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Abstract. Graph convolutional networks (GCNs) provide a promising
way to explore datasets that have graph structures in nature. The pres-
ence of corrupted or incomplete graphs, however, dramatically decreases
the performance of GCNs. To improve the performance, recent works
on GCNs reweighted edges or added missing edges on the given graphs.
On top of that, this paper further explores the domain of node addition.
This paper presents a simple but effective extension of GCNs by combin-
ing node addition and edge reweighting. Node addition adds new nodes
and edges as communication centers to the original graphs. By doing
so, nodes can share information together for efficient inference and noise
reduction. Moreover, edge reweighting re-distributes the weights of edges,
and even removes noisy edges considering local structures of graphs for
performance improvement. Based on four publicly available datasets,
the experimental results demonstrate that the proposed approach can
achieve better performance than four state-of-the-art approaches.

Keywords: Graph convolutional network · Semi-supervised learning ·
Node addition · Edge reweighting

1 Introduction

For a long time, convolutional neural networks (CNNs) have been widely used
in various applications, such as image classification [4,14], image retrieval [17,
19], semantic segmentation [5,9], and clothing recommendation [10,24]. Classical
CNNs focus on the problems where a data instance can be represented in a regular
grid structure [1], e.g., an image. With a regular structure, filters can directly be
applied to extract effective features formodel generation.However,manyproblems
involve irregular structures in nature, and these datasets are commonly modeled
as irregular graph structures, such as social relation analysis. As a result, general-
ized CNNs have been rapidly developed for irregular graph structures from single-
relational and even multi-relational data instances, see, e.g., [1–3,8].

Earlier, Bruna et al. extended the classical convolution operator based on the
spectral representation of graphs for generalized CNNs [1]. Extending the work
in [1], Defferrard et al. proposed a computationally efficient method to perform
convolution operations on graphs [2]. Subsequently, Kipf and Welling consid-
ered the classical graph-based semi-supervised learning (SSL) problems, where
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the objective is to predict labels for unlabeled nodes based on labeled nodes,
see e.g., [25,26]. They then developed graph convolutional networks (GCNs) for
graph-based SSL problems [8]. Further, Veličković et al. added self-attention
layers to reweight edges of graphs [20]. Jiang et al. then showed performance
improvement by combining Kipf and Welling’s GCNs and their edge reweight-
ing method [6]. Recently, Rong et al. studied edge removal and showed the effec-
tiveness on preventing over-smoothing [21]. Yu et al. presented graph-revised
convolutional networks (GRCNs), which are capable of adding new edges and
reweighting edges [23].

While most works resorted to edge-based refinement, this paper further
explores the domain of node addition. Node addition allows nodes with simi-
lar features to share information together and reduce noisy information. This
paper further considers edge reweighting so as to determine proper weights for
edges adjacent to the added nodes, and remove noisy edges. Overall, this paper
presents a simple but effective extension of GCNs in [8] by node addition and
edge reweighting, for graph-based SSL problems. Compared to [6,20], node addi-
tion considers the addition of new nodes and new edges to original graphs, while
the two works focused on reweighting the edges existing in the original graphs.
In contrast to [23], the proposed approach further considers the addition of new
nodes and the removal of noisy edges. Overall, this paper has three main contri-
butions as follows:

– To the best of our knowledge, this paper presents the first work on adding
new nodes for graph-based CNNs on SSL problems.

– This paper presents a new method to reweight edges and even to remove
noisy edges of a given graph. Besides, the method benefits node addition by
determining proper weights for edges adjacent to the new nodes.

– We conduct experiments on four datasets to validate the effectiveness of the
proposed approach on node classification.

The remainder of this paper is organized as follows. Section 2 reviews the
GCN method for graph-based SSL problems. Section 3 details the proposed app-
roach. Section 4 evaluates the performance of the proposed approach. Section 5
concludes this paper.

2 Background

This section briefly reviews the SSL of using the GCN method in [8]. Let G(V,E)
be a graph with nodes V and edges E ⊆ V × V . An adjacency matrix A ∈
R

|V |×|V | provides a representation of whether pairs of nodes in G contain edges
connecting them, where |V | is the number of nodes of graph G. Typically, Aij = 1
if the nodes i and j are adjacent, and Aij = 0 otherwise. We are given a feature
matrix X = (x1, x2, ..., xn) ∈ R

n×p for n instances, where xi is the feature vector
of instance i, and p is the dimension of a feature vector. For SSL, each node of
graph G is associated with the feature vector of an instance, and thus, |V | = n.
The adjacency matrix, A, is associated with the relationship between pairs of
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the instances, e.g., similarity. We let Y ∈ R
n×c be a label matrix and L be the

set of nodes with labels, where Yij = 1 if i ∈ L and the label of xi is j, and
Yij = 0 otherwise.

Given X, A, Y , and L, as the inputs for SSL, an r-layer GCN method per-
forms layer-wise propagation as follows.

H(u+1) = σ(D̃− 1
2 ÃD̃− 1

2 H(u)W (u)), (1)

where H(0) = X, u = 0, 1, ..., (r − 1) is a layer index, Ã = A + I means to add a
self-loop of every node, I ∈ R

n×n is the identify matrix, D̃ ∈ R
n×n is a diagonal

matrix with D̃ii =
∑n

j=1 Ãij , W (u) is the weight matrix that is going to be
learned for the u-th layer, and σ(.) is an activation function, e.g., ReLU(.). It
is worth mentioning that D̃− 1

2 ÃD̃− 1
2 is a symmetric normalization for Ã. If we

let Â = D̃− 1
2 ÃD̃− 1

2 , then Âij can be viewed as the weight of edge that connects
the nodes associating to xi and xj of graph G. Note that the output of the
propagation is defined as,

Z = softmax(H(r)W (r)), (2)

where Z ∈ R
n×c. Row Zi refers to the prediction of the node associating to xi

for the c classes. Finally, the GCN method defines the loss function as,

ζpred = −
∑

i∈L

c∑

j=1

(Yij lnZij) , (3)

to measure how good or bad the model does.

3 Proposed Approach

Figure 1 outlines the proposed approach. We first group the given nodes into
several clusters, followed by adding a new node for each cluster. In each time
we add a new node into a cluster, we also connect the new node to the nodes
in the same cluster by adding new edges. More details about the node addition
will be presented in Sect. 3.1. After adding the new nodes and edges, we will
obtain a new graph. To combine edge reweighting with the GCN method, we
add a parameter that will be learned for each node of the new graph, and then
modify the GCN method partially. More details about edge reweighting will be
presented in Sect. 3.2. Subsequently, the resultant network is used to produce a
classification result. To make the performance less sensitive to clustering results,
we will repeat the above process several times, and take the average of their
classification results as the final results.

3.1 Node Addition

In real-world applications, inputs for SSL might be incomplete or contain noisy
data. The goal of node addition is to reduce the influence of the imperfect inputs.
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Fig. 1. Overall flow of the proposed approach.

More specifically, the motivation of node addition is twofold: (1) it is expected
that nodes with similar features can share information together and also reduce
noise by averaging, and (2) adding edges for isolated nodes or even ordinary
nodes is capable of increasing the performance of SSL. Considering the two,
we intend to provide a communication center that connects nodes with similar
features, and helps information sharing.

For node addition, we group nodes of graph G into clusters, based on the
features associated with the nodes, so that nodes with similar features can be
assigned to the same cluster. For each cluster, we then add a node in it, where
the feature of the new node is set to be the average of the features of the original
nodes in the cluster. That is, the new node is placed at the center of the cluster. In
each time we add a new node for a cluster, we also add an edge between the new
node and each of the original nodes in the cluster. Figure 2 illustrates the idea,
where seven nodes that are associated with seven instances, say {x1, x2, ..., x7},
respectively.

So far, we have built a communication center by adding a new node and some
edges, for each cluster of nodes with similar features. Note that the number
of nodes added and the number of edges added in graph G are equal to the
number of clusters and the total number of nodes in graph G, respectively.
Because node addition changes graph G, we will use the superscript, ′, for the
notations associated with the new graph. For example, G′(V ′, E′) is the new
graph, X ′ ∈ R

n′×p is the new feature matrix, and A′ ∈ R
n′×n′

is the new
adjacency matrix, where n′ is the number of nodes in graph G′, and obviously
(n′ − n) is the number of nodes added into G. Note that entries of A′ are either
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Fig. 2. Illustration of node addition. (a) Suppose that nodes associated with
{x1, x2, x3, x4} are grouped together, and nodes associated with {x5, x6, x7} are
grouped together. (b) For each cluster, a new node is added. (c) For each cluster,
new edges are added. Each new node will be acted as a communication center of the
nodes within the same cluster.

zeros or one. Intuitively, no two features are exactly the same for most cases, and
thus it is expected that weights of edges incident to the communication centers
could properly be assigned. The assignment of proper weights will be covered in
the scope of our edge reweighting method. Later in Sect. 3.2, we will generate a
weighted adjacency matrix from A′, and then do edge reweighting.

For practical implementation, we use k-means clustering, and we apply a
simple heuristic as follows. We randomly pick m (m = 5 in this paper) distinct
numbers from 0 to n/10 as the candidates of the k-value, where we set n/10 as a
bound because we do not intend to generate too many small-size clusters. After
clustering, there can be a few nodes far from the center of each cluster. Mostly, it
is beneficial to refine the clustering result. We thus calculate the average distance
between each point in a cluster to the cluster center. For each cluster, we then
remove nodes from the cluster if their distances to the cluster center are greater
than the average distance of the cluster. Finally, we update the cluster center
based on the remaining nodes of each cluster. Note that we do not remove nodes
from the graph. We only refine the clustering result. In addition, node addition
places the new nodes on the updated centers, and adds the new edges only for
the remaining nodes.

For each of the m candidates of the k-value, we will go through the GCN
optimization flow shown in Fig. 1. Eventually, we can get m different results.
Because it is difficult to find a proper k-value for a given graph, we take the
average of the m results for the prediction result.

3.2 Edge Reweighting

This section reviews layer-wise propagation first, and details the implementa-
tion of edge reweighting afterward. Based on graph G′, Eq. (1) can directly be
rewritten as,

H ′(u+1) = σ(D̃′− 1
2 Ã′D̃′− 1

2 H ′(u)W ′(u)). (4)
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In Eq. (4), we can see that the operation, Â′ = D̃′− 1
2 Ã′D̃′− 1

2 , normalizes Ã′

in a symmetric way. More specifically, the operation assigns a weight for each
edge considering the degrees of nodes in graph G′. Generally, the operation is
used when edges of graph G′ are undirected, i.e., A′ is symmetric. Â′ will be
symmetric if A′ is symmetric. If edges of graph G′ are directed, the operation
can be replaced with Â′ = D′−1Ã′, so that each row in Â′ sums to one. That is,
weights of edges pointing from each node sums to one. In many cases, Â′ will
not be symmetric if edges of graph G′ are directed.

Edge reweighting will view the given graph, i.e., G′, as a directed graph.
Typically, an undirected graph can be converted into a directed graph by replac-
ing the undirected edge between each pair of nodes with two directed edges in
opposite direction. Practically, if edges of the initial graph, i.e., graph G, are
directed, we will use two directed edges to connect a new node to each of the
original nodes in the same cluster for the stage of node addition. Then for Eq. (4),
we will replace D̃′− 1

2 Ã′D̃′− 1
2 with D′−1Ã′. Note that if edges of the initial graph

are undirected, we will not make any change for Eq. (4). It is worth mentioning
that our edge reweighting method has two advantages. Firstly, we can consider
only the edges pointing from (or to) a node at each time, and thus drastically
reduce the complexity of reweighting. Secondly, our method can not only be
applied to undirected graphs, but also directed graphs. Note that no matter
whether edges of graph G (and thus, graph G′) are directed or undirected, the
methods introduced below can be applied and are exactly the same.

Given graph G′, we create a vector b = (b1, b2, ..., bn′)T ∈ R
n′×1, as param-

eters to be learned. Each parameter is assigned to exactly a node of graph G′.
The parameter of a node will be added to the weight of every edge pointing from
the node. Formally, we generate an adjacency matrix, say B ∈ R

n′×n′
, where

Bij = max(Â′
ij + bi, 0),∀i, (i, j) ∈ E′. (5)

Note that bi can be negative, and max(.) forces negative values to be zero. If
Bij equals zero, there is no edge pointing from node i to node j. That is, some
edges can be removed if bi is negative. We then do normalization by B̂ = D′−1B
so that weights of edges points from each node sums to one. If bi is positive and
bi is much greater than any of Â′

ij with (i, j) ∈ E′, normalization can make all
of the values of B̂ij with (i, j) ∈ E′ be almost the same. That is, parameters
{b1, b2, ..., bn′} can be used to reduce the difference of edge weights or remove
some edges of graph G′.

The resultant layer-wise propagation is as follows:

H ′(u+1) = σ(B̂H ′(u)W ′(u)). (6)

Similar to [6,12], we then define the loss function used to optimize the parameters
as,

ζgraph = (1 − λ)
n′

∑

i,j=1

(∥
∥xi − xj

∥
∥2

2
B̂ij

)
+ λ

n′
∑

i,j=1

B̂2
ij , (7)
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Table 1. Statistics of four publicly available datasets.

Dataset #Nodes #Features #Edges #Classes

PubMed 19,717 500 44,324 3

CS 18,333 6,805 81,894 15

Computers 13,752 767 245,861 10

Photo 7,650 745 119,081 8

Table 2. Comparison the accuracy (%) of the GCN, GAT, GLCN, GRCN, and our
models, on the datasets.

PubMed CS Computers Photo

GCN 73.14± 3.53 90.95± 0.29 80.75± 1.96 89.56± 1.89

GAT 74.22± 3.66 89.73± 0.37 NA∗ NA∗

GLCN 73.10± 3.44 90.02± 0.30 79.15± 1.67 89.27± 1.35

GRCN 73.18± 3.06 90.85± 0.35 81.22± 2.01 89.71± 1.54

Ours 74.38± 3.30 91.85± 0.45 82.39± 2.09 90.52± 1.44

(GCN)

Ours 74.28± 3.18 92.48± 0.34 82.63± 1.89 90.87± 1.32

(GRCN)
∗ The results of the GAT model on the datasets of Computers
and Photo are not available (NA) due to a known issue for the
sparse version [16]. The dense version on any of the two, however,
requires more memory than is available in our environment, i.e.,
252GB.

where the former encourages nodes with larger distance in features to have
smaller weights, the latter tries to remove noisy edges, and 1 ≥ λ ≥ 0 is a
constant used to control the relative importance between the two terms. Finally,
the loss function of our approach is set to be ζpred +βζgraph, where β ≥ 0 is also
a constant used to control the relative importance. Empirically, λ and β are set
to be 0.9 and 0.1, respectively.

4 Experiments

We implemented the proposed approach based on PyTorch [13] and scikit-
learn [15]. For comparative studies, we evaluated the performance of (1) the
GCN model [8], (2) the GAT model [20], (3) the GLCN model [6], (4) the
GRCN model [23], (5) our extension on the GCN model, and (6) our extension
on the GRCN model. Note that all of the models used the same optimizer (i.e.,
Adam [7]), learning rates, weight decays, and the number of hidden units, based
on the settings of GRCN. All of them were also based on PyTorch. It is worth
mentioning that the GLCN model was implemented by ourselves, because we did
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Fig. 3. Case study of refining clustering results or not to our extension on GCNs on
the Photo dataset. Note that the dotted line shows the accuracy of a baseline, where
no clustering is used (i.e., k = 0, for k-means clustering).

not find its PyTorch implementation. For evaluation, we conducted experiments
based on four publicly available datasets from [11] and [18]. The statistics of the
datasets are shown in Table 1.

In Table 1, column “#Nodes” lists the number of nodes, “#Features” the
dimension of each feature vector, “#Edges” the number of edges, and “#Classes”
the number of classes for classification. The preparation of the datasets is the
same as [22], where 20 instances of each class were used for training data. Overall,
there were 500 and 1, 000 instances used for validation data and testing data,
respectively. There were 20 and 30 instances of each class used for training data
and validation data, respectively. For testing data, the classes and instances
were first removed if the number of instances of a class is smaller than 50. The
remaining data were used as the testing data.

Table 2 shows the experimental results. For each dataset, we reported the
average results over five runs with random splits on training, validation, and
testing data (the data numbers were kept the same). As can be seen, our exten-
sions achieved better performance than the other models. Based on the results,
we can see that adding edges on existing graphs (i.e., GRCN and Ours) is help-
ful to achieve better performance than the others in most cases. Consider our
extensions on GCNs and GRCNs. We noticed that combining the edges added
by GRCNs and the edges by our approach mostly improved the performance.
However, some edges might become noisy for accuracy, see, the result on the
PubMed dataset.

Remind that in Sect. 3.1, we not only refine the clustering results, but also
take the average of several optimized results, so as to make our performance less
sensitive to the quality and the k-values of k-means clustering. Figure 3 shows
the result of a case study that compares our extension on GCNs of refining
clustering results or not on the Photo dataset. As can be seen, node addition by
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clustering improved the accuracy in most cases, no matter if the refinement was
used or not. Further, we can see that the refinement created a smoothing effect
for most k-values. Numerically, the refinement reduced the standard deviations
from 0.008 to 0.005, while the average accuracy values were almost the same, i.e.,
91.11% to 91.10%. The refinement did reduce the sensitivity to the k-values of
the clustering.

5 Conclusion

This paper has presented a simple but effective extension of GCNs for semi-
supervised node classification. The extension is not limited to undirected graphs;
it can also be applied to directed graphs. Node addition provides communica-
tion centers for nodes to share information together. Edge reweighting not only
reweights edges, but also removes noisy edges for high performance. Future works
include the node removal and dynamic graph modification for GCNs.
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