the
World Bank, although this type of transport has advantages such as lower
operating costs, lower energy consumption and infrastructure capacity, it is
not the most efficient for all types of products [39].

4.3 Notations

Table 1 shows the notation used in the optimization model and Table 2 exposes
the decision variables of the model.

Table 1. Model parameters

Notation Description

Mj Set of cities, j ∈ M

Modek Set of transport modes, k ∈ Mode

Ni Set of city combinations (origin/destination), i ∈ N

Pp Set of products, p ∈ P

Arci, k Set of arcs (origin/destination i) with its transport mode k

t Time period, monthly

Ai,k,j Matrix of arcs (i, k) with its transport mode, given the city (j) of origin
(+) or destination (−)

Costi Transportation cost between arcs (origin/destination i)

Bj,t Offer/demand of each city j in the time period t

Cco2 Cost of CO2 emissions

Uj,k Fleet available from city j through the transport mode k

Di Distance in km in the arc i

Sk Tons capacity per transport mode k

FEk Emission factor per transport mode k

TCi Fuel consumption rate of the transport mode k

MaxAmb Maximum quantity of CO2 emissions k

Capj Fixed capacity of the node j

Table 2. Model decision variables

Variable Description

Xi,k,p,t Number of tons to be transported of product p through arc i by transport

mode k at period time t

Yi,k,p,t Binary variable, 1 if the arc i is open to transport product p by transport
mode k at time t, 0 otherwise
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A matrix of routes was created in which it is guaranteed that the set of nodes
representing the cities or stops are associated with the arcs connecting them; an
example is shown in Table 3. This is denoted within the model as Ai,k,j . It is an
MxN matrix, where M represents the cities and N the arcs between the different
cities as nodes of origin and destination. The outgoing arcs are expressed by +1
and the incoming arcs by −1, being, respectively, indicators of offer and demand.

Table 3. Matrix of arcs

i, j i, ln ln, ln+1 ln+1, j

i 1 1 0 0

ln 0 −1 1 0

ln+1 0 0 −1 1

j −1 0 0 −1

4.4 Objective Function

The formulation of the model is based on the minimization of total costs, which
are based on the minimization of the sum of the generalized costs corresponding
to the transportation of the cargo through the intermodal network (1) and the
environmental impact cost generated by carbon dioxide emissions (2).

The transport costs of the route from the origin node to the destina-
tion/exchange node are the sum of the linear corresponding components associ-
ated to them. These costs represent the variable costs that constitute tolls, fuel,
tires and lubricants.

Minimize transport costs

∑

(i,k)∈arc

∑

p∈P

Xi,k,p,t

Sk
∗ Costi (1)

The environmental component of the objective function (2) is based on
the distance (unit: KM) of the specified sections from node to node, the vol-
ume of cargo that must be moved (unit: Ton) and the emission factor (unit:
kgCO2/Ton.KM). According to the emission factors for cargo transport taken
from the GHG Protocol tool, the emission factor for articulated vehicles is 0.167
kgCO2/Ton.KM and for barges corresponds to 0.027 kgCO2/Ton.KM.

Minimize emissions costs
∑

(i,k)∈arc

∑

p∈P

Di ∗ FEk ∗ TCk ∗ Xi,k,p,t

Sk
∗ Cco2 (2)
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4.5 Constraints

The restriction (3) corresponds to the flow balance of the cargo sent of product p
through arc i, by transport mode k which must be equal to the offer or demand
of the node j. In this restriction the matrix Ai,k,j represents the routes and links
between arcs and cities used.

This restriction is important in the operation of the model, because it is the
one that allows controlling the flow balances presented in the interaction of the
nodes. For the formulation the study of Barnhart and Wilson [3] was considered,
who proposed that the parameter Bj,t represents the offer or demand, and it is
subject to:

– If Bj,t > 0, j is an offer node
– If Bj,t < 0, j is a demand node
– If Bj,t = 0, j is a transfer node

∑

(i,k)∈arc

Xi,k,p,t ∗ Ai,k,j = Bj,t,∀j,∀p,∀t (3)

Restriction (4) controls that the quantities of product p that must be sent
through arc i with transport mode k do not exceed the capacities offered by each
city j of the transport resources k.

∑

(i,k)∈arc

∑

p∈P

Xi,k,p,t ≤ Uj,k ∗ Sk ∗ Yi,k,p,t∀j,∀k,∀t (4)

Restriction (5) regulates the amount of cargo that can be stored in each
node; for the case of the offer nodes this is already regulated with the restriction
mentioned above; in the nodes of demand as much as it can store is what is
requested for each product, which is regulated by the demand equation. Finally,
in the case of the transfer nodes, information on their capacities is acquired.
Below is the capacity of these terminals according to CORPOCESAR [14], where
it should be noted that on average the cargo stays in a transfer node for about
three days, so according to the quantities of the cargo transported it is assumed
that they meet this capacity.

– Gamarra: 1’500.000 tons
– Barrancabermeja: 443.000 tons
– Puerto Salgar: 215.967 tons
– Puerto Berrio: 215.967 tons

∑

(i,k)∈arc

∑

p∈P

Xi,k,p,t ∗ Ai,k,j ≤ Capj∀j,∀t (5)

Restriction (6) implies that the carbon dioxide emissions generated through
an arc do not exceed the maximum GHG emission parameter MaxAmb reported
in ANDEMOS in 2016. This restriction is based on the ages of the vehicles:
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– According to the information registered by the Colombian Transport Min-
istry, 88% of the vehicles of heavy cargo correspond to ages superiors to 20
years. If the vehicle age exceeds more than 20 years, it generates a greater
environmental impact. It is estimated that its emissions are 1.4 times ages
than those issued by vehicles of lower ages [15].

– The second part of the restriction represents the remaining 12% of the vehicles
dating from 1998 until 2018 [15]. The environmental impact generated by the
river is very low in comparison with the road one. Because of that there is no
differentiating factor for this mode in the restriction.

1.4 ∗
∑

(i,k)∈arc

∑

p∈P

(Di ∗ FEk ∗ TCk ∗ Xi,k,p,t

Sk

) ∗ 0.88 + 0.12 ∗
∑

(i,k)∈arc

∑

p∈P

(Di ∗ FEk ∗ TCk ∗ Xi,k,p,t

Sk

)

≤ MaxAmb) (6)

4.6 Data

For the development of the model the data was taken from various sources
such as:

– Study of the demand of the Colombian river network and cost benefit evalu-
ation, prepared by Steer Davies and Gleave for Cormagdalena [13].

– A tool for consulting the cost of road travel in Colombia, named Infotrip1.
– An information system of efficient costs for the automotive transport of cargo

SICE-TAC2.
– Colombian Customs’ foreign trade statistical system named Comex3.

The information collected to estimate the demand and offer of the cities that
are taken into account in the study, was obtained from the DIAN website, and
its tool the Sistema Estad́ıistico de Comercio Exterior (SIEX)4 the statistical
system of foreign trade. The demand was obtained from the import module, in
the chapter of the Customs tariff, Department of Destination tab. The offer was
obtained from the same route described above, except for the tab corresponding
to the Administration by Customs. For this study we identified 38 types of
product families, base on the classification presented by SIEX.

The costs of river freight transport were taken from the study of the Con-
sortium HIDROESTUDIOS - Steer Davies and Gleave [13]. Since the freight
matrices of the study are only from the origin cities of Barranquilla and Carta-
gena, it was assumed that the estimated freight rates for the other connections
between river ports were the same as those presented in the study. This was nec-
essary due to the lack of information for the river freight transport in Colombia.
1 For consulting Infotrip see https://infotrip.net.
2 For consulting SICE-TAC see http://sicetac.mintransporte.gov.co:8080/sicetacWeb/

ejecutar/costos-eficientes.
3 For consulting the Comex system see http://www.webcomex.com/.
4 For consulting SIEX see http://websiex.dian.gov.co/.

https://infotrip.net
http://sicetac.mintransporte.gov.co:8080/sicetacWeb/ejecutar/costos-eficientes
http://sicetac.mintransporte.gov.co:8080/sicetacWeb/ejecutar/costos-eficientes
http://www.webcomex.com/
http://websiex.dian.gov.co/
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The road transport costs were extracted from Infotrip and SICE-TAC, the first
database only shows the variable costs and the second database the totals, so it
will be assumed that the routes that do not appear on the SICE-TAC, will be
taken from Infotrip.

4.7 Results

A general analysis is made for the results obtained in the model, which includes
monthly results for one year. Figure 2 shows that for the freight transport in
Colombia, regardless of the type of product and if only the total costs are taken
into account, it will always be better to use the alternate intermodal routes along
the river terminals to connect with the destination cities. Also, Fig. 2 shows that
the biggest reductions can be obtained in the routes: STM-CUN, STM-ANT,
BAQ-ANT, CTG-SAN, BAQ-SAN, BAQ-BOG, and CTG-NAR. It is important
to note that those are the routes with an intermodal alternative. While for the
routes in which it is necessary to use road transportation only, their costs tend
to be quite high compared to those of the intermodal route. In conclusion, it is
possible to obtain savings in transport costs using an intermodal route.

Fig. 2. Transportation cost results per route (origin/destination) (period of time one
year)

Figure 3 shows that there is also a reduction regarding CO2 emissions using
an alternative intermodal route. The most significant CO2 emission reductions
are made in the routes: BAQ-ANT, CTG-CUN, CTG-ANT, CTG-SAN, BAQ-
SAN, BAQ-BOG, and BAQ-VCU.
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Fig. 3. CO2 emission results per route (origin/destination) (period of time one year)

Furthermore, the model shows a total reduction of 67% in transportation
costs per year and 47% of CO2 emission on average per year. Finally, as a
summary, we can conclude from the results of the mathematical model that:

– It is always more economical to use cargo transshipment in the river for
delivering the products in Colombia to their final destination, since the river
transport has a greater capacity that enables greater economies of scale. Also,
regarding the CO2 emissions barges are Eco friendlier than trucks. Thus, the
intermodal route alternative is more appealing for the system.

– In the case of products with an origin from Buenaventura, road transport is
more efficient since this node mainly supplies to its nearby surrounding cities,
thus selecting roads as the best transport choice.

– The model chooses as the best intermodal routes to meet the demands: the
connections between, origin-Gamarra-destination and origin-Puerto Berrio-
destination.

– One of the main results was the average transport cost and CO2 emission
reduction when using the intermodal alternative. The results show that on
average the total transport costs could be reduced by 67% and the CO2

emission by 47%.

However, as a main result we could obtain the most cost-efficient routes
for hinterland transport in Colombia for each of the most common 16 ori-
gin/destination combinations. Table 4 shows the 16 routes based on the origin
and destination of the freight and highlighted in red the route nodes with an
intermodal alternative. Also, Table 4 presents a X in the last column if the route
has an alternative route using an intermodal transport network.
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Table 4. Origin - Destination (routes identification)

Origin Destination Route Alternative intermodal route

SM CUN STM - GAM - PTB - CUN x

SM SAN STM - SAN

SM ANT STM - GAM - PTB - ANT x

BAQ CUN BAQ - GAM - PTB - CUN x

BAQ ANT BAQ - GAM - PTB - ANT x

CTG CUN CTG - GAM - PTB - CUN x

CTG ANT CTG - GAM - PTB - ANT x

CTG SAN CTG - SAN

BAQ SAN BAQ - SAN

BAQ CES BAQ - CES

BAQ BOG BAQ - GAM - PTB - BOG x

BUV ANT BUV - ANT

BUV BOG BUV - BOG

CTG NAR CTG - GAM - PTB - NAR x

BAQ VCU BAQ - VCU

CTG VCU CTG - VCU

5 Generic System Design (Hinterland Transport Module
Design)

The generic system design proposes to integrate mobile and web applications,
while managing the storage and management of databases on a scalable cloud
environment. Thereby, it could connect the importer/exporter with the hinter-
land transport companies for the schedule, coordination and movement of the
cargo.

– Accessibility: A central and inter-operable access to information services for
all stakeholders of the port community involved in the hinterland transport
of the freight. Internet access is essential to use the transport module.

– Extensibility: The optimization model allows the module to provide environ-
mental statistics regarding the type of route selected to transport the freight.

– Scalability: It refers to the ability of the module to be modified depending on
the new requirements of the system in terms of storage power and memory.



192 A. Moros-Daza et al.

– Intuitiveness/Usability: Taking into account the platform on which the pro-
totype of the module (Java Netbeans) was developed, it can be easily restruc-
tured and modified by any type of user. An advanced knowledge on computer
science is not necessary to make future modifications.

5.1 Service Oriented Architecture

Computer applications have been widely recognized as a help to making business
processes more efficient and much faster [27]. However, those applications are
based on several/different languages, data structures, protocols and platforms
which can lead to high complexity in the information technology infrastructure
of a business enterprise [26]. PCS are not the exception [20,32,45], but usually a
way to solve the complexity problem is through enterprise application integration
as a strategy to merge data from disparate sources. For the PCS architecture we
propose a service oriented architecture (SOA), which includes several different
computer applications and the integration of a plurality of data sources. SOA has
been defined by the World Wide Web Consortium as a set of components which
can be invoked, and whose interface descriptions can be published and discovered
[42]. It should be noted that the addition from the current PCS architectural
scheme is the integration of a freight transport service module. For this module is
expected that the data source include systems from providers such as Microsoft
and Java, among others. The data sources should include files created or used
by applications such as Microsoft Outlook, Word, Excel, Access, as well as files
in standard formats such as PNG and PDF, and so forth. Furthermore, it is
important to highlight that in order to manage data integration it is necessary
to use a graphical user interface (GUI) as a service in a SOA.

5.2 Proposed Prototype

Figure 4 shows a scheme for the hinterland transport routing module interface
for a PCS. The added value inputs of the interface are the best cost-efficient
intermodal routes of the country. However, for the sake of completeness, the
current hinterland alternate routes of the country are also taken into account.
As a result, the importer/exporter can arrange in the PCS for the hinterland
transport of his/her cargo, devising intermodal options that can reduce the costs
and the CO2 emissions and in spite of his/her lack of familiarity with the local
conditions.
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Fig. 4. PCS prototype algorithm scheme – hinterland transport module

As an example of the transport freight module, Fig. 5 presents the proposed
prototype user interface. The left side of Fig. 5 shows the minimum requirements
that a user needs for programming and scheduling the transport service and
the right side shows the different routes that are available based on the users’
requirements. Also, the proposed prototype takes into account the process of
incorporating new types of users and based on it constantly updates the system.

Fig. 5. PCS prototype - hinterland transport module
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6 Conclusion

One of the most commonly used technological developments, in the context of
port communities, are the Port Community Systems. Basically, those systems
focus on: (i) EDI information exchange between all the port community stake-
holders, available 24/7/365. (ii) electronic exchange of customs declarations and
customs responses, and cargo releases between private parties and customs (iii)
electronic handling of all information regarding import and export of container-
ized, break bulk and bulk cargo for the port community, (iv) status information
and control, tracking and tracing of the goods through the whole logistics chain,
(v) processing declarations of dangerous goods with the responsible authorities,
and (vi) processing of maritime and other statistics.

However, the need to evolve the existing PCS into a renewed version has
been argued, more suitable to the novel requirements posed by both developed
and emerging economies, and incorporating the surge of new technologies. It
was found that such renovation should care for integrating new value-added
services to the aforementioned typical PCS services offer. Therefore, we propose
a new hinterland intermodal routing service to be included to the regular PCS
functionality. The intermodal freight transport has proven to be strategic for
the development of national and regional economies, since it enables the efficient
interaction of different types of transport to generate positive economic and
environmental impacts and facilitation of commercial transactions.

In this work, we introduced an optimization model to mitigate both the
environmental impact and transportation costs of the Colombian hinterland. In
addition, we proposed to use the results of this model for the creation of an
added value transport routing interface for port community systems, in order
to fulfill the needs of the Colombian port community as well as to increase the
port value-added offer to global users. The optimization model showed that the
use of an intermodal hinterland transport network can reduce the total trans-
portation costs about 67% and the CO2 emission to 47%. This solution could
help mitigate the environmental impact of the Colombian hinterland transport
and the national transportation costs, increasing the nation’s competitiveness
and sustainability through a value-added service, which enables programming
and coordinating the hinterland transportation system of the import and export
cargo of the country.
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Abstract. Recent technological advancements and investments have
transformed Unmanned Aerial Vehicles (UAVs) into a credible and reli-
able tool for the provision of on-demand last-mile logistics services. Nev-
ertheless, few studies have developed integrated task assignment and
path planning models that consider dynamic environments and stochas-
tic demand generation. This paper addresses this research gap by devel-
oping a reinforcement learning path planning approach, coupled with a
task assignment model formulated as a mixed-integer programming prob-
lem. The performance of task assignment model is evaluated against a
dynamic programming method, and a First-In-First-Out heuristic which
serves as the baseline. A case study based on the City of London is pro-
posed to demonstrate the applicability of the integrated model. Results
demonstrate the effectiveness of the mixed-integer approach in coordi-
nating the UAV fleet compared to the other methods, with the dynamic
programming providing higher returns for large fleet sizes.

Keywords: Path planning · Task assignment · Pickup-and-delivery ·
Unmanned Aerial Vehicle

1 Introduction

Commercial use of Unmanned Aerial Vehicles (UAVs) has increased in recent
years due to their low weight and cost. This is illustrated in several reports that
estimate the valuation of the Advanced Aerial Mobility (AAM) market, which
envisions the use of UAVs for mobility and freight transportation, to reach $1
trillion by 2040 [9,15].

Last-mile delivery represents a key implementation of AAM as it overcomes
the increasing congestion of road networks in urban settlements and provides
direct connectivity to low accessibility regions. These multi-agent pickup-and-
delivery services leverage swarm control to improve UAV collaboration and opti-
mise aerial operations.

While delivery by UAV swarm is composed of two fundamental problems,
task assignment (TA) and path planning (PP), a majority of the research in this
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topic has focused on TA alone, commonly modelled as a vehicle routing problem
[8,16,17]. This practice ignores the complex urban environments UAVs must
navigate through, as well as the accurate representation of battery consumption
rates as a result of variable payloads [6].

Within the remit of integrated TA-PP, the literature has proposed several
solution methods including linear programming approaches [2,14], metaheuris-
tics [1,4,11,13], heuristics [2,5,12], and learning algorithms [10]. Huang et al. [10]
and Zhu et al. [19] proposed a self-organising map neural network combined with
a velocity synthesis approach and applied their models to underwater robots.
Cai et al. [2] developed a 3D-Dubins Multiple Travelling Salesman process for
underwater task assignment and path planning. David et al. [5] presented a Hun-
garian algorithm coupled with a Hamiltonian motion planning process to plan
the trajectories of ground vehicles. Biswas et al. [1] designed a Particle-Swarm
Optimisation (PSO)1 coupled with a Nearest-Neighbour Search task allocation
approach. Another Neighbourhood Search algorithm is developed by Chen et al.
[4] to solve the multi-agent pickup and delivery problem.

To date, several applications of UAV-based integrated task assignment and
path planning has been proposed. Moon et al. [14] developed an Mixed-Integer
Linear Programming (MILP) based solution with a potential field-based collision
avoidance algorithm. Escribano Macias et al. [7] proposed an integrated routing
and trajectory optimisation framework using a Large Neighbourhood Search
algorithm. Kuru et al. [12] presented a Hungarian algorithm and Monte Carlo
technique to dynamically assign and plan 3D UAV routes. Finally, Huo et al. [11]
proposed a simulated-annealing based solution using a swap-and-judge strategy.

As seen above, many studies developed metaheuristics which, while resolv-
ing scalability issues, result in suboptimal solutions. In addition, few explored
the UAV-based pickup-and-delivery problem in dynamic environments under
stochastic demand patterns and payload and battery constraints. This is the
subject of this paper.

The optimisation framework proposed in this paper comprises an integrated
TA-PP algorithm that optimises profit considering energy cost, customer loss
as well as obstacle avoidance. A reinforcement learning approach designs UAV
flight paths, and a MILP model performs TA. Furthermore, this paper compares
the performance of the MILP against a dynamic programming approach (DP),
and a first-in-first-out method (FIFO) that serves as the benchmark.

In summary, the contributions of this paper are two-fold:

1. It proposes an integrated TA-PP comprising of a reinforcement learning PP
with a TA methodology in a collaborative and dynamic environment.

2. It evaluates the effectiveness of the TA methods in terms of profitability.
A sensitivity analysis is carried out to determine the optimal selection of
parameters for the objective function.

1 PSO is a metaheuristic that utilises agents to search the solution-space through the
manipulation of their position and their velocity.



200 J. Escribano et al.

The remainder of the paper is structured as follows. An overview of the
modelling framework is presented in Sect. 2, along with a detailed description of
the TA and PP algorithms in Sect. 3. The experiment and case study is presented
in Sect. 4, followed by conclusions and future works in Sect. 5.

2 Model Framework

This paper presents an on-demand UAV-based pick-up and delivery framework
for dynamic environments. The model aims to maximise the profitability of the
delivery service by determining the optimal UAV path to the delivery target and
the assignment of each task to each member of the UAV swarm while considering
battery level, location, and payload. We define the UAV swarm as a group of
UAVs which have shared knowledge of the tasks being submitted to the swarm
for assignment. These decisions are captured by two interrelated components: a
task assignment (TA) algorithm, and a path planning (PP) model. The complete
framework is presented in Fig. 1.

The TA algorithm allocates customers to UAVs based on customer waiting
times, current battery state of charge, and payloads. Thus, a UAV may be assigned
multiple deliveries, in which case the pick-up and drop-off sequence must also be
determined provided the UAV has sufficient capacity to pick-up multiple delivery
items. The problem is formulated as an MILP and is described in Sect. 3.1.

Fig. 1. UAV delivery implementation framework. Agents are indicated in green, with
processes in orange, outputs in blue, and final output in yellow. (Color figure online)

The PP process serves to define the UAV path from its current position to
the pick-up and drop-off point for each task. Using the UAV weight, location
of other members of the swarm, and the surrounding environment, a multi-
agent reinforcement learning approach is adopted to minimise collision risk and
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travel time, where each agent, independently, improve their understanding of the
environment and progressively improve their path planning capability as a result
of the improved knowledge. Further details on the model are given in Sect. 3.4.

2.1 Modelling Environment

The proposed modelling framework contains two main components: agents and
tasks. Agents represent a single UAV in the swarm, while tasks denote the specific
job for each agent to complete. An agent contains the following information:
a battery capacity Bi, a maximum payload Ψi, an observation radius Ri, a
database of the explored topography Di, its current position, a task queue, a
path or route to arrive at the destination of the current task that is calculated
based on the path planning algorithm, and a state.

At any point, an agent may be in one of the following states:

1. Idle: the agent hovers in place and does not contain a route or task.
2. Pick-up: this task comprises the travelling of the agent to the pick-up location

and the actual process of picking up the parcel.
3. Drop-off: as with “Pick-up” but instead of acquiring the parcel, the agent

places the payload at the defined destination.
4. Travel to Charger: the agent is moving towards its charging location. Once

arriving, the agent task is changed to “Charging”.
5. Charging: the agent is charging its battery. Once fully charged, the UAV

returns to “Idle” state.

Agent movement through the environment is controlled by the task queue
assigned to each agent. A delivery is comprised of two tasks: pick-up and drop-off.
Logically, pick-up must always occur before drop-off, but an agent may complete
several pick-up tasks in sequence if it has sufficient payload capacity. Every task
also contains a specified customer waiting time associated w, a revenue value v,
an energy expenditure c, and a status that may be any of the following:

– Unassigned: task not assigned to any agent and is waiting for assignment.
– Ordered: task is assigned to agent but the parcel is yet to be picked-up.
– Picked-up: the agent has collected the parcel, but is yet to be dropped-off at

the desired location.
– Completed: the agent has fulfilled the task, and the task is now deleted from

the task queue.
– Cancelled: the task has not been fulfilled within w and is deleted from and

the task list of any agent. The loss of the customer is added to the total cost.

It is important to note that the agents contain perfect information of all tasks
assigned to the swarm.
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(a) MILP. (b) DP. (c) FIFO.

Fig. 2. Task assignment schematics, where each agent-task connection represents eli-
gibility for task assignment. MILP assigns multiple tasks to a pool of multiple agents.
DP assigns multiple tasks to a single idle agent. And FIFO assigns a single task to any
of available idle agents.

3 Formulation

This section presents the implementation of the TA and PP algorithms. Three
TA models are defined: an MILP, a DP, and a FIFO that serves as a benchmark.
A visualisation of their logic is provided in Fig. 2.

3.1 Mixed-Integer Linear Programming Approach

The MILP approach provides a unique property in comparison to the DP and
FIFO methods proposed, as it can assign multiple agents to multiple tasks simul-
taneously. The MILP process is initiated when the following conditions are satis-
fied: i) an agent changes state, ii) there exists unassigned tasks, and iii) there is at
least one agent in state 1–3. Agents in states 4–5 are considered for assignment.

In carrying out task assignment, this method structures the set of tasks as a
cost matrix using the following notation:

– An agent location at the start of the assignment Ai for any agent i ∈ N .
– The task set T , comprising of a pick-up and drop-off location (p, d).
– The pick-up and drop-off location set P and D.
– The remaining tasks M i

j for each agent i ∈ N .
– yi

j,k is a Boolean parameter indicating if transitioning from one location or
another is allowed.

Take the example where there are two agents and three tasks. Each agent
initiate their assignment at locations A1 and A2. Agent 2 has two unfulfilled tasks
M2

1 and M2
2 , while agent 1 has one, M1

1 . Three new tasks T are to be assigned
in this process, denoted as a set of pick-up P and a drop-off D locations. There
are several logical constraints that can be derived from this example:
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1. From their initial position Ai, an agent can travel to any location except any
drop-off location Dj , or any remaining task M i of another agent. Note that
an agent can remain in its location Ai if no task is assigned.
Thus, yi

j,k = 0 ∀j ∈ Ai,∀k ∈ D ∪ M i,∀i, i′ ∈ N : i �= i′.
2. From any pick-up location p ∀(p, d) ∈ T , an agent can travel to any other

location except any agent origin location Ai and p′ ∀(p′, d′) ∈ T when p = p′.
Hence, yi

p,k = 0 ∀(p, d) ∈ T,∀k ∈ Ai ∪ P : k = p,∀i ∈ N .
3. From any drop-off location j ∈ D, an agent can travel to any other location

except any agent origin location Ai, or the pick-up p and drop-off d location
of the same task: (p, d) ∈ T if d = j
Therefore, yi

d,k = 0 ∀(p, d) ∈ T,∀k ∈ Ai ∪ P : k = p ∪ D : k = d,∀i ∈ N .
4. From any remaining task location j ∈ M i, an agent can travel to any other

location except any agent origin location Ai, and other remaining task k ∈
Mm if k = j and i = m, or i �= m.
So yi

j,k = 0 ∀j ∈ M i,∀k ∈ Ai ∪ M i : k = j,∀i ∈ N .
5. yi

j,k = 1 otherwise.

Parameter yj,k captures the constraints in equation set (1). A list of the used
nomenclature is provided in Table 1.

Table 1. Variable, parameter and index definitions

Indices Sets

i = Agent N = Agents

j, k = Task P = Pick-up tasks P ⊂ I, P ⊂ J
p, d = Pick-up and drop-off task ∈ T D = Drop-off tasks D ⊂ I, D ⊂ J
a = Agent home a ∈ Ai T = Drop-off and Pickup task pair T ⊂ I, T ⊂ J

I = Unassigned tasks I ⊂ J
Mi = Assigned and unfulfilled tasks of agent i M ⊂ J
A = Agent “home” location

J = All tasks

Parameters

vi
j,k = Revenue from agent i for completing journey from j, k. [£]

ci
j,k = Energy expenditure from agent i for completing journey from j, k. [kWh]

ωi
j,k = Customer wait time for journey j, k carried out by agent i. [seconds]

yi
j,k = Equates to 1 if journey j to k by i is possible, and 0 otherwise.

ψi
j,k = Payload required by agent i for journey j, k. [grams]

βi
j,k = Energy requirement by agent i for journey j, k. [kWh]

mi = Number of unfulfilled tasks of agent i.

γ = Unit energy cost [£/kWh].

δ = Relative cost of losing a customer [£]

Variables

xi
j,k = Boolean: agent i transitions from task j to k.
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Maximise π =
∑

i∈N

∑

j,k∈J
(vi

j,k − γci
j,k − δωi

j,k)xi
j,kyi

j,k (1)

∑

i∈N,k∈J
yi

k,jxi
k,j ≤ 1 ∀j ∈ P (1.1)

∑

k∈J
yi

k,pxi
k,p −

∑

k∈J
yi

k,dxi
k,d = 0 ∀(p, d) ∈ T, ∀i ∈ N (1.2)

∑

k∈J
yi

j,kxi
j,k −

∑

k∈J
yi

k,jxi
k,j = 0 ∀j ∈ P, ∀i ∈ N (1.3)

∑

k∈J
yi

j,kxi
j,k −

∑

k∈J
yi

k,jxi
k,j ≤ 0 ∀j ∈ D, ∀i ∈ N (1.4)

∑

k∈J
yi

j,kxi
j,k = mi ∀j ∈ M i, ∀i ∈ N (1.5)

∑

k∈J
yi

j,kxi
j,k −

∑

k∈J
yi

k,jxi
k,j ≤ 0 ∀j ∈ M i, ∀i ∈ N (1.6)

∑

k∈J
yi

a,kxi
a,k = 1 ∀a ∈ Ai, ∀i ∈ N (1.7)

∑

j∈P,k∈J
yi

j,kxi
j,k −

∑

j∈P,k∈J
yi

k,jxi
k,j +

∑

j∈D,k∈J
yi

jxi
j,k−

∑

j∈D,k∈J
yi

k,jxi
k,j +

∑

j∈Mi,k∈J
yi

j,kxi
j,k −

∑

j∈Mi,k∈J
yi

k,jxi
k,j+

∑

a∈Ai,k∈J
yi

a,kxi
a,k −

∑

a∈Ai

xi
a,a = 0 ∀i ∈ N (1.8)

∑

j,k∈J
ψi

j,kxi
j,kyi

j,k ≤ Ψi ∀i ∈ N (1.9)

∑

j,k∈J
βi

j,kxi
j,kyi

j,k ≤ Bi ∀i ∈ N (1.10)

xi
j,k ∈ {0, 1} ∀j, k ∈ J , ∀i ∈ N (1.11)

MTZ constraints (1.12)

The objective function (1) calculates the total profit of the operation by
considering the total revenue per task, the operational cost to carry out the
task, and any lost customers through excessive waiting time.

Constraint (1.1) limits any task is to be assigned to only one agent i. (1.2)
ensures that agents are assigned a pick-up and drop-off location for any task j.
(1.3) guarantees agents arriving at a pick-up location will also leave said location.
Similarly, (1.4) ensures agents arriving at a drop-off location will leave the node,
but also allows agents to remain in the drop-off location only if it is the last visit
of their schedule.
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Constraints (1.5) and (1.6) describe the behaviour of unfulfilled agent tasks
M i. (1.5) ensures all unfulfilled tasks are visited by agent i, while (1.6) is anal-
ogous to (1.4).

Constraint (1.7) forces agents to commence the assignment from their start-
ing location Ai. Flow conservation between all tasks is guaranteed through (1.8),
and allows agents to not be assigned any task if xAi,Ai

= 1.
Constraints, (1.9) and (1.10) ensure payload and battery limitations are sat-

isfied during assignment. The decision variable x is constrained to a Boolean by
(1.11), and Miller-Tucker-Zemlin (MTZ) constraints are implemented to elimi-
nate sub-tours.

3.2 Dynamic Programming Approach

The DP approach defined in this paper implements a Dijkstra algorithm that
utilises a profit matrix to assign tasks once an agent changes its status to “Idle”.
Fundamentally, this mirrors the decision variable xi

j,k from equation set (1),
where the DP determines the sequence of tasks to be followed by a specific agent.
However, there are two main differences with respect to the MILP method: 1)
the agent must complete all tasks in order to undergo task assignment, and 2)
task assignment to multiple idle agents is carried out sequentially rather than
simultaneously.

As a result, the logical constraints 1, 2, and 3 are carried forward from
Sect. 3.1. Additionally, constraints (1.8) and (1.9) also apply. The implemen-
tation of the DP approach is described in Algorithm 1.

3.3 First-In-First-Out Approach

The FIFO method assigns tasks sequentially to any agent that enters the “Idle”
status, provided the agent has sufficient battery and payload capacity to under-
take said task. If multiple agents are idle, the FIFO approach maximises profit
of that task as defined by Eq. (1). The implementation of the FIFO method is
described in Algorithm 2.

3.4 Path Planning Formulation

Once the task sequence is given to the agent, the path planning process derives
the shortest trajectory to the target location. In determining the path, we pro-
pose a multi-agent reinforcement learning approach, where each agent within
the UAV swarm develops a cost matrix G based on its observation range Ri, its
current position, and the target destination. The observation radius Ri denotes
the maximum distance an agent is able to detect obstacles and calculate their
risk and records their observations in the database Di. Thus, each agent must
navigate through the environment in order to obtain a complete knowledge of
the topography.
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Algorithm 1. Dynamic Programming
1: function DP(N , I) � N - agent set, I - tasks
2: Initialise Γn ← ε1j � Γn - set of initialised routes. ε1j - route to task j
3: for i in N do
4: Γn − 1 = {}, t = 1
5: while Γn �= Γn−1 do � Exit loop if results converged
6: Γn = Γn−1

7: for j in I do � πt
j - profit of task j at iteration t

8: πt+1
j = πt

j � If route not explored and satisfies battery Bi and

9: for εt
k ∈ Γn do � payload Ψi constraints:

10: if j not in εt
k and yj,εt

k
= 1 and ψεt

k
≤ Ψi and βεt

k
≤ Bi then

11: ρ = πt
j + vj,k � Calculate route profit from k to j

12: if ρ > pt+1
j then

13: pt+1
j = ρ � Update route profit

14: εt+1
j = εt

k + rk,j � Update route
15: end if
16: Γn−1 ← εt+1

j � Update route list for agent i
17: end if
18: end for
19: end for
20: t = t + 1
21: end while
22: R =Max(pt

j∀εt
j ∈ Γn) � Select task with highest profit

23: i ← R � Assign tasks to agent
24: end for
25: end function

Algorithm 2. First-In-First-Out.
1: function FIFO(N ,I) � N - agent set, I - tasks
2: for i in N do � π - expected profit
3: πi = −∞ � If agent idle and satisfies battery Bi and:
4: for j in I do � payload Ψi constraints:
5: if Statusi is “Idle” and Ψi ≥ ψj and Bi ≥ βj then
6: if πi < πj then
7: Assign Task j to Agent
8: πi = πj � update expected profit for agent i
9: end if

10: end if
11: end for
12: end for
13: return N
14: end function

The cost matrix G is calculated using a reward matrix S that depicts the
objective of minimising path distance and avoiding any risk observed by the
agent. For any two points p1 and p2 in the map N , the reward Sp1,p2 is described
in Eq. (2), where dp1,p2 is the geometric distance between the two points, and
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∫
(x,y)∈Pp1,p2

L(x, y) denotes the accumulated risk from p1 to p2. K is a risk
adjustment coefficient, the effect of which can be observed in Fig. 3.

Sp1,p2 = dp1,p2 + K

∫

(x,y)∈Pp1,p2

L(x, y) (2)

The risk L(x, y) is an accumulated metric of proximity to an obstacle mod-
elled as a normal distribution to the centre of the obstacle. Thus, given a set
of obstacles O where each individual obstacle o is located at (Xo, Yo), the risk
exposure at (x, y) is formulated as follows:

L(x, y) = 1 −
∏

o∈O

[1 − l(x, y, xo, yo)] (3)

where
l(X,Y, x, y) =

1√
2πσ

e− (X−x)2+(Y −y)2

2σ (4)

In calculating the cost matrix G, an iterative process based on Eq. (5) is used.
G is first initialised with all values at ∞ and the destination node at 0. Then,
a position p1 is selected using uniform random distribution until convergence as
defined by [18].

Note that the vehicle can only detect risk within its own observation radius
R, and any historical data obtained during the mission, defined as the explored
topography D. For further details in the implementation of the reinforcement
learning model, see [3].

Gk+1 = min(Gk,
∑

p2∈N
Sp2,p1 + Gk

p2
) (5)

(a) K = 0. (b) K = 10. (c) K = 30.

Fig. 3. Path planning variation with K. Obstacles are shown in light red, and the
destination is labelled as 1. As K increases, the agent avoids obstacles more effectively.
(Color figure online)
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4 Case Study and Simulation

The model described in Sects. 2 and 3 is implemented in Matlab on an Intel
Core i9-10980XE CPU, with 256 GB RAM. The case study developed is based
on the postal code EC3A in the City of London, comprising an area of 0.5 km2

(see Fig. 4). The region is discretised into a 80 × 80 node grid based on the data
obtained through ArcGIS.

Demand is assumed to be generated only at side streets and next to buildings
as shown in Fig. 4c following a Poisson distribution, with the value of each task
calculated based on Eq. (6), where parcel weight is uniform stochastic ψ ∼
U(200, 700). The customer waiting time is set to 100 time steps. In total, 30
demand units are generated over a time period of 500 time steps.

v = 10 × U(1, 10) + 0.02ψ (6)

(a) Case study area. (b) Obstacle grid. (c) Demand regions.

Fig. 4. Case study.

We evaluate the performance of the three task assignment approaches by
analysing their sensitivity to changes in the unit battery cost γ and the fleet
size N .

Figure 5 and the accompanying Table 2 present the profit sensitivity to fleet
size and the battery unit cost. We observe that, except for γ < 5 or N > 5,
the MILP approach obtains greater profits. Interestingly, as the number of UAV
increases, the DP process produces the best performing solution. The FIFO
method generally obtains higher profits when operating costs are negligible,
γ = 0. A fleet size of 2 to 3 UAVs ensures highest profits regardless of the
TA optimisation model, except when γ = 0.

These results suggest that if the cost of operation is negligible with respect
to the value of the service, a FIFO approach provides fast and reliable task
assignment. Instead, in scenarios where the number of orders is significantly
higher than the available fleet (N ≤ 3), the MILP model provides better solutions
due to its ability to plan tasks in advance. Finally, the DP model improves profits
for smaller order to fleet ratio as agents enter the idle state more frequently.
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We further investigate this claim by evaluating the task completion rate in
Fig. 6. One can observe that the DP method has a lower order completion rate
than both the MILP and FIFO but comparable profits under the same γ and
fleet size, suggesting a higher average order value. In addition, while FIFO and
MILP obtain similar order completion rates, the MILP provides higher profits
particularly for 2 ≤ N ≤ 3. Note that, for N > 3 the number of tasks completed
does not increase further. Meaning that the FIFO approach only provides high
quality solutions when fleet size is large enough to ensure all tasks are served
without optimal planning, otherwise, the MILP provides a more effective task
assignment framework compared to the other two models.

Fig. 5. Profit variation with number of agents and γ.

Table 2. Method with highest profit per agent number and γ. Bold text indicates
highest profit for each value of γ, and cell colour intensity denotes profit value.

Agents γ = 0 γ = 5 γ = 10 γ = 15 γ = 20 γ = 25

1 MILP MILP DP MILP MILP MILP

2 DP DP MILP MILP MILP MILP

3 FIFO MILP MILP MILP FIFO MILP

4 FIFO MILP FIFO MILP FIFO FIFO

5 FIFO MILP DP FIFO DP FIFO

6 FIFO MILP FIFO DP FIFO FIFO

7 DP DP DP DP DP DP

8 FIFO DP DP DP DP DP

We also evaluate the performance of DP and MILP in term of varying δ value
as shown in Fig. 7. Similar to Fig. 5, the MILP provides higher profits for N ≤ 3.
Once the number of agents poses no impediment to the completion of all tasks,
the DP records greater profits.
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The results suggest that, while the MILP improves profitability in the region
of 2 ≤ N ≤ 3 where fleet size is insufficient to address all tasks, it under-
performs when compared to the DP and FIFO implementations for larger fleet
sizes. This may be as a result of the trigger conditions for the MILP execution
process, which may result in small time horizons, reducing the impact of its main
advantages compared to the other methods.

An exploration of different trigger conditions for the MILP should be
explored, for example, potentially through the definition of a fixed activation
rate, or by activation through a maximum queue size, which may result in longer
planning horizons and improved task assignment. Further work should also on
the additional computational requirements these improvements would create,
and their feasibility for implementation in real-time for larger case studies.

(a) MILP. (b) DP. (c) FIFO.

Fig. 6. Task completion rate variation with γ.

(a) MILP. (b) DP.

Fig. 7. Profit variation with δ.
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5 Conclusions and Further Work

This paper has proposed a UAV swarm delivery comprising of a task assignment
approach, and a path planning algorithm, which consists of a risk-based learning
approach that facilitates optimal path finding with built-in obstacle avoidance.
Three implementations of task assignment are evaluated in this paper: a First-
In-First-Out method, a Dynamic Programming approach, and a Mixed-Integer
Linear Program.

Our results have shown that the MILP assignment provides improved perfor-
mance in the majority of scenarios, as allows assignment of tasks to agents that
have unfulfilled tasks. The FIFO approach yields better results when operational
expenditure is negligible, and DP results in higher profit if the number of agents
is large compared to the number of orders. Overall, the MILP approach offers
higher lever of collaboration within the swarm, and requires fewer agents to the
DP and FIFO to obtain maximum income levels.

While this paper shows the effectiveness of aggregating the task assignment
and path planning into a single platform, there are simplifications that preclude
its implementation. While the risk-aware path planning approach proposed pro-
vides shortest routes from origin to destination, it assumes no conflict with other
flying platforms outside of the swarm. Under current regulations from the UK
Civil Aviation Authority, delivery drones must comply with specific category
rules, requiring operational authorisation and available communications with
the Air Traffic Service provider. This means that the risk map should update
dynamically with updated information of other traffic, and allow evaluation of
the operational risk for carrying out the delivery.

Another limitation of the approach is the use of a single swarm of UAVs to
test the algorithms. Implementing a multi-swarm environment, with a higher
degree of risk for path planning as a result of a higher level of traffic, and order
assignment to the multiple swarms would provide a scalable implementation for
UAV-based delivery.

In discussing scalability, the problem instance proposed in this paper con-
siders 8 UAVs and 30 orders. Application to a wider region and larger fleet
sizes would provide a more realistic implementation of UAV-based pickup and
delivery services. This expansion will also allow the investigation of interacting
swarms, where UAVs can be interchanged between swarms based on the demand
intensity at any point in time. This comprises our future work.
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Abstract. Attended home delivery (AHD) is a popular type of home
delivery for which companies typically offer delivery time slots. The costs
for offering time slots are often double compared to standard home deliv-
ery services (Yrjölä, 2001). To influence customers to choose a time slot
that results in fewer travel costs, companies often give incentives (dis-
counts) or penalties (delivery charges) depending on the costs of a time
slot. The main focus of this paper is on determining the costs of a time
slot and adjusting time slot pricing accordingly, i.e., dynamic pricing. We
compare two time slot cost approximation methods, a cheapest insertion
formula and a method employing random forests with a limited set of
features. Our results show that time slot incentives have added value
for practice. In a hypothetical situation where customers are infinitely
sensitive to incentives, we can plan 6% more customers and decrease the
per-customer travel costs by 11%. Furthermore, we show that our method
works especially well when customer locations are heavily clustered or
when the area of operation is sparsely populated. For a realistic case of a
European e-grocery retailer, we show that we can save approximately 6%
in per-customer travel costs, and plan approximately 1% more customers
when using our time slot incentive policy.

Keywords: Time slot management · Dynamic pricing · Vehicle
routing · Machine learning · Cost approximation

1 Introduction

During the last two decades, many e-commerce initiatives have driven the
demand for package delivery services, resulting in several variations of business-
to-consumer business models. One of the ultimate value-adding services is last-
mile delivery, the delivery of packages to the customer’s front door [10]. Home
delivery services present great challenges for retailers, service providers, and
logistics companies. Logistics must be organized in a way that is efficient, prof-
itable, and satisfies the customers’ wishes, while sometimes dealing with stochas-
tic customer arrivals.

In this research, we focus on attended home delivery (AHD), for which it
is necessary that the customer is at home at the delivery moment. AHD might
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be needed for security reasons (e.g., high-value goods), perishable goods (e.g.,
groceries), physically large goods (e.g., home appliances), or because services are
performed (e.g., product installation) [2]. Many companies that offer AHD ser-
vices provide their customers with time slots for choosing the delivery moment.
Delivery time slots are offered to provide a high customer service and prevent
costly delivery failure. When delivery has failed, the goods have to be offered
for delivery at a different moment, which will result in additional storage, trans-
portation and planning costs. In the case of perishable goods, the costs of a
delivery failure are even higher, since the goods may be spoilt before the next
delivery opportunity. An early study shows that AHD costs are often twice the
cost of unattended delivery [26]. The AHD customer ordering process is mostly
comprised of five steps: (i) the customer fills the online basket, (ii) the customer
indicates the required delivery location, (iii) the customer is presented delivery
time slots, (iv) the customer chooses a time slot and completes the order, and
(v) the order is delivered within the required time window.

Time slots have different delivery charges as part of the company’s pricing
policy. Often, time slot pricing policies are intended to steer customer behavior
towards time slots (“nudge”) that are cheaper for the company, i.e., these time
slots represent lower transportation costs. By using incentives or penalties, a
company can influence customer behavior in choosing a time slot, hence, it is
possible to reduce operational costs. The reduction of costs can be done by, e.g.,
smoothing the demand patterns or the geographical spread of customers over
time to reduce demand peaks [2], reducing vehicle routing distance or time, and
reducing the required fleet size.

There is limited time to perform many calculations before offering a time
slot; recent research suggests that each 100-ms delay in the load time of websites
can decrease sales conversion by 7% [3]. Nevertheless, we need to calculate the
impact of the time slot offering in terms of, e.g., fuel, salary, vehicle rent, and
emissions. In addition, the opportunity costs can be considered, which are the
cost of offering a time slot now compared to saving it for potentially more prof-
itable customers that arrive later [25]. The problem is further complicated by
uncertain customer arrivals and customer behaviour. Although much research
has been conducted on time slot allocation, i.e., the offering of only a subset
of the feasible time slots, this study considers the situation in which always all
feasible time slots are offered and we can reduce costs by nudging customers
to time slots. The contributions of this paper are the application of regression
models for approximating transportation costs, a novel parametric rank-based
method for modelling customer behavior, and the application of our approach
to a realistic time slotting case.

The remainder of this paper is structured as follows. In Sect. 2, we introduce
the relevant scientific literature on attended home delivery and time slot man-
agement. In Sect. 3, we describe the problem and introduce our approximation
and dynamic pricing method. Section 4 introduces the synthetic and European e-
grocery retailer cases and in Sect. 5, we validate and illustrate our method using
the two cases. Finally, we close with conclusions and future research directions
in Sect. 6.
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2 Literature

In this section, we give an overview of the state-of-the-art literature consider-
ing operational attended home delivery and time slot management. We discuss
problem characteristics, solution methods, and cost approximation methods. We
close with an overview of the contribution of this paper to the scientific literature.

Since attended home delivery with time slots requires delivery to take place
in a specified time interval, it relates to the well-known Vehicle Routing Problem
with Time Windows (VRPTW). As part of the VRPTW, the field of AHD is
typically divided into the following categories: (i) static time slot allocation, (ii)
dynamic time slot allocation, (iii) differentiated pricing, and (iv) dynamic pricing
[1,14,25]. Time slot allocation can be summarized by the question: “what time
slots should we offer to a customer?” and time slot pricing can be stated as: “what
time slots should we incentivize and what time slots should be penalized?”. Static
methods use forecast data or static rules and can be used to make strategic and
tactical decisions, e.g., to decide on the number of time slots and the width of the
time slots. For differentiated allocation, the goal is to find what time slots to offer
to what delivery area, e.g., certain low-populated areas might be offered fewer
time slots, which is a tactical decision. Differentiated pricing tries to find the best
static price policy to influence customer behavior. When time slot allocation and
pricing happen online, during the decision making, it is called dynamic. Dynamic
decisions can consider real-time information about the customer and the current
schedule to make better decisions [1,14,25].

We review the state-of-the-art scientific literature on operational decision
making techniques for attended home delivery and time slotting, see Table 1
for an overview. We consider the following problem and solution elements: (i)
the delivery horizon length, which indicates how many delivery days a customer
can choose for delivery, (ii) the customer arrival process, which can be modelled
using different probability distributions, (iii) the order generation, which is the
way the orders (e.g., quantity, location or time slot) are generated, (iv) the time
slot design, which indicates what width and possible overlap of time slots is
considered, (v) the time slot allocation method, and (vi) if applicable, the time
slot incentive method.

In [6], a model is presented that allows for a flexible horizon, but does not
consider days of the week, nor seasonality. The customer arrival process is mod-
elled using a non-homogeneous Poisson process, as inspired by scientific work in
revenue management in the airline industry (see [15]). A Markov decision process
model is proposed that dynamically adjusts the delivery charges per customer.
Optimal prices are calculated based on an “equal profit” policy, which means that
the retailer makes the same profit in the remaining booking horizon, regardless
the customer choice. Delivery prices can change based on order size, depending
on the time left in the booking horizon [6]. In [9], the models are tested on ficti-
tious cases for which customers are uniformly scattered on a 60× 60 grid. Their
method dynamically determines the feasibility of a time slot insertion, using
a combination of insertion heuristics and randomization to determine a feasible
schedule. Next, the allocation and size of incentives are determined using a linear



Dynamic Time Slot Pricing Using Delivery Costs Approximations 217

Table 1. Problem and solution elements in AHD and time slotting literature.

Authors Delivery
horizon

Customer
arrival process

Order
generation

Time slot design Slot allocation
method

Slot incentive
method

[6] Flexible N/A Uniform N/A Feasibility check Dynamic, Markov
decision process
model

[9] Single-day Uniform - Non-overlapping, 1 or
2-h width

Heuristic
feasibility check

Dynamic
LP-based model

[11] - N/A Area-based,
normal dist.

8 time slots Dynamic, ESMR N/A

[12] Single-day N/A Uniform,
Demand peaks

8 Non-overlapping,
1-h width time slots

Static/Dynamic,
I1 insertion
heuristic

N/A

[13] Single-day Random General dist.
of nr. of totes
i ∈ {1,. . . ,10}

4 Non-overlapping,
2-h width time slots

Feasibility check Dynamic,
MILP-model for
opportunity costs

[24] Single-day Homogeneous
Poisson arrivals

General dist.
of nr. of totes
i ∈ {1,. . . ,10}

17 Non-overlapping,
1-hour width time
slots

Feasibility check Dynamic

[25] Single-day Time-dependent
Poisson arrivals

Normal dist. 27 Partly-overlapping,
1-h width time slots

Heuristic
feasibility check

Dynamic,
opportunity costs,
SDP

programming model, which maximizes the profits related to time slot offerings.
The authors conclude the following from their research: (i) incentive schemes can
substantially reduce costs, (ii) performance of incentive schemes can be improved
using intelligent methods, (iii) incentives can reduce walkaways (lost sales), (iv)
it is sufficient to provide incentives to only a few slots (≤3), (v) an increase in
time slots triggers the need for more sophisticated incentive schemes, (vi) it is
easier to persuade customers to choose a wider time window than to let them
choose a specific time slot, and (vii) the use of incentives can be critical already
in the early stages of making a routing schedule [9].

In [11], a computational study is conducted based on the metropolitan area
of Stuttgart, which is divided into nine areas with varying population sizes. Cus-
tomers can choose between eight time slots. Demand is drawn from the normal
distribution and is dependent on the area and the average income in those areas.
There is a fixed fleet of four vehicles and capacity is estimated with vehicle rout-
ing experiments. The offering of time slots to customers is dynamically deter-
mined using the order value. The used method is called “Estimated Marginal
Seat Revenue heuristic” (EMSR), as described in [8]. EMSR determines buckets
for order values and allocates time slots accordingly, i.e., customers with a high
order value, falling in a high-value bucket, will receive more time slot offers than
customers with low order value [11]. In a study that also considers metropolitan
areas, different travel time patterns are considered to model congestion in the
morning peak-hours [12]. Demand for the eight non-overlapping time slots is
uniform, and for some experiments demand peaks for time slots are considered.
The authors define both static and dynamic approaches to determine the time
slot allocation to maximize the number of accepted time slot requests. The static
method uses capacity restrictions and a static rule that considers the time win-
dows in which a delivery must be feasible. The dynamic method uses expected,
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dynamically determined, travel times. The authors expand this method to also
have a buffer for lateness and consider stochastic travel times. Their insertion
heuristic is a time-dependent adaptation to the well-known I1 insertion heuris-
tic by [21]. In [13], 12 areas are served by a single central depot. A set of 1000
customers can arrive randomly, one at a time, and the size of demand is defined
using the number of order totes. The authors develop a mixed-integer linear pro-
gramming model (MILP) which is integrated into a dynamic programming model
for AHD by [25]. The MILP-model maximizes expected profits and is used as
an approximation of opportunity costs. The availability of time slots is checked,
but time slots are always offered when capacity allows it [13]. The dynamic pro-
gramming model as described in [25], is the “de facto” framework for dynamic
pricing. After doing a heuristic feasibility check, based on [9], the insertion costs
are calculated. The pricing solution is dynamic, but for practical reasons it does
not differentiate between customers that choose the same time slot and have
the same location and order value. In [25], two policies are developed, one only
considering the current insertion costs, the other also including the opportunity
costs. Their method is tested on a realistic case, for which bookings on a single
day arrive as early as 22 days in advance, with most bookings coming in the last
three days before the cutoff time. Cancellation and re-scheduling is neglected.
They show that dynamic pricing methods that do not consider future expected
demands (i.e., opportunity costs) can produce worse results compared to static
pricing methods [25]. In a follow-up study, [24] expand their method to use an
area-specific cost estimation as input for an approximate dynamic programming
approach. They show that the decomposition into smaller areas can successfully
reduce computational efforts and estimate the costs [24].

As [20] indicated, attended home delivery literature can also be categorised
on the method for including routing costs. Most literature uses the costs result-
ing from explicit routing decisions, often obtained from a heuristic, since the
VRPTW is NP-hard [9,11,12,25]. Alternatively, an approximation of the rout-
ing costs, without making explicit routing decisions, can be used, e.g., with
Daganzo-approximation [19] or a seed-based approximation method [13,14].
Another option for routing costs approximation, not used before in time slot
management research, is the use of regression models, as shown in [16] or [4].

In summary, we observe that the literature considers exclusively time slot
allocation or time slot incentives. Those focusing on incentives often state that
the closing of time slots for certain customers (i.e., time slot allocation) is a
method that results in lost sales and customer dissatisfaction [6]. Hence, dynamic
pricing is perceived as the best method, since it can balance the trade-off between
lost sales and profits. Also, we see that the topic of cost approximation, being
opportunity costs or transportation costs, is much studied. We recognise two
different options for dynamic pricing: (i) approximate the costs of a time slot
and use this as basis for setting time slot prices [9], or (ii) optimize the time slot
prices, such that the behavior of customers is nudged optimally, like is done in
the approximate dynamic programming model of [25]. Aside from the previous
problem and solution elements, the time slotting literature also differentiates the
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modelling of customer choice. Most literature either use a probabilistic model, a
rank-based model, or the multinomial logit (MNL) model. The latter seems to
be the dominant method for the most recent literature. For more information
about the MNL model we refer to [22].

The contribution of this paper to the existing scientific literature is threefold.
First, we show the application of regression models for approximating transporta-
tion costs instead of the currently in use heuristic methods. Second, we present a
novel parametric rank-based method for modelling customer behavior that, com-
pared to the currently in use multinomial logit choice model, does not require
behavioral data and requires fewer computations. Finally, we apply our solu-
tion approach and customer choice model to realistic time slotting case studies
together with commercial vehicle routing and time slot allocation software.

3 Problem Formulation

In this section, we give the problem formulation in Sect. 3.1, describe the cus-
tomer choice model in Sect. 3.2, and show how we attribute transportation costs
to customers in Sect. 3.3.

3.1 Problem Characteristics

In this section, the notation of all variables, parameters, and sets is introduced,
based on the formulation in [23]. We adhere to the order process as perceived by
a customer. This process consists of three steps: (i) customer arrival, (ii) time slot
offering, and (iii) time slot selection and confirmation. During a certain period,
customers place orders at a retailer, after which the customers are offered a time
slot for delivery. As common in these types of problems, we specify this period
as [0, T ], for which 0 is the first time a customer can place an order and T is
the “cutoff time”, which is the last moment a customer can place an order. After
T , the final delivery schedule is made for a single day, by solving a VRPTW.
The customer arrival times are unknown upfront. A customer i ∈ C can arrive
at any time ti within the horizon [0, T ]. Customer orders have a certain size,
for example, indicated by weight or volume, qi. The order quantity qi is also
unknown upfront. Each customer has a delivery service duration, i.e., the time
it takes for the deliverer, after arrival at the address, to hand over the package.
The service duration is indicated with li. The expected delivery duration can be
estimated with a fixed time component and a variable time component that is
dependent on the order quantity qi.

After the customer arrival, the customer must be offered a set of time slots
for delivery. We consider a single day of delivery time slots, these are all part of
the set T , with the earliest time slot beginning after T . The set of offered time
slots is denoted Si, so that Si ⊆ T . Time slot offering depends on feasibility
and the offering policy. Each time slot s ∈ T can be of different length and can
be overlapping or non-overlapping. The individual time slot duration is denoted
with [as, bs]. s is a single element in this set, i.e., s ∈ Si. Each time slot that is
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offered gets a certain incentive to steer customer behaviour. We consider incen-
tives on a continuous scale, part of the incentive set G. The incentives can be
dynamically determined and differ per time slot. The incentive given to a cer-
tain time slot is Gs. The incentives G are decimal numbers on the domain [−1, 1],
with a negative number indicating a penalty, and a positive number indicating
an incentive. During the calculation time zi, we need to determine (i) what time
slots are feasible to offer to customer i, concerning both vehicle capacities and
time window constraints, and (ii) the costs of offering a certain time slot. We
denote the set of customers that accepted a time slot and need to be planned by
C′. The directed graph G = (V, E) models the system where nodes V = C′ ∪ D
consist of the set of customers C′ and the set of depots D. Each customer i ∈ C′

can be served from every depot in the set D. The travel time on edge (i, j) ∈ E
can be expressed with τi,j . A single depot d ∈ D has a fixed number of vehicles
Ld available for delivery. The fleet is homogeneous, where every vehicle has a
capacity of H. To make a delivery, a vehicle has to visit the nodes along its route.
A vehicle route always starts and ends at the same depot. For the planning of
vehicle routes, we consider three constraining factors: (i) the vehicle capacity H
cannot be exceeded, (ii) the vehicle routes must start and finish in the interval
[ad, bd], dependent on depot d, and (iii) the delivery of customers must be done
within their selected time slot. A vehicle can leave from a customer i only after
the full service duration li.

3.2 Customer Choice Model

To model the way customers react to time slot incentives, we develop a new
rank-based choice model with a utility theory scoring component. Our approach
combines two common methods found in literature, namely, a rank-based model
and a parametric utility theory model, see [14] and [22] for recent examples of
both modelling types. We model customer preference as follows. A customer has
a ranking for all time slots, i.e., the first preferred time slot is ranked highest
and the least preferred time slot is ranked lowest, as is normal for rank-based
models. The ranking of time slots is based on scores and, therefore, the ranking
can be influenced by incentives, similar to models based on utility theory, e.g.,
the multinomial logit model.

Each customer gives “base scores” to all time slots, expressed with Ki ⊆ T .
For our experiments, we use a preference list that includes all time slots, i.e.,
|Ki| = |T |. We model different types of customers. Some customers can be
seen as “rigid”, and others are perceived as more “sensitive" to incentives. The
level of sensitivity is expressed with fi, which is a continuous parameter on
the scale [0, 1], with 0 being rigid and 1 sensitive. The incentive effectiveness is
directly related to the sensitivity parameter fi of a customer. We do not know
the customer sensitivity upfront.

We define the number βi,s as the base score of a time slot s, with βi,s on the
domain [ 1

|Ki| , 1], with |Ki| being the number of time slots in the base preference
list of customer i. The assignment of scores to time slots is done in a decreasing
fashion, i.e., the first preference gets the highest score (1), and the last preference
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gets the lowest score ( 1
|Ki| ). The lowest possible score is 1

|Ki| instead of 0 because
this prevents problems when there are only few time slots and the difference in
base score is too large for incentives to have any effect. The equation to determine
base scores βi,s is given by:

βi,s =
|Ki| − ki,s + 1

|Ki|
, (1)

where βi,s is the base score for time slot s of customer i, |Ki| is the number of
time slots in the preference list of customer i, and ki,s is the randomly drawn
ranking of time slot s for customer i, where the ranking is an integer number
ks ∈ {1, 2, . . . , |Ki|}. We can influence the ranking of the base preferences using
incentives. The incentive decision must be made for all feasible time slots. The
incentives we can give are continuous numbers with Gs on the domain [−1, 1]. A
negative incentive can be interpreted as a penalty. The incentives are multiplied
by the customer sensitivity fi, and then added to the base preference scores.
Next, the list is re-ordered from high to low and the customer chooses the highest
ranking time slot that is offered, as common for utility theory models. The total
score of a time slot for a customer is expressed with ui,s and is calculated using
Eq. 2, as is common for utility theory models [22].

ui,s = βi,s + fi · Gs. (2)

3.3 Determining Transportation Costs

To obtain the routing costs per customer, we need to do some transformations
with routing data. These transformations are necessary since we need to find
the costs of adding a customer, but we only have the total routing costs of the
VRPTW, i.e., the total costs need to be divided over the customers. We use a
method we call “half-edge partitioning” (HEP), which can be applied to most
VRP and VRPTW solutions. HEP is a straightforward, but slightly simplistic
method that allocates half of the costs (time or distance) needed to travel an edge
to the customer from which the edge departs, and the other half to the customer
at which the edge arrives. The edges that depart from and arrive at the depot
are partially allocated to their arriving and departing customers, respectively.
The other half of these depot edges are equally divided over all customers. The
routing costs, expressed in travel time or distance, of a single customer c served
by a vehicle that serves a set of customers C′, can be expressed as:

Travel costs of customer c =
1

|C′| (0.5td,f + 0.5tl,d) + 0.5ti,c + 0.5tc,j , (3)

with ti,j being the travel time or distance in the final routing schedule on edge
(i, j), where i and j are the locations visited before and after customer location
c, respectively. The depot is indicated with d, and customer f and customer l are
the first and last customer of a vehicle route, respectively. For our experiments,
we use travel time as the cost factor.



222 F. Akkerman et al.

4 Solution Approach

In this section, we first describe the cheapest insertion method as cost approx-
imation in Sect. 4.1. Next, we describe the engineered features used in our cost
approximation regression model in Sect. 4.2. We show how we obtain training
data in Sect. 4.3 and finally, we describe our time slot incentive policy in Sect. 4.4.

4.1 Cheapest Insertion Transportation Cost Approximation

The idea of the cheapest insertion cost approximation is relatively simple: dur-
ing the booking horizon, we keep track of a preliminary routing schedule that
contains all booked customer orders up to the respective moment. This prelim-
inary routing schedule is sequentially constructed using cheapest insertion, and
periodically re-optimized after every 20th customer arrival. This re-optimization
interval strikes a balance between computational effort and performance for our
experiments. We use a commercial vehicle routing solver [17] for re-optimization.
When a new customer arrives, the cheapest insertion algorithm calculates how
much it would cost, in terms of travel time, to add the new customer to a vehicle
route. The cheapest insertion algorithm returns the costs of insertion for every
feasible time slot. These costs differ per time slot, since vehicles that serve cus-
tomers in the same time window may be close by, or alternatively have to make
a detour. Cheapest insertion is simple, fast and dynamic, since it uses all current
customer information for estimating costs. Nevertheless, it has the disadvantage
of being myopic, i.e., it makes the best decision at a point in time, but cannot
make a forecast about future customers.

4.2 Regression-Based Transportation Costs Approximation

As discussed in [4], we use a regression model to approximate transportation
costs. For this paper, we show the results of random forests regression, since
this method is able to fit complex functions without too much computational
time. To make transportation costs predictions, we need to supply features to the
model. Therefore, we aggregate customer and routing information using area-
time slot clusters (ATC), as common in the literature [13,25]. The following
information of an ATC is stored: customer locations expressed in latitude and
longitude, customer order volume expressed in kilograms, and the routing costs
per customer. Aggregation-based features give a synopsis of the characteristics
of an area and time slot cluster (ATC) a customer is in. For every feasible
time slot option, we calculate the feature values before and after the potential
insertion of the new customer, to obtain the expected increase in routing costs.
The engineered features are based on the features proposed in [4]. Examples of
these features are: the number of customers in an ATC, the number of days
between customer arrival and the end of the horizon, the distance between the
depot and the ATC-centroid, the variance of the angles between customers in an
ATC and the depot and the average distance between customers in an ATC. A
complete overview of features, including a short description of each feature, and
the data partition over which each feature is calculated, can be found in Table 2.
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Table 2. Summary of features used for the regression model.

Feature Feature description Data partition

Days until the cutoff time
(F1)

The number of days left at the arrival
of the customer until the cutoff time

N/A

Number of customers in
ATC (F2)

The number of customers accepted in
the ATC

ATC

Haversine distance from
ATC centroid to depot
(F3)

The distance from the centroid of all
accepted customers in ATC to the
depot

ATC

Average distance between
customers in an ATC (F4)

The average distance between all
accepted customers in ATC

ATC

Variance customer-depot
bearing (F5)

The variance of the bearings between
the customers in ATC and the depot

ATC

Average customer-depot
bearing (F6)

The mean of the bearings between the
customers in ATC and the depot

ATC

Area ID (F7) Binary vector indicating the area A
Time slot ID (F8) Binary vector indicating the time slot S
Variance of time slot
population (F9)

The variance of the number of accepted
customers per time slot in area a ∈ A

a ∈ A

Time slot distance (F10) The distance measured in time slots
between the first and last populated
time slot in area a ∈ A

a ∈ A

Number of time slots (F11) The number of booked time slots in
a ∈ A

a ∈ A

4.3 Obtaining Training Data

We use a simulation model to test different methods and policies. To train our
methods, we need to obtain data. We do this by generating a separate set of
instances and running full simulations on these. For these training instances, we
do not use any nudging policy, i.e., customers choose the offered time slot that
has the highest base score βi,s. We obtain the following data after a simulation
run: (i) a final VRPTW-schedule, (ii) all customer locations, and (iii) the time
slots chosen by customers.

4.4 Simple Incentive Policy

To test the quality of the cost approximations and the effect they can have on
a dynamic pricing policy, we present a simple dynamic pricing policy that uses
the approximated costs per time slot, and subsequently, returns time slot prices.
The time slot prices are always on the domain [−1, 1] and can be tuned using a
parameter. After obtaining a cost approximation for all feasible time slots, given
by the set S ⊆ T , we first calculate the mean CS and standard deviation σCS of
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the predicted costs over all feasible time slots. Next, we calculate the difference
between the predicted costs for time slot s and the mean estimated costs over
all time slots S:

ĉs = −1 ·
(

cs − CS
)

. (4)

We multiply with −1 to give higher incentives to the time slots with low costs
and vice versa. Next, we use a tunable parameter W multiplied by the standard
deviation σCS to control how much standard deviations distance from the mean
ĉs is considered large, and adjust the magnitude of incentives accordingly. In
our experiments, we tuned W and found that W = 1.0 gives best results. In
case that WσCS � ĉs, we cap the incentives to remain in the domain [−1, 1].
When the costs for all the time slots are the same, i.e., σCS = 0, no incentives
are given:

Incentive for time slot s =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, if σCS = 0,
−1, if ĉs

WσCS
≤ −1,

ĉs
WσCS

, if − 1 < ĉs
WσCS

< 1,

1, if ĉs
WσCS

≥ 1.

(5)

5 Case Studies

In this section, we explain the two cases on which we test our transportation
cost approximation approach. First, we describe the synthetic case in Sect. 5.1
and then a realistic European e-grocery retailer case in Sect. 5.2.

5.1 Synthetic Case

We generate instances with a single depot from which a fleet of 20 vehicles serves
an area of 50 kilometer radius from the depot. The customers are generated in a
randomly clustered (RC) pattern, i.e., 80% of the customer belongs to one of the
eight customer clusters, while 20% of the generated customers have a random
location. During a booking horizon of 21 days, 750 customers can request a time
slot. We offer six non-overlapping time slots of 2-hour width. Customers have a
base preference list that entails all six time slots, i.e., customers can be nudged
to every time slot that is feasible. In practice, VRPTWs have both a vehicle
capacity restriction and a time window restriction. For these experiments, we
first study the effect of only having a time window (RC-T) restriction, and next,
the effect of adding a capacity restriction of 25 customers per vehicle (RC-TC).
We use two different customer price sensitivity settings: one for which customers
are infinitely flexible (Flex), i.e., customers will always choose the time slot that
we nudge; and a second one that uses a sensitivity of fi = 1 (see Sect. 3.2),
i.e., customers are sensitive but the time slot with the highest incentive is not
necessarily always chosen, since the base scores, before incentives, have influence
on the eventual time slot choice.
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5.2 European E-grocery Retailer

One of the main contemporary application areas of time slotting is e-grocery
retailing, i.e., offering the possibility to order groceries online and delivering
them at home. The reason that grocery retailers use time slots for delivery is
that the goods are often perishable, so a failed delivery can be costly. Compared
to the synthetic case, customers are dispersed over a larger region containing
cities and rural areas. The grocery retailer has a heterogeneous fleet, with smaller
vehicles used for cities and larger vehicles for rural areas. The retailer offers seven
overlapping time slots, and serves from multiple depots (4) with different fleet
sizes. For the individual instances, we use order data obtained from the same
day of the week, to prevent seasonality differences. The fleet is heterogeneous in
terms of vehicle capacity and driving speed. The retailer offers five overlapping
time slots of 2-h width, and two time slots of 4 and 5 h width. Customers arrive
on a booking horizon of 9 days, and on average instances have ∼2000 customer
arrivals. Since some of our features are calculated based on the depot location,
but we do not know upfront which depot serves a customer area, we always use
the main depot for feature value calculations.

6 Computational Experiments

We use a simulation model that mimics customer behavior and integrates com-
mercial time slot allocation and vehicle routing services. The simulation model
is built in C# and maintained by the Math Innovation Team from the soft-
ware development company ORTEC. All cost approximation methods have been
trained using the Python Scikit-learn library [18] and are loaded in C# using
the ONNX standard artificial intelligence format [7]. The general event struc-
ture of the simulator follows the following events: (i) a customer arrives and
requests a time slot offering, (ii) a feasibility check for every time slot is done
using cheapest insertion and the feasible time slots are offered to the customer,
(iii) the customer chooses a time slot, (iv) the customer choice is recorded in the
system. A commercial VRP solver is called after every 20th customer arrival to
update the intermediate routing schedule, and after the final customer arrival to
obtain the final routing schedule. For a full description of the simulation model,
we refer to [5,23].

We report six different statistics: (i) the percentage of all customers that
could be planned and served, (ii) the average number of time slots that were fea-
sible to offer to a customer, (iii), the percentage of customers that were nudged
to a different time slot than their first preference, (iv) the average travel time
per customer in minutes, (v) the average waiting time per customer in minutes,
and (vi) the average travel distance per customer in kilometers. For both cases,
the travel time and the travel distance are calculated with the actual road net-
work costs, using the commercial VRP solver. Traffic congestion has not been
accounted when calculating travel times. Waiting time is reported because it is
an essential element of VRPTWs: potentially, driving times can be low, however,
early arrivals at customer locations result in drivers having to wait.
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In the remainder of this section, we first show the results for a synthetic
case study in Sect. 6.1, using generated instances based on real data. For these
instances, we alter problem attributes to test our approach in different settings.
Next, in Sect. 6.2, we use a real case from an European e-grocery retailer to
validate our approach in a realistic setting.

6.1 Results for the Synthetic Case

Table 3 summarizes the experimental results. First, we show results for the RC
type without time window restriction, that is, RC and RC-C, respectively. Next,
we add the time window restriction and show results for the case without a
time slot incentive policy. The results show that the addition of time slots, disre-
garding incentives, causes a significant decrease (19.9%) in the number of served
customers for the uncapacitated instance. For the capacitated instances, the dif-
ference in served customers is insignificant. However, for both the uncapacitated
and the capacitated instances, the addition of time slots causes a large increase in
travel time, waiting time, and travel distance, e.g., the travel distance increases
by 110.7% and 68.5% for the RC and RC-C instances, respectively.

Table 3. Simulation run statistics on the randomly clustered instances with a time
restriction (RC-T) or capacity restriction (RC-TC), using 5 replications.

Offer
strategy

Instance Planned
customers
(%)

Avg. no. of
feasible TS

Nudged
customers
(%)

Travel
time/
customer
(min.)

Waiting
time/
customer
(min.)

Distance/
customer
(km)

No time slots RC 100% N/A N/A 9.02 0.38 6.94
No time slots RC-C 66.7% N/A N/A 12.0 0.56 9.66
No incentive RC-T 80.1% 4.3 N/A 17.46 0.72 14.62
No incentive RC-TC 66.6% 3.8 N/A 21.74 3.31 16.28
IC RC-T Flex 84.9% 4.8 80.1% 15.70 0.65 13.15
RFR RC-T Flex 84.2% 4.8 78.4% 15.68 0.64 14.25
IC RC-TC Flex 65.9% 3.9 81.3% 21.81 1.81 15.36
RFR RC-TC Flex 66.6% 3.2 79.4% 24.78 1.01 15.37
IC RC-T 85.5% 4.7 58.2% 15.54 0.91 12.49
RFR RC-T 81.9% 4.0 66.5% 16.89 0.86 14.03
IC RC-TC 66.6% 3.9 58.6% 21.93 4.77 14.98
RFR RC-TC 66.7% 3.7 66.3% 22.78 4.81 15.96

When we add our incentive policy, either based on the insertion costs (IC)
or the random forests regression (RFR) model, we see that we can significantly
reduce operational costs and increase the number of served customers for the case
with infinitely flexible customers (Flex). For the uncapacitated case, we can plan
on average 4.5% more customers and decrease travel distance by 5.5%. For the
capacitated case, the incentive policy can reduce travel distance by 5.6%. The IC
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method most often outperforms the RFR method. Possibly this is caused by the
frequent updates of the vehicle routing plan (after every 20th customer arrival),
which makes IC more reliable. Finally, we show results for the case with more
realistic customer sensitivity, i.e., when time slot incentives do not always have
an effect. For most cases, this causes a drop in performance, although we are still
able to significantly reduce costs compared to the situation without incentives.

6.2 Results for the European E-grocery Retailer

Table 4 shows the results for the real case study of an European e-grocery retailer.
We observe from the “No time slots” experiment that we cannot plan more than
81.1% of the customers due to vehicle capacity restrictions. The addition of time
slots causes an increase in travel time and travel distance of 34.5% and 33.9%,
respectively. We observe that IC and RFR both can plan more customers when
nudging to infinitely flexible customers, compared to the situation without incen-
tives. IC saves 15.7% in travel time and 15.0% in distance per customer, com-
pared with the situation without incentives. RFR improves slightly less compared
with the situation without incentives; it saves 7.3% in travel time and 11.2% in
distance per customer. Comparing the situation without incentives with the best
performing incentive policy setting, we see 0.7% more planned customers, 6.2%
less travel time, and 5.3% less traveled distance per customer. Waiting times are
low, and the differences between waiting times are insignificant. Again, IC shows
somewhat better performance in most statistics, but RFR seems to be the more
“active” policy with more nudging.

Table 4. Simulation run statistics for the European e-grocery retailer case, using 2
replications.

Offer
strategy

Planned
customers
(%)

Avg. no. of
feasible TS

Nudged
customers
(%)

Travel
time/
customer
(min.)

Waiting
time/
customer
(min.)

Distance/
customer
(km)

No time slots 81.1% N/A N/A 4.18 0 2.53
No incentive 80.4% 5.6 N/A 5.62 0.03 3.39
IC (Flex) 81.1% 5.7 85.6% 4.74 0 2.88
RFR (Flex) 81.0% 5.6 86.8% 5.21 0.02 3.01
IC 80.5% 5.6 45.4% 5.25 0.02 3.15
RFR 81.0% 5.5 75.1% 5.84 0.08 3.96

7 Conclusions

We explored the possibilities for improving time slot solutions by approximating
the costs of adding a customer to a time slot, and subsequently, we studied the
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effects of dynamic pricing based on these cost approximations. To model cus-
tomer behavior without the need for a behavioral study, we developed a para-
metric rank-based customer choice model for which we can influence the ranking
of time slots by giving incentives or penalties. We developed a simple incentive
policy to test our customer choice model and time slot cost approximation. Our
solution approach for approximating the costs of time slots is centered around
the prediction of transportation costs using regression models. To improve pre-
diction and reduce noise, we aggregated customers in area-time slot combination
(ATC) clusters, after which we trained regression models to predict the travel
times to serve an ATC-cluster. We tested our proposed solution on two different
cases. First, we ran several experiments with a synthetic case, i.e., a case with
generated data using both a time-constrained variant and a capacity-constrained
variant. For the second case, we used data from an European e-grocery retailer.

When we compared the situation without time slots, i.e., customers can be
planned the whole day, with the situation with time slots, we saw a decrease
of the percentage of customers that can be served (∼20%), and a significant
increase in travel time, waiting time, and distance per customer. When giving
incentives, we can plan 6% more customers and decrease travel time, waiting time
and distance per customer by 11% compared to the situation without incentives.
Our random forests method often performed similar or slightly worse compared
to the insertion costs (IC) method. For the Europen e-grocery retailer case, IC
could save in travel times (−15.7%) and distance (−15.0%) per customer, while
planning slightly more customers compared to the case without incentives. Our
random forests method planned a similar number of customers, and saved 7.3%
in travel time and 11.2% in distance per customer, respectively.

Further research can be done on the aggregation structure used for aggre-
gating customers in spatial areas, e.g., using adaptive grids that automatically
identify customer clusters. Our rudimentary incentive policy could be improved
by improving the cost approximation, e.g., by considering more features or using
other supervised learning approaches, e.g., neural networks. The definition of
transportation costs is another interesting aspect that requires more research
since the half-edge partitioning method we used could be improved to consider
more than only travel time or distance. Although we studied the correlation
between customer time slots and costs, there is a lacking causality between giv-
ing incentives and total transportation costs. Hence, the dynamic nature and
complexity of the time slotting cause a disconnect between our time slot cost
approximation, time slot incentive policy and the final costs. Potentially, a (deep)
reinforcement learning model could be valuable for learning this implicit rela-
tionship.

Acknowledgements. This paper is based on the master thesis of Fabian Akkerman
supervised by Martijn Mes and Eduardo Lalla-Ruiz. We would like to thank Thomas
Visser of ORTEC for his advice and assistance during the graduation process.



Dynamic Time Slot Pricing Using Delivery Costs Approximations 229

References

1. Agatz, N., Campbell, A., Fleischmann, M., Nunen, J., Savelsbergh, M.: Revenue
management opportunities for internet retailers. J. Revenue Pricing Manage. 12,
128–138 (2013). https://doi.org/10.1057/rpm.2012.51

2. Agatz, N., Campbell, A.M., Fleischmann, M., Savelsbergh, M.: Challenges and
opportunities in attended home delivery. In: Golden, B., Raghavan, S., Wasil, E.
(eds.) The Vehicle Routing Problem: Latest Advances and New Challenges. Opera-
tions Research/Computer Science Interfaces, vol. 43, pp. 379–396. Springer, Boston
(2008). https://doi.org/10.1007/978-0-387-77778-8_17

3. Akamai: Akamai online retail performance report: milliseconds are critical (2017).
https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-
spring-2017-state-of-online-retail-performance-report.jsp

4. Akkerman, F., Mes, M.: Distance approximation to support customer selection in
vehicle routing problems. Ann. Oper. Res., April 2022. https://doi.org/10.1007/
s10479-022-04674-8

5. Akkerman, F.: Delivery cost approximations for dynamic time slot pricing, April
2021. http://essay.utwente.nl/86079/

6. Asdemir, K., Jacob, V.S., Krishnan, R.: Dynamic pricing of multiple home delivery
options. Eur. J. Oper. Res. 196(1), 246–257 (2009). https://doi.org/10.1016/j.ejor.
2008.03.005

7. Bai, J., Lu, F., Zhang, K., et al.: ONNX: Open neural network exchange (2019).
https://github.com/onnx/onnx

8. Belobaba, P.: Air travel demand and airline seat inventory management. Ph.D.
thesis, Massachusetts Institute of Technology, Cambridge (1987)

9. Campbell, A., Savelsbergh, M.: Incentive schemes for attended home delivery ser-
vices. Transp. Sci. 40, 327–341 (2006). https://doi.org/10.1287/trsc.1050.0136

10. Campbell, A.M., Savelsbergh, M.W.P.: Decision support for consumer direct gro-
cery initiatives. Transp. Sci. 39(3), 313–327 (2005). https://doi.org/10.1287/trsc.
1040.0105

11. Cleophas, C., Ehmke, J.: When are deliveries profitable? Bus. Inf. Syst. Eng. 6,
153–163 (2014)

12. Ehmke, J.F., Campbell, A.M.: Customer acceptance mechanisms for home deliv-
eries in metropolitan areas. Eur. J. Oper. Res. 233(1), 193–207 (2014). https://
doi.org/10.1016/j.ejor.2013.08.028

13. Klein, R., Mackert, J., Neugebauer, M., Steinhardt, C.: A model-based approx-
imation of opportunity cost for dynamic pricing in attended home delivery. OR
Spectr. 40(4), 969–996 (2017). https://doi.org/10.1007/s00291-017-0501-3

14. Klein, R., Neugebauer, M., Ratkovitch, D., Steinhardt, C.: Differentiated time slot
pricing under routing considerations in attended home delivery. Transp. Sci. 53(1),
236–255 (2019). https://doi.org/10.1287/trsc.2017.0738

15. Lee, T.C., Hersh, M.: A model for dynamic airline seat inventory control with
multiple seat bookings. Transp. Sci. 27(3), 252–265 (1993)

16. Nicola, D., Vetschera, R., Dragomir, A.: Total distance approximations for routing
solutions. Comput. Oper. Res. 102, 67–74 (2019)

17. ORTEC: Vehicle routing solutions. https://ortec.com/en/solutions/vehicle-
routing. Accessed 14 July 2022

18. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

https://doi.org/10.1057/rpm.2012.51
https://doi.org/10.1007/978-0-387-77778-8_17
https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://doi.org/10.1007/s10479-022-04674-8
https://doi.org/10.1007/s10479-022-04674-8
http://essay.utwente.nl/86079/
https://doi.org/10.1016/j.ejor.2008.03.005
https://doi.org/10.1016/j.ejor.2008.03.005
https://github.com/onnx/onnx
https://doi.org/10.1287/trsc.1050.0136
https://doi.org/10.1287/trsc.1040.0105
https://doi.org/10.1287/trsc.1040.0105
https://doi.org/10.1016/j.ejor.2013.08.028
https://doi.org/10.1016/j.ejor.2013.08.028
https://doi.org/10.1007/s00291-017-0501-3
https://doi.org/10.1287/trsc.2017.0738
https://ortec.com/en/solutions/vehicle-routing
https://ortec.com/en/solutions/vehicle-routing


230 F. Akkerman et al.

19. Robuste, F., Daganzo, C.F., Souleyrette, R.R.: Implementing vehicle routing mod-
els. Transp. Res. Part B Methodol. 24(4), 263–286 (1990)

20. Snoeck, A., Merchán, D., Winkenbach, M.: Revenue management in last-mile deliv-
ery: state-of-the-art and future research directions. Transp. Res. Procedia 46, 109–
116 (2020). https://doi.org/10.1016/j.trpro.2020.03.170. The 11th International
Conference on City Logistics, Dubrovnik, Croatia, 12–14 June 2019

21. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Oper. Res. 35(2), 254–265 (1987). https://doi.org/10.
1287/opre.35.2.254

22. Strauss, A.K., Klein, R., Steinhardt, C.: A review of choice-based revenue manage-
ment: theory and methods. Eur. J. Oper. Res. 271(2), 375–387 (2018). https://
doi.org/10.1016/j.ejor.2018.01.011

23. Visser, T., Agatz, N., Spliet, R.: Simultaneous customer interaction in online
booking systems for attended home delivery. Technical report, ERS-2019-011-LIS,
ERIM Report Series Research in Management, Erasmus Research Institute of Man-
agement, October 2019. http://hdl.handle.net/1765/120585

24. Yang, X., Strauss, A.: An approximate dynamic programming approach to
attended home delivery management. Eur. J. Oper. Res. 263, 935–945 (2017).
https://doi.org/10.1016/j.ejor.2017.06.034

25. Yang, X., Strauss, A.K., Currie, C.S.M., Eglese, R.: Choice-based demand man-
agement and vehicle routing in e-fulfillment. Transp. Sci. 50(2), 473–488 (2016).
https://doi.org/10.1287/trsc.2014.0549

26. Yrjölä, H.: Physical distribution considerations for electronic grocery shopping. Int.
J. Phys. Distrib. Logist. Manag. 31(10), 746–761 (2001)

https://doi.org/10.1016/j.trpro.2020.03.170
https://doi.org/10.1287/opre.35.2.254
https://doi.org/10.1287/opre.35.2.254
https://doi.org/10.1016/j.ejor.2018.01.011
https://doi.org/10.1016/j.ejor.2018.01.011
http://hdl.handle.net/1765/120585
https://doi.org/10.1016/j.ejor.2017.06.034
https://doi.org/10.1287/trsc.2014.0549


The Green Sequencing and Routing
Problem

Giacomo Lanza(B) , Mauro Passacantando , and Maria Grazia Scutellà
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Abstract. The paper deals with a sequencing and routing problem orig-
inated by a real-world application context. The problem consists in defin-
ing the best sequence of locations to visit within a warehouse for the
storage and/or retrieval of a given set of items during a specified time
horizon, by considering some specific requirements and operating policies
which are typical of the kind of warehouse under study. A fleet composed
of both electric (i.e., equipped with a lithium-ion battery) and conven-
tional (i.e., with internal combustion engine) forklifts is considered. We
model the problem in terms of constrained multicommodity flows on a
space-time network, and we extend a matheuristic approach proposed for
the case of only conventional vehicles. Preliminary computational results
are also presented.

Keywords: Green logistics · Warehouse management · Matheuristic

1 Introduction

Warehouses are an essential component of any supply chain. Warehousing con-
cerns receiving, storing, order picking, and shipping of goods. The large majority
of the warehouses (especially in Western Europe, according to [8]) are operated
pursuing the picker-to-parts principle, i.e., workers walk or drive through the
warehouse to perform either picking or put-away operations. The former con-
cern the movement of items from the storage locations towards the output point
of the warehouse to respond to a customer order, the latter instead concern the
movement of items from the input points of the warehouse towards the storage
area to store the items in the assigned storage locations. Picking and put-away
are recognized as the most labor and time consuming internal logistics processes,
and their careful and efficient planning plays a major role in improving produc-
tivity and decreasing the operational costs of a warehouse.

The problem addressing this issue is known in the literature as Sequencing
and Routing Problem (SRP). Precisely, the SRP has the scope of defining the
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most efficient sequence of operations to move items within the warehouse to per-
form order picking and put-away operations, by typically minimizing the total
material handling cost or travel efforts (measured either in time or distance trav-
eled by the workers), and respecting some additional and peculiar requirements
related to the application context [8].

Warehouses are also major contributors of greenhouse gas emissions in sup-
ply chains, especially raised by the use of diesel forklifts [3]. Consequently,
besides traditional operational and economic objectives, increasing attention is
now given by companies to usually overlooked aspects, such as sustainability
and environmental-friendly issues in warehouse management. The Green SRP
is thus emerging as a new topic of research. It is a variant of the classic SRP
where some electric vehicles perform operations within the warehouse. Although
the use of electric forklifts has been recognized as a way to both reduce long
term management costs [5] and improve healthiness for workers (e.g., reduced
noise, better local air quality), it contributes to increasing the problem complex-
ity since peculiar activities, such as the scheduling of recharging periods, as well
as the limited autonomy of the vehicles, need to be considered when planning
ordinary picking and put-away operations.

A very few contributions discussing SRPs with electric forklifts are available
in the literature, highlighting the novelty of the topic. In [7], picking and put-
away operations need to be planned by using a fleet of electric forklifts, whose
battery may be replaced once the state of charge is too low. A similar problem is
discussed in [2], where besides battery replacement also the recharging process of
the batteries is considered. Both problems are formulated as job-shop problems.

Recently, [6] addressed a SRP related to a large production site of an Italian
company. The SRP is characterized by some specific requirements, originated by
the layout design of the warehouse, and also by the particular kind of products
stocked, i.e., tissue products for sanitary and domestic use. Conventional vehi-
cles, i.e., with an internal combustion engine, are considered to perform picking
and put-away operations. In this paper, we investigate the green extension of the
above mentioned problem, where some of the vehicles are electric and equipped
with a lithium-ion battery. This technology is considered as the most promising
for the near future by the majority of literary sources, for its high efficiency
and long lifespan [1]. Indeed, it is also the technology adopted in the studied
warehouse.

The paper is organized as follows. The Green SRP is presented in Sect. 2. The
main features of the mathematical model proposed for its formulation and an
overview of the matheuristic approach used to solve it are described in Sects. 3
and 4, respectively. Section 5 presents some preliminary numerical results on
the Green SRP. Finally, Sect. 6 concludes the paper and identifies some future
research directions.
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2 The Green SRP

The addressed problem is defined in a warehouse characterized by two disjoint
areas. The first area is a transit zone connecting the input points of the ware-
house, where items wait to be stored, to the storage area. The second area
instead is the storage area, where storage locations are situated together with a
collection area where, according to the pick-and-sort policy followed, retrieved
items are gathered to establish order integrity before loading trucks. Items are
homogeneously stocked with respect to their type of product within the storage
locations, which have different capacities, depending on their location within the
warehouse. The input points and the collection area are capacitated as well.

During a specified time horizon, i.e., an eight hours work-shift, a number of
items of different product types require the transportation from the input points
to their preassigned storage locations and, at the same time, a certain number of
items need to be picked from their storage locations and transported to the collec-
tion area. We define these flows of items as incoming and outgoing, respectively.
Incoming items are available at a known availability date, while outgoing items
are required to reach the collection area before a known due date. The amount of
items to move and their product types are also known in advance.

The movements of items are performed by capacitated vehicles belonging to
two different types of fleets, defined in the following as F1 and F2. The routing
of the two fleets of vehicles is restricted to only one of the above described
disjoint areas of the warehouse. In particular, F1 can only travel in the transit
zone, thus moving incoming items from the input points towards collectors, i.e.,
capacitated zones located at the entrance of the storage area, whereas F2 can
only circulate within the storage area, thus moving both incoming items from
the collectors towards the assigned storage locations, and outgoing items from
the storage locations towards the collection area. Incoming items thus need to
follow a two-echelon movement towards their storage locations, using vehicles of
fleet F1 and F2 sequentially. In addition, the routing of the vehicles has to be
planned by considering:

i) anticipation of outgoing movements with respect to the planned due dates;
this is particularly relevant when a shift with a low demand is followed by a
shift with a high demand, thus items planned to leave the site in the second
shift may be moved towards the collection area already during the first one;

ii) a strict management policy for both picking and put-away operations pre-
scribing that, separately per product type, storage locations have to be emp-
tied/filled up one at a time following a given order of precedence, implying
that a new storage location may be utilized for picking/storing only if the
previous one in the considered order is already completely empty/full;

iii) safety requirements for workers.

We refer to [6] for a more detailed and comprehensive description of the
features above. Here we consider the case where a subset of the vehicles of
type F2 are electric and equipped with a lithium-ion battery. The battery is
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discharged when vehicles move or lift items from the ground, and its state of
charge needs to be maintained within a given range to ensure a long lifetime to
the battery. As opposed to traditional lead-acid batteries needing full recharging
operations, a lithium-ion battery may benefit from partial recharging, which may
occur during even short break times between operations at the available charging
station. Thus, besides planning the routing of the vehicles in order to move
inbound items (from the input points towards the preassigned storage locations)
and outbound items (from storage locations towards the collection area), battery
charging operations need to be scheduled as well. As in [6], the primary aim is
to minimize the travel time of all the vehicles within the warehouse.

3 Mathematical Formulation

The problem is formulated in terms of constrained multicommodity flows on a
space-time network, and a Mixed Integer Linear Programming (MILP) model
based on this formulation is proposed.

Let K be the set of the product types, or commodities, requiring movement in
a given time horizon. It is composed of the subset of the incoming commodities
Kin and the subset of the outgoing commodities Kout. Let V1 and V2 be the
sets of vehicles of type F1 and F2, respectively, in charge of moving commodities
inside the warehouse. Moreover, let VE ⊆ V2 denote the subset of the electric
vehicles of type F2.

Let GP = (N P ,AP ) be the directed graph representing the physical network
on which vehicles operate. The set of nodes N P includes:

– the set Sk
in of the storage locations preassigned to the product types in Kin,

and the set Sk
out of the storage locations occupied by items of product types

in Kout at the beginning of the time horizon;
– the parking areas for vehicles of type F1 and F2, denoted by ω1 and ω2,

respectively;
– the set R of the input points (within the transit zone);
– the set B of the collectors;
– the output point (or collection area) π;
– the available charging station c.

The set of arcs AP represents direct connections between pairs of distinct loca-
tions of the warehouse. The dynamics of the problem are modelled through a
space-time network G = (N ,A). The time horizon is discretized into T time peri-
ods of equal length through T + 1 time instants. The set N P is then replicated
T + 1 times, resulting in set N . A node in N is defined by a couple (i, t), with
i ∈ N P and t ∈ {0, . . . , T}, and represents one of the locations of the warehouse
at one of the considered T +1 time instants. The set of arcs A is composed of two
subsets: the subset of holding arcs AH , including arcs of type ((i, t), (i, t + 1)),
for any i ∈ N P and t ∈ {0, . . . , T − 1}, used to model idle time of items or
vehicles in a given node for one time period, and the subset of moving arcs AM ,
including arcs of type ((i, t), (j, t′)) with (i, j) ∈ AP , t ∈ {0, . . . , T − τi,j} and
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t′ = t + τi,j , where τi,j denotes the travel time from i to j in the directed graph
GP . The travel time τi,j is determined by considering the allowed speed of the
vehicles and by assuming that vehicles always follow a shortest path from i to j
along the network. The subset of arcs AM is thus used to model movements of
items or vehicles between two different locations in different time periods.

Several parameters are introduced to describe the features of vehicles and
incoming and outgoing commodities. We refer to [6] for a complete description.
We introduce here only those related to the energy consumption model for the
battery.

Let eij be the battery energy consumed by an electric vehicle in VE to move
empty along (i, j) ∈ AP , while eijk be the additional battery energy consumed
by the vehicle, per unit of load, to move along (i, j) ∈ AP if it is loaded with
items of product type k ∈ K. Moreover, let ek be the energy consumed by a
vehicle to lift one unit of product type k ∈ K. This operation is necessary only
at certain nodes of N P , i.e., nodes in Sk

in ∪ Sk
out ∪ B. Furthermore, let er denote

the increase of the battery energy, for one period of time, if the vehicle recharges
at the charging station. These parameters have been calculated according to
the comprehensive energy consumption model described in [4], which takes into
account speed, acceleration, deceleration, load cargo and gradients. Finally, let
[B−, B+] define the range in which the charge of the battery should always be
maintained, while ψv

0 ∈ [B−, B+] be the charge that vehicle v ∈ VE has at
the beginning of the time horizon. Regarding the battery, Θ ∈ [B−, B+] will
denote the minimum charge required for each electric vehicle at the end of the
time horizon. Parameter Θ has been introduced to ensure enough charge at the
beginning of the next time horizon, to perform basic operations such as traveling
to the charging station.

Now, let us introduce the main families of variables used to formulate the
addressed Green SRP. The following four families of variables model the routing
of vehicles and commodities along the network. In the variable definition, AF1,
AF2, Ain and Aout denote the subsets of arcs of the network where vehicles of
type F1, vehicles of type F2, incoming commodities and outcoming commodities
are permitted to move, respectively:

– xv
(i,t)(j,t′) ∈ {0, 1}, for any v ∈ V1 and ((i, t), (j, t′)) ∈ AF1, indicates whether

vehicle v passes on the arc ((i, t), (j, t′)) or not;
– xv

(i,t)(j,t′) ∈ {0, 1}, for any v ∈ V2 and ((i, t), (j, t′)) ∈ AF2, indicates whether
vehicle v passes on the arc ((i, t), (j, t′)) or not;

– yk
(i,t)(j,t′) ∈ Z+, for any k ∈ Kin and ((i, t), (j, t′)) ∈ Ain, indicates the number

of items of product type k passing on the arc ((i, t), (j, t′));
– yk

(i,t)(j,t′) ∈ Z+, for any k ∈ Kout and ((i, t), (j, t′)) ∈ Aout, indicates the
number of items of product type k passing on the arc ((i, t), (j, t′)).

Moreover, we define:

– ψv
t ∈ R+, for any v ∈ VE and t ∈ {1, . . . , T}, which indicates the state of

charge of the battery of the electric vehicle v at time t.
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The objective function of the MILP model is defined as follows:

min
∑

v∈V1

∑

((i,t),(j,t′))∈AF1:

i�=ω1, j �=ω1

τi,j xv
(i,t)(j,t′) +

∑

v∈V2

∑

((i,t),(j,t′))∈AF2:

i�=ω2, j �=ω2

τi,j xv
(i,t)(j,t′)

+ψ
∑

k∈Kin

∑

((i,t),(j,t′))∈Ain:
i, j∈R

yk
(i,t)(j,t′) + ξ

∑

k∈Kout

P k.

(1)

It is composed of four parts. The first two summations define the primary opti-
mization goal, i.e., minimizing the travel time of all the vehicles within the
warehouse. Notice that arcs entering or leaving the parking areas are not consid-
ered for both vehicle types to encourage vehicles to come back to their parking
areas when idle, so limiting congestion situations along the network. The third
and fourth summations define soft objectives. In particular, the third summation
relates to the time of permanence of the items on the input points, so as to favor
the movements of items towards other spots of the warehouse. The fourth relates
to the anticipation movements to perform. The latter summations are weighted
through parameters ψ and ξ, respectively, to state their mutual priorities. Being
N −(π, t′) the set of nodes linked to π ∈ N P via an entering arc, the terms P k

are defined as follows:

P k = max

⎧
⎨

⎩0,

T̃∑

t=0

dk
out(π, t) −

⎡

⎣uk
π +

T∑

t=0

∑

(j,t)∈N −(π,t′)

yk
(j,t)(π,t′)

⎤

⎦

⎫
⎬

⎭ (2)

for any k ∈ Kout. The rationale of this penalty is to compare the amount of
items of type k at the beginning of the time horizon, i.e., uk

π, plus the items of
type k transported to the collection area π during the considered time horizon,
given by the last two addendum of (2), with the overall demand of k from
the time instant t = 0 to an extended time instant T̃ > T , given by the first
addendum of (2). Input parameter T̃ relates to the future time periods addressed
for the anticipation moves, while dk

out(π, t) denotes the number of items of type
k which are requested in the collection area at the latest time t. The penalty is
equal to 0 if, during the considered time horizon, an amount of items of type
k enough to satisfy both the demand of k in the time horizon and also in the
extended one, is moved to the collection area. Otherwise, the penalty to be paid
is set proportionally to the amount of future demand that cannot be moved in
advance.

Several constraints need to be defined to formulate the MILP model, such
as flow conservation constraints for incoming and outgoing product types as
well as for vehicles, to ensure their correct moving and routing within the ware-
house, linking capacity constraints for vehicles and incoming and outgoing flows,
demand constraints to ensure the respect of due dates for outgoing product types,
location capacity constraints, constraints ensuring the correct application of the
management policy in the warehouse, and finally constraints ensuring the secu-
rity requirements for workers. The latter, in particular, impose that at most
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one vehicle can be present in any arc of the space-time network, except for the
holding arcs representing dwell time at the parking areas.

For the sake of brevity, we do not report the above mentioned constraints,
which can be found in [6]. On the other hand, we present below those con-
straints which regulate the energy behavior of the electric vehicles, since they
are peculiar to the Green SRP. In such constraints, M is an input parameter
defined as M = B+ − B−. Moreover, Lj is a parameter which assumes value 1
if j ∈ Sk

in ∪ Sk
out ∪ B, and 0 otherwise. The constraints are defined as follows:

ψv
t′ ≤ ψv

t − eijxv
(i,t)(j,t′) −

∑

k∈K
eijkyk

(i,t)(j,t′) − Lj

∑

k∈K
ekyk

(i,t)(j,t′)

+M
[
1 − xv

(i,t)(j,t′)

]
∀ v ∈ VE , ∀ ((i, t)(j, t′)) ∈ AF2 : i �= j,

(3)

ψv
t′ ≥ ψv

t − eijxv
(i,t)(j,t′) −

∑

k∈K
eijkyk

(i,t)(j,t′) − Lj

∑

k∈K
ekyk

(i,t)(j,t′)

−M
[
1 − xv

(i,t)(j,t′)

]
∀ v ∈ VE , ∀ ((i, t)(j, t′)) ∈ AF2 : i �= j,

(4)

ψv
t+1 ≤ ψv

t + erxv
(c,t)(c,t+1)

+M
[
1 − xv

(c,t)(c,t+1)

]
∀ v ∈ VE , ∀ ((c, t)(c, t + 1)) ∈ AF2,

(5)

ψv
t+1 ≥ ψv

t + erxv
(c,t)(c,t+1)

−M
[
1 − xv

(c,t)(c,t+1)

]
∀ v ∈ VE , ∀ ((c, t)(c, t + 1)) ∈ AF2,

(6)

ψv
t+1 ≤ ψv

t + M
[
1 − xv

(i,t)(i,t+1)

]

∀ v ∈ VE , ∀ ((i, t)(i, t + 1)) ∈ AF2 : i �= c,
(7)

ψv
t+1 ≥ ψv

t − M
[
1 − xv

(i,t)(i,t+1)

]

∀ v ∈ VE , ∀ ((i, t)(i, t + 1)) ∈ AF2 : i �= c,
(8)

B− ≤ ψv
t ≤ B+ ∀ v ∈ VE , ∀ t ≥ 0, (9)

ψv
T ≥ Θ ∀ v ∈ VE . (10)

Constraints (3)–(8) model the state of charge of the battery, which decreases if
the vehicle travels along a moving arc, increases if the vehicle idles on a holding
arc corresponding to the charging station, or remains constant if the vehicle idles
on any other location of the warehouse. Specifically, the discharge of the battery
is modelled by constraints (3)–(4). By recalling that a moving arc can be used
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by at most one vehicle, when a vehicle v travels along a moving arc ((i, t)(j, t′))
then constraints (3)–(4) imply

ψv
t′ = ψv

t − eij −
∑

k∈K
eijkyk

(i,t)(j,t′) − Lj

∑

k∈K
ekyk

(i,t)(j,t′),

thus defining the state of charge of the battery of the vehicle at the time instant
t′ as the state of charge of the battery of the vehicle at the time instant t minus
the energy necessary for the vehicle to move empty on the arc (the second term
in the equation), the additional energy used if the vehicle is loaded (the third
term in the equation) and the energy used to lift items at location j, if necessary
(the last term in the equation). If the arc is not travelled by the vehicle, then
constraints (3)–(4) are satisfied since weaker than constraints (9). The latter
define the lower and upper thresholds for the ideal operating conditions of the
battery. When the vehicle is at the charging station c, i.e., it is on a holding
arc of form ((c, t)(c, t + 1)), constraints (5)–(6) define the state of charge of
the battery at time instant t + 1 as the state of charge of the battery at the
time instant t plus the energy recharged during one time period at the charging
station. Constraints (7)–(8), instead, indicate that the state of charge of the
battery remains unchanged if the vehicle is idling on a location of the warehouse
other than c. Finally, constraints (10) impose that the state of charge of the
electric vehicles at the end of the time horizon is greater than or equal to the
minimum threshold Θ. This is to ensure that, at the beginning of the next shift,
their state of charge is enough to perform some basic operations rather than
being completely discharged.

4 Matheuristic Resolution Approach

In [6], a matheuristic approach based on a decomposition strategy has been
proposed for the conventional SRP since real size instances, such as those pro-
vided to us by our industrial partner, could not be directly addressed through
the state-of-the-art commercial solver CPLEX. The approach has shown a very
good performance, as detailed in [6].

Specifically, the original planning horizon is divided into Λ subperiods of
equal length. Each subperiod gives rise to a subproblem, whose features are
those of the original problem restricted to the considered subperiod. The Λ sub-
problems are then sequentially solved by using CPLEX in such a way that the
final state of the system obtained solving subproblem λ − 1 becomes the initial
state of the system when solving subproblem λ, for any λ = 2, . . . , Λ. In partic-
ular, the state of the system in each subproblem takes into account the position
of vehicles and items within the warehouse. Once the Λ subproblems have been
solved, in order to construct a solution for the original problem, and thus the
complete schedule for the entire time horizon, it is sufficient to concatenate the
Λ solutions in an increasing order with respect to the subperiod addressed, i.e.,
from subperiod 1 to subperiod Λ. The matheuristic approach is summarized in
Algorithm 1. We refer to [6] for a more detailed description.
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Algorithm 1. The matheuristic approach
1: Divide the time horizon into Λ subperiods
2: for λ = 1, . . . , Λ do
3: Solve the λ-th subproblem
4: end for
5: Concatenate the subproblem solutions from 1 to Λ

The matheuristic approach has been extended to deal with the green aspects
previously introduced. In particular, the initial state of the system in each sub-
problem takes into account, in addition to the position of vehicles and items
within the warehouse at the end of the previous subperiod, also the state of
charge of each battery. Specifically, for any λ = 2, . . . , Λ, the state of charge of
a vehicle, say v, at the initial time instant of subproblem λ, say 0λ, is defined
as ψv

0λ
= ψv

Tλ−1
, where ψv

Tλ−1
is the state of charge of the battery of vehicle v at

the final time instant of subproblem λ − 1, here denoted by Tλ−1.

5 Numerical Experiments

We present some preliminary results on the Green SRP by solving the set of
five artificial instances in the dataset used in [6], suitably generalized to the
green context. Generally, such instances turned out to be too difficult to address
directly with CPLEX, thus the matheuristic previously introduced has been used
to solve the Green SRP. Experiments have been performed by varying the num-
ber of the electric vehicles, by analysing both the efficiency of the matheuristic
approach in terms of percentage gap and solution time, and also investigating the
quality of the returned solutions in terms of some crucial performance indicators
suggested by our industrial partner.

The matheuristic has been implemented using the language OPL and solved
via CPLEX 12.6 (IBM ILOG, 2016) with a time limit of 3 h. The experiments
have been run on an Intel Xeon 5120 with 2.20 GHz and 32 GB of RAM.

5.1 The Reference Case Study

The instances refer to the production site of a company, leader in the tissue
sector, which works daily on three shifts of 8 h and produces more than 300
different types of products. Items are arranged in unit-loads and wrapped in
so-called columns of pallets. There are 3 input points with capacity 10, 14 and
8 columns, respectively, while the storage area has 858 storage locations, with
different capacities ranging from 8 to 17 columns. The number of collectors is
6, with capacities ranging from 2 to 8 columns. Finally, the collection area has
a capacity of 700 columns. The fleet of the company is composed of 5 LGV
shuttles, corresponding to vehicles of type F1, and 7 forklifts, corresponding to
vehicles of type F2, some of which are electric. Both types of vehicles, hereafter
LGV and FKL for short, may transport 2 columns at most at the same time.
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On average, during each 8 h shift, 320 columns of 9 product types need to be
moved from the input points towards their storage locations, while 1110 columns
of 28 product types need to be moved from their storage locations towards the
collection area. Regarding parameters B−, B+ and Θ, related to the state of
charge of the battery, they have been set to the 30%, the 80% and the 35%
of the total capacity of the battery, respectively. Parameters B− and B+ have
been set up in accordance with the features described in the user manual of the
specific electric FKL used by the industrial partner.

The Green SRP instances have been generated starting from the five artifi-
cial SRP instances in the dataset used in [6]. In turn, such five SRP instances
have been generated starting from a real dataset provided by the company, which
comprises a pool of selected 8 h shifts, by shortening the duration of a shift from 8
to 4 h, and reducing the number of product types and columns to move accord-
ingly. The main features of the Green SRP instances are reported in Table 1.
Specifically, the number of available storage locations is reported (column SL)
together with the number of the product types in Kin and in Kout (columns
Kin and Kout, respectively), and the corresponding number of items to move
(columns Cin and Cout, respectively).

Table 1. The Green SRP instances.

Instance Main features

SL Kin Kout Cin Cout

1 10 3 6 142 288

2 4 2 4 108 234

3 9 3 5 78 188

4 4 2 3 132 226

5 8 3 5 134 364

Average 6.6 2.2 4.2 90.8 117.2

5.2 Computational Results

In order to solve the Green SRP by means of the matheuristic approach, we split
the time horizon into four subshifts, thus obtaining subshifts of about 60 min. As
reported in [6], longer subshifts may lead to hardly solvable subproblems, while
shorter subshifts seem to negatively affect the quality of the solutions obtained.
The resolution of each subproblem has been performed via CPLEX by stopping
the execution as soon as an optimality gap less than 1% or, alternatively, a
time limit of 15 min were reached. Most subproblems, however, were solved to
optimality. Finally, parameters ψ and ξ in (1) have been set equal to 10, since
this combination proved to be very effective in [6].
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Each of the five Green SRP instances has been solved three times, by varying
the number of the electric vehicles. Specifically, 1, 2 and 3 electric FKL have been
considered (recall that the total number of FKL is 7). In the following, we refer to
the composition of the fleet of FKL as a pair of numbers in brackets of type (|VD| -
|VE |), where the first position indicates the number of traditional FKL used, while
the second position gives the number of the electric FLK. After some preliminary
tests, we considered three different settings for the initial state of the charge of
the electric vehicles, depending on their number. Specifically, if one electric FKL
is used, its initial state of charge is set to the half of the range [B−, B+]; if two
electric FKL are used, the range [B−, B+] is split into two parts of equal length,
and the initial state of charge of one vehicle is set to the half of the first range, while
the initial state of charge of the second vehicle is set to the half of the second range;
finally, if three electric FKL are used, then the range [B−, B+] is split into three
parts of equal length, and the initial state of charge of the vehicles is set to the
half of the first, of the second and of the third range, respectively.

For each instance, Table 2 reports the time, in seconds, required by the
matheuristic to find a solution to the Green SRP for each of the three fleet
compositions mentioned before (calculated as the sum of the times needed to
solve the subproblems). It also reports the percentage optimality gap, calculated
with respect to the optimal value found by CPLEX by solving the Green SRP
with only one electric FKL. This is the only variant of Green SRP that CPLEX
was able to solve to optimality, and the corresponding optimal values thus repre-
sent lower bounds for all the addressed variants. The times required to compute
such lower bounds are reported in column LB. Moreover, to perform a compar-
ison with the traditional SRP, the times required by the matheuristic to solve
SRP are reported in column (7-0), to emphasize that SRP is the special case of
Green SRP with 0 electric vehicles.

Table 2 shows that the Green SRP is more difficult to address than the tradi-
tional SRP. In the case of no electric vehicles, the average time required by the
matheuristic is in fact about 9 seconds, whereas when electric vehicles are present
the time increases a lot, especially in the case of 3 electric FKL. Notice that,

Table 2. Performance of the matheuristic for Green SRP.

Instance (|VD| - |VE |)
(7-0) (6-1) (5-2) (4-3) LB

Time Time Gap Time Gap Time Gap Time

1 10.91 757.73 10.65% 87.10 9.70% 1014.75 8.69% 4496.23

2 5.37 66.99 6.71% 365.52 6.38% 1063.37 7.69% 316.13

3 10.45 14.51 0.32% 106.54 3.09% 124.41 4.87% 1792.26

4 7.54 463.36 2.21% 111.95 20.64% 717.77 21.32% 699.05

5 13.35 1816.47 13.52% 2097.74 6.60% 2530.83 15.00% 4642.82

Avg. 9.53 623.81 6.68% 553.77 9.28% 1090.22 11.51% 2389.30
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Table 3. Features of solutions in terms of crucial performance indicators.

|(VD| - |VE |)
(7-0) (6-1) (5-2) (4-3)

LGV avg. travel time (min.) 75.84 76.56 76.16 76.16

FKL avg. travel time (min.) 122 122.51 122.80 123.03

Conventional FKL avg. travel time (min.) 122 122.20 125.84 117.10

Electric FKL avg. travel time (min.) - 124.4 115.2 130.93

Electric FKL avg. charging time (min.) - 10.4 4.6 6.5

Input point avg. idle time per item (min.) 0.127 0.129 0.123 0.131

% of saturation of collection area after 3 h 99.43% 99.43% 98.29% 99.43%

% of saturation of collection area after 4 h 99.43% 99.08% 98.23% 98.12%

as reported in [6], CPLEX was able to optimally solve the five SRP instances in
217 seconds on average, whereas the optimal solution of the Green SRP with just
one electric vehicle required about 2389 s seconds on average (see column LB).
Nevertheless, the matheuristic is still efficient, being able to find good solutions
for the Green SRP with an average optimality gap of about 7% in the case of 1
electric FKL, 9% in case of 2, and 11% in case of 3.

To better analyse the results in Table 2 as well as the quality of the computed
solutions, Table 3 reports some aggregated features of the solutions in terms of
crucial performance indicators suggested by our industrial partner.

Specifically, the primary goal is analysed in terms of the average time, in min-
utes, travelled by a LGV and by a FKL over the 5 instances. Disaggregated results
are also reported separately for conventional and electric vehicles (averages are
calculated over the corresponding number of conventional and electric vehicles
used). Moreover, we report the average charging time of the electric vehicles,
always in minutes. The secondary goals, i.e., emptying the input points and antici-
pation moves, are evaluated by considering the average time, in minutes, an incom-
ing item idles on an input point before been moved to an available collector, and
the percentage of saturation of the collection area both 60 min before the end of
the planning horizon (% of saturation of collection area after 3 h) and also at the
end of the planning horizon (% of saturation of collection area after 4 h).

The average time travelled by a FKL (conventional and electric) is almost the
same for both the traditional and the Green SRP. However, the number of electric
vehicles used strongly influences the usage of the fleet of FKL. This is especially
remarkable in the case of 2 electric FKL, where just a few operations are com-
mitted to the electric vehicles, whereas more operations are instead performed
by conventional vehicles. On the other hand, in the case of 3 electric vehicles, i.e.,
when almost half of the fleet of FKL is electric, then electric vehicles travel more
on average. Interestingly, the average charging time of the battery is greater in
the case of a single electric vehicle, probably because, in the absence of con-
flicts with other electric vehicles towards the unique charging station, it tends
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to recharge more frequently. The LGV travel time, instead, slightly increases
with respect to SRP. This may be explained as an additional way to prevent the
discharge of the batteries of the electric FKL, as the majority of the routes from
the input points towards the assigned storage locations is built in such a way to
favor short trips on-board of electric FKL and longer trips on-board of LGV.

Regarding the secondary goals, being electric FKL not always available, this
slightly slows down the rate of the anticipation moves to be performed with
respect to SRP. Except for the case in which 2 electric FKL are used, after 3 h
of operations the collection area seems not to be affected by the composition
of the fleet of FKL (see the row % of saturation of collection area after 3 h
and compare with SRP). However, the % of saturation of the collection area
after 4 h highlights a lower readiness of the fleets including electric vehicles to
promptly respond with replenishment operations when some new space is made
available in the collection area. Similarly, the average idle time of incoming
items on the input points generally increases with respect to the traditional
SRP. Notice that the different impact of the number of electric vehicles on the
primary and secondary goals may explain the reduction of time and/or gap
sometimes observed in Table 2 when the number of the electric vehicles increases
(like instance 1 in the case of one and two electric vehicles).

6 Conclusions

The Green SRP has been proposed and studied, where some of the vehicles of the
fleet performing operations within the warehouse are electric. A pool of instances
has been solved with a time decomposition matheuristic, which extends the
one originally built for the traditional SRP. The experimental results, although
preliminary, highlight the greater computational complexity of the Green SRP
compared to SRP, and the good performance of the resolution approach in terms
of efficiency and quality of the returned solutions. Future research will investigate
additional scenarios in terms of number of electric vehicles used, also proposing
alternative Green SRP resolution approaches.
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Abstract. Basing on the operations of an Italian company, we model
and solve a long-haul day-ahead transportation planning problem com-
bining a number of features. Namely, we account for driver hours of ser-
vice regulations, time-dependent travel times, time-dependent fuel con-
sumption and refueling deviations. The latter stems from the fact that
we consider non homogeneous fuel prices at refueling stations. Consider-
ing a given origin and destination along with the mentioned features, we
propose a mixed integer linear programming (MILP) model that deter-
mines the minimum refueling cost route. These costs are established by
modeling the time-dependent fuel consumption of the truck, accounting
for different travel speeds due to recurrent traffic congestion. Given the
challenge in solving the problem, we propose a heuristic algorithm to
handle it efficiently. We test our model and algorithm on 42 realistic
instances accounting for road network distances. Our result show that
our heuristic produces high quality results within competitive run times.

Keywords: Long-haul trucks · Truck scheduling problem ·
Time-dependency · Refueling deviations · Hours of service regulations

1 Introduction

Long-haul truck transportation is a fundamental activity for goods transporta-
tion. In this context, the efficient planning of long-haul trips is complex due to
several factors. First, the driver hours of service (HoS) regulations need to be
respected. These govern the break times of drivers to guarantee road safety and
adequate working conditions (e.g., Goel [14]). Second, traffic conditions, may
greatly influence the speed of vehicles and thus lead to time-dependent travel
times. Third, such variable speeds have a direct impact on the vehicle fuel con-
sumption. Lastly, an even equally important aspect relates to refueling cost. In
particular, the fuel cost may greatly differ from one refueling station to another.
In particular, fuel prices are typically higher at stations along highways, when
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compared to stations located in rural or urban areas. Such differences, may imply
that by deviating from the shortest path one may capitalize on competitive fuel
prices.

We thus consider the optimization problem related to long-haul trip planning,
accounting for the four previously mentioned factors. Moreover, inspired by a
real-world case study in Italy, we consider the setting where a transportation
company has contractual arrangements with a number of fuel companies. These
entail significant discounts, and effectively restrict the choice of fuel stations to
a limited subset of stations. In Italy, fuel prices are established at the beginning
of the day by the Italian Ministry of Transport [17], and do not change during
the day. Therefore, we study the day-ahead planing problem, where fuel prices
do not change during the day and the daily fuel prices are discounted based on
contractual agreements. Moreover, we consider the drivers to be employees paid
by a fixed salary, thus we do not take into account for drivers cost.

The scientific aim of the paper is to model and solve the long-haul day-
ahead truck transportation planning problem with refueling deviations and time-
dependent travel time (LHFT). We consider a vehicle that must travel from
an origin O to a destination D. The objective is to determine the minimum
refueling cost route from O to D, while respecting the HoS regulations and
necessary refueling stops. The set of considered fueling stations is limited to the
set of contracted ones. These include stations along highways, in rural areas as
well as in urban areas. Figure 1 shows an example on how the fuel stations are
distributed on the route Milano-Catanzaro. There are 34 contracted stations, as
shown in panel (a). Panel (b) shows the shortest path in time with a duration of
11 h and 13 min and a total cost of 94 euros. Panel (c) shows minimum refueling
cost path with a duration of 11 h and 50 min and a total cost of 83 euros.

Fig. 1. Milano-Catanzaro: shortest path and minimum refueling cost path example

With respect to the existing literature, one of the main distinctive features of
LHFT lies in accounting for time-dependent speeds throughout the day. Specif-
ically, to account for realistic reoccurring traffic conditions, we identify specific
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hour intervals when congestion may intensify. These are estimated a priori and
given as input to the problem. Consequently, the velocity of the vehicle changes
according to the time of the day and the intervals defined and the time-dependent
speeds lead to time-dependent travel times. The left panels of Fig. 2 show, for
a given distance, how a time-dependent speed profile translates into a time-
dependent travel time profile (modeling details of this feature are provided in
Sect. 3). Furthermore, we consider the influence of time-dependent speeds on
the vehicle fuel consumption. Therefore, contrary to what is typically assumed
in the literature, fuel consumption is not fixed during the day, but it is depen-
dent upon the predicted traffic conditions at each moment of the day. As such,
the LHFT provides a more realistic modeling of fuel consumption, which is then
used to find the minimum refueling cost path. The right panel of Fig. 2 provides
an example of the resulting optimal solutions of LHFT, depending on different
departure times.

We first propose a mixed integer linear programming (MILP) model for the
LHFT. We note that the complexity of our problem stems from the fact of having
two resources, i.e., fuel and time. This complexity is augmented by having time-
dependent travel times and time-dependent fuel consumption. These imply that
the resource consumption between two nodes depends on the departure time
from the first node. Given the considered case study, our overarching goal was
to provide a usable decision support tool for the LHFT. Therefore, the run time
required for such a tool included all the data preprocessing necessary for its
input. This encompasses retrieving shortest paths between all relevant nodes, as
well as computing the time-dependent travel times and fuel consumption profiles
for each considered arc. The overall runtime of the MILP with the preprocessing
time of its input proved to be impractical. Therefore, we propose a heuristic
algorithm for the LHFT, which considerably reduces the optimization runtimes.

Fig. 2. Time-dependent travel times and optimal LHFT path examples

The main contributions of this paper are as follows. (I) We propose a MILP
model for the LHFT that determines the minimum refueling cost path, consid-
ering HOS regulations and refueling stops, while accounting for time-dependent
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travel times and fuel consumption. (II) we propose a computationally efficient
heuristic algorithm for the LHFT, and (III) we demonstrate the effectiveness of
the proposed model and heuristic on a set of realistic instances.

The remainder of this paper is organized as follows. Section 2 provides a brief
overview of the relevant literature. In Sect. 3 we describe the proposed model and
the heuristic algorithm. In Sect. 4 we discuss the computational results. Finally,
in Sect. 5 we present concluding remarks.

2 Literature Review

In this section we discuss the main contributions related to the long-haul day-
ahead truck transportation planning problem with refueling deviations and time-
dependent travel time. We classify the literature based on the main modelling
features of the treated problems.

Incorporating road network distances has been receiving attention in recent
vehicle routing literature (e.g., Ben Ticha et al. [5,6]). Such approaches rely on
the so-called customer-based graph, where a node represents a depot, customer,
rest station etc. In such cases the shorted path between each pair of nodes is
derived from a geographic information system (GIS), and used as input for the
optimization problem. We adopt this feature in our study.

Optimizing long-haul trips for an origin and a destination considering the
Hours of Service (HoS), but without refueling considerations, has received much
attention in the literature. The issue was first addressed by Xu et al. [24] under
the title of the truck driver scheduling problem (TDSP). Archetti and Salvels-
bergh [1] concentrated finding feasible schedules. Their polynomial algorithm was
efficiently modified by Goel and Kok [12] considering the USA HoS regulations.
Other countries’ HoS regulations were also studied, e.g., Goel and Rousseau [13].
The TDSP was expanded to Vehicle Routing Truck Driver Scheduling Problem
(VRTDSP) (e.g., Rancourt et al. [20] and Goel and Irnich [11]). In this problem
a given set of customer nodes are to be visited while accounting for HoS regu-
lation. We note that these studies do not take into account for distances on a
road network and consider a routing problem rather than a single trip problem.

The role of fuel prices, excluding HoS regulations, has been investigated by
several authors, but mostly, again, in the case of routing problems. Bousonville et
al. [8] consider the vehicle routing problem with time windows including refueling
decisions. Suzuki [22] proposes a heuristic algorithm that extends the traveling
salesman problem with time windows to include refueling considerations. Suzuki
and Dai [23] consider the bi-objective variable route vehicle refueling problem,
accounting for minimizing fuel costs and vehicle mileage. Neves-Moreira et al.
[19] study a multi-period vehicle routing problem with the possibility to perform
detours to reach refueling stations with lower prices.

Bernhardt et al. [7] study the truck driver scheduling problem with HoS rest
periods, breaks and vehicle refueling. In particular, given a route and a set of
refueling stations with different fuel prices, the decisions relate to determining
when to visit customers, which refueling stations to visit, refueling amounts and
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driver activities at stop locations. The resulting problem is modeled as a MILP.
Mor et al. [18] study a similar problem considering a non restricted set of fuel
stations. In particular, relevant fuel stations are considered incrementally using
a construction algorithm.

The studies cited this far address the problems using time-invariant data. In
several practical applications, this is a simplifying assumption, given the presence
of time varying travel times. These lead to time-dependent routing problems,
which amount to designing routes in a graph where the travel times vary over
the planning horizon (see Gendreau et al. [10] for a comprehensive review).
Time-dependent travel times stem from time-dependent speeds which greatly
influence fuel consumption. Bektas and Laporte [4] inspect the impact of the
vehicle speed on its fuel consumption, while Koç et al. [16] extend this aspect to
a heterogeneous vehicle fleet, with three classes of vehicles.

Our work is closely related to that of Bernhardt et al. [7], where the truck
driver scheduling problem with rest periods, breaks and vehicle refueling stops
is considered. In addition, we consider realistic road networks, and incorporate
time-dependent travel times and time-dependent fuel consumption. Furthermore,
we propose an effective heuristic algorithm to tackle the resulting problem.

3 Methodology

In Sect. 3.1 we describe a MILP formulation for the LHFT. In Sect. 3.2 we present
a heuristic algorithm for the LHFT.

3.1 Model

Given an origin O and a destination D, let F be the set of refueling stations
where also resting is allowed. We topologically ordered the elements in F with
respect to the distance from the origin. Let N = {F ∪ O ∪ D} be the set of all
the nodes considered, while A is the set of arcs connecting each pair of nodes in
N .

We consider the European HoS regulations [9]. According to these regula-
tions, truck drivers have to take a break of p1 = 0.75 hours every 4.5 h. This
break can be divided into two short breaks of 15 and 30 min, but both of them
must be taken within the 4.5 driving hours. Moreover, a driver may drive for at
most p2 = 9 hours in a day, after which it is necessary to rest for at least 11 h.
Therefore, we define set K = {1, 2, 3, 4} to represent the four possible break
types. The European Union provides further regulations for truck drivers’ driv-
ing hours, that go beyond the daily planning. The amount of weekly driving time
needs to be limited to 56 h, while the maximum total accumulated driving time
during any two consecutive weeks is 90 h. Furthermore, every driver must respect
a regular weekly rest period of minimum 45 h and a reduced weekly rest period
of a minimum of 24 h [9]. Since our problem deals with single day planning, we
decided not to include these further regulations in our model. The maximum
fuel capacity of the vehicle is E, while we do not allow the fuel to be lower than
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e. The starting fuel at the origin is given and denoted by SF . For each refueling
station i ∈ F the fuel price ci is given, and refueling time is PT . This is excluded
from the required break time, thus if a break and refueling were to take place
at the same station, they are done in separation. Every break of type k ∈ K
has a duration of bk expressed in hours (with b1 = 0.25, b2 = 0.5, b3 = 0.75 and
b4 = 11). ST is the starting time from the origin. To avoid frequent refueling
stops we limit the total route duration to Tmax.

We use Eq. (1) based from Barth et al. [2], Scora and Barth [21], and Barth
and Boriboonsomsin [3] to estimate fuel consumption of each arc at a given time
instant. The parameters of the equation, were taken from the Light Duty vehicle
model of Koç et al. [16]. We note that the only parameter we adapted to our
study is the vehicle speed v, which varies during the day.

Fh = λ(khNhV hd/v + Mhγhαd + βhγhdv2) (1)

Similar to Fig. 2 we consider a set of h ∈ {0, .., 9} time intervals to model
the time-dependent travel times and the time-dependent fuel consumption. For
each arc (i, j) ∈ A, we consider Th

ij intervals with h ∈ {1, .., 9}: each interval
is characterized by inclination mh

1ij and an intercept qh1ij between h − 1 and h.
Similarly, the time-dependent fuel consumption is mapped with inclination mh

2ij

and an intercept qh2ij between h − 1 and h for h ∈ {1, ..., 9} and for each arc
(i, j) ∈ A. We note that all needed calculations are done a priori considering
a time-dependent speed function, which is then imposed on the shortest path
distances between each pair of nodes on a road network.

Variable wi indicates the amount of fuel purchased at fuel station i. Binary
variable xij takes value one if arc (i, j) ∈ A is selected, and zero otherwise.
Variables tij and fij take the value of the travel time along the arc and the fuel
consumption if arc (i, j) ∈ A is selected, respectively. Variable τij is the arrival
time at j ∈ N from O, if (i, j) ∈ A is traversed, while variable sij represents the
available amount of fuel upon arrival at j ∈ N when arc (i, j) ∈ A is traversed.
For i ∈ F , binary variable yk

i takes the value of one if a break of type k ∈ K
is made at i, and zero otherwise. For i ∈ F , binary variable zi takes the value
of one if a refueling is made at i, and zero otherwise. For i ∈ N variables ri
represents the arrival time at i, while ri represents the departure time from i.
Finally, variables rhij and uh

ij regulate the time-dependent travel time function
and the time-dependent fuel consumption function for arc (i, j) ∈ A. Model
LHFT-M is a MILP formulation for our problem.
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The objective function (2) minimizes the total refueling costs. Constraints
(3)–(4) ensure path connectivity, while constraints (5)–(6) link the node variables
with the arc variables. Constraints (7) update the travel time of each traversed
arc. Constraints (8)–(11) keep track of the travel time. Specifically, constraints
(8) determine the arrival time at each node, while constraints (9)–(11) determine
the departure time after having refuelled, taken a break, or refuelled and taken
a break, respectively. Constraints (12)–(14) regulate the breaks according to
the EU directives. Specifically, constraints (13) regulate the short breaks, taken
at most every 4.5 h, while constraints (14) regulate the long breaks taken at
most every 9 h. Constraint (15) regulates the maximum travel time of the whole
route. Constraint (16) calculate the available fuel at j when arc (i, j) is traversed.
Constraints (17) establish the starting time and the starting fuel conditions of
the path. Constraints (18) guarantee that the minimum level of fuel is always
respected. Constraints (19)–(20) link the relevant variables. Finally, constraints
(21)–(25) regulate the functioning of the time-dependent travel time function,
and the fuel time-dependent consumption function.

3.2 Heuristic Algorithm

We aim at providing a usable decision support tool for the LHFT. Therefore,
the run time required for such a tool include all the data preprocessing necessary
for its input. This comprises extracting the shortest paths between all relevant
nodes via a GIS based application, e.g., GraphHopper, as well as computing
the time-dependent travel time and fuel consumption profiles for each consid-
ered arc. With these considerations, solving the previously described model is
time consuming (see Sect. 4.2 for computational details). We therefore chose to
develop an efficient heuristic algorithm, which would require computational run
times that are more aligned with the considered requirements. In designing the
heuristic, we opted for a simple structure which is easily replicable and demands
little preprocessing effort.

Due to confidentiality reasons, we cannot disclose the details of all tested
parameters. However, we note that the OD pairs in our case study necessitate
one or two refueling stops per day. Therefore, our heuristic algorithm is designed
to yield one or two refueling stops per day.

Our heuristic algorithm constructs the solution by a forward algorithm and
a backward algorithm. The pseudo-codes of these algorithms are shown in Algo-
rithms 1 and 2. Each algorithm produces a solution and we choose the best out
of the two as our heuristic solution. We now describe the forward algorithm. We
note that the backward algorithm uses the same mechanisms, as the forward
algorithm, but in the reverse direction.

The algorithm starts by considering the stations within 4.5 h from a starting
node, which is set to the origin, since a short break needs to be taken within
such a time span. All these nodes are placed in Nfuel. For each station in Nfuel

we compute an approximate cost. Specifically, the distance between the station
and O and the distance between the station and D are summed and we then
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calculate the total fuel costs entailed by the vehicle traversing that distance,
while accounting for the time-dependent speeds. We populate Nstops by the
subset of stations that are reachable from the starting node within a 4–4.5 h
range, since we observed that the LHFT-M usually sets breaks within this range
(this is illustrated in panel (a) of Fig. 3). We then select node k with the lowest
approximate costs out of Nstops, and store k in Nstopsfinal. We then iterate this
process by setting the starting node to node k.

Since Nstopsfinal may exclude some stations that are economically conve-
nient, we add the station with minimum approximate cost out of Nfuel to
Nstopsfinal, i.e., node q. This is illustrated in panel (b) of Fig. 3. We compute
the approximate total fuel consumption TC based on traversing the arcs that
connect the ordered set of nodes in Nstopsfinal, while accounting for the time-
dependent fuel consumption. We then examine if q is reachable from O, given
the starting fuel level. If it is reachable, we consider that refueling is done at
station q, otherwise we consider refueling first at the farthest possible to reach
station from the origin out of Nstopsfinal, and then refueling at q. Once the for-
ward procedure is finished, the backward procedure starts. It performs all the
steps done by the forward algorithm but starting from the destination, till the
origin. In the end, the solution with minimum costs between the two is chosen.

Fig. 3. Cheapest station recovery and insertion

4 Computational Experiments

In this section we present our computational experiments. In Sect. 4.1 we discuss
our experimental setting and we present in Sect. 4.2 the results obtained by the
computational experiments.

4.1 Experimental Setting

We retrieved distances and travel times between the considered nodes from
GraphHopper [15], since it allows choosing between different types of vehicles,
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Input: Fuel stations N
int � ← �travel time between origin and destination/4.5�;
SF ← �fuel in the tank�;
Starting node ← O;
Nfuel, Nstopsfinal ← [∅];
for i ≤ � do

Nstops ← [∅];
for j in N do

toj := travel time between Starting node and j;
if toj ≤ 4.5 then

Nfuel ← j;
Compute approximate cost of j;
if toj ≥ 4 then

Nstops ← j;
k ←node of minimum approximate cost out of Nstops;
Nstopsfinal←k;

end
end

end
Starting node ← k;
i++;

end
q ←node of minimum approximate cost out of Nfuel;
Nstopsfinal←q ;
Compute the total consumption ⇒ TC based on Nstopsfinal;
for each i in Nstopsfinal do

Compute fuel consumption between O and i ⇒ foi;
if foi > SF then

break
end
else

j ← i
end

end
if q ≤ j then

TotCosts= cq(TC-SF )
end
else

TotCosts= cj(foq- SF )+cq(TC- foq)
end

Algorithm 1: Pseudo-code of the forward algorithm

among which long-haul trucks were present. We was also used Graphhopper
to derive the time-dependent speed profile. To do so, we sampled speed data
along the main routes during different hours. From these data we constructed
the vehicle speed profile, that is used in the algorithm to determine the travel
time between two nodes, for each departure hour. The resulting speed profile is
described as follows: between 0:00 and 8:00 the speed is 90 km/h, between 8:00
and 10:00 the speed is 60 km/hr, between 10:00 and 16:00 the speed is 85 km/h,
between 16:00 and 20:00 the speed is 70 km/h, between 20:00 and 24:00 the speed
is 90 km/h. The fuel prices for the various stations were derived from the Italian
Ministry of Transport [17] in conjuncture with the contractual agreements of the
studied case.
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Input: Fuel stations N
int � ← �travel time between origin and destination/4.5�;
SF ← �fuel in the tank�;
Starting node ← D;
Nfuel, Nstopsfinal ← [∅];
for i ≤ � do

Nstops ← [∅];
for j in N do

tDj := travel time between Starting node and j;
if tDj ≤ 4.5 then

Nfuel ← j;
Compute approximate cost of j;
if tDj ≥ 4 then

Nstops ← j;
k ←node of minimum approximate cost out of Nstops;
Nstopsfinal←k;

end
end

end
Starting node ← k;
i++;

end
q ←node of minimum approximate cost out of Nfuel;
Compute the total consumption ⇒ TC based on Nstopsfinal;
for i in Nstopsfinal do

Compute fuel consumption between D and i ⇒ fDi;
if fDi > SF then

break
end
else

j ← i
end

end
if q ≥ j then

TotCosts= cq(TC-SF )
end
else

TotCosts= cj(fDq- SF )+cq(TC- fDq)
end

Algorithm 2: Pseudo-code of the backward algorithm

The computational experiments have been carried out on a single thread of a
computer having 4 cores and a processor Intel(R) Core(TM) i5-7200U @2.50 GHz
2.71 GHz with 8 GB. The model was solved with CPLEX 12.9.0, whereas the
heuristic algorithm was implemented in Python 3.7.

We considered 14 OD pairs, which included short, medium and long haul
routes. The main parameters related to these OD pairs are presented in Table 1.
Some of the routes were fully contained in Italy, whereas others included other
European countries. For each OD pair, we considered three possible starting fuel
levels: 100%, 75% and 50%. Thus a total of 42 instances are considered. We set
the minimum fuel level e to 20% of the full tank, while the parameter E is set
to the full tank, which is 1000 liters.

Table 1 describes the instances characteristics.
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Table 1. Description of the instances

ID Name km Stations

1 Torino-Reggio Calabria 1340 45

2 Torino-Taranto 1080 46

3 Trieste-Reggio Calabria 1346 32

4 Trieste-Taranto 1045 34

5 Graz-Roma 937 36

6 Wien-Roma 1121 41

7 Torino-Graz 808 80

8 Torino-Trieste 549 69

9 Torino-Roma 689 39

10 Trieste-Roma 673 26

11 Torino-Ancona 558 40

12 Wien-Padova 637 25

13 Tarvisio-Roma 737 32

14 Milano-Graz 682 71

4.2 Numerical Results

Table 2 summarizes the results obtained by CPLEX and by our heuristic on all
instances. The run times of CPLEX and of the heuristic include the Graphhopper
retrieval time of the distances and travel times for each arc, as well as the time-
dependency calculation for each arc.

The average CPLEX run time on all instances was more than seven time
longer than that of the heuristic. The heuristic produced high quality results,
with an average deviation of 2.8% from optimality. The worst case deviation is
8.8%. In more than 60% of the instances (26 out of 42) the heuristic obtained
results within a 3% of the optimal solutions. In instances 9–14, the computational
time is relatively low. This is due to the density of stations being lower in the
vicinity of where refueling and breaks actually occur. Finally, we note that due
to the daily time horizon, one refueling stop is made in most instances.
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Table 2. Results

ID Starting
fuel [%]

CPLEX Heuristic Run Time Costs [%]

Run time
[s]

Cost
[euro]

Fuel
[liters]

Run time
[s]

Cost
[euro]

Fuel
[liters]

CPLEX
Heur

Heur−CPLEX
Heur

1 100 644 145 105 180 149 105 3.6 2.7

1 75 670 180 130 177 185 130 3.8 2.7

1 50 639 214 155 180 220 155 3.6 2.8

2 100 1584 119 86 186 119 86 8.5 0.0

2 75 1674 154 111 134 154 111 12.5 0.0

2 50 1431 188 136 188 188 136 7.6 0.0

3 100 106 133 93 128 133 94 0.8 0.0

3 75 117 169 118 140 180 124 0.8 6.5

3 50 170 205 143 170 216 149 1.0 5.6

4 100 223 113 80 224 119 83 1.0 5.0

4 75 482 140 106 130 147 108 3.7 4.7

4 50 519 175 130 133 181 133 3.9 3.0

5 100 2022 142 101 310 146 105 7.0 2.8

5 75 766 177 126 313 181 130 2.4 2.0

5 50 1083 212 151 312 215 155 3.5 1.5

6 100 3896 156 105 206 158 102 18.9 1

6 75 3941 194 149 212 197 127 18.6 1.6

6 50 3167 231 174 213 235 152 20.0 2

7 100 4000 127 89 310 127 89 13.0 0.0

7 75 4567 166 116 308 166 116 14.8 0.0

7 50 4769 213 149 305 213 149 15.6 0.0

8 100 1153 57 41 204 59 43 5.6 4.1

8 75 1583 92 66 207 94 68 7.6 2.3

8 50 1429 126 91 290 138 97 5.0 8.8

9 100 32 59 53 10 63 55 3.2 6.0

9 75 28 101 91 11 107 91 2.5 5.0

9 50 27 128 115 11 134 117 2.4 5.6

10 100 15 47 32 12 48 35 1.2 2.0

10 75 18 84 57 18 84 60 1.0 0.3

10 50 13 120 84 13 121 85 1.0 0.5

11 100 50 32 23 28 32 25 1.8 3.9

11 75 56 65 48 27 69 53 2.0 5.5

11 50 43 99 73 26 101 78 1.7 2.0

12 100 83 90 65 10 96 67 8.3 7.0

12 75 82 125 90 14 132 92 5.8 5.8

12 50 93 169 107 15 177 124 6.2 5.0

13 100 38 79 55 16 80 54 2.4 1.3

13 75 45 115 80 19 117 79 2.4 1.8

13 50 59 169 117 18 170 116 3.3 0.9

14 100 388 49 33 14 49 33 28.0 0.0

14 75 412 90 63 10 93 63 42.0 3.8

14 50 415 126 88 20 129 90 20.0 2.7

Avg 1043 130 7.6 2.8
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5 Conclusions

We proposed a MILP model and a heuristic algorithm for the long-haul day-
ahead truck transportation planning problem with refueling deviations and time-
dependent travel time. The objective of this problem is to obtain a minimum
refueling cost path, while considering refueling stations with different prices,
HOS regulations, time-dependent travel times and time-dependent fuel.

Our study was inspired by the operations of an Italian company, and we
aimed at providing a usable decision support tool for the LHFT. Therefore, we
designed a heuristic that is easily replicable and requires little preprocessing
effort.

We have tested our model and heuristic on 42 instances. These include short,
medium and long haul travels both on Italian and European routes, at different
starting fuel levels. We have shown that the heuristic is considerably faster, when
compared to solving the LHFT-M model via CPLEX. Nevertheless, the heuristic
produced high quality solutions.

We believe that the heuristic algorithm may be instrumental in handling
other relevant routing problems. For example, one could impose the fuel limit
at the destination node to be equal to the starting fuel level (or any other
user specified value). By doing so, one would add a look-ahead feature that
facilitates multi-day planing. Furthermore, the proposed heuristic could be used
to periodically estimate the path costs in the context of dynamically changing
fuel prices throughout the day.

References

1. Archetti, C., Savelsbergh, M.: The trip scheduling problem. Transp. Sci. 43, 417–
431 (2009)

2. Barth, M., Younglove, T., Scora, G.: Development of a heavy-duty diesel modal
emissions and fuel consumption model. Technical report, UCB-ITS-PRR-2005-1,
University of California at Berkeley, Institute of transportation Studies (2005)

3. Barth, M., Boriboonsomsin, K.: Real-world CO2 impacts of traffic congestion
(2007)

4. Bektaş, T., Laporte, G.: The pollution-routing problem. Transp. Res. Part B
Methodol. 45, 1232–1250 (2011)

5. Ben Ticha, H., Absi, N., Feillet, D., Quilliot, A.: Vehicle routing problems with
road-network information: state of the art. Networks 72, 393–406 (2018)

6. Ben Ticha, H., Absi, N., Feillet, D., Quilliot, A., Van Woensel, T.: A branch-
and-price algorithm for the vehicle routing problem with time windows on a road
network. Networks 73, 401–417 (2019)

7. Bernhardt, A., Melo, T., Bousonville, T., Kopfer, H.: Truck driver scheduling with
combined planning of rest periods, breaks and vehicle refueling. Technical report,
Schriftenreihe Logistik der Fakultät für Wirtschaftswissenschaften der htw saar
(2017). http://hdl.handle.net/10419/175088

8. Bousonville, T., Hartmann, A., Melo, T., Kopfer, H.: Vehicle routing and refueling:
the impact of price variations on tour length. Herausforderungen, Chancen und
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Abstract. Logistics plays an important role in today’s last-mile econ-
omy. Therefore, companies constantly seek for improving their delivery
system towards more efficient and sustainable management of parcel dis-
tribution. In this paper, we study the Dynamic Drone Scheduling Deliv-
ery Problem. The objective is to minimize the delayed deliveries by a
fleet of drones located in a central drone station, taking into account the
uncertain arrival of parcels, soft time windows, and energy requirements.
We develop a Markov Decision Processes (MDP) formulation and solve
it approximately by implementing a value-based Reinforcement Learn-
ing (RL) approach. We compare our approach with several heuristic
dispatching policies and provide insights into the efficiency of our RL
algorithm when facing different delivery scenarios.

Keywords: Drone scheduling · Battery charging · UAV · Last mile ·
Reinforcement learning

1 Introduction

The last leg of the transportation chain (end-haul), also known as the last mile
[20], concerns delivery activities in highly urbanized city centers and controls the
reverse and forward flow of goods from producers to consumers. In this context,
the logistics sector is currently facing scenarios of unprecedented change with
developments in digitization, autonomous vehicles, urbanization, and increas-
ing customer demands. In particular, the rise of e-commerce has resulted in a
significant increase in delivery activities, which encompasses up to 30% of the
e-logistics costs [23]. To cope with these demanding tasks, companies have been
forced to develop more efficient and sustainable parcel distribution systems, to
improve their service’s quality, diminish greenhouse gas emissions, and reduce
operational costs [4].

The industrial sector and scholars have paid close attention to the advance-
ments in artificial intelligence and automation, placing a collaborative effort to
develop and include autonomous vehicles in last-mile operations. Consequently,
we see innovative delivery systems using non-traditional delivery vehicles, e.g.,
drones, cargo bikes, and autonomous robots, which provide several advantages
to deal with features such as traffic congestion, speed regulations, time windows,
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and so forth. In particular, recent advances in technology have increased the
popularity of autonomous drones in last-mile delivery. Nowadays, companies are
investigating the parallelization the delivery operations by deploying remotely
operated drones that help reduce transportation times and logistics costs (e.g.,
DHL1, Wings by Google2, and Air Prime by Amazon3). Autonomous drones have
also drawn the interest of the transportation research community, where schol-
ars have devoted their efforts to developing combinations of multiple modes of
transport that exploit drones’ advantages, i.e., avoidance of traffic congestion and
infrastructural issues, fast-flying speeds, mobility, and reduced costs [18]. As a
result, new research gaps have been identified, where drones can be employed in a
wide range of civil applications, for instance, transportation services, emergency
and disaster management, agriculture, and industrial warehouses [5]. Neverthe-
less, in these applications, the main challenge is to cope with the drone’s limita-
tions or requirements that might produce unfeasible solutions, e.g., concerning
battery life, maximum payload, no-flying zone restrictions, unsafe landing terri-
tory, vulnerability to difficult weather conditions, and mandatory signature for
receiving packages. For this reason, drones are mainly involved in applications
that require ground vehicles or trucks to support drones’ delivery operations, for
example, the Flying Sidekick Traveling Salesman Problem [10] and the Traveling
salesman Problem with Drone [17].

In this work, we study the Dynamic Drone Scheduling Delivery Problem (D-
DSDP), where the objective is to optimize the efficient dispatching of a drone
fleet from a station for parcel delivery, considering battery levels, time windows,
energy consumption, and uncertain parcel arrivals at a central drone station.
The main contributions of this work are as follows:

1. We introduce the Dynamic Drone Scheduling Delivery Problem (D-DSDP)
and model the stochastic and time-dependent nature of the problem by means
of a Markov Decision Processes formulation.

2. We develop a reinforcement learning approach that can solve realistic
instances in a reasonable time, using approximate value iteration with a linear
value function approximation.

3. We provide insights into the effect of the selection of parcels based on their
time windows and drone battery levels and compare the reinforcement learn-
ing approach with different assignation heuristics.

The remainder of this paper is structured as follows. Related literature on
the D-DSDP is reviewed in Sect. 2. The D-DSDP is formally described and for-
mulated in Sect. 3. A reinforcement learning approach to face the D-DSDP is
presented in Sect. 4. The numerical experiments are performed in Sect. 5. Finally,
the main conclusions and future works are stated in Sect. 6.

1 https://www.dhlexpress.be/en/shipping-and-receiving/dhl-parcelcopter/.
2 https://x.company/projects/wing/.
3 https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011.

https://www.dhlexpress.be/en/shipping-and-receiving/dhl-parcelcopter/
https://x.company/projects/wing/
https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
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2 Literature Review

Literature on drone delivery systems has placed paramount emphasis on trans-
portation systems where drones and trucks work in collaboration [10,11,17,19].
This review, however, focuses on delivery systems where drones are deployed
from stations. The reader is referred to [9,12] for reviews on drone applications
and drone transportation systems, respectively.

The D-DSDP can be seen as a special case of the Drone Delivery Prob-
lem (DDP, [3]), where drones are only allowed to perform round trips to serve
customers with their corresponding parcels. The D-DSDP also resembles the
Parallel Drone Scheduling TSP (PDSTSP, [10]), with the difference that this
delivery system considers only drones. The reader is referred to [13] for a sys-
tematic review of the PDSTSP. In [3], authors face the DDP to minimize the
makespan and the operational costs. They develop a linear energy consumption
model that considers battery and payload to restrict the drone flying range. To
solve the DDP, they propose a simulated annealing (SA) algorithm and compare
its performance against a MILP formulation. Results show that optimizing the
battery weight can provide improvements of up to 80% for the minimum-time
DDP. In [2], a MILP formulation and a matheuristic are proposed to solve the
multi-objective pick-up and delivery DDP. They consider multiple charging sta-
tions and a heterogeneous fleet of drones, where the number of packages that
drones can carry is restricted by a maximum weight. A mathematical model
that minimizes the maximum distance, number of drones, and the number of
batteries is proposed in [22]. This way, the authors develop a MILP formulation
that considers drone energy constraints, drone capacity, and time windows to
solve instances for up to 10 customers. A pick-up and delivery food distribution
case for the DDP is studied in [8], where multiple depots are considered and the
demand is predicted in advance. The authors develop a MILP formulation and
a heuristic algorithm to solve a dynamic problem. Finally, the reader is referred
to [6] for an extensive literature review on truck-and-drone routing problems,
mathematical models, problem variants, and heuristic algorithms. Also, the sur-
vey [1] provides a relevant literature review on drone distribution systems, which
focuses on research issues, solution approaches, and limitations.

We are aware of only one work related to the D-DSDP that studies a delivery
system that deploys drones from a central station performing round trips [7].
The authors propose a MILP formulation and a genetic algorithm (GA) for
minimizing the number of drones to deliver packages with dynamic arrival and
personalized deadlines. Our work mainly differs from it in the solution approach,
specific problem features, and the objective function. In our case, first, due to
the stochastic nature of this problem, we propose a MDP formulation, which
incorporates transportation times, drone energy consumption, battery levels, and
uncertain parcel arrivals. Second, we incorporate into our decision space drone
charging policies at the central station, while in [7] drones are only allowed to
swap the battery for a fully charged one. Third, we focus on minimizing the
total costs of the delayed parcels, since we study scenarios with a high-parcel
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flow to compare our approach with different heuristic policies, whereas in [7] the
authors focus on minimizing the number of drones at the station.

As we can observe, literature on drone stations where drones perform round
trips for parcel deliveries is being developed. In this regard, we have found a
research gap regarding drone delivery systems from a drone station that consider
uncertain parcel arrival, drone energy consumption, transportation times, and
time windows, when minimizing delayed deliveries. Therefore, in this paper, we
aim at filling this research gap by developing a reinforcement learning approach
to solve the D-DSDP with the above-mentioned features and outperform myopic
policies.

3 Mathematical Model

3.1 Problem Description

In the D-DSDP, a fleet of drones is located in a central station to deliver parcels
in the form of round trips. The central drone station faces uncertain parcel
arrivals, and the drones have to meet time window and energy consumption
requirements. Figure 1 illustrates a drone station with a fleet of drones and a set
of known delivery locations.

The D-DSDP consists of a finite horizon, representing a day, where time is
discretized in consecutive time periods t ∈ T = {1, 2, ..., T}, from now on called
stages. A set of drones v ∈ V = {1, 2, ..., V } should perform round trips to
deliver parcels j ∈ J = {1, 2, ..., J} from a central station to their corresponding
customers. As shown in Fig. 1, the distribution area is split into different dis-
tance classes d ∈ D = {1, ...,D}, which determine the distance of customers to
the central drone station. Furthermore, parcels arrive from outside the system
according to a stochastic process with a rate λd,t,∀d ∈ D, t ∈ T . Every parcel
is known in the system since it is picked-up by the truck. The time between
pickup of the parcel and delivery at the central drone station is indicated by a
release period r ∈ R = {0, ..., R}. Once the release period is equal to zero, the
corresponding time window k ∈ K = {0, ...,K} starts decreasing one unit per
stage. That is, time windows are related to a parcel release period r and release
periods are related to the current stage t. For instance, a parcel that has r = 2
and k = 1 can be delivered in only one stage, i.e., we first wait two stages from
r = 2 to r = 0, and then there is a time window of one stage to transport the
parcel from k = 1 to k = 0.

Drones have one unit-load capacity and different battery levels b ∈ B =
{0, 1, 2, ...B}, where b = 0 means the drone has ran out of battery and can only
be sent to recharge the battery. Moreover, transporting a parcel j ∈ J to a
customer class d ∈ D takes d units of time and battery level. For instance, if a
parcel is sent at time t = 1 with d = 2, and b = 3, this means the drone that was
sent to d = 2 becomes available at time t = 3, i.e., t+d, and with a battery level
of b = 3 − 2 = 1. Drones can only charge their battery at one of the Q charging
stations at the central station. We assume that charging the battery by one level
requires one time unit, i.e., from b to b + 1 when going from stage t to t + 1. We
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also assume that the external arrival process of parcels to customer class d ∈ D
at stage t ∈ T is independent of the external arrival process of other parcels at
other stages.

Fig. 1. Illustration of the D-DSDP.

The D-DSDP features two transportation modes. First, we have drones per-
forming round trips from the station to customers. We do not consider trans-
portation costs for drone deliveries, since every parcel has a fixed destination and
the system should always bear those costs. Second, if a parcel is not transported
by the end of its time window, we consider an alternative transportation mode,
i.e., a manned vehicle that performs this transport quickly and at a high cost
defined as CL. Table 1 provides a description of the sets and parameters of the
D-DSDP.

3.2 Markov Decision Process Formulation

States: Each period t corresponds to a stage in the MDP. Thus, stages are
discrete and consecutive. Furthermore, at each stage t, there are Jt,d,r,k parcels
with distance class d, release stage r, and time window length k at the drone
station, and Vt,r,b drones with release stage r and battery level b to transport
parcels. The state of the system St consists of the number of each parcel and
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Table 1. Parameters of the D-DSDP.

T : set of time periods

D : set of customer classes

K : set of time periods until expiration of the time window

R : set of time period until arrival of the parcel

B : set of battery levels

Q : number of charging stations at the drone station

λj,t : arrival rate of parcel j ∈ J at time t ∈ T
CL : Cost of alternative manned transport for late parcels

St : state of the system at period t ∈ T
Vt : number of drones available in the system at time t ∈ T
Jt : number of parcels in the system at time t ∈ T

drone type at stage t, as seen in (1). We denote the state space of the system by
S, i.e., St ∈ S.

St =
[
(Jt,d,r,k, Vt,r,b)

]
∀d∈D,r∈R,k∈K,b∈B

(1)

Decisions: At each stage t ∈ T , we have to decide (i) how many drones should
transport parcels from the central station and (ii) how many drones should
charge the battery. This decision depends on the release time of parcels, the
battery level of drones, and the number of drones available to be used. We use
variables X V

t,d,k,b and X C
t,b to represent the number of drones used to transport

parcels for a customer with a distance class d, with time window k, battery level
b, and the number of drones sent to charge the battery at a current battery level
b, respectively. The decision xt consists of all decision variables at stage t, as
seen in (2), subject to constraints (3)-(6), which define the feasible space of Xt.

Xt =
[
(X V

t,d,k,b,X C
t,b)

]
∀d∈D,k∈K,b∈B

(2)

s.t.∑
k∈K

∑
d∈D

X V
t,d,k,b + X C

t,b ≤ Vt,0,b ∀b ∈ B \ {0} (3)

∑
b∈B\{0},

b≥d

X V
t,d,k,b ≤ Jt,d,0,k ∀d ∈ D, k ∈ K, d ≤ k (4)

∑
b∈B\{B}

X C
t,b ≤ Q (5)

X V
t,d,k,b, X C

t,b ∈ Z ∪ {0} ∀d ∈ D, k ∈ K, b ∈ B (6)
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Constraints (3) establish that the maximum number of drones used can not
be larger than the drones available. Constraints (4) state that the drones used to
transport parcels can not exceed the number of parcels at the drone station and
their battery levels should meet the energy requirements, i.e., b ≥ d. Constraint
(5) restrict the maximum number of drones that can be sent to charge the battery
at any time period t. Constraints (6) define the nature of the variables.

Stochastic Processes: The transition from St−1 to St is influenced by the
decision xt ∈ Xt and the exogenous information. Note that the parcel arrival
rate and its characteristics, i.e., the time window length, release time, and cus-
tomer destination, are determined by a probability distribution. To model this
stochastic process, we introduce Ĵt,d,r,k to represent the number of parcels that
arrive at the station with destination d, release time r, and time window k.
The exogenous information Wt at stage t consists of all the new information
represented by Ĵt,d,r,k, as seen in (7).

Wt =
[(

Ĵt,d,r,k

)]

∀d∈D,r∈R,k∈K,b∈B
(7)

A state St at stage t occurs as the result of the state of the previous stage
St−1, the decision of the previous stage xt−1 plus the exogenous information
captured in Wt that became known between the stages. The transition of the
tasks is set by the time window k of the parcel, relative to the release time r, the
number of parcels transported in the previous stage t−1, and the random arrival
of new parcels. All of these factors, and index relations, are used to capture the
transition of the system. We represent them using the transition function SM ,
as shown in (8).

St = SM

(
St−1, xt−1,Wt

(
Ĵt

))
∀t ∈ T | t > 0 (8)

Transition of Transportation Tasks’ States:

Jt,d,0,k = Jt−1,d,0,k+1 −
∑

b∈B\{0}
X V

t−1,d,k+1,b + Jt−1,d,1,k + Ĵt,d,0,k

∀d ∈ D, k ∈ K \ {K} (9)

Jt,d,0,K = Jt−1,d,1,K + Ĵt,d,0,K ∀d ∈ D (10)

Jt,d,r,k = Jt−1,d,r+1,k + Ĵt,d,r,k ∀d ∈ D, r ∈ R \ {0, R}, k ∈ K (11)

Jt,d,R,k = Ĵt,d,R,k ∀d ∈ D, k ∈ K (12)

Constraints (9) define the number of parcels that become available to be
transported at a given period t with a time window k. Constraints (10) define
the number of transportation tasks that become available with a maximum time
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window. Constraints (11) define the transportation tasks that become available
with a waiting time r at a stage t. Constraints (12) ensure that the parcels with
the maximum waiting time R at a stage t are given by the exogenous information
arriving to the system.

Transition of Drones’ States:

Vt,0,b = Vt−1,0,b −
∑
k∈K

∑
d∈D

X V
t−1,d,k,b − X C

t−1,b + Vt−1,1,b+1 + X C
t−1,b−1

∀b ∈ B \ {0, B} (13)

Vt,0,B = Vt−1,0,B −
∑
k∈K

∑
d∈D

X V
t−1,d,k,B + X C

t−1,B−1 (14)

Vt,r,b = Vt−1,r+1,b+1 +
∑
k∈K

X V
t−1,r,k,b ∀r ∈ R \ {0, R}, b ∈ B \ {0, B} (15)

Vt,R,b =
∑
k∈K

X V
t,R,k,b ∀b ∈ B \ {0} (16)

Constraints (13) establish the number of drones available to transport a par-
cel at a given battery level. Constraints (14) define the number of drones that
become available at a maximum battery level. Constraints (15) define the tran-
sition of the release time for drones that are transporting a parcel. Constraints
(16) set the number of drones that have a maximum release time R at each
stage t.

Bellman’s Equation: The objective function C(St, xt) at time period t
depends on the number of drones used to transport parcels and the use of
the alternative transportation mode. We define a variable zt,d as the number
of parcels transported to customers with a distance class d by the alternative
transportation mode at stage t. This variable is constrained by the transporta-
tion tasks’ state Jt,d,r,k and the number of drones used to transport parcels
X V

t,d,k,b, as seen in (18). This way, the costs of the decisions can be defined as a
function of xt and St, as shown in (17).

C(St, xt) =
∑
d∈D

CL · zt,d (17)

where,
zt,d = Jt,d,0,0 −

∑
b∈B\{0}

X V
t,d,0,b ∀d ∈ D (18)

Bellman’s equation enables the sequential minimization of the expected costs
over the horizon, i.e., the sum of (17) over all t ∈ T , since there is uncertainty
in the arrival of parcels, and thus the states. We aim to find the policy that
minimizes the logistics overhead costs over our planning horizon. Therefore, we
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define a policy π ∈ Π is a function π : St → xt that maps each state to a
corresponding decision. The optimal policy π∗ may be found by solving the
Bellman optimality equations for each state, as shown in (19). In particular,
the transition function SM allows us to write the expectation in terms of the
current state, the corresponding decision, and the given realization. The set of
all realizations is denoted by Ω, i.e., Wt ∈ Ω, ∀t ∈ T , where for each realization
ω ∈ Ω there is a probability pΩ

ω .

V π∗
t (St) = min

xt∈X(St)

(
C(St, xt) +

∑
ω∈Ω

(
pΩ

ω · V π∗
t+1

(
SM (St,Xt, ω)

)))
,

∀St ∈ S (19)

The probability pΩ
ω depends on the realization ω ∈ Ω in three ways. First,

it depends on the total number of the arriving parcels, see Equation (22). Sec-
ond, it depends on the probability that the Ĵt,d,r,k parcels will have customer
destination class d, release-time r and time-window length k. Third, it depends
on a multinomial coefficient β [15] that counts the ways of assigning the total
number of arriving parcels j to variable Ĵt,d,r,k. This coefficient is necessary since
the order in which parcels arrive does not matter and their characteristics are
allowed to repeat. With these three aspects, the probability pΩ

ω can be computed
using (20).

pΩ
ω = β · pJ

j ·
∏

r∈R,k∈K,d∈D,b∈B

(
(pDJ

d pRJ

r pKJ

k )Ĵω
d,r,k

)
(20)

where,

ω =
[
(Ĵw

t,d,r,k)
]

∀,r∈R,k∈K,d∈D,b∈B
(21)

j =
∑

r∈R,k∈K,d∈D
Ĵw

d,r,k (22)

β =
j!

∏
r∈R,k∈K,d∈D

(
Ĵw

d,r,k!
) (23)

The optimal policy for D-DSDP can be found by solving (19) using dynamic
programming. Due to the curses of dimensionality, this is not possible for realis-
tically sized instances. Hence, we develop a reinforcement learning approach to
solve this MDP formulation in Sect. 4.

4 Reinforcement Learning Approach

In this section, a detailed description of the RL approach to solve the D-DSDP
is presented. This approach is suitable to derive high quality decision policies for
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MDP problems that cannot be solved exactly. Such a decision policy is a mapping
of states to actions, where the actions account for their long-term effects. More
specifically, we use the approximate value iteration algorithm [21]. Algorithm
1 shows the iterative process of the value-based procedure to approximately
explore the solution space and converge to a cost approximation of each state of
the system. This algorithmic approach works as a combination of Monte Carlo
simulation and the Value Iteration algorithm by fitting a linear regression over
a set of features F to determine the decision policy π.

Algorithm 1: Approximate Value Iteration Algorithm
Data: (N, F, ε, γ, V , v̂, θf )

1 V , v̂, θf ← Initialize(), ∀f ∈ F
2 n = 1
3 while n < N do
4 for t < T do
5 if t > 0 then

6 v̂t = minx∈Xt

{
C(St, xt) + γ V t

(
SM,x(St, xt)

)}

7 θf
t = θf

t−1 − Htφ
f
t−1

(
V t−1(S

x
t−1) − v̂t

)
, ∀f ∈ F

8 x̃t ← ε-greedy(Xt)

9 Sx̃
t = SM,x̃(St, x̃t)

10 φf
t ← Compute(Sx̃

t ), ∀f ∈ F
11 Wt+1 ← Random(Ω)

12 St+1 = SM (Sx̃
t , Wn

t+1)
13 t = t + 1

14 n = n + 1

15 return θf ∀f ∈ F

The input data is the number of iterations N , the feature set F , the value ε,
the learning rate γ, and the initial values for V , v̂, and θf . The algorithm starts by
setting initial values for V , v̂, θf , and n (lines 1–2). The iterative process begins
in line 3, where a whole horizon T is run at each iteration n (line 4). We elaborate
on the concept of post-decision state Sx

t , which refers to the state of the system
just after a decision xt has been made and before the next-stage exogenous
information Wt+1 affects the system. The algorithm transitions from state St into
the post-decision state Sx

t by the transition function SM,x(St, xt). If the current
stage is larger than 0, the downstream cost v̂t is computed based on the current
policy, that is, make decision xt (lines 5 - 6). The downstream cost v̂t represents
the direct reward C(St, xt) given xt, plus the approximated downstream costs of
the post-decision state (or estimated downstream value) V t, i.e., one-step look-
ahead with a bootstrap estimate [21]. Then, the linear-regression feature weights
θf ∀f ∈ F are updated by computing the error between the previous stage
estimated downstream value V t−1 and the current stage downstream cost v̂t (line
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7). The optimization matrix Ht is implemented to update the feature weights
θf . For a comprehensive explanation on the optimization matrix we refer to [16].
To properly balance the exploration and exploitation of the decision space, in
line 8 the ε-greedy decision policy is applied to choose x̃t ∈ Xt [14]. Then, system
transitions into the post-decision state Sx̃

t by applying the transition function
SM,x̃ (line 9). After this, the features φf

t ∀f ∈ F are computed and stored based
on the information provided by Sx̃

t (line 10). Once the exogenous information
for the next stage Wt+1 has arrived (line 11), the algorithm transitions into the
next state St+1 by applying SM (line 12). This process, i.e., from lines 5 - 13,
is repeated at every stage t ∈ T . Then, once n reaches value N , the algorithm
returns the learned weights θf ∀f ∈ F to determine the policy π through the
value function approximation V t(Sx

t ).

5 Numerical Experiments

5.1 Experimental Design

The experiments were executed on a computer equipped with a 1.90 GHz Intel(R)
Core(TM) i7-8665U, 16 GB of RAM, and running Windows 10 in 64-bit mode.
The instance sets used for the feature selection and the experiments are described
in Table 2. In order to select a proper set of features for our RL algorithm, we
analyzed the predictive power of a wide set of features. We first ran a long sim-
ulation and stored the features’ values for all encountered states. Next, for each
of the encountered states, we sum the observed costs over the states encountered
in the subsequent ten stages, and chose the feature set resulting in the lowest
error and the highest predictive power explaining the subsequent 10 stages costs.
The final set of selected features for the RL algorithm are the number of drones
available per battery level, the number of parcels per release time, the urgent
parcels, i.e., that cannot wait one more stage, the non-urgent parcels, the non-
urgent parcels per distance class, the total number of parcels in the system, the
number of newly arrived parcels, the average distance class over all parcels, and
the total travel time to transport all parcels to their corresponding customers.
The training times of the RL algorithm were 282 and 644 s for the small and
large instance sets, respectively.

5.2 Comparison of the RL Approach with Heuristic Strategies

These experiments study the effectiveness of our RL approach in comparison to
four different operational strategies. The procedure of the algorithms is described
as follows. The first algorithm chooses an aleatory decision at every stage. The
second is a transport-first heuristic that always prioritizes the transport of parcels
and sends drones to charge the battery when they either run out of battery or
need to wait. The third is a charge-first heuristic that always prioritizes charging
the battery of the drones and sends them to transport parcels only when the
battery stations are occupied or the batteries of the drones are fully charged.
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Table 2. Instance settings.

Set Meaning Small instances Large instances

T : set of time periods 96 96

D : set of customer classes 3 3

K : set of time periods until expiration of the time window 6 6

R : set of time period until arrival of the parcel 4 4

B : set of battery levels 10 10

Vt : number of drones available in the system at time t ∈ T 10 20

Q : number of charging stations at the drone station 10 15

λj,t : arrival rate of parcel j ∈ J at time t ∈ T 10 20

CL : Cost of a delayed parcel 1 1

The last algorithm is a versatile heuristic that charges a predefined percentage of
drones based on the average battery level of the fleet. Then, the remaining drones
are sent to deliver parcels if possible. The results of the different heuristics and
the RL algorithm for small and large sets of instances are provided in Table 3,
where we consider probabilities P = {1/3, 1/3, 1/3} for parcels to be delivered
at a customer location D = {1, 2, 3}. Furthermore, costs, standard deviations,
and horizon running times (time required to run a simulation of 96 stages) are
representative of 2000 replications and rounded to the next integer for the final
cost, to the second decimal for the deviation, and to the third decimal for the
horizon time.

Table 3. Performance comparison of heuristic strategies and the RL algorithm.

Instance size Small instances Large instances

Algorithm Final cost Standard deviation Horizon time (s) Final cost Standard deviation Horizon time (s)

Aleatory heuristic 536 +/−6.80 0.009 1118 +/−14.36 0.015

Transport-first heuristic 516 +/−6.66 0.009 1115 +/−14.28 0.016

Charge-first heuristic 518 +/−6.68 0.007 1118 +/−14.14 0.014

Versatile heuristic 490 +/−6.24 0.007 1097 +/−14.17 0.014

RL algorithm 447 +/−5.59 0.111 1060 +/−13.81 0.136

Results show that the RL algorithm outperforms all the heuristics providing
an objective value of 447 and 1060 for the small and large instances, respectively.
As expected, the aleatory heuristic is the algorithm that has the worst perfor-
mance for both sets of instances, which is the same as the charge-first heuristic
for the large set of instances. For the whole set of heuristics, we can see standard
deviations larger or equal to 6.24 and 14.14, corresponding to the small and
large instance sets, whereas the RL algorithm results in smaller standard devi-
ations of 5.59 and 13.81. This shows that the dispersion of the RL algorithm’s
performance with respect to its objective value is more stable and solid in com-
parison to the heuristic approaches, but it has larger computational times. In
contrast to the heuristics, the RL algorithm needs to evaluate all possible deci-
sions, requiring computing the feature values of all corresponding post-decisions
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states. However, computation times are still low enough to support online deci-
sion making, especially when taking into account that the reported times below
1 s include 96 decision moments and time required for running the simulation.
Consequently, we conclude that the RL algorithm is able to explore the solution
space and learn from the tested scenarios to make decisions that outperform
different operational strategies within reasonable computational times.

5.3 Experiments on Different Instance Scenarios for the RL
Approach

The last set of experiments studies how the performance of the best RL algorithm
of Sect. 5.2 changes when studying different configuration scenarios. To carry out
the experiments, we use the small instance set described in Table 2, which we
refer to as basic instance set, and vary the time-window length, the number
of charging stations, the number of battery levels, and the probabilities P =
{1/9, 3/9, 5/9} that a given parcel has to be delivered at a customer location
D = {1, 2, 3}. Regarding the latter, opposed to the original equal probability
distribution representing a situation with higher customer density in the city
center, the adjusted distribution assumes an equal density, hence more customers
at the outskirts of the city. Results are provided in Table 4, where costs, standard
deviations and running times are representative of 2000 replications and rounded
to the next integer, for the final cost, and to the second decimal, for the deviation.

Table 4. Different instance settings for the RL algorithm.

Instance type Final cost Standard deviation Experiment purpose

Basic instance set 447 +/−5.59 -

Variation 1, K = 4 486 +/−6.17 Smaller time windows

Variation 2, Q = 5 472 +/−6.20 Less charging stations

Variation 3, B = 5 464 +/−6.06 Smaller batteries

Variation 4, P 566 +/−7.21 More distant customers

From Table 4, we see that the all the variations increase the final costs and
the standard deviations in comparison with the basic instance set. The first
variation shows that as the time windows become smaller, parcels can spend less
time at the drone station. As such, the instance set becomes more challenging
since parcels might not be transported in time. Regarding the second variation,
a reduction in charging stations will cause a situation where drones are not able
to charge their battery on time for parcels requiring higher energy levels. Results
on the third variation show that smaller batteries result in higher final costs. The
last variation increases the costs when most of the customers are located on the
outskirts. This is more challenging since the RL algorithm should find a policy
that allows it to meet time window constraints for distant destinations and, at
the same time, to reserve more drones with higher energy levels.
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6 Conclusions

We introduced the Dynamic Drone Scheduling Delivery Problem (D-DSDP),
which incorporates time windows, release times, charging stations, energy con-
sumption features, and stochastic parcel arrival into the decision-making.

We address the D-DSDP by providing a Markov Decision Processes model
and developing an Approximate Value-Iteration Reinforcement Learning algo-
rithm. We carry out two different sets of experiments. In the first set of experi-
ments, we compare the RL algorithm with four dispatching heuristics that resem-
ble decision-making of human planners. Results show that our algorithm is able
to outperform the heuristic strategies at the cost of increasing computational
times. In the second set of experiments, we test how different instance settings
affect the performance of the RL algorithm. We find higher operational costs
when the maximum time-window length, the number of charging stations, and
the energy levels of the drone batteries are reduced and when most of the cus-
tomers are located in the outskirts of the city.

With regards to future research, we aim at studying other extensions such
as picking up parcels from the customer locations to transport them to the
drone station, as single or combined trips. In addition, the D-DSDP can also be
extended to an infinite horizon setting.
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Abstract. This paper aims to design a two-echelon parcel distribution network
modeled as the Two-EchelonVehicle Routing Problem (2E-VRP). In this problem,
e-cargo bikes perform the last-mile delivery. In fact, this transportation mode is
positioned as a promising alternative to make last-mile delivery. Studies show cost
and carbon dioxide equivalent (CO2e) emissions savings with cargo bikes setup
compared to conventional vans. To solve this problem, a three-stage decomposition
algorithm is proposed. In the first stage, the non-supervised machine learning
clustering method 2D-k-means is considered to cluster the clients to the satellites.
The second and third stages comprise the second and first echelon routing. The last
two stages use a heuristic based on the Nearest Neighbor (NN) procedure. Two
local search operators were used as improvement algorithms for the solution given
by the NN in the second stage. There are scarce studies that use the 2D-k-means
algorithm in this urban distribution network context. Experiments are run using
a small instance based on real data from a delivery company in the city of Paris,
France. Results show that the fixed costs and the cost of energy consumption of the
e-cargo bikes are cheaper than the van used in the first echelon. Also, a reduction of
8.2% in terms of travel time is obtained when the Relocate local search is applied.
Additional savings are achieved in performance indicators.

Keywords: Sustainability · Urban logistics · Last-mile delivery · Routing
problems · Smart city

1 Introduction

More than 50% of the world’s population is located in urban areas [1], and the number
is expected to keep growing. As the world population increases, the demand of products
will increase.With the strongmeasures implemented in several countries to deal with the
recent outbreak of COVID-19 pandemic, parcel delivery requirements increase because
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many businesses are being forced to operate virtually [2], so it contributes to the growth
of e-commerce. Parcel delivery service companies are facing the challenge of handling
a large number of packages. For this reason, the transportation and mobility sectors are
essential to fulfill these demands [3], despite these high costs.

Urban parcel delivery activities have important implications in terms of both traffic
and parking. On the one hand, it significantly contributes to congestion and the emission
of polluting particles in urban environments. Delivery vehicles account for 15% of urban
traffic and more than 20% of CO2 emissions and congestion [4] while the operations of
urban freight transportation represent 25% of CO2 emissions and between 30 to 50%
of other transport-related pollutants in urban areas [5]. On the other hand, pick-up and
delivery operations generate an invasion of public space, mostly in city centers. This is
because vehicles remain parked while the loading/unloading activity is being performed.
This makes it difficult to drive in these areas due to irregular parking practices and
congestion [3].

To deal with the externalities related to the emissions caused not only by delivery
vehicles but also those associated with other essential activities in cities, the European
Commission [6] (p. 9) defined objectives to achieve “essentially CO2-free city logistics
inmajor urban centers by 2030”. Cities are also restricting the access of delivery vehicles
in urban centers or in inner-city areas, limiting for example the time of the daywith access
restriction or the type, emission class, or size of the delivery vehicles that cannot enter.
All of these to ensure sustainable living conditions. Even though authorities have the
best intentions, these measures worsen the accessibility to customers or places located in
restricted areas [7, 8]. To face these challenges, retailers and parcel delivery companies
are looking for cost-efficient methods, more environmentally friendly solutions, and
different alternatives to deliver parcels in their delivery systems despite the restrictions
in city areas.

One possible solution to this problem and the externalities caused by freight trans-
portation networks is the use of innovative transportationmodes to improve the efficiency
and sustainability of urban parcel distribution systems.Different types of fleets have been
studied, such as the use of public transport [9, 10], unmanned aerial vehicles (UAVs)
[11], autonomous vehicles [12, 13], delivery robots [14], electric vehicles [15, 16], and
cargo bikes [13, 17, 18]. The integration of cargo bikes in the transport infrastructure for
urban delivery networks is becoming a modern trend because this transportation mode
has the best energy-performance ratio, is efficient in densely inhabited areas, and has
zero emissions [19]. In this study, cargo bikes will perform the last-mile delivery (second
echelon), so cargo bikes can pick up the parcels at the locations designated as satellites
where delivery vans first delivered the packages for further last-mile distribution.

To design the last-mile supply network, the most employed model is the two-echelon
distribution network, in which parcels are delivered from a depot to a set of satellites and
from there to a set of locations inside the city. This distribution problem is frequently
approached by experts as a two-echelon vehicle routing problem (2E-VRP) [20]. Con-
sidering the high computational complexity of the problem, different heuristics and
metaheuristics have been proposed to optimize these types of distribution networks. For
instance, a metaheuristic based on Large Neighborhood Search (LNS) was proposed to
handle small-size problems [21]. This metaheuristic was also proposed in [22] where
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authors introduced a hybrid metaheuristic that combines enumerative local searches
and some tailored operators to find the best selections of satellites. An extension of the
LNS, the Adaptive Large Neighborhood Search (ALNS) is one of the most applied solu-
tion approaches [23–25]. Other solution procedures applied are hybridizations like the
GRASP+VND [26], and the graph-based fuzzy evolutionary algorithm hybridized with
an iterative evolutionary learning process [27]. If authors deal with multiple objectives,
the algorithm can be adapted as a Multi-Objective Evolutionary Algorithm (MOEA)
as in [28]. Genetic Algorithms are also generated, for instance in [29] this algorithm
was used to reach the best way to deliver parcels with the aim of finding the minimum
handling cost. In cases like the presented in [30], authors combine the VND with local
search operators to solve medium and large-size instances for the 2E-VRP. In addition,
thinking about the eco-friendly 2E-VRP, [31] presented a case study in a logistics enter-
prise practice in China in which authors used the Clarke & Wright Savings algorithm
adding an improvement in the heuristic using a local search phase.

The use of machine learning techniques can speed up algorithms specifically for
this problem. A clustering method such as the non-supervised machine learning two-
dimensional (2D) k-means is a good approach to cluster the customers to the satellites.
Within the scope of this research, few papers applying data science clustering method-
ologies were found in the literature on two-echelon distribution systems and the 2E-
VRP [32–35]. K-means clustering can address the VRP with initial solutions for vehicle
routing optimization [36].

The purpose of the paper is to design delivery routes to optimize the total delivery
time in the city. We propose a heuristic algorithm with a three-stage decomposition
strategy for the 2E-VRP to deal with the high computational complexity of the problem.
The heuristic algorithm contains in the first stage a non-supervised machine learning
clustering method to allocate the customers to the closest satellite. To generate the
routes, an algorithm based on the well-known Nearest Neighbor (NN) routing heuristic
is implemented in first and second echelon. Moreover, some local search operators are
applied to improve the solution obtained by the NN in the second echelon because this
level comprises more complexity. Experiments with the proposed distribution network
will be executed and analyzed in a sample of an instance taken from a case study inspired
by a delivery company in the city of Paris, France.

The remainder of this article is organized into four sections. The next section dis-
cusses the methodology applied in this paper. The third section explains in detail the
instance generation, its attributes and reports the results. The fourth section concludes
the article and explains some suggestions for future research.

2 Solution Approach: Algorithm and Parameters

2.1 Solution Algorithm

The 2E-VRP is known for its computational complexity (NP-hardness) [23]. Algorithms
such as heuristics and metaheuristics are designed to have efficient solution approaches
with the ability to find good solutions. When the problem has large-scale instances,
these techniques have drawn wide interest in researchers’ efforts to solve vehicle routing
problems [37].



278 A. Ramírez-Villamil et al.

Decomposition strategies were recently applied to large-scale real-world problems
[38], but also were used to overcome the NP-hardiness of the 2E-VRP. These strategies
are the most successful approaches [39]. In some studies, the solution is divided into
two parts (initial solution phase and optimizing phase) [37]; in cases such as [39–41]
authors split the problem into subproblems and solve them separately.

Based on the decomposition strategy, this study splits the problem into three sub-
problems with the aim of reduce the complexity but guaranteeing the feasibility and the
quality of the solution obtained by aggregating the subproblems. The first subproblem
is a two-dimensional (2D) k-means clustering which aims to allocate the delivery points
(customers) to predetermined satellites; the second sub-problem determines the routing
from satellites to serve the customers (last-mile delivery), and the last sub-problem is
to find a set of routes starting from the depots to serve the corresponding satellites (first
echelon). A detailed explanation of the subproblems is presented next.

– First subproblem: Customer clustering in the second echelon. The two-dimensional
k-means clustering algorithm is performed using customers’ geographical coordinates
(latitude and longitude). Each customer is assigned to an appropriate cluster which is
the satellite.

– Second subproblem: Routing from satellites to customers (second echelon). Based on
the decomposition strategy, the problem to be solved at each cluster is modeled as a
Capacitated Vehicle Routing Problem (CVRP). Due to the large number of customers
that the problem has, the initial solution is obtained by applying the NN heuristic,
followed by a local search that contains inter and intra-routes operations to improve
the initial solution. A flow diagram of the proposed solution approach is shown in
Fig. 1.

– Third subproblem: First echelon routing (from the depots to satellites). The quantity of
parcels (expressed in kilograms) required to be delivered to each satellite is obtained
from the total demand of the customers of cluster k. The total travel time and the
routes in the first echelon are calculated using the NN algorithm.

2.2 Two-dimensional k-Means Clustering Algorithm

Data science methodologies have been extensively applied in different fields. Customer
clustering is an effective strategy to reduce the computational complexity of optimiza-
tion problems [42–44] and to improve the calculation efficiency for large-scale logistics
networks [45, 46].Within the scope of this research, few papers using clusteringmethod-
ologieswere found in the literature about 2E-VRP [32–35]. For example, [34] considered
a three-dimensional k-means clustering using customer’s geographic coordinates (x, y)
and a time parameter (z) that is the value of each service time window interval to solve
an initial part of a two-echelon distribution system.

In this paper, a 2D k-means clustering algorithm before route optimization is pro-
posed to reduce the computation complexity. We considered the two dimensions of each
customer’s geographic location (latitude and longitude), since k-means clustering tra-
ditionally groups customers into different clusters on the basis of the two-dimensional
Euclidean distance [32, 33]. k is the number of clusters based on the number of satellites
in the distribution network. Initially, the algorithm randomly selects the centroid for each
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cluster k. All the data is processed and the distances from each customer to the centroids
are calculated. Each element is assigned to its closest cluster centroid. The new centroids
of k clusters are updated. This algorithm continues until all the customers are adjusted
in the adequate cluster. Finally, the results of the clustering are saved and are the input
to calculate the initial solution for the CVRP optimization. Figure 1 shows the flowchart
of this algorithm.

Fig. 1. Flowchart of the solution scheme for the proposed problem.
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2.3 Local Search Operators

Two different local search operators are considered to improve the initial solution that
was obtained by theNNprocedure. The second subproblem is the second echelon routing
of the proposed distribution network. For each cluster, the routing problem on the second
echelon is a CVRP. In literature, different types of operators have been used to solve
routing problems. In this case, relocate and swap operators are proposed as local search
for neighborhood solutions.
Relocate local search (RLS)
In this study, the RLS aims to improve a solution by shifting a node in route n, before or
after another node in a route that is different to n, considering that both routes belong to
the same cluster. Figure 2 gives an example of this local search. Two routes that are in
the same cluster are selected. The first route denoted as “1, 2, 3, 4, 5, 1” is selected as the
route that contains the node that will be relocated (node 2). This node will be relocated
in the route denoted as “1, 6, 7, 8, 9, 1” in the first position. The new routes “1, 3, 4, 5,
1” and “1, 2, 6, 7, 8, 9, 1” are constructed. The criteria to accept the insertion of the node
in a specific route is the following: The insertion is accepted if the demand of the node
does not exceed the available capacity of the vehicle in the destination route and if the
insertion of that node into the route does give the best improvement in terms of travel
time and distance of all possible and feasible combinations.

Fig. 2. Representation of Relocate local search (RLS) operator in a distribution network example.

Swap local search (SLS)
The SLS explores not only the exchange of one node of a route with a node located
in another route in the same cluster but also intra-route exchanges between two nodes.
Figure 3 shows an example of this local search procedure with the same routes of the
previous example. First, an initial solution is needed to begin with the local search. Then,
an intra route swap is performed to find the best improvement in the objective function.
In this step, the solution is updated. In the third step, an inter route swap is conducted
in the new solution checking that the new routes do not exceed the vehicle capacity
and if there is an improvement in the objective function. If the solution is improved,
the solution is updated again. This sequence is carried out until no improvement in the
solution is found.
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Fig. 3. Explanation of Swap local search (SLS) operator in a distribution network example.

3 Computational Results

The proposed solution procedure is coded in Python, experiments were run on a personal
computer with processor Intel® Core™ i7-10510U, CPU at 2.3 GHz and 16 GB RAM.
Our experiments evaluate two options of local search operators: RLS and SLS. The
distribution network consists of a set of three uncapacitated satellites located inside
the city of Paris. A heterogeneous fleet between echelons is considered; in the first
echelon, the fleet of vehicles is composed of delivery vans (diesel-fueled) and in the
second echelon, e-cargo bikes will perform the last-mile delivery. The transportation
modes will have load capacities that are proportional to the type of vehicle but, for the
purposes of this study, these are not the actual capacities. In this article, the capacity of
the delivery van and e-cargo bike is 45 kg and 8 kg respectively. The instance used for
the experiments contains 50 customers.

Regarding the results for the 2D k-means clustering. The purpose of the clustering
is to minimize the sum of distances between each delivery point and the centroid of its
cluster (satellite). Since the case considered in this article contains only 50 customers,
the grouping is done in k = 3 clusters. Figure 4 shows how the customers that are
geographically dispersed in the city are clustered in the three clusters in which the
centroid of each group becomes the satellite of their cluster. With this clustering, it can
be guaranteed that the e-cargo bikes associated to the satellite or cluster k will travel
shorter distances and therefore their travel times will be shorter.

Indicators shown in Table 1 are used to analyze the improvements of the solutionwith
the local searches proposed and to see the impact of the distribution network in terms
of the number of vehicles, CO2e emissions, fixed cost, energy consumption and land
use. Land use is considered primarily to ensure that the distribution network does not
invade public space in large proportions. Fixed costs allow decision-makers to analyze
whether the costs associated with operating the scenario are low and to understand if the
improvement heuristics generate cost savings. Regarding energy consumption it allows
us to quantify the cost of the energy (diesel or electricity) that each transportation mode
needs to perform delivery activities.

For the experiments in the second echelon routing (second subproblem), the algo-
rithmbased on theNN is used to obtain the initial solution. This solution and the solutions
obtained using the local search operators that were explained in section 2: RLS and SLS.
In addition, the results with the associated performance indicators are presented in Table
2. These results are presented per cluster and the total values for each solution approach.
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Fig. 4. Results of the 2D k-means clustering for last-mile delivery.

Table 1. Factors and parameters to calculate indicators.

Parameter E-cargo bike Delivery van

Average speed (km/h) 15 30

CO2e emissions (kg CO2e/km) 0.005 0.278

Land use (m2) 3.48 9.15

Fixed costs (e/km) 0.63 1.32

Energy consumption (e/km) 0.00126 0.15592

E-cargo bikes performed the last-mile delivery. Due to the duration of the battery, this
transportationmode has a limited route duration of 1.5 h per tour. The difference between
the solution obtained by the NN and the RLS is 8.2%while betweenNN and SLS is 5.9%
This means that the best results in terms of distance traveled, and travel time are obtained
using the RLS improvement heuristic. Moreover, indicators like CO2e emissions, fixed
cost and energy consumption have better values using the RLS, this highlights the impor-
tance of having efficient local search operators that allow improvements and savings in
last-mile delivery.

The first-echelon results correspond to the third subproblem. It is important to note
that as it has only one depot and three satellites it is not necessary to apply a local search
procedure to improve the solution obtained by the NN heuristic. The distance traveled
by the delivery is 86.9 km taking into account that the depot is located outside the city
and must travel on the roads that allow it to arrive at the desired delivery point (satellite).
Even so, the average travel speed of the van causes that the complete delivery operation
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of the first echelon can be done in 2.9 hours with a fixed cost of 114.8 euros and a cost
of 13.6 euros in terms of energy consumption using only one vehicle, the CO2e emitted
by the van is 24.2 kg.

Table 2. Second echelon results per indicator for the NN, RLS and SLS solution approaches.

Solution
approach n =
50

N° of
vehicles

Distance
(km)

Travel
time (h)

CO2e
emissions
(kg)

Fixed
cost
(e)

Land
use
(m2)

Energy
consumption
(e/km)

NN Cluster
1

3 53.1 3.5 0.27 33.45 10.44 0.067

Cluster
2

2 35.9 2.4 0.18 22.60 6.96 0.045

Cluster
3

2 20.0 1.3 0.10 12.60 6.96 0.025

Total 7 107.7 7.2 0.54 67.83 24.36 0.135

RLS Cluster
1

3 43.1 2.9 0.23 27.15 10.44 0.054

Cluster
2

2 35.9 2.4 0.17 22.62 6.96 0.045

Cluster
3

2 19.9 1.3 0.09 12.54 6.96 0.034

Total 7 98.9 6.6 0.49 62.31 24.36 0.124

SLS Cluster
1

3 46.2 3.1 0.23 29.12 10.44 0.058

Cluster
2

2 35.1 2.3 0.17 22.11 6.96 0.044

Cluster
3

2 20.0 1.3 0.10 12.60 6.96 0.025

Total 7 101.3 6.7 0.51 63.82 24.36 0.127

About the global results, Fig. 5 shows a comparison between solution approaches
in indicators like distance, travel time and fixed costs. For these three indicators, RLS
has a reduction of 5.9%, 3.3% and 2.2% respectively. Regarding CO2e emissions, the
reduction is only 0.12% because the most representative value of CO2e is emitted by the
van while the last mile delivery is executed by e-cargo bikes and the emissions are very
low. However, this reduction indicates that RLS makes more sustainable the last-mile
delivery. The land use is always 33.5 m2 because the number of vehicles never changed
in the outputs of the three solution approaches considered.
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Fig. 5. Global results in terms of travel time, distance, and fixed costs for each solution approach.

4 Conclusions and Perspectives

Two-echelon urban delivery networks are themost common distribution systems applied
in city logistics. This paper studied the 2E-VRP in an urban parcel delivery network. To
deal with the computational complexity of the problem, we implemented an algorithm
with a three-stage decomposition strategy. In the first stage, a 2D-k-means clustering
algorithm allocates the customers to the closest satellite. The second and third stages
were solved by an algorithm based on the NN routing heuristic. Two different local
search operators were applied as improvement phases and their results were compared.
The numerical experiments were carried out on a small-size instance. Solutions with this
instance using these approaches are obtained approximately in 0.734 seconds for SLS
and 0.008 seconds for RLS. However, this study is the first assessment. With the aim of
extending this work and obtaining results in larger instances, analyses were made with
100 and 150 delivery points. The RLS improved the solution obtained by theNN in terms
of travel time by 9.5% and 13.9% respectively, for the second echelon. When comparing
RLS and SLS procedures, RLS seems to explore solutions with unbalanced number of
nodes among routes in the second echelon, which explains a better performance.

For future research, several lines are still open. First of all, the application of these
solution approaches in the original real-life case study with the real capacity of the
vehicles and with more than 90,000 delivery points, to evaluate if RLS remains as the
one that gives the best solutions when dealing with a big-size instance. Secondly, the
application of metaheuristic algorithms that allow us to escape of the local optima and
find better solutions could be very interesting. Other parameters such as service times can
be considered. Furthermore, adding new attributes to the problem like mobile satellites
or a heterogeneous fleet in the same echelon (using electric vehicles, a mix of cargo
bikes with different capacities) could be studied.
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for sustainable and energy efficient urban transport. Energy 163, 245–257 (2018). https://doi.
org/10.1016/j.energy.2018.08.096

9. Zheng, C., Gu, Y., Shen, J., Du, M.: Urban logistics delivery route planning based on a single
metro line. IEEE Access 9, 50819–50830 (2021). https://doi.org/10.1109/ACCESS.2021.306
9415

10. Azcuy, I., Agatz, N., Giesen, R.: Designing integrated urban delivery systems using public
transport. Transp. Res. Part E: Logist. Transp. Rev. 156, 102525 (2021). https://doi.org/10.
1016/j.tre.2021.102525

11. Yuan, Y., Cattaruzza, D., Ogier, M., Semet, F., Vigo, D.: A column generation based heuristic
for the generalized vehicle routing problem with time windows. Transp. Res. Part E: Logist.
Transp. Rev. 152, 102391 (2021). https://doi.org/10.1016/j.tre.2021.102391

12. Sonneberg, M.-O., Leyerer, M., Kleinschmidt, A., Knigge, F., Breitner, M.H.: Autonomous
unmanned ground vehicles for urban logistics: optimization of last mile delivery operations.
Presented at the (2019)

13. Li, J., Ensafian, H., Bell, M.G.H., Geers, D.G.: Deploying autonomous mobile lockers in
a two-echelon parcel operation. Transp. Res. Part C: Emerg Technol. 128, 103155 (2021).
https://doi.org/10.1016/j.trc.2021.103155

14. Chen, C., Demir, E., Huang, Y.: An adaptive large neighborhood search heuristic for the
vehicle routing problem with time windows and delivery robots. Eur. J. Oper. Res. 294,
1164–1180 (2021). https://doi.org/10.1016/j.ejor.2021.02.027

15. Juvvala, R., Sarmah, S.P.: Evaluation of policy options supporting electric vehicles in city
logistics: a case study. Sustain. Cities Soc. 74, 103209 (2021). https://doi.org/10.1016/j.scs.
2021.103209
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Abstract. Block stacking warehouses (BSWs), wherein products are
kept in storage on the ground and/or stacked on top of each other, are
ubiquitous along the supply chain. With the advent of autonomous fork-
lifts, unmanned BSWs are an impending reality. However, to bridge the
gap from isolated vehicles to a fully functioning warehouse, a vehicle con-
trol system capable of dealing with the complex interlaced problems asso-
ciated with BSWs is required. To prove the feasibility of such a control
system, we contribute three key elements. Firstly, we introduce SLAP-
Stack, an event discrete simulation framework for BSWs covering all the
required decision problems. Secondly, we present WEPAStacks, a large-
scale, real-world BSW use case containing data that spans three months
of operations. Finally, we use the SLAPStack together with WEPAStacks
to test different storage location assignment problem (SLAP) strategies
using fixed unit-load selection and dispatching strategies.

Keywords: Autonomous block stacking warehouses · Benchmark
dataset · Event discrete simulation · Storage location assignment
problem

1 Introduction

Block stacking warehouses (BSWs) have a high practical relevance and are used
for varied applications along the supply chain. An example of such is WEPA’s
large-scale finished goods BSW, presented in this paper, which is used to store
output conveyed directly from production. In BSWs, pallets are placed on the
floor and stacked on top of each other. Therefore, no expensive infrastructure is
required. Pallets can have additional associated information, most importantly
a stock keeping unit (SKU). Figure 1 shows the main components of a BSW in a
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Fig. 1. Example of a block stacking warehouse with a robotic forklift

grid-based layout. Floor space is divided into storage bays and pathways (aisles).
Storage bays consist of several lanes consisting of a sequence of stacks.

BSW operation consists of solving a series of interdependent decision prob-
lems namely (1) the layout problem, (2) the vehicle dispatching problem (VDP),
(3) the storage location assignment problem (SLAP), (4) the unit-load selection
problem (ULSP), and (5) the unit-load relocation problem (ULRP). Before oper-
ations can start, the layout of the BSW must be set (1). During operation, when-
ever a pallet arrives at a warehouse source, we need to first dispatch a vehicle to
pick it up (2). Then we need to decide where to place the pallet (3). On retrieval
orders, a pallet with the correct SKU needs to be selected from the warehouse
(4). Having decided which pallet to extract from the warehouse, we once again
need to dispatch a vehicle to pick it up and move it to an exit. Additionally, it
could make sense to relocate pallets, e.g. when no orders are present, to reduce
blockages and improve service times (5). Blockages occur when the pallet to be
retrieved is located behind others and relocation is necessary for pallet access.
These decisions are taken such that the in- and outbound orders are processed
according to an optimization goals, e.g. service or travel time. These problems,
coupled with autonomous mobile robots (AMR) form the autonomous block
stacking warehouse problem (ABSWP) [15].

Today, BSWs are still mainly operated by human forklift drivers. Human
operators structure the storage space based on experience and use a set of rules
to stay organized , e.g. dedicated storage locations or class-based storage with
zones. Particularly in atypical situations, e.g. warehouse overflows, humans can
maintain operations through improvisation. However, the information flow is
often lacking, e.g. at shift changes. AMRs on the other hand have well defined
communication interfaces, could apply sophisticated algorithms and adapt their
strategies depending of the current state. Furthermore, AMRs can work around
the clock and could lead to significant operations cost reduction.

To convincingly prove the potential of AMR systems, we need to first demon-
strate that they can tackle real world BSW operations. For a minimum viable
solution, a control system is needed to accommodate at least three of the five
decision problems, namely VDP, ULSP and SLAP. Furthermore, a realistic sim-
ulation model fine-grained enough to cover important BSW features is required
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for investigating whether the orders are serviced successfully without leading to
overfull BSW order queues. Third, real world data is needed to test and validate
the control system.

The current BSW state of the art reveals a gap with respect to three aspects.
Firstly, BSW simulations are either not publicly available, e.g. [3], or overly sim-
plistic, e.g. analytic models with assumptions such as single-command operations
and single Input/Output (I/O) point. [4,13]. Secondly, to our knowledge, there
are no publicly available BSW datasets. Finally, while individual BSW decision
problems have garnered much attention, a holistic ABSWP solution perspective
is still missing.

While for VDP and ULSP intuitive heuristic solutions exist, the same cannot
be said about SLAP. Without the loss of generality, always dispatching the
closest vehicle to a target location (CVL) is a good strategy, if we cannot compute
order sequences for the vehicles in advance. Last-in first-out (LIFO) or first-in
first-out (FIFO) out are intuitively good strategies, depending on the lane depth,
and type of goods stored in the warehouse, e.g. FIFO for perishable goods.

Class-based storage strategies are most popular when it comes to warehouse
organization [11]. However, it is often unclear how these strategies are set up and
for which use cases they are truly appropriate. The general approach is to first
define fixed zones within the warehouse for each class. Then SKUs are assigned
to these zones based on some popularity metric like the number of picks for a
certain time period (see e.g. [5]). When storing SKUs, the zone associated with
the particular SKU class is selected for storage. Under closer inspection, this
approach reveals a series of questions with no definitive answer, e.g. How many
zones do we use? How do we draw the zones within the warehouse? How often
do we redraw the zones?

The goal of this work is to provide a believable, minimally viable solution for
ABSWP. To that end we make the following contributions: (1) We offer SLAP-
Stack, a fine-grained simulation framework covering three of the five ABSWP
decision problems, (2) provide and discuss WEPAStacks, a large-scale real-world
BSW use case dataset provided by WEPA, and (3) evaluate 16 SLAP strategies
in terms of their ABSWP fit given LIFO as a fixed solver for ULSP and CVL
for VDP. We start our elaboration with the related work in terms of warehouse
simulation and SLAP in Section (2). This is followed by the description of SLAP-
Stack and WEPAStacks in Sections (3) and (4) respectively. In Section (5) we
present our computational experiments. We draw our conclusions in Section (6).

2 Related Work

Simulation Frameworks: While there are no publicly available simulation frame-
works targeting BSWs, some exist for related domains. A type of warehouse
that became popular in industrial applications in recent years is the robotic
mobile fulfillment system (RMFS). In RMFS items are stored on movable shelves
(pods) that are transported by robots to pick stations. The goods-to-man order-
picking system shares many properties with autonomously organized BSWs (e.g.
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grid-based layout and AMRs). The main difference is that the robots run dual-
command cycles to pick stations and drive under the pods. These pods are usu-
ally directly accessible (no multi-deep lanes) and are not stacked which results
in less blockages in these storage systems. Several open-source simulation frame-
works have been introduced starting with Alphabet Soup [9] and the more recent
frameworks RAWSim-O [12] as well as RWARE [2,14].

Alphabet Soup is an event- and agent-based simulation framework written
in Java that contains realistic models for robot behavior. It allows to study
multiple decision problems like SLAP, the assignment of pods to pick stations,
the replenishment of pods or the assignment of picking orders to pick stations
[9]. In RAWSim-O a similar approach is used to build a simulation framework in
C#. For this particular implementation a 2D and 3D visualization is available
[12]. RWARE is a multi-agent simulation environment built on the Gym API in
Python with the purpose to be used for reinforcement learning. It therefore is a
leaner implementation compared to the detailed RAWSim-O [2,14].

Storage Location Assignment Problem: Storage strategies concerning SLAP
can be categorized according to the availability of information: no information
(SLAP-NI), product information (SLAP-PI), and item information (SLAP-II)
[7]. Simple storage storage rules in the category SLAP-NI are often based on
time or distance. Well known are closest-open-location (COL) or random [7].
Using COL as a storage strategy is tantamount to simply choosing the closest
available open location relative to the order entry point for storage.

For SLAP-PI is available on a product level. This is for example conducted by
analyzing the historical data for each SKU, also known as profiling (e.g. amount
of picks per SKU over time). Based on this information, SKUs can be assigned to
dedicated storage locations or to zones within the warehouse [5,7]. A well-known
metric to assign items to dedicated storage locations is the Cube Order per Index.
It represents the ratio of the required storage space and the demand rate per
SKU [10]. For the class-based (CB) storage strategy, where a storage area is
divided into a number of zones, each zone usually corresponds a class. SKUs are
assigned to these classes based on Pareto’s Law (e.g. in case of three classes the
well known ABC storage strategy). For instance the products with the highest
number of picks over time are assigned to the most desireable zone [5]. Hausman
et al. [8] compare a random-based, a dedicated turnover-based, and CB storage
strategies in an automated storage and retrieval system. The CB strategy assigns
SKUs into classes based on turnover and assigns the class with higher turnover
to the zone with the smaller travel times. The turnover-based strategy achieves
the best results. Recent publications by Rimélé et al. [16–18] address adaptive
storage strategies in RMFS. They compare several storage strategies in an event
discrete simulation with learning approaches [16]. In [18] they use Monte Carlo
Tree Search guided by a neural network trained in a supervised fashion inspired
by [21] to predict actions. The learning-based approaches outperform the rule-
based strategies.

SLAP-II requires detailed information, e.g. the due date for each item, to
calculate the duration-of-stay [6]. In our use case the item due dates are not
known in advance.
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3 SLAPStack Simulation Framework

SLAPStack is an event discrete simulation embedding three of the five decision
problems from Sect. 1, namely SLAP, ULSP and VDP. The implementation fol-
lows the architecture from [19]. The interaction between the simulation and a
decision making algorithm (agent) is defined by the OpenAI Gym interface. The
gym interface consists mainly of the functions init, reset, step [1].

The simulation usage begins by calling the reset function, which returns the
initial simulation state. Thereafter, step is called on a loop until the simulation
terminates (indicated by the done flag). step takes an action as a parameter and
runs the simulation until the next action, e.g. storage allocation, is required. The
step function exposes the current warehouse state together with an optional
reward signal. The state serves to inform the agent action.

Analogously to [19], agents can take direct actions, i.e. select a storage loca-
tion for delivery/retrieval, or chose from a set of user defined WarehousePolicy
objects, which in turn take the direct action. The agent state and the reward
can be jointly configured by means of a custom OutputConverter object.

An in depth elaboration of the simulation implementation would burst the
frame of this work. Since SLAPStack is open-source (available with supplemen-
tary details and figures at [20]), in what follows, we only discuss key aspects of
our simulation framework just enough for researchers to get started with our
code. To that end we discuss the simulation inputs and initialization. A brief
elaboration of the event management during a simulation step follows. Lastly,
we sketch the mechanisms reflected by the simulation state. We use the type-
writer font to indicate variables present in the implementation.

3.1 Inputs and Initialization

The main simulation parameters are given by the warehouse layout, an order list,
a number of AMRs together with their speed, the warehouse unit distance (of
each tile), a set of initial SKUs and an optional storage strategy for ordering the
initial SKUs. The layout is an integer matrix with specific integer encodings for
storage locations, aisles, walls and docks inbound docks (see Sect. 4.2). Each tile
in the matrix is assumed to have a symmetric spatial expansion corresponding
to the unit distance parameter. The orders are lists of objects containing five
fields namely type, arrival time in seconds, SKU, batch, and week number. The
order type is either delivery or retrieval. The batch integer encodes the
production lot for type delivery and each truckload for type retrieval. The
week number enables the easy aggregation of order information.

During initialization four three-dimensional matrices, specifically the storage
matrix S, the vehicle matrix V , the arrival-time matrix T and the batch matrix
B are populated. The first matrix dimensions (width and length) reflect the given
layout. The user defined initial pallets storage strategy is used to select
positions for the placement of the initial skus. V is initialized by randomly
sampling AMR positions from the collection of aisle positions.
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Having initialized the state matrices, the simulation proceeds to create
Retrieval and Delivery events and to add them to the the main event queue,
i.e. the future events heap, wherein the events are sorted by their arrival time.
Then, the first event is popped from the heap, its handle function gets exe-
cuted which leads to a state update and the initial state is returned. Depend-
ing on the order type, the decision mode variable is set in the state to either
Delivery or Retrieval to indicate the type of decision the agent is supposed
to make. Aside from (S, V, T,B), the State contains several objects dedicated
to managing specific state information, namely AMRManager, LocationManager,
Trackers, RouteManager as well as a copy of the simulation input parameters
save for the orders and initial SKUs.

3.2 Step and Event Management

The simulation maintains six types of self handling Events of either Order
(Delivery/Retrieval) or Transport type. The Transport types, which model
the AMR movement through the warehouse, are DeliveryFirstLeg (drive
empty to an I-point for pickup), DeliverySecondLeg (transport pallet to a free
storage location), RetrievalFirstLeg (drive empty to the storage location for
pickup), and RetrievalSecondLeg (transport pallet to an O-point). Transport
events are directly associated with an Order event. Events can be either block-
ing, i.e. they require an agent decision, or non-blocking, meaning that the next
heap event can be handled.

The environment’s step function, works in three stages: During stage (1), the
event associated with the current mode is created and added to future events.
In stage (2), the event with the smallest occurrence time is popped from the
future events heap and its handle function is called to update the environment
state including the system time. These steps are repeated until a blocking event is
encountered. Stage (3) handles the updates of the legal actions state property,
marks current AMR positions and returns control to the agent.

Transport events are created either as a result of an Agent action
(DeliverySecondLeg, RetrievalFirstLeg), or they are created automati-
cally as part of the handling logic of a different event (DeliveryFirstLeg,
RetrievalSecondLeg). To enable the agent to track the transport routes,
Transport events are additionally maintained in a running transport queue
to which they are added on creation and removed on completion. During stage
(3) of step, this queue is processed by calling partial handle on all contained
events, which leads to the active AMR positions being updated in the state.

Whenever a Delivery gets popped from the future events heap, an AMR
must be selected and moved to the source to pick up the order. For now, dispatch-
ing decisions (i.e. AMR selection) are hard-wired into the simulation. The closest
AMR to the respective source will be picked for the job. A DeliveryFirstLeg
event is then created associating the chosen AMR with the triggering order.
During Transport event creation, the AMR route and travel time are com-
puted using the Dijkstra shortest path algorithm and the event is added to both
future events and the running transport queues.
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DeliveryFirstLeg events are blocking. When such an event is retrieved
from the heap, the agent controlling the simulation needs to select an appropriate
open storage location for the order contained in DeliveryFirstLeg. As a result
of the agent action, a DeliverySecondLeg is created and added to the heap.
Analogously to its DeliveryFirstLeg counterpart, the event completion time
and the route taken are saved in the event properties. The order object carried
by the DeliveryFirstLeg is passed on to the current event prior to adding the
Transport to future events and running transport.

When Retrieval orders arrive, the execution halts for the agent to pick an
appropriate occupied position for the requested SKU. The closest free AMR to
the picked position is then chosen for retrieving the SKU. The route between the
vehicle and target position is calculated along with the required travel time and
saved within a new RetrievalFirstLeg event along with the Retrieval order.

When the handle function is called on a RetrievalFirstLeg, a Retrieval-
SecondLeg event is created and the order saved within the former event is passed
along to the latter. A route is computed between the reached SKU position and
the sink associated with the carried Retrieval order. The RetrievalSecondLeg
is then added to the appropriate event queues. When popping and handling
RetrievalSecondLeg and DeliverySecondLeg events, the AMR is simply
released without any new events being created.

The event chain lain down does not consider the situation in which all
AMRs are busy transporting other orders. If no AMR is available on Order
arrivals, the respective Delivery or Retrieval order will be added to the
queued delivery orders or queued retrieval orders respectively. During
stage (1) of the step function the order queues are processed by AMRs in a
FIFO fashion whenever they become free again.

3.3 State Management Mechanisms and Routing

The state management serves three distinct purposes, namely caching for
simulation speedups (RouteManager), enforcing the correct simulation logic
(LocationManager and AMRManager) and providing the simulation control with
raw and aggregated state information (S, V, T,B and Trackers). The state is
updated on event occurrence by the event’s handle function.

The LocationManager is mainly used to maintain structures for the fast
retrieval of occupied position indexed by SKU as well as the open storage loca-
tions. The current implementation limits the options available for placing pallets
to avoid what we call “Swiss cheese” situations, i.e. creating holes in blocks of
storage through improper placement of pallets. To that end, the legal delivery
actions are the subset of open locations corresponding to the immediate lane
border relative to the aisle.

Three further mechanisms that impact legal actions are maintained by the
LocationManager, namely lane purity, lane locks and pallet shifting. For the
lane purity mechanism, whenever SKUs get placed in an empty lane, the lane
gets assigned to that particular SKU. Whenever a new SKU is to be stored in the
warehouse, the simulation form the set of legal actions by listing the positions
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in the lanes assigned to this particular SKU together with the unassigned lanes.
If no adequate positions are available, but there are otherwise open positions in
the warehouse, then any open positions are considered legal actions. The lane
lock mechanism works as follows: Whenever an agent selects a position for either
delivery or retrieval, the lane of the respective position gets locked. As a result,
the lane positions cannot be used for neither retrieval nor delivery until the
locking event finishes.

The pallet shifting mechanism ensures that retrieving SKUs from the back
of a lane does not lead to Swiss cheese. When selecting the legal actions for a
particular Retrieval order, the first candidate set is, analogously to delivery,
the outermost positions (border set) in every lane which contain the required
SKU. If the border set for a particular SKU is empty but matching SKUs are
available in the warehouse at deeper positions in the lanes, we allow retrieval
from such positions. The AMR incurs a time penalty for every pallet it shifts
away to reach the desired position. The hole that results from such a retrieval is
plugged by pushing all pallets inward towards the bottom of the lane.

All routes in SLAPStack are complete grid-cell sequences along the shortest
path between an AMR position and its target, e.g. dock or storage locations. To
speed up route computation, Dijkstra is performed on a routing graph comprised
of a subset of all grid-cells, namely aisle and dock positions. Furthermore, routes
are cached by the RouteManager for later reuse.

4 WEPAStacks Benchmark

Along with our open-source simulation, SLAPStack, we publish the novel bench-
mark dataset WEPAStacks based on the in- and outbound flow of a large-scale
BSW from WEPA. WEPA is one of the largest hygienic paper manufacturers
in Europe with production plants and warehouses in currently six European
countries. BSWs play a key-role for the storage of their goods, especially for
situations where additional storage capacity has to be added on short notice.

4.1 Warehouse Setup

The BSW in this use case contains only finished goods on pallets (Fig. 2b). The
warehouse has a maximum capacity of 19512 storage locations (6504 locations on
the ground with stacking up to three levels). Figure 2a shows the footprint of the
warehouse. The light-gray area represents aisles, the white areas with separating
lines are storage bays and the dark-gray areas outline the warehouse boundaries
(surrounding wall and the truck loading zone). All aisles are wide enough to
allow two-way traffic. This does not apply to the lanes. The pallets arrive at
four input points (I-points) on conveyor belts from the production lines. Forklift
drivers pick up the pallets at I-points and deliver them to a storage location in the
warehouse. When a retrieval order arrives, pallets are picked up and transported
to O-points. O-points represent the truck loading staging areas where pallets are
provided at each dock door for shipping. The truck loading process is executed
by external truck drivers and thus not part of our use case.
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(a) Warehouse Layout (b) Warehouse Interior

Fig. 2. Top view on the warehouse layout in (a). The aisle and loading zone is shown
in (b)

4.2 Dataset and Assumptions

The obtained dataset from WEPA consists of three components: the warehouse
layout, the initial fill level per SKU, and the daily in- and outbound flow vol-
ume per SKU for a time period of three months (89 d). The vehicle fleet is not
provided since the number of manually operated forklifts is not transferable to
an automated system and must be determined. All pallets are assumed to be
unit-loads that can be stacked up to three levels. In reality pallet height and
weight as well as the stacking capability of different SKUs varies. To anonymize
the data and generate the detailed in- and out-bound order history with exact
arrival times required by SLAPStack, we made the following assumptions.

For the inbound flow, we used the fact that WEPA’s production is highly
automated and achieves steady outputs within production batches, but often
requires long changeover times. As such we set the within production batch
times are sampled from 60 to 120 s per pallet. The changeover times between
production batches take from 30 to 120 min. Both are calculated via a uniform
distribution. SKUs can be produced on all production lines around-the-clock.
The arrival times are the cumulative sum of the sample times.

For outbound flow, the products are mainly shipped via full truck loads of
33 pallets per truck. The standard opening hours of the warehouse are from
06:00-22:00. On weekends and public holidays the warehouse is usually closed,
but there can be exceptions. The truck arrival times over the 16 opening hours
follow a distribution with peaks in the morning hours and after lunch time.
The loading time per truck in minutes is drawn uniformly at random from the
interval [45, 90]. The times vary depending on the provisioning of pallets from
storage and the skills of the truck drivers. The orders consist of six parameters
namely the type (delivery or retrieval), the SKU (number from 1 to 136), the
order arrival time (absolute time in seconds counting from zero), the dock door
(number from 1 to 4 from top to bottom for delivery and 1 to 10 from left to
right for retrieval), the batch number (number of production batches from 1 to
1498 for delivery and of truckload batches from 1 to 7496 for retrieval), and the
week number (from 1 to 14). Each order represents a single pallet.
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WEPAStacks presents autonomous BSWs with a feasibility challenge: The
ABSWP decisions need to be taken in such a way, that trucks never queue up at
O-points and the production never needs to halt. This can be translated into the
following (virtual) buffer constraints: For trucks not to queue up, the number
of queued retrieval orders cannot exceed 330 (truck capacity × 10 Ω-points).
For deliveries we set a cumulative virtual buffer of 240 matching the maximum
production capacity of one hour per line (60 pallets).

5 Experiments

In this section we discuss the experiment setup derived from the WEPA use case
and compare the performance of several CB storage policies as well as a variation
of COL. We use a fixed ULSP strategy, namely LIFO, and a fixed VDP strategy
which is, for now, hardwired in the simulation, namely CVL.

5.1 Experiment Setup

The SLAP strategies chosen for evaluation are based on the popular COL and
CB strategies. For the latter, we consider different parameter variations that fit
the WEPA use case. We modified COL to use the pure-lane mechanism described
in Sect. 3.3 by choosing the closest open pure lane (COPL) for delivery instead
of any location. Therefore, the traditional COL is only encountered in situations
where no pure lanes are available for a particular SKU.

Our CB SLAP strategies are implemented as follows. (1) We use the current
SKU amounts in the warehouse to estimate the relative space to be booked to
a zone for a particular SKU. (2) We compute our zones in two steps: First we
create a geometric progression for the percentage of space assigned to each zone.
For three zones, for instance, this will result in a sequence close to 10%, 30%,
and 60% of the available storage space. The more popular SKUs get assigned
to the smaller zone. In a second step we order all lanes in the warehouse with
respect to the average distance between lane access points and I- and O-points
and distribute these (sorted) lanes according to the percentages computed in the
first step. (3) On delivery, after choosing the appropriate SKU zone, we decide
on the free slot within the zone using COPL. (4) If the target zone is full, we
pick the next best zone. (5) We redraw the zones every 1000 orders.

We define the SKU popularity based on which we assign SKUs to classes
in one of five ways to empirically investigate their impact on WEPAStacks. (i)
SKU Turnover time—T: The SKU turnover time we define as the average time
between delivery and retrieval over all pallets of a particular SKU (see [8]).
Higher turnover times are less popular. (ii/iii) Picks Past/Future—PP/F: We
denominate pick popularity past/future as the cumulative SKU amounts over
all retrieval orders of the past/future, the higher the pick number, the higher the
popularity (e.g. PP [5]). (iv, v) SKU Throughput Past/Future—TP/F: By SKU
throughput we mean the cumulative SKU amounts over all processed delivery
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and retrieval orders of the past/future. Higher cumulative amounts map to a
higher popularity.

The coarse-grained future information for PF and TF is available for WEPA-
Stacks on a weekly basis. While knowing the future SKU amounts is plausible,
the exact delivery and retrieval times are not available to us. Hence this future
information cannot be used for T-strategies. This, however, is not necessarily
the case for every BSW use case.

For each of the five popularity definitions we test a storage strategy version
with two, three, and five classes. This amounts to a total of 16 storage strate-
gies: COPL, T2 to T5, PP2 to PP5, PF2 to PF5, TP2 to TP5, and TF2 to
TF5. Within this nomenclature, the numbers represent the respective number
of classes. The following parameters complete our setup: The simulation uses 40
AMRs, a unit distance of 1.4 m, a constant AMR speed of 2 m per second and a
pallet shift penalty of 20 s per pallet.

5.2 Results

Table 1 shows the results achieved by the four best and four worst SLAP heuris-
tics in terms of average service time, total distance traveled by AMRs, the max-
imum length of the delivery and retrieval queues, average end-state entropy,
average turnover time (over all SKUs), and system throughput.

Table 1. Metric values for the four best and four worst storage strategies. Rows are
sorted by the average service time and the best results achieved are set in bold.

Metric

Storage

Strategy

Average

Service
Time (s)

Total
Distance
(km/AMR)

Max.
Delivery

Queue

Max.
Retrieval
Queue

Average

Lanewise
Entropy

Average

Turnover
Time (days)

Average

Hourly

Throughput

COPL 310.02 2648.83 192 293 2.05 14.71 193.66

T5 317.69 2753.01 188 293 1.99 14.91 193.66

T2 335.03 2751.95 220 293 1.86 14.14 193.66

TF2 371.49 2732.78 490 293 1.91 14.26 193.67

...

PF2 650.06 2751.62 749 293 2.08 14.07 193.66

PP5 669.68 2756.39 1465 293 2.00 14.73 193.66

TP3 734.92 2745.33 947 293 1.94 14.11 193.66

PF5 749.89 2747.61 1581 293 1.78 14.57 193.66

In terms of service time, we see that the time between order arrival and
order completion is, on average, between 310.02 and 749.89 s. If all 10 Ω-
points are occupied, this corresponds to an average provisioning time of 43
( 310.02 s·33 pallets·10 O-points

40 AMRs·60 s/min = 42.62775 min) and 103 min for the best and worst
strategy respectively. Both of these times are acceptable given that around
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71 trucks need to be loaded daily in the present use case ( 71 trucks·103 min
40 AMRs·60 min/h =

12.19 h). Judging the SLAP strategies by maximum delivery queue length, how-
ever, relativizes these results: Only COPL, T2, and T5 respect the virtual deliv-
ery buffer limit of 330 palettes.

We define the average lanewise entropy as LE :=
∑

SKU∈L pSKU ·log(pSKU ),
where L is a lane and pSKU the relative SKU amount in the lane. LE takes
values between 0 and ∞, with lower values signaling order and higher ones
increasing disorder. The values in Table 1 show that all our storage strategies
generate a significant amount of disorder in the warehouse, with COPL being the
messiest feasible storage strategy and T2 the neatest. In terms of turnover and
throughput, our results register little variation. This suggests that these metrics
are dominated by the order sequence rather than the AMR behavior.

Figures 3 and 4 show the evolution of six different metrics, namely the deliv-
ery queue length (3a), average service time (3b), fill level (3c), lanewise average
entropy (3d), average utilization (4a) and snapshot utilization (4b) over the span
of the simulation for the four best SLAP strategies. Four aspects which we refer
to as Feasibility Bottleneck, Lane Homogeneity Impact, Disorder Management
and ULRP Potential, become evident from an analysis of our results.

(a) Size (b) Average Service Time

(c) Warehouse Fill Level (d) Average Lanewise Entropy

Fig. 3. Behavioral comparison of the four best storage strategies.

Feasibility Bottleneck: Finding SLAP heuristics that represent feasible ABSWP
solutions in conjunction with CVL and LIFO is challenging. Figure 3 shows that
TF2 exceeds the buffer limit (Fig. 3a) in situations of high entropy (Fig. 3d) and
a high fill level (Fig. 3c). Hence the only viable candidates are COPL, T5 and
T2. A possible explanation for COPL being the best solution in spite of the high
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entropy it generates, may be the more homogeneous distribution of disorder
generated by deferring the use of classes. The retrieval buffer limit is kept by all
four best strategies (Table 1).

Lane Purity Impact: There seems to be an overall positive correlation between
entropy (Fig. 3d) and service time (Fig. 3b). Note that the warehouse is orig-
inally fairly well organised, because all 13942 initial pallets are placed using
TF3 with no zone re-computation. The warehouse order degenerates with time
independently of storage strategy, because of a vicious circle where pure lanes
gradually become less available given a higher fill level and more disorder. This
could suggest that the AMR system is more efficient when there is less disorder
in the warehouse. However, more experiments are required to isolate the impact
of fill level and entropy on service time.

Disorder Management: From Table 1 and Fig. 3 we see that our SLAP strategies
lead to high LE values. In large BSWs with many SKUs, such as ours, human
operators could quickly lose track of the SKU locations. An AMR system on the
other hand, could handle the high degree of entropy.

ULRP Potential: From the Fig. 4a we can see that the average AMR utilization
is at most 25%. This is natural, since the warehouse is closed for retrieval during
the night and for both retrieval and delivery during (most) weekends (Fig. 4b).
During such periods, AMRs can be used to rearrange the SKUs within the
warehouse to re-establish lane purity, thereby ensuring faster service times during
periods with more frequent order arrivals.

(a) Average Utilization (b) Utilization

Fig. 4. AMR average and snapshot utilization over.

6 Conclusion

Our contributions were threefold. Firstly, we introduced SLAPStack, a novel,
fine-grained and configurable simulation framework covering three of the five
main operational decision problems of BSWs. In its current form, SLAPStack
is suitable for investigating layout problem, SLAP, and ULSP strategies. Given
SLAPStack’s modular architecture, the framework is easily extensible to enable



304 J. Pfrommer et al.

the testing of VDP and ULRP solutions. Secondly, we discussed WEPAStacks, a
large-scale real-world benchmark dataset containing the in- and outbound flow
as well as the exact layout of a real warehouse managed by WEPA. We open-
sourced both SLAPStack and WEPAStacks through [20]. Thirdly, we used both
simulation and dataset to explore 16 different SLAP strategies given fixed ULSP
and VDP strategies (LIFO and CVL respectively).

Three of the 16 SLAP strategies managed the in- and outbound orders such
that no delays were incurred by production and outbound trucks. Therefore, we
achieved our goal of providing a minimally viable solution for the WEPAStacks
ABSWP. The results reveal COPL to be the best strategy in terms of average
service time and AMR travel distance. Furthermore, we drew four general con-
clusions for the WEPAStacks use case: We identified the delivery queue length
as the feasibility bottleneck, hypothesized the lane purity impact on the opera-
tional warehouse performance, noted the advantage of a AMR system in terms
of disorder management and underlined the ULRP potential for ABSWPs.

Our current work opens up a wide avenue of research. On the one hand,
SLAPStack needs to be extended to cover more use cases, be closer to direct
AMR interaction and embed the missing ABSWP decision problems in a config-
urable fashion. To these ends, an explicit pallet-shifting and conflict-free routing
mechanism must be implemented and two new decision modes dedicated to unit
load relocation and vehicle dispatching must be added. Given the low average
utilization of the AMRs and the improved service times in case of less disorder,
reshuffling strategies for the ULRP are particularly promising areas of future
inquiry. A wider-reaching SLAPStack would allow for the better evaluation and
validation of ABSWP solutions.

On the other hand, SLAPStack coupled with WEPAStacks, already offers
a solid testbed for more sophisticated decision algorithms for the constituent
problems individually and as an ensemble. Since our simulation framework imple-
ments the OpenAI Gym interface, Reinforcement Learning approaches can be
used for control. Furthermore, decision algorithms could consider more, or even
all, the available planning information (the currently queued orders, AMR posi-
tions etc.) to reach better solutions, e.g. through (stochastic, ML guided etc.)
search. Last but not least, the metrics monitored by SLAPStack allow for the
construction of datasets and training of Supervised Learning approaches.
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Abstract. In this paper, we study a two-stage stochastic multi-period
facility location and capacity expansion problem. The problem is moti-
vated by the real-world problem of locating facilities for green hydrogen
in Norway. We formulate a model with modular capacities. Investment in
a facility and expansion costs represents long-term costs. For each capac-
ity, we define a convex short-term production cost function which enables
to capture economies of scale in investment as well as in production. The
objective is to minimize the total expected investment, expansion, pro-
duction and distribution costs while satisfying demand in each scenario.
We solve the problem using sample average approximation. The results
from solving the problem show that the stochastic problem leads to lower
installed capacity in the opening decisions than the expected value prob-
lem.

Keywords: Stochastic facility location · Capacity expansion ·
Hydrogen supply chain

1 Introduction

In February 2020, Norway adopted more ambitious emission reduction targets
than agreed upon in the Paris Agreement. The new target is to reduce greenhouse
gas (GHG) emissions by at least 50% towards 2030, compared to the 1990 level
[35]. To achieve this goal, the emissions from the transport sector also need
to be halved. With a share of more than 30%, the transportation sector is an
important contributor to total GHG emissions [37].

One of the key instruments for achieving the emission reduction targets is to
use green hydrogen as a zero-emission energy carrier [37]. Only hydrogen coming
from a CO2-free production process can be considered a green zero-emission
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fuel. Electrolysis (EL) using energy from renewable sources is the most mature
technology for green hydrogen production [16]. EL is a quite flexible production
technology and can produce in a range of 20 − 100% of installed capacity [27].
The production costs are subject to economies of scale as higher production
quantities result in lower average unit costs [15].

In order to start the transition towards hydrogen in Norway, municipalities
can require the usage of hydrogen as fuel when public transport contracts for
ferries, high-speed passenger vessels, and coastal routes are renewed. Hydrogen
is also a promising energy carrier for long-distance buses and heavy trucks [11].
The Norwegian government is also working on designing possible low- and zero-
emission requirements for offshore supply vessels [30]. The conversion potential
to zero-emission energy carrier of the offshore fleet with respect to the fleet
composition and future demand is presented in [32]. Future hydrogen demand
is highly uncertain because the market share of hydrogen vehicles in the road
traffic sector and the future energy carrier in the offshore sector are also subject
to uncertainty.

In this paper, we study the problem of locating hydrogen production facilities
in Norway under uncertain demand. We formulate our problem as a two-stage
stochastic multi-period facility location problem with capacity expansion. We
consider modular capacities in order to model economies of scale. The goal is
to minimize expected investment, expansion, production and distribution costs
of satisfying the customer demand. We distinguish between long-term invest-
ment costs and short-term operational costs to capture economies of scale in
investment and production. This approach also enables the modelling of different
utilization of the installed capacity. The problem is solved using sample aver-
age approximation (SAA). We compare the first-stage solution of the stochastic
problem (SP) and the expected value problem (EVP) and discuss the value of
the stochastic solution. We analyse the hydrogen production infrastructure and
provide a managerial insight into the investment capacity of new facilities.

The remainder of this paper is structured as follows: we first provide an
overview of related work to deterministic and stochastic facility location and
capacity expansion problems in Sect. 2. We formulate the mathematical model
for the stochastic two-stage multi-period facility location problem in Sect. 3. The
solution approach is presented in Sect. 4. Case study and Computational results
are discussed in Sects. 5 and 6, respectively. We conclude in Sect. 7.

2 Related Work

We structure the related work into three main parts. First, we focus on literature
related to deterministic facility location and capacity expansion problems before
we continue with two-stage facility location and supply chain design problems.
Finally, we present literature related to SAA.

Deterministic multi-period facility location and capacity expansion problems
with modular capacities are studied in [10,41]. In these papers, both capacity
expansion and capacity reduction are allowed. Expansion is modelled as new-
building of another facility at a given location while capacity reduction means
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closing some or all of the facilities at a given location. An approach where capac-
ity expansion is modelled as a modification of an existing facility is presented in
[18–20,43]. In [43], the number of capacity expansions is limited, and capacity
reduction is not allowed. In [18], capacity expansion and reduction are allowed
multiple times. An extended version of the model from [18] for multiple com-
modities is presented in [19,20]. See also the review [26,28] for an overview over
multi-period facility location problems.

Uncertainty in demand in two-stage stochastic problems is more commonly
found in single-period facility location problems. The first-stage decisions usu-
ally refer to the opening of facilities and determining their capacities, while the
second-stage decisions are related to distribution and demand satisfaction. A
model with random demand and non-linear cost function to model economies
of scale is discussed in [4,39]. The problem in [39] is solved using Lagrangian
relaxation. A two-stage facility location problem with depots is presented in [24]
and also solved by Lagrangian relaxation. The model presented in [24] can be
solved by an effective genetic algorithm as shown in [12]. A two-stage multi-
period facility location model with a capacity expansion is studied in [7]. The
authors compare two model formulations: In the first model, capacity expansion
is a part of the first-stage decisions while in the second model, capacity expansion
is a second-stage decision. A multi-stage formulation of a multi-period stochastic
problem is discussed in [3].

Supply chain network design problems are similar to facility location prob-
lems and have received lots of attention. A study on designing the hydrogen sup-
ply chain under uncertain demand with a similar decision structure to [4], [39]
is presented in [21,31]. The first-stage decisions correspond to investing in pro-
duction and storage capacity during the planning horizon while the second-stage
decisions correspond to the distribution plan. A two-stage stochastic program-
ming model for minimizing the total daily costs of the hydrogen supply chain
with uncertain demand is presented in [9]. Compared to previous work in the
hydrogen supply chain, the authors provide emission, energy consumption and
risk costs. An early literature review on dynamic facility location and supply
chain problems with stochastic data can be found in [34]. A review on facility
location problems under uncertainty is provided in [42] and a recent summary
on facility location problems under uncertainty is presented in [6,14].

The SAA algorithm allows for solving large two-stage stochastic problems
with a binary first stage. See [25] and [22] for the details on methodology. The
application of SAA to a facility location problem where the availability of opened
facilities is uncertain is presented in [13]. A similar problem with facility disrup-
tions is discussed in [23]. The authors combine SAA with a scenario decompo-
sition algorithm to solve the problem. A combined solution approach of SAA
and Benders decomposition for a supply chain design problem with uncertain
demand is studied in [38]. A supply chain design problem with a model that cap-
tures short-term as well as long-term demand uncertainty is discussed in [40].
In order to increase the number of scenarios in the sample, SAA combined with
dual decomposition is applied to solve the problem.
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3 The Mathematical Programming Model

We study a stochastic two-stage multi-period facility location and capacity
expansion problem with uncertain demand. The objective is to minimize the
total expected costs.

3.1 Problem Description

We formulate our problem as a two-stage stochastic multi-period facility location
and capacity expansion problem. The goal is to minimize the sum of expected
discounted investment, expansion, production and distribution costs while satis-
fying demand in each scenario. The decisions when and where to open and which
capacity to invest in are taken before the uncertainty is disclosed. In the second
stage, decisions covering capacity expansion, production, and distribution are
taken. Capacity expansion is allowed only once in each scenario and only in the
sense of increasing the capacity level. Once a facility is opened, it cannot be
closed.

We consider a set of candidate locations and a set of customers. For each
facility-customer combination, we have specific unit distribution costs. However,
not all customers can be served from all facilities. The investment costs are given
by the installed capacity while the production costs depend both on installed
capacity and production quantity. Note that investment and production costs
can depend on location. The production quantities can vary from the installed
capacity. However, there is a lower and an upper limit. The lower limit is given
by the minimum production quantities for each capacity. The installed capacity
represents the upper limit for production. This upper limit can be extended by
expansion.

We model the investment and capacity decision as a discrete choice from a set
of modular capacities. Expansion is then modelled as a jump between available
capacities. We consider opening a small facility and expanding it as a more
expensive alternative to opening a large facility right away. These extra costs
are modelled as a one-time payment when expanding. However, the short-term
production costs are independent of whether the capacity results from expansion
or from opening the facility right away.

For each available capacity, we provide a piecewise linear convex short-term
production cost function which enables a variation in production quantities.
This approach enables to capture the economies of scale in investment as well
as in production. Figure 1 shows our long-term (dashed line) and short-term
(solid line) production costs. The capacity index of installed modular capacity
is denoted k and Qk is the appropriate quantity. The total costs for production
at installed capacity k are denoted Ck. For each capacity k, we define a short-
term production costs function fk(q) that enables production in a range between
minimum and maximum limit. However, higher utilization of installed capacity
leads to lower unit costs. This approach of modelling investment and production
costs is similar to the one in [39].
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Quantity

stso
C

Qk Qk+1 Qk+2
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f k(q)

Fig. 1. Long-term and short-term production costs

3.2 Mathematical Formulation

Let us first introduce the following notation:

Sets

B Set of breakpoints of the short-term cost function
I Set of possible facility locations
J Set of customer ports
K Set of available discrete capacities
S Set of scenarios
T Set of time periods
T1 Set of time periods corresponding to the first-stage, T1 ⊂ T

Parameters and Coefficients

Cik investment costs at location i for capacity point k;
Ds

jt demand at customer j in period t, and scenario s;
Eikl costs of expansion at location i from capacity in point k to capacity in
point l;
Fibk costs at location i at breakpoint b of the short-term cost function of
capacity k;
Lij 1 if demand at location j can be served from facility i, 0 otherwise;
Qbk production volume at breakpoint b of the short-term cost function, for
capacity point k;
Tij distribution costs from facility i to customer j;
yikl0 initial facility variable;
δt discount factor in period t;
ps probability of scenario s;
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Decision Variables

xs
ijt amount of customer demand at customer location j satisfied from facility

i in period t in scenarios s;
ys
iklt 1 if facility is operated in location i in period t, with originally installed

capacity k, and operated capacity l in scenario s, 0 otherwise;
μs
bilt weight of breakpoint b at location i for capacity point k in period t and

scenario s.

We present a two-stage stochastic multi-period model. The model is given
as:

min
∑

s∈S

ps

[
∑

i∈I

∑

k∈K

∑

t∈T

δtCik

(
ys
ikkt − ys

ikk(t−1)

)
+

∑

i∈I

∑

k∈K

∑

l∈K:l>k

∑

t∈T

δtEikl

(
ys
iklt − ys

ikl(t−1)

)
+

∑

b∈B

∑

i∈I

∑

l∈K

∑

t∈T

δtFiblμ
s
bilt +

∑

i∈I

∑

j∈J

∑

t∈T

δtTijx
s
ijt

⎤

⎦ ,

(1)

subject to:

∑

k∈K

∑

l∈K:l≥k

ys
iklt ≤ 1, i ∈ I, t ∈ T, s ∈ S, (2)

∑

k∈K

∑

l∈K:l>k

ys
iklt = 0, i ∈ I, t ∈ T1, s ∈ S, (3)

t−1∑

t′=1

ys
ikkt′ ≥

∑

l∈K:l>k

ys
iklt, i ∈ I, k ∈ K, t ∈ T, s ∈ S, (4)

∑

l∈K:l≥k

ys
iklt ≥

∑

l∈K:l≥k

ys
ikl(t−1), i ∈ I, k ∈ K, t ∈ T, s ∈ S (5)

ys
iklt − ys

ikl(t−1) ≥ 0, i ∈ I, k ∈ K, l ∈ K : l > k, t ∈ T, s ∈ S, (6)

∑

b∈B

μs
bilt =

∑

k∈K

ys
iklt, i ∈ I, l ∈ K, t ∈ T, s ∈ S, (7)

∑

j∈J

xs
ijt =

∑

b∈B

∑

l∈K

Qblμ
s
bilt, i ∈ I, t ∈ T, s ∈ S, (8)
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∑

i∈I

xs
ijt = Ds

jt, j ∈ J, t ∈ T, s ∈ S, (9)

xs
ijp ≤ LijD

s
jt, i ∈ I, j ∈ J, t ∈ T, s ∈ S, (10)

1
|S|

∑

s′∈S

∑

l∈K:l≥k

ys′
iklt =

∑

l∈K:l≥k

ys
iklt, i ∈ I, k ∈ K, t ∈ T, s ∈ S, (11)

ys
iklt ∈ {0, 1}, i ∈ I, k ∈ K, l ∈ K : l ≥ k, t ∈ T, s ∈ S, (12)

xs
ijt ≥ 0, i ∈ I, j ∈ J, t ∈ T, s ∈ S (13)

μs
bilt ≥ 0, b ∈ B, i ∈ I, k ∈ K, t ∈ T, s ∈ S. (14)

The objective function (1) is equal to the expected discounted costs of invest-
ment, expansion, production and distribution costs. Restrictions (2) guarantee
that only one facility is opened at a given location and that this facility is oper-
ated at only one capacity at a time. Constraints (3) ensure that we are allowed to
open facilities in the first stage, but not to expand them. Restrictions (4) make
sure that only previously opened facilities can be expanded and constraints (5)
ensure that a facility can be expanded but cannot be closed. Capacity expansion
is allowed only once during the planning horizon in each scenario. The variable
ys
iklt contains information about the initially installed capacity k as well as the

capacity l at which it is currently operated. After expansion, the operated capac-
ity l is higher than the installed capacity k. Inequalities (6) ensure that capacity
index l can change only once. Equations (7) guarantee that production is allo-
cated only to opened facilities and that the short-term production cost function
depends on the operated capacity. Equations (8) express the requirement that
the whole production has to be distributed to customers. Equations (9) ensure
demand satisfaction in each scenario, while constraints (10) specify if customer
j can be served from facility i.

Constraints (11) are the non-anticipativity constraints (see e.g. [36]) that
ensure that the opening capacity k is the same in all scenarios. Once a facility
has been opened with capacity k in a given scenario s, it has to be operated
at a capacity l ≥ k. Hence, the right-hand side,

∑
l∈K:l≥k ys

iklt, is equal to 1.
The left-hand side then ensures that the facility is opened with capacity k in all
scenarios, even though it might be operated at different capacities l in different
scenarios.

Restrictions (12)–(14) are the binary and non-negativity requirements for
the decision variables. The variables are defined for each scenario. However,
investment decisions must be taken before the uncertainty is disclosed.

4 Solution Approach

We use the SAA algorithm [22,25] to solve our two-stage stochastic multi-period
model with binary variables. A description of the algorithm can also be found in
[38] and [40], but we summarize it here for the sake of completeness. Using the
SAA approach, the problem is repeatedly solved with a smaller set of scenarios.
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First, a random sample ξ1, ..., ξn with a size N is generated. Then the expectation
E[Q(y, ξ)] is approximated by the sample average function 1

N

∑N
n=1 Q(y, ξn). We

approximate our problem with the following SAA problem:

min

{
ĝ(y) = cT y +

1
N

N∑

n=1

Q(y, ξn)

}
(15)

With increasing sample size, the optimal solution of (15), ŷN converges to
the optimal solution of the original problem with probability one. In practical
implementations, the sample size is often chosen with respect to the computa-
tional effort. As we have issues solving our model with more than 10 scenarios,
we follow the approach from [38]. The authors show that a higher number of
samples can be more efficient than increasing the number of scenarios.

Let M be the number of independent samples and vm
N the optimal objective

function of a problem for m = 1, ...,M . The average objective function value is
then computed as:

vN,M =
1
M

M∑

m=1

vm
N (16)

Equation (16) represents a statistical lower bound (LB) on the objective
function value for the original problem [25,29].

Let N ′ >> N be the reference sample representing the true uncertainty in
the problem and y a feasible first-stage solution. Then, the objective function of
the original problem for a given solution y can be calculated as:

g̃N ′(y) = cT y +
1

N ′

N ′∑

n=1

Q(y, ξn) (17)

Equation (17) provides an upper bound (UB) on the optimal objective func-
tion value. Having the lower and upper bound estimates, we can compute the
estimated optimality gap as:

gapN,M,N ′(y) = g̃N ′(y) − vmN . (18)

5 Case Study

In this section, we provide the real-world input data used for solving the problem
of locating hydrogen production in Norway under uncertainty.

5.1 Facilities and Production

We consider 17 candidate locations for the opening of new facilities on the Nor-
wegian west coast. The candidate locations are taken from [33]. We approximate
the facility capacity by 8 discrete points and provide the investment and pro-
duction costs at full capacity utilization for EL in Table 1.
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Table 1. Investment and production costs at full capacity utilization for EL [43]

Discrete capacity 1 2 3 4 5 6 7 8

Capacity [tonnes/day] 0.6 3.1 6.2 12.2 30.3 61.0 151.5 304.9

Investment EL [mill. AC] 1.4 6.0 11.2 20.5 46.5 87.2 197.7 371.5

Production EL [AC/kg] 1.95 1.61 1.53 1.45 1.43 1.42 1.40 1.38

There are minimum production requirements for electrolysis, as the produc-
tion rate can decrease towards 20% of the installed capacity. We approximate
the short-term production costs by a convex piecewise linear function with three
linepieces. We define four breakpoints at 20%, 50%, 80%, and 100% of installed
production quantity. The 20% breakpoint represents the minimum production
requirement based on the technical specifications for electrolysis, and the 100%
breakpoint represents full utilization of installed capacity. Each breakpoint is
characterized by a specific production quantity and production costs. We can
produce arbitrary quantities from the range between 20 − 100% of the installed
capacity by a linear combination of two neighbourhood breakpoints. The short-
term costs at a breakpoint are calculated based the a model provided in [17].
We assume that the investment and production costs are independent of facility
location.

We calculate the expansion costs Eikl as: Eikl = (Cil −Cik) · (100+α)%. The
expansion costs are equal to the difference between investment costs of opening
a facility with capacity l and a facility with capacity k, where k < l, plus an
additional mark-up α. In our case, the mark-up α is 10%

Table 2. Hydrogen distribution costs in [AC/km/kg H2] [8]

Distance [km] 1–50 51–100 101–200 201–400 401–800 801–1000

Costs 0.00498 0.00426 0.00390 0.00372 0.00363 0.00360

We use the distribution costs for compressed hydrogen provided by [8]. We
consider demand points that aggregate customer demand from the whole munic-
ipality, and if a demand point is located in the same municipality as a facility, we
assume zero distribution costs. The reason is that the starting point for our case
study is the production of hydrogen for maritime transportation. The demand
points for this sector are limited to ports. For locations along the Norwegian
coastline, we assume that hydrogen production will take place in port or close
to the port with negligible distribution costs. This assumption has then been
extended to municipalities producing hydrogen for other sectors than maritime
for reasons of consistency. We set the distance limit between a production facility
and a customer to 1000 km km. See Table 2 for the distribution costs for com-
pressed hydrogen. The production cost and distribution cost data for our case
are identical to the from [43]. For simplification, we assume that the discount
factor is equal to one in each period.
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5.2 Demand

We consider three main demand components. In the maritime sector, the hydro-
gen demand estimations are based on current ferry routes and the assumption
that the new public contracts will require hydrogen as an energy carrier [1,32].
The demand estimations in the land-based sector from [11] are based on the
emission reduction goal within 2030 stated in [37]. In the offshore sector, we use
the hydrogen demand estimations from [2]. These estimations are based on the
medium penetration scenario from [32] which calculates the energy consump-
tion for ammonia. However, hydrogen fuel alternative is just as likely to occur
[45]. These different demand components are shown in Fig. 2 together with the
expected demand level and the maximum potential hydrogen demand consist-
ing of all three components. The maritime demand is quite certain. Thus, it
represents the minimum demand level and is present in all demand scenarios.

Fig. 2. Demand development

We aggregate individual customer demand into 70 demand points located
in Norway. These demand points consist of 51 ports that are relevant for the
maritime and the offshore sector and 19 municipalities with the highest road
traffic volumes according to the statistic provided in [44]. Based on the traffic
volumes statistic [44], we divide the road traffic demand among the different
municipalities. We remove municipalities with demand lower than 3.65 tonnes
H2/year. However, not all customers, respectively demand points, have demand
in all scenarios.

Our planning horizon is 14 periods. Demand is non-decreasing during the
whole planning horizon in all considered sectors. In the maritime sector, demand
is slightly increasing until period 10 and there is a jump in period 11 when the
coastal route Bergen-Kirkenes is to be operated on hydrogen fuels. The jumps
in the land-based sector correspond to the strategic government plan to start
with the transition towards hydrogen for buses and trucks. The offshore sector
will not start the transition towards hydrogen before period 4.

The market share of hydrogen vehicles and hydrogen-driven offshore supply
vessels is highly uncertain. We consider demand in the land-based sector and
offshore sector to represent a conversion potential and assume that the proba-
bility of reaching the maximal potential demand is low. Therefore, we assume
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that our demand scenarios are not evenly distributed between the minimum
and the maximum potential demand. We assume the expected value to be a
weighted average of minimum and maximum demand with coefficients 0.65 and
0.35, respectively.

Fig. 3. Probability density function for hydrogen demand

We expect that scenarios with lower demand consisting of maritime demand
and a share of the land-based and offshore sector are more likely to occur
than very optimistic hydrogen scenarios with very high demand. Thus, we
need a left-skewed distribution with a low probability of extreme values to
sample the scenarios from. We therefore assume a log-normal distribution,
D ∼ Lognormal(μ, σ2). The expected value E(D) is given by the previously
computed expected demand level and we assume the standard deviation to be
σ = 0.3 as this value still allows some of the high demand scenarios to occur. The
probability density function of our log-normal distribution is shown in Fig. 3.

6 Computational Results

The model is implemented in Julia 1.6.5 and solved using Gurobi Optimizer
version 9.5. All calculations have been run on a computer with two 3.6 GHz
Intel Xeon Gold 6244 CPU (8 core) processors and 384 GB RAM.

The problem (15) is solved for M = 50 SAA problems where each of the
problems has a sample size of N = 10. The reference sample size is N ′ = 1000
and we evaluate the performance on the reference sample for each of the 50 SAA
solutions. We choose to solve the problems (15) with relative optimality gap
γ′ < 2%.

Table 3. Evaluation of the SP and the EEV

Problem LB [x106 AC] UB [x106 AC] gapN,M,N′(y)[%]

SP 1381.2 1455.2 5.36

EEV - ∞ -
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We show the best statistical lower and upper bound of the SP in Table 3 and
compare the results with the EVP. We calculate the expected value of the EVP
solution (EEV) and compare the results with the SP. The value of the stochastic
solution is: V SS = EEV − SP [5]. The results show that the EVP solution
is infeasible. Thus, the VSS goes to infinity. This shows that even if the EVP
problem is easier to solve and we can find an optimal solution, it is important
to consider the uncertainty in our problem.

(a) Location and opening capacity of
hydrogen facilities in the SP and the
EVP

(b) Opening capacity in the SP and
the EVP

Fig. 4. First-stage decisions: Investment in the SP and the EVP

To analyze the first stage decisions, we study the opening decisions in the SP
and the EVP. Figure 4a illustrates the facility locations and the opening size of
facilities before expansion. When comparing the number of opened facilities, we
open 13 facilities in the SP and 15 facilities in the EVP. However, in general, the
differences between the SP and the EVP are very small. The main differences
can be seen in the northern part of Norway where we do not open a facility in
Berlev̊ag and Andenes in the SP. Thus, we install more capacity in the EVP in
comparison to SP. However, the infeasibility comes from the south-western part
of Norway even if the number of opened facilities is equal. Please note that the
difference between capacity 2 and 3 is only 3.1 tonnes daily while the difference
between capacity 4 and 5 is 18.1 tonnes daily. Thus, we install more capacity in
the EVP as we open two large facilities in Hellesylt and Slemmestad. Most of the
land-based demand is located in the south-western part of Norway and this area
is also affected a lot by the offshore demand. Thus, here, we observe the highest
differences between the scenarios and the large capacities installed for the EVP
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cause infeasibility for scenarios with low demand. In the EVP, we cannot fulfil
the minimum production requirements for scenarios with low demand due to the
large facilities in Hellesylt and Slemmestad.

The development of installed capacity in the first stage in the SP and the EVP
solution can be seen in Fig. 4b. The installed capacity is almost the same in the
first three periods because the differences between scenarios are low until period
three. Then, both lines indicate growing capacity. However, the installed capacity
in SP is considerably lower. The solution of the SP leads to more conservative
investment decisions and additional capacity is installed in the expansion step.
The expected demand level is considerably higher than the minimum demand
so the EVP problem leads to more extensive investments than the SP which is
also the reason for the infeasibility of the EVP.

(a) Expected unit short-term costs in
the SP and the EVP

(b) Expected unit costs and expected
capacity utilization in the SP

Fig. 5. Expected hydrogen costs

For illustration, we show the expected unit short-term costs in the SP and the
EVP in Fig. 5a. Please note that we show results for a feasible subset of scenarios
in the EVP. The EVP provides lower costs in the first period due to the lower
installed capacity (see Fig. 4b) resulting in higher utilization. In the following
periods, the costs in the SP are, in general, lower. However, the costs are very
similar because expansion in the second stage provides a lot of flexibility to adjust
the infrastructure as a reaction to growing demand. Expected unit hydrogen
costs and expected utilization for the SP are shown in Fig. 5b. The expected
unit hydrogen costs have a decreasing tendency that is in line with the growing
capacity (see Fig. 4b) and increasing utilization. The unit production costs have
two peaks in period 5 and 8 that are related to a decrease in capacity utilization
as lower utilization results in higher unit costs. In expectation, unit production
costs are decreasing together with increasing capacity and its utilization which
indicates the presence of economies of scale in hydrogen production.

7 Conclusion

We study the optimal hydrogen production infrastructure under uncertain
demand in Norway. We present a model for a two-stage stochastic multi-period
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facility location problem with capacity expansion. The problem is hard to solve
and using commercial software, we can solve it with 10 scenarios. Therefore, we
use SAA to solve the problem. This approach provides good solutions with an
estimated gap between the lower and the upper bound of 5.36%.

The quality of the solution is limited by the number of scenarios we can solve
the problem with. Implementing an efficient solution method in order solve the
problem with more scenarios and thus improve the solution quality is a natural
extension of this work.

Another extension of this work is to study how the investment structure will
change when we modify the underlying demand distribution.

Expansion in the second stage provides a lot of flexibility in terms of reaction
to growing demand. It is worth considering, how the investment decisions will
change for different models. We can consider a multi-stage model, or a more
restrictive model where expansion is the first-stage decision and only decisions
regarding demand allocation are taken in the second stage. In future work, uncer-
tainty in costs might be considered as well.
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Abstract. Stacking is an important process within logistics. Some
notable examples of items to be stacked are steel bars or steel plates
in a steel yard or containers in a container terminal or on a ship. We
say that two items are conflicting if their storage time intervals overlap
in which case one of the items needs to be rehandled if the items are
stored at the same LIFO storage location. We consider the problem of
stacking items using k LIFO locations with a minimum number of con-
flicts between items sharing a location. We present an extremely simple
online stacking algorithm that is oblivious to the storage time intervals
and storage locations of all other items when it picks a storage location
for an item. The risk of assigning the same storage location to two con-
flicting items is proved to be of the order 1/k2 under mild assumptions
on the distribution of the storage time intervals for the items. Intuitively,
it seems natural to pick a storage location uniformly at random in the
oblivious setting implying a risk of 1/k so the risk for our algorithm is
surprisingly low. Our results can also be expressed within the context
of the MAX k-CUT problem for circle graphs. The results indicate that
circle graphs on average have relatively big k-cuts compared to the total
number of edges.

Keywords: Oblivious algorithms · MAX k-CUT · Stacking · Circle
graphs

1 Introduction

We consider a storage area with a continuous flow of items entering and leaving
the area. The storage area consists of k storage locations accessible in a LIFO
manner. If we want to retrieve a target item from a storage location, we have to
deal with all the items present at the storage location that have arrived later than
the targeted item. The items that have arrived later but have not left yet are
conflicting with the targeted item so we focus on the problem of assigning storage
locations to the items with a minimum number of conflicts among items sharing
a location. We refer to this problem as stacking since each storage location acts
as a stack data structure.
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The stacking problem is an important problem within logistics with many
applications such as shipment of containers [3,18], track assignment for trains
(the storage locations are train tracks) [6,8] and stacking of steel bars or steel
plates [11,12,16]. Actually, a storage location can be any place where items
potentially block each other as described earlier: a truck, a train wagon, a shelve
in a warehouse, etc.

We can rephrase the problem as a graph problem if we construct a graph with
a vertex for each item and an edge between two vertices if the corresponding
items are conflicting. Now the objective is to color the vertices using k colors
with a minimum number of edges connecting two vertices with the same color or,
equivalently, to maximize the cardinality of the set of edges connecting vertices
with different colors. The latter set of edges is typically called the cut and the
problem is commonly known as the MAX k-CUT problem. The MAX k-CUT
problem is a famous graph problem appearing in many contexts. The MAX k-
CUT problem is closely related to the coloring problem where the objective is
to use as few colors as possible with no edges connecting vertices with the same
color. For the MAX k-CUT problem the number of colors is known a priori as
opposed to the coloring problem where the number of colors is output by the
algorithm.

1.1 Related Work

An offline stacking algorithm has access to all information on all the items before
the assignment of storage locations is carried out in contrast to an online stacking
algorithm where a decision on where to store an item is made without access to
any information on future items.

First, we consider related work for the coloring version of stacking where the
objective is to use as few storage locations as possible with no conflicts. Upper
and lower bounds for the competitive ratio for online coloring are presented
by Demange et al. [8] and Demange and Olsen [7]. Olsen and Gross [14] have
developed a polynomial time algorithm for online coloring with a competitive
ratio that converges to 1 in probability if the endpoints of the storage time
intervals are picked independently and uniformly at random. Olsen [13] has also
shown how to use Reinforcement Learning to improve online stacking heuristics.

The offline version of coloring is NP-hard for unbounded stack capacity [1]
and for fixed stack capacity h ≥ 6 [6] and the computational complexity for
2 ≤ h ≤ 5 is an open problem (to the best of our knowledge).

We now take a look at related work for the MAX k-CUT version of stacking
where the number of storage locations is given and where the objective is to
minimize the number of conflicts among the items. Handling shipping contain-
ers that block each other in a stack is known as rehandling or shifting. Tierney
et al. [18] show how to compute the minimum number of shifts offline in poly-
nomial time using a fixed number of stacks (storage locations) with bounded
capacity. The MAX k-CUT version of stacking is at least as hard as the color-
ing problem as can be easily seen by reduction from the coloring problem. The
offline version is even NP-hard for k = 2 (unbounded capacity) [15].
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For the offline version of MAX k-CUT for graphs in general, we can achieve an
approximation ratio 1− 1

k with a simple polynomial time algorithm but it is not
possible to achieve an approximation ratio better than 1 − 1

34k if NP �= P [10].
Finally, it should be mentioned that Coja-Oghlan et al. [5] examine the MAX
k-CUT problem in random graphs.

1.2 Contribution

For the remaining part of the paper, we focus on the MAX k-CUT version of
stacking so from now on we assume that our goal is to minimize the number of
conflicts between items stored at the same location using k storage locations.

Our main aim is to investigate the case where an online algorithm does not
have access to the storage time intervals for the items already stored and does not
keep track of the locations of these items but only has access to the arrival time
and the departure time for an entering item when it has to pick a storage location
for that item. In other words, the algorithm is oblivious to the time intervals for
all other items and the storage locations assigned to items in the past. We will
refer to such an algorithm as an oblivious stacking algorithm. Such an algorithm
is extremely simple to implement and it can even be used in a scenario with
several disconnected stacking agents. To the best of our knowledge, we are the
first to examine this type of stacking algorithms but such oblivious algorithms
have been examined for other problems (for example routing [2,4]).

Intuitively, it might look a little strange to consider the oblivious setting since
it seems hard to do anything better than to assign a random storage location to
an entering item if we do not have any information on the other items. The risk
of assigning the same storage location to two conflicting items is 1/k if we use
the random strategy. We present an extremely simple algorithm for oblivious
stacking where this risk is reduced dramatically to the order 1/k2 under the
assumption that the storage time intervals are produced by a model proposed
by Scheinerman [17]. In short, our online stacking algorithm is as simple as an
algorithm can be and it has a surprisingly good performance using a minimum
amount of information. The algorithm is based on the intuition that the risk of
a conflict between two items is low if the centers of their storage time intervals
are close to each other since such items only will have a conflict if the lengths
of their storage time intervals are roughly the same. The basic principle of our
algorithm is to place items at the same storage location if the centers of their
storage time intervals are close to each other or far apart.

Our algorithm can be used on its own but it can also be used as a part of a
hierarchical approach to divide the items into k groups with only a few conflicts
in each group. We can for example divide a steel yard or a container terminal
into a few areas and then use our algorithm to assign an area to each item in a
preprocessing step. For each area, we then apply a local stacking algorithm to
assign a specific storage location to each item (the local algorithms do not have
to be identical).

The stacking conflict graphs described earlier are so called circle graphs –
also known as interval overlap graphs (more details in Sect. 2). From a graph
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theory perspective, we offer a contribution for an audience interested in circle
graphs and show that our algorithm computes a k-cut with expected cardinality
satisfying E(|cut|) ≥ (1 − O(1/k2))E(m) for random circle graphs represented
by an extended version of the Scheinerman model (m denotes the number of
edges). This indicates that random circle graphs on average have relatively big
k-cuts compared to the number of edges m in contrast to random graphs of the
Erdős-Rényi type [5].

The problem that we consider is formally defined in Sect. 2 where we also
present our algorithm and the first model for generating the instances. The per-
formance of our algorithm is analyzed in Sect. 3 using average case analysis where
we compute the exact risk that our oblivious algorithm assigns two conflicting
items to the same storage location. In Sect. 4 we extend our model for generating
the instances and demonstrate that the risk is low (of the order 1/k2) even in
a more generic setting. Finally, our results are related to circle graphs/interval
overlap graphs.

2 Preliminaries

2.1 The Problem

Two intervals [a, b] and [c, d] are said to overlap if and only if the intervals
intersect and neither is contained in the other: a < c < b < d or c < a < d <
b. Two items are conflicting if and only if their storage time intervals overlap
since shifting/rehandling is necessary exactly in this case if the items are stored
at the same location. A graph with vertices representing intervals and edges
representing overlaps is commonly known as an interval overlap graph. A circle
graph is a graph where vertices represent chords of a circle with an edge between
two vertices if the corresponding chords intersect. Gavril [9] has shown that a
graph is an interval overlap graph if and only if it is a circle graph. In other
words, a conflict graph for stacking is an interval overlap graph/circle graph
implying relevance of our results, as already mentioned, for a broader audience
interested in the MAX k-CUT problem for such graphs. It should be noted that
the connection between stacking and interval overlap graphs/circle graphs was
established by Avriel et al. [1].

To sum up, the problem considered in this paper can be formally and con-
cisely defined as follows where the items are represented by their storage time
intervals:

Definition 1. The MAX k-CUT STACKING problem:

– Instance: A set of n intervals In = {I1, I2, . . . , In}
– Solution: A coloring of the intervals using colors {1, 2, 3, . . . , k} with a maxi-

mum cardinality cut where the cut is the set of unordered pairs of overlapping
intervals with different colors

An example of a MAX k-CUT STACKING instance and an optimal solution
is displayed in Fig. 1 for n = 4 and k = 2. The corresponding interval overlap
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Fig. 1. An example of a MAX k-CUT STACKING instance for n = 4 and k = 2 and
an optimal solution. The coloring uses the colors gray and black. (Color figure online)

Fig. 2. The conflict graph for the MAX k-CUT STACKING instance in Fig. 1. The
cut {{1, 2}, {2, 3}, {1, 4}, {3, 4}} has cardinality 4: |cut| = 4.

graph/circle graph is shown in Fig. 2. The intervals/vertices have received a
gray or a black color producing a cut with cardinality 4: |cut| = 4. The optimal
solution has only one conflict between items stored at the same location.

Please note that there is a one-to-one correspondence between the colors and
the storage locations. It should also be noted that we consider storage locations
with unbounded capacity. According to Kim et al. [11], this assumption is not
critical considering stacking of steel plates since many plates can be stacked
together because the thicknesses of the plates are very small. If our algorithm
is used in a hierarchical approach as described in Sect. 1.2 then it also makes
sense to assume that the capacity is unbounded so there are applications where
this assumption is justified.

2.2 The Instance Model

We will use a simple stochastic model for generating the instances introduced
by Scheinerman [17] in his work on random interval (intersection1) graphs:
1 Two overlapping intervals intersect but the converse is not necessarily true.
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Definition 2. The Scheinerman Model [17]: The centers of the intervals in In

are drawn independently using a uniform distribution on [0, 1] and the lengths of
the intervals are drawn independently using a uniform distribution on [0, L] for
some number L.

In order to be able obtain exact results for the analysis to follow, we assume
the following:

1/

(
k

k − 1
L

)
∈ Z . (1)

This means that L = k−1
kz for some z ∈ Z.

Our second model for generating instances (defined later in Sect. 4) allows
us to use an arbitrary bounded continuous probability density function for the
lengths where L denotes an upper bound of the lengths. It is important for us to
emphasize that the second model is a lot more flexible than our first model but
qualitatively the results obtained for the two models are the same. As already
stated, the assumption (1) facilitates exact computations.

2.3 The Algorithm

Our algorithm works as follows. The interval [0, 1] is split into k−1
L consecutive

intervals J1, J2, . . . , J k−1
L

with length L
k−1 . We now color the J-intervals with the

colors {1, 2, . . . , k} in a circular manner such that Ji receives color (i−1) mod k+
1. Please note that (1) implies that the final interval receives the color k and has
1 as its right endpoint.

Let an item represented by the storage time interval I = [x, y] with center
c(I) = (x + y)/2 enter the storage area. The algorithm locates the J-interval
containing the center and assign the color of this J-interval to the entering item
(A(I) denotes the color assigned to I by the algorithm):

A(I) =
⌊

(k − 1)c(I)
L

⌋
mod k + 1, I ∈ In . (2)

The dynamics of the algorithm is illustrated in Fig. 3 showing an example with
k = 3 and L = 1/3. This is a very simple online algorithm that only considers

Fig. 3. The figure shows how our algorithm works for k = 3 and L = 1/3. The items
are represented by the four storage time intervals at the top. An item receives the color
of the J-interval at the bottom containing the center of the storage time interval for
the item.
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information on the current interval. As earlier mentioned, we refer to such an
algorithm as an oblivious algorithm. The running time per interval is O(1).

The intuition behind our algorithm is as follows. If two intervals receive the
same color then there are two possibilities: 1) The centers of the intervals belong
to different J-intervals in which case the intervals are not overlapping, or 2) The
centers of the intervals belong to the same J-interval in which case the centers
are close to each other implying a low risk of an overlap since an overlap only
occurs if the lengths of the intervals are roughly the same. In other words, we
will observe relatively few overlapping intervals with the same color.

3 Analysis of the Scheinerman Model

The intuition will now be verified using exact computations. The key observation
is as follows: two intervals are not likely to overlap if their centers are close to
each other. We now present a lemma quantifying this observation based on the
Scheinerman model (Definition 2). Let C = d denote the event that the distance
between the centers of two intervals is d and let OV denote the event that two
intervals overlap.

Lemma 1. For two intervals drawn using the Scheinerman model we have the
following:

Pr(OV | C = xL) =

⎧⎪⎨
⎪⎩

4x − 6x2 , 0 ≤ x ≤ 0.5
1
2 (2 − 2x)2 , 0.5 < x ≤ 1
0 , 1 < x

�1
2

�2
2

Fig. 4. Two intervals with lengths �1 < �2 and distance d between the centers overlap
if and only if d < �1

2
+ �2

2
∧ d + �1

2
> �2

2
.

Proof. Consider two intervals with lengths �1 and �2 with �1 < �2 (see Fig. 4).
Let d denote the distance between the centers of the intervals. The intervals
overlap if and only if

d <
�1
2

+
�2
2

∧ d +
�1
2

>
�2
2

. (3)
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2xL

2xL

L

L

Fig. 5. The square [0, L] × [0, L] represents the possible pairs of lengths for the two
intervals. The gray region illustrates the cases where the two intervals overlap given
C = xL for x ≤ 0.5. (Color figure online)

The gray region in Fig. 5 contains all pairs (�1, �2) – including intervals with
�1 > �2 – that correspond to overlapping intervals with d = xL for x ≤ 0.5. The
conditional probability Pr(OV | C = xL) is computed as the area of the gray
region divided by L2:

Pr(OV | C = xL) = 1 − 2x2 − (1 − 2x)2 = 4x − 6x2 , x ≤ 0.5 .

The case 0.5 < x ≤ 1 is handled in a similar way (see Fig. 6):

Pr(OV | C = xL) =
1
2
(2 − 2x)2, 0.5 < x ≤ 1 .

��
We can see that the risk of an overlap is close to 0 if the centers are close to

each other and that the risk is highest if the distance between the centers is 1
3L.

The risk decreases for higher distances between the centers than 1
3L and reaches

(not surprisingly) 0 for distances above L.
Even though our algorithm is oblivious to information on other items than the

entering item, it has a very low risk of assigning the same storage location to two
conflicting items compared to a random stacking strategy. The risk is of the order
1/k2 assuming that the instances are generated using the Scheinerman model.
Our next lemma expresses the exact risk where SC denotes the event that two
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(L, 2xL − L)

L

L
(2xL − L, L)

Fig. 6. The square [0, L]× [0, L] is once again representing the possible pairs of lengths
for the two intervals. The gray region now illustrates the cases with an overlap given
C = xL for 0.5 < x ≤ 1 (Color figure online)

intervals receive the same color (= storage location) by our algorithm. As stated
earlier, we assume that L satisfies (1) in order to enable exact computations.

Lemma 2. For two intervals drawn using the Scheinerman model with L satis-
fying (1) the following holds for k ≥ 3:

Pr(SC | OV ) =
12

8 − 3L

(
4

3(k − 1)2
− 1

(k − 1)3

)
.

Proof. It is well known and straightforward to show that the probability density
function for the distance between two random numbers chosen uniformly at
random in [0, a] is as follows:

ga(x) =
2
a2

(a − x) , 0 ≤ x ≤ a . (4)

Let SI denote the event that the centers of the intervals belong to the same
J-interval. There are 1

k · k−1
L intervals for each color implying

Pr(SI | SC) =
k

k − 1
L .
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The maximum length of an interval is L so Pr(OV ∩ SI | SC) = 0 where SI is
the complementary event of the event SI. This means that

Pr(OV | SC) = Pr(OV ∩ SI | SC) .

The event SI implies the event SC (SI ∩ SC = SI):

Pr(OV ∩ SI | SC) = Pr(OV | SI) · Pr(SI | SC) .

We can now apply Lemma 1 and (4) and use the law of total probability (we
also use the fact that 1

k−1 ≤ 1
2 for k ≥ 3):

Pr(OV | SC) = Pr(OV | SI) · Pr(SI | SC)

=
∫ 1

k−1

0

g 1
k−1

(x) Pr(OV | C = xL)dx · Pr(SI | SC)

=
∫ 1

k−1

0

2(k − 1)2
(

1
k − 1

− x

)
(4x − 6x2)dx · k

k − 1
L

= kL

[
4x2 − 4x3 − 8

3
(k − 1)x3 + 3(k − 1)x4

] 1
k−1

0

= kL

(
4

3(k − 1)2
− 1

(k − 1)3

)
.

We once again use the law of total probability and Lemma 1 and compute the
probability that two intervals overlap. This time we use g1(x) from (4):

Pr(OV ) =

∫ 1

0

g1(x) Pr(OV | C = x)dx

=

∫ 1/2L

0

(
4 · x

L
− 6

( x

L

)2
)

2(1 − x)dx +

∫ L

1/2L

1

2

(
2 − 2 · x

L

)2

2(1 − x)dx

=

∫ 1/2

0

L
(
4t − 6t2

)
2(1 − Lt)dt +

∫ 1

1/2

L
1

2
(2 − 2t)2 2(1 − Lt)dt

=
2

3
L − 1

4
L2 .

The assumption (1) on L implies

Pr(SC) =
1
k

.

To prove the lemma, we now apply Bayes Theorem:

Pr(SC | OV ) =
Pr(OV | SC) Pr(SC)

Pr(OV )

=
L

2
3L − 1

4L2

(
4

3(k − 1)2
− 1

(k − 1)3

)

=
12

8 − 3L

(
4

3(k − 1)2
− 1

(k − 1)3

)
.

��
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We are now ready to present the main theorem of our paper for k ≥ 3.

Theorem 1. Let a set of intervals In be drawn using the Scheinerman model
with L satisfying (1). The algorithm (2) computes a cut of the corresponding
MAX k-CUT STACKING instance for k ≥ 3 such that

E(|cut|)
E(m)

= 1 − 12
8 − 3L

(
4

3(k − 1)2
− 1

(k − 1)3

)

where m denotes the number of edges in the corresponding interval overlap
graph/circle graph.

Proof. By using linearity of expectation we obtain the following:

E(|cut|)
E(m)

=
Pr(OV ∩ SC)

(
n
2

)
Pr(OV )

(
n
2

)
=

Pr(OV ) − Pr(OV ∩ SC)
Pr(OV )

= 1 − Pr(SC | OV ) .

The theorem follows from Lemma 2. ��

4 Analysis of the Extended Scheinerman Model

Our results are now extended to a more generic model for generating the
instances where we allow the lengths of the intervals to be drawn using any
(fixed) bounded continuous probability density function with L as an upper
bound on the lengths. This model is very flexible even for L satisfying (1) since
L is an upper bound on the lengths. In this section we show that the risk of
assigning the same color to two overlapping intervals is also of the order 1/k2

for the generic instance model.

Definition 3. The Extended Scheinerman Model: The centers of the intervals
in In are drawn independently using a uniform distribution on [0, 1]. The number
L is an upper bound on the lengths of the intervals and the lengths are drawn
independently using a bounded continuous probability density function f , f(�) ≤
B.

Theorem 2. Under the same assumptions as in Theorem 1 the following holds
for algorithm (2) for the extended Scheinerman model:

E(|cut|)
E(m)

≥ 1 − O(k−2) .

Proof. Now assume that the intervals are drawn using the extended Scheinerman
model. By a slight modification of the proof of Lemma 1, we get the following
for x ≤ 0.5:

Pr(OV | C = xL) ≤ L2B2(4x − 6x2) .
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We revisit the proof of Lemma 2 and establish an upper bound for
Pr(OV | SC) using the factor L2B2:

Pr(OV | SC) ≤ L2B2 · kL

(
4

3(k − 1)2
− 1

(k − 1)3

)
.

The probability of receiving the same color has not changed, Pr(SC) = 1
k , so

Bayes Theorem can once again ensure that the theorem holds. We just have to
make sure that the conditional probability is well defined – in other words that
Pr(OV ) > 0: There exists an �0 such that f(�0) > 0. Let ε > 0 be a sufficiently
small positive number. Let �1 and �2 denote the lengths of two intervals drawn
using the extended Scheinerman model. By using (3) and independence we can
verify that Pr(OV ) > 0:

Pr(OV ) ≥ Pr(|l1 − l0| < ε ∧ |l2 − l0| < ε ∧ ε < d < �0 − ε) > 0 .

This concludes the proof. ��
The theorem implies a corollary that is targeted at an audience with an

interest in circle graphs/interval overlap graphs. The corollary indicates that
these graphs on average have k-cuts with a relatively high cardinality compared
to the number of edges.

Corollary 1. Let In be drawn using the extended Scheinerman model. For the
circle graph/interval overlap graph represented by In we have the following for
k ≥ 3

E(|cut|)
E(m)

≥ 1 − O(k−2)

where “cut” denotes the maximum size k-cut.

Conclusion

We have presented an extremely simple oblivious stacking algorithm with a
surprisingly low risk – of the order 1/k2 – of assigning two conflicting items
to the same storage location under mild assumptions on the distribution of the
storage time intervals. The algorithm can easily be used in a distributed setting
with disconnected stacking agents. The principle guiding the algorithm is to
assign the same storage location to two items if the centers of their storage time
intervals are close to each other implying a low risk of a conflict. This principle
can probably be used in other stacking algorithms/heuristics.

Our algorithm can be used on its own but there is also a possibility that it
can be used in a preprocessing step since the items are split into k groups with
only a few conflicts to handle in each group. As an example, each group could
correspond to an area of a container terminal with k << n. Our algorithm could
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be used to assign an area to each container in the preprocessing step and a local
stacking algorithm could pick a specific storage location for the container in the
particular area.
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Abstract. Refrigerated warehouses are essential for a well-functioning cooling
supply chain. Here, the ambient temperature is regulated around the clock, while
the refrigeration system is turned on in recuring time intervals. The idea of this
paper is to use the refrigerated warehouse as a virtual battery. The temperature
inside the warehouse is cooled down when the market price is low. Thus, the
energy is stored and the use of the refrigeration system during times of high elec-
trical prices is avoided. This concept can be seen as a part of the demand side
management, where monetary incentives are provided to electricity consumers to
adapt their load profile in a grid supporting manner. The use case is based on the
electricity price of the day-ahead-market. The characteristics of this electricity
market require an electricity price prediction. This is based on the availability of
renewable energy sources and the predicted electricity demand. The implemen-
tation is done via a time-driven discrete simulation model of a real refrigerated
warehouse operating in the normal cooling range (above 0 °C). The simulation
models first control option is the use of deterministic strategies which result in
a decrease of the electricity cost of up to 7%. The second more complex control
option via the so-called solution finding exploits electricity cost savings of 37%.
To receive satisfactory results, a highly detailed implementation in the warehouse
and well predicted electricity price have proven to be necessary. Therefore, this
study can be seen as a first step on the way to use refrigerated warehouses as
virtual batteries.

Keywords: Demand side management · Load management · Discrete
simulation · Refrigerated warehouse · Energy efficiency · Virtual battery ·
Energy storage

1 Introduction

In order to act against the climate crisis, the transition from fossil- to regenerative energy
sources is required. In Germany, the dominant sustainable energy sources for electricity
generation are photovoltaics and wind energy. In 2020, they generated more than 70%
of the electricity from renewable sources (Fraunhofer Institute for Solar Energy Systems
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2021). Besides their positive climatic impact, a central disadvantage is their availability.
Fossil energy sources can be used continuously, while photovoltaics and wind energy
depend on the weather. As a solution, the electricity supply can be adjusted by using
storage technologies, such as battery or pumped storages. However, this requires high
investment costs and, in the case of pumped storage power plants, special geological
conditions. At the same time, both technologies lead to an energy loss during storage
due to their energy efficiency of maximum 85% (Federal Ministry for Economic Affairs
and Climate Action, Lund et al. 2015, p. 794).

To avoid these losses, this paper evaluates an alternative approach of adjusting the
electricity demand. Especially electricity-intensive companies are focused to act in a
grid-supporting way, where they decrease their energy demand during times with low
energy production and lift the demand during a surplus of electricity. This form of
consumption adjustment is called demand side management.

Refrigerated warehouses are predestined for this concept. They are mainly used in
food logistics and are essential for a well-functioning supply chain. To maintain cold
chains, 11%of theworldwide generated electricity is used (Gao 2019, p. 1). Accordingly,
refrigerated warehouses are characterized by a high electricity demand. In addition,
electricity consumption takes place around the clock at mostly irregular intervals due to
the thermal inertia of the refrigeration system.

The novelty in this paper lies in minimization of electricity costs by prediction
of electricity prices and adjustment of the cooling cycles constrained by a detailed
simulation. An overview about the research status quo of demand side management of
refrigerated warehouse is given in Sect. 2. An existing refrigerated warehouse, which
is mainly used for fruits and vegetables, is taken as use case. By using time-driven
discrete simulation, a thermodynamical model focusing on the temperature curve of
this warehouse is developed, validated and evaluated (Sect. 3). The model considers
logistical aspects like warehouse movements as well as the thermal energy storage of
the stored goods. To evaluate the opportunities of a demand side management, different
temperature control options are applied based on electricity price predictions. Here
deterministic strategies and a complex solution finding are implemented and tested in
the simulation model. Finally, the evaluation of the simulation model is done (Sect. 4)
ending in a critical assessment of the findings (Sect. 5).

2 Literature Review

The approach of implementing demand side management has been of scientific inter-
est over the past years. Logenthiran et al. (2012) use an optimization model in which
a network of consumers with different loads are synchronized as energy-efficiently as
possible. In the industrial sector, this cooperation can save up to 10% of electricity costs.
Li et al. (2017) use a dynamic simulation model to investigate the implementation of an
electrical storage unit as well as of a thermal energy storage unit on the electricity cost
of a refrigerated warehouse. This set up supports the shift of loads from the high-cost
hours during the day to the nighttime hours with lower electricity prices. As a result,
electricity cost reductions of over 50% can be realized. Murrant and Radcliffe (2018)
elaborate on the possibility of thermal energy storage using Liquid Air Energy Storage

https://doi.org/10.1007/978-3-031-16579-5_2
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systems. This involves cooling down the air to the point of liquefaction, storing it, and
using it for cooling later. Countries with a high percentage of renewable energy sources
and, at the same time, many refrigerated warehouses are the preferred users of this tech-
nology. Zong et al. (2009) use a genetic search algorithm, which can mainly evaluate
stochastic and non-linear behavior. It is used to design a decision model that adjusts the
cooling cycles of a refrigeratedwarehouse according to the predicted availability of wind
energy. The authors conclude that the implementation of this control in a refrigerated
warehouse is feasible and could lower the electricity cost. Fikiin (2015) has developed a
decision support system to help integrate wind energy into the power grid. Using wind
availability data, an electricity price forecast and a model of the refrigerated warehouse
to make decisions about the operation of the refrigeration system. Goli et al. (2011) use
several refrigerated warehouses in California to examine the potential of demand side
management and the obstacles of the implementation. In particular, the implementa-
tion of automated load management on a web-based communication protocol has been
highlighted as efficient. Furthermore, it is emphasized that the clear communication
of financial and sustainability factors raises the awareness of decision makers towards
demand side management. Ma et al. (2015) use constrained optimization to model a
cooperative demand side management of several refrigerated warehouses. These are
combined in a smart grid so that the electricity consumption is coordinated among them.
In this process, the adjustment of one’s power consumption is rewarded, but at the same
time uncooperative behavior of individual actors is actively penalized. It is shown that
cooperative demand side management produces about 2% higher savings in electricity
costs compared to individual demand side management.

Hence, it can be said that already some research studies investigate the demand side
management of refrigerated warehouses in relation to renewable energy. However, these
are mostly not based on such a comprehensive simulation model of the cooling process
as it is part of this paper. Furthermore, the models do not compare the quality of the
prediction with the actual occurring electricity price. In addition, the consideration of
different control options of the refrigeration system does not take place in the found
papers. Hence, the following research question is investigated in this paper:

What is the impact of implementing different temperature control options on the
electricity consumption and electricity cost of a refrigerated warehouse?

3 Model Description

In this paper, the examination of demand side management of refrigerated warehouses
is done by a discrete simulation model with the simulation software Tecnomatix Plant
Simulation version 16. In detail, a time-driven simulation model is applied where the
simulation time progresses in constant time steps (Wenzel 2018, p. 10). A scheme of the
simulation with the different steps is visualized in Fig. 1.

To maintain a practical simulation while keeping the required accuracy, the step size
in which the simulation time moves is set to one minute. Here, individual points in time
are used to generate discrete values which are connected to get an approximation of the
actual temperature curve. This temperature curve, resulting from the thermodynamic
model, is the first part of the simulation model. As second part, an electricity price

https://doi.org/10.1007/978-3-031-16579-5_1
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Fig. 1. Repetitive scheme of the simulation model

forecast is developed. Both parts are merged by implementing the control options of the
refrigerated warehouse. The relation of the different parts is visualized in Fig. 2.

Fig. 2. Structure of the developed simulation model

3.1 Temperature Model

A precise calculation of the temperature curve of the refrigerated warehouse is the
foundation of the simulation model. For this purpose, a thermodynamic model based
on Breidert (2013), Maurer (2016) and Breidert et al. (2016) is set up. This approach is
originally used for statical dimensioning of refrigeration systems and has been modified
for the realization in the simulation model. It was chosen, because it contains all factors
influencing the temperature inside the warehouse while allowing the implementation
of the required logistical processes. In the thermodynamic model, some factors were
simplified for the implementation e.g. the missing consideration of air streams inside
the warehouse. Therefore, the parameter heat flux was calibrated after the validation to
improve the quality of the simulation results. The modelling happened based on the use
case and the actual data of a refrigerated warehouse in Germany. The warehouse mostly
stores fruits and vegetables and operates in the normal cooling area above 0 °C.

In the simulation model, all heat inputs of the refrigerated warehouse are represented
(see Fig. 3). It considers the most relevant logistical operations (like warehouse jobs

https://doi.org/10.1007/978-3-031-16579-5_2
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executed with a forklift), all significant building specific parameters of the warehouse
(like the isolation) and good specific characteristics like the heat transfer coefficients and
the surface area. The heat fluxes (shown in Fig. 3 with a red single arrow) result in heat
inputs into the system. In contrast, the red double arrows can lead to heat input or output
depending on the temperature difference. The blue arrow represents the heat discharge
through the refrigeration system. The total heat flux is determined by cumulating the
heat inputs and outputs of the respective time period.

Fig. 3. Temperature model of the refrigerated warehouse

The refrigeration system is the crucial part of the refrigerated warehouse. In the
evaluated use case, the stored goods (fruits and vegetables) are very sensitive regarding
the temperature. The quality suffers from either a higher or a lower temperature and
deviations from the required quality are often punished by fees. Therefore, the setting
of the refrigeration system could have a large financial impact.

In the use case, a compression refrigeration system is used. In those systems, the
compressors are switched on, when the highest feasible temperature is reached. The
compressors enable the cooling process and are turned off once the lowest feasible
temperature is reached. In the investigated warehouse, the goods are stored in the range
of normal refrigeration (above 0 °C). The specific storage temperature of each good is set
with a range of 1 °C. This means that a temperature range of plus / minus 0.5 °C around
the target temperature is used. In the investigated use case of the storage, a temperature
between 7.6 °C and 8.6 °C is maintained.

The heat transfer from the air inside the warehouse to the cooling system is done
by evaporators and the transfer from the cooling system to the outside is enabled by the
condensers. To ensure that a large volume of air can be cooled and heat can be discharged

https://doi.org/10.1007/978-3-031-16579-5_3
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to the outside air, fans are installed on both the evaporator and the condenser to ensure air
circulation (Reisner andReisner 2016, p. 40 ff). These fans, alongwith the compressor as
the main consumer, are the electricity-intensive components of the refrigeration system.
Hence, the electricity consumption of the warehouse mainly takes place during the
discrete times when the cooling is executed. Resulting from the described temperature
model, the status quo of the cooling process can be modeled.

For the validation of the simulation model, many different techniques have been
applied. Three of them are further described. At first, the simulation was checked by the
face validity test (Rabe et al. 2009, p. 109). Here, themodel behavior and the results were
presented to the technical director of the refrigerated warehouse. During the discussions
he confirmed the high level of accuracy of the results. Additionally, a trace analysis was
performed (Rabe et al. 2009, p. 107). Here, the behavior of the model was followed step
by step in a test setup. Thereby, it was confirmed that the refrigerating system works
in the simulation according to the intensions. For the statistical validation (Rabe et al.
2009, p. 103) of the temperature model, the simulated temperature curve is compared
to a temperature curve from real data of the evaluated use case. Both curves are plotted
for an exemplary period of time (shown in Fig. 4).
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Fig. 4. Validation of the temperature model

In Fig. 4, it can be seen that the validation and simulation data differ only slightly
from each other. In detail, an average difference of 0.16 °C between the values of both
curves occurs. This outlines a high accuracy of the simulation model. Especially the
timespans without warehouse movements are simulated quite well. Here, no cargo is
moved and the door remains closed which leads to an even distributed amount of heat
input. Despite the fact, that some differences of the temperature could occur in phases
withmanywarehousemovements, themodel offer a valid functionality and is well suited
for this simulation study.
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3.2 Electricity Price Forecast

Since electricity is a non-storable commodity, itsmarket price is highly volatile compared
to other goods (Ciarreta et al. 2017, p. 680). Thus, from a business perspective cost
potentials should be exploited by using electricity at low-cost times. This potential
could be utilized by participating in the electricity stock exchange rather than purchasing
electricity from a provider to long term fixed prices. The question arises whether it is
better to participate in the intraday or the day-ahead market. In contrast to the forward
market, short-term price fluctuations are passed on in both markets, which enables the
implementation of a demand side management. The difference between both markets
is the timespan. While in intraday markets electricity can be traded up to five minutes
before the delivery, the participants of the day-ahead-market have to announce their
hourly electricity demand at the day before delivery at 12 a.m. Afterwards, the Merit-
Order is formed and the electricity price is determined by the marginal costs of the least
expensive electricity supplier to cover all the demands (Bundesnetzagentur 2022 b).

Pricewise, the intraday and day-ahead markets are related. Bader (2017) has shown
that the intraday price can be derived from the day-ahead price in a normally distributed
manner. Thus, it can be assumed that no relevant advantage can be generated by system-
atically covering the power demand on the intraday market compared to the day-ahead
market. In addition, depending on the time of purchase, there are strong price fluctuations
on the intraday market and consequently the electricity procurement is more uncertain.
In contrast, electricity price forecasting can reduce the uncertainty of the day-ahead
market. So, it can be justified that the day-ahead market is proposed for the electricity
procurement in this paper. As this market requires a decision about the hourly electricity
demand at the day before consumption, a forecast is necessary. The volatile availability
of renewable energy sources in combination with the relatively inflexible conventional
energy sources causes fluctuations in the electricity supply. Accordingly, the availability
of renewable energy sources can be used as forecast indicator for electricity price (Cerjan
et al. 2019, p.19). The corresponding weather data can be taken from freely accessible
weather database of the German Weather Service. Wind farms are mainly located in the
north of Germany. Some of the largest are on the North Sea coast, which is why the
wind strengths of the Spiekeroog weather station are used as reference values for wind
power. German solar parks, are more decentralized. Here, one of the largest generation
plants is located near Regensburg. The solar radiation from the weather station there is
used in the forecast. The global solar irradiation is considered as a characteristic value
for the power generation of the solar cells.

In addition to supply factors, the electricity demand flows into the electricity price
forecast. This can be mapped based on the description of Bader (2017) as well as the
consideration of real electricity consumption data from the database Electricity Market
Data (SMARD) (Bundesnetzagentur 2022 a). According to this, the electricity demand
is lower at night (9 p.m. to 7 a.m.) than during the day. Demand peaks exist during the
week in the morning between 8 a.m. and 10 a.m. and in the evening between 6 p.m. and
7 p.m. On weekends and holidays, a relatively balanced demand can be seen throughout
the day, with increased demand in the two evening hours (6 p.m. and 7 p.m.). It should
be noted that these times are indicative, and reality sometimes deviates from them.
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3.3 Explanation of Control Options

The control options are implemented to take advantage of low electricity prices by using
the cooling system to a high extend. At the same time, the feasible temperature range
of the good is maintained. The control options are applied to merge the electricity price
prediction and the temperature model of the warehouse. The prediction creates a forecast
as an evaluation of each hour of the simulated day. Here, a ranking is formed which is
realized in the simulated warehouse by the different control options of the refrigeration
system. As first control option, the generated deterministic strategies are exemplarily
shown in Fig. 5. These strategies compare the forecasted electricity prices of each hour
and define different cases, where the cooling process of the warehouse is triggered. The
bars in Fig. 5 represent the respective hourly forecasted electricity price. Here, fictional
prices are used to explain the deterministic strategies. At the times where the bars are
marked in red the active switching on of the refrigeration plant takes place.

1) Active Cooling during the 25% 
cheapest hours of the day

2) Active Cooling before price 
increase in the next hour

3) Active Cooling before temporary
price increase in the next hour
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Fig. 5. Visualization of the control strategies

The first strategy states that cooling should take place in the presumably cheapest
25% of the hours of each day. For this purpose, the hours are sorted based on the
forecast values. It is continuously checked whether the current simulated hour is one
of the 25% cheapest hours. The second strategy specifies that cooling should only take
place when an increase in the electricity price is expected in the coming hour. In the
third strategy, this approach is extended. It leads to cooling when a temporary increase
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in electricity price is expected. This is characterized by a rising electricity price in the
coming hour and a price decrease in the next hour. Strategy three is intended to bypass the
middle hour with the higher price while keeping the number of cycles low. The strategies
are only used to supplement the temperature-based cooling. Accordingly, cooling also
takes place when the maximum temperature (1 °C temperature range) is reached. The
goal of all deterministic strategies is to shift the temperature-based cooling to the least
expensive hours. The execution of the cooling based on the strategies is checked in
the 50th minute of each hour. If the refrigeration system is activated, the warehouse
temperature is reduced to the minimum in the current hour. Like this, the electricity
price of the current hour is used in the best possible way with respect to the following
hours.

Besides the implementation of the deterministic strategies, the solution finding is
developed as second control option to represent a more complex control of the refrig-
erated warehouse. This approach variates the factors time and intensity of each cooling
cycle. Different possible solutions are generated by activating the refrigeration system
stepwise earlier. In detail, the cooling takes place at a warming of 0.3 °C, 0.6 °C and at the
maximum temperature range of 1 °C. Similar to this, the warehouse is not only cooled
down to the minimum but stepwise to other temperatures higher than the minimum if
they are feasible. By following this procedure, each cooling cycle leads to many possible
options which are simulated and generate many other options again. This results in an
exponential growth of possible solutions, which are evaluated by the electricity price
forecast. Finally, the solution with the lowest electricity price is chosen and could be
used to support the discission of cooling for the warehouse operator.

4 Evaluation

The evaluation contains three different parts analyzing electricity price prediction, deter-
ministic strategies and solution finding. The prediction model based on the weather con-
ditions and the demand is evaluated by comparing the predicted price with the actual
electricity price. Here, comprehensive data from 2019 is used. The comparison is done
sample wise for some periods of time. One of them is plotted below in Fig. 6.

In Fig. 6, the electricity price (left y-axis) is shown in dark blue and the score (right y-
axis) in red. In the prediction, the score behaves in the opposite direction to the electricity
price. Thus, a high score predicts a low electricity price and vice versa. To facilitate a
better comprehension of the diagram, the right y-axis is inverted.

Figure 6 shows that the prediction model reproduces some price fluctuations accu-
rately, but other fluctuations less precise. In detail, just about 5% of the hourly electricity
price is predicted within an accuracy of 1 e per MWh. The reasons for the deviations
may be that other factors influencing the electricity price had a greater impact in the
period under review. For example, electricity imports and exports, maintenance of the
production plants or fluctuations in demand may have been decisive. The last factor is
already part of the prediction model but could have a higher impact as conventional fos-
sil energy plants still keep a high share of the overall electricity production. Reviewing
the database of regenerative energy, the use of representative weather data from many
weather stations could also improve the prediction model.
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Fig. 6. Comparison of the electricity price prediction and the actual price

In the further evaluation, the model behavior is investigated under the premise of
a correct prediction. Therefore, real price data are used instead of the predicted val-
ues. During the execution of experiments, the described deterministic strategies were
evaluated using different settings. In detail, a combination of the factors size of the
warehouse, degree of filling and number of performed warehouse jobs is made. All in
all, 72 experiments are defined to evaluate the cooling strategies for different scenarios.
For each experiment, 20 simulation runs are used, where one day is selected randomly,
simulated and compared to the current status quo of a pure temperature-based cooling of
the warehouse. The evaluation took place on the basis of the defined output parameters
electricity consumption, electricity costs and number of cooling cycles. The respective
values of the status quo were taken as a basis and the relative changes after application
of the deterministic strategies were recorded. The evaluation is visualized in Fig. 7.

As can be seen in Fig. 7, strategy one reduces electricity costs by about 3% and
strategy three by about 7%. In contrast, strategy two causes an increase in electricity
costs of about 9%. As a reason for the described observation, an exemplary electricity
cost curve can be considered (see Fig. 8). As it can be seen there, on weekdays there is
a typical load curve in which electricity price peaks occur especially in the morning and
evening hours. Using the first strategy, active cooling is used in the most favorable 25%
of the hours, which are mostly during midday or at night. Hence there is a chance that
active cooling will take place before the high price peaks. Here, it must be remembered
that based on the temperature range of 1 °C, usually only one hour between two cooling
cycles can be bridged.

However, since the electricity price increases over several hours at peak times and
with strategy one the first hour is mostly bypassed, temperature-driven cooling can be
triggered during the price peak. This scenario can be avoided by using the third strategy.
Here, active cooling is not triggered until a price decrease is expected at the second
hour after cooling. Thus, the refrigeration system is not switched on during the price
increase, but before the price peak. In this way, the hour of the electricity price peak
can be bypassed at the morning and evening times. This explains the slightly better
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performance compared to strategy one. At the same time, strategy two performs worse
than the status quo. One possible explanation is that slight price increases already occur
before the morning and evening peaks. Especially during the weekends, the electricity
price increases many times in a smaller manner (see Fig. 8). Also, price increases occur
over several hours before the morning and evening peak during weekdays. Hence, the
warehouse is cooled down many times, which is reflected in the number of cooling
cycles. The temperature inside the warehouse stays at the lower area of the feasible
range more often which rises the electricity consumption (as explained after Fig. 9).

In addition, with strategy two, there is the risk that cooling down already occurs
before the price peaks, so the temperature-related cooling must take place accordingly
close to the highest electricity price. Overall, the poor performance of strategy two is
due to the large number of possible cases of unfavorable cooling behavior.

The number of cooling cycles can be considered as a further output parameter. The
analysis of Fig. 7 shows that all strategies lead to an increase of the cooling cycles
compared to the status quo. It is also visible that the number of cooling cycles increases
only slightly with strategy three, since the requirements to activate the cooling are strict.
In contrast, active cooling can be applied up to six times per day with strategy one and
up to 24 times per day with strategy two, given a high number of price fluctuations.

As last part of the evaluation, the implemented solution finding is analyzed. By
varying the timing and intensity of the cooling processes, a plan is developed to cool
the warehouse as cost-effective as possible. In detail, a variety of different solutions for
the problem is evaluated in the simulation and the most favorable one is chosen. The
experiments with solution finding have been carried out for one day of simulation and
with a correct electricity price prediction for each hour of the day. Figure 9 compares
the temperature plot of the solution finding with the status quo of the temperature-based
solution.
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The temperature curve in Fig. 9 reveals serious differences between the status quo
and the best possible solution determined by the solution finding. In detail, the cooling is
donemore frequent and takes place in shorter cooling cycles. As a result, the temperature
is predominantly kept within the maximum possible temperature range of 8.3 °C to
8.6 °C. This can be justified by the fact that if the temperature is higher, the temperature
difference between outside and inside the warehouse is lower (Evaluation was done in
summer with an outside temperature over 15 °C). Consequently, the temperature curve
grows slower. By keeping the temperature rise as flat as possible, less electricity has to
be used for cooling.

At the same time, a stronger cooling down takes place in the developed solution
at favorable hours. However, the cooling is not done to the minimum, but down to
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7.9 °C and 8 °C, respectively. This behavior could be explained by the fact that the steep
temperature rise in the minimum temperature ranges outweighs the advantage of using
the favorable electricity price to a great extent.

The qualitative evaluation of the solution finding is supplemented by a quantitative
evaluation in the following Fig. 10. Here, the control option is compared with the status
quo of purely temperature-based cooling. The comparison is done with the parameters
power consumption, power costs and number of cycles as relative to the status quo.
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Fig. 10. Performance of the solution finding

Figure 10 illustrates the high potential of adjusting the cooling cycles using the
solution finding control option. Thus, approximately 37% of the electricity consumption
and electricity costs can be saved. At the same time, the solution finding results in a cycle
rate of 2.6 times the status quo. Due to the refrigeration system being more frequently
switched on and off, there may be more failures and higher maintenance costs. At the
same time, the higher temperature in the warehouse increases the core temperature
of the stored goods. Consequently, a lower resistance to temporarily higher ambient
temperatures (for example during the handling process) may occur. Accordingly, careful
considerations should be made before implementing such a cooling plan. Only in this
way the identified cost potentials can be used and the quality of storage can be ensured
at the same time.

5 Conclusion

Refrigerated warehouses are significant consumers of electricity and can be used in a
grid-supporting manner due to their fluctuating power consumption. This finding was
confirmed in the research of this paper. Possible cost savings through the implementation
of simple deterministic strategies were partially confirmed. With the most effective
strategy, an average saving of the electricity procurement costs of 7% has been achieved.
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Due to the implementation effort of the control strategies, the savings are relativized from
an operational point of view. The relatively low benefit can be justified by the small
temperature range of 1 °C and by the existing weaknesses of the implemented control
strategies. Furthermore, the potential of a more sophisticated approach described as
solution finding control option is proven. Here, high cost potentials can be exploited by
a saving of electricity costs of 37%.

Another conclusion of this paper is that the electricity price prediction of this simula-
tion model using a simple method based on weather and demand data is not sufficiently
accurate. This could change while the share of renewable energy rises. Nevertheless,
additional work is needed to improve the electricity price prediction and enable the
supposed demand side management on an operational basis.

Regarding the solution finding model, the simulation showed that a large computa-
tional process capacity is needed to evaluate the exponential growing number of possible
solutions. Here, the solution could be further enhanced by a larger simulation timeframe,
a more powerful computer or the implementation of operations research heuristics.

A general recommendation proven by this paper is to keep the temperature inside
the refrigerated warehouse close to the upper temperature boundary. This approach
can already reduce electricity consumption and enable electricity cost savings without
changes in electricity procurement. Further investigations regarding the proposed solu-
tion should be carried out into the possible consequences of a long-term high cycle rate
on the refrigeration system. In particular, increasing maintenance costs can be expected
if the refrigeration system is switched on and off frequently. As part of further research,
the investigation of storage conditions with a higher temperature range as in deep-freeze
warehouses (-18 °C to -30 °C) should follow. As there is a higher timespan between the
cooling cycles, such a use case would be promising to be more costs saving and could
have a higher contribution to grid stability.

To conclude, it is technically possible to use a refrigerated warehouse as a virtual
battery. Nevertheless, for the investigated refrigerated warehouse operating with a 1 °C
temperature range, the supposed demand side management does not have enough poten-
tial for its implementation. This assessment relies on the current electricity price curve.
When there is a higher fluctuation of the electricity price and a higher dependency of the
price to the current availability of renewable energy sources, the approach of this paper
could gain in relevancy.
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Abstract. The CrossLog project aims to investigate, study, develop and
implement an automated and collaborative cross-docking system (aligned
with Industry 4.0) capable of moving and managing the flow of prod-
ucts within the warehouse in the fastest and safest way. In CrossLog,
the ability to generate intelligent three-dimensional packing patterns is
essential to ensure the flexibility and productivity of the cross-docking
system while ensuring the stability of the palletised load. In this work, a
heuristic solution approach is proposed to generate efficient pallet pack-
ing patterns that simultaneously minimise the total number of pallets
required and address the balance of weight and volume between pallets.
Computational experiments with data from a real company demonstrate
the quality of the proposed solution approach.

Keywords: Mixed pallet loading · Heuristics · Volume and weight
balance

1 Introduction

In a context of a paradigm shift from a ‘forecast-led supply-chain’ to a ‘responsive
demand-driven supply-chain’ environment, numerous challenges emerge. The
customization of the offer, accessibility, convenience, navigability, and customer
experience, in space and time, are truly fundamental. Recently, we have wit-
nessed a proliferation of proximity stores/supermarkets spaces characterised by
being larger in number, smaller in size than traditional hypermarkets, and with-
out storage capacity per se. This raises the question of how to supply this type
of shop efficiently and effectively, reducing the effort associated with logistics
operations in a context of high volume and mix.

In the age of digitalisation, to satisfy consumer needs, companies need to
develop and adopt efficient, fast and agile logistics processes to provide the
best shopping experience, with cross-docking emerging as the natural evolution
of conventional logistics. Currently, this process still relies heavily on human
labour. Its automation becomes complex when considering the number of vari-
ables in these systems and the frequency with which they change. However, with
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increasingly adaptable and flexible automation solutions, there is the possibil-
ity of automating cross-docking operations, making the process more agile and
reducing human effort.

The main objective of the CrossLog project is to develop and implement
an automated and collaborative cross-docking system capable of moving and
managing the flow of products within the warehouse quickly and safely. The
handling of objects is carried out using a set of modules (industrial conveyors,
highly advanced robotic units and artificial vision systems) that interact with
each other and communicate with an intelligent decision support system respon-
sible for managing flows and the intelligent palletizing system.

Within the scope of the CrossLog project, an intelligent three-dimensional
palletizing system was developed to decide the allocation of products of different
sizes on the pallet. The main goal of the intelligent palletizing system is to
generate efficient and safe three-dimensional packing patterns that contribute to
increase the availability and efficiency of the mobile palletizing unit. Features
related to cross-docking, such as the arrival of pallets at different points in time,
the availability of products, and the temporary storage of products, are handled
by the intelligent decision support system developed under the CrossLog project.

The rest of this paper is organised as follows. Section 2 is dedicated to the
description of the problem. In Sect. 4 it is detailed the solution approach proposed
to solve the problem, with a description of the different variants considered
and the corresponding algorithms. The computational experiments analysis is
described in Sect. 5. Finally, in Sect. 6 some conclusions are presented.

2 Problem Description

The intelligent palletizing system problem addressed in this paper belongs to
the wider combinatorial optimisation class of Cutting and Packing (C&P) prob-
lems. According to the typology proposed by Wäscher et al. (2007) for C&P
problems, the addressed problem is classified as a 3-Dimensional Single Bin Size
Bin Packing Problem (3D-SBSBPP).

The 3D-SBSBPP addressed in this work can be stated as follows: A given
set of small items of parallelepiped shape k(k = 1, ...,K), known as box types
B = b1, b2, ..., bK , each box type in quantity nk, assumed to be a rigid body with
the centre of gravity located at its geometric centre and characterised by its
depth (dk), width (wk), height (hk) and weight (pk) is to be loaded orthogonally
into a large object of parallelepiped shape, designated as pallet C, characterised
by its depth (D), width (W ) and height (H).

The problem is a multi-objective one. The main goal is to minimise the
number of pallets, and the second has the purpose of defining the way boxes are
distributed between the pallets. In this second priority objective, three different
options are considered:

– Maximise the volume usage of the pallets (VU). The aim is to maximize the
volume usage of each pallet. With this objective one of the pallets typically
has a reduced volume usage.
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– Balance the weight of the pallets (WB). The objective is to generate packing
arrangements where pallets have similar weights.

– Balance the volume of the pallets (VB). The objective is to generate packing
arrangements where the sum of the volume of the boxes loaded on each pallet
is similar.

The objectives must be met while satisfying the following constraints:

– the boxes must not overlap;
– all boxes must lie entirely within a pallet;
– each box must be placed in accordance with one of its possible orientations;
– the total weight loaded into a pallet cannot exceed its maximum permissible

weight (weight limit constraint);
– each box must maintain its packing position undisturbed during cargo loading

(static stability constraint);

The solution to the problem should provide the set of boxes to be loaded in
each pallet and the location of each box inside the pallets.

3 Related Work

The literature shows several methods for solving 3D-SBSBPP problems, but only
a few can cope with the size and requirements that the industry is looking for.
Mixed integer linear programming based solution approaches are presented in
Chen et al. (1995), Junqueira et al. (2012) and Paquay et al. (2016), however,
are not able to solve large problems as the ones found in practice.

In contrast, different heuristics and exact methods, such as those presented
in Faroe et al. (2003), Martello et al. (2007), Fekete et al. (2007), and Zhu et al.
2012) disregard many practical and logistical constraints.

A review of the literature on practical constraints in 3D-SBSBPPs is pre-
sented in Wäscher (2013) and Zhao et al. (2016). More recently, a literature
review on solution approaches for packing problems on-line and offline has been
published in Ali et al. (2022).

A literature work dealing with problems similar to that presented in this work
is Gzara et al. (2020), considering practical constraints such as vertical support,
load bearing, pallet weight limits, and planogram sequencing. In vertical support,
an item is considered supported by having 70% of its area supported or its four
corners sitting on top of items underneath. Load bearing refers to the ability
of an item to withstand the weight placed on top. The weight of the pallet is
the limit of the total weight of the items in a pallet, and the sequencing of the
planogram refers to the ordering of items that enables efficient pallet emptying
of the items in the store. A matheuristic approach based on column-generation is
proposed, where the pricing sub-problem is a two-dimensional layer generation
problem combined with second order cone programming and graphs. The main
difference from the problem analysed in this work is the balance of weight and
volume of the pallets generated.
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4 Solution Approach

The proposed solution approach developed to address the described 3D-SBSBPP
is based on an iterative procedure that loads one pallet at a time. Given a set
of selected items, the algorithm loads them in a single pallet using the con-
tainer loading algorithm with static stability (CLA-SS) proposed by Ramos et
al. (2016). Then it uses a compaction procedure to reduce the height of the
pallet. This procedure is repeated until there are no more boxes to load.

The CLA-SS algorithm used to load the pallet tries to maximise the pallet
volume usage with an assortment of items while considering the maximum pallet
allowed weight, nonoverlap, and stability constraints.

Two variants were developed to address the different secondary objectives.
The first is centered on the secondary goal of maximizing the volume usage of
the pallets. The second variant is centred on the weight or volume balance of
the pallets.

The first variant starts with trying to pack all the items on a single pallet.
However, if there is a subset of items that were not loaded on the pallet, a new
pallet is added and the subset is loaded. The last pallet will not have a high
volume usage in most situations.

The second variant was devised to improve safety during transport. Two main
issues often arise in transport, the dynamic stability of the pallet (Ramos et al..,
2015; Ramos & Oliveira, 2018) and the axle weight distribution of the cargo on
trucks (Silva et al., 2018; Ramos et al., 2018). As such, the second variant aims
at balancing the volume or the weight of the pallets. By balancing the volume,
the pallets are expected to be similar in height, which contributes to the dynamic
stability of cargo. Balancing the weight can obtain a more balanced distribution
of the pallets’ weight on the container floor and contribute to a better axle weight
distribution.

The second variant differs from the first variant in determining the subsets
that are to be loaded in each iteration. The variant uses an assignment approach
that is based on an item-to-pallet allocation algorithm (I2PAA) that estimates
the minimum number of required pallets and assigns items to the pallets during
an initialisation phase. The assignment is done by sorting the items in non-
ascending order of size (item weight or volume) and assigning them to pallets
using a roll-robin heuristic. This enables more evenly balanced pallets regarding
either weight or volume, which increases the vehicle’s dynamic stability or the
axle weight balance compared to the first variant.

The pseudocode of the pallet building algorithm is presented in Algorithm 1.
This algorithm is common to both variants. The main difference is that all

items are immediately assigned to the first pallet in the first variant. At the end
of each iteration, the remaining items are assigned to the next pallet, while in
the second variant, items are assigned to pallets based on the weight or volume
of the item. If in a given pallet some boxes cannot be loaded, a reassignment
procedure for the not yet loaded items is performed. The pseudocodes for the
initial assignment and reassignment procedures of the second variant are shown,
respectively, in Algorithm 2 and Algorithm 3.
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Algorithm 1. Pallet Construction Algorithm
1: procedure BuildingPallet(P )
2: Load instance files and prepare output files
3: Configures parameters of the algorithm
4: Run Initial Item Assignment Algorithm
5: Saves current instance as PrevInstance
6: Defines current pallet and compaction state
7: do
8: Initialise stability Matrices
9: Prepare Decoder and Container Structures and define Objective Function

10: Run Compaction Heuristic using Genetic Algorithm
11: Reset Objective Function
12: Check current compaction phase and selects next step
13: if Phase = Compact MaxOCCUP & Status = LeftoverZERO then
14: Save Current Solution as LastSolution
15: Reduce maximum allowed pallet height
16: RELOAD PrevInstance for MinHEIGHT phase
17: end if
18: if Phase = Compact MaxOCCUP & Status = LeftoverMANY then
19: Save Current Solution as LastSolution
20: Prepare next MaxOCCUP phase − > Run Item Re-Assignment Algo-

rithm
21: Return LastSolution
22: end if
23: if Phase = Compact MinHEIGHT & Status = LeftoverZERO then
24: Save Current Solution as LastSolution
25: Reduce maximum allowed pallet height
26: RELOAD PrevInstance for MinHEIGHT phase
27: end if
28: if Phase = Compact MinHEIGHT & Status = LeftoverMANY then
29: Prepare next MaxOCCUP phase − > Run Item Re-Assignment Algo-

rithm
30: Return LastSolution
31: end if
32: Clear stability Matrices
33: while (Number of unassigned items > 0)
34: end procedure

4.1 Packing and Compaction Phase

The packing and compaction phase consists of an iterative process that uses the
CLA-SS to build a single pallet considering the constraints of volume, weight,
non-overlap, and stability. This process uses two secondary objective functions:
maximising volume occupation or minimising pallet height.
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Independently of the secondary objective, each pallet is loaded using the
same two-step procedure. First, given a set of boxes, the CLA-SS tries to load
them on a single pallet to maximise the volume usage of the pallet. Secondly,
considering the loaded boxes on the pallet compacts the cargo arrangement by
minimising the height of the pallet.

The compaction phase iteratively reduces the maximum height allowed for
the pallet until it cannot load any item onto the pallet. This compaction phase
returns pallets with maximised volume usage and minimised height.

Depending on the item assignment characteristic, different pallet configura-
tions will emerge:

Weight balance produces pallets with similar weights, although their occupied
volumes may differ depending on the density of the items. May produce extra
pallets if the item assignment heuristic assigns very large items to one pallet
exceeding the allowed volume limit.

Volume balance produces pallets with similar volumes, but this generates pal-
lets with significant differences in total weight. May produce extra pallets
if the item assignment heuristic assigns very heavy items to one pallet that
exceeds the allowed weight limit.

This packing and compaction phase returns pallets with their volume occu-
pation maximised, and their height minimised considering their assortment of
items.

4.2 Second Variant Assignment of Boxes

The initialisation and re-assignment phases can be configured to generate dif-
ferent pallet allocations: maximising the occupation of all pallets except the
last where height minimisation is preferred, or balancing the weight (or volume)
across the minimum number of estimated pallets used, aiming to produce pallets
with similar occupied weight (or similar volume).

The initialisation phase of the second variant requires estimating the mini-
mum number of pallets able to pack all items successfully and then adequately
assigning the items to those pallets considering the balancing preference of either
weight or volume.

It starts by ordering the items into a non-ascending sequence by the selected
characteristic (volume or weight) and then assigning them to the pallets using a
round-robin heuristic. Considering the assignment by weight, items are ordered
from heaviest to lightest (as observed in Fig. 1a). When selecting assignments by
volume, items are ordered from largest to smallest (as presented in Fig. 1b). In
these examples, the assortment of items is assigned using a round-robin heuristic
to four pallets (P1, P2, P3, and P4).
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(a) Weight Balance

(b) Volume Balance

Fig. 1. Assignment strategies

Algorithm 2. Initial Assignment Algorithm
1: procedure Assignment(I, P )
2: Initialises weight and volume data arrays
3: Defines pallet item assignment algorithm parameters
4: Compute minimum number of pallets used, considering total weight and volume

of items
5: if OPT selected is 1 then
6: Select items on WEIGHT array descending
7: Round-robin item allocation to pallets
8: Validation of weight, volume, and maximum allowed WEIGHT considering

balanced flag
9: else

10: if OPT selected is 2 then
11: Select items on VOLUME array descending
12: Round-robin item allocation to pallets
13: Validation of weight, volume, and maximum allowed VOLUME consid-

ering balanced flag
14: end if
15: end if
16: end procedure

The item reassignment process runs after the packing and compaction of any
pallet is verified (when maximum volume occupation and minimum height are
achieved) and assigns all items not yet compacted into pallets considering the
chosen strategy (weight or volume balancing).

The general steps of the item re-assignment process are shown in the pseudo-
code in Algorithm 3.
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Algorithm 3. Re-Assignment Algorithm
1: procedure ReAssignment(I, P )
2: Selects items not yet placed into pallets
3: Initialises weight and volume data arrays
4: Defines pallet item re-assignment algorithm parameters
5: Update estimation of pallet occupation ratio
6: Compute minimum number of pallets left, considering total weight and volume

of unallocated items
7: if OPT selected is 1 then
8: Select items on WEIGHT array descending
9: Round-robin item allocation to pallets

10: Validation of weight, volume, and maximum allowed WEIGHT considering
balanced flag

11: else
12: if OPT selected is 2 then
13: Select items on VOLUME array descending
14: Round-robin item allocation to pallets
15: Validation of weight, volume, and maximum allowed VOLUME consid-

ering balanced flag
16: end if
17: end if
18: end procedure

5 Computational Experiments

Computational experiments were performed using a set of instances to esti-
mate the behaviour of the pallet building algorithm, comparing multiple options
(maximisation of occupation, balancing by volume and balancing by weight).
The computational experiments were conducted on an AMD Ryzen Threadrip-
per PRO 3995WX with 16 cores, 256 Gb Ram DDR4 3200 Mhz, under Windows
10.

The genetic algorithm parameters used in the algorithm are based on those
used by Ramos et al. (2016). The parameters are presented in Table 1.

Table 1. Genetic algorithm parameters used in all computational experiments.

Parameters Values

Top 15%

Bottom 15%

Crossover probability 0.7

Population size 20 × number of boxes

Number of populations 2

Exchange between pop Every 15 generations

Stopping criteria After 150 generations
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5.1 Instance Characteristics

The instances are a set of real-world instances that contain enough items to
fill at least three full pallets but no more than five. This is the average order
size in real-world scenarios for our specific case, but the instance size can be
significantly larger in some situations.

The size of the pallet is fixed at 1200× 800 mm2, with a maximum height of
1500 mm, representing 1.44 m3 of the available volume. The maximum allowed
weight for each pallet was set at 800 kg. The set of items in each instance has
different assortments, ranging from weakly heterogeneous to strongly heteroge-
neous, considering item weight and dimensions.

The characteristics of the instances are presented in Table 2. Computational
experiments were performed using a set of instances to estimate the behaviour
of the pallet building algorithm, comparing multiple options (maximisation of
occupation, balancing by volume and balancing by weight).

Table 2. Instance characteristics.

Instance
name

# Item
types

#
Items

Total item
weight (kg)

Total item
volume (m3)

Estimated Min
# pallets

1751 98 135 892.93 2.70 3

2306 152 222 1323.57 3.52 3

2659 123 189 1081.27 3.00 3

2702 119 193 1127.69 2.71 3

2723 172 236 1123.55 4.33 4

2725 142 207 948.04 2.86 3

2727 105 145 879.43 2.85 3

2731 102 155 1053.72 2.54 3

2732 140 174 1261.55 3.54 3

2742 91 120 683.01 2.65 3

3417 94 184 1085.36 2.53 3

3510 104 152 1082.55 2.84 3

4125 96 183 1278.35 3.42 3

Average 118.31 176.54 1063.15 3.04 3.08

The lower bound for the number of pallets is obtained by rounding up the
division of the total volume of the items by the volume of the pallet multiplied
by a factor of 0.85. The factor was defined based on the average volume usage
of 90.58% obtained by Ramos et al. (2016) for strongly heterogeneous instances.
The estimated number of pallets for each instance is presented in the last column
of Table 2.
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5.2 Results

Using the first variant that tries to maximise the occupation of the pallets,
the algorithm allocates all items to the first pallet and, after finding the best
compaction, pushes all remaining items to be packed into the next pallet. This
approach tries to iteratively maximise the occupation of each pallet considering
the set of items available. The results for the first variant can be shown in Table 3.

The second variant uses the balancing approach of weight or volume, and its
results can be seen in Table 4 and Table 5, respectively. Each table contains the
values obtained for all built pallets, comparing volume usage percentage, pallet
weight, and maximum height (considering the top of the highest item placed on
the pallet). Notice that the full pallet contains a maximum volume of 1.44 m3.

Table 3. Results of the first variant

OCP. Volume usage(%) Weight (kg) Height (mm)

instance P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

1751 94.5 86.1 7.1 - 430.2 412.5 50.2 - 1500 1498 428 -

2306 96.0 87.5 60.9 - 411.6 556.0 356.0 - 1498 1499 1338 -

2659 95.0 87.2 26.0 - 434.6 513.4 133.3 - 1500 1500 587 -

2702 94.1 82.1 12.1 - 557.5 497.0 73.2 - 1498 1494 281 -

2723 94.6 93.8 79.7 32.6 324.1 236.3 377.3 185.8 1500 1500 1500 598

2725 93.3 85.8 19.4 - 439.8 394.4 113.9 - 1499 1500 445 -

2727 94.8 87.3 15.5 - 301.8 496.9 80.8 - 1498 1498 434 -

2731 94.3 80.0 2.0 - 630.9 408.8 14.0 - 1500 1500 206 -

2732 95.5 92.7 57.7 - 647.2 281.1 333.2 - 1496 1500 1200 -

2742 92.4 89.2 2.8 - 400.4 264.9 17.7 - 1500 1498 302 -

3417 94.6 79.3 2.0 - 637.3 428.6 19.5 - 1500 1500 280 -

3510 93.9 85.5 17.9 - 640.8 357.0 84.8 - 1500 1498 436 -

4125 93.8 92.0 51.4 - 535.8 464.9 277.7 - 1496 1500 1044 -

Comparing all these results, Table 3 clearly shows that the first pallets in all
instances are the ones with the highest total volume of items compacted and
show a reduction for every additional pallet. The average pallet volume usage,
not including the last pallet of each instance is 90.2%. These results are in line
with those obtained by Ramos et al. (2016) for highly heterogeneous instances.

Both the results of Table 4 and Table 5 show a similar occupation between
all pallets. The most consistent balancing strategy is the balancing by volume,
which distributes into similar pallet occupations while still reducing the number
of pallets. The weight-balancing strategy also manages to balance the pallets, but
not as well as the previous strategy. It is also observed that when the estimated
number of pallets is exceeded the balance is not achieved (e.g. Instance 2306 in
Table 4).
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Table 4. Results of the second variant with weight balance

WGH. Volume usage (%) Weight (kg) Height (mm)

instance P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

1751 58.4 64.1 65.2 - 317.4 298.9 276.7 - 1048 1500 1497 -

2306 88.3 70.8 84.4 0.9 511.3 374.0 431.1 7.1 1324 1061 1266 162

2659 76.1 65.5 66.4 - 418.6 343.3 319.3 - 1340 1191 1191 -

2702 64.4 66.8 57.0 - 452.1 348.7 326.9 - 1200 1480 987 -

2723 70.0 68.2 79.4 83.0 291.0 284.7 277.5 270.3 1346 1499 1497 1500

2725 62.6 66.3 69.5 - 336.8 314.8 296.4 - 1195 1483 1486 -

2727 84.2 49.8 63.7 - 362.1 279.2 238.2 - 1500 899 1193 -

2731 65.7 64.2 46.3 - 413.2 395.6 244.9 - 1200 1500 854 -

2732 89.4 70.0 86.5 - 530.8 403.6 327.1 - 1500 1338 1500 -

2742 55.6 63.7 65.0 - 240.3 232.3 210.5 - 1039 1462 1498 -

3417 61.6 57.5 56.7 - 402.3 344.7 338.3 - 1049 1493 1487 -

3510 70.3 63.4 63.6 - 389.6 352.9 340.1 - 1348 1498 1492 -

4125 86.3 68.6 82.3 - 460.5 444.5 373.4 - 1500 1198 1500 -

Table 5. Results of the second variant with volume balance

VOL. Volume usage (%) Weight (kg) Height (mm)

instance P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

1751 64.2 62.6 60.8 - 314.2 320.1 258.7 - 1184 1497 1500 -

2306 88.3 81.8 74.2 - 570.3 374.8 378.4 - 1499 1497 1348 -

2659 75.1 69.2 63.8 - 343.5 383.6 354.1 - 1347 1176 1174 -

2702 65.9 62.5 59.8 - 425.8 343.5 358.4 - 1199 1490 1498 -

2723 77.8 76.5 75.5 71.0 289.1 298.6 283.5 252.3 1350 1499 1498 1476

2725 68.7 66.2 63.6 - 357.3 274.3 316.4 - 1199 1496 1490 -

2727 73.5 64.9 59.3 - 301.6 297.0 280.9 - 1350 1146 1144 -

2731 65.2 63.6 47.4 - 386.4 462.2 205.2 - 1199 1500 850 -

2732 88.6 86.4 70.8 - 515.2 438.8 307.5 - 1497 1500 1344 -

2742 68.8 59.9 55.7 - 235.1 214.5 233.4 - 1199 1060 1060 -

3417 62.2 58.9 54.8 - 367.3 349.3 368.8 - 1189 1495 948 -

3510 67.5 65.8 64.1 - 351.3 409.7 321.6 - 1200 1470 1498 -

4125 82.5 81.0 73.8 - 430.8 466.7 380.9 - 1497 1498 1349 -

The average computational times are higher in the first variant and lower in
the second variant with volume balance. The values of the computational times
for each instance and secondary objective are presented in Table 6.
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Table 6. Computation time for each instance, considering each objective function.

TIME (s)

instance OCP. WGT. VOL.

1751 206 241 182

2306 1066 529 441

2659 711 673 519

2702 656 503 458

2723 1169 378 339

2725 993 691 641

2727 441 505 293

2731 470 430 384

2732 601 313 255

2742 191 144 138

3417 865 664 548

3510 394 231 238

4125 551 434 306

Average 639 441 365

5.3 Examples of Palletized Instances

Figures 2, 3, and 4 show an example of a full palletization, considering the two
variants and the secondary objectives. In Fig. 2, the first variant tries to use
the maximum volume using all available items, generating pallets filled to the
maximum limit and minimising the height of the last pallet.

Fig. 2. Pallets generated using the first variant

Figure 3 balances the assignment of items according to weight, which gener-
ates pallets of similar size if the density of the items is similar.
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Fig. 3. Pallets generated using the second variant with weight balance

Fig. 4. Pallets generated using the second variant with volume balance

Figure 4 shows the assignment of items based on a volume balance that tries
to have all pallets filled with the same volume of items.

6 Conclusions

In this work, we have addressed the mixed palletizing problem, the aim was to
minimise the number of pallets used and ensure a balanced distribution of the
boxes with respect to weight and volume in the pallets. A solution approach
considers two different variants, one centred on maximizing the volume usage of
the pallets and the other on the pallets’ weight or volume balance. In the solu-
tion approach the packing and compaction phase are conducted with the CLA-
SS algorithm. Computational experiments considering data from a real-world
company were performed to evaluate the efficiency of the solution approach con-
sidering both variants. Analysing the results, it is clear that the second variant
obtained solutions with a better weight and volume balance. The average com-
putational time is smaller for the second variant compared to the first one. It is
important to improve the lower bound used to estimate the minimum number
of pallets in future work.
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Abstract. Developments on digitalisation and automation in transport and logis-
tics create new possibilities in the organisation of supply chains. New technologies
can disrupt existing control structures, establish new forms of control and improve
the efficiency and flexibility of operations. This paper provides a framework to
analyse the trade-offs and conditions that best apply to each control structure
from centralised to decentralised. A centralised control structure is characterised
by one party (control tower) that collects and analyses data to come to optimal
operational decisions on a system level. In opposition, a decentralised control
structure is characterised by each unit in the logistics chain taking independent
decisions (self-organisation) based on local intelligence and autonomy. A 2 × 2
control structure matrix is created, with each corner defining a different type of
logistics control structure. The framework is then applied in two practical case
studies in which simulation models are developed to show the impact of different
logistics control structures. Results show the effects of different control structures
in one supply chain and under which circumstances and for which type of logistics
chain, each logistics control structure is most suitable.

Keywords: Centralised or decentralised organisation · Container logistics ·
Multi-agent simulation · Self-organising logistics (SOL) · Supply chain
management

1 Introduction

The increasing technological development on digitalisation and automation in transport
and logistics creates new possibilities in the organisation of supply chains. Real-time
connectivity and improved data sharing enables innovative methods of decision making
which can change the control structure of logistics operations. More (autonomous) data
driven decision making can be applied in different control structures, ranging from
central coordination (control tower approach) to decentral coordination (self-organising
approach). On one hand, a central control structure is characterised by one party (control
tower) that collects and analyses data to come to optimal operational decisions, which
are then communicated to various parties in the logistics chain. Consequently, decisions
are made globally based on globally-available information. This control tower approach
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offers potential for optimisation of efficiency at system level. In this way, the interests
of the chain can be placed above individual interests, and standardised communication
takes place via one system.

In opposition, a decentral control structure is characterised by each unit in the logis-
tics chain (e.g. a parcel, a container, a vehicle or a hub) taking independent decisions
(self-organisation) based on local intelligence and autonomy, aiming for more flexi-
ble operations. A mixed approach between centralised and decentralised control, could
combine the advantages of both forms, aiming at improving efficiency for the operations
that require a central organisation and providing flexibility for the operations that can
be performed at a local level.

In a centralised control structure, the advantages of a centralised system are reduced
communication errors within the chain, and a large degree of predictability and account-
ability. However, a lot of responsibility rests within one party, which makes this control
mode sensitive due to a single point of failure. Questions whether logistics parties can
develop a feasible control tower or whether data can be exchanged, processed, optimised
and returned fast enough, are still open.

Self-organising logistics (SOL) comes into scope when operators and carriers make
decentral decisions to organise their logistics operations and no longer require control
towers or other centralised forms of decision making. Less communication and fast
direct local response to unexpected events can be identified as organisational advantages,
alongwith not having the requirement of developing, operating andmaintaining a central
control infrastructure. There are however questions on how supply chains can become
more self-organising,what the impact is on performance andwhat properties are essential
for successful implementation.

Building on a previous publication on the implementation of self-organising logistics
from Quak [1], in this contribution we develop a framework to define different logistics
control structures ranging from central to decentral. The aim is to analyse the trade-offs
and conditions that best apply to each control structure, by applying this framework into
two practical case studies. To do so, a two-step methodology was followed. First, a set of
interviews and brainstorming sessions were conducted to answer the following research
question: “What are the factors that affect the type of logistics control structure and what
are their possible development directions?” Subsequently, two use cases were analysed
with simulation models in order to answer the following research question: “What is the
effect of different control structures and under which circumstances and for which type
of logistics chain, is each logistics control structure most suitable?”.

This paper is based on the research conducted for the SOLPort project (Self Organ-
ising Logistics in the Port), carried out by a consortium of the following partners: TNO,
SmartPort, Port of Rotterdam,University of Twente, Pharox, Distribute, NPRC, Intel and
Ab Ovo. The project was partly financed by TKI Dinalog (Dutch Top Sector Logistics).

2 Background

The term self-organisation refers to a dynamic process in which an overall order is
achieved through local interactions between parts of an initially disordered system [2].
In the logistics sector, self-organisation can be found in hybrid forms in which elements
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from a centralised control structure and a decentralised control structure are combined
using automated processes and real-time system information. Self-organising logistics
(SOL) systems can be seen as a network of nodes of different nature: nodes can be
locations operated by humans and supported by IT systems (e.g., seaports, container
terminals and warehouses) but also intelligent moving objects that are capable of auto-
mated decisions (e.g., trucks and barges) [3]. These nodes should have access only to the
data that is relevant to accomplish their tasks and should communicate with other nodes
in the network to optimise the logistics chain. To achieve that, SOL-systems should
ensure secure and efficient communication, extended sensors monitoring and adequate
robustness [4].

Most studies on SOL systems focus on fully decentralised approaches. For example,
Wycisk [5] describes how self-organisation can improve the performance of a logistics
chain, allowing for more autonomy at a decentral and local level. However, as already
explored in Pan [6], it is important that, although defined as decentralised systems,
self-organising logistics should also be able to work towards a common goal and thus
should be able to oversee the whole logistics chain. Moreover, recent studies started to
take central coordination into account when exploring the possibilities of self-organising
logistics. In Feng [7], a decentral agent decision-making framework with central coordi-
nation is developed, showing how including a vertical and horizontal collaboration can
improve the system performances.

Linked to the work of Feng [7], this research explores decentral structures with a
central escalation channel. This central escalation channel is activated when decentral
agents deviate from the system boundaries (e.g., when key performance indicators are
exceeded) to intervene and bring the system back to its standard values. While previous
studies focused on SOL-systems as a decentralised control structure or on the combi-
nation of decentralised and centralised control, this research examines the differences
between centralised and decentralised control and tests them on two case studies, to
gain practical knowledge on the impacts that different control structures could have on
a logistics chain.

3 Methodology and Research Setup

In the previous study from Quak [1], the possibilities of self-organising logistics
were discussed through serious gaming sessions and living labs (i.e. real-life exper-
iments). In this contribution, we broadened the scope and created a framework for
analysingdifferent logistics control structures, ranging fromcompletely centralised (con-
trol tower approach) to fully decentralised (self-organising approach), considering also
in-between approaches. Subsequently, we applied this framework to two case studies,
to quantitatively assess the different control structures with simulation models.

The research was structured in two phases. First, interviews and brainstorming ses-
sions were conducted to define the framework. Consequently, the framework was tested
through the simulation modelling of two case studies.
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3.1 Interviews and Brainstorming Sessions

To define the important aspects and development directions of logistics control struc-
tures, four interviews and brainstorming sessions were conducted between August and
December 2018 with experts in the logistics field. The aim was to enrich the exist-
ing definitions of centralised and decentralised control structures. As a result, the first
research question is answered: “What are the factors that affect the type of logistics
control structure and what are their possible development directions?”.

The interviews started with defining the concepts of centralised and decentralised
control structures. The discussions thenmoved towards the aspects of newmixed control
structures, which led to the creation of a control structure matrix with two axes, and the
definition of four logistics control structures. During the interviews and the follow-up
brainstorming sessions, each control structure was analysed, to understand the precondi-
tions and the perspectives that should be taken into account. Current practical examples
of control structures were put in perspective with respect to the control structure matrix,
so to understand how logistics chains are currently organised and how they could be
improved in the future.

3.2 Case Studies and Simulation Models

In the SOLport project, two case studies (i.e. practical experiments) were performed,
in which different control structures (from centralised to decentralised) were compared
with each other. The first case study concerns dry bulk inland shipping, whereas the
second case study deals with container hinterland transport by road. In the elaboration
of these experiments, a link was made with the control structures previously formulated
in the framework, which makes them extensive examples of an application of different
logistics control structures.

To analyse the case studies, simulation models were used. The simulation models
were developed and calibrated based on real data. To gain insight into the effects of
the different control structures applied to different logistics chains, multiple scenarios
were run for each case study. The results of the simulation models provide an answer
to the second research question: “What is the effect of different control structures and
under which circumstances and for which type of logistics chain, is each logistics control
structure most suitable?”.

Set Up Case Study 1 – Dry Bulk Inland Shipping. The first case study was per-
formed by the inland shipping cooperative NPRC and the research institute TNO, and
pertains the inlandwaterway transport of bulk goods fromone production facility to three
different consumption locations, which is fully executed by barges. The consumption
locations have limited stock capacities and the barge fleet has to guarantee the receiver
a security of supply, i.e. a minimal amount of available stock.

The current logistics control structure consists of a central planner that oversees the
process and allocates load to barges, while ensuring sufficient stock at the consumption
locations. Each barge in the fleet is an individual enterprise with their own interests and
preferences. This gives the skippers the urge to have a role in the decisionmaking process
of the operations they have to execute. The details on the physical and organisational
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flows were provided by barge cooperation NPRC and the receiver in this supply chain.
For the details regarding the planning and execution processes, the logistics manager at
NPRC and one of the barge skippers had been interviewed. Based on the information
collected in the interviews, as well as real-world data, scheduling heuristics have been
designed and integrated into a newly developed simulation model.

Description of the Simulation Model. An agent based model was developed to simulate
this case study. Agents are the barges, the production facility and the three consump-
tion locations. Agents simulate both the physical processes of sailing, berthing and
(un)loading and the organisational processes of shipment and (un)load slot allocation.
The model provides an aggregate representation of the essential physical processes as
this research focusses on the organisational aspects of logistics control structures. Three
different scenarios were analysed: one with a centralised control structure and twowith a
decentralised control structure. The first scenario is a representation of the current prac-
tice with a central planner. The decision heuristic of the central planner was implemented
by assigning barges to the unload location with the earliest expected stock depletion.
The second and third scenarios represent two forms of self-organising logistics where
barges decide for themselves to which location and at which unload slot they will go,
based on their own specific preferences. The difference between the second scenario
(‘standard decentral’) and the third (‘flexible decentral’) scenario is the time at which
the unloading decision is made by each individual barge. In the standard decentralised
scenario the choice is made at the same time as in the centralised scenario: both the
load and the unload slots are immediately scheduled as soon as the barge is empty and
leaves the consumption location to sail back to the production facility. In the flexible
decentralised scenario, decisions about the unload slot are made by the barge only a few
hours before it reaches the unload location. In this way, more accurate information on
delays and stock levels can be taken into account.

To prevent undesired outcomes in the two SOL scenarios, an escalation method was
implemented. In the case that an unload location foresees critical low stock levels, it can
claim priority for a barge visit and therewith overrule the preferred location decision
of the barge. Implementing this heuristic prevents unwanted stock depletion, but also
reduces decision autonomy of the barge skippers. In the case that multiple locations use
this priority claim simultaneously, then the central scheduling rule of the earliest stock
depletion is used.

Set Up Case Study 2 – Container Hinterland Transport by Road. The second case
study is performed by Distribute and Combi Terminal Twente (CTT) and concerns self-
organising logistics for the last-mile container transport from a hinterland container
terminal by a fleet of trucks [8]. Each container has its own specifications, such as client
location, and pick-up and delivery windows. The challenge is to assign containers to
trucks such that all containers are transported in an efficient manner.

The current logistics control structure consists of human planners that manually
assign containers to trucks with a centralised decision-making process. The assignment
is based on a list of attributes, which can change and can be updated by each party during
the process.
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Description of the Simulation Model. To simulate different control structures (from
central to decentral) a multi-agent simulation system was developed, in which contain-
ers and trucks are represented as agents. The simulation model explores seven scenarios
with their own control strategy with different levels of self-organising logistics. These
decentralised decision-making processes enable the agents to autonomously schedule
their activities following a local sealed-bid auction mechanism. The auction mechanism
is based on the Vickrey auction from Mes [9], in which agents only have information
from their neighbours (decentralised approach) using sensors and local communication
protocols. When a container reaches the terminal, it opens an auction and each truck
can place a bid expressed by price, expected departure time and expected arrival time.
Once the bid is accepted, the container communicates the decision to the winning truck,
creating a new schedule. In some of the scenarios, a scanning mechanism is triggered
after a fixed amount of time (threshold), in which a human planner or the SOL-system
re-evaluates or confirms the decisions.

4 Framework for Logistics Control Structures

During the first phase of the research, as described in Sect. 3.1, interviews and brain-
storming sessionswere conducted to define the framework for logistics control structures
as described in Hopman [10]. Gathering the information provided by the experts during
the interviews, it was possible to identify two important criteria for defining the type
of control – decision level and information – and their two possible directions – global
or local. As a result, a control structure matrix is created, with four logistics control
structures (Fig. 1).

Decisions can bemade on a local or global level. In the case of global-level decisions,
there is a (third) party who oversees (a part of) the logistics chain and makes operational
decisions for different agents (e.g. logistics parties or vehicles). In the case of local-level
decisions, every logistics party in the chain is responsible for its own operational choices.

Information can be exchanged on a global or local level. In the case of global-level
information, all the necessary data is available and exchanged through the entire logistics
chain. In the case of local-level information, data is known only within a specific party
and it is shared in a very limited way. This limitation concerns the number of parties
(e.g., data is only shared with the previous and the next parties in the logistics chain),
but also the content of the shared data (e.g., only aggregates or specific data that are
required for the logistics process are shared).

4.1 Control Structure Matrix

Based on which level decisions are made and information is exchanged, a 2 × 2 matrix
is created (Fig. 1), with each corner defining a different type of control structure. The
figure presents four possible controle structures along the two axis, level of information
exchange and level of decision making.

The top left corner defines a central logistics organisation with one large control
tower. Decisions are made on a global/central level based on information that is available
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Fig. 1. The 2 × 2 matrix with four different control structures.

on a global/central level. The advantage of this control structure is that the control tower
has the overview of all processes and can optimise decisions on a system level. Some
of the disadvantages include having a single point of failure, a high chance of mistrust
from companies, low willingness to share data with the control tower, the complexity
of collecting and processing lots of data (possibly in a standardised way), and optimise
processes and communicate actions with all stakeholders in a short period of time. It
is possible to invest in and maintain back-up facilities to improve uptime of a central
control tower, but this does not take away the reliability of the supply chain on the
presence of a control tower. This structure is especially relevant for situations where the
system perspective is very important and for situations that are rather predictable.

In complete opposition, the bottom right corner defines a decentral logistics organisa-
tion, also called self-organising logistics. In this control structure, agents in the logistics
chain can make their own (local) decisions based on the information they have directly
available. Advantages are that only a limited amount of data has to be shared and that
agents can optimise their own decisions in a responsive and flexible way without depen-
dency on a central organisation, which creates high autonomy. A disadvantage is that
there is no optimization at system level which might lead to unwanted results at system
level. Escalation levels should be introduced to avoid this. This structure is most relevant
in situations that are very dynamic, where fast and flexible decisions are required often
and in situations where autonomy of agents is important.

The top right corner combines local-level decisionswith globally-shared information
in a decentral logistics organisation with global data. Information on logistics processes
and possible disturbances is sent to a global data infrastructure with a standardised way
of communication and information is available for all the parties involved in the logistics
chain to make operational decisions based on individual performance indicators. This
control structure can potentially allow for a better utilisation of assets and less delay
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in the logistics chain, using as much as possible real-time information. On the other
hand, since different parties are involved in the logistics chain, it might be a challenge to
properly coordinate all operational processes. Moreover, the lack of predictability (due
to the local-level decisions) can be harmful for long-term investments. The application
of a decentralised logistics organisation with global data is suitable when coordination
and data exchange between different parties are crucial for making individual decisions
in dynamic circumstances.

Lastly, the bottom left corner combines global-level decisions with locally-shared
information in a central logistics organisation with several smaller control towers. Each
of the smaller control towers (e.g. an organisation or a digital platform) oversees and
manages a specific part of the logistics chain by collecting locally-shared information
and by making operational decisions. To realise this control structure it is important that
the control towers are jointly accepted by the parties involved and that they are able to
efficiently collect and process data. Compared to central operations, the smaller control
towers can better cope with dynamic conditions, while the system perspective is taken
into account and clarity about the motivations behind decisions is provided.

An overview of the characteristics and trade-offs for each control structure is shown
in Fig. 2.

Fig. 2. Control structure matrix with characteristics for global (dark green) and local (light green)
decisions and for global (dark orange) and local (light orange) information (Color figure online).
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5 Application of the Framework in Two Case Studies

The second phase of the research includes the application of the logistics control struc-
ture framework in two case studies: dry bulk inland shipping and container hinterland
transport by road. Different logistics control structures were simulated for each case
study. All results can be found in Fransen [11] and De Bruin [8] and are summarised
below.

5.1 Dry Bulk Inland Shipping

The developed simulation model represents real world operations and performances in
the case of a centralised control structure (current practice) andwas used to compare three
different logistics control structures (centralised, standard decentralised and flexible
decentralised). The main difference between the scenarios is how barges are assigned
to the unload slots and locations.

Results show that both a centralised and decentralised approach are able to supply
the requested annual volume of dry bulk to the consumption locations. The variation
in turnover per ship is much bigger in the decentralised scenarios, since in this control
structure, skippers choose their unload location based on individual preferences, which
has a clear effect on the distribution of ships across the different locations, hence on the
turnover.

For what concerns the stock levels, results show that different control structures lead
to different stock levels per unload location. In the centralised control scenario, there is
less variation and thus more stability and certainty regarding the stock levels. In contrast,
both self-organising logistics structures (decentralised scenarios) have a much greater
variation in stock levels, which is caused by the individual unload preferences of the
different barges. To ensure the security of supply for the receiver, an escalation method
was implemented in the decentralised scenarios, but the simulationmodel still shows that
decentral organisation can lead to sub-optimal performance from a system perspective.

Another aspect that differs between centralised and decentralised control structures
is the priority claim by consumption locations. In case of self-organising logistics, a
priority claim is often needed to ensure security of supply while dealing with the higher
variation in stock level. Location preferences by skippers play an important role in
the priority claim that is required for (other) consumption locations and therefore the
preferences of skippers have a high influence on the outcome.

For the shipper, security of supply and a stable stock level are extremely important. To
guarantee this, a central control structure ismore suitable. On the other hand, the interests
of a skipper are better represented in the case of a decentralised control structure, inwhich
they havemore flexibility and autonomy.As an inland shipping cooperation, NPRC is the
connecting factor between skippers and shippers and, when choosing a logistics control
structure, a trade-off has to be made between different interests of these parties. It is a
balancing act with the freedom of choice for skippers on one hand and the security of
supply for shippers on the other hand, which variation can be assessed by setting different
system rules. Based on the results of the simulation and the characteristics of the case
study (e.g. a predictable flow of goods and a well-organised supply chain), a centralised
control structure is most suitable. In case that a decentralised control structure is chosen,
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it is important to create system rules in such a way that skippers only have freedom of
choice within the limits necessary to meet system requirements. When the system rules
are more strict, there is less freedom of choice for the skippers and the situation will be
more similar to a centralised control structure.

5.2 Container Hinterland Transport by Road

The developed simulation model represents real world operations for the container hin-
terland transport by road at CTT, and was used for comparing seven different scenarios,
with each scenario having an increased level of self-organisation.

Results show that increasing the level of self-organisation does not lead to substantial
changes in meeting the established deadlines. The differences in the on-time deliveries
are less than 1% and thus considered neglectable. Furthermore, increased levels of self-
organisation do not bring many changes in the loading and unloading turnaround times.
However, these average turnaround times are significantly lower in the two scenarios in
which overruling of the system is not allowed.

The simulation of scenarios with a different level of self-organisation, leads to inter-
esting results on the efficiency of last-mile container transport. For configuring a self-
organising fleet of trucks, trade-offs should be made on different performance aspects
for the container terminal and its clients. A positive aspect of a more self-organised
control structure is the opportunity of continuously scanning for better options, which
allows for merged trips (i.e. one trip in which the delivery of a container to one client is
combined with the pick-up of a container at another client). Having more merged trips
leads to higher efficiency in transporting a container. Therefore, within a SOL-system
agents can increase the percentage of loaded driving time and consequently decrease
the total driving distance. The simulation model shows that the self-organising scenarios
have a better performance on driving time and driven kilometres. However, this also
leads to a more dynamic system with spontaneous overruling and merging trips, which
requires more communication between trucks and thus more connectivity and flexibility
from the truck drivers.

Based on the results of the simulation, a decentralised form of control should be
preferred for the container hinterland transport at CTT. Introducing a SOL-system dras-
tically reduced the dependence on manual planning and increased operational perfor-
mance, which in turn leads to reduced costs. The optimal degree of self-organisation
should be evaluated for each specific case study and preferences with respect to the
different performance indicators using simulation.

6 Conclusions and Further Research

This research defines a framework to analyse different logistics control structures and
tests this framework by applying it in two case studies.

Thefirst part concerns the creation of the framework and aims to answer the following
research question: “What are the factors that affect the type of control and what are their
possible development directions?”.
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Based on a set of interviews and brainstorming sessions, it was possible to identify
the trade-offs that should be made between a completely centralised control structure
and a completely decentralised one. Consequently, a 2 × 2 matrix was created, with
the axes decision-level and information-level and with the two possible directions of
global and local (as shown in Fig. 2). The results are four logistics control structures,
each corresponding to one quarter of the matrix: central logistics organisation with one
large control tower, central logistics organisation with several smaller control towers,
decentral logistics organisationwith global data and decentral logistics organisationwith
local data.

The second part concerns the simulation analysis of two case studies, to test the
framework and to answer the following research question: “What is the effect of different
control structures and under which circumstances and for which type of logistics chain,
is each logistics control structure most suitable?”.

Simulationmodels were developed for the case of dry bulk inland shipping forNPRC
and the case of container hinterland transport for CTT. For the case study of dry bulk
inland shipping, three different scenarios were simulated, one with a centralised control
structure and two with a decentralised control structure. For the case study of container
hinterland transport, seven scenarios were simulated, each with an increased level of
self-organisation. By comparing the performance indicators of each scenario and taking
into account the real world characteristics of the case studies it was possible to identify
the most suitable control structure for each of the case studies and therefore answer the
second research question.

Both case studies show that self-organisation can be successfully implemented for
the logistics operations in the simulation models. Applying self-organisation in real
world dynamics requires an approach that can handle undesired outcomes at system
level (e.g. an escalation mechanism). In current centrally-organised logistics, this is
generally resolved by human flexibility.

The case study of dry bulk inland shipping has a stable and predictable flow of goods,
it is well organised and there is the need for a high security of supply at the consumption
locations. Simulation results show that a decentral organisation leads to a decrease on
performance levels, such as the stability of stock levels. Consequently, a central control
structure is more suitable. With respect to the matrix in Fig. 2, this case study should
be positioned in the top-left section, with global-level decisions and globally shared
information. A self-organising logistics control structure is advised only in the case that
the benefits outbalance the decrease in system performances, or when a control tower
approach with globally-available information is not achievable.

The case study of container hinterland transport by road is defined by a flexible chain,
in which minimal data is exchanged and a high responsiveness is required due to the
dynamic circumstances. Simulation results show that performances can be improved if a
self-organising control structure is introduced. The main benefit lies in the possibility of
decision overruling, which represents a very flexible way of planning. For these reasons,
a decentralised control structure is more suitable. With respect to the matrices in Fig. 1
and Fig. 2, this case study should be positioned in the bottom-right section, within
local-level decisions and locally shared information.
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Choosing a feasible logistics control structure is not a choice between two extremes
(central and decentral), but rather identifying a point on the scale between central and
decentral such that a specific control structure best suits the different interests and needs
of the parties involved. In this context, more research is needed to find the balance
between a centralised and decentralised control structure. On a general term, more prac-
tical use cases are required to study the effects of different control structures on the
performances of a logistics chain, and to understand how to implement a new control
structure in practice.

Fig. 3. Vision for further research on self-organisation.

The current research can be enriched in two ways, as displayed in Fig. 3. On one
hand, future studies should focus on placing higher intelligence in a lower level of the
chain (blue development in Fig. 3), such as assigning autonomy at a load carrier level
(e.g., a container) or even at a load level (e.g., a parcel). On the other hand, the focus
should be on extending the scope of the logistics chain (red development in Fig. 3), going
from a configuration with one fleet, one link in the logistics chain and one modality (like
in the NPRC and CTT case studies), to a configuration with multiple fleets, links and
modalities in the logistics chain.
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Abstract. Supply chain disruption, from ‘Black Swan’ events like the
COVID-19 pandemic or the Russian invasion of Ukraine, to more ordi-
nary issues such as labour disputes and adverse weather conditions,
can result in delays, missed orders, and financial loss for companies
that deliver products globally. Developing a risk-tolerant procurement
strategy that anticipates the logistical problems incurred by disruption
involves both accurate quantification of risk and cost-effective decision-
making. We develop a supplier-focused risk evaluation metric that con-
strains a procurement optimization model for a global technology com-
pany. Our solution offers practical risk tolerance and cost-effectiveness,
accounting for a range of constraints that realistically reflect the way the
company’s procurement planners operate.

Keywords: Supply chain · Risk analysis · Procurement optimization

1 Introduction

The COVID-19 pandemic has revealed vulnerabilities in global supply chains,
creating supply, demand, and logistics challenges that required immediate action,
forcing supply chain executives to re-chart their courses. Other recent headline-
grabbing supply chain challenges include the blocking of the Suez Canal by the
Ever Given, and the Russian invasion of Ukraine, a significant producer of the
world’s food supply. However, while these ‘Black Swan’ scenarios attract global
attention, supply chains must also deal with more ordinary, but also more fre-
quent disruptions, such as natural disasters, labour disputes, tax policy changes,
and transport disruptions. Supply chain resilience is a company’s ability to nav-
igate unexpected supply chain disruptions with its existing capabilities. In other
words, supply chain resilience is the ability to react to problems and recover from
them without significant impact on operations and customer timelines. Most
of the short-term tactics to mitigate disruption involve reallocating production
lines to other products, re-balancing workforce, shutting down production, and
finding alternative logistics models and suppliers. Large companies can employ
dedicated teams to handle this workload, therefore in this paper, we develop a
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medium-term procurement optimization method to provide a risk-robust pro-
curement strategy that reduces the burden on short-term emergency response
teams. Since supply chain disruption data can be challenging to acquire from
third-party vendors, with the impact of a disruption event being difficult to
accurately quantify, we develop a risk evaluation metric that assigns a risk score
to suppliers based on multiple risk categories that allows direct optimization
without the need to generate disruption scenarios from inadequate data.

The contributions of this paper are as follows. First, we develop a supplier
risk score metric from multiple sources, performing factor analysis to identify
key risk factors that lead to supply chain disruption. Second, based on the risk
scores, we formulate a risk-constrained optimization model that generates a parts
procurement strategy for a global computer manufacturing firm. We then com-
pare our optimization model against a baseline greedy approach, and evaluate
the cost-effectiveness of our plan against historical procurement data obtained
from the procurement department.

2 Literature Review

A critical review on supply chain risk has been conducted in [5], which reviewed
existing approaches for quantitative supply chain risk management by setting
the focus on the definition of supply chain risk and related concepts. An end-
to-end supply chain risk management process (SCRMP) was proposed in [10]
for managers to assess and manage risks in supply chains. The structured app-
roach can be divided into the phases of risk identification, measurement, and
assessment; risk evaluation; and mitigation and contingency plans. For supply
chain risk assessment, [1] proposed a fuzzy-based integrated framework. It first
identifies risks based on an expert’s knowledge, historical data, and supply chain
structure. Then the proposed fuzzy inference system is used to calculate the
aggregated total risk score, considering the risk management parameters and
risk predictability. [4] carried out a case study for supplier risk assessment based
on expert rating and supplier clustering. 72 existing suppliers were evaluated
and clustered into 3 different clusters, and each cluster had 17 risk criteria with
scores to help decision makers select the best suppliers. A graph-based model is
proposed in [9] to measure the structural redundancy for supply chain resilience.
The approach focuses on the resilience of the supply chain network against dis-
ruptions. Critical supply chain components are identified and the percentage of
plants disrupted is calculated in their real-world case. Recently, supply chain
risk management (SCRM) with artificial intelligence is also emerging. [2] pro-
vided a comprehensive review of supply chain literature that addresses problems
relevant to SCRM using approaches that fall within the AI spectrum.

Optimization methods have been applied to a range of supply chain and
logistics problems, mitigating risk and accounting for uncertainty. The clas-
sic Newsvendor Problem [7] makes advance purchasing decisions in the face
of demand uncertainty, while supply chain disruption can be addressed using
a portfolio approach that uses multiple time periods to estimate the impact of
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delay on the delivery time of an order [8]. For problems where the impact of
disruption can be accurately quantified, it is appropriate to employ stochastic
optimization to account for uncertainty, typically solved deterministically for
multiple generated scenarios [6]. However, where available data does not permit
the accurate realization of scenarios to optimize on, methods that draw directly
on risk to constrain the scope of optimization can be employed, either introduc-
ing risk minimization as a joint objective with cost minimization, or through
risk as a constraint on a cost minimization problem [3]. It is this last case that
is the most appropriate for the technology company use case in this work.

3 Problem Description

In this paper we consider a global technology company that supplies a wide range
of computer products encompassing both software and hardware for both con-
sumers and businesses. To provide hardware solutions, such as enterprise-level
servers, parts are obtained from a range of third-party suppliers, and then assem-
bled according to customer orders. Contracts are arranged with each supplier on
a long-term basis, with part procurement decisions taken for the medium term
(3–6 months). In the event of supply disruption, a dedicated team is responsi-
ble for meeting demand from any sources available, with the goal of this work
being to generate a risk-aware medium term procurement plan that reduces the
burden on the disruption-response team. Parts supplied to the company may
belong to ‘Alternative Parts Groups’ (APGs), where member parts in the group
may be substituted for each other based on similar technical specifications in
order to satisfy demand. Suppliers may optinally specify minimum purchase lev-
els and rebate schemes in their contracts, where exceeding a threshold quantity
of eligible parts purchased triggers a percentage discount on purchased parts.
Since suppliers may not charge identical prices for the parts in an APG, and
have varying risk levels, an effective risk-tolerant procurement strategy should
balance cost, rebates, and risk.

It can be challenging to quantify risk in the real world, as many methods, par-
ticularly those employing machine learning, require a large quantity of consistent
and accurate data on past disruptions, which may be difficult or time-consuming
to obtain. To overcome this challenge, we develop a risk-score metric for each
supplier, identifying a range of risk categories and formulating a representative
score. These scores provide input to our risk-constrained optimization model that
recommends a procurement strategy which minimizes the net cost of meeting
part demand while not exceeding a chosen risk tolerance.

4 Supplier Risk Analysis

In this section, we present our risk analysis model. The technology company
has several important products that need to be evaluated for risk. Our goal is
to develop an automated resiliency metric, which is represented by a risk score
from 0 to 10 (low to high), for the suppliers that deliver parts critical to products
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where supply chain risk is an essential consideration. Supply risk is a multidi-
mensional concept that encompasses various risk factors such as supplier failure,
disruption/loss of a supplier, non-suitable essential parts, late deliveries, and
disruption due to catastrophic events. We decompose the risk analysis into the
following five steps, as depicted in Fig. 1: (1) examine which risk categories must
be addressed for each product, as well as which risk criteria must be evaluated
within each broad risk category; (2) based on the selected risk criteria, collect
related data from both internal and external (third-party companies) sources for
analysis; (3) reduce the dimensionality of selected risk criteria, focusing on the
most important factors; (4) calculate the risk score for each supplier; and finally,
(5) dynamically update the risk score calculation method with feedback from
suppliers.

Fig. 1. Framework for risk analysis model

4.1 Risk Criteria Identification

First, we identify which criteria are appropriate for the risk assessment from
the supplier perspective. Through literature review and detailed discussion with
supply chain experts in our company, we produced a set of risk evaluation cat-
egories. The initial round of analysis identifies 12 different risk categories, such
as socio-political, manufacturing, or financial, risks, which are then reduced to 6
in the second round of discussion. Finally, 13 risk criteria are chosen for further
consideration in our supplier risk assessment.

4.2 Supplier Risk Score Calculation

Following the selection of risk criteria, the next step is to collect relevant data for
each criterion from both internal and external third-party sources. The following
data types were obtained from internal and external databases:

– Internal data: product information, market condition, supply business lever-
age data, financial data;
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– External data: macroeconomic data (Economist database), socio-political
data and rational data (e.g., geopolitical, legal), manufacturing and catas-
trophic data (Resilinc database);

Each of the criteria has a numerical value from 0 to 10 (after normaliza-
tion) that represents the criterion’s risk score (the higher the value, the greater
the risk). Figure 2 shows an example of the data used to calculate the supply
risk score. The first three columns contain supplier information, such as name,
country, and city. The fourth column indicates whether or not the vendor is
a subcontractor. The risk score data for selected criteria is contained in the
remaining columns.

Fig. 2. Sample of data collected for the calculation of supplier risk score

The final step in calculating supplier risk is to aggregate all of the risk score
data into a single total. We utilize the weighted sum approach to determine the
final risk score here because of the method’s interpretability. We first introduce
the notations for risk score calculation as follows:

– ri: risk score for supplier i;
– wi: weight assigned for criterion ci;
– ci: risk criterion i.

We then use a weighted sum to calculate the final risk score:

ri = w1 · c1 + w2 · c2 + · · · + wn · cn (1)

There may be a strong inter-correlation between each risk criterion, and the
risk data with 19 criteria is too large and difficult to understand and manage.
Hence we use a factor analysis to examine the relationships between these cri-
teria and group them into a small number of factors, which is a common data
dimension reduction technique. Factor analysis also allows us to discover intrinsic
links and better comprehend the data.

4.3 Factor Analysis

In this part, we take the product anonymized as “A0001” in our company, which
is a high-performance computer, as an example, and examine the correlation
between different risk criteria using the risk data obtained. Figure 3 depicts the
relationship between various risk criteria. The correlation coefficient ranges from
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−1 to +1, and the closer the value is to +1, the higher is the positive linear rela-
tionship between the variables. It can be seen, for example, that the corruption
perception index has high correlations with other risk criteria, such as infras-
tructure risk, labour market risk, tax policy risk, financial risk, foreign trade,
payments risk and so on.

Fig. 3. Correlation matrix of 19 risk criteria for enterprise server product

The results of the factor analysis is shown in Fig. 4a. When conducting a
factor analysis, it is frequently necessary to determine how many component
variables to keep. Here, we determine the number of factors based on Kaiser
Criterion that proposes to extract factors with an eigenvalue greater than 1. The
eigenvalue in factor analysis is a measure of how much of the observed variables’
common variance is explained by a factor. The larger the eigenvalue is, the more
variance the factor can explain than a single variable (risk criterion). Based on
this, we select four factors for the supplier risk data. The factor loading of a
variable quantifies the extent to which the variable is related to a given factor.
It finds most of the risk criteria can be included in factor 1, while the business
continuity planning (BCP) risk can be treated as an independent factor.

4.4 Score Calculation

We calculate risk scores for each supplier using the processed risk data from fac-
tor analysis. Through extensive brainstorm meetings with experts from different
departments in the company (e.g., financial, supply chain, procurement, and so
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(a) Results of the factor analysis (b) Supplier risk score

Fig. 4. Results for factor analysis and supplier risk score calculation

on), all quantitative risk criteria are rated as of low, medium and high impor-
tance. The higher the importance of the risk criteria, the greater the weight
assigned in the calculation of the risk score. Using product “A0001” as an exam-
ple, the risk score of 50 suppliers is calculated and displayed in Fig. 4b. We high-
light the supplier with the highest risk score in Mexico and the two suppliers
with the lowest risk in Malaysia.

5 Risk-Aware Supply Chain Optimization

In our problem, the procurement planner needs to make purchasing plans on
computer parts that are subsequently assembled into products for end users
such as desktop computers and rack mount servers. Some parts are cheap and
required in large quantities while others are expensive specialized components
that have high cost but low demand quantity. Internally, parts obtained from
suppliers are given a part number (PN) with each PN obtainable from a single
supplier. To enable choice among a selection of suppliers, parts may be grouped
into APGs, defined by equivalent specifications. For example, consider a range
of storage components, different brand hard disks with the same capacity and
RPM values may be grouped into an APG. The demand for parts is defined by
APG, although parts are purchased by PN from suppliers.

Since contracts with suppliers are typically agreed on a long term basis, our
goal is not to recommend suppliers, but uses an established list of contracted
suppliers to recommend a default risk-aware part procurement strategy. In addi-
tion to the per-part cost of suppliers, two additional factors must be considered.
Firstly, suppliers may offer rebates on some of the parts they sell in the form
of either a percentage discount or as a per-part discount, if a target quantity
of eligible parts is purchased. Since either a percentage discount or a per-part
discount can each be expressed in terms of each other, we only implement the
percentage discount, and express the per-part discount contracts in terms of
percentages. Incentives are not typically agreed for a single part but across all
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parts ordered from a supplier matching a particular technical specification and
importance in the supply chain. Since APGs are an internal concept and apply
across suppliers, it cannot be assumed that there will be a convenient corre-
spondence between APG membership and rebate eligibility. Secondly, in order
to maintain a good relationship with each supplier, a minimum purchase level
per supplier should be achieved, such that a percentage of the demand for each
APG is allocated to each supplier that offers parts in that APG.

The notation used in the optimization methods introduced in this section is
given in Table 1.

Table 1. Key notations used in optimization solutions.

Indices

i Supplier index from set I
j Part index from set J
k Alternative Parts Group set index from set K

Each k is a set of parts, j ⊂ J
l Incentive index from set L. Each l is uniquely linked to 1 supplier i.

Each l is a set of parts, j ⊂ J
Decision variables

yi,j Number of part j obtained from i,

zi,j Binary variable indicating if the incentive threshold is crossed for
supplier i and for part j

ζi,l Variable indicating the number of part j qualifying for rebate

Parameters

ri Risk score of supplier i, normalized to [0, 1]

ψ, ψj Risk tolerance level for whole system and for part j individually

ci,j Per-part cost of obtaining j from i

θi,j Minimum purchase threshold imposed by supplier i for part j which
becomes 0 if disrupted under scenario s

λi,l Incentive threshold for supplier i for scheme l

μi,j Rebate percentage if incentive threshold is crossed for i on part j

dk Demand for part group k

γi,j Capacity for supplier i, part j

5.1 ‘Bang for Buck’ (B4B) Baseline

The first method to consider is a simple ranking-based approach that does not
use scenarios, where suppliers are ordered by their risk score, and, once any min-
imum order requirements have been satisfied, parts are allocated with priority to
the lower risk suppliers, meeting incentive thresholds until all demand has been
met. If demand remains after incentives have been satisfied, a default allocation
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increment should be set, to allocate remaining demand incrementally to each
supplier in turn. The best value for the default increment would be a subject for
experimentation. The resulting solution will generate two values: the cost of the
solution, and the risk score of the solution. The method of calculating overall risk
score can be left open for further development, but a reasonable metric would
be to express the risk as a percentage or probability in the range [0, 1] of all sup-
plier risk scores, normalised to the [0, 1] range, multiplied by the proportion of
all required parts obtained from them, as shown in (2). These two output values
will provide a basis for comparison with other methods. The usable output of
the method is a default allocation strategy in terms of the numbers of parts that
should normally be ordered from suppliers.

risk =
∑

i

∑

j

ri · yi,j∑
j dj

(2)

The algorithm is as follows:

1. Sort the list of suppliers in ascending order of risk score.
2. Allocate parts to buy from each supplier with minimum spend agreement,

enough to satisfy the minimum. If there is still unsatisfied part demand,
continue.

3. Going through the supplier list in order: if any have rebate incentives, satisfy
them. If at any point the total demand is satisfied, end the algorithm. If
the end of the list is reached with remaining demand, continue. Given that
multiple parts can be part of an incentive scheme, move to the next supplier
as soon as the incentive scheme is satisfied.

4. If unsatisfied demand for an APG remains, the leftovers can be distributed
among the suppliers with parts in that APG in increments, with priority given
to the suppliers with lower risk scores.

5.2 Risk-Constrained Optimization (RCO) Model

Risk-Constrained Optimization (RCO) is a methodology developed in engineer-
ing design to optimize performance while remaining within key safety limits [3].
A typical formulation maximizes or minimizes a quantity while ensuring that the
probability of failure for a given plan remains below a chosen safety threshold.
Thus, rather than considering the cost of failure and trading the cost off with the
potential benefits of a plan, failure is a hard constraint to be avoided. We can
employ an analogous idea in a the context of this supply chain problem, where,
instead of considering the probability of a disruption in the supply chain, we set
a limit on the total risk permitted in the system using the risk score in (2).

Our risk-constrained approach needs to account for the features required by
our company, namely APGs, rebates, and minimum purchase requirements. The
formulate the following set of rules for the optimization to enforce:

– The cost of the allocation is the total cost of buying the required parts from
the suppliers at their per-part cost, offset by any rebates that are activated.
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– Any minimum spend requirements with suppliers must be met (in this case,
this is as a percentage of the demand for each APG that the supplier offers
parts for).

– If the number of parts that are part of a rebate scheme with a supplier exceeds
the incentive threshold quantity, a percentage rebate is applied to offset the
total cost of those parts.

– There are no reductions to capacity or increases in cost due to disruption
events, so the total demand for parts must be met. Since parts are members
of Alternate Part Groups (APGs), demand satisfaction is counted for the
total demand for each part group.

– The risk score for the allocation cannot exceed a set threshold.

min
∑

i

∑

j

(
yi,jci,j − μi,jci,jzi,j

)
(3)

∑

j∈k

yi,j ≥ θi,k ∀i, k (4)

λi,lζi,l ≤
∑

j∈l

yi,j ∀i, l (5)

zi,j ≤ γi,jζi,l ∀i, l, j ∈ l (6)
zi,j ≤ yi,j ∀i, j (7)
∑

i

∑

j∈k

yi,j ≥ dk ∀k (8)

∑

i

∑

j

ri
yi,j∑
j dj

≤ ψ (9)

∑

i

ri
yi,j
dj

≤ ψj (10)

Equation (3) is the objective we want to minimize, combining the per-part
cost with any rebate offset. Equation (4) enforces the minimum purchase require-
ment for the parts in each APG offered by a supplier. (5)–(7) determine if the
threshold required to activate a rebate on a particular part has been crossed and
therefore the amount of parts that are discounted. (8) ensures that the demand
for each APG is satisfied. (9) and (10) ensure that the risk tolerance thresh-
old is not crossed for either the whole problem, or per-part if there are critical
individual parts for which the user wishes to specify a particular risk tolerance
level.

5.3 Numerical Results

For the purpose of verifying our model, we constructed a number of test cases
from anonymized data provided by the company’s procurement department.
We present results of cases with single APGs, and then for a full dataset over
various 3-month periods. Both the B4B and RCO methods were implemented in
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Python 3.9, with the optimization solution generated using the CPLEX library,
on a desktop computer powered by an Intel Core i7 3.40 GHz with 16 GB RAM.

Comparison Against Baseline. We first evaluate the performance of the
B4B baseline method by generating results for a single APG with 3 suppliers,
each offering a single compatible part model. The price and risk parameters
for each supplier are given in Table 2, with a total demand for the part of 208,
and minimum purchase requirement of 10% of demand per supplier. In Fig. 6a
we plot the B4B and generate cost values obtained by our risk-aware model
with varying risk constraints to serve as a Pareto Front, with the Balance Point
indicating the optimal cost obtainable for the risk of the B4B solution. The
vertical gap indicates the cost saving achievable at that risk level. As expected,
our risk-aware model is able to achieve a considerably better cost performance
against the B4B method across all risk levels. Given the superior performance
of the RCO, we focus on attempting to outperform the cost totals for historical
data in the following results.

Table 2. Parameters used for performance analysis against baseline.

Supplier Price Risk

0110 142.558 0.37

0106 155.867 0.15

0107 120.913 0.48

Single APG Results. To verify the correctness of the behaviour of our opti-
mization model, four APGs were considered independently as illustrated in
Fig. 5. For each APG, there was a choice of supplier, each offering a different
part. The APGs were chosen to highlight two purchasing dynamics - in ‘Scenario
1’, one supplier offered a lower price, while the other offered a lower risk, while in
‘Scenario 2’, the supplier with the lower price also offered lower risk. In Scenario
2, there is a clear preference for one supplier over the other, but when the rebate
schemes were introduced, for some APGs, the dynamics changed.

For APG 26, the introduction of a rebate transformed the scenario from a
trade-off between price and risk into a straightforward preference for one supplier
over the other, with only the minimum required allocation of 10% being given
to the other supplier. APG 1 gave the reverse behaviour, with a fixed optimal
decision without rebate, but when rebates were made available, the allocation
changed as illustrated in Fig. 6b, as the risk constraint changed.

For APG 8, the solution was stable and remained stable with rebates, as
expected, while the opposite was the case for APG 35. However, for APG 35,
the exact minimum point for the scenario with rebate changed because at looser
risk tolerances, rather than choosing the minimum value of the costlier part, our
optimization model chooses to buy a slightly higher quantity in order to cross
the rebate threshold, resulting in a solution with a lower net cost, than choosing
the minimum value and buying the remaining demand from the cheaper part,
as shown in Fig. 7.
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Fig. 5. Single APG test cases with purchasing dynamics changing as rebate becomes
available.

(a) Pareto Front showing the optimal
trade-off between risk and cost for a sin-
gle part, with the B4B result plotted for
comparison.

(b) Cost-Risk trade-off for APG 1 when
rebates are available.

Fig. 6. Results to verify correctness of RCO, impact of rebates, and performance
against the baseline.

Fig. 7. Cost-risk trade-off for APG 35 with rebate (left) and without rebate (right).
For the case with rebate, the lowest value for the costlier part is chosen to be the rebate
threshold, as the net cost proves lower than buying the minimum undiscounted part.
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These results indicate that when there is a choice of two different parts avail-
able to satisfy the demand, the model is able to find solutions that are not
immediately obvious to a human observer, but which prove more cost-effective
overall. However, since incentive schemes can be satisfied by parts bought from
multiple APGs, these examples do not reflect the complexities of actual procure-
ment.

Full Dataset Results. We considered a 3-month period from Jan-Mar 2021,
comparing the quantity of parts purchased and the net cost of our optimization
model against historical data. We chose a 3-month period, as the threshold num-
ber of parts required to trigger a rebate in the provided data was determined by
the total quantity purchased in 3 months. Parts with no membership in either an
APG nor contributing to a rebate scheme were discarded from both datasets, as
they involved no decision-making. The dataset for this 3-month period featured
5 suppliers and 78 PNs after unnecessary parts had been removed. 3 suppliers
had incentive schemes, of which 2 were triggered in the historical data. The
optimization was able to trigger all 3 while satisfying demand, ultimately pur-
chasing a slightly higher number of parts in order to achieve a lower net cost
overall (4.3% cost reduction). Since additional parts could be added to inventory,
this should not be a significant concern for the supply chain. Further, as shown
in Fig. 8, even a version of the optimization without access to rebates was able
to achieve a slightly better cost performance, indicating that more cost-effective
part purchases were possible.

Fig. 8. Net cost values for historical and optimized data as well as optimization without
rebates with changing risk tolerance.

By focusing on 3 APGs (APG 7, APG 11, and APG 15) which featured some
of the largest savings, some insights are available into why the optimization
is able to improve on the historical cost. For APG 7 and 11, the optimizer
chooses a smaller selection of parts over the minimum required purchase, with
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the historical purchases selecting some parts with high cost. For APG 15, the
result changes with the availability of rebates. When rebates are available, the
optimizer balances the demand between two similarly priced parts, but when
rebates are not available, the strictly cheaper part is heavily favoured. This
adaptation to the presence of rebates illustrates why the optimization is able to
achieve improved cost performance even when rebates are unavailable.

Finally we ran our optimization model on 3 other 3-month periods: April
to June, June to August, and August to October. In each case, the goal was
to determine whether more rebates could be activated by the optimization. For
April to June, the number of parts purchased for Suppliers 8, 10, and 11, the
three with rebate schemes, was sufficient to provide a rebate for all, but in the
historical purchases, while the allocation to Supplier 8 doubled the rebate thresh-
old, Supplier 10 and Supplier 11 fell short, resulting in only 1 supplier activating
their rebates. For June to August, there was a similar case, but Supplier 11 was
also activated with only Supplier 10 missing out. For August to October, the
total allocated to the three suppliers was inadequate to trigger the rebate for
all 3, but an increase from 1 activated supplier to 2 may have been possible. In
fact, the optimization was able to achieve rebates on all 3 suppliers in each of
the 3 periods, because, due to the consideration of APGs, purchases could be
re-allocated from the 2 remaining rebateless suppliers, Supplier 4 and Supplier
7. This resulted in an allocation that was more even between the three suppliers
(though still preferring Supplier 8 as in the historical data), but also assigned
more parts to the 3 Suppliers and therefore gained discounts for all. The only
exception to this was for the case where the risk constraint was set to the tight-
est limit feasible, in which case Supplier 11 was ignored as far as possible, and
therefore could not achieve the rebate threshold while also satisfying the risk
constraint.

From these results, we conclude that considering APGs and incentive schemes
that encompass multiple parts, it is possible to take a holistic approach to pro-
curement that results in a global cost reduction that may be challenging for
planners to identify due to the scale and complexity of the possible solutions.

6 Conclusions and Further Work

Further developments of this project could pursue a number of possible avenues.
The first is the research and development of quantifiable risk impact, allowing
realistic scenarios to be generated, and thus a stochastic optimization scenario-
based approach could be reconsidered. The second approach could be to consider
additional ‘risk’ metrics, such as quality of parts provided. Thus an additional
focus on the proportion of defective parts provided by suppliers may enrich
the model beyond focusing on supply disruption type risks. Third, some of the
assumptions used in the experimental part of the project could be further exam-
ined. In particular, it is assumed that for suppliers with multiple risk scores
connected to different sites, the scores should be averaged to get the overall sup-
plier risk, but this may be too simplistic to achieve the best cost-risk balance.
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Finally, it is also assumed that all parts in an APG are equally viable and there
is no inherent preference for one over another that may lead to a decision that
is not purely cost-focused. Examining the impact of changing these assumptions
will lead to different purchasing decisions. For example, changing the risk cal-
culation to the maximum site risk rather than the average could lead to much
greater variation between suppliers and therefore the allocation dynamic and
range of possible risk tolerance tuning will change.

The real-world problem of risk-tolerant cost-effective part procurement is a
complex one, with many factors being included in decisions that may not all
be reflected in the models in this work. However, the results presented for the
problems shown indicate that when correctly specified, an optimization model
can find a solution that is much more mathematically explainable and scalable
than those that can be derived by simple greedy methods or human planners.
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Abstract. Constantly rising freight rates can force traders to reduce
transportation costs at the expense of their service promise of next-day
delivery. In this paper, we examine the potential freight costs savings for
the local distribution network considering two temporal and one spatio-
temporal consolidation concept: Consolidation Period, Delivery Profiles,
and Area Forwarding & Milk Runs. We examine the potential savings
arising from these concepts using the 2020 orders from a local distribution
center of a German materials trader as a case study. We describe the
problems and solution methods of these concepts both on the tactical
and the operational planning levels. For the Area Forwarding & Milk
Run concept we additionally introduce an effective math-heuristic to
solve the instances of the case study. For all three consolidation methods
significant savings can be achieved. A consolidation for two days saves
11.6 % of the freight costs. Using delivery profiles lead to cost cuts of
up to 8.9 %. The transport concept selection between area forwarding
and milk runs achieves a maximum reduction of freight costs of 23.8 %.
These findings can be used by departments within the company—such as
supply chain management, transport or sales—to assess whether freight
costs savings justify the lowering of the service level.

Keywords: Delivery profiles · Milk runs · Freight costs

1 Introduction

Due to constantly rising freight costs, our project partner, a large German mate-
rials trader, searches for ways to reduce freight costs in its distribution network
at the expense of service level reduction. Today, the company offers customers
a next day delivery service. To this end local distribution centers and the area
forwarding concept are used. If longer delivery times are accepted, consolidation
is a way to counter the freight costs pressure: Temporal consolidation combines
several small shipments to one individual customer into one larger shipment. Spa-
tial consolidation combines multiple customers into one tour. The service level
is mainly determined by the delivery time. Since consolidation often reduces
shipment frequency and thus extends delivery times, the shipper has to trade off
freight costs against service level.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. de Armas et al. (Eds.): ICCL 2022, LNCS 13557, pp. 397–411, 2022.
https://doi.org/10.1007/978-3-031-16579-5_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16579-5_27&domain=pdf
http://orcid.org/0000-0003-4979-7455
http://orcid.org/0000-0001-6380-1348
https://doi.org/10.1007/978-3-031-16579-5_27
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Spatial consolidation can be achieved using specific transport concepts. A
typical transport concept is area forwarding: All shipments for an area are
reported to a logistics service provider who plans and executes the tours. Tariffs
are given in the form of a cost matrix with costs decreasing as the weight and/or
distance increase. The logistics service provider is responsible for building cost-
efficient tours. A less used concept is the milk run: Milk runs are regular, for
example weekly, round trips to supply several customers. Milk run planning is
carried out by the shipper. The calculation of the costs is based on the actual trip
duration and distance. Since the cost calculation is independent of the freight
weight, the risk associated with underutilized milk runs is carried by the shipper
[13].

In our study, we investigate the saving potential of three consolidation con-
cepts for frequent customers with an average frequency of at least one delivery
per week. Other customers are not affected by the concepts. The first two consol-
idation concepts, Consolidation Period and Delivery Profiles, are purely based
on temporal, while the third, Area Forwarding & Milk Runs, also takes spa-
tial consolidation effects into account. We propose models for the optimization
problems related to the application of each concept, including a math-heuristic
algorithm for milk run planning.

To evaluate the concepts, we apply them to the order data of a one-stage local
distribution network of our project partner. The dataset includes the 28,000 non-
divisible shipments of around 1,400 customers from the year 2020. Currently,
all next-day delivery shipments use area forwarding. Area forwarding costs are
determined based on distance and shipment weight according to a degressive
tariff matrix. The findings of our study prompted a cross-departmental (e.g.
supply chain management, transport, and sales) discussion within the company,
to assess whether lowering the freight rate savings at the expense of service-level
is justified.

The outline of this paper is as follows: Sect. 2 describes the consolidation
concepts and related optimization problems. Section 3 introduces related work.
Section 4 presents our solution approaches. Section 5 covers the real-world case
study, including the parameter settings and computational results. Section 6 con-
cludes the findings and points out further research subjects.

2 Concepts for Balancing Service Level and Freight Costs

In this section, we introduce the three addressed consolidation concepts and the
related tactical and operational decisions that need to be taken. Table 1 gives an
overview of the relationship between concepts and decisions.

Consolidation Period. Consolidation Period is a temporal consolidation concept.
In its simplest form, it holds back the shipments of the same customer until a
defined consolidation period elapsed. The period duration can be determined
separately for individual customers or globally, for all customers. The resulting
larger shipments reduce freight costs of area forwarding, but lower the service
level due to a longer delivery time.
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Table 1. Tactical and operational decisions

Concept Tactical decision Operational decision

Consolidation
period

Consolidation duration
determination

Shipment overload

Delivery profiles Delivery profile assignment Shipment overload

Area forwarding &
Milk runs

Transport concept selection and
milk run scheduling

Milk run overload

On the tactical level, the consolidation duration has to be determined. The
longer a consolidation period is, the more freight costs can be saved, but the
more cuts in the service level have to be made. Additionally, the shipper has to
make the operational decision of choosing which shipments should be combined
if the weight of consolidated shipments of a customer exceeds the maximum
shipment weight once or even multiple times.

Delivery Profiles. Delivery Profiles is also a temporal consolidation concept. It
assigns customer shipments to fixed weekdays. For example, a customer with a
shipment frequency of two shipments per week is assigned to a profile with ship-
ments on Monday and Wednesday. Demand on days without shipments is shifted
to the previous shipment day. This leads to larger and thus cheaper shipments
for an area forwarding tariff. In the Delivery Profile concept, profiles can be
assigned to customers based on their historic shipment frequency. Therefore, the
service level adaptation is more compatible with high-frequency customers. For
example, a customer with a historic frequency of four shipments per week still
receives a maximum of four shipments per week, but on fixed weekdays. Delivery
profiles make the shipment process easier to plan for the customer and shipper.
The customer can prepare the necessary equipment or staff for the unloading
process. The shipper can assign the profiles in such a way that the distribution
center workload is leveled over the weekdays. However, to achieve a balanced
distribution, low variability in demand and shipment frequency is beneficial.

Similar to the concept of Consolidation Period, the shipper has to make the
operational decision with respect to which shipments should be combined if the
weight of consolidated shipments of a customer exceeds the maximum shipment
weight once or multiple times.

Area Forwarding & Milk Runs. Area Forwarding & Milk Runs is a spatio-
temporal consolidation concept in which some customers are supplied through
milk runs. Customers that are not assigned to a milk run are serviced as per the
area forwarding concept. Milk runs apply delivery profiles in combination with
periodic round trips to supply fixed customers. For example, a milk run is per-
formed every Monday and Wednesday including customers X, Y and Z. Tariffs
for milk runs are based on tour distance and duration. Hence, the price for the
tour is fixed and unrelated to the weight of the shipments. Due to this tariff,
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which differs from area forwarding tariffs, the shipper can obtain additional sav-
ings compared to Delivery Profiles. However, if the milk runs are underutilized,
the shipper has a higher risk of cost than in a pure area forwarding network.
The effects on the service level are comparable to those of delivery profiles.

The optimization problem on a tactical level is to make a transport con-
cept selection between area forwarding and milk runs for each customer and to
schedule the milk runs over the week while respecting tour duration and capac-
ity restrictions. The problem is introduced as the Transport Concept Selection
and Milk Run Scheduling Problem (TC-MRS) in [10]. Variations in demand can
cause milk run overload situations in which the shipments of customers in a milk
run exceed the milk run vehicle weight capacity. Hence, on the operational level,
a decision needs to be made regarding which shipments should be transported
via milk run and which should be carried out via area forwarding.

3 Related Work

In this section, we introduce the current work addressing the tactical decisions
considered in this paper.

Consolidation Duration Determination. Three main temporal consolidation poli-
cies can be distinguished (see e.g. [1,6]), namely the quantity, time and hybrid
policies. The quantity policy holds back the shipment until a weight threshold Q
is reached. The time policy dispatches a shipment every T periods. T either starts
immediately after the last shipment or with the costumers first demand. A com-
bination of the prior policies is the hybrid policy: Shipments are released after
a weight threshold is accumulated or a defined number of periods are passed.

For the determination of the parameters Q and T , a balance between storage
costs and freight costs must be found. Tmax is often necessary to guarantee a
maximum delivery time. According to [6] the parameter selection for Q and T
is to a large extent a management decision.

Only very few real-world studies reporting savings can be found in literature.
Bookbinder and Higginson [1] investigate the use-case of a fiber glass producer
and show that the consolidation of daily to weekly shipments can reduce 23%
of freight costs. In [2] the quantity policy saves 0.66% to 25.79% on artificial
instances.

Delivery Profile Assignment. In [8] the assignment of delivery profiles in com-
bination with a transport concept selection between direct transport and area
forwarding for a multi-level logistics network is investigated. A heuristic is used
as an initial solution for an integer optimization model. Transport concept selec-
tion and delivery profiles together achieve savings up to 59% for a real-world
dataset. The value for delivery profiles only is slightly lower.

The authors of [14] also pursue the goal of minimizing warehousing and
freight costs in a two-stage inbound logistics network by using area forward-
ing in conjunction with delivery profiles. A preprocessing algorithm calculates
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inventory holding and capital commitment costs for each supplier. Thereafter,
an initial heuristic solution is improved using an integer optimization model. On
average savings of 17% with a maximum of 36% can be reached for a case study
of a German truck manufacturer. In [15] the approach of [14] is enhanced with
the aim to achieve better robustness against demand uncertainty. Compared to
the deterministic approach in [14], the new approach increases savings by an
additional 2.98% points.

Meyer et al. [11] propose a two-stage approach for assigning delivery profiles
to customers in a two-stage long-haul truck network. First, all suppliers deter-
mine their frequency by solving a dynamic lot size model. In a second model,
suppliers are assigned to delivery profiles, such that the total transport quanti-
ties over the weekdays are leveled out. In their case study, the number of tours
was reduced by 7% compared to a random profile assignment.

In [5] a model for assigning delivery profiles to minimize freight costs in a
multi-commodity network considering multiple tariff systems and inventory costs
is presented. The approach uses multiple heuristics to determine initial solutions
based on shortest arc algorithms and linear programming. The initial solution
is improved upon using local search. In their case study, the authors achieve a
solution that is 14% better than a supply chain design software solution.

Transport Concept Selection and Milk Run Scheduling. In [7] the authors present
a model considering milk runs for transport concept selection in a two-stage
inbound logistics network with optional cross-docking. To solve this model, a
combination of harmony-search and simulated-annealing heuristics is used. How-
ever, no evaluation on real-world instances is provided.

An exact a-priori-column generation approach for TC-MRS is proposed by
Meyer and Amberg [10]. In a pre-processing step, all possible milk run tours
are determined. Then, the set of tours is used in a mixed integer program that
is solved by a mixed integer programming solver. On real-world data, a cost
reduction of 15% is achieved for frequent customers.

In [9] an approach for TC-MRS in a two-stage network using a genetic algo-
rithm and Clark and Wright’s algorithm is presented. The authors’ approach is
able to solve instances of 12 customers optimally. Instances of 50 customers are
solved in less than eleven seconds.

4 Solution Approaches

In this section, we present our solution approaches for each concept. First, we
address the tactical decision problems. Then, we present the solutions for the
operational decision problems.

4.1 Consolidation Period Application

We apply a time policy to the material trader’s dataset. We use the same dura-
tion of the consolidation period for all customers. The first demand of a customer
marks the beginning of the consolidation period. We determine the resulting sav-
ings for consolidation periods of 2, 3, 4, and 5 days.
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4.2 Delivery Profile Assignment

Based on the approach in [11], we assign delivery profiles in such a way that the
shipment weight leaving the distribution center is leveled over the weekdays. We
determine permissible shipment profiles in advance and then solve a mathemat-
ical model for delivery profile assignment using a mixed integer programming
solver.

Permissible Delivery Profiles. As was the case in [11], only inventory optimal
profiles are permissible. Table 2 shows the inventory optimal delivery profiles for
a cycle time of five working days and shipment frequencies of one to five days
per working week [3]. Each array represents a feasible pattern for the respective
frequency. Days with shipments are represented by 1, days without by 0. For
example, the pattern [10100] allows shipments every Monday and Wednesday.

Table 2. Inventory optimal delivery profiles

Frequency Profiles

1 [10000] [01000] [00100] [00010] [00001]

2 [10100] [01010] [00101] [10010] [01001]

3 [11010] [01101] [10110] [01011] [10101]

4 [11110] [01111] [10111] [11011] [11101]

5 [11111]

Delivery Profile Assignment Model. This model assigns each customer to a deliv-
ery profile so that the shipment weight is leveled over working weekdays. Let
S = {1, 2, ..., |S|} be the set of customers and T = {1, 2, ..., |T |} the set of days.
F = {1, 2, ..., |T |} represents the set of possible frequencies. We use Ps to denote
the set of permissible profiles for a customer s ∈ S. The parameter αspt has a
value of 1 if profile p ∈ Ps contains a shipment on day t ∈ T for customer s ∈ S.
Otherwise, αspt is equal to 0. Parameter qs is the average shipment weight of
customer s ∈ S.

We use the variable n to represent the maximum total shipment weight over
the periods. The variable xsp is 1, if the profile p ∈ Ps for customer s ∈ S is
selected, otherwise it is 0. See Table 3 for an overview of the variable definitions.
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Table 3. Overview of parameters and sets of model (1)

Parameters: S Set of customers

T Set of days

F Set of frequencies

Ps Set of feasible profiles for customer s ∈ S
fs Average frequency of customer s ∈ S
αspt 1, if day t ∈ T in profile p ∈ Ps of customer

s ∈ S is used, else 0

qs Average shipment weight for customer s ∈ S
Variables: n Maximum total shipment weight

xsp 1, if profile p ∈ Pf for the transport to customer
s ∈ S is chosen with frequency fs, else 0

min n (1a)

subject to
∑

s∈S

∑

p∈Ps

xsp αspt qs ≤ n ∀ t ∈ T (1b)

∑

p∈Ps

xsp = 1 ∀ s ∈ S (1c)

xsp ∈ {0, 1} ∀ s ∈ S,∀ p ∈ Ps (1d)
n ≥ 0 (1e)

The objective function (1a) minimizes the maximum total shipment weight.
The variable n along with Constraints (1b) form the linearization of the maxi-
mum operators in the objective function. Constraints (1b) sum up the customer-
specific shipment weights per day for each customer who is assigned to a profile
that provides a delivery on that day. The Constraints (1c) assign each customer
to exactly one profile. The Constraints (1d) and (1e) determine the variable
domains.

4.3 Math-Heuristic for the TC-MRS

For the TC-MRS, we propose a math-heuristic algorithm based on the exact
approach in [10]. Meyer and Amberg [10] perform a complete a priori tour gen-
eration to create a set of all feasible and cost-optimal tours. Afterward, the tour
set is used in a set cover model to find the optimal solution. The problem is
NP-hard. The number of feasible tours grows exponentially with the number of
customers. Therefore, this algorithm is only applicable to a limited number of
customers. Our approach addresses this problem by partly substituting the tour
generation phase with a heuristic procedure.
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TC-MRS Optimization Model. This model assigns each customer to area for-
warding or to a milk run tour from a set of milk run tours that was generated
a priori. The parameters T ,S,Ps and αspt are the same as in the model from
Subsect. 4.2. Each vehicle type k ∈ K has a set of executable milk run tours Rk.
Each tour r ∈ Rk respects the maximum vehicle capacity and tour duration.
The set of vehicle types is denoted by K and the set of all vehicles of type k is
defined as Lk = {1, 2, ..., |Lk|}. Parameter akrs is 1 if customer s is served in
tour r by the vehicle type k, and 0 otherwise. The parameter cRkr designates the
freight costs of the milk run tour r ∈ Rk executed by a vehicle of type k ∈ K.
The parameter cAF

s denotes the freight costs for the customer s ∈ S assigned to
area forwarding.

The variable usp is equal to 1, if the delivery profile p ∈ Ps is assigned to
customer s ∈ S, and 0 otherwise. Variable zklrt encodes whether vehicle l ∈ Lk

of type k ∈ K is used for the milk run r ∈ Rk on day t ∈ T . In this case, the
variable is equal to 1, otherwise it takes a value of 0. Variable xs is 1, if the
customer s ∈ S is assigned to area forwarding, and 0 otherwise. Table 4 gives an
overview of all sets and parameters.

Table 4. Overview of parameters and sets of model (2)

Parameters: T Set of days in the planning horizon (system cycle time)

S Set of customers

Ps Set of feasible profiles for customer s ∈ S
K Set of available vehicle types

Lk Set of available vehicles of type k ∈ K
Rk Set of feasible milk run tours with vehicle type k ∈ K
αspt 1 if day t ∈ T is used in profile p ∈ Ps of customer s ∈ S, else

0

akrs 1, if customer s ∈ S in tour r ∈ Rk is visited by vehicle type
k ∈ K, else 0

cRkr Freight costs for the tour r ∈ Rk of vehicle type k ∈ K
cAF
s Freight costs, if customer s ∈ S is assigned to area forwarding

Variables: usp 1, if profile p ∈ Ps is assigned to customer s ∈ S, else 0

zklrt 1, if vehicle l ∈ Lk of type k ∈ K is used on tour r ∈ Rk in
day t ∈ T , else 0

xs 1, if customer s ∈ S is assigned to area forwarding, else 0

TC-MRS

min
∑

k∈K

∑

l∈Lk

∑

r∈Rk

∑

t∈T
zklrtc

R
kr +

∑

s∈S
xsc

AF
s (2a)

subject to
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xs +
∑

p∈Ps

usp = 1 ∀s ∈ S (2b)

∑

r∈Rk

zklrt ≤ 1 ∀k ∈ K,∀l ∈ Lk,∀t ∈ T (2c)

∑

p∈Ps

uspαspt −
∑

k∈K

∑

l∈Lk

∑

r∈Rk

zklrtakrs = 0 ∀s ∈ S,∀t ∈ T (2d)

usp ∈ {0, 1} ∀s ∈ S,∀p ∈ Ps (2e)
zklt ∈ {0, 1} ∀k ∈ K,∀l ∈ Lk,∀t ∈ T (2f)
xs ∈ {0, 1} ∀s ∈ S (2g)

The objective function (2a) minimizes the freight costs for the selected milk
runs and area forwarding customers. Constraints (2b) ensure that each customer
is assigned to exactly one transport concept. Constraints (2c) restrict each vehicle
to at most one tour per day. Furthermore, Constraints (2d) links the profile and
the assignment decision: If a profile is chosen for a customer, for each day in which
a shipment takes place, exactly one tour has to exist in which the customer is
assigned to an available vehicle. All further constraints determine the binary
variable structure.

Milk Run Tour Set Generation. The set of feasible milk run tours is generated
in two steps. In the first step, a complete tour generation up to a small number
of customers is performed using the approach of [10]: From every limited size
subset of customers the shortest tours meeting the maximum tour length are
calculated via dynamic programming. The tours are added to the set of feasible
tours if the capacity constraints for the tour hold for the respective vehicle type.

In a second step, we enrich the set of feasible milk run tours. To do so, we
solve a standard Capacitated Vehicle Routing Problem (CVRP) heuristically for
each vehicle type considered. Each time an interim solution for the CVRP is
found, the tours in the solution are saved. If they are not part of the set of
feasible milk run tours for the respective vehicle type yet, they are added to
the set. To solve the CVRP, we use the Vehicle Routing library from Google
OR-Tools [12]. To solve the CVRP we use the path-cheapest-arc algorithm to
find the first solution and guided local search to improve the solution.

Please note that the milk run tours start at the distribution center of the
materials trader and end with the last customer, as we assume that the tours
are outsourced to logistics service providers having their own vehicle depots.

4.4 Overload Situations

As described in Sect. 2, we face two overload situations on an operational level.
The first one occurs when consolidated shipments of the same customer exceed
the maximum shipment weight (multiple) times. In this case, an operational
decision has to be made concerning the way in which to combine the shipments
to minimize the resulting freight costs. Forming the largest possible shipments
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leads to the biggest cost reduction. The problem of creating shipment sets that
are maximal with respect to weight can be formulated as the Multiple Subset
Sum Problem (MSSP). To formulate the problem as a MSSP, we provide one
consolidation shipment (bin) less than necessary in the model to assign all consol-
idated shipments of the same customer. For example, if the maximum shipment
weight is 25,000 kg and the sum of the consolidated shipment weights of the same
customer is 60,000 kg, we provide � 60,000

25,000� = 2 bins. The shipment weight of the
bins is maximized. The leftover shipments are combined to an additional one.

In the second overload situation, the shipment weights of the customers
assigned to a milk run exceed the weight capacity of the respective milk run
vehicle. To solve this problem, we maximize the area forwarding costs covered
by the milk run. The optimization problem to select a maximum subset of ship-
ments by area forwarding costs while meeting the maximum shipment weight
capacity of the milk run vehicle can be formulated as a 0–1 Knapsack Problem
(01KP). Leftover shipments are transported via area forwarding. We solve both,
the MSSP and the 01KP, using a mixed integer solver.

5 Case Study of a German Materials Trader

In this section, we evaluate the freight costs saving potential for one of the
material trader’s distribution center based on data for the year 2020. We start
the section by providing information about the use case. We then discuss the
parameter settings of our optimization models and conclude with an analysis of
the computational results.

5.1 Use Case Description

The dataset includes around 28,000 non-divisible shipments of around 1,400
customers. The distribution center operates five days a week. Each customer is
supplied at most once a day. All shipments are executed via area forwarding by a
logistics service provider with the service level promise of next-day delivery. Costs
for the area forwarding are calculated according to a degressive transport price
matrix taking into account the shipment weight and the euclidean distance to
the customer. Above a weight of 10,000 kg, a full truckload tariff is applied such
that the shipping costs do not increase any further. The shipments are supplied
by vehicles with a maximum weight capacity of either 6,500 kg, 12,000 kg, or
25,000 kg.

Around 75% of the materials trader’s customers have an average shipment
weight below 1,000 kg. On the one hand, this is disadvantageous for the appli-
cation of milk runs, due to the number of customers needed to utilize the whole
vehicle capacity. On the other hand, this enhances the potential of temporal
consolidation, because shipments under 1,000 kg are very expensive in the tariff
structure of this use case.

In terms of shipment frequency, 86.9% of the customers receive a shipment
less than once per week, which is counterproductive for consolidation. However
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13.1% of customers that have a weekly frequency above one receive 59.4% of
shipments and are responsible for 63.8% of the freight costs. This implies a
substantial saving potential for a relatively small group of frequent customers.

5.2 Parameter Setting

Since Delivery Profiles and Area Forwarding & Milk Runs are most promising
in case of frequent customers that are, to a certain extent, stable in terms of
the weekly frequency and weight, we filtered the set of customers for our study
as follows: We applied the all three concepts to 123 (8.8%) customers with an
average weekly shipment frequency of one and a coefficient of variation in weekly
shipment frequency and weight ≤ 1.33. The coefficient of variation is calculated
by dividing the standard deviation by the mean value. These customers have a
shipment share of 46.06%, a freight costs share of 52.03% and a freight weight
share of 65.28%. The other 91.2% of customers are not affected by the concepts.
The filtered customers are reachable in less than 3.5 h. Area forwarding costs are
determined from the materials trader’s tariff matrix for all concepts.

We consider the concept of Consolidation Period with durations from two
to five days and a cycle time of five days for delivery profiles and milk runs,
because the material trader has a five-day working week. The average shipment
frequency and weight of customers are calculated based on historical data. The
maximum frequency is five shipments per week. For the TC-MRS, we assume
three vehicle types with weight capacities of 6,500 kg, 12,000 kg, and 25,000 kg.
Since we assume that a milk run is executed by a logistics service provider, the
vehicle number per vehicle type is unlimited. The set of feasible milk run tours
is determined as described in Subsect. 4.3. Table 5 shows vehicle type dependent
costs per km, which we used for milk runs. Costs per hour and the markup rate
are equal for all vehicle types. The markup rate includes further costs and the
profit of the logistics service provider. Due to the fact that the costs are only
estimates, we vary the milk run costs by taking 80% (0.8) and 120% (1.2) of
the estimation. We used the openrouteservice.org API to calculate driving times
and route distances. Additionally, we assume 20 min of service time per stop
and a maximum tour duration of nine hours. In case of consolidation shipment
overload, i.e. the MSSP, we assume a maximum shipment weight of 25,000 kg. For
the milk run overload situation, we use the respective milk run vehicle capacity
as the maximum capacity for the 01KP.

Table 5. Milk run vehicle tariffs.

Max. weight capacity [kg] Costs per km [e] Costs per h [e] Markup rate [%]

6,500 0.3 35 15.5

12,000 0.4 35 15.5

25,000 0.6 35 15.5
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For the math-heuristic solution algorithm, we set a maximum tour length
of three customers for the complete tour generation and a maximum run time
of ten minutes per CVRP. The run time for the TC-MRS is limited to 30 min.
We implemented all models in Python 3.8. All models, except the TC-MRS,
are solved with Google OR-Tools. We solved the TC-MRS using the Gurobi
solver [4]. All calculations were made on a machine with Intel-Core i7 processor
(2.80 GHz), 16 GB RAM and Windows 10 (64 bit) as the operating system.

5.3 Computational Results

The baseline for all scenarios is given by the company’s shipping expenses result-
ing if all shipments are executed via area forwarding with next day delivery. All
freight costs savings relate to the total freight costs over all 1,400 customers.
Figure 1 shows the freight costs savings of the Consolidation Period concept
with a duration of two to five days (left), Delivery Profiles consolidation (mid-
dle) and Area Forwarding & Milk Runs consolidation with variation in milk run
cost factors (right).

Fig. 1. Freight costs reduction.

As expected, in the case of the Consolidation Period concept, the savings
increase with increasing consolidation period duration. The purely temporal con-
solidation can save 11.6% of freight costs for a duration of two days and up to
24.7% for the five days case. The additional cost savings for each extra day of
consolidation thereafter declines.

The application of delivery profiles can save 8.9% on freight costs. This shows
that Delivery Profiles achieve fewer freight costs savings than the temporal con-
solidation concept with a consolidation period of two days. However, the appli-
cation of Delivery Profiles reduces the service level to a smaller extent, because
the profiles are assigned based on the historical average shipment frequency.
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With the Area Forwarding & Milk Run concept the company could save
17.3% in the basic milk run costs scenario. In the scenario with a milk run cost
factor of 0.8, even higher savings of 23% can be achieved. In the scenario with a
milk run cost factor of 1.2 we still obtain a freight costs reduction of 11.1%.

Aside from the freight costs reduction, we tried to achieve a leveling of the
shipment weights in the distribution center by applying delivery profiles. Table 6
shows the shipment weight share of all 1400 customers per weekday without
and with the application of delivery profiles. In the current situation, where no
shipment profiles are employed, the share of shipment weight on Monday is large
while the share on Friday is small.

Table 6. Shipment weight share per weekday

Scenario Monday Tuesday Wednesday Thursday Friday

Without delivery profiles 26.3% 21.3% 21.3% 22.6% 8.4%

With delivery profiles 25.9% 20.2% 20.0% 21.5% 12.5%

The usage of delivery profiles for the selected customers can increase the share
on Friday, but does not significantly reduce the overload situation on Monday.
Hence, the success of shipment leveling is limited. The reasons for this limited
success could be that the customers considered for delivery profiles do not have
a shipment share that is large enough or that the irregular customers have a
high shipment weight share on Mondays.

Figure 2 shows the weight capacity usage of the planned milk runs over all
scenarios. The overall capacity usage is very high. The median is 85.8%. This
high weight capacity usage leads to a lot of milk run overload situations in
which shipments have to be taken over by area forwarding. Over all scenarios,
an average of 24.5% of the freight weight of customers that are assigned to
milk runs has to be transported via area forwarding. It is therefore even more
surprising that the concept performs so well despite these additional costs.

The use of Area Forwarding & Milk Runs can double the savings compared
to Delivery Profiles in the standard case of milk run costs. Even with a milk run
cost factor of 1.2, Area Forwarding & Milk Runs can lead to 2.2% points more
savings than Delivery Profiles. Area Forwarding & Milk Runs (cost factor 1.0)
can save almost as much freight costs as a Consolidation Period with a duration
of three days. At the same time, the usage of milk runs would have much less
impact on the service level due the customer-specific delivery profiles. However,
planning and maintaining milk runs, instead of simply using area forwarding or
delivery profiles, is considerably more complex for the company. As such, extra
costs have to be considered.
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Fig. 2. Milk run weight capacity usage Fig. 3. Milk run duration capacity usage

Furthermore, the risk of violating the maximum tour duration exists. Figure 3
shows the planned milk run duration capacity usage for all cost factor scenarios.
The median is 55.3%. This suggests that the maximum tour duration restriction
is less likely to be violated than the weight capacity. For long milk runs, situations
in which customers do not receive a shipment are more frequent, which leads to
shorter travel times.

For a quick assessment of the performance of the math-heuristic, we compared
our solutions for instances with 20 customers to the optimal solutions determined
by the approach in [10]. The math-heuristic approach is able to find the optimal
solution for these small instances.

6 Conclusion

In this paper, we investigated the three following concepts to realize freight costs
reductions for a German materials trader based on temporal and spatial consol-
idation: Consolidation Period, Delivery Profiles, and Area Forwarding & Milk
Runs. All three concepts were able to decrease the freight costs significantly when
compared with the company’s historic cost baseline. A Consolidation Period of
two days can already lead to a cost reduction of 11.6%. Delivery profiles can lead
to savings of 8.9%. Area Forwarding & Milk Runs yield savings between 11.1%
and 23.8% depending on the milk run cost level.

Furthermore, we proposed an effective math-heuristic algorithm for solving
the TC-MRS. The approach adapts the work of [10] and partly replaces the
complete tour generation phase with a heuristic tour generation. This enables
the generation of solutions for instances with more than 100 customers, as was
the case in our computational study.

In future work, we plan to incorporate the stochasticity of the demand into
the TC-MRS model and develop new heuristics for the stochastic version.
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15. Schöneberg, T., Koberstein, A., Suhl, L.: A stochastic programming approach to
determine robust delivery profiles in area forwarding inbound logistics networks.
OR Spectrum 35(4), 807–834 (2013). https://doi.org/10.1007/s00291-013-0349-0

https://doi.org/10.1007/978-3-642-58568-5_8
https://doi.org/10.1007/978-3-642-58568-5_8
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1007/978-3-642-12494-5_26
https://doi.org/10.1007/978-3-642-20009-0_41
https://doi.org/10.1007/978-3-642-20009-0_41
https://developers.google.com/optimization/
https://doi.org/10.1007/s00291-013-0349-0


Reference Model for Data-Driven Supply Chain
Collaboration

Anna-Maria Nitsche1,2(B) , Christian-Andreas Schumann2,
and Bogdan Franczyk1,3

1 Leipzig University, Augustusplatz 10, 04109 Leipzig, Germany
anna-maria.nitsche@uni-leipzig.de

2 University of Applied Sciences Zwickau, Kornmarkt 1, 08056 Zwickau, Germany
3 Wrocław University of Economics, Komandorska 118/120, 53-345 Wrocław, Poland

Abstract. This paper presents a strategic reference model for data-driven sup-
ply chain collaboration (SCC) designed based on the principles of design science
research and the process model for empirically grounded reference modelling.
Increasingly competitive and global supply networks require the wider applica-
tion of collaborative supply chain management. Thus, the different aspects of
SCC, including inter-organizational exchange of data and knowledge as well as
the integration of novel technologies such as artificial intelligence are essential
factors for organizational growth. This paper attempts to fill the gap of a missing
overview of this field by providing the results of the development of a comprehen-
sive framework of data-driven SCC. Due to the interdisciplinary focus and app-
roach combining information systems, design science and management research,
the paper contributes to the academic debate by providing a macro level perspec-
tive on the topic of SCC and a conceptualization and categorization of data-driven
SCC. Furthermore, this paper presents a valuable contribution to practice and
supply chain processes in organizations across sectors by delivering an adaptable
strategic reference framework for application in collaborative processes.

Keywords: Empirically grounded reference modelling · Supply Chain
Collaboration · Artificial intelligence · Information systems · Design science
research

1 Introduction

Thewider application of collaborative supply chainmanagement (SCM) is a requirement
of increasingly competitive and global supply networks. Trends such as global integra-
tion, population growth and urbanization, digitalization, and automation, aswell as social
and environmental concerns put supply chain networks under increasing pressure [1–3].
While these challenges drive the development of collaborative supply chain networks [4],
cross-industry logistics cooperation for digitalization [5] and supply chain transparency
[6–8], organizations and managers also turn towards technological solutions. In the
logistics sector, where, according to a German study, approximately half of companies
consider themselves to be trendsetters or innovators [5], inter-organizational exchange
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of data and knowledge as well as the integration of novel technologies such as artifi-
cial intelligence (AI) are essential factors for organizational growth and competitiveness
[9–11].

Despite the comprehensive challenges facing supply chain collaboration (SCC), the
disruptive influence of technology on physical and information flows, and the relevance
of SCC [3, 4, 12–14], a uniform orientation framework for data-driven SCC is currently
not available [4] as research often focuses on specific aspects of data-driven SCC such
as flexibility [e.g. 15] or computational experiments [e.g. 16]. This paper thus fills the
gap of a missing overview of this field by proposing a comprehensive strategic frame-
work of data-driven SCC. Due to the interdisciplinary focus and approach combining
information systems (IS), DSR and management research, the paper contributes to the
academic debate by suggesting a macro level perspective on the topic of SCC and a con-
ceptualization and categorization of data-driven SCC. Furthermore, this paper presents
a contribution to practice and supply chain processes in organizations across sectors
by delivering a strategic reference framework for application in collaborative process
management and development. The remainder of the paper presents key concepts, the
research approach and methods, as well as the modelling results and discussion.

2 Key Concepts

SCC is a relevant research area within the field of SCM research that has become
increasingly heterogenous and comprehensive over the last years [4]. SCC is defined
as “seven interweaving components of information sharing, goal congruence, decision
synchronization, incentive alignment, resources sharing, collaborative communication,
and joint knowledge creation” [14, p. 55]while collaboration is characterized as “amutu-
ally shared process where two or more firms display mutual understanding and a shared
vision, and the firms in question voluntarily agree to integrate human, financial, or techni-
cal resourceswith the aim of achieving collective goals” [17, p. 35]. Barratt [18] similarly
states that trust, mutuality, information exchange, openness, and communication are the
basic components of a collaborative culture.

A development from technology-enabled to technology-centric SCM can be
observed as information management plays a central role [19]. As digital transformation
profoundly impacts organizational strategy and change [20], also regarding collabora-
tive SCM processes, “today and looking at the near future […] the supply chain is as
good as the digital technology behind it” [21, p. 9]. AI is widely considered to be of
growing importance and high potential for supply networks as well as the underlying IS
[e.g. 22–24]. AI aggregates the “philosophies of machines to think, behave and perform
either same or similar to humans” [25, p. 869] and can be defined as “the branch of
computer science that is concerned with the automation of intelligent behavior” [26,
p. 1]. Data-driven collaboration refers to collaborative processes that are prescribed by
relevant data structures [27]. As data-driven collaboration is “happening or done accord-
ing to information that has been collected” [28], it is determined by, or dependent on,
the collection or analysis of data.
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3 Research Approach and Methods

DSR has been an established part of research for the last 30 years [29] and is useful for
bringing together different disciplines as well as related non-academic organizations.
It is suitable to create and evaluate information technology solutions for SCC due to
its construction-oriented and problem-solving approach [30, 31]. This paper intends to
contribute a DSR artefact in the form of a strategic model, the Reference Model for
Data-Driven Supply Chain Collaboration. The model characteristics are illustrated in
Table 1 [based on 32]. Reference modelling addresses all levels and business fields of
enterprises, including strategic and organizational aspects, the design of IS, the descrip-
tion of organizations, business process (re-)engineering, and knowledge management
[33, 34].

Table 1. Typology of reference models (appropriate categories underlined) [based on 32, p. 98].

Characteristic Description

Model-related Aspect Aspect-specific Multi-aspect

Formality Not formal Semi-formal Formal

Subject Technical
concept

Data processing
concept

Implementation

Objective Organizational system
model

Application System Model

Sector Industry Trade SCC Other sectors

Task Support Purpose Steering

Method-related Fulfilment of
requirements

Reference
model-unspecific

Reference model-specific

Technology-related Representation Print Computer-aided

Organization-related Availability Unpublished Published

A prevalence of analytical and theoretical concepts over empirically developed ref-
erence models is acknowledged within DSR [35], which is also described as a worrying
“wide gap between theoretical and empirical research in a real science” [35, p. 338].
The approach chosen for this paper bridges the gap between theoretical and empirical
construction methods and enables a human-centered perspective on data-driven SCC.

The construction of the Reference Model for Data-Driven Supply Chain Collabora-
tion within the DSR artefact development is based on the process model for empirically
grounded reference modelling [36] as a deductive approach [37]. The process model has
been applied in various contexts [e.g. 38] and consists of five phases, namely planning,
model construction, validation, practical testing, and documentation (see Fig. 1).

Phase I of the reference modelling approach covers model-related planning, includ-
ing the problem identification and definition as well as method-related, organizational,
technological and project planning. The steps within this phase are based on the four
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Fig. 1. Reference modelling approach [based on 36].

design areas for reference modelling [39]: organization, model, method, and technol-
ogy. The model-related planning is concerned with the definition of the reference model
domain (i.e. data-driven SCC), which is referred to as the problem definition [40].
Method-related planning is tasked with the selection of appropriate problem-solving
and model representation techniques. In addition to the process model for empirically
grounded referencemodelling [36], natural language is chosen as the representation tech-
nique. Organizational planning covers the definition and documentation of a research
design, the identification of the experts to be involved in the modelling process as well
as coordination of these activities. Technological planning is concerned with the selec-
tion of appropriate technologies to support the modelling process, including the model
construction, the documentation of the reference model and the recording and analysis
of the expert interviews. A top-down approach for complex tasks has long time been
established as suitable to achieve different levels of abstraction [40] and is chosen for
the project planning.

The second phase is the model construction phase which comprises capturing exist-
ing domain knowledge, constructing the referencemodel frame, preparing and executing
the first empirical enquiry, and designing the initial reference model structure. The con-
struction of the reference model frame is useful for structuring the expert interviews and
for constructing and documenting the reference model. First, general domain knowledge
of logistics process and collaboration modelling is used, including the distinction of dif-
ferent focus levels [e.g. 41] and the Supply Chain Operations Reference Model (SCOR)
[42]. The model is intended to include business to customer (B2C) as well as business
to business (B2B) collaboration [e.g. 43]. Based on the reference model frame, the first
empirical enquiry is prepared and executed to enable the first construction cycle of the
reference model based on the experts’ domain knowledge. The preparation comprises
the identification, examination, and selection of interview participants (IPs), and the
creation of an interview guide. To acquire experts for the interviews, we use homoge-
nous purposeful sampling [44]. To incorporate both academic and business-oriented
viewpoints and experiences, the qualitative sample comprises four scholarly experts and
three experts with a practical SCC background from different industries in Germany
and the UK (see Table 2). Thus, the empirical inquiry is based on a total of 14 in-depth
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semi-structured interviews (seven per round of interviews) in February/March 2021 (first
empirical enquiry, 98 pages of transcript) andMay/June 2021 (second empirical enquiry,
123 pages of transcript). The interview guide for the first empirical inquiry is structured
according to the ARIS concept [45, 46] and the St. Gallen approach to business engi-
neering [47–50]. The transcripts of the interviews are analyzed during iterative sessions
of reading and coding using template analysis based on a priori as well as a posteri-
ori coding [44, 51, 52] and the qualitative analysis software Nvivo. Following the first
empirical enquiry, the initial reference model structure is designed.

Table 2. Overview of expert interview participants.

IP No Background Organization size

IP1 Academic, DE Public service

IP2 Academic, DE Public service

IP3 Academic, UK Public service

IP4 Academic, UK Public service

IP5 Logistics services, DE SME

IP6 Retail/e-commerce, UK Corporate

IP7 Industry conglomerate, DE Corporate

Phase III is the validation phase which consists of the preparation and execution of
the second empirical enquiry and the model refinement. The lists of correction proposals
gathered during each expert interview form the basis for the further model refinement.
The interview guide for the second empirical inquiry is based on the interview findings
from the first round.

Phase IV is tasked with the application or practical testing and the subsequent model
refinement and completion. Thus, the Reference Model for Data-Driven Supply Chain
Collaboration is conceptually applied to a last mile supply chain and logistics network
context.

A complete documentation is carried out in the fifth and last phase to ensure increased
comprehension and validity.

4 Modelling Results and Discussion

The first empirical enquiry focuses on the following aspects: functions and processes;
organization, strategy, and control; data, information systems, and AI/ML. Based on the
IPs’ suggestions regarding the framework’s potential structure and content, the initial
model draft is developed. At the beginning, the IPs are asked to define SCC to establish
the different perspectives on the topic. The definitions provided by the IPs highlight the
focus on togetherness within supply networks as well as the change from competition
between organizations to competition between value chains. Overall, there can be dif-
ferent directions, activities as well as degrees of collaborative behavior due to the high
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complexity of this topic. According to the experts, a re-appearing core aspect of collab-
oration is the exchange of data and information. Additionally, some experts stressed the
harmonizing and superordinate function of SCM and logistics within and across orga-
nizations. The objectives of collaboration are described as similar to the general aims of
SCM, and include overall success and competitiveness of the value chain, coordinated
behavior, customer satisfaction and high service levels, harmonization, smooth flow and
efficiency, cost and time savings, high quality and performance, overall optimization,
transparency, and risk and disruption avoidance. Following the first empirical enquiry,
the IPs’ statements are used to design the initial reference model structure.

The second empirical enquiry focuses on the discussion of the initial model draft,
the application context of collaborative last mile networks and the influence of AI, as
well as the expert evaluation of the strategic Reference Model for Data-Driven Sup-
ply Chain Collaboration. Based on the IPs’ feedback and the subsequent discussion
among the research team, the initial model draft is revised and finalized (see Fig. 2).
The final Reference Model for Data-Driven Supply Chain Collaboration is visualized
as a three-dimensional cube. The model distinguishes between the dimensions of col-
laboration agents, collaboration orientation, and collaboration type. The collaboration
agents describe the different actors involved in the collaboration process. These actors
can be actual people but also organizations or other entities such as machines and algo-
rithms. The collaboration orientation is the second dimensions and refers to the focus
level, i.e. operational, tactical, or strategic collaboration. Some collaborations can take
place on an operational level, for example sharing infrastructure or order information.
Strategic collaboration could include setting sustainability goals or location strategy
planning. The third dimension distinguishes the collaboration types of minor, repeat,
and partnership. Depending on the intensity of the collaboration, the type minor could
describe a non-standardized exchange of information or one-off interactions, while the
type partnership could include the coordination of research and development activities
or long-term financial commitments.

The smaller sub-cubes contained within the three-dimensional cube are connected
via the communication level (shaded in grey) which can vary in its intensity, depending
on the collaboration process characteristics. For instance, a partnership collaboration
between several agents might require relatively intense communication. Similarly, the
communication is based on both system 1 and system 2 thinking [53]. As the experts
consistently highlighted the exchange of data and information as a core aspect of col-
laboration, the communication level can be regarded as the key enabler of collaborative
processes.

Across the communication level, smaller circles depict the actual collaboration pro-
cess which can connect two or more sub-cubes and thus incorporate an operational,
tactical and/or strategic orientation among one or more agents in a minor, repeat, or
partnership collaboration type.

The collaboration process circles can be further detailed by zooming in (Fig. 2 on
the right). Collaboration is based on general prerequisites such as laws and regulations.
The collaboration process comprises three categories (people, process, system) which
can be further divided into sub-categories. The people category contains interaction-
focused elements (e.g. knowledge sharing, coordination), human-focused elements (e.g.
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intuition, professional expertise), and intelligence-focused elements (e.g. interpersonal
relation, informal/social competencies). This category can also be applied to organiza-
tional entities. The process category contains operational (e.g. distribution) and manage-
ment processes (e.g. sustainability management). Lastly, the system category comprises
relevant elements that enable data-driven collaboration, including data collection and
information exchange. The sub-category AI and machine learning can further be broken
down according to the different available tools such as supervised learning, agent-based
models, and artificial neural networks.

While the model itself proposes a conceptualization and framing of data-driven
SCC on a strategic level, instantiations could focus more on a practical process level.
Researchers and managers using this model could use the three-dimensional cube to
first determine the collaboration characteristics along the three dimensions before fur-
ther zooming into the collaboration process categories to define relevant areas for
management and further development of collaborative processes.

To further highlight the potential model application, an exemplary last mile use case
description is provided (see Fig. 3). The example refers to a collaboration between two
delivery service providers who share urban depots to provide more environmentally
friendly last mile services. The collaboration agents can thus be specified as deliv-
ery agent X and delivery agent Y. This collaboration could be classified as a strategic
partnership as the aim of both collaborators is to increase last mile sustainability, includ-
ing social, environmental, and economic aspects. Within the collaboration process, the
delivery service providers, i.e. the involved collaboration agents, could use the zoom-in
depiction of the collaboration process to discuss their partnership regarding their pro-
cesses, the people involved in the collaboration, and the underlying systems such as
information technology systems. As their shared goal is to enhance the sustainability
management and information exchange, they could discusswhich categories and compo-
nents within the collaboration process are relevant for their collaboration. For instance,
they could agree to define collaboration sustainability goals according to the UN sustain-
able development goals 11 (sustainable cities and communities) and 13 (climate action)
[54]. In addition, they could decide to implement sharing of additional delivery order
information based on data collection enabled through sensors.

The application of this strategic model in specific use cases could thus enable the
collaborators to define the type and focus of their collaboration more clearly. In addition,
the collaboration process circle to extend and improve the individual components of
their collaborative process with a balanced approach to all three collaboration categories
(people, process, and system).

This research project applies a formative-summative design-evaluate-construct-
evaluate pattern [55]. The expert evaluation of the initial model draft and the estimated
revisedmodel (see Table 2) are based on the principles of proper referencemodelling, the
recommendations for DSR evaluation [56] and the framework for evaluation in design
sciences [57]. As the interviewees are both from a business and academic background,
practical and scholarly evaluation perspective are included.

The main critical points mentioned by the experts are the ease of use and the level
of detail/completeness. According to the IPs, the required detail and thus completeness
of the model depends on the user and the use context. Accordingly, the model is not
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Fig. 3. Last mile collaboration use case example.

Table 3. Expert evaluation feedback averages (evaluation scale 1 = low to 5 = high).

Feedback criteria Initial model Revised model

General adequacy 4.17 4,58

Accuracy/correctness 4.14 4.43

Clarity/unambiguity/consistency/systematic structure 4.07 4.75

Level of detail/completeness 3.79 4.00

Internal validity 4.33 4.42

Ease of use 3.71 3.93

Relevance/usefulness/appropriateness 3.93 4.57

Adaptability/generalizability/comparability 4.14 4.50

applicable to every situation and serves as a strategic blueprint for instantiations in
different sectors. The ease of use similarly depends on previous knowledge of the user
regarding scientificmodels and can thus be problematic.We intend to further develop the
model as an interactive web application including detailed instructions and explanations
to enable a more accessible and intuitive model use.

While the research presented in this paper adheres to the seven design-research
guidelines [30], the chosen modeling and evaluation approach suffer from several limi-
tations. First, the process model for empirically grounded reference modelling is limited
regarding its focus on qualitative methods for data generation. Second, the results of the
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empirical enquiry and thus the model itself are restricted due to the selection of experts
and their respective background. While experts from both a business and academic
background are included in the modeling process, opinions and suggestions remain sub-
jective. Third, the artefact evaluation approach is limited as no evaluation method can
assess all potential evaluation criteria.

5 Conclusion

This paper presents the results of the systematic empirically based development of a
strategic Reference Model for Data-Driven Supply Chain Collaboration. The wider
application of collaborative SCM is a requirement of increasingly competitive and global
supply networks as inter-organizational exchange of data and knowledge as well as the
integration of novel technologies such as AI are essential factors for organizational
growth and competitiveness. This paper thus fills the gap of a missing overview of the
field by proposing a framework of data-driven SCC.

The results contribute to the academic debate on data-driven SCC by providing
a comprehensive interdisciplinary conceptualization and categorization combining IS,
DSR and management research approaches. Future research avenues include the further
analysis of the collaboration dimensions and process categories. Furthermore, this paper
presents a valuable contribution to supply chain processes in organizations of different
sectors by providing a macro level perspective on the topic of SCC. In addition, the
paper suggests an adaptable reference framework for managers focusing on strategic
collaboration development and information management. The further development of
the model as an interactive web application is intended to enable a more accessible and
intuitive model use.
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Abstract. While external product returns from customers are well-
studied in the dynamic lot-sizing literature, the same is not true for
internal returns resulting from imperfect production. We approach this
problem by considering a basic dynamic single-product lot-sizing model
in which some of the items produced do not meet quality requirements
and, therefore, must be reworked. The objective is to minimize the sum
of setup and inventory costs for new production and rework while fully
satisfying demand. To this end, three heuristics are developed, based
essentially on two production policies that can efficiently coordinate new
production and rework for different parameter constellations. This is
confirmed by a computational study in which the developed heuristics
yielded highly competitive results compared to those obtained with a
commercial solver.

Keywords: Dynamic lot sizing · Defectives · Rework · Heuristics

1 Introduction

Increased environmental awareness among large segments of the population,
increasingly restrictive environmental legislation in many countries, and eco-
nomic incentives have led companies to become increasingly concerned about
product-return management and to take this subject into consideration in addi-
tion to their regular manufacturing activities. Sources of product returns can
be external to the company as well as internal. In the case of external returns,
a distinction can be made between distribution returns and customer returns.
The former comprises of returns because of damage, end of shelf life, and con-
tamination, while the latter includes returns related to end-of-use, end-of-life,
repair, and warranties (Shaharudin et al. (2015)). In contrast, internal return
flows occur when products generated within the manufacturing processes fail to
meet the specified requirements.

Herein, we focus on how product returns are addressed in the context of the
single-item dynamic lot-sizing problem. This has fundamental importance for
dynamic lot-sizing, and since the seminal contribution of Wagner and Whitin
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(1958), a large number of publications with numerous extensions have been
published. In their review paper, Brahimi et al. (2017) listed a variety of dif-
ferent extensions including limited production capacity, backlogging, lost sales,
demand and production time windows, perishability, and carbon emission con-
straints. Product returns have also been included previously in dynamic lot-size
planning. While the literature extensively includes external returns in dynamic
lot-sizing, the same is not true for internal returns.

Despite significant efforts, it is only rarely that production is completely
defect-free. If the proportion of defective units is subject to uncertainties, this is
discussed in the literature under the term ‘random yield’ (Yano and Lee (1995)).
However, for the sake of simplification, it is often assumed that based on experi-
ence, the proportion of defective units can be specified with sufficient accuracy.
Depending on the defect, products can either be reworked or must be discarded.
If they can be reworked, a distinction can be made as to whether they are in
such a condition that they meet all the requirements for faultless new products
(as good as new condition) or whether they are to be sold as second-hand goods.

The problem considered in this paper can be described as follows. There is
a deterministic and time-varying demand that has to be satisfied by production
in lots. In addition, unreliable production leads to a certain proportion of a
production lot that fails to meet the quality requirements (so-called defectives).
All defective units are reworked so that they meet all quality requirements.
Thus, we assume that both a priori perfect products and reworked products are
identical and serve as so-called serviceables to satisfy demand. The task is to
determine the production and rework lots under complete demand satisfaction
in such a way that the total costs, which consist of setup and inventory-holding
costs for new production and rework, are minimized over the planning period.

The remainder of the paper is organized as follows. After reviewing the
related literature in Sect. 2, we present two fundamental production and rework
strategies and their cost functions in Sect. 3. We then embed them in three con-
structive heuristics and illustrate them with small numerical examples in Sect. 4.
In Sect. 5, we conduct a small computational study to compare the solutions of
the heuristics with those of a commercial solver. In Sect. 6, we provide conclu-
sions.

2 Literature

Kilic and van den Heuvel (2019) denoted the problem that involves customer
returns in dynamic lot-sizing as the economic lot-sizing problem with remanu-
facturing (ELSR). If, by contrast, internal returns are generated due to unreliable
production, the term economic lot-sizing problems with rework (ELSRW) will
be used in the following. The main difference between these two approaches lies
in the sources that are responsible for generating products that do not meet
the specified requirements (defectives). While an externally specified influx of
customer returns is usually assumed for the ELSR, the ELSRW is characterized
by the fact that the defectives occur in the course of production. Despite this
crucial difference, both approaches involve similar planning tasks.
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First, determining the quality of the product returns needs to be done with
the help of an inspection process. Devoto et al. (2021) and Piñeyro and Viera
(2021) considered explicitly heterogeneous product returns in the ELSR. This
extends beyond simply deciding whether or not the returns can be reworked.
Previously published papers that have explicitly considered a disposal option
for defectives have been provided, for example, by Golany et al. (2001) and Pan
et al. (2009).

In both ELSR and ELSRW, there must be clarity as to whether remanu-
facturing or rework is conducted on a separate line (off-line) or on a common
line with new production (in-line). For the ELSR, Teunter et al. (2006) assumed
that joint setup costs occur when new production and remanufacturing take
place on one line, while separate setup costs occur when separate lines are used.
Helmrich et al. (2014) demonstrated that the ELSR with separate setup costs is
NP-hard when all costs are time-invariant, while the ELSR with joint setup costs
is NP-hard in general. Consequently, the use of heuristic methods for solving this
problem is obvious. Teunter et al. (2006) presented three heuristics for solving
the ELSR, where the Silver-Meal based approach was adopted and improved by
Schulz (2011). Various metaheuristics such as the tabu search (Li et al. (2014)),
the differential evolution algorithm (Parsopoulos et al. (2015)), and the variable
neighborhood search algorithm (Sifaleras et al. (2015)) have also been used to
solve this problem.

As described above, the literature focuses almost exclusively on external
returns. The consideration of internal return flows is mostly represented in mod-
els whose scope far exceeds beyond the problem described above as ELSRW.
Goerler and Voß (2016) introduced an ELSRW for multiple products with lim-
ited capacity for joint new production and rework on one line. Additionally,
back-ordering and minimum lot-size constraints are considered. For another rich
ELSRW considering multiple products, capacity constraints, lifetime constraints,
joint setups, and disposal option, Goerler et al. (2020) proposed a late acceptance
hill-climbing matheuristic (LAHCM). Recently, van Zyl and Adetunji (2022) pre-
sented an extensive model that incorporates both internal and external returns
and uses Wagner/Whitin-based approaches to solve the problem.

In this paper, however, we focus on internal returns and thus on the basic ver-
sion of the ELSRW with separate setup costs and we derive cost functions for two
fundamental production and rework policies. This allows us to develop a deeper
understanding of the interplay between production and rework based on the
respective setup and inventory costs. Subsequently, it enables the development
of efficient heuristics that provide competitive results compared to commercial
solvers.

3 Fundamental Production and Rework Policies

3.1 Basic Considerations

The planning problem considers a production system whose imperfect produc-
tion process leads to a certain fraction β of defective products. The defective
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units can be reworked to be as good as new. There is a finite planning horizon
with T periods and the task is to satisfy given positive demands dt in every period
t (cf. for notation Table 1). The demand can be satisfied by either newly man-
ufactured products or reworked products and both can be stored in a so-called
serviceable inventory at a cost rate hs and defective units in a rework inventory
at a cost rate hd. The associated inventories at the end of period t are denoted
by Is,t and Id,t. Since new production and rework are performed on separate
lines, setup costs Rp and Rr for production and rework are incurred whenever a
production lot pt or rework lot rt is performed in a period t. Moreover, with the
chosen formulation, we follow the common practice in the literature that the unit
production costs for new production and rework are negligible (see, e.g., Kilic
and van den Heuvel (2019) with further references). In addition, we assume that
neither disposal of defectives nor back-ordering is allowed. The objective is to
determine a production schedule that minimizes total costs while fully satisfying
the demand. The problem described here is NP-hard, see Rudert and Buscher
(2022).

Table 1. Notation

Indices Rp Setup cost for production

t Actual period Rr Setup cost for rework

T End of the planning horizon Variables

k Production period pt Production amount in period t

l End of production lot rt Rework amount in period t

m Rework period rk,l Sum of rework amounts from period k to l

b Number of reworks at one lot yt Binary variable for production setup

Parameters zt Binary variable for rework setup

dt Demand at period t Is,t Inventory of serviceables at the end of period t

dk,l Demand from period k to l Id,t Inventory of defectives at the end of period t

β Defective rate at production C Total cost

hs Holding cost per serviceable CPO Total cost using production only

hd Holding cost per defective CMR Total cost using multiple rework

In the following, the two fundamental policies, production only (PO) and
multiple rework (MR), are first explained; then, the associated cost functions
are derived in the following subsections. If PO is applied between periods k and
l, then no rework occurs. Hence, inventories of serviceables Is and of defectives
Id can be separated (see the lower and upper parts of the left side of Fig. 1).
The serviceables inventory of the upper part serves to fulfill the demand, while
defectives are stored throughout (k, l). In contrast, in the example given, MR
performs a rework twice (a first rework in period 2 (m1 = 2) and a second rework
in period 4 (m2 = 4)). Since both, new and reworked products, satisfy demand
in periods k through l, their inventories are combined in the upper part to clearly
illustrate the overall lower inventory compared to PO.

As a consequence, the production volume of PO must be larger than that
of MR in order to obtain the same number of serviceables to completely satisfy
demand throughout (k, l). In detail, for MR pk = dk,l is sufficient while PO
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Fig. 1. Inventory for production only and for multiple rework

needs pk = dk,l

1−β . For both cases (1 − β) · pk + rk,l = dk,l must be valid. As

n = 0 for PO, (1 − β) · pk = dk,l yields to pk = dk,l

1−β . For the standard MR
case, all produced defective items are reworked (rk,l = β · pk) and consequently
(1−β) ·pk +β ·pk = dk,l = pk. Another consequence of PO is that the defectives
inventory is transferred from one lot to another. For the example here, Id,5 of
the PO case will be the starting inventory of the next lot in k = 6 which we will
refer to as Id,k−1 > 0 in this paper. It should be noted that the defective rate
β is 33% for this example to clearly visualise the defectives inventory and thus
the difference between PO and MR. Next, we explain cost expressions for both
cases in detail.

3.2 Production Only

There are two inventories in our model, serviceables and defectives, whose respec-
tive costs we derive separately. We start with the inventory of serviceables. The
inventory of perfect-quality items comprises the amount of all demands
from periods k to l. After each period in which demand has been satisfied, it
is necessary to store the remaining units until the next period. The resulting
inventory of serviceables for the production only policy from k to l are

IPO
s =

l∑

i=k+1

di,l. (1)

For the inventory of defectives, all items are held until the end of this lot
and the duration of the lot is (l −k +1). Defectives generated by production are
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β · pk = β · dk,l

1−β . In addition, there may be leftovers if PO has already been used
before (Id,k−1 > 0) and both parts together yield (2).

IPO
d = (l − k + 1) ·

(
Id,k−1 +

β

1 − β
dk,l

)
(2)

As there is no rework, no rework setup costs Rr occur; only production setup
costs Rp (3). The total costs of using policy production only from period k to l
are

CPO
k,l = hsI

PO
s + hdI

PO
d + Rp. (3)

3.3 Multiple Rework

As shown above, the PO policy produces defectives inventory carried over from
lot to lot (Id,k−1 > 0). This initial stock of defectives influences the production
volume of MR. For PO there is no rework and, therefore, no influence on the pro-
duction volume. For MR, pk = dk,l is exchanged with pk = max{0; dk,l −Id,k−1}.
Hence, the production volume is reduced by the initial stock of defectives and
could also be zero for Id,k−1 > dk,l. In this case, demand would be satisfied
completely by rework. The inventory of perfect-quality items can be deter-
mined with the help of three segments: (I) until the first rework, (II) between
rework actions, and (III) after the last rework.

(I): Until the first rework (m1−k), the full number of produced items ((1−β)·
pk = (1−β) ·max{0; dk,l −Id,k−1}) is in stock but is reduced by each period’s
demand. For each period i, the sum of the demand from k to i is withdrawn
from this initial stock. The sum of these withdrawals is

∑m1−1
i=k dk,i. In most

cases, there may be items left in stock at the period before rework: (1 −
β)dk,l − dk,m−1 > 0. The first part of the inventory of serviceables is the
initial stock of perfect-quality items multiplied by the duration of the first
part (m1 − k) reduced by the withdrawals.
(II): The middle part applies the same logic used for the PO calculation. Each
rework covers demand from the rework period up to the last period before
the next rework. This inventory is also reduced each period due to demand
fulfilment. For the time span between first and second rework, the resulting
inventories from t = m1 to t = m1+1−1 = m2−1 are

∑m2−1
e=m1+1 de,m2−1. This

calculation must be conducted for all rework activities; thus, m1 is replaced by
mj . The calculation runs from the first (j = 1) to the last but one (j = b−1)
rework and yields the second part of IMR

s , see (4).
(III): After all defectives have been reworked, the same logic is applied again,
and the calculation for the inventory of perfect-quality items is the sum of∑l

q=mb+1 dq,l.
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All three parts together yield the inventory of serviceables from period k to l for
the multiple rework policy.

IMR
s = (1 − β) · max{0; dk,l − Id,k−1} · (m1 − k) −

m1−1∑

i=k

dk,i

+
b−1∑

j=1

mj+1−1∑

e=mj+1

de,mj+1−1 +
l∑

q=mb+1

dq,l (4)

For the inventory of defectives, too, it makes sense to distinguish between
three segments: (I) before the first rework, (II) between rework actions, and (III)
excess inventory of defectives.

(I): All defectives that will be reworked during this lot (β · dk,l) are held in
stock until the first rework (m1 − k).
(II): Between rework actions, the defectives remain at a constant level and
can be used for future rework:

∑b−1
i=1 (mi+1 − mi) · dmi+1,l.

(III): Some defectives may remain in stock at the end of the production lot
(if Id,k−1 > dk,l). Consequently, this excess inventory (max {0; Id,k−1 − dk,l})
is stored during the complete duration of the lot (l − k + 1). All three parts
together yield the inventory of defectives from period k to l for the multiple
rework policy.

IMR
d = (m1 − k) · β · dk,l +

b−1∑

i=1

(mi+1 − mi) · dmi+1,l

+ (l − k + 1) · max {0; Id,k−1 − dk,l} (5)

The total costs for using the multiple rework policy from k to l now show that
setup for rework may be incurred several times (b · Rr).

CMR
k,l = hsI

MR
s + hdI

MR
d + Rp + b · Rr (6)

The rework periods may be determined using the procedure below:

Step 1: Determine first rework m1 = m∗ using

dk,m∗−1 ≤ (1 − β) · pk < dk,m∗ .

Step 2: Search second rework mi backward from l to m1 + 1 using

(hs − hd) · dmi,l · (mi − m1) > Rr.

If true then fix second rework mb = mi and values for pk, m, n, Id,l

else continue searching.

Step 3: Search for next rework mi backward from i = mb − 1 to m1 +1 using

(hs − hd) · dmi,mb−1 · (mi − m1) > Rr

(hs − hd) · dmb,l · (mb − mi) > Rr.
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If both are true then fix third rework mb−1 = mi.

else continue searching.

Step 4: Search for next rework mi backward from i = mb − 2 to m1 +1 using
...

The first rework m∗ at step 1 is necessary as the initial inventory of ser-
viceables (1 − β)pk can no longer fulfil demand dk,m∗ . For additional reworks,
the savings due to lower storage costs of defectives (hd < hs) must exceed the
additional rework setup costs Rr. At step 2, the equation must hold for the
additional rework. For all upcoming reworks from step 3 onward, one equation
for the new and one for the former must hold simultaneously.

For hs ≤ hd, a single rework as early as possible is the most economical:
rk = βpk. For hs > hd, it is most cost-effective to rework as late as possible and
only a minimum amount of reworked products is needed to satisfy each demand.
While the former case is simple, the latter is covered by our procedure.

4 Heuristic Algorithms

4.1 Basic Algorithm

This section starts with the development of a constructive heuristic in subsection
(4.1), which is extended in subsection (4.2) in two ways. The basic algorithm
explores the solution space by systematically calculating various lot sizes and
chooses the best solutions. Our implementation here uses a forward algorithm
for calculating all lot sizes (k, l) for each given l. For each k > 1, the best cost
solution is chosen as the predecessor.

Our algorithm starts at l = 1 and sets k = 1 (step 1). It calculates PO
and MR, using the sub-routine as described above, for each lot and chooses
the one with lower costs (step 2). However, due to the assumption that both
inventories and, thus, also the defectives inventory, must be cleared at the end
of the planning horizon, it becomes necessary to start rework from a certain point
in time. Each time a new production lot is started, pk+Id,k−1 ≤ dk,T must apply.
This prevents overproduction as pk is allowed only up to the sum of all upcoming
demand minus the initial stock of defective items. As the production volume for
PO is higher than for MR, the PO option will not be available if this condition
is not met and MR must be chosen in this case.

After deciding to choose PO or MR, all parameters for this (k, l) combination
are fixed: production volume pk, rework periods m, rework volumes n, and final
inventory of defectives Id,l. The total costs comprise the costs of this actual
lot plus the best cost predecessor. This predecessor is found by selecting the
minimum costs of the existing solutions that cover the demand up to one period

before this lot
(

min
1≤i≤e

{Ci,e=k−1}
)

.
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Afterward, if the end of the planning horizon is reached (k = l = T ), the
algorithm is terminated. Otherwise, if k = l, it increases l by one period and
goes to step 2 or, if k < l, it increases k by one period and also goes to step 2.

Combining all steps together, the basic algorithm reads as follows:

Step 1: l = 1, k = 1.
Step 2: Determine rework.

If (CPO < CMR) then Ck,l = CPO
k,l + min

1≤i≤e
{Ci,e=k−1}

else Ck,l = CMR
k,l + min

1≤i≤e
{Ci,e=k−1}.

Fix pk, m, n, Id,l.

Step 3: If k = l = T then go to end

else if k = l set l = l + 1 and k = 1 and go to Step 2
else set k = k + 1 and go to Step 2.

We present a numeric sample to illustrate our algorithm. The cost parameters
are hs = 1, hd = 1, Rp = 50, Rr = 50, and β = 5%. The algorithm chooses to
produce every period and to rework at the last period t = 10 only (see Table 2).
This example with its solution may appear to be quite simple, but it works well
to illustrate the improvements of the algorithm. As defectives holding costs at
each period are less than rework setup costs, PO is chosen every period, and
this is done according to the decision rule of the basic algorithm. Hence, rework
activities are not balanced throughout the planning horizon, and therefore, we
name the basic algorithm NB in the following. In the next section we demonstrate
how this can be improved.

Table 2. Numeric sample of the basic algorithm (NB)

t d k l m p (1 − β)p βp n Is Id R hsIs hdId C Ccum

1 89 1 1 0 93.68 89.00 4.68 0.00 0 4.68 50 0 4.68 54.68 54.68

2 107 2 2 0 112.63 107.00 5.63 0.00 0 10.32 50 0 10.32 60.32 115.00

3 83 3 3 0 87.37 83.00 4.37 0.00 0 14.68 50 0 14.68 64.68 179.68

4 106 4 4 0 111.58 106.00 5.58 0.00 0 20.26 50 0 20.26 70.26 249.95

5 94 5 5 0 98.95 94.00 4.95 0.00 0 25.21 50 0 25.21 75.21 325.16

6 91 6 6 0 95.79 91.00 4.79 0.00 0 30.00 50 0 30.00 80.00 405.16

7 110 7 7 0 115.79 110.00 5.79 0.00 0 35.79 50 0 35.79 85.79 490.95

8 104 8 8 0 109.47 104.00 5.47 0.00 0 41.26 50 0 41.26 91.26 582.21

9 120 9 9 0 126.32 120.00 6.32 0.00 0 47.58 50 0 47.58 97.58 679.79

10 105 10 10 10 57.42 54.55 2.87 50.45 0 0.00 100 0 0.00 100.00 779.79

4.2 Improvements

As stated above, our heuristic algorithm would check for every lot PO vs. MR
and selects the one with the lower cost. In some instances, this would create
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high holding costs of defectives and concentrate rework at the end of the plan-
ning horizon. The first improvement to our basic algorithm is the balancing of
rework activities to avoid this phenomenon. This is incorporated by adding the
cumulated holding costs for defectives as an additional decision rule between PO
and MR. Consequently, rework would also be conducted if cumulated holding
costs of defectives exceed rework setup costs, although PO would result in a
lower total cost for this single period than MR would.

To calculate the costs for the new decision criterion from the last known
rework onward, the information needs to be transferred from lot to lot. The
calculation of the cumulated defective holding cost at the end of lot (k, l) is λl

and differs for PO and MR. For PO, λl includes all defectives’ holding costs of
the actual lot as there is no rework. In addition, it includes costs from previous
lots back to the last known rework, which is λk−1. Thus, the cumulated defective
holding cost for the production only policy is

λPO
l = hdI

PO
d + λk−1. (7)

Differing from that, there are rework activities at MR, and therefore, cumu-
lated holding costs start from the last rework of the actual lot and do not include
costs from previous lots. Thus, the final defectives inventory of the actual lot
(Id,l) is multiplied by the duration from the last rework until the end of this lot
(l − mb + 1) and by the costs per defective item hd. The cumulated defective
holding cost for the multiple rework policy is

λMR
l = Id,l · (l − mb + 1) · hd. (8)

Consequently, the criterion of the balancing improvement is φ.

φ : λPO
l < Rr. (9)

More precisely, our improved algorithm to which we refer as BA in the following,
checks λPO

l < Rr in the case of CPO
k,l < CMR

k,l and only chooses PO if both
inequalities are fulfilled. We incorporate this into our algorithm by modifiying
step 2. For BA it reads as follows:

Step 2: Determine rework.

If
((

CPO
k,l < CMR

k,l

)
∧ φ

)
is true then Ck,l = CPO

k,l + min
1≤i≤e

{Ci,e=k−1}
else Ck,l = CMR

k,l + min
1≤i≤e

{Ci,e=k−1}.

Fix pk, m, n, Id,l, λl.

The result, applying the improved algorithm BA, is shown in Table 3. Differ-
ing from NB, rework is now started already in t = 5 as the cumulated defective
holding cost would exceed Rr at this period. The next rework is placed at t = 9
as the cumulated defective holding cost would, again, exceed Rr. Since the end
of the planning horizon is reached at the next period, there will be a third rework
at t = 10. The BA improvement reduces the total costs from 779.79 of NB to
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Table 3. Numeric sample of the balanced algorithm (BA)

t d k l m p (1 − β)p βp n Is Id R hsIs hdId C Ccum

1 89 1 1 0 93.68 89.00 4.68 0.00 0 4.68 50 0 4.68 54.68 54.68

2 107 2 2 0 112.63 107.00 5.63 0.00 0 10.32 50 0 10.32 60.32 115.00

3 83 3 3 0 87.37 83.00 4.37 0.00 0 14.68 50 0 14.68 64.68 179.68

4 106 4 4 0 111.58 106.00 5.58 0.00 0 20.26 50 0 20.26 70.26 249.95

5 94 5 5 5 73.74 70.05 3.69 23.95 0 0.00 100 0 0.00 100.00 349.95

6 91 6 6 0 95.79 91.00 4.79 0.00 0 4.79 50 0 4.79 54.79 404.74

7 110 7 7 0 115.79 110.00 5.79 0.00 0 10.58 50 0 10.58 60.58 465.32

8 104 8 8 0 109.47 104.00 5.47 0.00 0 16.05 50 0 16.05 66.05 531.37

9 120 9 9 9 103.95 98.75 5.20 21.25 0 0.00 100 0 0.00 100.00 631.37

10 105 10 10 10 105.00 99.75 5.25 5.25 0 0.00 100 0 0.00 100.00 731.37

731.37. However, the accumulation of reworks at the end of the planning horizon
may occur using BA and we will present a second improvement to address this.

The look-ahead (LA) criterion compares the costs if, now, no rework would
be conducted until the end of the planning horizon to the costs of a rework setup
at the actual lot. Thereby, it reduces futile reworks, especially at or next to the
end of the planning horizon.

When the BA criterion overrules the cost comparison of PO vs. MR and
would select MR, the LA criterion can overrule the BA criterion and select
PO. This prevents a rework whenever it is near the end of the planning horizon
and, additionally, another rework occurs in t = T to clear the defective stock. By
reducing this unnecessary rework, the LA criterion also balances rework activities
throughout the planning horizon. Please note, however, that it is used only in
combination with the BA criterion and is calculated by assuming that, from this
point onward, there will be no rework. Following this, the demand from the actual
lot up to one period before the end of the planning horizon should be covered
solely by PO and generate defective items β

1−β ·dk,T−1. Together with the initial
stock of defectives Id,k−1, they will be stored for (T −k) periods. Multiplying by
the cost per defective item hd yields the additional decision criterion ψ for the
BA LA algorithm.

ψ :
(

β

1 − β
· dk,T−1 + Id,k−1

)
· (T − k) · hd < Rr (10)

For the BA algorithm, the BA criterion φ must be true to allow for PO in
the case of CPO

k,l < CMR
k,l . For the new BA LA algorithm, PO will be selected if

CPO
k,l < CMR

k,l and φ or ψ are true. The BA criterion φ is true if the cumulated
defectives holding costs are less than the rework setup costs. The LA criterion ψ
is true if the maximum sum of future defectives holding costs are less than the
rework setup costs. The combined BA LA improvement will allow PO for both,
thus if φ is true or ψ is true or both. Hence, the purpose of the LA criterion ψ
is only to overrule the BA criterion φ. The modified step 2 for BA LA reads as
follows.
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Step 2: Determine rework.

If
(
(CPO

k,l < CMR
k,l )∧(φ∨ψ)

)
is true then Ck,l = CPO

k,l + min
1≤i≤e

{Ci,e=k−1}
else Ck,l = CMR

k,l + min
1≤i≤e

{Ci,e=k−1}.

Fix pk, m, n, Id,l, λl.

Table 4 shows the effect of the BA LA improvement as the futile rework at
t = 9 of Table 3 is eliminated. For this example, BA LA thus finds the optimal
solution with a total cost of 703.74 compared to 731.37 for BA and 779.79 for
NB.

Table 4. Numeric sample of the balanced look-ahead algorithm (BA LA)

t d k l m p (1 − β)p βp n Is Id R hsIs hdId C Ccum

1 89 1 1 0 93.68 89.00 4.68 0.00 0 4.68 50 0 4.68 54.68 54.68

2 107 2 2 0 112.63 107.00 5.63 0.00 0 10.32 50 0 10.32 60.32 115.00

3 83 3 3 0 87.37 83.00 4.37 0.00 0 14.68 50 0 14.68 64.68 179.68

4 106 4 4 0 111.58 106.00 5.58 0.00 0 20.26 50 0 20.26 70.26 249.95

5 94 5 5 5 73.74 70.05 3.69 23.95 0 0.00 100 0 0.00 100.00 349.95

6 91 6 6 0 95.79 91.00 4.79 0.00 0 4.79 50 0 4.79 54.79 404.74

7 110 7 7 0 115.79 110.00 5.79 0.00 0 10.58 50 0 10.58 60.58 465.32

8 104 8 8 0 109.47 104.00 5.47 0.00 0 16.05 50 0 16.05 66.05 531.37

9 120 9 9 0 126.32 120.00 6.32 0.00 0 22.37 50 0 22.37 72.37 603.74

10 105 10 10 10 82.63 78.50 4.13 26.50 0 0.00 100 0 0.00 100.00 703.74

5 Computational Study

We computed various data sets for our three algorithms (NB, BA, and BA LA)
and compared them to solutions obtained by Gurobi using two different settings.
First, we used Gurobi at a time limit of 60 s to obtain optimal or near-optimal
solutions (denoted by G-60). For a second setting, we set the time limit of Gurobi
to the mean runtime of our best algorithm BA LA in terms of cost delta to the
optimal solution (denoted by G-TL). All tests were conducted on a Windows
Server 2012 R2 with Intel(R) Xeon(R) CPU E5-4627 v2 @ 3.3 GHz processors
with 32 cores, of which 4 were used for the computations, 768GB RAM and
Gurobi 8.1 as the MILP solver. The results of all computations are summarised
in Table 5.

To obtain highly meaningful results, we solved a whole set of different prob-
lem instances. For this purpose, we chose the following parameters: β = 1%; 5%;
10%; 20%, hs = 1, hd = 0.5; 1.0; 2.0, Rp = Rr = 50; 250; 500; 2000. Thus, there
are a total of 4 ∗ 3 ∗ 4 ∗ 4 = 192 test instances. For each of these parameter con-
stellations, 10 demand series were used (two each for the five different demand
patterns) according to the demand function given in Teunter et al. (2006). The
calculations were computed for different lengths of the planning horizon T = 10;
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Table 5. Computation times and cost deltas of Gurobi and the heuristic algorithms

G-60 NB BA BA LA G-TL

T rt gap rt ΔC rt ΔC rt ΔC rt ΔC

[s] [%] [s] [%] [s] [%] [s] [%] [s] [%]

10 0.072 0.00 0.019 0.52 0.023 0.35 0.018 0.20 0.021 12.80

20 0.799 0.00 0.075 1.65 0.090 0.68 0.073 0.43 0.082 12.07

40 23.027 0.96 0.337 3.63 0.498 0.79 0.431 0.58 0.491 6.73

80 52.855 6.18 2.269 5.96 2.767 0.54 3.086 0.34 3.928 3.01

160 58.467 11.37 17.724 7.91 21.078 -0.07 19.753 -0.14 24.623 0.86

20; 40; 80; 160 to show the performance of our algorithms for smaller and larger
problem sizes. Thus, a total of 5 · 1, 920 = 9,600 data sets were used.

The results in Table 5 are listed from left to right for Gurobi with a time
limit of 60 s (G-60), basic heuristic algorithm not balanced (NB), balanced (BA),
balanced and look-ahead (BA LA), and Gurobi with a time limit of the mean
runtime of BA LA (G-TL). The mean runtime in seconds (rt) and the cost delta
to G-60 (ΔC) for 1,920 samples are shown for each solution procedure and each T
respectively. Hereby, ΔC denotes the costs of applying the heuristic algorithms
or G-TL minus the costs of G-60. For G-60, the mean computed gap to the
optimal solution is provided instead of the cost delta to the optimal solution.

We start by analysing the computation times of the solution methods, and
we can see that Gurobi needs significantly more time compared to the heuristic
solutions. It should be noted that the Gurobi runtimes for T = 40; 80; 160
are restricted due to the time limit of 60 s. Our heuristic algorithms show little
variance for the computation time between the three options. Only NB may need
less runtime compared to BA and BA LA, especially for larger problem sizes.

For the quality of the obtained solutions, we can see that G-60 yields optimal
solutions for T = 10; 20. For T = 40; 80; 160 there is an optimality gap, but for
T = 40; 80, it still shows the best solutions. Only for T = 160, BA and BA LA
yield a lower mean of the total cost compared to Gurobi, indicated by negative
values of ΔC. Also, the mean cost deltas of our three algorithms improve from
NB to BA and to BA LA for each T . Both, BA and BA LA, show cost deltas
significantly below 1% for all lengths of the planning horizon compared to G-60.

When the time limit for Gurobi is set very restrictively, as for G-TL, the
cost deltas to G-60 can be quite high. They are above 10% for T = 10; 20 but
decrease with increasing problem size. Although the time limits for T = 40; 80;
160 are also restrictive, Gurobi shows better basic solutions if the available time
is higher than a certain minimum time. For the problem sizes provided here, BA
and BA LA always yield solutions at a lower cost compared to G-TL at about
the same runtime.

Now we focus only on the results of our algorithm BA LA. We observe that
the solution quality differs for various input data. Table 6 shows cost deltas to
G-60 for T = 20 and is designed as a heatmap, with entries highlighted in red
associated with long computation times. We use T = 20 as Gurobi solves all
samples optimally and, thus, we can compare BA LA to the optimal solution.
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Table 6. Cost delta to optimal solution in [%] for BA LA for different input data

hd 0.5 1.0 2.0
β 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20%

Rp Rr

50 50 0.45 0.72 0.93 0.74 0.19 0.39 0.54 0.42 0.14 0.57 0.42 0.00

200 0.06 2.07 2.96 3.56 0.08 0.42 0.77 1.15 0.98 0.93 1.42 1.82

500 0.05 0.50 3.97 4.89 0.00 0.78 0.73 1.43 0.53 1.05 0.65 1.83

2000 0.03 0.05 1.03 2.73 0.00 0.00 0.18 1.15 0.00 0.08 0.37 1.02

200 50 0.15 0.44 0.63 0.42 0.09 0.12 0.00 0.00 0.11 0.02 0.00 0.00

200 0.00 0.76 1.06 1.07 0.03 0.55 0.67 1.08 0.23 0.70 0.87 0.00

500 0.00 0.56 2.45 1.73 0.00 0.66 0.90 1.18 0.23 0.71 0.91 1.24

2000 0.00 0.16 0.55 2.15 0.00 0.00 0.13 0.59 0.00 0.07 0.44 1.19

500 50 0.19 0.15 0.44 0.04 0.06 0.04 0.00 0.00 0.01 0.00 0.00 0.00

200 0.00 0.21 0.42 1.06 0.03 0.22 0.16 0.00 0.16 0.09 0.05 0.00

500 0.00 0.26 1.08 0.84 0.00 0.43 0.16 0.37 0.34 0.13 0.22 0.00

2000 0.00 0.06 0.30 0.99 0.00 0.00 0.02 0.60 0.00 0.08 0.36 0.70

2000 50 0.04 0.01 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

200 0.05 0.23 0.17 0.16 0.01 0.00 0.00 0.00 0.09 0.00 0.00 0.00

500 0.00 0.39 0.34 0.63 0.00 0.13 0.03 0.00 0.01 0.04 0.00 0.00

2000 0.00 0.01 0.05 0.16 0.00 0.00 0.03 0.19 0.00 0.00 0.30 0.00

As there are 10 demand patterns used for each parameter combination, each
entry in the table represents the average of 10 computations. Recalling the data
from Table 5 we know that the mean cost delta of BA LA is 0.43% for T = 20.

High cost deltas can be observed for (1) higher values of defective rate β,
(2) smaller values of holding cost per defective item hd, (3) smaller values of
production setup costs Rp, and (4) medium-high values of rework setup costs
Rr. The largest cost delta in the amount of 4.89% results consistently for the
parameter combination Rp = 50, Rr = 500, hd = 0.5, β = 20%. If β is reduced
from 20% to 10% with otherwise unchanged parameters, the second-highest devi-
ation results in the amount of 3.97%. By setting hs = 1 and varying hd from
0.5 over 1 to 2, we can conclude whether, and if so how, the ratio of inven-
tory cost rates affects the performance of the heuristics. Table 6 shows that the
heuristics presented have particularly small cost deltas when hs < hd holds. In
the opposite case (hs > hd), slightly increased cost deltas can be observed for
otherwise-unchanged parameter constellations.

6 Conclusions

This paper has addressed the case of imperfect production with rework, which
is widely neglected in the dynamic lot-sizing literature. To gain several basic
insights, we have considered a simple but nonetheless fundamental problem. For
two production policies (PO and MR), associated cost functions were explicitly
derived, and three heuristics were developed based on these. The basic algorithm
NB uses only the best cost solution of PO vs. MR. The first improvement BA
consists of balancing rework activities by involving cumulated holding costs for
defectives. The second improvement LA is to look-ahead from the actual lot and
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modify the rework policy accordingly. All algorithms showed substantially less
computational effort and both improvements yielded very competitive results of
less than 1% cost delta compared to Gurobi operating at a time limit of 60 s.
Also, we illustrated how the performance of our algorithms varies with varying
input data cost parameters.

There are some limitations at this paper. We use only two special charac-
teristics of the model to build the problem specific algorithms, PO and MR. It
can be shown that for optimal solutions there is sometimes overproduction of
serviceables and this could also be integrated in the solution procedure. Besides,
our algorithms are constructive heuristics that need their full runtime and can-
not be used with time limits. Moreover, the procedure for determining rework is
a greedy heuristic and could also be improved.

If λPO
l < x · Rr rather than λPO

l < Rr is chosen as the decision criterion φ,
it can be shown that better results can be obtained to varying degrees for both
x < 1 and x > 1. This needs further research and could narrow the gap between
our algorithms and Gurobi even more.

Appendix

The following MIP formulation has been used to calculate the optimal solutions
using Gurobi as the commercial solver.

min
∑T

t=1 hs · Is,t + hd · Id,t + yt · Rp + zt · Rr (11)

subject to

Is,t = Is,t−1 + (1 − β) · pt + rt − dt ∀t = 1, . . . , T (12)
Id,t = Id,t−1 + β · pt − rt ∀t = 1, . . . , T (13)
pt ≤ dt,T · yt ∀t = 1, . . . , T (14)
rt ≤ dt,T · zt ∀t = 1, . . . , T (15)

Is,0 = Id,0 = Id,T = Is,T = 0 (16)
pt, rt, Is,t, Id,t ≥ 0, dt > 0 ∀t = 1, . . . , T (17)

yt, zt ∈ {0; 1} ∀t = 1, . . . , T (18)
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Abstract. Managing the flow of excavated materials from a mine pit
and the subsequent processing steps is the logistical challenge in mining.
Mine planning needs to consider various geometric and resource con-
straints while maximizing the net present value (NPV) of profits over a
long horizon. This mine planning problem has been modelled and solved
as a precedence constrained production scheduling problem (PCPSP)
using heuristics, due to its NP-hardness. However, the recent push for
sustainable and carbon-aware mining practices calls for new planning
approaches. In this paper, we propose an efficient temporally decomposed
greedy Lagrangian relaxation (TDGLR) approach to maximize profits
while observing the stipulated carbon emission limit per year. With a
collection of real-world-inspired mining datasets, we demonstrate how
we generate approximated Pareto fronts for planners. Using this app-
roach, they can choose mine plans that maximize profits while observing
the given carbon emission target. The TDGLR was compared against a
Mixed Integer Programming (MIP) model to solve a real mine dataset
with the gaps not exceeding 0.3178% and averaging 0.015%. For larger
instances, MIP cannot even generate feasible solutions.

Keywords: Operations research and management · Resource capacity
planning · Lagrangian relaxation · Sustainability

1 Introduction

Logistics in mining involves extensive planning and management of the flow of
excavated raw materials starting from the mine pit, through an extensive series
of processing, until the shipment of desired end products. A mining compound
comprises of multiple operational facilities. Besides the massive mine pit where
valuable raw materials are excavated, there are also processing facilities (e.g.,
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crushing), refining facilities (e.g., hydrometallurgy), storage facility (i.e., stock-
piles), and waste facilities (e.g., dump and tailings pond). Each of these facilities
is supported by various resources with their corresponding capacity limits. A
generic logistics system of a mine is outlined in Fig. 1.

Fig. 1. A schematic diagram of a generic mine logistics system.

The logistics management of a mining compound comprises of forecasting,
planning, and scheduling activities across strategic, tactical, and operational lev-
els [15]. Strategic models determine the three dimensional shapes or outlines of
the mine, known as the final pit limit. Tactical models determine the production
schedule that consists of block extraction, its sequencing, and processing deci-
sions after extraction. Meanwhile, operational models determine the deployment
of resources such as machinery to support production scheduling.

In this paper, we focus on the planning at the tactical level, which falls under
the planning phase of the five mining phases (Fig. 2); it is generally accepted to
be the most critical cost factor [9]. Tactical planning over the entire life span
of a mine (in decades) has been solved as a precedence constrained production
scheduling problem (PCPSP) in the literature, which dictates operational deci-
sions of machine types, quantity, apportionment, and maintenance [15]. As such
planning problems are known to be NP-hard [11], the focus of most past research
works are thus on the development of effective and efficient heuristics.

Fig. 2. Summary of activities for each mine phase and their influences on costs.

To generate an actionable long-term plan given the vast swath of the mining
area, planners usually have to discretize the landmass of the mine pit into three-
dimensional blocks, and decide the sequence of blocks to be excavated. In order
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to stay feasible, the mining plan has to minimally satisfy geometric constraints at
the mining pit (e.g., surface blocks have to be excavated before reaching under-
ground blocks) and various resource consumption constraints at the downstream
facilities. However, to optimize the performance of the mining plan, we have to
also consider the estimated block processing cost and profit (based on geological
survey), and predicted market demands over the planning horizon. In the liter-
ature, these factors are usually incorporated by the net present value (NPV) of
estimated profit over a decade-long planning horizon [12].

Besides profit consideration, there are increasing concerns on the environmen-
tal impacts of the open-pit metal mining due to its scale and complex refining
processes [16]. In particular, the planner now needs to also consider carbon emis-
sions along the whole production process. This push is also observed in other
industries such as manufacturing [22]. Carbon costing is increasingly pertinent
as more countries participate in, develop, and consider emissions trading sys-
tems (ETS) [10] as well as emission taxes. In this paper, we aim to augment past
research on mine planning to consider important environmental side constraints,
so that the computed mining plans can be carbon-aware by construction.

Our approach is based on the generic PCPSP formulation [5], where the
objective is still to maximize the NPV, yet with a new set of constraints on
carbon emission per time period. To solve realistic-scale instances, we propose
an efficient temporally decomposed greedy Lagrangian relaxation (TDGLR) app-
roach, which is tested on a real-world-inspired mine dataset and two benchmark
instances from MineLib [5]. We demonstrate how we generate approximated
Pareto fronts for planners to choose mining plans that maximize profits while
observing the given carbon emission targets. When the TDGLR was compared
against a Mixed Integer Programming (MIP) model, the solution gap was an
average of 0.015% for a real dataset.

2 Related Work

The logistical challenges in mine planning have been examined from strategic,
tactical and operational levels. Over the years, research on how sustainability ele-
ments can be incorporated into mine planning has multiplied [23]. This increased
in tandem with the pressure by shareholders for mining giants to establish action-
able sustainability goals to slash emissions [16]. Most research on mining sus-
tainability are qualitative using methods such as life cycle analysis (LCA) and
decision making trial and evaluation laboratory (DEMATEL). Meanwhile, quan-
titative research using techniques in operations research, artificial intelligence or
machine learning pales in comparison [23].

Sustainability within mining is manifested through both life cycle of the mine
and mined ore. The former enhances mine operations to reduce its environmental
footprint while the latter governs the life span and retirement of mined ores [8].
The sustainability of mining operations have four key characteristics of reducing
inputs, outputs, land disruption, and environmental as well as safety hazards at
the end of mine life [2]. Sustainability within mine planning relates to the mine
life cycle of reducing inputs, outputs and land disruption.
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Fig. 3. Block extraction sequence from year to year, following precedence and resource
constraints, for MineLib’s newman1 instance using MIP

At the operational level, the focus is on reducing carbon-related costs at oper-
ational facilities and transportation network. Valderrama et al. [18] considered
carbon emissions from operating facilities and inter-facility transport with an
MIP model. Meanwhile, Attari and Torkayesh [1] considered carbon emissions
from transport between facilities and to the customers using a multi-objective
MIP. Correspondingly, Canales-Bustos, Santibañez-González and Candia-Véjar
[3] designed a multi-objective hybrid particle swarm optimization algorithm to
minimize total costs of investments and transport, deviations between product
quality and goals, and carbon emissions from facilities and vehicles. These per-
spectives disregard block extraction and sequencing decisions.

At a strategic level, Rimélé, Dimitrakopoulos and Gamache [17] primarily
addressed reducing land disruption by optimizing the sequence of ore extraction
with an in-pit waste disposal which allows dumping of non-profitable extracted
ores at available areas within the pit instead of transporting to temporary dumps.
Hence, haulage costs are minimized as these waste do not need to be moved back
from the dumps to the pit during the mine rehabilitation phase. Indirectly, the
reduction of inputs (fuel) and outputs (carbon emissions) are also addressed.
Succeeding research [7,14] consider effective use of dumps by simultaneously
optimizing extraction sequence, dump capacity and related costs.

However, such perspective prioritizes profits ahead of environmental foot-
prints instead of examining the trade-offs. Xu et al. [21] examined trade-offs that
reduce outputs and land disturbance. These environmental costs form part of the
Dynamic Programming formulation for optimum ore extraction sequence. Mean-
while, Wang et al. [19] focused on the processing of extracted ores. They solved
both resource efficiency and NPV in a multi-objective using a Non-dominated
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Sorting Genetic Algorithm, displayed as a Pareto front. Xu et al. [20] then con-
fined the formulation to the pit limit; it determined if ores should be extracted,
but disregards the sequence and subsequent processing decisions. Their multi-
objective formulation minimized ecological costs and, concurrently maximized
NPV as well as social benefits. The metrics used built upon Xu et al. [21].
We build upon these works by tackling the tactical perspective of PCPSP that
reflects decisions in a real-world mine of block extraction, sequencing and pro-
cessing. We also adopt the carbon costing framework [20] and plot our solutions
as a Pareto front.

3 Problem Definition

The PCPSP determines mining activities from start to end; it provides investors
a valuation of a mine’s worth based on extraction and processing decisions of
valuable mineral ores [9]. Components of a mine include the pit, dump, stock-
piles, processing plants and corresponding heavy machinery. Within the pit,
mineral ore deposits are discretized into equally sized blocks for the modelling
purpose. Each block has its unique associated value and set of precedence con-
straints due to the geology. This affects the overall extraction sequence across
time periods, as exemplified in Fig. 3, and how the ore is processed. Upon extrac-
tion, the block is sent to processing facilities where it is reduced according to
requirements such as through crushing, grinding and screening. Next, the mate-
rial undergoes refining to enhance the quality and derive various types of desired
end products. This value chain, lamentably, consumes ample raw materials and
produces detrimental by-products, as exemplified in Fig. 4.

3.1 Carbon Costing Framework

As shown in Fig. 4, energy as input and air pollution as output appear constantly
throughout. Hence, we focus on incorporating carbon costing in the enhanced
PCPSP formulation. The metric for carbon emissions is adopted from Xu et
al. [20]. They defined Ci,e to be the carbon emission cost from consuming energy.
It is the cost associated with the absorption of carbon dioxide generated during
ore excavation, and processing or refining.

The formula mainly comprises the ore extracted from the pit and sent for fur-
ther processing Qi,o and the amount of material extracted and treated as waste
Qi,w. These quantities are multiplied against the amount of energy consumed
using coal to extract per unit tonne of materials, either ore or waste, from the
pit em and the energy consumed to process per unit tonne of ore ep. These are
further multiplied against the carbon factor of coal fc, the conversion coefficient
of carbon dioxide from carbon fa and the absorption cost of carbon dioxide Cc.

C =
(Qi,o + Qi,w)em + Qi,oep

1000
fcfaCc (1)
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Fig. 4. Inputs and outputs along the mining value chain

3.2 Enhanced PCPSP Mathematical Formulation

The PCPSP is a scheduling problem that aims to maximize the NPV while
meeting operational, regulatory as well as economic constraints such as mineral
ore grade (i.e. percentage content), equipment availability, and processing plant
capacity [5]. In doing so, expertise required stretches across multiple domains
such as geology, chemistry, engineering, economics, and customer relations. Geol-
ogists assess the estimated ore components and grades based on multiple drill
samples as well as structure of materials surrounding the ore; each block has
unique and diverse components. These samples are continuously taken through-
out the mine life span. Based on these information, mining engineers assess the
structure, methods and equipment to access the ore. For accessed ores, geolo-
gists and chemists determine the type of processing and refining required for
different ores (e.g. iron, copper, gold and silver) and its grade. This results in
varying products. The ores and grades are monitored by economists to estimate
the economic value of each block based on demand and supply worldwide. Mean-
while, the demand by current and potential customers are evaluated by customer
relations. All these complicate mine scheduling.

Mine scheduling research mostly rely on real-world case studies as mining
operations are unique and shaped by geo-metallurgical factors [15]. However, this
leads to solution techniques that cannot be directly compared with others. The
publicly available MineLib library [5] attempts to close this gap with generalized
mathematical formulations and instances for three problem variants, whereby
PCPSP is the most complex problem. We adopt the PCPSP formulation to
enable other researchers to build upon our work.

The generic formulation for the PCPSP [5] denotes B as the set of blocks,
Bb is the subset of predecessors for block b ∈ B, and D is the set of destinations.
The profit p̃bdt is obtained by extracting block b and processing it at destination
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d at period t. The amount qbdr of operational resource r ∈ R is used to extract
block b and process it at destination d ∈ D. The binary decision variable xbt

equals to 1 if block b is extracted by period t and 0 otherwise. The continuous
decision variable ybdt represents the portion of block b sent to destination d at
period t. The objective function of PCPSP maximizes discounted total profits
for periods T . The profit p̃bdt for a period t ∈ T is computed by pbd

(1+α)t where
α is the discount factor. The associated value of a block depends on the ore
composition and its grade, estimated by geologists. The discounted value reflects
the importance of extracting a more valuable block earlier rather than later.

(PCPSP) Z = max
∑

b∈B

∑

d∈D

∑

t∈T
p̃bdtybdt (2)

Constraint (3) imposes precedence requirements for all blocks and time peri-
ods. It stipulates that block b′ must be extracted in the same period as, or prior
to, block b since block b′ is a predecessor of block b. This constraint is deter-
mined by mining engineers based on the type and composition of materials (e.g.
sand, silt, clay) surrounding the desired ore and the ore itself. That information
is provided by geologists.

∑

τ≤t

xbτ ≤
∑

τ≤t

xb′τ ∀ b ∈ B, b′ ∈ Bb, t ∈ T (3)

Constraint (4) requires that if a block is extracted, it must be fully sent to
one or more destinations and if a block is not extracted, it is not sent to any
destination. The choice of destination depends on the ore composition, if any,
and grade of the ore. It is also affected by customer demands.

xbt =
∑

d∈D
ybdt ∀ b ∈ B, t ∈ T (4)

Constraint (5) restricts block extraction to at most once over the horizon.
∑

t∈T
xbt ≤ 1 ∀ b ∈ B (5)

Constraint (6) ensures minimum Rrt and maximum R̄rt use of every opera-
tional resource r are satisfied for each period t. The operational resource include
diggers, haulage trucks, grinders, and various processing plants that are overseen
by mining engineers and technicians.

Rrt ≤
∑

b∈B

∑

d∈D
qbdrybdt ≤ R̄rt ∀ r ∈ R, t ∈ T (6)

Constraint (7) corresponds to general side constraints with lower and upper
bounds a and ā respectively. It can model more complex mining scenarios such
as grade constraints. The grade of ores desired are based on customer demands
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worldwide and market outlook. The ore grade cutoff affects the destination of
the block, constraint (4), as well.

a ≤ Ay ≤ ā (7)

Finally, constraints (8) and (9) reflect the range of values.

xbt ∈ {0, 1} ∀b ∈ B, t ∈ T , (8)

ybdt ∈ [0, 1] ∀b ∈ B, d ∈ D, t ∈ T . (9)

To enhance this PCPSP generic formulation with carbon cost constraints,
we define cbdrt as the discounted carbon costs emitted by operational resource
r ∈ R when extracting or processing block b at destination d ∈ D for a period
t ∈ T . The carbon constraint (10) ensures the maximum carbon emissions C̄t

are not exceeded for each period t.
∑

b∈B

∑

d∈D

∑

r∈R
cbdrtybdt ≤ C̄t ∀ t ∈ T (10)

The carbon costing constraint would be paramount within the system
of tradeable carbon emissions, or carbon credit trading. This system falls
under market-based instruments advocated to reduce carbon dioxide emissions.
Economies that are unable to decrease their carbon dioxide emissions to the
allocated permits can purchase from those that have decreased beyond their
permits [24]. Hence, constraint (10) enables miners to monitor emissions against
allocated permits and the cost of purchasing carbon credits.

4 Methodology

Since the PCPSP is a NP-hard problem, conventional Lagrangian relaxation
for larger instances proved unsuccessful; initial solutions were not found. Hence,
we propose a temporally decomposed greedy Lagrangian relaxation (TDGLR)
algorithm for the PCPSP, summarized in Algorithm 1. It reduces the problem
space using time windows and a cone selection for each window.

In Algorithm 1, the sliding time window w is implemented through lines 2,
3, 18 and 19. Meanwhile, the enhanced cone selection is implemented in lines 5
and 6. Next, an initial solution is found by Lagrangian relaxation in lines 7 and
8 that is faster than an exact MIP approach. It is then checked and fixed by the
greedy heuristic in line 10 for feasibility.

4.1 Block Pre-selection Heuristic

Blocks are pre-selected during each time window for a Lagrangian relaxation
MIP. The heuristic accounts for maximum resource available in each time window
R̄, amount of resource required by each block q, upper bound resource multiplier
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Algorithm 1. Temporally decomposed greedy Lagrangian relaxation framework
(TDGLR)
Input: Block model B, destinations D, predecessor edges E , time periods T , resources
R, resources required per block q, resource bounds R̄, profit of block when sent to
destination Pbd, general side constraints
Parameter: Time window size w, upper bound resource multiplier ρ, iterations for
Lagrangian relaxation I
Output: Set of extracted blocks, extraction period, block destination and net present
value of profit

1: G ← ConstructDAG(B, E)
2: ts ← 0
3: te ← w
4: while ts < T do
5: cones ← ConeCalc(B, D, E , R, q, R̄, Pbd, DAG)
6: S ← GetSubsetBlocks(cones, R, R̄, q, w, ρ)
7: for i in I do
8: (x∗, y∗) ← LR(ts, te, S, D, E , R, R̄, q, Pbd)
9: end for

10: (x̂, ŷ) ← LF (x∗, ts, B, D, E , R, q, R̄, Pbd)
11: B̂ ← BlocksExtractedinPeriod(ts, x̂)
12: if ts > 0 and B̂ = 0 then
13: break
14: end if
15: B ← B.drop(B̂)
16: G ← UpdateDAG(B̂)
17: profit ← CalcDiscProfit(x̂, ŷ, ts, Pbd)
18: ts ← ts + 1
19: te ← min(te + 1, T )
20: end while
21: return period, destination, profit

ρ, profit of block when sent to destination Pbd and the set of predecessor edges
E for the block model set B.

Each block in the block model set B has a set of preceding blocks that has
to be excavated before the block of interest. This set, together with the block
of interest, can be regarded as a cone due to the shape formed. Cone sets are
determined for each block, and the maximum profit that can be derived using
the associated resource are calculated. The cones are sorted by descending ratio
of profit to resource, instead of only profit by [13]. In doing so, the heuristic
juggles between maximizing both profit and resource.

4.2 Temporally Decomposed Lagrangian Relaxation

At each time window, a Lagrangian relaxation problem is solved for a subset of
blocks derived from 4.1. In the Lagrangian relaxation problem, constraint 6 is
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dualised and incorporated into the objective function using Lagrangian multi-
pliers λ and the time dimension is removed as follows:

Z∗(λ) =
∑

b∈B

∑

d∈D
p̃bdybd +

∑

r∈R
λr · (R̄r −

∑

b∈B

∑

d∈D
qbdrybd) (11)

Z∗(λ) is the Lagrangian objective function where λr defines the vector of
Lagrangian multipliers for constraint 6. To initiate, λ is set as 0. To optimize
the Lagrangian multiplier λ so that the profit objective is maximized, a sub-
gradient descent is used [6]. The Lagrangian multipliers are updated at each
iteration, where θ is the step size, using:

λr ← λr + θ · (R̄r −
∑

b∈B

∑

d∈D
qbdrybd) (12)

The step size θ is calculated with the following formula where μ is the step-size
multiplier and Z is the lower bound solution to the original PCPSP objective:

θ =
μ · (Z − Z(λ))

∣∣(R̄r −
∑

b∈B
∑

d∈D qbdrybd)
∣∣2 (13)

The step size multiplier μ are of the values 0 ≤ μ ≤ 2 where μ is initially set
as 2. Whenever the objective value of Z∗(λ) fails to improve within a set number
of iterations, the value of μ is adjusted by μ ← 1

2 · μ [6].

4.3 Greedy Heuristic

Results from the Lagrangian relaxation may either be infeasible due to violation
of some resources and/or carbon credits or feasible, but with under utilized
resources and/or carbon credits. Hence, blocks are removed or added to the
solution using a greedy method based on the best profit of a certain block when
sent to a destination. While doing so, precedence constraints are respected by
maintaining the block model set B and predecessor edges E within a DAG.

The blocks considered for removal and addition are at the fringes of the
solution to potentially minimize the resource required. The overall framework
of this heuristic is displayed in Algorithm 2. Line 1 calculates the residual of
resources at all destinations based on greedy assignment of blocks to the most
profitable destination. Line 3 checks for any resource and carbon costs violation.
If none, more profitable blocks are extracted. Otherwise, the least profitable
blocks are removed. Subsequently, line 11 handles resources or carbon costs that
are possibly under utilized.

5 Experiments

We use a real-world inspired data from an operating copper and gold mine,
namely Wilma. It is a small-sized open pit mine. The data was transformed to
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Algorithm 2. Fix feasibility of Lagrangian relaxation solution and maximize
resource use
Input: B, D, E , R, q, R̄, Pbd, Lagrangian relaxation solution of extracting block x∗

Output: Extract block x̂, block portion to destination ŷ

1: resr ← R̄r −
∑

b∈B
∑

d∈D qbdrybd

2: G ← ConstructDAG(B, E)
3: if resr ≥ 0, ∀r then
4: x+, y+ ← AddBlocks(G, x∗, B, D, R, q, R̄, Pbd, resr)
5: x̂ ← x∗ + x+

6: ŷ ← y∗ + y+

7: else
8: x−, y−, resr ← RemoveBlocks(G, x∗, B, D, R, q, R̄, Pbd, resr)
9: x̂ ← x∗ − x−

10: ŷ ← y∗ − y+

11: x+, ŷ ← AddBlocks(G, x̂, B, D, R, q, R̄, Pbd, resr)
12: x̂ ← x̂ + x+

13: ŷ ← y∗ + y+

14: end if
15: return x̂, ŷ

fit the generic formulation with further mock-ups. We supplement this dataset
with two copper MineLib benchmark instances of Kd and Marvin. Kd is a copper
mine in North America while Marvin is a famous copper and gold test mine.
The number of blocks |B|, precedence |Bb|, time periods |T |, destinations |D|
and operational resource |R| constraints are in Table 1.

Table 1. Key characteristics of dataset

Name Block Precedence Periods Destinations Resources

Wilma 1,960 7,263 4 3 3

Kd 14,153 219,778 12 2 2

Marvin 53,271 650,631 20 2 2

5.1 Experimental Setup

By using the TDGLR and MIP, the generic PCPSP formulation (without carbon
constraint) was first run to produce its respective optimal profit and discounted
carbon cost. The cost is then used to estimate the range of values for the carbon
upper bound C̄t for experimentation in the enhanced PCPSP formulation (with
carbon constraint). For this enhanced PCPSP formulation, the TDGLR algo-
rithm was evaluated against the MIP, solved by CPLEX. We experiment with
at least 30 values of C̄t. These experiments generate multiple Pareto-optimal
solutions Z and their corresponding discounted carbon emission cost C.
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Finally we compare the results between the TDGLR and MIP with respect to
the percentage gap, distance and diversity metrics. The percentage gap evaluates
the gap between the profit obtained by MIP, Z1, and the TDGLR, Z2:

Percentage gap =
Z1 − Z2

Z1
∗ 100% (14)

Next, the distance metric evaluates the convergence of the TDGLR to the
non-dominated MIP front [4]. It first measures the minimum Euclidean distance,
dkl, between a solution from the TDGLR, k, and all solutions from the MIP, l.
It then finds the average across all N solutions:

Distance metric =
∑N

k=1 min dkl

N (15)

Lastly, the diversity metric evaluates the even spread of solutions over the
Pareto front [4]. It uses the Euclidean distance, di, between successive solutions
and the average, d̄ of all di. Next, df measures the Euclidean distance between
the extreme solutions of the true Pareto-optimal front. Meanwhile, dl is the
Euclidean distance between the extreme solutions of the obtained solution set.
Overall, a value below one and close to zero indicates better diversity.

Diversity metric =
df + dl +

∑N−1
i=1 |di − d̄|

df + dl + (N − 1)d̄
(16)

The model was built entirely using Python with the core packages of Cvxpy
and NetworkX. Cvxpy is an optimization package that formulates mathemat-
ical programming flexibly and accesses the CPLEX solver, whereas NetworkX
creates and manipulates DAGs. Algorithm 1 was executed on a Linux operat-
ing system with the second generation Intel Xeon Scalable Processors (Cascade
Lake), sustained all core Turbo frequency of 3.6 GHz, single core turbo frequency
up to 3.9 GHz, 48 CPU and 192 Gb RAM.

The initial solution for the lower bound of the Lagrangian relaxation is pro-
duced using CPLEX solver with an MIP gap of 0.1. The value of the step size
multiplier μ in the sub-gradient descent optimisation is adjusted whenever the
objective value of Z∗(λ) fails to improve within ten iterations. The Lagrangian
relaxation runs for 100 iterations unless the decrease in the objective values
begin to stagnate or the gap between the upper and lower bound has reached
a gap threshold of 1e−9. There are also limits to the depth first search when
adding blocks if resource constraints are yet to be violated. Once 10 consecutive
attempts to add blocks result in resource violation, the greedy process termi-
nates.

5.2 Results

For the three instances, we visualize the evolution of profit and carbon upper
bound pairs in Fig. 5 that produce a convex approximate Pareto optimal front.
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Fig. 5. Approximate Pareto front of profit against carbon upper bound

The solutions along this front may be of interest to miners to determine a palat-
able trade-off between maximizing profits and minimizing carbon costs.

Table 2 summarizes the statistical comparison of the computation times
between the TDGLR and MIP while Fig. 6 displays the various computation
times across the carbon upper bounds. The computation times for the MIP
are between 36 s to 8.4 min. Meanwhile, the computation times for the TDGLR
range from 15 to 65 s. Figure 6 shows that the computation time for the MIP is
faster than the TDGLR for lower carbon upper bounds, but the computation
time increases drastically for larger carbon upper bounds. Conversely, the com-
putation time for the TDGLR generally decreases as the carbon upper bound
increases, indicating the difficulty level of solving the problem decreases as the
carbon upper bound increases. On average, the TDGLR is more efficient than
the MIP in solving the enhanced PCPSP formulation. This efficiency is most
apparent when solving the larger instances, Kd and Marvin. After 12 hours, the
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Table 2. Computation time comparison between TDGLR and MIP (seconds)

Method Minimum Maximum Average Median

TDGLR 14.5 64.6 36.5 30.3

MIP 36.4 504.3 67.1 37.5

MIP is still unable to provide a solution for both instances whereas the TDGLR
was able to solve in about 2.92 and 1.91 hours respectively for Kd and Marvin.
Hence, the TDGLR is able to efficiently solve the NP-hard PCPSP for larger
instances that is more reminiscent of a real-world mine.

Fig. 6. Comparison of computation time between TDGLR and MIP

Table 3. Performance metrics of TDGLR against Non-dominated MIP solutions

Average percentage gap Distance metric Diversity metric

0.015% 0.000135 0.998

The TDGLR is also compared to the MIP with the performance metrics of per-
centage gap, distance and diversity metrics, displayed in Table 3. As an exact
method, the MIP is expected to provide better results than TDGLR and forms
the non-dominated front. The percentage gap between the profit derived from
the MIP, Z1, and that of the TDGLR, Z2, was compared for each value of the
carbon upper bound. These gaps are shown in Fig. 7 for the Wilma instance. The
gap ranged from 0% to 0.3178% with an average gap of 0.015%. The distance
metric of 0.000135 is very close to zero and concurs with the close convergence of
the TDGLR to the MIP. Meanwhile, the diversity metric of 0.998 is below one,
but far from zero. This indicates the TDGLR can be improved to provide better
distribution of solutions. Overall, the TDGLR appears to provide reliable solu-
tions for the enhanced PCPSP formulation. Unfortunately, these metrics cannot
be applied for the larger instances of Kd and Marvin due to the shortcoming of
the MIP as highlighted earlier.
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Fig. 7. Percentage gap between MIP and TDGLR solutions for Wilma

6 Conclusion

In this paper, we propose the temporally decomposed greedy Lagrangian relax-
ation (TDGLR) approach that handles the flow of materials from the mine pit
to production facilities for the open pit mine. It handles the logistical considera-
tions throughout this value chain. Our TDGLR approach is sustainability-aware,
and can cater to a wide variety of environmental considerations. We augment a
collection of real-world instances from an operating mine and the MineLib with
sustainability requirements, to demonstrate how our approach could be utilized
in realistic planning settings. Our computational approach can effectively gen-
erate Pareto fronts over the dimensions of carbon cost and the NPV of profits.
This provides an ideal interface for planners to simultaneously consider economic
and environmental considerations.

To the best of our knowledge, this is the first such model for the open pit
mining planning using the generic PCPSP formulation. Our approach can be
extended to other types of environmental considerations, and it can help the
mining industry achieve Goal 9 of the United Nations’ Sustainable Development
Goals (SDG). Further considerations may include the cost of treating water and
waste such as tailings. Owing to the limitations of Lagrangian relaxation, we can
also formulate the problem as a multi-objective and further explore the use of
meta-heuristic evolutionary algorithms instead as future work.
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grant 20-IPPII-T-001-B-1 and Rio Tinto Ltd.
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Abstract. To face the challenges of today’s competitive industry, this
work studies a real-world problem in semi-automated electronics pro-
duction. It considers a worker assignment problem with a heterogeneous
workforce in the multi-shift environment of protective device manufac-
turing. Simultaneously with multi-skilled workers, requested orders are
assigned to workstations and shifts. One of the main particularities is the
restriction of possible assignments of workers and orders to workstations
according to qualifications. Additionally, this paper considers sequence-
independent family setup times, disparate workstations, and a time limit
for completing the orders. A mixed-integer linear programming model is
introduced that minimizes the makespan calculated by the last shift used
for production. The model is tested using real-world data. Additionally,
this contribution examines the influence of the workforce with the help
of scenario analysis and solves 49 test instances. The solutions serve as
input and support for production planners and personnel planning. Fur-
thermore, this work reveals production problems such as a lack of workers
and qualifications.

Keywords: Worker assignment · Heterogeneous workforce ·
Multi-shift · Semi-automated production

1 Introduction

In electronics production and other manufacturing sectors workers carry out
most tasks, which is why workers influence the performance more than machines
[2]. Workers are highly diverse. They can differ in physiology, age, training, expe-
rience, and much more. This diversity influences the productivity and flexibility
of production systems, which are both very important in Industrial Revolution
4.0 environments [6]. Therefore, the consideration of a heterogeneous workforce
plays a crucial role in production systems.

The real-world problem considered in this work comprises worker assignment
in a multi-shift environment. Orders and workers are assigned to workstations
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and shifts. The workers in the real-world problem differ in their skills, which is
why worker-station incompatibilities exist. The electronics production consid-
ered combines manual and automated workstations and is therefore specified as
semi-automated. Besides the level of automation, workstations differ in the type
of order tasks that they can process and the capacity, calculated with individual
limitation factors. The contribution of this work is the discussion of a new prob-
lem motivated by practical experience as well as support of production planners
and personnel scheduling.

The remainder of this paper is organized as follows. Section 2 provides a brief
literature review focusing on multi-skilled worker assignment problems. Section 3
describes the problem and its particularities in detail. The mathematical formu-
lation of the problem is introduced in Sect. 4 and computational results follow in
Sect. 5. Finally, Sect. 6 concludes this work and gives a summary and possibilities
for future research.

2 Literature Review

This section discusses the literature on problem structures similar to the semi-
automated electronics production considered. The three main particularities are
emphasized and researched: heterogeneous workforce, heterogeneous worksta-
tions and a multi-shift environment.

First, the focus of this review lies on literature with a heterogeneous work-
force. This problem aspect is modeled in various ways. Most literature includes
worker-dependent processing times, where workers need individually different
times to process tasks. Infeasible worker-task combinations could be modeled by
setting the operation time of a task to infinity when the task is infeasible for
a worker, e.g. [7,8]. Other approaches consider workers with different skill lev-
els, e.g. [6,10]. Workers can only perform tasks that have the same (or a lower)
skill level. Incompatibilities between workers and tasks are not representable by
simple adjustments. The workers heterogeneity is given via a skill matrix in the
considered problem, such as in [3,5,9]. A skill matrix indicates whether a worker
can perform a task or not.

Second, workstations are not homogeneous in the considered problem as
they are in most literature. The different processing tasks of orders have spe-
cial requirements for workstations and incompatibilities exist for certain task-
workstation combinations. Additionally, workstations differ in their capacity,
i.e., in the time they are available within a shift. The reason for this lies in
the company’s production specifics and is discussed further in Sect. 3. [1] intro-
duced machine types and a binary parameter specifying whether a task can
be processed by the machine type or not. In contrast, [3] implemented station-
dependent processing times. This approach could be adapted to our problem by
setting a processing time to infinity if the workstation is not able to process the
task.

Third, the total number of orders can not be processed within one shift and
can not be easily divided into smaller fitting groups. Therefore, orders and work-
ers are assigned to multiple shifts. The consideration of multi-shift environments
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in the literature is mostly motivated by parameters changing over time. Exam-
ples are varying part demands and costs of machines and workers, as in [6] and a
varying product mix in [4]. [9] considered the extension of the planning horizon
to one week divided into several shifts and the assignment of orders and workers
to cells and shifts, as in this paper.

The contribution of [9] addresses a similar problem. A set of workers must
cover all qualifications in total. It is acceptable for one worker to have all the
required qualifications alone, while all the others have only one each. This may
result in a surplus or shortage of qualifications. In this contribution, each quali-
fication must be covered by one worker.

None of the mentioned articles combined all analyzed criteria: heterogeneous
workforce, heterogeneous workstations and multiple shifts. Furthermore, none
included automated workstations with no need of an assigned worker. Ultimately,
the literature does not provide an approach to solve the real-world problem
considered.

3 Problem Description

The problem considered in this paper is motivated by a real-world multi-shift
worker assignment problem in electronics production. The manufacturer has 14
production cells. Two parallel cells produce the most recent products with the
highest sales (Cell 1 and Cell 2 in the following). Since those are most important,
this contribution focuses on that two cells. Their portfolio comprises overcurrent
and feeder protection in medium-voltage and high-voltage systems, for example.
The cells have four groups of workstations for assembly (A), testing (T), final
assembly (F), and packing (P) production tasks. Those groups are designated as
processes in the following. The number of workstations per process is identical for
both cells: six assembly stations and two stations each for testing, final assembly,
and packing. The workstations differ in their maximum capacity. The differences
lie in their efficiency and the progressiveness of the equipment. For implementa-
tion, limiting factors are defined for the groups of workstations, which limit the
possible processing time within a shift. The higher the possible processing time
in a shift, the more profitable the station. The difference between the two cells
lies in the level of automation. While the housing assembly workstation (first
workstation of process A) is manual at Cell 2, Cell 1 has three robots for these
tasks (automated workstation).

The production takes place in a three-shift system. Each day is divided into
an early, a late, and a night shift. Each shift is seven hours long (κwork) and
there is a one-hour break between the shifts, during which no production takes
place. It follows, every eight hours a new shift starts (κdur). Within a week, the
worker is available in the same shift type (for example, the early shift) every day
if not absent. The workers are heterogeneous and therefore not arbitrarily inter-
changeable within the assignment problem. In relation to the practical problem,
this is due to the workers’ skills. The worker skill profile differs in two aspects.
On the one hand, workers differ in their capabilities for different cells.
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Table 1. Data extract of the workers’ skill profiles

Worker ID Cells 1 and 2 Assigned to (Fig. 1)

A F T P

2 x x x x Assembly 2

5 x x x x Assembly 3

6 x x x Packing 1

7 x x x x Assembly 4

8 x x x Packing 2

10 x x x x Final assembly 1

16 x Assembly 5

22 x x x x Final assembly 2

23 x Assembly 6

25 x x x x Testing 1

29 x x x x Testing 2

In addition to the cells considered in this paper, the electronics manufacturer
operates 12 other cells for different and discontinued products. Workers may be
capable of operating orders at those excluded cells as well. Workers unable of
operating on Cell 1 and Cell 2 are left out of the database beforehand. On the
other hand, workers master different numbers of the four processes within a cell.
If a worker masters a process on one of the two considered cells then he or she
also masters it on the other.

Table 1 shows an extract of the database with eleven workers. Seven workers
master all four mentioned processes which are abbreviated in the table with A,
F, T and P. Workers 6 and 8 can not process testing tasks and Workers 16 and
23 can process assembly tasks only. Note that the missing workers like Workers
1, 3, and 4 are excluded from the database due to their incapability for Cell 1
and 2. The last column shows the assignment of the workers to the workstations
of Cell 1 in the example given in Fig. 1.

Each of the workstations has to be occupied by precisely one worker who has
the appropriate qualification for the corresponding process. The robot station on
Cell 1 makes an exception and does not need any worker. Note that even if not
all of the workstations of a process are needed to process all orders, a minimal
number of workstations has to be mated.

Each order consists of a certain number of identical devices, given as order
quantity. The time to process one single device is the base processing time of the
order. Furthermore, each order belongs to a product family, whereby sequence-
independent family setup times must be respected. Additionally, each order has
day-based time limits: the earliest start date and due date. The assignment of
the order must take place between the limits. An order consists of 35 to 40 tasks
of each of the four processes (A, F, T, P). To assign an order to a cell, all tasks
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of the same process are assigned to the group of workstations of that process.
The tasks of an order can not be splitted between the two cells.

Fig. 1. Illustration of Cell 1 with all workstations mated

In the problem analysis it turns out that the following two assignment prob-
lems appear simultaneously: First, the assignment of orders to workstations and
shifts taking into account family setup times. Second, the assignment of workers
to workstations and shifts considering the worker skill sets.

To give a better understanding of the problem described, Fig. 1 shows an
illustration of Cell 1 with all its workstations. Six devices are shown in the mid-
dle of the figure as shapes with different patterns. The patterns mark different
product types where sequence-independent setup times appear between the pro-
duction. The workstations are shown as boxes around the devices. Cell 1 contains
six Assembly, two Final Assembly (Final A.), two Testing, and two Packing sta-
tions, starting clockwise at the top. All workstations are mated, except for the
first assembly station, which is the automated station at Cells 1 and has no
need for an assignment. The eleven assigned workers are taken from the data
extract in Table 1 and marked with their unique identification number (ID). For
each worker, the corresponding skill sets are given in Table 1 and additionally
represented in the figure as checkboxes. Each of the four checkboxes per worker
(A, F, T, P) is marked if the worker is skilled in the process and not otherwise.
Note that a worker must meet the skill corresponding to their assigned work-
station and it is irrelevant which other skills the worker has. For example, the
worker assigned to the Assembly 2 workstation must have the assembly skill (A)
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checked in their skill set. The remaining skills (F, T, P) correspond to the other
workstations Final Assembly, Testing and Packing, respectively.

4 Mathematical Problem Formulation (MILP)

In the following, we introduce a mixed-integer linear program (MILP) for the
described problem. We define the set of cells as C, the set of shifts as S, the
set of workers as W , the set of orders as O, and the set of product families as
F . Furthermore, Table 2 introduces the parameters and the decision variables.
Note that the cells’ workstations are aggregated for each process p, so no set of
workstations is defined. Orders and workers are assigned to shifts and a group of
workstations of one cell belonging to the same process p. The average capacity
of all group workstations defines a group’s maximum capacity.

Table 2. Parameters and decision variables

Parameters

κdur Duration of one shift (including working time κwork and break)

κwork Maximum working time in a shift

δo Number of devices contained in order o ∈ O

τop Base processing time of all tasks of process p of one device of order o ∈ O

εSo First shift s ∈ S that satisfies earliest start date of order o ∈ O

εDo Last shift s ∈ S that satisfies due date of order o ∈ O

σf Setup time of product family f

λLB
cp Lower bound for the number of operating workstations of process p in cell c

λUB
cp Upper bound for the number of operating workstations of process p in cell c

lcp Maximum capacity of process p workstations of cell c, lcp ∈ [0, 1]

rcp Number of robot stations in cell c for process p

αs
w Binary parameter indicating if worker w ∈ W is available in shift s ∈ S

βc
wp Binary parameter indicating if worker w ∈ W can perform process p ∈ P in

cell c ∈ C

Decision Variables

zcs 1, if cell c ∈ C is used in shift s ∈ S, 0 otherwise

ycs
o 1, if order o ∈ O is processed in cell c ∈ C in shift s ∈ S, 0 otherwise

xcs
wp 1, if worker w ∈ W is assigned to process p ∈ P in cell c ∈ C in shift s ∈ S, 0

otherwise

vcs
p Number of workstations that operate process p ∈ P in cell c ∈ C in shift

s ∈ S, vcs
p ∈ N

ucs
f 1, if any order belonging to product family f ∈ F is produced in cell c ∈ C

in shift s ∈ S, 0 otherwise
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min Cmax (1)

s.t. s · κdur · zcs + κwork ≤ Cmax ∀ c ∈ C, s ∈ S (2)
∑

c∈C

∑

s∈S

ycs
o = 1 ∀ o ∈ O (3)

ycs
o ≤ zcs ∀ c ∈ C, s ∈ S, o ∈ O (4)

ycs
o ≤ ucs

fo ∀ c ∈ C, s ∈ S, o ∈ O (5)

ycs
o = 0 ∀ c ∈ C, o ∈ O, s ∈ S : s < εSo ∨ s > εDo (6)

vcs
p ≥

∑
o∈O τop · δo · ycs

o +
∑

f∈F σf · ucs
f

κwork · lcp
∀ c ∈ C, s ∈ S, p ∈ P (7)

vcs
p ≤

∑
o∈O τop · δo · ycs

o +
∑

f∈F σf · ucs
f

κwork · lcp
+ 1 ∀ c ∈ C, s ∈ S, p ∈ P (8)

∑

c∈C

∑

p∈P

xcs
wp ≤ 1 ∀ w ∈ W, s ∈ S (9)

vcs
p − rcp · zcs =

∑

w∈W

xcs
wp ∀ c ∈ C, s ∈ S, p ∈ P (10)

xcs
wp ≤ αs

w · βc
wp ∀ c ∈ C, s ∈ S, p ∈ P,w ∈ W (11)

zcs · λLB
cp ≤ vcs

p ∀ c ∈ C, s ∈ S, p ∈ P (12)

vcs
p ≤ zcs · λUB

cp ∀ c ∈ C, s ∈ S, p ∈ P (13)

The objective is to minimize the makespan. Since the scheduling of the orders
is not considered, makespan does not correspond to the end of the processing
time of the last job. Indeed, the makespan equals the maximum working time in
the final shift (s · κdur · zcs + κwork) in which orders are still being produced and
workers are assigned, as realized by Constraints (2). Constraints (3) ensure the
satisfaction of the order demand. Each order o (and every contained device) has
to be processed exactly once. It is therefore assigned to precisely one cell and shift
(cell-shift combination). Constraints (4) guarantee that cell c is used in shift s
(zcs = 1) if any order o is assigned to that cell-shift combination. Constraints
(5) ensure that processing an order o in a cell-shift combination leads to setting
up the corresponding product family fo (ucs

fo
= 1). Constraints (6) prevents

the scheduling of orders before their earliest possible start date and after their
due date. Constraints (7) and (8) determine the number of workstations needed
to process all assigned orders according to the total processing time and the
maximum working time of process p. The total processing time of process p is
the product of the base processing times of all assigned orders multiplied by
their order quantity (

∑
o∈O τop · δo · ycs

o ) plus the setup times (
∑

f∈F σf · ucs
f ).

The maximum working time in a shift (κwork) is limited by lcp for process p
in cell c. The number of workstations must be at least the division of total
processing time and maximum working time, but not higher than this term plus
one. Constraints (9) limit the use of worker w to one station s within one shift
s. Constraints (10) ensure that each manual workstation needed in one shift is
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operated by a worker. Since robot stations do not need the assignment of workers,
the number of manual stations is the number of all stations minus the number
of robot stations (vcs

p −rcp ·zcs). Workers can only be assigned if they are present
and qualified for the assignment, which Constraints (11) guarantee. Compliance
with the lower and upper bounds for the number of operating workstations of
process p in cell c is ensured by Constraints (12) and (13).

5 Computational Results

5.1 Experiment Data and Scenarios

The model is tested with real-world data obtained from a protective device
manufacturer. Table 3 shows the cell data of the groups of workstations for each
process at Cells 1 and 2. The table includes the maximum capacity as percentage
of the work time of 420 min (lcp) and the lower bounds for the number of operating
workstations (λLB

cp ).

Table 3. Maximum capacity and lower bounds of the workstation groups for each
process on Cells 1 and 2

Process p Cell 1 Cell 2

l1p λLB
1p l2p λLB

2p

Assembly (A) 88.50% 2 76.00% 3

Final assembly (F) 88.25% 1 79.00% 1

Testing (T) 100.00% 1 83.00% 1

Packing (P) 86.50% 1 83.00% 1

The data set contains 2955 orders in total and is divided into seven weeks.
One week contains orders whose production can start in the workweek from Mon-
day to Friday, i. e., the earliest start date is in that week. Some orders can start
on Mondays, whereas others can start on Wednesdays at the earliest for logisti-
cal reasons. Table 4 shows the number of total orders (|O|) and the number of
orders ready from Mondays (#orders(Mon)) and Wednesdays (#orders(Wed)),
respectively, for each week. To get a better idea of the problem sizes, the num-
ber of devices included in the orders is given in the columns #devices(Mon) and
#devices(Wed).

The database includes 57 workers, which differ in the number of available
shifts and obtained skills. In average, 14 workers are available per shift with
differences between early (∅18), late (∅13.6), and night shift (∅10.7). A total of
34 workers obtain the skills for all four processes (A,F,T,P), whereas 12 workers
are skilled for assembly only and the remaining 11 are either skilled for (P),
(F,P), or (A,F,P). The testing skill in total is represented the least of all.
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Table 4. Total number of orders per week, number of orders and devices starting on
Monday and Wednesday

Week |O| #orders(Mon) #devices(Mon) #orders(Wed) #devices(Wed)

1 313 135 360 178 530

2 382 180 447 202 553

3 573 270 738 303 1006

4 449 224 547 225 624

5 470 216 743 254 519

6 418 194 502 224 590

7 350 184 529 166 533

The problem is solved in different scenarios to analyze the workers’ influ-
ence on the solution. Roughly two cases are distinguished, first the best-case
scenario and second the worst-case scenario. In both cases, workers are succes-
sively removed from the database. In three steps, five workers are assigned to the
excluded cells and are thus no longer available for Cells 1 and 2. In the follow-
ing, we assume that a worker is less dispensable the more processes he masters.
Every worker gets a skill priority, which is the sum over the processes a worker
masters. For example, if a worker has all four qualifications the skill priority is
four. In addition, workers are more valuable if they are available for many shifts.
Any day the worker does neither work the early, late, nor night shift counts as
absent.

The database of all 57 workers is sorted according to the skill priority and
the number of absent shifts. For the best-case scenario, the workers are sorted
according to ascending skill priority first and decreasing number of absent shifts
second. In contrast, workers are sorted according to decreasing skill priority first
and ascending number of absent shifts second in the worst-case scenario.

Table 5. Scenario analysis: extraction of top worker data after sorting according best-
case and worst-case scenario

Best-case scenario Worst-case scenario

Worker ID A F T P
∑ ↑ Absences ↓ Worker ID A F T P

∑ ↓ Absences ↑
84 x 1 36 66 x x x x 4 11

77 x 1 35 79 x x x x 4 12

33 x 1 32 64 x x x x 4 13

16 x 1 24 88 x x x x 4 14

68 x 1 21 93 x x x x 4 14

23 x 1 20 96 x x x x 4 15

The workers listed at the top after sorting according to the scenarios will be
removed from the database successively. The first six positions of both scenarios
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are shown in Table 5. Looking at the best-case scenario, all workers have only one
qualification, which is the skill priority is 1 (

∑
). The skill is for assembly tasks

in each case (marked with x). Therefore, the sequence is defined by the number
of absent shifts (Absence). All workers listed top after sorting according to the
worst-case scenario have the same skill priority and are skilled in each process
(assembly, testing, final assembly, and packing). As in the best-case scenario, the
number of absent shifts defines the sequence. Workers 88 and 93 are indifferent
considering both sorting categories.

The basis scenario is defined as Scenario 0 and contains all 57 workers in
the database. The reduction of workers result in six additional scenarios: 1a,
1b, 1c, 2a, 2b, and 2c. Thereby, number 1 represents the best-case instances,
number 2 represents the worst-case instances, and the letters a, b and c point
to the number of remaining workers (52, 47, 42). Figure 2 shows the skill set
as combination of processes and the number of workers able to operate them
for each scenario. The reduction of workers leads above all to reduced assembly
skills in the best-case scenario. In the worst-case scenario all removed workers
are skilled for all four processes, which reduces the number of testing-skilled
workers to 19 out of 42 workers in Scenario 2c.

Fig. 2. Skill sets as combinations of processes of all workers in best-case and worst-case
scenario

Considering seven different scenarios in seven weeks result in 49 test instances
in total. The availabilities of all 49 instances are given in Table 6 as the average
number of available workers per shift. The total number of workers is given in
column |W |. The average number of available workers per shift throughout the
week is given in the following columns (∅W(w1) to ∅W(w7)). Due to the lower
bounds for the processes in Cell 1 and 2, at least five workers are needed to
produce on Cells 1 and six for Cell 2, respectively. It follows that in every shift
with less than 11 workers available, only one of both cells can produce orders.
Weeks 3, 6, and 7 show fewer numbers of available workers than the other weeks.

5.2 Results

The model is implemented in C# with .NET 6.0 using Gurobi 9.5 as solver. All
tests are performed on a Windows Server 2016 Standard with Intel(R) Xeon(R)
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Table 6. Availability displayed as number of average available workers per shift

Scenario |W | ∅W(w1) ∅W(w2) ∅W(w3) ∅W(w4) ∅W(w5) ∅W(w6) ∅W(w7)

0 57 15.07 15.47 13.47 14.60 14.27 13.40 12.60

1a 52 13.67 14.40 12.40 13.53 13.73 12.47 11.53

2a 52 13.47 13.87 11.87 13.00 12.73 11.87 11.00

1b 47 12.67 13.40 10.87 12.07 12.13 11.33 10.40

2b 47 11.87 12.47 10.60 11.67 11.40 10.60 9.67

1c 42 11.33 11.80 9.87 10.73 10.53 10.00 8.93

2c 42 10.40 10.87 9.93 10.53 9.93 9.07 8.27

Gold 6136 CPU @ 3.0 GHz processors with 16 cores and 128 GB RAM. However,
we limit the number of cores to 12, and the memory consumption is only a small
fraction of the available memory.

31 of the 49 instances are solved to optimality in under one hour. Solutions
with an optimality gap of 7.8 % on average are gained on another 16 instances.
The two remaining instances could not be solved since they are infeasible. Table 7
gives an overview of all results in the appendix. The table includes the average
number of cells opened per shift (∅C) and the total number of shifts used for pro-
ducing all orders (|S|). Considering only productive shifts result in a ∅C-value
between 1 and 2 for each instance. Furthermore, the table shows the assignment
rate of workers (Wor[%]), the objective value in minutes (Obj), the computa-
tional time in seconds (Time[s]), and the optimality gap (Gap[%]) grouped by
best- and worst-case scenario.

The smaller instances of weeks 1 and 2 can be handled efficiently within one
workweek regardless of how many and which workers are assigned to other cells
and therefore not available. There are one to four shifts unused, which provide a
buffer for further orders. Additionally, further workers are available within the
used shifts. Figure 3 shows the assignment rates of the workers in all 15 shifts of
Week 2 in scenarios 0 and 2a. The bars can be interpreted as follows. The heights
of the bars give the total number of available workers, all assigned workers are
marked in gray, and the white parts are not assigned and still available workers.
The workers’ assignment rates 80.48 % for Scenario 0 and 91 % in Scenario 2a
given in the titles are calculated excluding unused shifts.

The orders of the third week could not be processed within one workweek in
any of the scenarios. Even if all workers are available in Cells 1 and 2 (scenario 0),
all orders that could not be completed in one workweek must be processed in
two shifts on Monday of the following week. This is inadmissible since the next
week is planned without those remaining orders of Week 3. To solve this issue,
planners should consider bringing forward orders to previous weeks to avoid a
delay.

The scenarios of Weeks 4, 5, 6, and 7 give mostly permissible solutions with all
orders completed on Thursday or Friday of the corresponding week. The workers’
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Fig. 3. Workers rate of assignment in Scenario 0 and 2a of Week 2

assignment rates are higher compared to Weeks 1 and 2. As an example, Fig. 4
shows scenarios 0 and 2a of Week 5 and can be interpreted analogously to Fig. 3.

Fig. 4. Workers rate of assignment in Scenario 0 and 2a of Week 5

The following instances make an exception: 5–2b, 5–2c, 6–2c, 7–1c, and 7–2c.
The three instances 5–2b, 5–2c, and 6–2c need one or several additional shifts in
the following week and are therefore inadmissible. The instances of the seventh
week with only 42 workers are infeasible. That is because it is the last week
and orders can not be postponed. Since permissible solutions exist for all three
weeks, planners should schedule the necessary workers for Cells 1 and 2.

The workstations are the second resource besides the workforce. The utiliza-
tion of workstations differs between the processes. The average over all instances
is 89.62 % for assembly, 82.76 % for final assembly, 66.25 % for testing, and
44.80 % for packing. The assembly workstations are utilized the most but they
do not represent a bottleneck in any instance. The utilization of packing work-
stations is the smallest and indicates a low workload of the workers assigned to
them. Note that even if a workstation is underutilized, a worker will be commit-
ted to the station for the entire 420-minute work period.
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6 Conclusion and Future Research

This work studies a multi-shift worker assignment problem with a heterogeneous
workforce in semi-automated electronics production. The problem includes two
parallel cells, which differ in the level of automation. Additionally, it consid-
ers family setup times, stations with no need for a worker, and time limits for
processing orders. This work introduces a mixed-integer linear program with the
objective to minimize the makespan represented as the last used shift in the plan-
ning horizon. Seven weeks are solved in seven different scenarios, which leads to
49 real-world instances. With a time limit of one hour, all feasible instances are
solved with an average optimality gap of 2.66 % using Gurobi. The solutions are
practical input for production planners, which can be used as a planning basis.
They reveal problems like insufficient workforce or conspicuously high numbers
of orders to process within one week.

Various directions exist for further research. Firstly, future works can extend
the problem by including all external cells to determine the optimal number
and allocation of workers for Cells 1 and 2 simultaneously. Furthermore, soft-
ening the immutability of the worker assignment can improve the solution. The
possibility of switching workstations or cells enables filling up workers’ shifts.
For example, workstation utilizations less than 50 % are predestined for assign-
ing workers to two workstations within one shift. This means that one worker
processes tasks on one workstation and switches stations halfway through. Fur-
thermore, scheduling of the orders and tasks could be added to determine the
best order sequence within a shift. Another option to improve the solution is to
introduce work on Saturdays or the possibility of buying another robot. Those
measures can be evaluated by including costs for assignments on weekends and
additional automated stations. Multi-criteria approaches are suitable due to the
trade-off between reducing makespan and increasing costs or vice versa. A fur-
ther extension of the problem could be incorporating setup carry-over between
shifts. Thereby, future works should strike a balance between solution improve-
ment and the increase in complexity. Lastly, to realize longer planning horizons
or to find a good solution early on, heuristic approaches such as metaheuristics
or matheuristics can be developed.

Acknowledgements. The author would like to thank Tony Alexander of Siemens
AG for his support in elaborating on the problem and obtaining the data.
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Appendix

Table 7. Overview of the results of all test instances

W Sce Best-case scenario (1) Worst-case scenario (2)

∅C |S| Wor[%] Obj Time[s] Gap[%] ∅C |S| Wor[%] Obj Time[s] Gap[%]

1 0 1.82 11 76.34 5700 382 0.00 1.82 11 76.34 5700 382 0.00

1 a 1.91 11 86.78 5700 318 0.00 1.73 11 82.45 5700 320 0.00

1 b 1.82 11 93.05 6180 338 0.00 1.58 12 86.56 6180 344 0.00

1 c 1.69 13 85.09 6660 3604 7.21 1.69 13 95.00 6660 342 0.00

2 0 1.91 11 80.48 5220 350 0.00 1.91 11 80.48 5220 350 0.00

2 a 1.64 11 81.00 5220 343 0.00 1.91 11 91.00 5700 605 0.00

2 b 1.36 11 81.69 5700 416 0.00 1.77 13 86.14 6180 3600 6.30

2 c 2.00 13 92.86 6180 430 0.00 1.86 14 93.06 6660 3601 5.93

3 0 1.94 16 97.82 10500 3601 4.02 1.94 16 97.82 10500 3601 4.02

3 a 2.00 18 99.31 11460 3602 7.44 1.83 18 100.00 11460 3601 3.72

3 b 1.79 19 96.31 11940 3601 3.59 1.60 20 97.07 12420 3601 3.46

3 c 1.59 22 97.52 13380 3601 9.31 1.43 21 96.38 12900 3600 8.79

4 0 1.83 12 92.52 5700 460 0.00 1.83 12 92.52 5700 460 0.00

4 a 1.83 12 97.85 5700 1932 0.00 1.92 13 96.15 6180 3603 6.30

4 b 1.69 13 99.30 6180 960 0.00 1.54 13 98.60 6180 3150 0.00

4 c 1.60 15 83.90 7140 3600 5.59 1.47 15 98.79 7140 3601 11.19

5 0 1.69 13 93.85 6180 3601 6.30 1.69 13 93.85 6180 3601 6.30

5 a 1.62 13 94.17 6180 1697 0.00 1.62 13 99.30 6180 1972 0.00

5 b 1.46 13 100.00 6180 2827 0.00 1.53 15 94.69 10020 3601 29.32

5 c 1.40 15 88.00 6660 2546 0.00 1.54 13 98.60 11460 3244 0.00

6 0 1.73 11 93.09 5700 2700 0.00 1.73 11 93.09 5700 2700 0.00

6 a 1.58 12 89.48 5700 2007 0.00 1.75 12 92.20 6180 1746 0.00

6 b 1.31 13 89.72 6180 1583 0.00 1.54 13 95.42 6180 1023 0.00

6 c 1.46 13 98.79 6180 2211 0.00 1.55 11 100.00 10500 1823 0.00

7 0 1.64 11 92.34 5220 326 0.00 1.64 11 92.34 5220 326 0.00

7 a 1.67 12 99.48 5700 3612 6.72 1.75 12 94.10 6180 423 0.00

7 b 1.69 13 99.36 6180 732 0.00 1.62 13 99.30 6660 1702 0.00

7 c Infeasible Infeasible
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