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Preface

The 9th International Workshop on Ophthalmic Medical Image Analysis (OMIA 2022)
was held on September 22, 2022, in conjunction with the 25th International Conference
onMedical Image Computing and Computer-Assisted Intervention (MICCAI). This will
be the first MICCAI conference hosted in Southeast Asia. Due to COVID-19, this year
it took place as a hybrid (virtual + in-person) conference.

Age-related macular degeneration, diabetic retinopathy, and glaucoma are the main
causes of blindness in both developed and developing countries. The cost of blindness
to society and individuals is huge, and many cases can be avoided by early intervention.
Early and reliable diagnosis strategies and effective treatments are therefore a world
priority. At the same time, there is mounting research on the retinal vasculature and
neuro-retinal architecture as a source of biomarkers for several high-prevalence condi-
tions like dementia, cardiovascular disease, and, of course, complications of diabetes.
Automatic and semi-automatic software tools for retinal image analysis are being used
widely in retinal biomarkers research, and increasingly percolating into clinical prac-
tice. Significant challenges remain in terms of reliability and validation, number and type
of conditions considered, multi-modal analysis (e.g., fundus, optical coherence tomog-
raphy, scanning laser ophthalmoscopy), novel imaging technologies, and the effective
transfer of advanced computer vision and machine learning technologies, to mention a
few. The workshop addressed all these aspects and more, in the ideal interdisciplinary
context of MICCAI.

This workshop aimed to bring together scientists, clinicians, and students from mul-
tiple disciplines in the growing ophthalmic image analysis community, such as elec-
tronic engineering, computer science, mathematics, and medicine, to discuss the latest
advancements in the field. A total of 33 full-length papers were submitted to the work-
shop in response to the call for papers. All submissions were double-blind peer-reviewed
by at least three members of the Program Committee. Paper selection was based on
methodological innovation, technical merit, results, validation, and application poten-
tial. Finally, 20 papers were accepted at the workshop and chosen to be included in this
Springer LNCS volume.

We are grateful to the Program Committee for reviewing the submitted papers and
giving constructive comments and critiques, to the authors for submitting high-quality
papers, to the presenters for excellent presentations, and to all the OMIA 2022 attendees
from all around the world.

August 2022 Bhavna Antony
Huazhu Fu

Cecilia S. Lee
Tom MacGillivray

Yanwu Xu
Yalin Zheng
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AugPaste: One-Shot Anomaly Detection
for Medical Images

Weikai Huang1, Yijin Huang1,2, and Xiaoying Tang1(B)

1 Department of Electronic and Electrical Engineering,
Southern University of Science and Technology, Shenzhen, China

tangxy@sustech.edu.cn
2 School of Biomedical Engineering, University of British Columbia,

Vancouver, BC, Canada

Abstract. Due to the high cost of manually annotating medical images,
especially for large-scale datasets, anomaly detection has been explored
through training models with only normal data. Lacking prior knowledge
of true anomalies is the main reason for the limited application of previ-
ous anomaly detection methods, especially in the medical image analysis
realm. In this work, we propose a one-shot anomaly detection frame-
work, namely AugPaste, that utilizes true anomalies from a single anno-
tated sample and synthesizes artificial anomalous samples for anomaly
detection. First, a lesion bank is constructed by applying augmentation
to randomly selected lesion patches. Then, MixUp is adopted to paste
patches from the lesion bank at random positions in normal images to
synthesize anomalous samples for training. Finally, a classification net-
work is trained using the synthetic abnormal samples and the true nor-
mal data. Extensive experiments are conducted on two publicly-available
medical image datasets with different types of abnormalities. On both
datasets, our proposed AugPaste largely outperforms several state-of-
the-art unsupervised and semi-supervised anomaly detection methods,
and is on a par with the fully-supervised counterpart. To note, AugPaste
is even better than the fully-supervised method in detecting early-stage
diabetic retinopathy.

Keywords: Anomaly detection · One-shot learning · Anomaly
synthesis

1 Introduction

In recent years, deep learning has achieved great success in the field of medical
image analysis [13]. However, the effectiveness of deep representation learning
techniques, such as convolutional neural networks (CNNs), is severely limited
by the availability of the training data. Most of the disease detection methods
in the medical image field are fully supervised and heavily rely on large-scale
annotated datasets [11]. In general, acquiring and manually labeling abnormal

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B. Antony et al. (Eds.): OMIA 2022, LNCS 13576, pp. 1–11, 2022.
https://doi.org/10.1007/978-3-031-16525-2_1
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data are more challenging and more expensive than normal data. Thus, a vast
majority of anomaly detection methods in computer vision have been focusing
on unsupervised learning through training detection models using only normal
data, assuming no access to abnormal data at the training phase [1,2,21,24].

Typically, these methods use normal samples to train models to learn nor-
mality patterns and declare anomalies when the models have poor representation
of specific test samples [16]. For instance, training an autoencoder that recon-
structs normal samples by minimizing the reconstruction error can be used to
detect anomalies when the reconstruction error is high in testing [25,27]. Gener-
ative models aim to learn a latent feature space that captures normal patterns
well and then defines the residual between real and generated instances as the
anomaly score to detect anomalies [17,22]. Recently, some approaches have been
explored by synthesizing anomalous samples. For example, CutPaste performs
data augmentation by cutting image patches and pasting them at random loca-
tions in normal images to serve as coarse approximations of real anomalies for
anomaly detection [10]. DREAM synthetically generates anomalous samples to
serve as the input to its reconstruction network and calculates anomaly scores
based on the reconstruction results [25]. Since there is no prior knowledge of the
true anomalies, these methods generally use very simple and rough methods to
synthesize anomalous samples, although of high effectiveness. A major limitation
is that the anomaly score defined as the pixel-wise reconstruction error or the
generative residual relies heavily on the assumption on the anomaly distribution
[20]. Therefore, these methods may not be sufficiently robust and generalizable
in discriminating anomalies in real-life clinical practice.

In such context, we propose AugPaste, a one-shot anomaly detection (OSAD)
method, which is the extreme case of few-shot anomaly detection [15,19,23].
Namely, we train an anomaly detection network with only one annotated anoma-
lous sample. Requiring only a single labeled anomalous sample, AugPaste is
highly flexible and accommodates well various settings even for rare diseases or
other unusual instances. Our goal is to make use of the prior knowledge of true
anomalies to synthesize artificial anomalous samples, at the cost of annotating
anomalies in only a single anomalous sample.

In AugPaste, we first choose one annotated anomalous image and extract
all lesion patches. Then, data augmentation is applied to the extracted lesion
patches to construct a lesion bank. Afterwards, MixUp [26] is employed to paste
lesion patches from the lesion bank to normal images to synthesize artificial
anomalous images. Finally, we train an anomaly detection network by discrimi-
nating synthesized anomalous images from normal ones. The performance of our
proposed AugPaste is evaluated on two publicly-available medical image datasets
with different types of abnormalities, namely EyeQ [4] and MosMed [14].

The main contributions of this work are two-fold: (1) We propose a novel
OSAD framework, namely AugPaste, to utilize the prior knowledge of true
anomalies from a single sample to synthesize artificial anomalous samples. To the
best of our knowledge, this is the first work that synthesizes artificial anomalous
samples using real anomalies from a single sample, for a purpose of anomaly



AugPaste: One-Shot Anomaly Detection for Medical Images 3

detection. (2) We comprehensively evaluate our framework on two large-scale
publicly-available medical image datasets including fundus images and lung CT
images. The superiority of AugPaste is established from the experimental results.
The source code is available at https://github.com/Aidanvk/AugPaste.

2 Methods

2.1 Construction of Lesion Bank

As depicted in Fig. 1A, we first choose one annotated anomalous image and
extract all lesions based on the pixel-wise lesion annotation. For the two anomaly
detection tasks investigated in this work, the single annotated anomalous data
are illustrated in Fig. 2. After lesion extraction, the Connected Component
Labeling algorithm [6] is adopted to identify each isolated lesion region from
which a corresponding lesion patch is extracted.

Following that, random resampling with repetition is carried out to select the
lesion patches to be pasted. The number N of the to-be-pasted lesion patches is
also randomly generated with N ∼ U(1, 1.5NL), where NL is the total number
of the isolated lesion regions. The selected lesion patches are then sent to a sub-
sequent transformation block for lesion patch augmentation to construct a lesion
bank, for a purpose of synthesizing more diverse anomalies. Data augmentations

Transformation

Lesion bank

Lesion patches

Convolutional 
Neural Network

ONE anomalous sample  
with lesion annotation

Normal samples Synthetic anomalous samples

MixUp

A. Lesion Bank Construction B. DataAugmentation

C. Anomaly Detection Network

BrightnessContrast

Flip Rotation Resize

Abnormal

Normal

Fig. 1. The proposed AugPaste framework. In part A, lesion patches are extracted
from an annotated anomalous sample. Then, the lesion patches are processed by a
transformation block involving data augmentation operations in part B to construct a
corresponding lesion bank. In part C, the transformed lesion patches in the lesion bank
are randomly pasted to the normal samples via MixUp, yielding synthetic anomalous
samples. Then a CNN is trained to detect the anomalies.

https://github.com/Aidanvk/AugPaste
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are conducted as shown in Fig. 1B, including flipping, rotation, resizing, con-
trast, and brightness changing, to generalize our anomalies from a single sample
to various unseen anomalies during testing.

2.2 Synthesis of Anomalous Samples

We randomly sample a number of lesion patches from the lesion bank and paste
them at random positions in the normal images to synthesize artificial anoma-
lous images. Each normal image is used to generate one corresponding artificial
anomalous image.

The MixUp technique is initially proposed as a simple data augmentation
method in [26] to regularize model complexity and decrease over-fitting in deep
neural networks by randomly combining training samples. Extensive experiments
have shown that MixUp can lead to better generalization and improved model
calibration. As such, to have the pasted lesion fuse more naturally with the
normal image, random MixUp is employed when we paste a lesion patch L to a
normal image I. The image after MixUp IMU is defined as

IMU = (1 − λ) (M � I) + λ (M � L) + M̄ � I, (1)

where M is the binary mask of the lesion patch, M̄ is the inverse of M , � denotes
the pixel-wise multiplication operation and λ ∼ U(0.5, 0.8).

2.3 Anomaly Detection Network

After generating the artificial anomalous samples, as shown in Fig. 1C, together
with the normal data, a CNN can be trained to detect anomalies. VGG16 ini-
tialized with ImageNet parameters is adopted as our backbone model.

Let N denote a set of normal images, CE(·, ·) a cross-entropy loss, f(·) a
binary classifier parameterized by VGG16 and AP(·) a AugPaste involved aug-
mentation operation, the training loss function of the proposed AugPaste frame-
work is defined as

LAP = EI∈N {CE(f(I), 0) + CE(f(AP(I)), 1)}. (2)

2.4 Implementation Details

In both training and testing phases, images are resized to be 256× 256 and the
batch size is set to be 64. We adopt an SGD optimizer with a momentum factor
of 0.9, an initial learning rate of 0.001, and the cosine decay strategy to train
the network. All network trainings are performed for 50 epochs on EyeQ and
100 epochs on MosMed, with fixed random seeds. All compared models and the
proposed AugPaste framework are implemented with Pytorch using NVIDIA
TITAN RTX GPUs.
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Fig. 2. The single annotated anomalous data for each of our two tasks.

3 Experiments and Results

3.1 Datasets

EyeQ. EyeQ [4] is a subset of the famous EyePACS [9] dataset focusing
on diabetic retinopathy (DR), consisting of 28792 fundus images with qual-
ity grading annotations. The quality of each image is labeled as “good”,
“usable”, or “reject”. In our experiments, we remove images labeled as either
“usable” or “reject”, ending up with 7482/865/8471 fundus images for train-
ing/validation/testing. According to the severity of DR, images in EyeQ are
classified into five grades: 0 (normal), 1 (mild), 2 (moderate), 3 (severe), and 4
(proliferative) [12]. The class distribution of the training data is shown in Fig.
A1 of the appendix. Images of grades 1–4 are all considered as abnormal. All
normal images in the training set are used to train AugPaste and all images in
the testing set are used for evaluation. All fundus images are preprocessed [5] to
reduce heterogeneity as much as possible, as shown in Fig. A1 of the appendix.

IDRiD. IDRiD [18] consists of 81 DR fundus images, with pixel-wise lesion
annotations of microaneurysms (MA), hemorrhages (HE), soft exudates (SE)
and hard exudates (EX) [8] (see Fig. A2 of the appendix). In our AugPaste, the
lesions of a single fundus image from IDRiD are used as the true anomalies for
DR anomaly detection. According to the clinical definition of DR grading, DR
of grade 1 only contains MA, DR of grade 2 contains MA and HE, and DR of
more severe grades contains more types of lesions. To enhance the performance of
the detection CNN, we design a specific strategy for synthesizing the anomalous
DR images: 80% of the normal fundus images are Mixed-Up with lesion patches
containing MA only, 10% with lesion patches containing both MA and HE, 5%
with lesion patches containing MA, HE and SE, and the remaining 5% with
lesion patches containing all the four types of lesions (MA, HE, SE, and EX).



6 W. Huang et al.

ID: idrid_03
# Lesions: 380
AUC: 0.7826

ID: idrid_13
# Lesions: 251
AUC: 0.7576

ID: idrid_39
# Lesions: 149
AUC: 0.7545

ID: idrid_48
# Lesions: 273
AUC: 0.7851

ID: idrid_49
# Lesions: 386
AUC: 0.7797

Fig. 3. The impact of using different annotated samples. ID denotes the image index in
IDRiD, #Lesions denotes the number of isolated lesion regions, and AUC is reported
for detecting all DR images combining grades 1–4.

MosMed. MosMed [14] contains human lung CT scans with COVID-19 related
findings, as well as some healthy samples. A small subset have been annotated
with pixel-wise COVID-19 lesions. CT slices containing COVID-19 lesions are
considered as abnormal, ending up with 759 slices. A total of 2024 normal CT
slices are selected and extracted from 254 health samples. For the anomaly detec-
tion task on this dataset, 5-fold cross-validation is used for evaluation. All CT
images are preprocessed by windowing with a window level of −300 HU and a
window width of 1400 HU to focus more on lung tissues [7].

3.2 Evaluation Metric

The anomaly detection performance is evaluated using a commonly-employed
metric, namely the area under the curve (AUC) of receiver operating characteris-
tic (ROC), keeping consistent with previous anomaly detection works [10,15,25].

3.3 Ablation Studies on EyeQ

Different Annotated Samples. In this experiment, we only use the original
lesion patches with no data augmentation, and evaluate the performance of Aug-
Paste with different annotated fundus images of IDRiD. In Fig. 3 and Table A1
of the appendix, we show the results of randomly selecting five different images
from IDRiD for lesion extraction. Apparently, the difference in the single anno-
tated anomalous image does not affect the anomaly detection performance of
our AugPaste, identifying the robustness of our proposed pipeline. We choose
a representative image, idrid 48, as the single annotated fundus image for all
subsequent experiments on EyeQ.
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Table 1. The impact of different data augmentation operations on EyeQ. DR images
of grades 1–4 are all considered as abnormal. Color distortion only adjusts the hue and
saturation and does not change brightness.

Color distortion Flip Contrast Rotation Resize Brightness AUC

� 0.7806

� 0.7803

� 0.7841

� 0.7864

� 0.7896

� 0.7924

� � 0.7965

� � � 0.8019

� � � � 0.8105

� � � � � 0.8126

� � � � � � 0.8053

Different Numbers of Annotated Samples. The influence of different num-
bers of annotated samples is also investigated (see Table A2 of the appendix).
We observe that the more annotated samples, the better the anomaly detection
performance, although the difference is not huge and the performance gradually
reaches bottleneck. Balancing the anomaly detection performance and the cost
of annotating lesions, we still use only one single annotated anomalous image.

Data Augmentation Operations. In this experiment, we fix the randomly
resampled lesions and their to-be-pasted positions, and then evaluate the impor-
tance of six augmentation operations and their compositions. From the top panel
of Table 1, we find that brightness works much better than each of the other five
operations. As shown in the bottom panel of Table 1, the composition of five
augmentation operations other than color distortion achieves the highest AUC
of 0.8126, which is even higher than that from using 10 annotated samples (an
AUC of 0.8052). This clearly indicates the importance of data augmentation.
We conjecture it is because DR lesions are tightly linked to the color infor-
mation and color distortion may significantly destroy important lesion-related
color information. So we apply a composition of the five augmentation opera-
tions, namely Flip, Contrast, Rotation, Resize, and Brightness, in all subsequent
experiments.

MixUp Coefficients. After identifying the optimal data augmentation strat-
egy, the impact of different MixUp coefficients is analyzed. As shown in Table 2,
four different MixUp coefficients (three fixed and one random) are tested and
the random MixUp coefficient λ ∼ U(0.5, 0.8) achieves the best performance.
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Table 2. The impact of different MixUp coefficients on EyeQ. 0 vs 1 means to classify
images of grade 0 from images of grade 1 and 0 vs all means to classify images of grade
0 from images of all other grades (1–4).

MixUp coefficient λ AUC

0 vs 1 0 vs 2 0 vs 3 0 vs 4 0 vs all

w.o. MixUp 0.7174 0.8490 0.9574 0.9536 0.8126

0.8 0.7287 0.8487 0.9558 0.9541 0.8150

0.7 0.7242 0.8455 0.9581 0.9546 0.8177

0.5 0.7135 0.8516 0.9586 0.9631 0.8096

Random 0.7348 0.8528 0.9582 0.9607 0.8216

Table 3. Performance comparisons on EyeQ and MosMed.

Methods #Anomalous
samples in
training

EyeQ MosMed

AUC

0 vs 1 0 vs 2 0 vs 3 0 vs 4 0 vs all

Fully
Supervised
VGG16

1807
0.6257 0.8448 0.9714 0.9846 0.7885 0.9975

f-AnoGAN
[22]

0 0.5081 0.4915 0.5259 0.5779 0.5148 0.9004

DREAM
[25]

0 0.5825 0.6655 0.7618 0.7373 0.6252 0.9162

DevNet [15] 10 0.5541 0.6530 0.9118 0.9153 0.6301 0.8945

AugPaste
w.o. MixUp

1 0.7174 0.8490 0.9574 0.9536 0.8126 0.9441

AugPaste 1 0.7348 0.8528 0.9582 0.9607 0.8216 0.9546

3.4 Comparison with State-of-the-Art

In Table 3, we compare our AugPaste method with state-of-the-art anomaly
detection works. As shown in that table, our proposed AugPaste significantly
outperforms all unsupervised learning and semi-supervised learning methods
under comparison, and even works better than the fully supervised counter-
part in detecting DR of grade 1 with an AUC of 0.7348, grade 2 with an AUC
of 0.8528, and all 1–4 grades combined with an AUC of 0.8216. Particularly for
detecting DR of grade 1, dramatic improvements of AugPaste over other methods
are observed: an increase of 0.1893 on AUC over the 10-shot anomaly detection
method DevNet [15] and an increase of 0.1091 on AUC over the fully supervised
method. DR images of grade 1 contain only MA lesions which are extremely tiny
in fundus images, and therefore DR of grade 1 is the most challenging anomaly
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to detect. However, in our AugPaste, most of the synthesized DR images (80%)
contain only MA lesions, forcing the classification CNN to learn the most diffi-
cult samples, so as to improve the performance on detecting DR images of grade
1. In Table 3, AugPaste also achieves the best result on MosMed. Statistically
significant superiority of AugPaste has been identified from DeLong tests [3] at
a p-value of e−10. Visualization results of the two anomaly detection tasks are
shown in Fig. A3. These results clearly demonstrate the applicability of Aug-
Paste to different anomaly detection tasks involving different types of diseases,
different types of lesions, as well as different types of medical images.

4 Conclusion

In this paper, we propose a novel OSAD framework for medical images, the
key of which is to synthesize artificial anomalous samples using only one anno-
tated anomalous sample. Different data augmentation and pasting strategies are
examined to identify the optimal setting for our proposed AugPaste. Compared
with state-of-the-art anomaly detection methods, either under the unsupervised
setting or the semi-supervised setting, AugPaste shows superior performance
on two medical image datasets, especially in the detection of early-stage DR,
which even significantly outperforms its fully-supervised counterpart. It is worth
pointing out that our proposed AugPaste pipeline still needs one manually and
fully annotated abnormal sample. Potential future explorations include: 1) incor-
porating automatic lesion detection methods to make AugPaste zero-shot; 2)
reducing the amount of annotated lesion pixels to make the pipeline even less
labor-intensive.
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25. Zavrtanik, V., Kristan, M., Skočaj, D.: DRAEM-A discriminatively trained recon-
struction embedding for surface anomaly detection. In: CVPR (2021)

26. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk
minimization. In: ICLR (2018)

27. Zhou, K., et al.: Encoding structure-texture relation with P-net for anomaly detec-
tion in retinal images. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.)
ECCV 2020. LNCS, vol. 12365, pp. 360–377. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-58565-5 22

https://doi.org/10.1007/978-3-030-58565-5_22
https://doi.org/10.1007/978-3-030-58565-5_22


Analysing Optical Coherence
Tomography Angiography of Mid-Life

Persons at Risk of Developing
Alzheimer’s Disease Later in Life

Darwon Rashid1(B), Ylenia Giarratano1, Charlene Hamid2,
Tom MacGillivray2,3, Graciela Muniz Terrera2,6, Craig Ritchie3,4,

Baljean Dhillon3, and Miguel O. Bernabeu1,5

1 Centre for Medical Informatics, Usher Institute, The University of Edinburgh,
Edinburgh, UK

d.rashid@sms.ed.ac.uk, miguel.bernabeu@ed.ac.uk
2 Edinburgh Clinical Research Facility and Edinburgh Imaging,

University of Edinburgh, Edinburgh, UK
3 Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
4 Edinburgh Dementia Prevention, University of Edinburgh, Edinburgh, UK

5 Bayes Centre, University of Edinburgh, Edinburgh, UK
6 Department of Social Medicine, Ohio University, Athens, OH, USA

Abstract. Cerebrovascular changes associated with Alzheimer’s disease
(AD) can occur years before the onset of symptoms. Studies have sug-
gested that changes in the retina may act as a surrogate for cerebrovascu-
lar changes in the brain, hence the retina might be a source of biomark-
ers for declining vascular brain health. Optical Coherence Tomography
Angiography (OCTA) is a promising retinal imaging modality that has
been increasingly used to investigate cerebrovascular diseases in this con-
text. However, the potential clinical translation of advances for early AD
detection is still being explored. In this study, we used OCTA retinal phe-
notypes to investigate differences between participants with and without
a high genetic risk characterization of Apoliproprotein E4 (APOE4),
and between participants with and without a family history of demen-
tia. Furthermore, we investigated whether there is a difference in OCTA
retinal phenotypes between participants with and without a high CAIDE
(Cardiovascular Risk Factors, Aging, and Dementia score). This investi-
gation explored retinal phenotypes (from OCTA) both cross-sectionally
and longitudinally (2 years follow-up) using participants at mid-life from
the PREVENT cohort and our findings suggest that there are retinal
vascular changes captured in OCTA images between control and partic-
ipants at risk of developing AD.
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1 Introduction

Alzheimer’s disease (AD) is the most common sub-type of dementia (around 80%
of all dementia cases), and as of present, there is no definitive treatment [22]. AD
is commonly diagnosed in the late phase when irreversible damage has occurred.
Vascular changes in the brain related to AD are thought to start decades before
symptoms manifest [4]. Quantifiable metrics for identifying these early changes
would help increase the accuracy of assessing an individual’s risk of developing
the disease and allow for the monitoring of high-risk asymptomatic people as
well as providing the means for new trials for intervention and treatment [13].

Current state-of-the-art diagnostic modalities related to AD include the
quantification of cerebrospinal fluid and amyloid beta in brain tissue using mag-
netic resonance imaging, positron emission tomography, and other neuroimaging
modalities [3,12,15]. Although, these technologies have shown success in estab-
lishing biomarkers for the identification and monitoring of symptomatic AD,
they are limited by cost, invasiveness, evaluation time, and specialist require-
ments. Furthermore, these biomarkers have not been able to reliably identify
AD in its early stages [14].

The retina and brain are part of the central nervous system, sharing embry-
ological origins. Optical coherence tomography angiography (OCTA) is a non-
invasive retinal imaging modality that captures the capillary level microvascu-
lature within the retina in high resolution. The non-invasive nature of OCTA
has pushed this technology to act as an investigation tool for tracking retinal
vascular changes that are linked to retinal and brain diseases.

Among these applications, OCTA has shown considerable potential in provid-
ing insight, in particular diseases that are known to have a vascular component.
Studies have highlighted retinal biomarkers that may mirror the cerebrovascular
changes in symptomatic AD [11,28]. If OCTA can be used to track the progres-
sion of AD through to AD dementia [5,28], then it could also be potentially
used to detect microvascular changes in the retina decades before AD symp-
toms manifest. Recent studies have started investigating potential associations
between OCTA retinal phenotypes and preclinical AD. Van De Kreeke JA et al.
reported an increase of retinal vessel density in participants at a high risk for
developing AD [26]. A study by Elahi et al. reported a decrease of retinal vessel
area density and vessel skeleton density in risk participants carrying Apolipro-
protein E ε4 gene (APOE4) [6]. Details about APOE4 and how it is associated
with a higher risk of developing AD has been previously described [17]. Another
study by Ma et al. reported lower perfused density in APOE4 carriers [19].
Finally, O’Bryhim et al. found an increase of the FAZ area in risk participants
with a positive biomarker for developing AD [20].

Old age is the greatest risk factor of developing AD [10]. Therefore, it is
important to investigate retinal microvascular changes occurring in a cohort at
mid-life, however the general limitation of the aforementioned studies is tied to
the age of their cohort. Even though they are preclinical AD studies, the mean
age of the cohorts are more than 60 years of age with an age variability of more
than 30 years. Furthermore, there is a need for more longitudinal studies to
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investigate the evolution of the candidate OCTA retinal phenotypes throughout
preclinical AD for there are currently only two longitudinal studies available
[19,21].

In this study, we are interested in exploring the microvascular changes in the
retina of mid-life participants at risk of developing AD later in life. The aim is
to identify OCTA retinal phenotypes that show a difference between control and
participants at risk for developing AD. We conducted this investigation across
three different risk groups from a single cohort study. The first risk group being
participants with and without known APOE4. The second risk group being
participants with and without known family history of dementia (FH). Finally,
the last risk group being participants with a high and a low Cardiovascular Risk
Factors, Aging, and Dementia (CAIDE) score. Details about the CAIDE score
and how it is derived has been previously described [7,16]. We conducted cross-
sectional and longitudinal (2 year follow-up) analyses on all three risk groups.

2 Methodology

Dataset. We examined the participants of the PREVENT-Dementia cohort
study. Details about this cohort can be found in [24,27]. This is a multi-site
longitudinal study based in the UK and Ireland. The cohort recruits participants
who are classified as cognitively healthy in the age range of 40–59. Participants
with available FH status, APOE4 status, and CAIDE score were included in this
study. OCTA scans at baseline and at a 2 year follow-up were acquired. Not all
baseline participants had a 2 year follow-up visit. Participants with any ocular
disease or history of ocular surgery were excluded for this study. Participants
underwent extensive cognitive tests, and age, sex, blood pressure (BP), and body
mass index (BMI) were recorded.

Image Processing. Images of both eyes were acquired using the RTVue XR
Avanti (Optovue, Inc., Fremont, CA. USA) OCTA device [23]. Scans of the
superficial and deep capillary plexuses with 3 × 3 mm2 field of view were included
in this study. For each image, the OCTA device provides a quality index (QI)
that was used to identify poor quality scans. Images with a QI ≤ 6 were dis-
carded from the analyses [1]. Good quality scans were binarized using a U-Net
architecture and the vasculature was modeled as a graph to extract retinal mea-
surements as described in [8]. Retinal measurements were divided into eight
categories: basic graph-metrics, foveal avascular zone (FAZ) metrics, vessel tor-
tuosity metrics, graphlets metrics, random-walks metrics, binary tree metrics,
intercapillary space metrics, and flow metrics. Measurements were calculated in
each region of interest, temporal (T), nasal (N), inferior (I), superior (S), foveal
(F), and in the whole image (W). Distributions were summarised by reporting
mean, median, standard deviation, kurtosis, and skewness. Our methodology
has been previously described and can be found in [9]. Figure 1 provides a high-
level overview of the OCTA retinal pipeline for this study. Image processing
was performed using MATLAB R2020b (version 9.9), whereas vascular network
modeling and retinal measurements were implemented in Python 3.6.9.
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Fig. 1. Overview of the OCTA retinal pipeline.

Statistical Analysis. The two analyses in this study investigated whether any
of the retinal OCTA phenotypes showed evidence of difference between con-
trol and risk participants cross-sectionally and longitudinally in each respective
risk group (APOE4 +/-, FH +/-, CAIDE score high/low). For both the cross-
sectional and longitudinal analyses, we used multivariate analysis corrected for
possible confounding factors with the CAIDE risk group being the exception.
The confounding factors for this study are age, sex, body mass index (BMI),
and blood pressure (BP). These have already been accounted for in the deriva-
tion of the CAIDE score.

For the APOE4 and FH risk groups, we fitted a linear model using con-
founding factors, age, sex, BMI, and BP and the risk status (APOE4 +/-, FH
+/-) as predictors and the retinal phenotype as the independent variable. For
the CAIDE risk group, our only predictor was the risk status (APOE4 +/-, FH
+/-). Since we have 620 different retinal phenotypes, we fitted the model on
each different retinal phenotype independently and we extracted p-values and
coefficients from each model.

Given the amount of retinal phenotypes available, we used false discovery
rate (FDR) as a correction method to adjust the p-values [2]. We applied FDR
at a category level. The categories are sufficiently different amongst themselves
to be considered independent, while within each category, phenotypes tend to
be closely related. The resulting p-values that were statistically still significant
after being adjusted for correction were reported.

When it comes to the longitudinal analysis, the process is the same with
one exception. The first step was to generate delta scores, variables describing
the amount of change in the retinal phenotype between baseline and follow-up.
After computing the delta scores, the rest of the investigation follows the same
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Table 1. Top: Summary of cross-sectional OCTA retinal images available for this
study. Bottom: Summary of longitudinal OCTA retinal images available for this study.
Note: OS represents the left eye and OD represents the right eye.

Groups n n-female n-male μ-age

Cross-sectional

APOE4 + OS: 31/OD: 36 OS: 18/OD: 20 OS: 13/OD: 16 OS: 51.6/OD: 50.88

APOE4 - OS: 54/OD: 63 OS: 32/OD: 38 OS: 22/OD: 25 OS: 50.64/OD: 50.88

FH + OS: 46/OD: 51 OS: 28/OD: 28 OS: 18/OD: 23 OS: 52.58/OD: 51.82

FH - OS: 38/OD: 47 OS: 21/OD: 28 OS: 17/OD: 19 OS: 48.86/OD: 49.91

CAIDE high OS: 37/OD: 45 OS: 20/OD: 23 OS: 17/OD: 22 OS: 55.05/OD: 55.17

CAIDE low OS: 42/OD: 48 OS: 24/OD: 29 OS: 18/OD: 19 OS: 46.95/OD: 47.10

Longitudinal

APOE4 + OS: 8/OD: 11 OS: 6/OD: 9 OS: 2/OD: 2 OS: 53.88/OD: 50.09

APOE4 - OS: 8/OD: 11 OS: 5/OD: 6 OS: 3/OD: 5 OS: 50.50/OD: 51.09

FH + OS: 13/OD: 13 OS: 7/OD: 9 OS: 6/OD: 4 OS: 54.38/OD: 53.23

FH - OS: 3/OD: 8 OS: 2/OD: 5 OS: 1/OD: 3 OS: 44.66/OD: 47.87

CAIDE high OS: 6/OD: 7 OS: 2/OD: 4 OS: 4/OD: 3 OS: 57.66/OD: 57.0

CAIDE low OS: 9/OD: 13 OS: 7/OD: 9 OS: 3/OD: 4 OS: 47.22/OD: 47.61

methodology as the cross-sectional analysis. All analyses were conducted for each
eye of the participants independently, left (OS) and right (OD) eyes respectively.
Table 1 summarizes the data available for this study.

3 Results

3.1 Vessel Tortuosity Decreases in Risk Groups

Ninety-nine participants were included at baseline in the APOE4 risk group (OS:
85, OD: 99) and twenty-two had a 2 year follow-up (OS: 16, OD: 22). Ninety-eight
participants were included at baseline in the FH risk group (OS: 84, OD: 98) and
twenty-one had a 2 year follow-up (OS: 16, OD: 21). Ninety-three participants
were included at baseline in the CAIDE risk group (OS: 79, OD: 93) and twenty
had a 2 year follow-up (OS: 15, OD: 20).

There were observed phenotypes that were significantly different between
control and risk participants in all three respective risk groups. There was a
decrease of vessel tortuosity that is consistent across all three risk groups. Table 1
details more information about the retinal images included in this study.

While there was significant change in vessel tortuosity between control and
risk participants across each risk group, the CAIDE risk group has seen more
retinal phenotypes being significantly different between control and risk partici-
pants. There is almost a one-to-one overlap in the number of retinal phenotypes
that are significant across both eyes.
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Of note, there was an increase of the FAZ area and acircularity (OD and OS),
a decrease of vessel skeleton density (OD and OS), a decrease of branching points
(OD and OS), and an increase of mean area of the intercapillary spaces (OD and
OS) in the vascular network of participants with a high CAIDE score. Table 2
summarizes the cross-sectional results of each respective risk group. Further
cross-sectional significant changes related to the CAIDE risk group can be seen
in the supplementary material of this study.

Table 2. Top: The details about each retinal phenotype that is statistically significant
after using false discovery rate cross-sectionally (baseline) across each respective risk
group. Bottom: The details about each retinal phenotype that is statistically significant
after using false discovery rate longitudinally (2 year follow-up) across each respective
risk group.

Risk group Category Eye Retinal phenotype p

Cross-sectional

APOE4 +/- Tortuosity OS Median vessel curvature (S) 0.012

FH +/- Tortuosity OD Standard deviation vessel

tortuosity (I)

0.007

FH +/- Tortuosity OD Kurtosis vessel tortuosity (I) 0.006

FH +/- Tortuosity OD Skewness vessel tortuosity (I) 0.004

CAIDE

high/low

FAZ OD and OS FAZ area and acircularity <0.001

CAIDE

high/low

Basic-graph OD and OS Vessel skeleton density (W) <0.001

CAIDE

high/low

Intercapillary-

space

OD and OS Mean intercapillary space area

(W)

<0.001

CAIDE

high/low

Basic-graph OD and OS Number of branching points (W) <0.001

CAIDE

high/low

Tortuosity OD and OS Mean vessel tortuosity (W) <0.001

Longitudinal

APOE4 +/- FAZ OD Mean radius 0.047

APOE4 +/- FAZ OD Mean boundary curvature 0.038

APOE4 +/- Graphlets OS Graphlet 3: mean radius (I) 0.042

APOE4 +/- Intercapillary-

space

OS Skewness circularity (I) 0.035

FH +/- Random-walk OD Standard deviation walk length

(S)

0.041

CAIDE

high/low

Tortuosity OD and OS Mean vessel tortuosity (W) 0.012

CAIDE

high/low

Basic-graph OD and OS Skeleton density (W) 0.024

CAIDE

high/low

Intercapillary-

space

OD and OS Mean intercapillary space area

(W)

0.034

CAIDE

high/low

Basic-graph OD and OS Number branching points (W) 0.021

(F): foveal, (N): nasal, (I): inferior, (T): temporal, (S): superior, (W): whole image.
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3.2 Longitudinal Variations of Retinal Features in Risk Groups

Table 2 summarizes the longitudinal results across each risk group. Similar to the
cross-sectional results, the CAIDE risk group has seen more significant changes
in the retinal phenotypes between control and risk participants. Interestingly,
there is a continued decrease of whole (all retinal regions) vessel tortuosity (OD
and OS), a decrease in vessel skeleton density (OD and OS), an increase of
mean area of intercapillary spaces (OD and OS), and a decrease of branching
points (OD and OS) in the vascular network. There was no observed change
in the FAZ area and acircularity which was observed cross-sectionally. Further
longitudinal significant changes related to the CAIDE risk group can be seen in
the supplementary material of this study.

4 Discussion

In this study, we were interested in investigating the hypothesis of microvascu-
lature changes that could occur in the retina of mid-life participants at risk of
developing AD. There was an observed decrease in vessel tortuosity across risk
participants with a FH (OD), risk participants with a APOE4 status (OS), and
risk participants with a high CAIDE score (OD and OS). From a bio-mechanical
perspective, vessels that are more tortuous have a higher resistance to blood flow,
so they might be carrying less flow. This is in line with Poiseuille’s law, which
states that the resistance to flow of a vessel is a function of its length (amongst
several other parameters) [25].

A cross-sectional study by Van De Kreeke JA et al. reported an increase
of retinal vessel density amongst risk participants for AD when compared to
controls [26]. The study enrolled 124 participants with a mean age of 68.6 years
(monozygotic twins, 75 twin pairs and 15 incomplete twin pairs) as part of its
cohort study. We are not able to compare the results by Van De Kreeke JA et
al. to our results for we do not compute the vessel density. A study by Elahi
et al. compared the OCTA retinal phenotypes of vessel area density (VAD) and
vessel skeleton density (VSD) between 24 APOE4 carriers (mean age of 72 years)
and 51 APOE4 non-carriers (mean age of 75 years) at baseline [6]. The authors
reported lower VAD and VSD in APOE4 carriers than in APOE4 non-carriers.
We have also reported lower VSD in APOE4 carriers both cross-sectionally and
longitudinally.

Another cross-sectional study enrolled 30 participants (16 biomarker-negative
and 14 biomarker-positive for preclinical AD, mean age of 74.5 years, age ranging
62–92 years) [20]. Their definition of a risk participant for AD is different from
ours. The study determines a participant as a high risk for developing AD based
on clinically validated biomarkers measuring amyloid burden within the central
nervous system using positron emission tomography (PET). This means it is not
directly comparable to our study for we identify a risk participant for developing
AD based on either their APOE4 status, FH status, or CAIDE score. The authors
reported an increase of the FAZ area in the biomarker-positive group. We also
have reported an increase of the FAZ area cross-sectionally, but only in our
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CAIDE high risk group. A limitation of their study is not including the exclusion
of any vascular diseases that could affect the results of their analysis.

Furthermore, the same authors investigated a follow-up of 3 years from the
initial scanning of participants [21]. The participants at follow-up consisted of
11 biomarker negative and 9 biomarker positive for risk of developing AD with
a mean age of 75.21 years and the authors reported an increase of the FAZ
area in the biomarker positive group. We have reported a change of FAZ-based
phenotypes at a 2-year follow up across the APOE4 (OD) and CAIDE (OD and
OS) risk groups, but not an increase of the FAZ area. The FAZ-based phenotypes
that are different between control and risk participants in the CAIDE risk group
(longitudinally) can be viewed in the supplementary material for this study.

A more recent study investigated alterations with OCTA retinal phenotypes
between control and risk participants for developing AD both cross-sectionally
and longitudinally [19]. The cross-sectional results report that APOE4 carriers
had lower perfused density. Perfusion density is the only OCTA retinal phenotype
common between our studies. Our equivalent retinal phenotype to perfusion
density is VSD and we also reported a decrease of VSD, but in participants with
a high CAIDE score (OD and OS). The study enrolled 218 individuals with
normal cognition that were aged more than 55 years (mean age of 70.55) with
APOE4 status (98 APOE4 carriers and 120 non-carriers). For the longitudinal
part of their study, the participants consisted of 71 APOE4 carriers and 78 non-
carriers. Their longitudinal results showed continued lower perfusion density (at
2 years follow-up) in the APOE4 carriers. We also reported a continued decrease
in VSD in participants with a high CAIDE score (OD and OS) longitudinally.
A caveat is that the study did not adjust for multiple comparisons, stating that
the nature of the study was exploratory. The authors say that any statistically
significant findings would vanish once adjusted for multiple comparisons. We
were able to report statistically significant findings after adjusting for multiple
comparisons across all three risk groups.

A major strength of our study is the age of the PREVENT cohort. The
mean age of each previously mentioned study is above 60 years of age, while the
oldest participant in the PREVENT cohort can be a maximum of 59 years of age
(mean age is of 51.2 years). In addition, the age variability of other participants
is more than 20 years of age, while for PREVENT, the age variability is of 20
years only. This strong inclusion criteria positions the PREVENT cohort as a
reliable and robust source of data for investigating the validation of candidate
and common OCTA retinal phenotypes as potential biomarkers for tracking
preclinical AD [18].

Furthermore, we have reported changes in OCTA retinal phenotypes between
control and risk participants that have not been reported on in the literature to
our knowledge.
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5 Conclusion

In conclusion, we were able to demonstrate microvascular alterations in the retina
of asymptomatic participants who are at risk of developing AD. At baseline, there
is decreased parafoveal vessel tortuosity in risk participants who carry APOE4
(OS), in risk participants with a FH (OD), and in risk participants with a high
CAIDE score (OD and OS). In addition to alterations in vessel tortuosity, we
reported changes on FAZ, intercapillary spaces, and further significant changes
in OCTA retinal phenotypes between control and risk participants in the CAIDE
risk group. At a 2 year follow-up, the majority of the results are consistent with
the cross-sectional findings. In addition, further changes in OCTA retinal pheno-
types were found between control and risk participants in all three risk groups.
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Abstract. Ophthalmic images may contain identical-looking pathologies that
can cause failure in automated techniques to distinguish different retinal degen-
erative diseases. Additionally, reliance on large annotated datasets and lack of
knowledge distillation can restrict ML-based clinical support systems’ deploy-
ment in real-world environments. To improve the robustness and transferabil-
ity of knowledge, an enhanced feature-learning module is required to extract
meaningful spatial representations from the retinal subspace. Such a module, if
used effectively, can detect unique disease traits and differentiate the severity
of such retinal degenerative pathologies. In this work, we propose a robust dis-
ease detection architecture with three learning heads, i) A supervised encoder for
retinal disease classification, ii) An unsupervised decoder for the reconstruction
of disease-specific spatial information, and iii) A novel representation learning
module for learning the similarity between encoder-decoder feature and enhanc-
ing the accuracy of the model. Our experimental results on two publicly available
OCT datasets illustrate that the proposed model outperforms existing state-of-
the-art models in terms of accuracy, interpretability, and robustness for out-of-
distribution retinal disease detection.

Keywords: Retinal degeneration · SD-OCT · Deep learning · Optical
coherence tomography · Representation learning

1 Introduction

Diabetes affects up to 10.2% of the population globally, and it is projected to grow
to 783 million people by 2045 [26]. With its prevalence, one-third of every diabetic
patient develops Diabetic Retinopathy [27]. As the disease progresses, it can lead to
Diabetic Macular Edema (DME), which is caused by damaged blood vessels which leak
fluid and cause swelling, resulting in blurry vision. DME is a leading cause of vision
loss among the working-age population of most developed countries [14] and affects
approximately 750,000 people in the US. Even though, significant advancements in
the anti-VEGF (vascular endothelial growth factor) therapy has provided patients with
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B. Antony et al. (Eds.): OMIA 2022, LNCS 13576, pp. 22–32, 2022.
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treatment options that can delay the progression of the degeneration [15], without early
detection of this disease can result in permanent vision loss.

Optical Coherence Tomography (OCT) is an imaging procedure used where back-
scattered light is projected for capturing and analyzing the sub-retinal layers and any
deformities, aneurysms, or fluid build-up [24]. OCT images are manually examined
by expert ophthalmologists to diagnose any underlying retinal degenerative diseases.
Hence, miscategorization of diseases can happen due to human error while perform-
ing the differential diagnosis. The underlying reason is the stark similarity between
DME and other retinal degenerative neuro-ocular diseases such as Age-related Mac-
ular Degeneration (AMD), choroidal neovascularization (CNV), or Drusen [31]. For
instance, in wet-AMD leaky blood vessels grow under the retina and cause blurry vision
similar to DME. On the other hand, in choroidal neovascularization (CNV), which is a
late stage of AMD, new blood vessels grow from the Bruch membrane (BM) into the
subretinal pigment epithelium (sub-RPE). Experts usually encounter problems while
differentiating between DME and AMD.

Recently, with the advent of deep learning, many automated systems have been
deployed for the early detection of retinal degenerative diseases. Also, these architec-
tures are trained and tested on the same data distribution and resulting in high prediction
accuracy in their respective tasks. However, if applied to the out-of-distribution datasets,
the model fails to capture intrinsic features to accurately classify the underlying degen-
erative condition. So, the robustness and knowledge distillation of such systems are
contentious. To address this problem, we propose a novel supervised-unsupervised rep-
resentation learning module that can improve the accuracy of any retinal disease clas-
sification model on unseen data distribution. Moreover, this module can be attached to
any pre-trained supervised image classification models. Our extensive qualitative and
quantitative experiments illustrate the proposed module’s interpretability, robustness,
and knowledge transferability.

2 Related Work

Many image processing techniques have been proposed to diagnose retinal degener-
ative diseases One proposed method is to segment, fuse and delineate multiple reti-
nal boundaries to detect anomalies and diseases from Retinal OCT images [3]. Graph
cuts and region-based delineation methods have also been proposed to detect differ-
ent abnormalities and degeneration in the retinal subspace [28] and for diagnosing the
thickness of the choroidal folds and neovascularization [1,18]. Early approaches identi-
fied Diabetic Macular Edema (DME) with 75–80% sensitivity score [4,20]. In contrast,
segmentation-based approaches can help diagnose underlying causes of liquid buildup
in the subretinal layers by detecting irregular retinal features and comparing the dif-
ferences between healthy and the degenerated retinal tissue [13,16,19]. Even though
segmentation approaches have shown success, it results in severe inaccuracies when
applied to OCT images acquired from different OCT acquisition systems [7].

Deep convolutional neural networks (DCNNs) have recently received state-of-the-
art results in identifying different retinal degenerative diseases [12]. For example, Fang
et al. incorporated CNNs with graph search to simultaneously segment retinal layer
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boundaries and detect degeneration for patients having Age-related Macular Edema
[5]. On the other hand, Xu et al. proposed a Dual-stage framework that utilizes CNNs
to segment retinal pigment epithelium detachment [30]. Kamran et al. proposed a novel
deep learning architecture called OpticNet-71 that achieved state-of-the-art accuracy
in two OCT image benchmarks for identifying DME, AMD, CNV, etc. [8]. Subsequent
works have also utilizedMobileNet-v2 [17], MobileNet-v3 [29] and VGG16 [11,25] for
retinal disease classification. Despite achieving high accuracy in their respective bench-
marks, most of these architectures do not converge and lack robustness and knowledge
transferability when evaluated on an out-of-distribution dataset, as reported in [9]. To
alleviate this, the authors in [9] proposed a joint-attention network with a supervised
classifier and unsupervised image reconstruction module. Adopting an adaptive loss
function, the model achieved 1.8–9.0% improvement over three baseline state-of-the-art
models, namely ResNet-50, MobileNet-v2, and OpticNet-71 on an out-of-distribution
dataset. However, the model can perform poorly due to adaptive learning prioritizing
image reconstruction over disease classification. Moreover, due to using non-learnable
upsampling layers in the image reconstruction module, the model does not retain intrin-
sic features, hampering overall accuracy and robustness.

We propose a novel robust feature representation learning (RFRL) network that can
be incorporated into any deep classification architecture for robust out-of-distribution
retinal disease detection. Our module consists of 1) a supervised learning head for clas-
sifying diseases, 2) an unsupervised decoder head for disease-specific spatial image
reconstruction, and 3) a novel representation learning head for finding similar features
robustly from the encoder and decoder of the architecture. Furthermore, the proposed
representation learning head incorporates a novel multi-stage feature similarity loss to
boost the model’s accuracy on out-of-distribution samples. Our experiments confirm
that the proposed RFRL network incorporated into baseline and state-of-the-art archi-
tectures significantly improves accuracy, sensitivity, and specificity for OOD datasets.
Furthermore, we qualitatively evaluate its interpretability using GradCAM [22] and
GradCAMv2 [2] to prove its clinical significance. Expert ophthalmologists can lever-
age this module to improve disease detection from OCT b-scans on OOD datasets and
avoid sub-par performance.

3 Methodology

3.1 Robust Feature Learning Architecture

An image classification architecture consists of an encoder module with multiple learn-
able convolution layers (top left in Fig. 1) and a supervised downstream classification
head with global average pooling and dense layers (bottom left in Fig. 1). In addition,
we propose an unsupervised decoder head (top right in Fig. 1) for image reconstruction
and a feature representation learning head between the encoder and decoder (bottom
right in Fig. 1) to be incorporated with the architecture. The objective of the unsuper-
vised module is to reconstruct the original image and learn its intrinsic spatial features.
Moreover, we use skip-connections to retain disease-specific and domain-invariant spa-
tial features that help in overall classification performance.
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Fig. 1. RFRL-network consisting of (1) Encoder, (2) Unsupervised Decoder, (3) Robust Feature
Learner and (4) Supervised Classifier. The unsupervised decoder incorporates mean-squared-
error (MSE), supervised classifier utilizes cross-entropy loss and the robust feature learner adopts
our novel Feature Representation Similarity (FRS) loss.

Joint-Attention Network [9] incorporated non-learnable bilinear upsampling layers
in their unsupervised decoder. As a result, the spatial feature information was insuffi-
cient to reconstruct the original image with disease pathology. However, their exper-
iment illustrated an improved overall accuracy over the baseline methods. To further
improve upon this, we propose learnable transposed convolution layers for upsampling
in our unsupervised decoder, as shown in Fig. 1. The transposed convolution consists of
kernel size, k = 3, and stride, s = 2. Consequently, our method can retain class-specific
and domain-independent spatial salient information, an essential missing feature in the
low performance of the traditional encoder-based architectures in practice.

The improved decoder utilizes a mean-squared-error loss to learn original image
features in an unsupervised manner without any ground truth or class labels. Outputs
from each downsampling block in the encoder module are connected with each upsam-
pling block in the decoder module with a skip connection. A convolution layer is used as
an attention mechanism and element-wise summation of features between encoder and
decoder module, as illustrated in Fig. 1. The output of the decoder can thus be defined
by the Eq. (1):

Orecon = E0 ⊗ An ⊕ Dn(· · ·En−2 ⊗ A2 ⊕ D1(En−1 ⊗ A1 ⊕ D0(En ⊗ A0))) (1)

where, E0, E1, ...En are the output of each of the downsampling blocks,
while D0,D1, ..Dn symbolise the transposed convolution layers of the decoder.
A0, A1, ..., An are the convolution operations of attention skip-connections for main-
taining the same depth as the output of the corresponding up-sampling layer for
element-wise summing.
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3.2 Proposed Representation Learning Loss

In order to extract intrinsic and robust features, we propose a novel feature represen-
tation similarity loss, which is visualized in Fig. 1. The loss calculates the similarity
between each of the down-sampling and up-sampling blocks successively, given in
Eq. 2.

Lfrs =
1
N

n∑

i=0

‖Ei(x) − Dn−i(x)‖ (2)

where x is the input image, E(x) is the feature output of the downsampling blocks, and
D(x) is the output of the upsampling blocks. The summation is divided with N , which
is the number of upsampling or downsampling layers for calculating the mean.

3.3 Final Objective Function

Our architecture incorporates two other loss schemes to make the learning robust and
interpretable. First, for the classification of different retinal diseases, we use Categorical
cross-entropy in the supervised classifier given by Lsup equation in Eq. (3). Secondly,
for calculating the difference between real and reconstructed images, we use Mean-
Squared Error (MSE) loss in the unsupervised decoder given by the Lun in Eq. (4).

Lsup = −
c∑

i=1

yi log(y′
i) (3)

Lun =
1
M

M∑

i

(xi − x′
i)

2 (4)

Here, in Eq. 3, yi signifies the ground truth label, y′
i symbolizes predicted output,

c is for the number of disease categories. In Eq. 4, xi is the input image, x′
i is the

reconstructed output image, and M is the number of pixels in the image.
By combining Eq. 2, Eq. 3 and Eq. 4, we create our final objective function given in

Eq. 5.
L = Lsup + Lun + Lfrs (5)

Unlike the Joint-attention-Network [9] we do not utilize any weights to prioritize one
or more of these losses. Instead, equal priority is given to all of them for robust feature
learning and improved accuracy, sensitivity, and specificity.

4 Experiments

4.1 Data-Set Processing

We evaluate our proposed architecture models on two separate data-sets, Srini-
vasan2014 [24] and OCT2017 [10]. The Srinivasan2014 dataset comprises 3,231
images, out of which 2,916 are for training and 5-fold cross-validation, and 315 are
for testing. It has three categories of images, Normal, AMD, and DME. The model with
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Table 1. Test results on in-distribution Srinivasan2014 [24] Dataset

Architectures Year Accuracy Specificity Sensitivity

ResNet50-v1 [23] 2018 94.92 97.46 94.92

OpticNet-71 [8] 2019 100.00 100.00 100.00

MobileNet-v2 [9,17] 2020 97.46 98.73 97.46

VGG16 [11,25] 2021 99.04 99.52 99.04

MobileNet-v3 [29] 2022 83.80 91.90 87.61

Joint-Attention-Network
ResNet50-v1 [9]

2020 100 ↑5.08 100.00 ↑2.54 100.00 ↑5.08

Joint-Attention-Network
OpticNet-71 [9]

2020 99.68 ↓0.32 99.84 ↓0.16 99.68 ↓0.32

Joint-Attention-Network
MobileNet-v2 [9]

2020 99.36 ↑1.90 99.68 ↑0.95 99.36 ↑1.90

RFRL-Network
ResNet50-v1

2022 100 ↑5.08 100.00 ↑2.54 100.00 ↑5.08

RFRL-Network
OpticNet-71

2022 100.0 (−) 100.0 (−) 100.0 (−)

RFRL-Network
MobileNet-v2

2022 99.68 ↑ 2.22 99.84 ↑ 1.11 99.52 ↑ 2.06

RFRL-Network VGG16 2022 99.68 ↑ 0.64 99.84 ↑ 0.32 99.52 ↑ 0.64

RFRL-Network
MobileNet-v3

2022 99.36 ↑ 15.56 99.68 ↑ 7.78 99.52 ↑ 11.91

the best validation result on the Srinivasan2014 dataset was used for further testing on
the out-of-distribution (OOD) second dataset, i.e., OCT2017. The OCT2017 consists
of four distinct categories of 1000 test images. We take 250 cases of Normal and DME
(in total, 500 samples) for OOD testing. All images for training and testing were resized
to 224×224×3 resolution. Moreover, we incorporated random data augmentation tech-
niques such as horizontal flip, rotation, zoom, width, and height shift for the training
set.

4.2 Hyper-parameter Tuning

For training baseline methods and RFRL-Networks, we used Adam optimizer. More-
over, it was the same for both the supervised classifier and the unsupervised decoder.
The initial learning rate, lr = 0.0001. We utilized a mini-batch of b = 4 and trained all
methods for 50 epochs. We reduced the learning rate by 0.1 if the validation loss did
not decrease for six epochs. The code repository is provided in this link.

4.3 Performance Metrics

We used three standard metrics for calculating the Accuracy, Sensitivity (True Pos-
itive Rate) and Specificity (True Negative Rate). The metrics are calculated as fol-

https://github.com/SharifAmit/RFRL-Net
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lows, Accuracy = 1
N

∑
TP+TN

TP+TN+FN+FP , Sensitivity = 1
K

∑
TP

TP+FN , and Speci-

ficity = 1
K

∑
TN

TN+FP .

4.4 Quantitative Evaluation

We worked with five baseline architectures across two distinct data sets to evalu-
ate our model’s initial performance. Each of these methods have already been incor-
porated for retinal disease classification from OCT B-scans [8,17,23,25,29], out of
which OpticNet-71 [8] has achieved state-of-the-art result on OCT2017 [10] and Sri-
navasan2014 [24] datasets. Subramaniam et al. proposed an architecture based on
VGG16 [25] which achieved superior results on seven different pathologies, namely,
AMD, CNV, DRUSEN, DMR, DR, MH, and CSR. Quite recently, Wang et al. pro-
posed a model based on MobileNet-v3 [29] which achieved scores on par with Optic-
Net on the OCT2017 dataset. For a fair comparison, we trained these five models from
scratch on the Srinivasan2014 dataset with 5-fold cross validation. After choosing the
best model, we tested on the data distribution familiar to the architecture, which is the
Srinivasan2014 test set of 315 images. We then train, validate and test in the same
manner with our proposed RFRL-network on the same data distribution. The quanti-
tative comparison is given in Table 1. As it can be seen, our method’s performance

Table 2. Test results on out-of-distribution OCT2017 [10] dataset

Architectures Year Accuracy Specificity Sensitivity

ResNet50-v1 [6] 2018 83.40 ↓11.52 89.40 ↓8.06 83.40 ↓11.52
OpticNet-71 [8] 2019 74.40 ↓25.60 85.60 ↓14.40 74.40 ↓25.60
MobileNet-v2 [21] 2020 93.80 ↓3.66 96.70 ↓2.03 93.80 ↓3.66
VGG16 [11,25] 2021 92.40 ↓ 6.64 95.13 ↓ 4.39 92.40 ↓ 6.64

MobileNet-v3 [29] 2022 71.60 ↓ 12.20 85.50 ↓ 6.40 71.60 ↓ 16.01

Joint-Attention-Network
ResNet50-v1 [9]

2020 92.40 ↑9.0 95.00 ↑5.6 92.40 ↑9.0

Joint-Attention-Network
OpticNet-71 [9]

2020 77.40 ↑3.0 89.00 ↑3.4 77.40 ↑3.0

Joint-Attention-Network
MobileNet-v2 [9]

2020 95.60 ↑1.8 97.1 ↑0.4 95.60 ↑1.8

RFRL-Network
ResNet50-v1

2022 96.40 ↑ 13.0 97.67 ↑ 8.27 96.40 ↑ 13.0

RFRL-Network
OpticNet-71

2022 77.60 ↑ 3.2 86.20 ↑ 0.6 77.60 ↑ 3.2

RFRL-Network
MobileNet-v2

2022 95.80 ↑ 2.0 95.80 ↓ 0.9 95.80 ↑ 2.0

RFRL-Network VGG16 2022 96.80 ↑ 4.4 97.93 ↑ 4.8 96.80 ↑ 4.4

RFRL-Network
MobileNet-v3

2022 74.60 ↑3.0 84.06 ↓ 1.44 74.60 ↑3.0
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for the five models exceeds the baseline scores. Moreover, Joint-Attention-Network [9]
also supersedes the baseline methods; however, both our methods for OpticNet-71 and
MobileNet-v2 achieve better scores. For our next benchmark, we test the models on
the out-of-distribution test set to evaluate their robustness and knowledge transferabil-
ity. We use the 500 test images with Normal and DME categories from the OCT2017
data-set for this evaluation. As illustrated in Table 2, our model retains intrinsic spa-
tial information that helps it achieve higher accuracy than the baseline methods and
Joint-Attention-Networks. It should be noted that none of the OCT2017 images were
used for training or validating the models. The most significant improvement is seen
in ResNet50-v1, with a 4.0% increase in accuracy over Joint-Attention-Network. Also,
there was a slight specificity drop for MobileNet architectures. Still, it is negligible,
as correctly classifying diseases (sensitivity) is more important than misclassifying
patients without conditions (specificity). We only report test results for ResNet50-v1,
OpticNet-71, MobileNet-v2 versions of the Joint-attention-network [9] as these were
provided in the literature. Nonetheless, the proposed RFRL-network retains more robust
and intrinsic features across different methods and evaluation settings.

Fig. 2. Visualization of back-propagated gradient activation signals using GRAD-CAM [22] and
GRAD-CAM++ [2] on five different RFRL network. Here, Stage N is the last layer of the encoder,
the Stage N-1 and Stage N-2 are preceding layers.
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4.5 Qualitative Evaluation

For producing “visual explanations” for judgments made by our CNN architectures for
accurate classification, we use GRAD-CAM [22] and GRAD-CAM++ [2]. These meth-
ods use back-propagated gradients to visualize essential regions of the images of a spe-
cific layer, amplified for the classification decision’s maximum probability. In Fig. 2, we
illustrate the differences in activations of three stages of the encoder layer for five of our
methods on a DME image from OCT2017 [10] dataset. Stage N is the last convolution
layer before the global average pooling, so it does not have any skip-connection with
the unsupervised decoder. However, Stage N-1 and Stage N-2 are the previous encoder
layers with attention skip-connections. Additionally, they are utilized for Feature Rep-
resentation Similarity loss, Lfrs. From Fig. 2, row 1–2, it is apparent that VGG16 and
ResNet50-v1 got activated signals in regions with fluid buildup and hard exudates,
explaining the identification of DME in different stages of the encoder. However, in
rows 4–5, Optic-Net-71 and MobileNet-v3 got fewer activated signals and activations
in the unimportant region, which helped classify the image as DME. The visualization
also follows similar trends to standard metrics, where VGG16 achieves the highest to
MobileNet-v3, achieving the lowest accuracy in performance. This qualitative visual-
ization helps with our model’s overall explainability and knowledge transferability.

5 Conclusion and Future Work

In this paper, we propose RFRL-network that combines supervised, unsupervised, and
feature representation learning to make the robust classifiers for out-of-distribution reti-
nal degeneration detection. Moreover, by incorporating a novel feature representation
learning loss, our architecture retains intrinsic and essential feature information that
helps with knowledge transferability and explainability. In the future, we wish to extend
our work to identifying other retinal degenerative conditions. This can help clinicians
in conducting complex differential diagnoses.
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Abstract. In the retinal vessel segmentation task, maintaining graph-
ical structures of vessels is important for the following analysis steps.
However, this task is challenging due to the tiny structures of vessels
and bad image quality. Existing methods based on Convolutional Neural
Networks (CNNs) can capture local appearances from the regular image
grid but are limited to learning high-level features from graphical struc-
tures. Motivated by Graph Convolution Networks (GCNs) which capture
information on graphs, we propose a novel GCN-CNN hybrid U-shaped
model, namely GUNet, which is capable of extracting graphical infor-
mation of vessels. The hybrid model inherits both merits of CNNs and
GCNs. The convolutional blocks extract basic feature representations
from local appearances while the GCN blocks learn high-level long-range
graphical features along vessels at a deep level. To obtain graphs which
effectively represent vessels, we constructed graphs based on the prelim-
inary vessel skeleton segmentation followed by a Hessian filter for ves-
sel enhancement. GUNet takes raw images and corresponding graphs as
input and can be trained in an end-to-end manner. The proposed method
is evaluated on two fundus photography datasets (STARE and CHASE)
and one Scanning Laser Ophthalmoscopy (SLO) dataset (IOSTAR). We
conduct experiments to demonstrate that the GCNs module brings sig-
nificant benefits in terms of graphical similarity and further leads to bet-
ter overall performances. GUNet also achieves competitive performances
compared with state-of-the-art methods.

Keywords: Retinal vessel segmentation · Convolutional Neural
Networks · Graph Convolutional Networks · Graphical structure

1 Introduction

Retinal vessel segmentation is the first step for retinal vessel analysis which is
commonly applied in both research and clinical communities. The vasculature
has a graph-like structure which can be a shape prior during segmentation.
Leaning graphical structures of vessels can not only improve the segmentation
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B. Antony et al. (Eds.): OMIA 2022, LNCS 13576, pp. 33–42, 2022.
https://doi.org/10.1007/978-3-031-16525-2_4
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Fig. 1. Learning graphical structures of vessels.

accuracy but also benefit the following analysis steps. However, it is challenging
to obtain accurate vessel segmentation with good graphical structures. On the
one hand, the tiny structures of vessels and other objects increase the difficulty of
detecting vessels; on the other hand, existing imaging modalities, such as fundus
photography and scanning laser ophthalmoscopy, suffer from poor image quality
and low contrast which affect accuracy in segmentation (Fig. 1).

In recent years, Convolutional Neural Networks (CNNs) based methods [3,
12,13,21,22,26] have been proposed for retinal vessel segmentation and achieved
promising results. However, due to the instinct of convolution, CNNs are good
at learning local appearances on regular image grids but fail to utilize graphical
patterns of vessels. Motivated by Graph Convolutional Networks (GCNs) [10,19],
some works attempt to capture features on graphs and learn graphical features
in segmentation tasks [9,17,18,24]. However, learning the graphical structures
of vessels in the retinal vessel segmentation task has not been fully explored.
Existing CNNs or GCNs based methods also focus on pixel-wise performances
and pay less attention to evaluating the graphical similarity of vessels.

In this paper, we further develop GCN-based methods for retinal vessel seg-
mentation. To exploit the graphical structures of vessels, we first represent vessels
by graphs. The graphs are constructed based on the preliminary vessel skele-
ton segmentation followed by a Hassian filter to enhance vessels. Our proposed
GCN-CNN hybrid model, namely GUNet, takes image patches and correspond-
ing graphs as input and can be trained in an end-to-end manner. In the GUNet
model, the GCNs module which contains a series of graph convolution layers is
placed at the deep level of the U-shaped structure. GUNet inherits the merits of
CNNs and GCNs, which jointly exploits features from both the image grid and
graphical structures of vessels. Convolutional blocks extract rich basic feature
representations at low levels while the GCNs module captures high-level graphi-
cal information. After GCNs amend features maps based on extracted graphical
features, the CNNs decoder produces final predictions. In the experiments, we
evaluated the proposed method on three benchmarking datasets in two imaging



GUNet: A GCN-CNN Hybrid Model for Retinal Vessel Segmentation 35

Fig. 2. Overview of GUNet.

modalities. The introduction of the GCNs module yields a significant boost on
graphical similarity as well as overall performance. Our proposed method also
achieved competitive performance compared with state-of-the-art methods.

2 Method

2.1 GUNet

GUNet is a U-shaped GCN-CNN hybrid model. The U-shaped structure shares
the similar idea with UNet [16], as illustrated in Fig. 2. It consists of an encoder
and a decoder. The encoder extracts features from multiple resolutions while the
decoder produces the final segmentation. The skip connections link correspond-
ing blocks at two sides, helping the decoder reconstruct spatial information. To
increase the learning capacity of CNNs, we adopt the densely connected convo-
lutional [7] block as the basic component in the encoder and the decoder. Each
convolutional block contains two densely connected convolutional layers. Each
convolutional layer uses 3 × 3 convolutional kernel, followed by a Batch Nor-
malization layer and a ReLU layer. The design of dense connections effectively
enables the reuse of features and helps gradient back-propagation. We adopt
the max-pooling layer for down-sample and the transposed convolution layer for
up-sampling.

At the deep level between the encoder and the decoder, the convolutional
block is replaced by the GCNs module, which consists of several GCN layers.
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The GCNs module takes feature maps from the CNNs encoder as well as the cor-
responding graphs as input. It extracts graphical information of vessels, amends
feature representations, and outputs new feature maps to the follow-up CNNs
decoder. In such a GCN-CNN hybrid structure, the GCNs module and CNNs
blocks display their advantages and work together. The GCNs module aims to
capture graphical information while the CNNs block produces basic feature rep-
resentation by learning local patterns. We place CNNs blocks at high-resolution
low-semantic levels and the GCNs module at low-resolution high-semantic lev-
els because local patterns are low-level information while graphical features are
high-level information. The adoption of the GCNs module at the low-resolution
level will not highly increase the computation burden.

2.2 Graph Convolution

The basic component of the GCNs module is graph convolution. We follow the
work of Kipf et al. [10] to introduce the theoretical background of GCNs. Given
a graph G, its adjacency matrix is denoted by A ∈ R

N×N . A graph convolution
layer conducts operations including feature representation, feature aggregation
on graphs, and non-linear activation. The feed-forward propagation in a GCN
layer is conducted as

Hl+1 = σ
(
ÂHlWl

)
, (1)

where Hl are the hidden features of the lth layer; Â = D̂−1/2 (A + I) D̂−1/2 is
the re-normalization of the adjacency matrix, and D̂ is the corresponding degree
matrix of A + I; σ (·) is a non-linear function, e.g., the ReLU function; and Wl

is the learnable matrix in the lth layer.
Several GCN layers can be stacked to obtain more capacity for learning

complicated features. In this work, the GCNs module contains four GCN layers
and no convolutional layer. The residual connection is added to each GCN layer
to enable a deeper structure.

2.3 Graph Construction

We construct graphs for each image before training GUNet. The ground truth
is not available for constructing graphs, therefore, we need to construct graphs
from raw images. As the graphs are used at low-resolution levels, the widths of
vessels are not necessary information. Therefore, we construct graphs based on
vessel skeletons. The process of constructing graphs is illustrated in Fig. 3.

We train a simple U-Net model to produce the preliminary vessel skeleton
segmentation. To fully detect vessels, we adopt the Hessian filter [1] to enhance
the preliminary vessel skeleton segmentation results. One advantage of producing
vessel skeletons instead of vessels is that we can simplify the searching process for
the kernel size inside the Hessian filter. A fixed kernel size can handle all vessel
skeletons, which can be determined by parameter searching based on the quality
of results. Then, a thinning operation is performed to obtain vessel skeletons.
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Fig. 3. The process of constructing graphs.

On a high-resolution dataset, we can further train the model to produce dilated
vessel skeletons and choose a larger kernel inside the Hessian filter for robustness.
After we obtain vessel skeletons, we down-sampled them to fit the resolutions
of the GCNs module inside GUNet. Finally, we construct graphs based on the
obtained vessel skeletons.

The graphs follow these three rules: (1) All pixels are included in the graph.
(2) Pixels on the vessel skeletons are linked to their direct neighbours if their
neighbours are also located on the vessel skeletons. (3) Pixels not on the vessel
skeletons remain isolated. We can obtain graphs with a fixed number of nodes,
which makes it easy to implement as tensor calculation. We omit the isolated
pixels in Fig. 3 for better visualization.

3 Experiments

3.1 Datasets and Evaluation Metrics

We evaluated the proposed method on three benchmark datasets in two imaging
modalities. Two fundus photography datasets include the STARE1 [6] and the
CHASE dataset2 [2]. The STARE dataset [6] contains 20 fundus photographs
with a resolution of 700 × 605. The CHASE dataset contains 28 images with
a resolution of 960 × 999. Following the setting in previous works [5,8], the
first 10/20 images in the STARE/CHASE dataset are used for training and the
remaining 10/8 images are used for testing. We only evaluated pixels inside the
FOV (Field of View). The Scanning Laser Ophthalmoscopy (SLO) image dataset
is the IOSTAR [25] dataset. It contains 30 SLO images with a high resolution
of 1024 × 1024. Following [20], the first 20 images are used for training and the
remaining 10 images are used for testing. During training, one image is excluded
from the training set as the evaluation set for hyper-parameters searching.

We report Accuracy (Acc), Area Under the ROC Curve (AUC), and Dice
score (Dice) as evaluation metrics to reflect the pixel-wise performances. Due
to the severe imbalance, the pixel-wise metrics can not show obvious gaps. To

1 https://cecas.clemson.edu/∼ahoover/stare/.
2 https://blogs.kingston.ac.uk/retinal/chasedb1/.

https://cecas.clemson.edu/~ahoover/stare/
https://blogs.kingston.ac.uk/retinal/chasedb1/
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evaluate the graphical similarity of vessels, we calculated the CAL score which
is specifically designed for evaluating retinal vasculature [4]. Generally speaking,
the CAL score contains three terms, each of which measures the connectivity,
overlapping area, and overlapping skeletons, respectively. The CAL score allows
tolerance to compare two vessels and focuses more on the morphology of vessels,
therefore, it is more suitable to evaluate graphical similarity than regular pixel-
wise metrics.

3.2 Implementation Details

The proposed method has been implemented under the PyTorch framework. All
experiments were conducted on one NVIDIA GeForce GTX 1080Ti GPU and
each took 2–4 h for training. We used AdamW algorithm with a learning rate of
0.0001 and a weight decay rate of 0.0005.

Regarding image pre-processing, each fundus image has been converted to
a grayscale image. For training, we randomly sampled 1000 patches from each
image. For testing, we used a sliding window with a stride of 16 to sample
patches. The final result for the whole image was achieved by aggregating the
predictions of local image patches. We performed image flipping and image rota-
tion for data augmentation.

4 Results

4.1 Experiments on Fundus Photography

Ablation Study. We first conducted ablation experiments on the STARE and
CHASE datasets to study the effect of the GCNs module. We report the Dice
score to reflect pixel-wise performance and the CAL score to reflect graphical
similarity in Table 1. P-values are calculated by paired t-tests between GUNet
and the compared model in terms of the CAL scores. p < 0.05 indicated a
significant improvement over the compared model.

The baseline model is a UNet model with densely connected convolution
blocks. Compared with the baseline model, GUNet yielded a 2.96%/0.9% higher
CAL score on the STARE/CHASE dataset. It showed that applying the GCN
module brings a boost in terms of graphical similarity and verified the effective-
ness of the proposed GCN-CNN hybrid structure.

Moreover, we consider a special case where all edges in graphs are removed.
According to Eq. 1, graph convolutional layers will degenerate to linear lay-
ers. The model yields a CAL score of 79.79%/76.67% on the STARE/CHASE
dataset, which shows less gain compared to the results by using normally con-
structed graphs. It verified that graphical connections bring benefits to the
model. In another experiment, we omitted the Hessian filter and constructed
graphs with vessels not enhanced. The quality of constructed graphs become
worse and it yielded a CAL score of 81.03%/78.12% on the STARE/CHASE
dataset, worse than the normal setting. It showed that the Hessian filter can
detect more vessels and obtain better graphs.
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Table 1. Ablation experiments on the STARE and CHASE dataset.

Model STARE CHASE

Dice (%) CAL (%) p-value Dice (%) CAL (%) p-value

Baseline 81.42 78.77 0.0092 81.17 77.87 0.0163

GUNet w/o edges 81.90 79.78 0.0109 81.03 76.67 0.0018

GUNet w/o Hessian 82.01 81.03 0.0245 81.36 78.12 0.0425

GUNet 82.55 81.73 - 81.51 78.77 –

Comparison with State-of-the-Art Methods. We have further compared
the performance of the proposed method with the state-of-the-art methods,
reported in Table 2. We list results from previous papers as well as our reimple-
mented models. The re-implemented models are variations of UNet, including
UNet [16], UNet++ [27], Attention UNet [15], DUNet [8], and CSNet [14]. The
numbers of parameters in the compared models are roughly close. For sake of
fairness, all of the compared methods used the same evaluation settings.

In terms of graphical similarity of vessels, GUNet achieved the highest CAL
score among compared models. All p < 0.05 indicated significant improvements
over the compared models. It verified the advantage of GUNet, which is maintain-
ing good graphical structures of vessels. In terms of the pixel-wise performances,
GUNet yielded an accuracy of 96.62% and an AUC of 98.70% on the STARE
dataset; an accuracy of 96.74% and an AUC of 98.72% on the CHASE dataset.
It showed competitive performances compared with the state-of-the-art methods
on two benchmarking datasets.

Table 2. Comparisons with state-of-the-art methods on the STARE and CHASE
dataset. The CAL score reflects graphical similarity. GUNet achieves a significantly
improved CAL score.

STARE CHASE

Methods Acc (%) AUC (%) Dice (%) CAL (%) p-value Acc (%) AUC (%) Dice (%) CAL (%) p-value

Yan et al. [23] 96.12 98.01 – – – 96.10 97.81 – – –

Shin et al. [17] 93.78 98.77 – – – 93.73 98.30 – – –

Guo et al. [5] 96.60 98.72 83.62 – – 96.27 98.40 79.83 – –

Jin et al. [8] 96.41 98.32 81.43 – – 96.10 98.04 78.83 – –

UNet [16] 96.43 98.46 81.36 78.62 0.0007 96.59 98.63 79.81 72.68 0.0008

UNet++ [27] 96.43 98.45 81.74 78.31 0.0007 96.64 98.66 80.50 74.96 0.0018

AttUNet [15] 96.27 98.42 80.69 76.70 0.0002 96.64 98.66 80.52 75.00 0.0027

CSNet [14] 96.54 98.62 82.34 80.43 0.0419 96.51 98.57 79.11 71.17 0.0001

GUNet 96.62 98.70 82.55 81.73 – 96.74 98.72 81.51 78.77 –

4.2 Experiments on SLO Images

On the IOSTAR dataset, we compared GUNet with methods in previous papers
[11,20] as well as our reimplemented models. As shown in Table 3, GUNet
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achieves better performances compared with other models in terms of both
graphical similarity and pixel-wise scores. The last column gives p-values of
paired t-tests between the CAL score of the compared model and GUNet. All
p < 0.05 demonstrate that GUNet performs significantly better than other com-
pared models.

Table 3. Performance comparisons on the IOSTAR dataset. GUNet achieves a signif-
icantly improved CAL score.

Method #Paras Acc (%) AUC (%) Dice (%) CAL (%) p-value

Li et al. [11] – 95.44 96.23 – – –

UNet [16] 7.8M 96.08 98.30 78.61 77.02 0.0001

UNet++ [27] 9.2M 96.11 98.34 79.67 77.54 0.0001

AttUNet [15] 8.7M 96.24 98.56 79.70 80.74 0.0144

CSNet [14] 8.9M 96.27 98.55 79.84 79.87 0.0018

GUNet 12.24M 96.41 98.72 81.09 82.06 –

4.3 Visualization

We visualize several cases from the STARE dataset. In Fig. 4, pixels in red
denote false positives while pixels in blue denote false negatives. The baseline
model UNet fails to segment tiny structures and tail ends of vessels. Compared
to the baseline model UNet, GUNet gives more precise vessel segmentation with
better morphology and graphical structures, which verified the effectiveness of
the GCNs module in GUNet.

Fig. 4. Visualization for vessel segmentation (in colour). Red denotes false positives
while blue denotes false negatives. (a) original image; (b) ground truth; (c) GUNet; (d)
UNet; (e) UNet++; (f) Attention UNet; (g) CSNet. (Color figure online)
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5 Conclusion

In this paper, we have proposed a novel U-shaped GCN-CNN hybrid model to
deal with the retinal vessel segmentation task. GCNs are adopted to extract
information on the graphical structure of vessels, which benefits the overall per-
formance of vessel segmentation. Experiments show that the proposed method
achieves competitive performances on three public datasets compared with the
state-of-the-art methods. The further research direction can be unifying all steps
into an end-to-end model.
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Abstract. Longitudinal imaging is able to capture both static anatom-
ical structures and dynamic changes in disease progression towards ear-
lier and better patient-specific pathology management. However, conven-
tional approaches for detecting diabetic retinopathy (DR) rarely take
advantage of longitudinal information to improve DR analysis. In this
work, we investigate the benefit of exploiting self-supervised learning
with a longitudinal nature for DR diagnosis purposes. We compare dif-
ferent longitudinal self-supervised learning (LSSL) methods to model the
disease progression from longitudinal retinal color fundus photographs
(CFP) to detect early DR severity changes using a pair of consecutive
exams. The experiments were conducted on a longitudinal DR screening
dataset with or without those trained encoders (LSSL) acting as a lon-
gitudinal pretext task. Results achieve an AUC of 0.875 for the baseline
(model trained from scratch) and an AUC of 0.96 (95% CI: 0.9593-0.9655
DeLong test) with a p-value <2.2e–16 on early fusion using a simple
ResNet alike architecture with frozen LSSL weights, suggesting that the
LSSL latent space enables to encode the dynamic of DR progression.

Keywords: Diabetic retinopathy · Deep learning · Self-supervised
learning · Longitudinal analysis · Computer-aided diagnosis

1 Introduction

According to the International Diabetes Federation, the number of people
affected by diabetes is expected to reach 700 million by 2045 [14]. Diabetic
retinopathy (DR) affects over one-third of this population and is the leading
cause of vision loss worldwide [8]. This happens when the retinal blood vessels
are damaged by high blood sugar levels, causing swelling and leakage. In fundus
retina images, lesions appear as leaking blood and fluids. Red and bright lesions
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are the type of lesions that can be commonly identified during DR screening.
The blindness incidence can be reduced if the DR is detected at an early stage.
In clinical routine, color fundus photographs (CFP) are employed to identify the
morphological changes of the retina by examining the presence of retinal lesions
such as microaneurysms, hemorrhages, and soft or hard exudates. The interna-
tional clinical DR severity scale includes no apparent DR, mild non-proliferative
diabetic retinopathy (NPDR), moderate NPDR, severe NPDR, and proliferative
diabetic retinopathy (PDR), labeled as grades 0, 1, 2, 3, (illustrated in Fig. 1)
and 4. NPDR (grades 1, 2, 3) corresponds to the early-to-middle stage of DR
and deals with a progressive microvascular disease characterized by small vessel
damages and occlusions. PDR (grade 4) corresponds to the period of poten-
tial visual loss which is often due to a massive hemorrhage. Early identification
and adequate treatment, particularly in the mild to moderate stage of NPDR,
may slow the progression of DR, consequently preventing the establishment of
diabetes-related visual impairments and blindness.

In the past years, deep learning has achieved great success in medical image
analysis. Many supervised learning techniques based on convolutional neural net-
works have been proposed to tackle the automated DR grading task [4,10,11].
Nevertheless, these approaches rarely take advantage of longitudinal information.
In this direction, Yan et al. [17] proposed to exploit a Siamese network with dif-
ferent pre-training and fusion schemes to detect the early stage of RD using lon-
gitudinal pairs of CFP acquired from the same patient. Further, self-supervised
learning (SSL) held great promise as it can learn robust high-level representa-
tions by training on pretext tasks [1] before solving a supervised downstream
task. Current self-supervised models are largely based on contrastive learning
[3,6]. However, the choice of the pretext task to learn a good representation
is not straightforward, and the application of contrastive learning to medical
images is relatively limited. To tackle this, a self-supervised framework using
lesion-based contrastive learning was employed for automated diabetic retinopa-
thy (DR) grading [5].

Fig. 1: Evolution from no DR to severe NPDR for a patient in OPHDIAT [7]
dataset.

More recently, a new pretext task has appeared for classification purposes in
a longitudinal context. Rivail et al. [12] proposed a longitudinal self-supervised
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learning Siamese model trained to predict the time interval between two consec-
utive longitudinal retinal optical coherence tomography (OCT) acquisitions and
thus capturing the disease progression. Yang et al. [18] proposed an auto-encoder
named LSSL that takes two consecutive longitudinal scans as inputs. They added
to the classic reconstruction term a time alignment term that forces the topology
of the latent space to change in the direction of longitudinal changes. An exten-
sion of such principle was provided in [9]. To reach a smooth trajectory field, a
dynamic graph in each training batch was computed to define a neighborhood
in the latent space for each subject. The graph then connects nearby subjects
and enforces their progression directions to be maximally aligned.

In this regard, we aim to use LSSL approaches to capture the disease pro-
gression to predict the change between no DR/mild NPDR (grade 0 or 1) and
more severe DR (grade ≥2) through two consecutive follow-ups. To this end, we
explore three methods incorporating current and prior examinations. Finally,
a comprehensive evaluation is conducted by comparing these pipelines on the
OPHDIAT dataset [7]. To the best of our knowledge, this work is the first to
automatically assess the early DR severity changes between consecutive images
using self-supervised learning applied in a longitudinal context.

2 Methods

In this work, we study the use of different longitudinal pretext tasks. We use
the encoders trained with those pretext tasks as feature extractors embedded
with longitudinal information. The aim is to predict the severity grade change
from normal/mild NPDR to more severe DR between a pair of follow-up CFP
images. Let X be the set of subject-specific image pairs for the collection of
all CFP images. X contains all (xt, xs) that are from the same subject with xt

scanned before xs. These image pairs are then provided as inputs to an auto-
encoder (AE) structure (Fig. 2c). The latent representations generated by the
encoder are denoted by zt = F (xt) and zs = F (xs) where F is the encoder.
From this encoder, we can define the Δz = (zs − zt) trajectory vector and then
formulate Δz(t,s) = (zs − zt)/Δt(t,s) as the normalized trajectory vector where
Δt(t,s) is the time interval between the two acquisitions. The decoder H uses the
latent representation to reconstruct the input images such that x̃t = H(zt) and
x̃s = H(zs). E denotes the expected value. In what follows, three longitudinal
self-supervised learning schemes are further described.

2.1 Longitudinal Siamese

The Siamese network takes the two image pairs (xt, xs). These images are
encoded into a compact representation (zt, zs) by the encoder network, F . A
feed forward neural network (denoted G) then predicts Δt(t,s), the time interval
between the pair of CFP images (Fig. 2a). The regression model is trained by
minimizing the following L2 loss: ‖ G(zt, zs) − Δt(t,s) ‖22.
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Fig. 2: The figure a) illustrates to longitudinal Siamese and takes as inputs a
pair of consecutive images and predict the time between the examinations. The
figure b) represents the longitudinal self-supervised learning which is composed
of two independent modules, an AE and dense layers. The AE takes as input
the pair of consecutive images and reconstruct the image pairs while the dense
layer maps a dummy vector to the direction vector τ . The figure c) corresponds
to the LNE, and takes as input the consecutive pairs and build a dynamic graph
to align in a neighborhood the subject-specific trajectory vector (Δz) and the
pooled trajectory vector (Δh) that represents the local progression direction in
latent space (green circle). (Color figure online)

2.2 Longitudinal Self-supervised Learning

The longitudinal self-supervised learning (LSSL) exploits a standard AE. The
AE is trained with a loss that forces the trajectory vector Δz to be aligned with
a direction that could rely in the latent space of the AE called τ . This direction
is learned through a sub-network composed of single dense layers which map a
dummy data into a vector τ ∈ Ωα, the dimension of the latent space. The high-
level representation of the network is illustrated in Fig. 2b. Enforcing the AE to
respect this constraint is equivalent to encouraging cos (Δz, τ ) to be close to 1,
i.e. a zero-angle between τ and the direction of progression in the representation
space.
Objective Function.

E(xt,xs)∼X
(
λrec· ‖ xt − x̃t ‖22 + ‖ xs − x̃s ‖22 −λdir · cos(Δz, τ)

)
(1)
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2.3 Longitudinal Neighbourhood Embedding

Longitudinal neighborhood embedding (LNE) is based on the LSSL framework.
The main difference is that a directed graph G is built in each training batch. A
pair of sample (xt, xs) serves as a node in the graph with node representation
Δz. For each node i, Euclidean distances to other nodes j �= i are computed by
Di,j =‖ zt

i − zt
j ‖2. The neighbour size (Nnb) is the closest nodes of node i form

its 1-hop neighbourhood Ni with edges connected to i. The adjacency matrix A
for the directed graph (G) is then defined as:

Ai,j :=

{
exp(−D2

i,j

2σ2
i
) j ∈ Ni

0, j /∈ Ni

.

with σi := max(Di,j∈Ni
) − min(Di,j∈Ni

)

This matrix regularizes each node’s representation by a longitudinal neighbour-
hood embedding Δh pooled from the neighbours’ representations. The neigh-
borhood embedding for a node i is computed by:

Δhi :=
∑

j∈Ni

Ai,jO
−1
i,j Δzj ,

where O is the out-degree matrix of graph G, a diagonal matrix that describes
the sum of the weights for outgoing edges at each node. They define θ〈Δz,Δh〉 the
angle between Δz and Δh, and only incite cos(θ〈Δz,Δh〉) = 1, i.e., a zero-angle
between the subject-specific trajectory vector and the pooled trajectory vector
that represents the local progression direction in the latent space (Fig. 2c).
Objective Function.

E(xt,xs)∼X
(
λrec· ‖ xt − x̃t ‖22 + ‖ xs − x̃s ‖22 −λdir · cos(θ〈Δz,Δh〉)

)
(2)

3 Dataset

The proposed models were trained and evaluated on OPHDIAT [7], a large
CFP database collected from the Ophthalmology Diabetes Telemedicine network
consisting of examinations acquired from 101,383 patients between 2004 and
2017. Within 763,848 interpreted CFP images 673,017 are assigned with a DR
severity grade, the others being non-gradable. Image sizes vary from 1440 × 960
to 3504 × 2336 pixels. Each examination has at least two images for each eye.
Each subject had 2 to 16 scans with an average of 2.99 scans spanning an average
time interval of 2.23 years. The age range of the patients is from 9 to 91.
Image Pair Selection. The majority of patients from the OPHDIAT database
have multiple images with different fields of view for both eyes. To facilitate
the pairing, we propose to select a single image per eye for each examination:
we select the one that best characterizes the DR severity grade, as detailed
hereafter. For this purpose, we train a standard classifier using the complete
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dataset that predicts the DR severity grade (5 grades). During the first epoch,
we randomly select one image per eye and per examination for the full dataset.
After the end of the first epoch with the learned weights of the model, for each
image present in every examination, we select the image that gives the highest
classification probability. We repeat this process until the selected images by
the model converge to a fixed set of images per examination. From the set
of selected images, we construct consecutive pairs for each patient and finally
obtain 100,033 pairs of images from 26,483 patients. Only 6,690 (6.7%) pairs
have severity grade changes from grade 0 or 1 to grade ≥ 2 against 93,343
(93.3%) pairs with severity changes that lie between grades 0 and 1. The resulting
dataset exhibits the following proportions in gender (Male 52%, Female 48%) and
diabetes type (type 2 69%, type 1 31%). This dataset was further divided into
training (60%), validation (20%), and test (20%) based on subjects, i.e., images
of a single subject belonged to the same split and in a way that preserves the
same proportions of examples in each class as observed in the original dataset.
Image pre-processing. Image registration is a fundamental pre-processing
step for longitudinal analysis [15]. Therefore, using an affine transformation, we
first conducted a registration step to align xt to xs. Images are then adaptively
cropped to the width of the field of view (i.e., the eye area in the CPF image) and
then resized to 256×256. A Gaussian filter estimates the background in each color
channel to attenuate the strong intensity variations among the dataset which is
then subtracted from the image. Finally, the field of view is eroded by 5% to
eliminate illumination artifacts around the edges. During the training, random
resized crops ([0.96, 1.0] as scale range and [0.95, 1.05] as aspect ratio range) are
applied for data augmentation purposes.

4 Experiments and Results

Implementation Details. As it was conducted in [9,18], we constructed a stan-
dard AE for all the compared methods to focus only on the presented methodol-
ogy and make a fair comparison between approaches, with the hope that using
advanced AE structures could lead to better encoding and generalization. In
our basic architecture, we employed a stack of n pre-activated residual blocks,
where n determines the depth of that scale for the encoder. In each res-block,
the residual feature map was calculated using a series of three 3×3 convolutions,
the first of which always halves the number of the feature maps employed at the
present scale, such that the residual representations live on a lower-dimensional
manifold. Our encoder comprises five levels; the first four levels are composed
of two residual blocks, and the latter only one residual block. This provides a
latent representation of size 64× 4× 4. The employed decoder is a reverse struc-
ture of the encoder. The different networks were trained for 100 epochs by the
AdamW optimizer with a learning rate of 5 × 10−4, OneCycleLR as scheduler
and a weight decay of 10−5, using an A6000 GPU with the PyTorch framework.
The regularization weights were set to λdir = 1.0 and λrec = 5.0. A batch size of
64 was used for all models, and a neighbour size Nnb = 5 and Δz(t,s) were used
for the LNE, as in the original paper [9].
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Fig. 3: ROC curve analysis of
the compared methods

Table 1: Comparison of the approach
on the early change detection with the
frozen encoder.

AUC (95% CI) Acc

Model

No

pretrain

0.8758 (0.8688–0.883) 0.8379

Pre-train

on

OPHDIAT

0.8994 (0.8921–0.9068) 0.8289

AE 0.7724 (0.7583–0.7866) 0.5599

L-siamese

[12]

0.8253 (0.8127–0.838) 0.9354

LSSL [18] 0.9624 (0.9593–0.9655) 0.8871

LNE [9] 0.9448 (0.9412–0.9486) 0.8646

4.1 Comparison of the Approaches on the Early Change Detection

We evaluate the LSSL encoders on detecting the severity grade change from nor-
mal/mild NPDR to more severe DR between a pair of follow-up CFP images.
The classifier was constructed as the concatenation of the learned backbone (fea-
ture extractor) and a multi-layer perceptron (MLP). The MLP consists of two
fully connected layers of dimensions 1024 and 64 with LeakyReLU activation
followed by a last single perceptron. Receiving the flattened representation of
the trajectory vector Δz, the MLP predicts a score between 0 and 1. We com-
pared the area under the receiver operating characteristics curve (AUC) and
the accuracy (Acc) in Table 1 for different pre-training strategies (from scratch,
trained on LSSL methods, encoder from a standard AE). We also pre-trained
on the OPHDIAT dateset (classification of the DR severity grade) to compare
the LSSL pre-training strategies with a conventional pre-training method. The
statistical significance was estimated using DeLong’s t-test [13] to analyze and
compare ROC curves. The results in Table 1 and Fig. 3 show the clear superi-
ority of the LSSL encoder, with a statistical significance p-value <2.2e–16. Due
to class imbalance, the Longitudinal-siamese (L-siamese) have a high Acc while
exhibiting a lower AUC than the baseline (trained from scratch).

4.2 Norm of Trajectory Vector Analyze

We constructed different histograms in Fig. 4 representing the mean value of the
norm of the trajectory vector with respect to both diabetes type and progression
type. According to Fig. 4, only the models with the direction alignment loss term
are able to capture the change detection in the DR relative to the longitudinal
representation. Therefore, we observe in the histogram that the trajectory vector
(Δz) is able to dissociate the two types of diabetes (t-test p-value <0.01) and
change detection (t-test p-value <0.01). For the diabetes type, a specific study
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[2] about the OPHDIAT dataset indicates that the DR progression is faster for
patients with type 1 diabetes. Based on the fact that the Δz can be seen as a
relative speed, this observation agrees with the histogram plot of the mean of the
Δz norm represented in Fig. 4. We also observed that the norm of the Δz vector
is lower for the normal stage of the DR than for mild NPDR to more severe. This
was expected because only the methods with a direction alignment term in their
objective explicitly modeled longitudinal effects, resulting in more informative
Δz. This also implies that simply computing the trajectory vector itself is not
enough to force the representation to capture the longitudinal change.

Fig. 4: Mean of the trajectory vector norm for the different self-supervised
method used

5 Discussion

We applied different LSSL techniques to encode diabetic retinopathy (DR) pro-
gression. The accuracy boost, relative to a network trained from scratch or trans-
ferred from conventional tasks, demonstrates that longitudinal pre-trained self-
supervised representation learns clinically meaningful information. Concerning
the limitations of the LSSL methods, we first observe that the models with no
time alignment loss perform poorly and provide no evidence of disease progres-
sion encoding. Also, we report for the LNE that the normalized trajectory vector
for some pairs, that have a large time between examinations, is almost all zeros,
which results in a non-informative representation. This could explain the differ-
ence between the LSSL and LNE prediction performances. Moreover, during the
LSSL and the LNE training, we often faced a plateau with the direction loss
alignment. Therefore, we also claim that intensive work should be done regard-
ing the choice of the hyperparameters : constant weights for the losses, latent
space size (Ωα), neighbour size (Nnb). The results concerning quantifying the
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encoding of the disease progression from the models trained with a time direc-
tion alignment are encouraging but not totally clear. As it was mentioned in
[16], one limitation of the LSSL approach pretains to the cosine loss (direction
alignment term from Eqs. (1,2) used to encode the longitudinal progression in
a specific direction in the latent space and learned while training. The loss only
focuses on the correlation with the disease progression timeline but not disen-
tanglement of the disease progression itself. Therefore, a more in-depth analy-
sis of the latent space is required to evaluate if the trajectory vector could be
used to find a specific progression trajectory according to patient characteristics
(diabetes types, age, DR severity). The pairing and the registration are critical
steps in the longitudinal study. As it was previously mentioned, by using a better
registration method and exploiting different fusion schemes and backbone archi-
tectures, we could get enriched latent representation and, thus, hopefully, better
results. Also, the frozen encoders could be transferred to other types of longitu-
dinal problems. In summary, LSSL techniques are quite promising: preliminary
results are encouraging, and we expect further improvements.
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Abstract. Multimodal information is frequently available in medical
tasks. By combining information from multiple sources, clinicians are
able to make more accurate judgments. In recent years, multiple imag-
ing techniques have been used in clinical practice for retinal analysis: 2D
fundus photographs, 3D optical coherence tomography (OCT) and 3D
OCT angiography, etc. Our paper investigates three multimodal infor-
mation fusion strategies based on deep learning to solve retinal analy-
sis tasks: early fusion, intermediate fusion, and hierarchical fusion. The
commonly used early and intermediate fusion are simple but do not fully
exploit the complementary information between modalities. We devel-
oped a hierarchical fusion approach that focuses on combining features
across multiple dimensions of the network, as well as exploring the cor-
relation between modalities. These approaches were applied to glaucoma
and diabetic retinopathy classification, using the public GAMMA dataset
(fundus photographs and OCT) and a private dataset of PLEX R©Elite
9000 (Carl Zeis Meditec Inc.) OCT angiography acquisitions, respec-
tively. Our hierarchical fusion method performed the best in both cases
and paved the way for better clinical diagnosis.

Keywords: Glaucoma classification · Diabetic retinopathy
classification · Multimodal information fusion · Deep learning ·
Computer-aided diagnosis

1 Introduction

Glaucoma and diabetic retinopathy (DR) are two of the leading causes of blind-
ness and visual impairment in the world. The glaucomatous neurodegeneration
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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causes a disconnection between the retina and the brain, resulting in irreversible
blindness. By 2040, around 111.8 million people are expected to suffer from glau-
coma [17]. The DR mutilates the retinal blood vessels of diabetic patients. Dia-
betic retinopathy consists of two major types: non-proliferative diabetic retinopa-
thy (NPDR) and proliferative diabetic retinopathy (PDR) [13]. By 2030, there
will be 454 million DR patients worldwide [15].

In recent years, algorithms for diagnosing glaucoma and DR have emerged
with the development of deep learning and improved computer equipments. Fun-
dus photography and optical coherence tomography (OCT) are the two most
cost-effective screening tools for glaucoma and DR [18]. For two-dimensional
fundus photographs, powerful convolutional neural networks (CNN) such as
ResNet or GoogleNet Inception models, were used to achieve pathology detection
[1,10,16]. It should be noted that 2D fundus data are more accessible than other
modalities, so data-sets are generally larger, and thus, models can be trained
more efficiently. OCT data are more sensitive to structural pathological fea-
tures. Both 3D-CNN networks and 2D-CNN networks operating on 2D slices,
were used to achieve feature extraction from OCT volumes [2,11,12]. In addi-
tion, optical coherence tomography angiography (OCTA) is a new, non-invasive
imaging technique that generates volumetric angiography images in seconds. It
can display both structural and blood flow information [4]. The effectiveness of
CNN networks in classifying DR using OCTA data was also demonstrated [14].

All the previous algorithms are usually based on information from only one
modality. However, multi-modality screening is often recommended to reach a
more accurate and reliable diagnosis [18]. This is why multimodal algorithms
are needed in ophthalmic pathology diagnosis.

This paper presents three fusion algorithms for multimodal data in ophthal-
mology: early, intermediate and hierarchical fusion. They enable the fusion of
2D and 3D modal data. Specifically, the innovative hierarchical fusion algorithm
we developed (Fig. 1) achieves excellent glaucoma and DR classification results.

2 Methods

This section will explore three approaches to multimodal fusion in ophthalmol-
ogy: early fusion, intermediate fusion, and hierarchical fusion. We will examine
the challenges of applying different fusion methods to ophthalmic data and the
structural aspects of our network.

2.1 Early Fusion

In early fusion, also called input-level fusion, data from different modalities are
fed into a classification network as different channels [21]. Specifically, multi-
modality images are fused channel by channel to form multi-channel inputs.
Then, a classification network is trained to learn a fused feature representation
from these inputs. Many of today’s medical fusion strategies use early fusion
[5,9].



Multimodal Information Fusion for Glaucoma and DR Classification 55

Let X×Y ×Z denote the size of the 3D volumes in voxels. In the early-fusion
solution, the 2D images are resized to X × Y pixels and duplicated Z times, to
form a X×Y ×Z voxel channel. Feature extraction from the multimodal input of
size C ×X ×Y ×Z, where C denotes the number of channels, is then performed
using a 3D-CNN network. In addition, the alignment of different modalities is
crucial to early fusion.

Early fusion is a simple method, but it is not very effective due to the semantic
gap between the modalities of ophthalmic data. For example, fundus photographs
give an overall en-face view of the retina, in 2D and OCT volumes provide
structural information about the retina in 3D. However, there is a significant
gap between these two modalities regarding the equipment used to capture them,
imaging methods, and data information. In particular, when we convert 2D data
into 3D volumes, we cannot guarantee that the modalities are accurately aligned.

2.2 Intermediate Fusion

In contrast with early fusion, intermediate fusion does not assume spatially
aligned modalities. Instead, each modality data is used as an input to a sin-
gle classification branch, and the outputs from each branch are integrated to
produce a final result [7,19]. The intermediate fusion strategy fuses features
before the final decision layer. In contrast, late fusion fuses the decision results,
ignoring any correlation between the different modalities [3].

As we use different independent branches to extract feature information from
each modality, we do not need to consider the consistency of the input data.
Using different 2D and 3D CNN branches to extract different features for 2D
and 3D data is possible.

Intermediate fusion is a simple yet effective method for feature fusion. The
method effectively bridges the significant gaps between different modalities in
ophthalmology (2D fundus images and 3D OCT or OCTA volumes). In particu-
lar, most participants in Task1 of the GAMMA Challenge employed this method
to classify glaucoma and achieved good results [18]. Nevertheless, as intermedi-
ate fusion is a mere concatenation of high-dimensional features, the correlation
information inevitably gets lost, adversely impacting classification performance.

2.3 Hierarchical Fusion

In this work, we have extended the network structure of intermediate fusion to
address its shortcomings. Like intermediate fusion, hierarchical fusion works by
using each modality image as an input of a single classification branch, then
fusing these learned individual feature representations in the deeper layers of
the network. However, unlike intermediate fusion, an additional branch performs
feature fusion at different scales. A decision layer is then applied to the fused
result to obtain the final label [20].

Fusion between modality-specific features of different dimensions in a net-
work structure is challenging. Prior studies have generally focused on simpler
problems. For example, the fused modalities are all 3D data of the same size in
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[6]. In that case, multimodal features always have the same shape at each scale,
so feature fusion can be easily achieved through concatenation. For ophthalmic
data, the size and dimensionality of the features are modality-dependent: 3D
tensors for 2D images and 4D tensors for 3D images.

Fig. 1. Proposed hierarchical fusion configuration, illustrated using 2D and 3D
ResNet34, for glaucoma classification from 2D fundus photography and 3D OCT. I
and II are different types of conversion layers, and their configurations are shown in
the list.

A solution is proposed hereafter and illustrated in Fig. 1. Two CNN branches
are used to extract features from a multichannel 2D image and a multichannel
3D volume, respectively. Furthermore, we use a third fusion branch to achieve
feature fusion at different scales. Since the dimensional features are of different
dimensions and sizes, we use additional conversion convolutional layers to har-
monize their shape before concatenating them. In these conversion convolution
layers, the parameters are calculated according to the size of the modality-specific
features.
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F3D (C × Z3D × X3D × Y3D) =⇒ F ′
3D (C × 1 × X3D × Y3D)

F2D (C × X2D × Y2D) −→ F ′
2D (C × X3D × Y3D)

where F is feature of modality, X,Y,Z,C represent the length, width, depth,
and number of channels of the features. =⇒ and −→ represent the 3D and
2D conversion convolutional layers respectively. The convolution kernel size and
stride of 3D conversion convolutional layers are (Z3D × 1 × 1) and (1 ×1 × 1).
For the 2D conversion layer, the stride is set to (2, 2) and the filter size is set
to (X2D − 2[X3D − 1], Y2D − 2[Y3D − 1]), without padding, to ensure that F ′

2D

matches the size of F ′
3D. The parameters of each convolutional layer are shown

in Fig. 1 for ResNet34.
We also extract the features from the 2D CNN block to reduce the number

of parameters of the fusion branch. In the end, the high-dimensional features of
the three branches are concatenated, and the classification layer is used to make
the final classification.

In addition to the advantages of intermediate fusion, hierarchical fusion also
considers features from different scales, enhancing the correlation between dif-
ferent modalities and increasing the accuracy of diagnosis.

Fig. 2. Data from three imaging modalities in the PlexEliteDR dataset.

3 Material and Experiments

We evaluated the proposed method using the public GAMMA challenge dataset
for glaucoma classification and a private dataset for proliferative DR (PDR)
classification: PlexEliteDR. For the GAMMA dataset, we analyzed clinical data
from 2D fundus images, and 3D OCT scans to classify glaucoma into three
groups based on visual features: no glaucoma, early glaucoma, and moderate or
advanced glaucoma. For the PlexEliteDR dataset, we investigated the fusion of
3 modalities: 3D structural OCT, 3D OCT angiography, and 2D line scanning
ophthalmoscope (LSO) for the classification of PDR and NPDR.



58 Y. Li et al.

3.1 Data

GAMMA Dataset is provided by Sun Yat-sen Ophthalmic Center, Sun Yat-
sen University, Guangzhou, China. There are 200 pairs of clinical modality
images in the dataset, 100 pairs in the training set, and 100 pairs in the test set.
Each pair contains a fundus image and an OCT volume. The OCT volumes were
acquired using a Topcon DRI OCT Triton machine. The OCT was centered on
the macula and had a 3 × 3 mm en-face field of view. The Kowa 2000 × 2992
and Topcon TRC-NW400 cameras were used to acquire fundus images [18].

There are 50 pairs of no glaucoma patients in the training set, 26 pairs
of early glaucoma patients, and 24 pairs of moderate or advanced glaucoma
patients in the training set. These pairs were divided as follows: 80 pairs for
training (41 pairs no glaucoma, 21 pairs early glaucoma, 18 pairs moderate or
advanced glaucoma) and 20 pairs for validation (9 pairs no glaucoma, 6 pairs
early glaucoma, 5 pairs moderate or advanced glaucoma).

PlexEliteDR Dataset is a private dataset. 3D structural OCT, 3D OCT
angiography and 2D LSO data were acquired simultaneously with a Plex R©Elite
9000 (Carl Zeiss Meditec Inc. Dublin, California, USA) as Fig. 2. Scanning pro-
tocols included 3 × 3 mm, 6 × 6 mm, and 15 × 9 mm. According to the Inter-
national Clinical Diabetic Retinopathy Disease Severity Scale (ICDR) scale, the
DR severity level was graded by a retina specialist using fundus photographs.

151 OCT volumes from 64 diabetic patients were collected for the binary
classification. This collection was divided as follows: 88 acquisitions (from 31
patients) for training, 28 acquisitions (from 14 patients) for validation and 35
acquisitions (from 19 patients) for testing. Thirty acquisitions (including 16 in
the train set, 5 in the validation set and 9 in the test set) had PDR.

3.2 Data Pre-processing

The original 2D and 3D images were too large to train a fusion network.
They were therefore cropped to remove black areas and resized. The follow-
ing dimensions were used: X = 224, Y = 164 and Z = 256 for GAMMA,
X = Y = Z = 100 for PlexEliteDR. For intermediate and hierarchical fusion,
2D images could be larger than 3D images: they were resized to 448 × 448 pixels
for GAMMA and 400 × 400 pixels for PlexEliteDR. Note that 2D and 3D data
are not spatially registered in GAMMA; they are only approximately centered on
the same anatomical structure (the optic nerve head). All modality are natively
registered in PlexEliteDR.

3.3 Implementation Details

Experiments were performed using 2D and 3D versions of ResNet [8] and
DenseNet [6]. These networks were used as is, or adapted for each fusion strat-
egy. To augment the data, RandomGamma, GaussianNoise, and flipping were
applied for all tests. Gradient descent was performed with the Adam optimizer,
which has an initial learning rate of 1e–4, and a weight decay rate of 1e–4.
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4 Results

4.1 GAMMA Dataset

We tested the performance of four ResNet networks on the same dataset:
ResNet34, ResNet50, ResNet101, and ResNet152. As a standard evaluation met-
ric for the multi-category classification task, Cohen’s Kappa was used to evaluate
the GAMMA dataset’s three-category results.

The best-performing models were selected from the validation set and tested
on the 100 pairs test set. The final Kappa results on the test set were computed
independently by the PaddlePaddle deep learning platform1 which is the host
platform for the GAMMA challenge.

We tested each modality separately, as well as the three fusion methods, and
the results are shown in Table 1.

Table 1. Kappa results of different fusion methods on the GAMMA dataset

Backbone Single modality (fundus image) Single modality (OCT) Early fusion Intermediate fusion Hierarchical fusion

ResNet34 0.6997 0.6841 0.6718 0.7547 0.7684

ResNet50 0.6555 0.5952 0.6896 0.7690 0.8404

ResNet101 0.6767 0.5794 0.7113 0.7551 0.8255

ResNet152 0.5207 0.4646 0.4642 0.6570 0.7816

Average 0.6382 0.5808 0.6342 0.7340 0.8040

The Kappa results above show that color fundus images outperform OCT
volumes when using data from a single modality. In addition, ResNet34 has
better performance, possibly because simple features of a single modality are
easy to learn. Although, according to the average of different backbones, 0.6382
is still far from a result that can be useful for diagnosis. Thus, single-modality
glaucoma classification is very ineffective.

Results for the early fusion were not significantly improved. The reason prob-
ably is that fundus and OCT images are not spatially registered in this dataset.

Intermediate fusion is a more suitable fusion algorithm in this case because
of the disparity between fundus images and OCT volumes, and the dual feature
extraction branch can effectively handle the large differences between modalities.
As a result, the performance of intermediate fusion is greatly improved compared
to the single-modality scenario. In addition, for ResNet152, we had to reduce the
batch size during training to avoid the device from exceeding the memory limit,
which is one reason for the poor performance of ResNet152.

The GAMMA challenge also uses intermediate fusion as its baseline [18]. In
the official baseline, two convolutional branches are used for intermediate fusion.
Based on 3D OCT, retinal thickness is used as a channel for the input of the 2D
convolutional branch in the algorithm. By contrast, we utilize 3D convolutional
branches to extract 3D OCT features, which allows us to fully utilize the spatial

1 https://aistudio.baidu.com/aistudio/competition/detail/119/0/introduction.

https://aistudio.baidu.com/aistudio/competition/detail/119/0/introduction
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features of 3D data. This is why our Kappa value of 0.734 for intermediate fusion
is higher than the official intermediate fusion result of 0.702.

Comparatively to intermediate fusion, hierarchical fusion is able to better
exploit correlations between features of different dimensions: the Kappa value
increased by 0.0700. These results support the efficiency of our hierarchical
fusion.

Specifically, our hierarchical fusion performs very well on ResNet50 and
ResNet101. To achieve a higher score in the GAMMA challenge, we selected
the models of ResNet50 and ResNet101 for further training. The training and
validation sets were re-divided and the checkpoint obtained from the previous
test was fine-tuned. Finally, we achieved a Kappa value of 0.8662 for ResNet50
and 0.8745 for ResNet101. For our hierarchical fusion, we improved the final
Kappa to 0.8996 by ensembling the predicted values of ResNet50 and ResNet101
models.

4.2 PlexEliteDR Dataset

For the PlexEliteDR dataset, the following backbones were investigated for each
method: ResNet50, ResNet101, DenseNet121, and DenseNet169. The Area under
the ROC Curve (AUC) was used to assess the binary classification performance
(Table 2).

Table 2. Results of different fusion methods on the PlexEliteDR dataset

Method Backbone AUC Sensitivity Specificity Improvement

Single modality (Structure) ResNet101 0.859 0.78 0.77 Baseline

Single modality (Flow) DenseNet169 0.816 0.78 0.85 –0.043

Single modality (LSO) DenseNet121 0.662 0.67 0.74 –0.197

Hierarchical fusion DenseNet121 0.911 0.86 0.88 +0.052

Early fusion DenseNet121 0.865 0.78 0.85 +0.006

Intermediate fusion DenseNet121 0.744 0.67 0.85 –0.115

Using a single modality, the structure data achieved the best performance:
AUC reaches 0.859 using ResNet101 (this is our baseline). Intermediate fusion
performed worse than baseline. Unlike the GAMMA dataset, the three modalities
are spatially aligned in PlexEliteDR, so the early fusion approach achieves good
results. Hierarchical fusion achieves the best results: AUC reaches 0.911 using
DenseNet121. The LSO images do not provide very distinct pathological details,
compared to fundus images, hence a more limited impact of information fusion.

5 Conclusion

This paper presents three fusion strategies based on deep learning: early fusion,
intermediate fusion, and hierarchical fusion. On glaucoma and diabetic retinopa-
thy classification tasks, they clearly outperform classification using a single
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modality. The novel hierarchical fusion approach is particularly promising, both
for glaucoma grading and proliferative DR detection. However, these experiments
should be replicated in larger datasets to demonstrate clinically useful detection
performance. Additionally, hierarchical fusion is a complex model, and the larger
number of parameters requires a robust hardware setup. Larger input sizes are
worth testing as hardware evolves.

Acknowledgements. The work takes place in the framework of the ANR RHU
project Evired. This work benefits from State aid managed by the French National
Research Agency under “Investissement d’Avenir” program bearing the reference ANR-
18-RHUS-0008.

References

1. Ahn, J.M., Kim, S., Ahn, K.S., Cho, S.H., Lee, K.B., Kim, U.S.: A deep learn-
ing model for the detection of both advanced and early glaucoma using fundus
photography. PLoS ONE 13(11), 1–8 (2018)

2. Asaoka, R.: Using deep learning and transfer learning to accurately diagnose early-
onset glaucoma from macular optical coherence tomography images. Am. J. Oph-
thalmol. 198, 136–145 (2019)

3. Benzebouchi, N.E., Azizi, N., Ashour, A.S., Dey, N., Sherratt, R.S.: Multi-modal
classifier fusion with feature cooperation for glaucoma diagnosis. J. Exp. Theoret.
Artif. Intell. 31(6), 841–874 (2019)

4. de Carlo, T.E., Romano, A., Waheed, N.K., Duker, J.S.: A review of optical
coherence tomography angiography (octa). Int. J. Retina Vitreous 1(1), 5 (2015).
https://doi.org/10.1186/s40942-015-0005-8
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Abstract. With a prevalence of 5 to 50%, Dry Eye Disease (DED) is
one of the leading reasons for ophthalmologist consultations. The diag-
nosis and quantification of DED usually rely on ocular surface analysis
through slit-lamp examinations. However, evaluations are subjective and
non-reproducible. To improve the diagnosis, we propose to 1) track the
ocular surface in 3-D using video recordings acquired during examina-
tions, and 2) grade the severity using registered frames. Our registration
method uses unsupervised image-to-depth learning. These methods learn
depth from lights and shadows and estimate pose based on depth maps.
However, DED examinations undergo unresolved challenges including a
moving light source, transparent ocular tissues, etc. To overcome these
and estimate the ego-motion, we implement joint CNN architectures with
multiple losses incorporating prior known information, namely the shape
of the eye, through semantic segmentation as well as sphere fitting. The
achieved tracking errors outperform the state-of-the-art, with a mean
Euclidean distance as low as 0.48% of the image width on our test set.
This registration improves the DED severity classification by a 0.20 AUC
difference. The proposed approach is the first to address DED diagnosis
with supervision from monocular videos.

Keywords: Dry Eye Disease · Self-supervised learning · Sphere fitting
loss

1 Introduction

Dry Eye Disease (DED) is a condition that damages the ocular surface and tear
film stability. DED can be traced back to a range of medical disorders, includ-
ing Sjögren’s syndrome, Parkinson, lupus, as well as smoking, contact lens, lasic
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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surgery, or allergies [14]. One of the ways to assess the damaged ocular surface
is through the staining [22]. The tear quality and quantity can be measured by
the tear break-up time (TBUT), i.e. the interval between an eye blink and a
tear break-up. Both ocular surface staining and TBUT have been used clinically
for over a century [2]. Algorithms have been proposed to automate the staining
(punctate dot grading) [18] and TBUT [17] by analyzing digital slit lamp record-
ings and using supervised learning. But these tasks are still challenging due to
eye motion and the video quality.
One way to help facilitate DED quantification is through image registration,
to compensate for eye motion and visualise the full eye. To achieve this goal
we take into account multiple camera views and estimate the camera motion
between them in an unsupervised manner using artificial intelligence (AI). The
proposed method “SiGMoid: Semantic & geometric monocular visual odome-
try”, learns how to predict both depth and egomotion, which allows for image
registration. This method improves automated DED classification compared to
a baseline.

Related works: Structure from motion (SfM) is a complex problem in
computer vision, whose aim is to reconstruct a 3D structure from a set of images.
SfM uses images with different viewpoints in order to reconstruct a scene. More
specifically, visual odometry (VO) is recovering the motion of a calibrated cam-
era. This requires both camera motion estimation as well as inferred depth. The
techniques differ in terms of what information is available as input [1]. Focusing
on monocular visual odometry, the latest and most promising methods are Deep
VO [19]. For more precise estimations, this includes learning depth, optical flow,
features and egomotion in a self-supervised manner. Unsupervised learning is
made possible by a fundamental element, photometric loss, which is the differ-
ence between a pixel distorted from the source image, by estimated depth and
pose, and the pixel recorded in the target view. Methods presented in [4,5,23]
take advantage of structures and semantic segmentation for unsupervised monoc-
ular learning of depth and egomotion. Semantic image segmentation assigns a
class to each pixel to indicate what is being represented. Semantics are used
to identify moving objects and allow for robust egomotion estimation. The 3D
geometry of the scene is used in [13] for more robust estimation. The method
uses a 3D iterative closest point (ICP) loss, without prior shape knowledge, along
with the photometric loss. In parallel, another team in [21] explores the use of
semantic segmentation of the scene for improvement as a novel 2D loss. They
also combine a 3D ICP loss, which is less specific than a sphere fitting loss for
our application. Lastly, a self-supervised spatial attention based depth and pose
estimation is proposed by [15]. The method is applied for capsule endoscopy
images and utilised synthetically generated data.
These methods fall short for our objective because they are heavily driven by
color, light disparity and shadows. In our examinations, just like many medical
examinations, the source of light is attached to the camera. Light changes result-
ing from camera motion imply that matched points will have different colors in
consecutive images. The resulting color variance is a disturbance and inhibits any
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learning through photometric loss, used in most methods. We propose a semantic
segmentation reconstruction loss that disregards any change in color and ensures
semantic constraint. This loss checks if matched points have the same semantic
label in consecutive images. It should be noted that, in previous methods, seman-
tic segmentation is only used to mask out moving/disturbing objects. Another
limitation of previous methods is that they generally don’t take advantage of the
known geometry of the scene. In contrast, we propose a shape fitting loss, which
penalizes unlikely depth maps, given the patient anatomy. This loss, which also
relies on semantic segmentation, is made unique to our application as a sphere
fitting loss. It is less complex than an ICP implementation yet influences more
specific constraints.

2 Proposed Method

We setup SiGMoid in the framework developed by Google, tested on autonomous
driving datasets [5,8,11]. Given the extracted frames from the examination
videos, and the camera intrinsic parameters, we want to learn how to trans-
form one frame onto another’s coordinate system. It involves learning the depth
of each frame and the egomotion between two. Our contributions are two new
losses, semantic reconstruction loss and a sphere fitting loss. We first use a pre-
viously trained segmentation network (based on Feature Pyramid Networks -
FPN [12]), to assign each pixel to the following classes: eyelid, sclera, cornea. All
pixels labeled as ‘eyelid’ are ignored in all training and inference since they have
no valuable information for the target applications (TBUT, punctate dot grad-
ing). The eyelid also moves with respect to the eyeball, and therefore violates
the assumption behind the photometric and semantic losses, and cannot be mod-
eled by a rigid (spherical) shape model. The predicted semantic segmentations
are then used for both training and inference. Our framework, detailed below
Fig. 1, includes two CNNs (DepthNet and EgomotionNet) joined by the seman-
tic reconstruction and photometric loss, which can be trained jointly (sharing
of weights). Although trained jointly, they can be used separately for inference.
Depth is inferred by DepthNet using a single image and simultaneously the cam-
era pose is computed from two frames in a sequence. Inputs to the CNNs are:
Frames I : [It−n, It, It+n] and the Semantic Segmentation S : [St−n, St, St+n] are
used for loss calculations.

1. Depth: a fully convolutional encoder-decoder architecture produces a depth
map from a single RGB frame.

Di = θ(Ii), θ : R(H×W×3) → R
(H×W ) (1)

2. Egomotion: a network takes three frames (ex. [It−n, It, It+n]) and predicts
transformations simultaneously

ψE(Ii−n, Ii) = (tx1 , ty1 , tz1 , rx1 , ry1 , rz1) (2)

ψE(Ii, Ii+n) = (tx2 , ty2 , tz2 , rx2 , ry2 , rz2) (3)
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Fig. 1. SiGMoid framework.

The losses used to obtain the warped image, using a differentiable image warping
operator φ(Ii,Dj , Ei→j) → Îi→j , make up the total loss for every pair of Îi→j−Ij
, Eq. 4 and are detailed below. The warping operator takes an RGB image Ii , a
depth map Dj , and the egomotion Ei→j , giving us the reconstructed Îj

th
image.

Ltotal = αaLSRL + αbLrecon + αcLSSIM + αdLDS + αeLSFL (4)

Semantic reconstruction loss (SRL) is the main supervision signal.

LSRL = min(‖Ŝi→j − Sj‖) (5)

Photometric loss (RECON) is similar to SRL except frames are used as input
to compare this reconstructed image Îi→j to the next frame Ij [4].

Lrecon = min(‖Îi→j − Ij‖) (6)

Structural similarity loss (SSIM) is used to assess the quality of the warping
[20]. SSIM combines comparisons of luminance, contrast and structure [20], and
we measure this between Îi→j and Ij .

LSSIM = 1 − SSIM(Îi→j , Ij) (7)

SSIM(Îi→j , Ij) =
(2μÎi→j

μIj + l1)(2σÎi→jIj
+ l2)

(μ2
Îi→j

+ μ2
Ij

+ l1)(σ2
Îi→j

+ σ2
Ij

+ l2)

where μÎi→j
, μIj are the average , σ2

Îi→j
, σ2

Ij
the variance, and σÎi→jIj

covariance

of Îi→j , Ij . l1 = (k1L)2, l2 = (k2L)2, L the dynamic range of the pixel-values,
k1 = 0.01, k2 = 0.03.
Depth smoothness (DS) encourages smoothness by penalizing depth disconti-
nuity if the image shows continuity in the same area [7].

LDS = |∇xDi|e−∇xIi | + |∇yDi|e−∇yIi | (8)
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where ∇x,∇y are image gradients in the horizontal and vertical direction, respec-
tively.
Sphere fitting loss (SFL) is implemented for what is estimated to be the eye’s
shape: two intersecting spheres [16]. A smaller anterior transparent sphere is the
cornea and a posterior sphere representing the sclera. In order to implement this
loss, we first estimate a depth map, and then using the semantic segmentation,
we calculate the sphericity of the two regions: cornea and sclera. As detailed
in (13) we first use the segmentations to obtain the depth predictions of either
regions. The sphere fitting is then implemented twice for both, the loss is the
sum of both errors. We apply a threshold of 0.5 before calculating this loss to
ensure either regions are present in the frame. We define our threshold as the
count of non zero pixels pertaining to either regions and dividing that by the
total number of pixels of the frame. Once a frame’s calculated region presence
exceeds the threshold, we use the depth estimations for either the corneal or
scleral region and convert it to a 3D point cloud projection using the inverse of
the intrinsic matrix. We then use the estimated point cloud and apply a least
squares sphere fitting. Following the method proposed by Jekel, we are able to
determine the best sphere center for the given data points [10]. By rearranging
the terms in Eq. 9, we can express the equation in matrix notation and solve for
�c (see Eq. 11). By fitting the n data points xk, yk, zk, we can solve for the centre
coordinates of the sphere x0, y0, z0 and the radius r.

(x − x0)2 + (y − y0)2 + (z − z0)2 = r2 (9)

x2 + y2 + z2 = 2xx0 + 2yy0 + 2zz0 + r2 − x2
0 − y2

0 − z20 (10)
�f = A�c (11)

�f =

⎡
⎢⎢⎢⎣

x2
k + y2

k + z2k
x2
k+1 + y2

k+1 + z2k+1
...

x2
n + y2

n + z2n

⎤
⎥⎥⎥⎦ A =

⎡
⎢⎢⎢⎣

2xk 2yk 2zk 1
2xk+1 2yk+1 2zk+1 1

...
...

...
...

2xn 2yn 2zn 1

⎤
⎥⎥⎥⎦�c =

⎡
⎢⎢⎣

x0

y0
z0

r2 − x2
0 − y2

0 − z20

⎤
⎥⎥⎦

(12)
Sphere fitting loss LSFL is a mean square error (MSE) between the fitted

sphere and the data points. The sphericity for each of the corneal and scleral
regions have a weight αe. With both regions fitted to a sphere we then calculate
the loss for each pixel p.

LSFL = LcorneaSFL
+ LscleraSFL

(13)

LcorneaSFL
=

1
pc

pc∑
k=1

((xck − xc0) − rc)2,LscleraSFL
=

1
ps

ps∑
k=1

((xsk − xs0) − rs)2

(14)
where pc are pixels, xck data points, xc0 centre coordinate on the corneal surface,
rc the cornea radius and ps are pixels, xsk data points, xs0 centre coordinate on
the scleral surface, rs the estimated sclera radius.
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3 Experiments and Results

Dataset. The dataset was collected from slit lamp videos taken during the exam-
ination of patients with Sjögren’s syndrome (PEPPS study). This is a prospec-
tive cohort evaluating the ocular surface damages in patients with Sjögren’s
syndrome followed at the university hospital of Brest. The videos were recorded
using the Haag Streit BQ 900 slit lamp and the camera module CM 900 (res-
olution 1600×1200, 12 fps, magnification ×10). The ocular surface was anal-
ysed after illumination with white light (lissamine green evaluation) followed by
cobalt blue light and interposition of a yellow filter (fluorescein evaluation). Our
database contains 26 videos from 26 patients.

3.1 SiGMoid

Using our dataset, we conducted several experiments mainly using transfer learn-
ing. We used models pre-trained on the Cityscapes dataset (C) [6,8].

Preprocessing. Calibration was performed using Matlab (MathWorks, Natick,
MA) with images of a planar checkerboard (8 × 7 squares of 2 × 2 mm). We
employed 10 calibration images (pattern placed at different poses). The intrinsic
parameters obtained from the calibration were the focal length fx = fy = 3758.9
pixels, and the central points cx = 138.8, cy = 85.4.

To prepare the data we first use our trained FPN model to predict the seman-
tic segmentation for each of the frames. For training we produce three-frame
sequences with an interval of n = 10 frames. This is a setup we chose given that
our videos have 12 frames per second and the motion between consecutive frames
is usually small. This resulted in 15,275 three-frame sequences for training.

Evaluation. Unlike existing methods, we do not have access to ground truth
depth and odometry. We manually annotated punctate dots (damaged areas) on
the surface of the eye, and visible veins on the sclera. To visualise the accuracy
of our predictions, we warp a source frame into a target frame and tracked the
marked points. By using the equation ps ∼ KT̂t−→sD̂t(pt)K−1pt, we project
source frame pixels ps to the target frame pt. Our evaluation used the inverse
warping which first requires the depth map D̂t prediction of the target frame, and
then the egomotion from source to target which also gives us the transformation
matrix T̂t→s. Evaluation was performed on a test set of 3 patients with 54 frames.
Our test set consists of 126 points on the sclera on vein intersections and punctate
dots, 33 points on the cornea of visible punctate dots.

Training Setup. The baseline we used to compare is the implementation of [5],
which had to be trained in intervals due to the loss diverging to infinity, as well
as the predicted egomotion matrix being non-invertible. Baseline and SiGMoid
were trained using a learning rate 0.0002, batch size of 8, SSIM weight 0.15, and
depth smoothing weight 0.04 [4]. The baseline L1 reconstruction weight 0.85 and
SiGMoid’s training setup was using L1 reconstruction weight 0.15, L2 semantic
reconstruction loss weight 0.85, sphere fitting weight 10000 (given the very small
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distances this required a big weight). All models were trained until 200 epochs,
with the best model (lowest loss achieved) saved for inference.

Results. Table 1 shows the evaluation results on our test set by different meth-
ods. By defining the two novel losses, we are able to stabilise training and avoid
the loss diverging and obtain better results. Despite the increase in computa-
tion during training via the losses, our inference time remains similar to the
baseline. In the following experiments, we preprocessed the data using a frame
step n = 10. We compared two configurations: SiGMoid no. 3 with only LSRL,
SiGMoid no. 4 with both contributions LSRL and LSFL.

The mean Euclidean distance in pixels is lowest in SiGMoid no. 4 with both
CNN inputs being the frames. Our proposed method achieves the lowest error
when compared to the baseline. The reconstruction improves in all SiGMoid
implementations proving that a simple photometric loss used in [5] is less efficient
for our data. We also compute a mean inter-grader error (result no. 5). We asked
three graders to re-annotate the test set points giving us an average human error
of 4.81 px. We visualise the depth map predictions in Fig. 2.

Table 1. Experiment details and results.

No Method Frame step LSRL LSFL Mean Euclidian (px) Mean Euclidan (%)

1 Casser [5]* No – – 29.08 1.82

2 Casser [5]* Yes – – 27.19 1.70

3 SiGMoid no. 3 Yes Yes No 22.48 1.40

4 SiGMoid no. 4 Yes Yes Yes 7.7 0.48

5 Grader errors NA NA NA 4.81 0.30

CNN Inputs → DepthNet : Frames (I), EgomotionNet : Frames (I)
∗denotes trained in multiple intervals due to loss divergence → ∞

3.2 DED Diagnosis: Classification

In order to evaluate our proposed method in a diagnostic aspect, we apply it to
the automated classification of mild versus severe DED. Mild DED (respectively
severe DED) is defined as a corneal Oxford score ≤ 1 (respectively ≥ 2) [3].

Preprocessing. We train the baseline with the raw frames from the videos of
the examinations. We compare this with a mosaic from a pair of frames obtained
using our registration method and selecting only the frames with a warping error
(SRL) less than 5%. This resulted in ≈ 35% of frames being removed.

Training Setup. The training setup was identical for both experiments; learn-
ing rate 2e-06, batch size of 64 and using resnet50 as backbone. Due to data
scarcity, an additional dataset of 28 videos acquired using a different examina-
tion protocol was used as the validation set for our DED classification training.
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(a) Frame (b) Segmentation (c) Casser [5] (d) SiGMoid 4

Fig. 2. CNN inputs and depth map predictions.

The data was split into ; 35 eyes for the train, 39 for the validation and 14 for
the test. All eyes from the same patient were assigned to the same set.

Evaluation. Area under the (receiver operating characteristic) curve (AUC),
accuracy (ACC), precision and recall were used as metrics. The validation and
test evaluation were performed per eye by using a majority vote for the n frames
per patient. As shown in Table 2, the classification improves when using the
registered frames obtained using SiGMoid. All metrics improve with a margin of
0.08–0.22 validating the application of our proposed method to DED grading.

Table 2. Classification evaluation results

No Method Backbone AUC ACC Precision Recall

1 Baseline resnet50 [9] 0.69 0.57 0.73 0.67

2 SiGMoid resnet50 [9] 0.89 0.79 0.81 0.83

4 Discussion and Conclusion

We proposed SiGMoid, a self-supervised image registration algorithm towards
DED diagnosis and quantification from slit lamp videos. This is the first use, to
our knowledge, of monocular DED examinations in a self-supervised manner for
this application. Our results validate that, due to the color/illumination variance
present in the examinations, the baseline method is not sufficient. Although both
contributions improved our results, we see a more significant improvement from
the sphere fitting loss. Our method also has the closest mean euclidean distance
to what we considered human error. Additional data acquired from a different
acquisition device could enable to robustify our approach. In particular, it could
allow us to test how generalizable our method is and also expand it through
fine-tuning. Finally, we demonstrated that obtaining an accurate reconstruction
is beneficial to the classification of DED grading.
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Abstract. Assuming the robustness of a deep learning model to subop-
timal images is a key consideration, we asked if there was any value in
including training images of poor quality. In particular, should we treat
the (quality) threshold at which a training image is either included or
excluded as a tunable hyperparameter? To that end, we systematically
examined the effect of including training images of varying quality on
the test performance of a DL model in classifying the severity of diabetic
retinopathy. We found that there was a unique combination of (categori-
cal) quality labels or a Goldilocks (continuous) quality score that gave rise
to optimal test performance on either high-quality or suboptimal images.
The model trained exclusively on high-quality images yielded worse per-
formance in all test scenarios than that trained on the optimally tuned
training set which included images with some level of degradation.

Keywords: Image quality · Tunable hyperparameter · Deep learning

1 Introduction

A common pre-processing step in deep learning (DL) applied to retinal image
analysis is to exclude images of sub-optimal quality before training and testing a
model for a given downstream task. For instance, Poplin et al. filtered out 12% of
96,082 UK Biobank (UKBB) retinal images of ‘poor quality’ for a downstream
task of predicting different cardiovascular risk factors [14]. Likewise, 12% of
UKBB retinal images of ‘very poor quality’ were excluded in another study
aiming to predict refractive error [18]. Lin et al. removed 14,003 retinal images
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that were ‘subjectively’ deemed to be poor – or if the optic disc and fovea were
not present simultaneously – from a total of 35,126 EyePacs images, with a view
to training a model to detect referable diabetic retinopathy (DR) [11].

The tacit assumption of removing poor images in the application of DL is
that only input images of relatively high quality are to be used when a model
is deployed in the real world. Such a model will, conceivably, not generalise
well to images with some degradation arising from, say, naturally occurring
senile eye conditions like cataract, or sub-optimal patient positioning leading
to non-uniform illumination. We are therefore drawn to think that careful inclu-
sion of images with some appropriate level of degradation may in fact make a
model more versatile, i.e. robust to a wider distribution of image quality. Indeed,
segmentation of retinal sublayers and choroid in optical coherence tomography
(OCT) images improves when a DL model is trained on degraded images [9].
Similar observation has been made when classifying non-medical images with
DL [3].

But how do we determine if a given training image has an appropriate level of
degradation, such that it is high enough to add some useful noise but low enough
to not undermine the model? We propose that the image quality threshold, at
which we decide if an image should or should not be used for training, can
be treated as a tunable hyperparameter. Our ultimate goal is to maximise the
performance of a trained model on the unfiltered test set to simulate real-world
distribution of image quality. This is in contrast to studies where the model is
trained and tested on filtered datasets. While some may argue that a simpler
approach is to apply various levels and types of image degradation [4], and settle
on the level that yields the best test performance, we are of the opinion that
such artificial image degradation, e.g. gaussian blur, is not nuanced enough to
capture the kind of degradation particular to a retinal image, e.g. areas of under-
and over-exposure during acquisition.

The idea that image quality threshold can be treated as a tunable hyperpa-
rameter raises the question of whether it should be done on a categorical or con-
tinuous scale. In this regard, it is conceivable that superior outcome (as judged
by the test performance of a downstream model trained on the resultant, filtered
dataset) is contingent upon one’s ability to partition training images based on
their quality at as granular a level as possible – since this renders any effect of
nuanced variation in image quality discernible. Thus, the main objectives of our
work are to see if:

– including images of poorer quality in the training set has a positive bearing
on the test performance (particularly on the unfiltered test set) of a DL model
for a downstream task of classifying DR severity. If so, should we treat quality
threshold as a tunable hyperparameter?

– tuning the quality threshold on a continuous scale offers additional value
(more optimal test performance) than tuning on a categorical scale. We
hypothesise an increase in test performance (model made more robust) as
the training set becomes noisier up to a point before falling.
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2 Methods

2.1 Quality Prediction on a Categorical Scale and Continuous Scale

To predict image quality on a categorical scale, we utilised Multiple Color-space
Fusion Network (MCF-Net), a DL model that achieved a state-of-the-art test
accuracy of 91.75% [6]. Briefly, an image is considered good if there are no low-
quality factors; usable if there are some low-quality factors but important fea-
tures like the optic disc are still clear enough for ophthalmological assessment
to be carried out; reject if a full assessment is impossible.

Description of the Adapted (regression) Model. To turn the original
model into a regression model, we removed the softmax function corresponding
to each of the 5 loss functions. Mean absolute error (MAE) was used in place
of the original cross-entropy loss function. The output of the adapted model
(normalised between 0 and 1) would be closer to 0 for a high-quality image.
The model achieved an MAE of 0.154 on the test set. More information on the
adapted model is available as supplementary material (S1).

Fig. 1. Distribution of continuous quality scores of the entire EyePACS dataset (n =
88,702) as predicted by the regression model (left) and as represented by the softmax
output (Reject class, i.e. greater value corresponds to poorer quality) of the original
classification model (right). Each hue represents a different quality class.

As a baseline approach (owing to its simplicity), we also extracted the soft-
max output in the final classification layer of the original (classification) model.
In theory, the softmax output represents the confidence of the model in assign-
ing an input image to a particular class label, e.g. Reject, and may therefore be
treated as a continuous quality score of some sort. However, the distribution of
the quality scores as represented by the softmax output is qualitatively inferior,
i.e. as expected, cross-entropy loss function biases softmax output towards the
extremums, to those predicted by the regression model (Fig. 1). Tuning the qual-
ity filter threshold using the softmax output would conceivably be less granular,
e.g. setting the threshold to 0.4 or 0.5 would not make much of a difference to
quality distribution, so we settled on the quality scores predicted by the regres-
sion model for all experiments.
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Validation of the Regression Model. We first extracted the vascular
network of 10,044 randomly selected Kaggle EyePACS retinal images using
Deformable U-Net [8]. It is widely held that low image quality has a detrimen-
tal effect on vessel segmentation [12,16]. As such, one would generally expect
a smaller proportion of vascular network to be extracted from poorer images
(Fig. 2). In line with this, images predicted as having poorer quality tend to
return a smaller proportion of vascular network (Pearson’s r = –0.69; p < 0.001;
see S4).

Fig. 2. Examples of images predicted as having superior quality (top left) and inferior
quality (bottom left), with a quality score of 0.0 and 0.8, respectively, by the regression
model. The extracted vascular network corresponding to each image is also displayed.
A larger proportion of vascular network can be extracted from the high-quality image
compared with the poor-quality one.

2.2 Effect of Varying Image Quality Threshold

DR is a common diabetic complication that affects the retina. Timely treatments
are required to prevent or minimise vision loss when DR progresses to more severe
stages, e.g. growth of new, leaky blood vessels. As such, many DL algorithms
have been developed over the past few years to classify DR severity, with a
view to aiding large-scale DR screening programmes [13]. The Kaggle EyePACS
dataset was used in this study to elucidate the effect of varying quality threshold
on the downstream DR classification task. Each image is labelled with an integer
representing DR severity (ranges from 0 to 4) [20].

We should point out that the overwhelming majority of images graded as
having the most advanced stage of DR (level 4) are of poorer quality (Fig. 3;
refer also to the figure in S2). This naturally leads one to wonder if excluding
poorer training images might bias a downstream model against severe DR. The
original dataset (n = 88,702) was made up of a training set (40%) and a test set

https://www.kaggle.com/c/diabetic-retinopathy-detection
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Fig. 3. Frequency of each quality label as predicted by the original MCF-Net across
different DR severities. Similar figure using continuous score can be found in S2.

(60%). We used 30% (n = 10,538) of training images to build a separate valida-
tion set. Images in each sub-dataset were filtered based on different pre-defined
(either categorical or continuous) quality thresholds. A ResNet-50 pre-trained on
ImageNet was then fine-tuned (detailed in S3) on the different resultant training
sets, before comparing their test performance with one another.

3 Experiments

3.1 Altering Quality Threshold on a Categorical Scale

As shown in Table 1, training the model on the unfiltered (G+U+R) training
set consistently yielded the highest test accuracy across different combinations
of quality labels – including the unfiltered test set. That is, using poorer images
on top of good images (G+U+R) gave rise to optimal performance on the test
set comprised of exclusively good images (80.63%), which was even higher than
the model trained exclusively on good images (79.08%). This is consistent with
observation by Zhou et al. [22] that fine-tuning a model on poor images (origi-
nally trained on good images) did not hurt the model’s performance on ‘clean’
data. Our observation therefore challenges conventional wisdom (see conclusion
in [4]) that poor training images have undesirable effect on the test performance
of a model, which presumably motivates the exclusion of suboptimal images in
studies cited in Sect. 1.

One caveat, however, is that the gain in performance accorded by the
G+U+R training set in all test scenarios might arise largely as a result of its
sheer size (n = 24,588) [17]. That said, the fact that a model trained on U+R
– notwithstanding its small size (n = 13,023) – still performs better on all test
sets compared with a model trained on the much larger G+U training set (n
= 20,458), indicates that the observed difference in performance might still be
attributable to a variation in quality distribution as opposed to the size of the
training set.

What gives Rise to the Superior Performance of G+U+R? Previous
experiments were repeated after applying just one of the following conventional
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Table 1. Test accuracies (row) across different training sets (column). Best overall
performance is highlighted in bold. G = ‘Good’; U = ‘Usable’; R = ‘Reject’.

Test Train
G+U+R (n = 24,588) G+U (n = 20,458) G+R (n = 15,695) U+R (n = 13,023) G (n = 11,565)

G+U+R 78.24% 75.29% 76.11% 76.29% 75.72%

G+U 79.26% 76.74% 77.26% 77.34% 77.12%

G+R 78.66% 75.71% 76.63% 76.75% 76.36%

U+R 76.12% 72.49% 73.68% 74.11% 72.73%

G 80.63% 78.44% 78.85% 78.75% 79.08%

U 77.48% 74.53% 75.18% 75.48% 74.56%

R 73.25% 68.21% 70.53% 71.24% 68.89%

Table 2. Test accuracies (row) across different training sets (column), augmented
such that the resultant number of training images matches that of G+U+R (n =
24,588). G = ‘Good’; U = ‘Usable’; R = ‘Reject’; A = ‘Augmentation’.

Test Train
G+U+A (n = 24,458) G+R+A (n = 24,195) U+R+A (n = 24,023) G+A (n = 24,130)

G+U+R 75.28% 74.51% 76.04% 73.80%

G+U 76.68% 75.77% 76.95% 74.93%

G+R 75.70% 75.19% 76.58% 74.65%

U+R 72.57% 71.72% 73.97% 70.95%

G 78.38% 77.66% 78.38% 76.98%

U 74.52% 73.30% 75.09% 72.24%

R 68.47% 68.41% 71.62% 68.23%

augmentation techniques to each randomly chosen training image: random rota-
tion of no greater than 30◦, vertical flip, horizontal flip and Gaussian blur. 3
of these 4 techniques were not expected to alter image quality so the quality
distribution between the original and augmented datasets could be assumed to
be broadly similar. The number of augmented images was predefined such that
the size of the resultant training set would be comparable to that of G+U+R (n
= 24,588), since our primary aim was to increase the size of the smaller training
sets while preserving their quality distribution. Any difference in test perfor-
mance between G+U+R could therefore be attributed largely to a variation in
quality distribution.

Comparing the test performance of the model trained on G+U+R in Table 1
to that of the models trained on the different augmented training sets (Table 2),
the former model still had a clear edge over all latter models. Importantly,
G+U+R’s superior performance was evident across all test sets, including those
whose quality distribution differed from itself. For instance, even after increas-
ing the size of the U+R training set from 13,023 to 24,023, its performance on
the U+R test set (73.97%) still lagged far behind that of the model trained
on G+U+R (76.12%). The inferior performance of the augmented training sets
vis-a-vis G+U+R training set in all test scenarios also lends credence to our
proposition that conventional augmentations fail to capture the nuanced degra-
dation in, and variation between, naturally acquired retinal images.

On a side note, the paradoxical observation that the G+A training set
resulted in poorer test performance (e.g. 76.98% on G test set) than the G
training set (79.08% on G test set) despite the former’s significantly larger size
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could plausibly be the result of exacerbated class imbalance, which was already
severe before augmentation (around 75% of G training images did not have DR).
This unreservedly biased the model to level 0 DR (S5). However, it is unclear
how augmentation could have worsened class imbalance as training images were
randomly augmented with uniform probability. Taken together, our findings can
only parsimoniously suggest that the optimally tuned training set does not owe
its superior performance to its sheer size.

‘Clean’ Training Set Biased Model Against Severe DR. To see if training
the model on exclusively good images would bias a model against more severe
levels of DR (discussed in 2.2), we computed the model’s accuracy for classifying
images with level 3 and level 4 DR taken from the G+U test set. As hypothe-
sised, training the model on good images alone undermined its ability to classify
level 3 DR (15.72%) and level 4 DR (0%) compared with the test performance
gained by using the optimally tuned G+U+R training set (36.12% and 24.00%,
respectively). Augmenting the smaller training sets also did not improve their
performance anywhere near that seen with G+U+R. This further justifies our
contention against indiscriminate exclusion of poor training images and supports
the notion of treating quality threshold as a tunable hyperparameter.

3.2 Altering Quality Threshold on a Continuous Scale

Quality threshold was gradually increased from 0.10 to 1.00, i.e. progressively
poorer images are included at each step. All training details, e.g. model, opti-
miser, learning rate, seed for validation-test split, etc., were identical to previous
experiments to allow for a fair comparison of results. The performance of the
model trained on each resultant (filtered) training set was assessed based on
its accuracy on two different test sets, i.e. unfiltered and ‘Good’ (based on the
original MCF-Net classification) images. As Fig. 4 shows, the performance of
the model tends to increase on both test sets with the inclusion of increasingly
poorer images in the training set. The performance then peaked at 79.83% and
77.65% on the ‘Good’ and unfiltered test sets, respectively, when the threshold
was set to 0.72, and dropped from that point on.

This observation is consistent with our postulation about the presence of a
Goldilocks level of image quality. Images beyond this optimal point are of such
poor quality that they only serve to undermine the model. In support of this we
observed disproportionately large changes in test accuracy as the threshold was
changed from the optimal point to 1.00 and from 0.66 to the optimal point, i.e.
–0.89% and +1.66%, despite relatively small changes in the number of images,
i.e. +497 and +529 (see S6 for full table). Some ‘Reject’ images were poorer still
and had undesirable effect on test performance. Conversely, poor though those
529 additional images included at the optimal point were, they were beneficial
insofar as they helped the model learn some ‘usable’ noise. As with before,
the fact that adding increasingly poorer training images improved the model’s
performance on good images up until the optimal point contradicts conventional
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Fig. 4. Classification accuracy of the downstream model trained on different datasets
filtered as per varying pre-defined continuous quality thresholds on two different test
sets: unfiltered (blue) and ‘good’ (categorical quality) images (orange). (Color figure
online)

wisdom that using exclusively high-quality training images would yield optimal
performance on high-quality test images. Taken together, the very presence of
this optimal point which lies at some distance from the expedient threshold of
1.00 (i.e. inclusion of all images) further strengthens our justification that quality
threshold can – and should indeed be – treated as a tunable hyperparameter.

3.3 Tuning on a Continuous Scale: Does it Confer Additional
Value?

When quality threshold was tuned on a three-level categorical scale, the highest
classification accuracy on the unfiltered and ‘Good’ test sets came from the model
trained on G+U+R, i.e. 78.24% and 80.63%, respectively (Table 1). If tuning
the threshold on a finer scale had an additional benefit, one would expect the
accuracy of the model on the same test sets to be even higher. However, the test
accuracy from tuning the threshold on a continuous scale was in fact slightly
lower – 77.40% and 79.83%, respectively (Fig. 4). That said, our results should
not be construed as evidence against the use of continuous over categorical scale
because we had not been able to fully account for the stochastic nature of model
training and evaluation, e.g. variation in minibatch images across runs, etc. This
is evident if one considers the fact that the test accuracy of the model from the
‘continuous’ experiments with quality threshold set to 1.00 did not agree with
its categorical equivalent (G+U+R training images).

4 Discussions and Conclusions

Considering the diminishing returns of increasing network complexity [2,21] and
size of training data [17] in the domain of DL, it is apt that we focus our present
work on the quality of input images. In particular, we propose – and have pro-
vided empirical justification – that image quality threshold should be treated
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as a tunable hyperparameter. There is ample demonstration of the detrimental
effect of synthetic image degradation on the performance of DL models trained
on ‘clean’ datasets [1,4,7,9,15,19]. In line with this, natural sources of image
degradation have also been shown to reduce the performance of a DL model
trained exclusively on high-quality retinal images [21]. Our work is therefore
driven by a desire to bring about a paradigm shift away from training a model
exclusively on high-quality images to carefully curating a training set that also
includes some suboptimal images. Indeed, when tested on poorer images (e.g.
U test set) – in relation to the G test set – the G training set experienced the
largest drop in accuracy among all training sets (Table 1).

To mitigate poor robustness to noise, much work has focused on retrain-
ing or fine-tuning an existing model with an augmented dataset – e.g. contrast
reduction, Gaussian noise, defocus blur, etc. [5,9,19,22]. While these studies
have unequivocally demonstrated an improvement in model’s performance, this
has only been demonstrated in synthetically degraded test images. It remains
(largely) unclear how close such augmentations mimic naturally occurring degra-
dation particular to retinal images, and if they can equally help a model gener-
alise to such natural degradation as they are to synthetic degradation. Indeed,
our concern is not unfounded because even generalisation across different types
of synthetic degradation - from Gaussian noise to Gaussian blur [5] or from uni-
form defocus blur to oriented motion blur [19] - is not guaranteed. Our finding
that the model trained on the augmented G training set did not have better
performance on the poorer U test set than the model trained on the original
G training set therefore fills the aforementioned gap by indicating that augmen-
tation has limited generalisability to naturally occurring degradation. Our work
also sets the scene for a solution centring on tuning the quality threshold for the
training set.

Given that the stochastic nature of model training and evaluation has not
been fully accounted for in this study, future studies could repeat each set of our
experiments multiple times. This would allow one to better elucidate if there is
any additional value in tuning the quality threshold on a continuous scale. Future
work should also carry out a systematic investigation of the generalisability of
other (more nuanced) augmentations such as contrast reduction, localised blur,
etc. to naturally occurring degradation to help us confidently rule out the benefit
of augmentation over inclusion of poor images. Moreover, other DL-based retinal
image quality models could be used in addition to MCF-Net to verify the central
thesis of this paper. To the best of our knowledge, we are the first to investigate
the effect of tuning quality threshold on a downstream task related to retinal
pathology. As we focused on DR, future work could make use of other retinal
datasets [10], e.g. PALM, to see if similar conclusions apply to other diseases
such as age-related macular degeneration.

https://ieee-dataport.org/documents/palm-pathologic-myopia-challenge
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1. Akkoca Gazioğlu, B.S., Kamaşak, M.E.: Effects of objects and image quality on
melanoma classification using deep neural networks. Biomed. Sig. Process. Con-
trol 67, 102530 (2021). https://doi.org/10.1016/j.bspc.2021.102530, https://www.
sciencedirect.com/science/article/pii/S1746809421001270

2. Canziani, A., Paszke, A., Culurciello, E.: An analysis of deep neural network mod-
els for practical applications. CoRR abs/1605.07678 (2016). http://arxiv.org/abs/
1605.07678

3. da Costa, G.B.P., Contato, W.A., Nazare, T.S., Neto, J.E.S.B., Ponti, M.: An
empirical study on the effects of different types of noise in image classification
tasks, September 2016. http://arxiv.org/abs/1609.02781

4. Dodge, S., Karam, L.: Understanding how image quality affects deep neural net-
works, April 2016. http://arxiv.org/abs/1604.04004

5. Dodge, S.F., Karam, L.J.: Quality resilient deep neural networks. CoRR
abs/1703.08119 (2017). http://arxiv.org/abs/1703.08119

6. Fu, H., Wang, B., Shen, J., Cui, S., Xu, Y., Liu, J., Shao, L.: Evaluation of retinal
image quality assessment networks in different color-spaces, July 2019. https://
doi.org/10.1007/978-3-030-32239-7 6, http://arxiv.org/abs/1907.05345

7. Jeelani, H., Martin, J., Vasquez, F., Salerno, M., Weller, D.S.: Image quality affects
deep learning reconstruction of MRI. In: 2018 IEEE 15th International Symposium
on Biomedical Imaging (ISBI 2018), pp. 357–360 (2018). https://doi.org/10.1109/
ISBI.2018.8363592

8. Jin, Q., Meng, Z., Pham, T.D., Chen, Q., Wei, L., Su, R.: Dunet: a deformable
network for retinal vessel segmentation. Knowledge-Based Systems 178, 149–162
(2019). https://doi.org/10.1016/j.knosys.2019.04.025, http://dx.doi.org/10.1016/
j.knosys.2019.04.025

9. Kugelman, J., Alonso-Caneiro, D., Read, S.A., Vincent, S.J., Chen, F.K., Collins,
M.J.: Effect of altered oct image quality on deep learning boundary segmenta-
tion. IEEE Access 8, 43537–43553 (2020). https://doi.org/10.1109/ACCESS.2020.
2977355

10. Li, T., et al.: Applications of deep learning in fundus images: a review. Med. Image
Anal 69, 101971 (2021). https://doi.org/10.1016/j.media.2021.101971, https://
www.sciencedirect.com/science/article/pii/S1361841521000177

11. Lin, G.M., et al.: Transforming retinal photographs to entropy images in deep
learning to improve automated detection for diabetic retinopathy. J. Ophthalmol.
2018 (2018). https://doi.org/10.1155/2018/2159702

12. Moccia, S., De Momi, E., El Hadji, S., Mattos, L.S.: Blood vessel segmentation
algorithms - review of methods, datasets and evaluation metrics. Comput. Meth-
ods Program. Biomed. 158, 71–91 (2018). https://doi.org/10.1016/j.cmpb.2018.
02.001, https://www.sciencedirect.com/science/article/pii/S0169260717313421

13. Ng, W., et al.: Updates in deep learning research in ophthalmology. Clin. Sci.
135(20), 2357–2376 (2021). https://doi.org/10.1042/CS20210207

14. Poplin, R., et al.: Prediction of cardiovascular risk factors from retinal fundus
photographs via deep learning. Nat. Biomed. Eng. 2, 158–164 (2018). https://doi.
org/10.1038/s41551-018-0195-0

15. RichardWebster, B., Anthony, S.E., Scheirer, W.J.: Psyphy: a psychophysics driven
evaluation framework for visual recognition. IEEE Trans. Pattern Anal. Mach.
Intell. 41(9), 2280–2286 (2019). https://doi.org/10.1109/TPAMI.2018.2849989

https://doi.org/10.1016/j.bspc.2021.102530
https://www.sciencedirect.com/science/article/pii/S1746809421001270
https://www.sciencedirect.com/science/article/pii/S1746809421001270
http://arxiv.org/abs/1605.07678
http://arxiv.org/abs/1605.07678
http://arxiv.org/abs/1609.02781
http://arxiv.org/abs/1604.04004
http://arxiv.org/abs/1703.08119
https://doi.org/10.1007/978-3-030-32239-7_6
https://doi.org/10.1007/978-3-030-32239-7_6
http://arxiv.org/abs/1907.05345
https://doi.org/10.1109/ISBI.2018.8363592
https://doi.org/10.1109/ISBI.2018.8363592
https://doi.org/10.1016/j.knosys.2019.04.025
http://dx.doi.org/10.1016/j.knosys.2019.04.025
http://dx.doi.org/10.1016/j.knosys.2019.04.025
https://doi.org/10.1109/ACCESS.2020.2977355
https://doi.org/10.1109/ACCESS.2020.2977355
https://doi.org/10.1016/j.media.2021.101971
https://www.sciencedirect.com/science/article/pii/S1361841521000177
https://www.sciencedirect.com/science/article/pii/S1361841521000177
https://doi.org/10.1155/2018/2159702
https://doi.org/10.1016/j.cmpb.2018.02.001
https://doi.org/10.1016/j.cmpb.2018.02.001
https://www.sciencedirect.com/science/article/pii/S0169260717313421
https://doi.org/10.1042/CS20210207
https://doi.org/10.1038/s41551-018-0195-0
https://doi.org/10.1038/s41551-018-0195-0
https://doi.org/10.1109/TPAMI.2018.2849989


Retinal Image Quality as a Tunable Hyperparameter 83

16. Singh, N., Kaur, L.: A survey on blood vessel segmentation methods in retinal
images. In: 2015 International Conference on Electronic Design, Computer Net-
works Automated Verification (EDCAV), pp. 23–28 (2015). https://doi.org/10.
1109/EDCAV.2015.7060532

17. Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness
of data in deep learning era. In: 2017 IEEE International Conference on Computer
Vision (ICCV). pp. 843–852 (2017). https://doi.org/10.1109/ICCV.2017.97

18. Varadarajan, A.V., et al.: Deep learning for predicting refractive error from retinal
fundus images. Invest. Ophthalmol. Vis. Sci. 59, 2861–2868 (2018). https://doi.
org/10.1167/iovs.18-23887

19. Vasiljevic, I., Chakrabarti, A., Shakhnarovich, G.: Examining the impact of blur
on recognition by convolutional networks. CoRR abs/1611.05760 (2016). http://
arxiv.org/abs/1611.05760

20. Wilkinson, C.P., et al.: Proposed international clinical diabetic retinopathy and
diabetic macular edema disease severity scales. Ophthalmology 110, 1677–1682
(2003). https://doi.org/10.1016/S0161-6420(03)00475-5

21. Yip, M., et al.: Technical and imaging factors influencing performance of deep
learning systems for diabetic retinopathy screening. NPJ Digit. Med. 3 (2020).
https://doi.org/10.1038/s41746-020-0247-1

22. Zhou, Y., Song, S., Cheung, N.: On classification of distorted images with deep con-
volutional neural networks. CoRR abs/1701.01924 (2017). http://arxiv.org/abs/
1701.01924

https://doi.org/10.1109/EDCAV.2015.7060532
https://doi.org/10.1109/EDCAV.2015.7060532
https://doi.org/10.1109/ICCV.2017.97
https://doi.org/10.1167/iovs.18-23887
https://doi.org/10.1167/iovs.18-23887
http://arxiv.org/abs/1611.05760
http://arxiv.org/abs/1611.05760
https://doi.org/10.1016/S0161-6420(03)00475-5
https://doi.org/10.1038/s41746-020-0247-1
http://arxiv.org/abs/1701.01924
http://arxiv.org/abs/1701.01924


Robust and Efficient Computation
of Retinal Fractal Dimension Through

Deep Approximation

Justin Engelmann1(B), Ana Villaplana-Velasco2, Amos Storkey3,
and Miguel O. Bernabeu2

1 CDT Biomedical AI, School of Informatics, University of Edinburgh, Edinburgh,
Scotland

justin.engelmann@ed.ac.uk
2 Centre for Medical Informatics, University of Edinburgh, Edinburgh, Scotland

3 School of Informatics, University of Edinburgh, Edinburgh, Scotland

Abstract. A retinal trait, or phenotype, summarises a specific aspect
of a retinal image in a single number. This can then be used for further
analyses, e.g. with statistical methods. However, reducing an aspect of
a complex image to a single, meaningful number is challenging. Thus,
methods for calculating retinal traits tend to be complex, multi-step
pipelines that can only be applied to high quality images. This means
that researchers often have to discard substantial portions of the avail-
able data. We hypothesise that such pipelines can be approximated with
a single, simpler step that can be made robust to common quality issues.
We propose Deep Approximation of Retinal Traits (DART) where a deep
neural network is used predict the output of an existing pipeline on high
quality images from synthetically degraded versions of these images. We
demonstrate DART on retinal Fractal Dimension (FD) - a measure of
vascular complexity - calculated by VAMPIRE, using retinal images from
UK Biobank that previous work identified as high quality. Our method
shows very high agreement with FDVAMPIRE on unseen test images
(Pearson r = 0.9572). Even when those images are severely degraded,
DART can still recover an FD estimate that shows good agreement with
FDVAMPIRE obtained from the original images (Pearson r = 0.8817).
This suggests that our method could enable researchers to discard fewer
images in the future. Our method can compute FD for over 1,000 img/s
using a single GPU. We consider these to be very encouraging initial
results and hope to develop this approach into a useful tool for retinal
analysis. Code for running DART with the trained model is available
on GitHub.
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1 Introduction

Retinal fundus images are non-invasive and low-cost. They are important for
ophthalmology and also capture a detailed picture of the retinal vasculature.
Thus, they can be used for studying and potentially predicting diseases such as
diabetes, stroke, hypertension and neurovascular disease [10]. To analyse the rela-
tionships between aspects of the retina and other quantities of interest, retinal
traits (also called features, parameters or phenotypes) are used as a quantitative
description of a specific aspect of the retinal image. Reducing a complex image to
a single, meaningful number is necessary to use standard statistical methods yet
a challenging task. It is challenging to identify a potentially salient aspect of the
retina in the first place and to then design a method that can reliably quantify
this aspect. This is further complicated by the large variability in retinal images
stemming from idiosyncrasies of the imaged retinas (e.g. due to retinal diseases
or rare phenotypes) and image quality (e.g. due to operator inexperience or time
pressures in large scale cohort studies). Thus, pipelines for extracting such reti-
nal traits tend to be complex and comprise of multiple steps, and can only be
applied to images of sufficient quality.

Poor image quality is a key problem in retinal image analysis. Particularly for
large scale studies such as UK Biobank, many images are of poor quality being
blurred, obscured, or hazy [9]. Imaging artefacts such as noise, non-uniform
illumination or blur can also lead to poor vessel segmentations [12]. Previous
work analysing 2,690 UK Biobank participants found that only 60% had an
image that could be adequately analysed by VAMPIRE [9]. Two recent large-
scale studies using retinal Fractal Dimension (FD) for predicting cardiovascular
disease risk discarded 26% [21] and 43% [16] of the images in UK Biobank.
Although necessary, this is unfortunate as it leads to lower sample sizes and
makes it hard to study rare diseases in particular.

We hypothesise that it is possible to approximate pipelines for calculating
retinal traits with a single, simpler step and propose Deep Approximation of
Retinal Traits (DART). Figure 1 gives a high-level overview of our approach.
DART trains a deep neural network (DNN) to predict the output of an original
method (OM) for calculating a retinal trait. We can then train the model to
be robust to image quality issues by synthetically degrading the input images
during training and asking the DNN model to predict the output of the OM
on the original high quality image. The intuition behind this approach is that
obtaining a high quality segmentation of the entire retina is a much harder task
than describing an aspect of the vasculature like vascular complexity directly.
DART offers a segmentation-free way of computing retinal traits related to the
vasculature, but can also be applied to any other retinal image analysis method
like feature extraction for disease grading or pathology segmentation.

In the present work, we focus on retinal FD, a key retinal trait that has
been used to predict cardiovascular disease risk [16,21] and is associated with
neurodegeneration and stroke [6]. FD is a mathematical measure of the complex-
ity of a self-similar object. Applied to the retinal vasculature, FD captures how
complex and branching it is which in turn might be a proxy for how healthy the
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Fig. 1. Overview of our proposed framework. a) A typical pipeline for computing
FD: an encoder-decoder neural network for segmentation, potentially some refinement
steps like optic disc segmentation and removal, and a method to calculate FD of the
segmentation (e.g. box counting or multifractal). b) DART, our proposed approach
outputs a deep approximation of FD in a single step using an encoder-only neural
network, with drastically reduced complexity. c) We can train our model to be robust
to image quality issues by synthetically degrading input images and training our model
to minimise the loss between its output and the FD obtained with the original high
quality image.

vasculature is. We use FD as calculated by VAMPIRE [15] with the multifractal
[14] method as the OM we apply DART to. At minimum, FDDART should have
very high agreement with FDVAMPIRE on high quality images so that it can be
interpreted in the same way. To be a useful method, it should further be robust
to image quality issues and efficient. Robustness would enable researchers to
discard fewer images than currently necessary while efficiency allows to conduct
analyses at large scale without requiring large compute resources.

2 Deep Approximation of Retinal Traits (DART)

2.1 Motivation and Theory

We hypothesise that it is possible to approximate the entire pipeline of an orig-
inal method (OM) for calculating a retinal trait in a single, simpler step. We
denote the distribution of high quality retinal fundus images as XHQ, where
each image xi has dimensions height H, width W, and channels C. The OM
can be interpreted as a function f that maps from the image space to one-
dimensional retinal trait space (in our case, FD) f : RHxWxC → R

1, i.e. given
an image xi ∈ XHQ the FD computed by the OM is FDOM = f(xi). Our goal
is to find an alternative function g : RHxWxC → R

1 that is both simpler than f
and has high agreement with f for all images of sufficient quality that the OM
can be used, i.e. for all xi ∈ XHQ f(xi) ≈ g(xi).

Designing such a simpler function by hand would be very challenging. Thus,
we use a deep neural network (DNN). DNNs are universal function approxima-
tors in theory and very effective for image analysis in practice. We can then find
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a good approximation of f by simply updating the model parameters θ (weights,
biases, normalisation layer parameters) to minimise some differentiable measure
of divergence between f(xi) and g(xi), e.g. mean squared error.

Accuracy. The output of the OM is fully determined by the given image, so we
would expect that very high accuracy can be achieved. This contrasts with other
problems, e.g. clincians take into account additional information like symptoms
and family history, and might disagree with each other or even themselves if
shown the same image multiple times.

Simplicity and Efficiency. Some readers might not perceive DNNs as simple
or efficient. However, modern pipelines for retinal image analysis tend to use
DNNs for vessel segmentation, so not requiring additional steps implies strictly
lower complexity both computationally and in terms of required code. Further-
more, segmentation models tend to have an encoder-decoder structure (e.g.
UNet) whereas models for classification/regression only need an encoder and
small prediction head, making them more parameter-, memory-, and compute-
efficient. Finally, given the widespread adoption of deep learning, the frameworks
are very mature and can be very efficiently GPU-accelerated.

Robustness. We hypothesise that there images of lower quality that are such
that a) current pipelines would not produce a useful FD number, but b) there
is still sufficient information to give an accurate estimate of the FD number we
would have obtained on a counterfactual high quality image. For example, in
an image with an obstruction, only part of the retina might be visible. Thus,
the resulting vessel segmentation map would be poor and the FD of this map
would be very different from that of the counterfactual high quality image, yet
the visible parts of the retina might contain sufficient information about the
vascular complexity of the retina as a whole to recover an accurate estimate of
the FD.

As we do not observe counterfactual high quality images or objective ground
truth FD values, we artificially degrade high quality images with a degradation
function degrade(xi) = xdegarded

i and train our model to minimise the difference
between the predicted FD for the degraded image and the OM’s FD for the high
quality image gθ(x

degarded
i ) ≈ f(xi). If there indeed is sufficient information in

the degraded images, then our model should be able to predict the OM’s FD from
the high quality image reasonably well. However, this is a much harder task than
matching the OM on high quality images, as the degradations lose information
and for a given degraded image there are multiple possible counterfactual high
quality images.

2.2 Implementation

Model and Training. Our model consists of a pretrained ResNet18 [4] back-
bone that extracts a feature map from the images, followed by spatial average
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Table 1. Severity levels for the degradations. Brightness, contrast and gamma
changes are independently sampled from the given interval. Dimensions in pixels.

Severity 1 2 3 4 5

Brightness/Contrast/

Gamma

±5% ±10% ±15% ±20% ±25%

Mini Artifacts

(holes, height, width)

2–20/1–3/5–8 2–24/1–5/5–12 2–28/1–5/5–16 2–32/1–3/5–20 2–40/1–3/5–24

Square Artifacts

(side length)

25 50 75 100 125

Chop Artifacts

(% of image removed)

10–15 10–25 10–35 10–45 10–50

Advanced Blur

(kernel size, sigma)

3–5/0.2–0.5 3–7/0.2–0.7 3–9/0.2–0.8 3–11/0.2–0.9 3–13/0.2–1.0

Gaussian Noise

(variance)

1–10 5–10 5–20 5–25 5–30

pool and a small multi-layer perceptron with a two hidden layers with 128 and
32 units, and a single output. Each hidden layer is followed by a layernorm [1]
and GELU [5] activation. No activation is applied to the final output. ResNet is a
well-established architecture that has been shown to perform competitively with
more recent architectures when using modern training techniques [2,19]. We use
Resnet18 as it is the most light-weight member of the Resnet family. We initialise
the backbones with pre-trained weights on natural images from Instagram [20].
Those images are very different from retinal images, thus this is merely a minor
refinement on random initialisation. We resize images to 224× 224 pixels for
computational efficiency and lower memory requirements. Apart from standard
normalisation using channel-wise ImageNet mean and standard deviations, no
further preprocessing is done and all 3 colour channels are kept.

We train our model using a batchsize of 256 to minimise the mean squared
error between prediction and target after normalizing the target to zero mean
and unit variance, using mean and standard deviation from the training data
to avoid data leakage. The model output can then be mapped back to FD
range by applying the inverse transformation. We use the AdamW optimiser
[8] (β1 = 0.9, β2 = 0.999, weight decay of 10−6) and a cosine learning rate
schedule [7]. We train for 35 epochs with a linear learning rate warmup from
ηmin = 10−5 to ηmax = 10−3 for 5 epochs, followed by 3 cycles of 10 epochs
each. During each cycle, the current epoch learning rate is set according to a
cosine schedule, and after each cycle ηmax is decayed by taking the square root.
We apply generic data augmentations (horizontal (p = 0.5) and vertical flip
(p = 0.1), mild affine transformations (p = 0.15, rotation by up to ±10◦, shear
of up to ±5◦, and scaling by ±5%)) as well as the image degradations described
in the next section with p = 0.75 (sampling all 5 levels uniformly) to the images
during training. We used Python 3.9 with PyTorch and timm [18]. Our code for
running DART, including the trained model, is available here: https://github.
com/justinengelmann/DART retinal fractal dimension.

https://github.com/justinengelmann/DART_retinal_fractal_dimension
https://github.com/justinengelmann/DART_retinal_fractal_dimension
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Synthetic Degradations. We focus on three types of quality issues in reti-
nal images [9,12]: Lighting issues, artifacts/obstructions, and imaging issues. To
simulate general lighting issues, we independently change brightness, contrast
and gamma of the image. To simulate artifacts/obstructions and severely incon-
sistent lighting, we introduce one of three artifacts: 1) many smaller rectangular
holes placed across the retina, b) a single large square hole, or c) we “chop” off
the bottom or top part of the image. The latter is inspired by the observation
that in UK Biobank some images only have the top or bottom part properly illu-
minated. To simulate general imaging issues, we add pixel-wise Gaussian noise
and blur the image. Standard isotropic Gaussian blur kernels do not mimic real-
istic image blur, so we use an advanced anisotropic blurring technique developed
for image super-resolution [17] where the standard deviations for both dimen-
sions of the kernel are sampled independently, and the kernel is then rotated
and has some noise added before being applied to the image. These synthetic
degradations are inspired by common retinal imaging quality issues but do not
perfectly mirror them. Our goal here is to test the feasibility of using DART to
recover good FD estimates from severely degraded images. Thus, our degrada-
tions heavily feature artifcats and blur, both of which remove information from
the images. If DART can recover good FD estimates under these challenging
conditions, then this would be reason to think that it will also work under more
realistic, yet less challenging conditions.

We specify degradation parameters for five levels of severity, shown in Table 1.
For a given level, we sample parameters for each image independently from the
given ranges. Degradations are applied after images have already been downsized
to 224× 224. We apply an artifact with p = 0.2 ∗ s where s is the severity. If an
image was chosen to have an artifact applied to it, we then choose Mini Artifacts
with p = 0.85, Square Artifact with p = 0.10, and Chop Artifact with p = 0.05.
Degradations are implemented using the albumentations package [3].

Fig. 2. Random examples of synthetically degraded versions of the same fundus image.
Best viewed zoomed in, especially for the advanced blur. UK Biobank asks to only
reproduce imaging data where necessary, so we demonstrate the degradations on an
image taken from DRIVE [13] which is similar in appearance to those in UK Biobank.
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Table 2. Agreement between FDVAMPIRE obtained on high quality images, and
FDDART for different levels of degradation measured on 14,907 held-out test set images.

Degradations R2 Pearson r (p-value) Spearman r (p-value) OLS Regression fit

None 0.9160 0.9572 (0.0000) 0.9561 (0.0000) y=0.01 + 1.00x

Severity 1 0.8957 0.9467 (0.0000) 0.9446 (0.0000) y=0.01 + 0.99x

Severity 2 0.8859 0.9414 (0.0000) 0.9396 (0.0000) y=0.01 + 0.99x

Severity 3 0.8623 0.9287 (0.0000) 0.9282 (0.0000) y=0.00 + 1.00x

Severity 4 0.8309 0.9116 (0.0000) 0.9103 (0.0000) y=0.01 + 0.99x

Severity 5 0.7773 0.8817 (0.0000) 0.8840 (0.0000) y=0.02 + 0.99x

3 Experiments

3.1 Data

We apply our DART framework multi-fractal FD [14] calculated with VAM-
PIRE [15]. We use only images from UK Biobank that had been identified as
high quality (top 60% of in terms of quality) in a previous study that used FD for
cardiovascular disease risk prediction [16]. Thus, for those images FDVAMPIRE

should be reliable and can be considered as a reasonable “ground-truth”. We
randomly split the data into train, validation, and test sets containing 70, 10,
and 20% of the participants in UK Biobank, resulting in 52,242/7,478/14,907
images belonging to 32,300/4,614/9,229 participants in each set. We split at the
participant level such that no images of the same participant occur in differ-
ent sets. Images are cropped to square to remove black non-retinal regions and
processed at 224 × 224 as described above.

3.2 Results

Agreement and Robustness. We find very high agreement between
FDVAMPIRE and FDDART on the original images with Pearson r = 0.9572 and
r2 = 0.9160. Table 2 shows results for different levels of degradations. When
degrading the images and asking our model to predict the FDVAMPIRE obtained
from the high quality image, agreements goes down as the images become more
degraded, which is what we would expect as these degradations remove sub-
stantial information about the retinal vasculature. However, despite this, we
still observe good agreement with the FDVAMPIRE obtained on the original
image even at severity level 5 where extreme degradations are applied (Pear-
son r = 0.8817 and R2 = 0.7773). This suggests that DART can recover good
estimates of the retinal trait that would have been obtained from a counterfac-
tual high quality image even if the available image has very poor quality. Thus,
this might allow for discarding much fewer images than currently necessary.

For comparison, a previous study comparing FD for arteries and veins sep-
arately between VAMPIRE and SIVA [11] found very poor agreement between
the measures of the two tools (R2 = 0.139 and R2 = 0.168 for arteries and
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(a) Scatterplots of FDDART against FDVAMPIRE obtained
from original images for different levels of degradation.

(b) Boxplots of the
residuals.

Fig. 3. Agreement results for 14,907 held-out test set images. Best viewed zoomed in.
a) Red line: best linear fit; dashed black line: y = x. b) Faint red line: x = 0; vertical
black lines: ± one interquartile range (IQR) of FDVAMPIRE for reference. (Color figure
online)

veins, respectively). Another study comparing vessel caliber-related retinal traits
obtained with VAMPIRE, SIVA, and IVAN found that they agreed with Pear-
son rs of 0.29 to 0.86. Thus, the observed agreement between FDVAMPIRE and
FDDART with a Pearson r = 0.9572 and R2 = 0.9160 is very high, and even when
DART is applied the most degraded images the agreement (Pearson r = 0.8817
and R2 = 0.7773) is higher than what could be expected when using two different
tools on the same high quality images.

Finally, our method shows very low bias even as degradation severity is
increased (Fig. 3). The best OLS fit is very close to the identity line for all levels
of severity, or equivalently, the optimal linear translation function from FDDART

to FDVAMPIRE is almost simply the identity function. This also implies that no
post-hoc adjustment for image quality is needed and FDDART values obtained
for images of varying quality are on the same scale out-of-the-box. As degra-
dation severity increases, the variance of the residuals also increases but most
residuals are still less than one interquartile range (IQR), a robust equivalent of
the standard deviation, even when applying the strongest degradation.

Speed. Images were loaded into RAM so that hard disk speed is not a factor. We
then measured the time it took to process all 52,242 training images, including
normalisation, moving them from RAM to GPU VRAM, as well as the time to
move the results back to RAM. We used a modern workstation (Intel i9-9920X
24 core CPU, single Nvidia RTX A6000 24GB GPU, 126GB of RAM) and a



92 J. Engelmann et al.

batchsize of 440. With ResNet18 as backbone, our model processed all 52,242
images in 48.5s ± 93.6 ms (mean ± std over 5 runs), yielding a rate of 1,077
img/s.

4 Conclusion

We have shown that we can use DART to approximate the multi-step pipeline
for obtaining FDVAMPIRE with very high agreement. Our resulting model can
compute FDDART for over 1,000 img/s using a GPU. Furthermore, our model
can compute FDDART values from severely degraded images that still match the
FDVAMPIRE values obtained on the high quality images well. This could allow
researchers interested in studying retinal traits to discard fewer images than
currently necessary and thus have higher sample sizes. We consider these to be
very encouraging initial results.

There are a number of directions for future work. First, the proposed frame-
work can be easily applied to other retinal traits like vessel tortuosity or width,
or FD as calculated by other pipelines. We would expect that this would be
similarly successful. Second, the robustness of the resulting DART model should
be evaluated in more depth and the cases with extreme residuals should be man-
ually examined. We expect that robustness can be further improved, especially
if we identify common failure cases and use those as data augmentations. Third,
many straight-forward, incremental technical improvements should be possible
such as improved training procedures to further increase performance, trying
different architectures and resolutions, and speeding up inference speed further
through common tricks like fusing batch norm layers into the convolutional lay-
ers. Finally, we hope that our approach will eventually enable other researchers
to conduct better analyses, e.g. by not having to discard as many images and
thus having a larger sample size available.
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Abstract. Localizing anatomical landmarks are important tasks in
medical image analysis. However, the landmarks to be localized often lack
prominent visual features. Their locations are elusive and easily confused
with the background, and thus precise localization highly depends on
the context formed by their surrounding areas. In addition, the required
precision is usually higher than segmentation and object detection tasks.
Therefore, localization has its unique challenges different from segmenta-
tion or detection. In this paper, we propose a zoom-in attentive network
(ZIAN) for anatomical landmark localization in ocular images. First,
a coarse-to-fine, or “zoom-in” strategy is utilized to learn the contex-
tualized features in different scales. Then, an attentive fusion module
is adopted to aggregate multi-scale features, which consists of 1) a co-
attention network with a multiple regions-of-interest (ROIs) scheme that
learns complementary features from the multiple ROIs, 2) an attention-
based fusion module which integrates the multi-ROIs features and non-
ROI features. We evaluated ZIAN on two open challenge tasks, i.e.,
the fovea localization in fundus images and scleral spur localization in
AS-OCT images. Experiments show that ZIAN achieves promising per-
formances and outperforms state-of-the-art localization methods. The
source code and trained models of ZIAN are available at https://github.
com/leixiaofeng-astar/OMIA9-ZIAN.

Keywords: Fovea localization · Scleral spur localization ·
Self-attention

1 Introduction

Localization of anatomical landmarks in medical images is one common task of
medical image analysis. Precise localization plays an important role for some
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B. Antony et al. (Eds.): OMIA 2022, LNCS 13576, pp. 94–104, 2022.
https://doi.org/10.1007/978-3-031-16525-2_10
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Fig. 1. Two typical localization tasks in ocular images. Left: fovea location in fundus
image. Right: scleral spur location in AS-OCT image.

medical diagnosis. For example, the fovea is an important anatomical landmark
on the posterior pole of the retina which is located in the center of a darker
area of the eye [1]. Fovea location is important in diagnosing eye diseases such
as glaucoma, diabetic retinopathy and macular edema. Similarly, the Scleral
Spur (SS) location is an important anatomical landmark in imaging the anterior
chamber angle, as it is a reference point to identify open and narrow/closed
angles based on Optical Coherence Tomography (OCT) images (Fig. 1).

Manually labeling these landmarks by medical experts is expensive and
tedious. Developing automated approaches for landmark localization is desirable
and has been studied for decades. The conventional computer vision methods
mainly utilize template matching or mathematical morphology techniques to
localize the anatomical landmark [2–5]. However, these methods are sensitive to
the low contrast of the image and the results vary if the images come from a differ-
ent source. With more robust performance, machine learning based approaches
are predominantly used for automatic localization of anatomical landmarks [6–
8].

In general, there are three types of machine learning approaches for local-
ization [9]. 1) Localization is viewed as a value regression problem [10,11], and
the coordinates of the target location are directly predicted; 2) Localization is
viewed as a binary segmentation problem that extends the single pixel label to a
small region where the segmented mask center is used as the target position [12];
3) Localization is viewed as heat-map regression task. First we generate a heat-
map around the target position, and then employ regression, morphological or
mathematical methods to estimate the target point [13–17]. Recently, the third
heatmap-regression approach has outperformed the other 2 methods, and our
method is also based on it.

Despite the huge progress in recent years, there are still challenges limiting
the precision of these methods. A common challenge is that input images may
have highly varying scales. A second challenge is that anatomical landmarks
often lack prominent visual features, and the localization highly depends on the
context formed by their surrounding areas.

In this paper, we propose “Zoom-In Attentive Network” (ZIAN) to address
the two challenges above, with ocular images as a case study. First, to be adaptive
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to various scales of input images, ZIAN adopts a zoom-in and a multi-scale
ROI schemes; Second, to better incorporate surrounding areas as context for
more precise localization, ZIAN adopts co-attention [18] and self-attention [19]
mechanisms.

In particular, different from the common “zoom-in” strategy in [16,20] which
predicts the final value more accurately based on the first approximation of the
region in coarse stage, ZIAN utilizes a “zoom-in” strategy, and a Regions-of-
Interest (ROI) co-attention along with a self-attention mechanism that effectively
fuses the multi-scales features in precise localization. Specifically, in the zoom-in
step, our model performs preliminary positioning of the target through a coarse
network. As a result, multiple ROIs in different scales are cropped according to
the preliminary position, which are used as the input to the fine network. In
the attention step, a ROI co-attention [21,22] module and a self-attention [23–
26] module work together to fuse the multi-ROI features. The ROI co-attention
module fuses and complements the features of multi-ROIs. In addition, the self-
attention module fuses the multi-ROI features with the output features from
the coarse network for more accurate localization. The main contributions of
this paper are summarized as follows:

1. Different from most existing localization frameworks, we present a “Zoom-In
Attentive Network” (ZIAN) that uses a coarse-to-fine zoom-in strategy, and
a ROI co-attention/self-attention scheme in landmark localization.

2. A novel attentive fusion module is proposed to adaptively fuse features from
different ROIs, and then fuse the multi-scale ROI features with the coarse
features, so that the model learns to combine features of multiple scales and
multiple ROIs for better prediction.

3. We evaluated ZIAN on two common ocular image tasks, i.e., fovea localization
in fundus images, and Scleral Spur (SS) localization in Anterior Segment
Optical Coherence Tomography (AS-OCT) images. The effectiveness of the
method is validated by comparing it with various state-of-the-art methods.

2 Method

In this section, we provide details for our proposed Zoom-In Attentive Networks
(ZIAN), which consists of two main components: the Zoom-in Module and the
Attentive Fusion Module which includes the details of ROI co-attention and
self-attention fusion module.

2.1 Zoom-In Module

As shown in Fig. 2, ZIAN has a coarse network and a fine network. The input
image Iinput is down-sampled by 4× and fed into a pre-trained base network
HRNet [27] to get per-pixel heat-maps in the coarse network. The peak pixel is
then located as the preliminary positioning of the target. Then, multiple scale
ROIs centered at the preliminary location are cropped as the input of the fine
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Fig. 2. The architecture of the proposed ZIAN, which comprises two main components:
the Zoom-in Module and the Attentive Fusion Module. The input image is downsampled
and fed into the coarse network to get the per-pixel coarse heat-map. The Multi-ROIs
centered at the peak pixel on the coarse heat-map are cropped from the original input
image, and fed into the fine network to generate features. Next, the multi-ROI features
are refined by a co-attention module. Finally, the multi-ROI features are concatenated
with the coarse-level features and transformed by self-attention module, and yield the
fine heat-map.

network. The resized ROI images Ia
roi and Ib

roi are fed in parallel into the pre-
trained model to build their feature representations individually. Next, multi-
ROIs features V a

roi and V a
roi are processed through an attentive fusion module to

get a fine-scale heat-map. The peak pixel in the fine-scale heat-map is located
as the final coordinate of the target. We utilize HRNet [27] as the pre-trained
backbone in the figure. It can be replaced with any state-of-the-art backbone
(U-Net [28], EfficientNet [29], YOLO [30], RCNN [31], etc.).

2.2 Attentive Fusion Module

As shown at the bottom part in Fig. 2, the fine network takes a pair of ROI
images Ia

roi and Ib
roi, and sequentially performs feature extraction and attentive

fusion module which includes ROI co-attention and self-attention fusion. Two
images ROIa and ROIb with different scales (×1 and ×2, i.e. 256 × 256 and
512 × 512) are cropped on the input image Iinput and centered at the predicted
peak pixel in coarse heat-map. The multi-ROIs features V a

roi and V a
roi extracted

from pre-trained model are down-sampled and refined by the ROI co-attention
module. Next, the refined multi-ROIs features V

′
a and V

′
b are up-sampled and

concatenated with coarse-level features Vg which we implement with “crop and
resize” and “grid sample”, then processed through a self-attention fusion module
to get a fine-scale heat-map. Our two-level attention mechanism in fine network
guarantees the full integration of the features from different receptive fields,
it maintains the independence and integrity of the individual CNN network
for single ROI, which enables any CNN backbone to be implemented inside
simultaneously.
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ROI Co-attention Module: Since the input multi-ROIs images ROIa and
ROIb are centred in the same preliminary positioning, and the feature extrac-
tion network is highly symmetric, we argue that multi-ROIs should have sym-
metric and complementary position representation which can guide each other to
improve the discriminative ability of networks for landmark identification. We
leverage the co-attention mechanism [18,21] to mine the correlations between
multi-ROIs features Va and Vb. We first compute the similarity matrix between
ROI feature Va and Vb (∈ R

W×H×C): S = V T
b WVa ∈ R

WH×WH , where
W ∈ R

C×C is a weight matrix. Next, the attention summaries for the feature
embedding can be computed as:

Za = Va · Softmax(S), and Zb = Vb · Softmax(ST ). (1)

We concatenate the co-attention representation Z and the original ROI feature
Va and Vb: Xa = [Za, Va],Xb = [Zb, Vb] (Xa,Xb ∈ R

W×H×2C). Finally, Xa and
Xb pass through a 3×3 convolution and batch norm followed by ReLU activation
to get V

′
a and V

′
b (∈ R

W×H×C) which keep the same 3D-tensor as Va and Vb. We
apply downsampling and upsampling (× 1

4 , ×4) before and after the ROI co-
attention module to reduce memory footprint. Co-attention ROI feature V a′

roi

and V b′
roi pass through a 1 × 1 convolution to output a landmark heat-map.

Self-Attention Fusion Module: The co-attention ROI feature V a′
roi and V b′

roi

concatenated with “crop and resize” coarse-level features Vg, are fed to a self-
attention fusion module. Self-attention module uses Squeezed Attention Block
(SAB) and Expanded Attention Block (EAB) from Segmentation Transformers
network [19] so that our model can see the big picture in the features from the
coarse network and fine details in the features from the fine network at the same
time. SAB and EAB replace full self-attention and multi-head attention (MHA)
in typical transformer to reduce noises and over-fitting in image tasks. SAB and
EAB join forces to offer more capacity to model diverse data from coarse and
fine networks.

The features Xout after the Self-Attention Fusion module are followed by two
3×3 convolution and one convolution for the final heat-map. The peak value in
the heat-map is located as the landmark position. Given the coordinates (u0, v0)
of landmark (Fovea or SS) point, the heat-map G(u, v) as ground truth can be
calculated as G(u,v) = exp (− (u−u0)

2+(v−v0)
2

2×δ2 ), where δ is variance to control
the heat-map radius, we use δ=2 here.

The model is trained by minimizing the Mean Squared-Error (MSE) distance
of the learned heat-map to a ground truth heat-map. Our ZIAN retains all loss
functions of Lcoarse in the coarse network, Lroi and Lfine in the fine network to
improve their accuracy and combines them as

LZIAN = α × Lcoarse + β ×
∑

Lroi,+γ × Lfine, (2)

where Lcoarse, Lroi and Lfine are the MSE loss coming from coarse heat-map,
ROI heat-map and fine heat-map in Fig. 2 (ROI and fine ground truth heat-map
are the same which are centered at the input ROI images). α , β and γ is the
weight which is greater than or equal to 0 float, α=1, β=0.25 and γ=1 here.
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3 Experiments and Results

3.1 Datasets and Settings

To validate the effectiveness of our model, we use the REFUGE dataset [32] and
AGE dataset [9]. The model is evaluated on two metrics: 1) Average Euclidean
Distance (AVG L2) between the estimations and ground truth (unit is pixels,
the lower the better) which is also the only evaluation criteria in two public
challenges (REFUGE and AGE); 2) Successful detection rates (SDR, the higher
the better)) with different thresholds (5 pixels, 10 pixels and 20 pixels).

REFUGE dataset1 consists of 1200 retinal fundus images (1634 × 1634) for
fovea localization (400 train, 400 val, 400 test). We split 800 images (80%:20%)
into training and evaluation. AGE dataset2 consists of 4800 AS-OCT images for
Scleral Spur (SS) localization (1600 train, 1600 val, 1600 test). We use those 1600
train images (2130 × 998) with publicly available ground truth (GT) in training
and evaluation (80%:20%), 1600 val images out of other 3200 images(no GT
released) for test. The images are resized to 1064 × 1064, and center cropped to
1024×1024, then random cropped to a resolution of 896×896, next downsampled
to 1/4 of cropped image size, i.e. 224×224 before being fed to pre-trained model
in coarse network. In SS localization, we split each AS-OCT image into the
left and right parts according to the centerline and locate the SS localization
individually.

In SS localization task, GT of test dataset is not made public, all the results
are obtained from online AGE Challenge Leaderboard for AVG L2 Distance.

3.2 Experimental Setup

ZIAN is implemented using PyTorch. All networks are trained using the Adam
optimizer. We trained 140 epochs on the model with a learning rate of 0.0002,
and weight decay of 0.1 after 90 epochs. For data augmentation, we apply ran-
dom horizontal flipping, drifting, scaling and rotation. The initial weights of the
base networks are loaded from pre-trained models based on ImageNet, and the
parameters of the other modules are randomly initialized. We evaluate our ZIAN
utilizing 2 state-of-the-art base networks: HRNet [27] and U-Net [28]. For each
base network, we perform ablation studies to quantify the roles of different com-
ponents namely base network, coarse-to-fine network with/without multi-ROIs
scheme, self-attention or co-attention multi-ROIs scheme.

3.3 Results and Discussion

In this part, we report the results of fovea and SS localization in the REFUGE
and AGE test dataset using AVG L2 and SDR. The performances of different
methods are reported in Table 1 and 2 with some results in the REFUGE and
AGE challenge leaderboard. Some output examples from the coarse and fine
network are as Fig. 3.
1 https://refuge.grand-challenge.org.
2 https://age.grand-challenge.org.

https://refuge.grand-challenge.org
https://age.grand-challenge.org
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Fig. 3. The input and landmark locations in ZIAN coarse and fine network, Zoom-in
localization results of ground truth and different methods. The red cross points + are
the ground truth labels, while the circle points are the learned landmarks, •, •, •, •
and • are for “HRNet”, “HRNet+1ROI”, “HRNet+1ROI+SA”, “HRNet+MR+SA”
and “ZIAN with HRNet” respectively. (Color figure online)

In the tables, HRNet, U-Net, EffcientUNet and GU2Net refer to the method
and the CNN backbone we utilize. “1ROI” or “MR” means that we adopt a
Coarse-to-Fine strategy with 1 ROI or multi-ROIs in fine network, “SA” means
only the self-attention part is employed in the attentive fusion module. “ZIAN
with HRNet/U-Net” is our proposed architecture using a coarse-to-fine strat-
egy, a ROI co-attention along with a self-attention fusion mechanism. “SDSA
and VRT team” and “Dream Sun and MIPAV team” are the top 2 in the
REFUGE final rankings and AGE semifinal rankings, respectively, their results
are presented for fair comparison. The corresponding methods of these teams
are described in the REFUGE and AGE overview papers [9,32] and website.

From the results, we could have several observations:
Role of Coarse-to-Fine Strategy (C2F): We concur that the C2F strategy
has been commonly used in localization and segmentation tasks to narrow down
the ROI areas [9,26]. However, as indicated by our experiments, the C2F design is
just a minor contributor for improvements compared with the other components
(which are our main contribution) as described below.
Role of Multi-ROIs (MR): The localization accuracy is sensitive to the
choices of the cropped ROI sizes which confine the context. MR avoids man-
ually tuning the choice of ROI sizes which is more robust with better coverage
and applicable to a wide range of tasks, relieving people from ad-hoc tuning.
With a MR scheme, the model can choose from multiple contexts and learn to
construct more predictive features. Multi-ROIs can achieve superior performance
as compared to that of 1 ROI as demonstrated in Tables 1 and 2.
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Table 1. Performances of different methods on REFUGE dataset. The best results are
in bold and the second best results are underlined, - represents that no experimental
results can be found in REFUGE challenge.

Method AVG L2 SDR 5px(%) SDR 10px(%) SDR 20px(%)

REFUGE SDSA team+ 34.7 – – –

REFUGE VRT team+ 37.1 – – –

U-Net [28] 18.99 23.5 52.25 69.50

HRNet [27] 14.45 30.0 70.50 88.75

EffcientUNet-B0 [29]∗ 18.62 24.5 59.00 72.50

EffcientUNet-B5 [29]∗ 26.29 15.5 40.75 55.75

GU2Net [17] 24.91 24.0 47.5 60.75

U-Net+1ROI 16.56 29.75 61.0 78.75

U-Net+1ROI+SA 15.05 30.25 62.5 78.0

U-Net+ MR +SA 14.00 25.25 61.25 80.5

ZIAN W/U-Net (ours) 13.24 32.0 67.75 82.0

HRNet+1ROI 13.93 28.75 67.25 84.25

HRNet+1ROI+SA 9.51 41.25 79.25 90.0

HRNet+ MR +SA 9.42 38.0 76.25 91.75

ZIAN W/HRNet (ours) 9.07 44.25 78.5 92.5
+ Top 2 teams in the REFUGE 1 final leaderboard. The model is trained on 400 train
images instead of 800 train+val images like other methods.
∗ https://github.com/zhoudaxia233/EfficientUnet-PyTorch.

Role of Self-Attention Fusion Module (SA): SA is to learn to fuse the
multi-scales features, so that the model learns to combine features for better
prediction. With SA as shown in Tables 1 and 2 with HRNet, it significantly
reduces the L2 distance further from 13.93 to 9.51, and from 14.786 to 14.264, in
Fovea and SS tasks, respectively. In order to further investigate the advantages
of multi-ROIs with SA, we evaluate the impact of SA without MR scheme, i.e.
HRNet+1ROI+SA vs HRNet+MR+SA. This model achieved L2 distances of
9.42 and 13.891, compared to 9.52 and 14.264 in Fovea and SS tasks respectively.
It indicates that self-attention works well under a single ROI and multi-ROIs.
Role of ROI Co-Attention (RCA): RCA mines the underlying correlations
between Multi-ROIs features and selectively focuses on landmark regions. With
RCA as shown in Tables 1 and 2, it slightly reduces the L2 distance from 9.42
to 9.07, and from 13.891 to 13.638, in Fovea and SS tasks, respectively.
Computational Efficiency: After incorporating the MR+SA+RCA in fovea
localization, the GPU RAM usage increased from 2 GB to 11.9 GB with HRNet
backbone, the training speed decreased from 12 images/s to 4 images/s, and the
test speed decreased from 50 images/s to 7.4 images/s on one workstation with
NVIDIA RTX3090 graphics card. Table 2 presents the number of parameters of

https://github.com/zhoudaxia233/EfficientUnet-PyTorch
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Table 2. Performances of different methods on AGE dataset

Method AVG L2 Method AVG L2 Params (M)+

AGE Dream Sun team∗ 12.897

AGE MIPAV team∗ 13.761 HRNet [27] 15.032 28.544

EffcientUNet-B0 [29]∗∗ 17.657 HRNet+1ROI 14.783 57.102

EffcientUNet-B5 [29]∗∗ 15.594 HRNet+1ROI+SA 14.264 57.125

U-Net [28] 21.257 HRNet+ MR +SA 13.891 85.705

GU2Net [17] 23.024 ZIAN W/HRNet (ours) 13.638 85.710
∗ Top 2 teams in the AGE semi-final leaderboard, Dream Sun team utilizes
Ensemble models with EffcientNet B2, B3, B5, and B6 [9].
∗∗ https://github.com/zhoudaxia233/EfficientUnet-PyTorch.
+ Number of parameters in ablation study of ZIAN on a 224 × 224 input
image.

our ZIAN method. As the top priority of medical applications is accuracy, we
think the computational overhead of the ZIAN is still feasible and manageable.

4 Conclusions

In this paper, we propose a Zoom-In Attentive Network (ZIAN) for landmark
localization tasks. ZIAN consists of a coarse-to-fine “zoom-in” module and an
attentive fusion module. In the attentive fusion module, a ROI co-attention
along with a self-attention fusion combine and fuse the multi-scale multi-ROI
features. We performed extensive experiments and ablation studies on two public
ocular image datasets. The results demonstrate that ZIAN has advantages over
commonly used baselines. In the future work, we would like to extend ZIAN to
make it robust against domain distribution shifts of the input images.
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Abstract. Regenerative therapies have recently shown potential in
restoring sight lost due to degenerative diseases. Their efficacy requires
precise intra-retinal delivery, which can be achieved by robotic sys-
tems accompanied by high quality visualization of retinal layers.
Intra-operative Optical Coherence Tomography (iOCT) captures cross-
sectional retinal images in real-time but with image quality that is inad-
equate for intra-retinal therapy delivery. This paper proposes a two-
stage super-resolution methodology that enhances the image quality of
the low resolution (LR) iOCT images leveraging information from pre-
operatively acquired high-resolution (HR) OCT (preOCT) images. First,
we learn the degradation process from HR to LR domain through Cycle-
GAN and use it to generate pseudo iOCT (LR) images from the HR
preOCT ones. Then, we train a Pix2Pix model on the pairs of pseudo
iOCT and preOCT to learn the super-resolution mapping. Quantitative
analysis using both full-reference and no-reference image quality metrics
demonstrates that our approach clearly outperforms the learning-based
state-of-the art techniques with statistical significance. Achieving iOCT
image quality comparable to preOCT quality can help this medical imag-
ing modality be established in vitreoretinal surgery, without requiring
expensive hardware-related system updates.
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1 Introduction

Regenerative therapies (e.g. [6,20]) have emerged as novel treatment methods for
degenerative eye diseases such as Age-Related Macular Degeneration [15], which
gradually leads to sight loss. Their success, however, depends on precise deliv-
ery to the intra-retinal or sub-retinal space. To this end, alongside novel robotic
tools that enable the required implantation precision [5], excellent visualiza-
tion capabilities are crucial for intra-operative guidance. Intra-operative Optical
Coherence Tomography (iOCT) can support such vitreoretinal interventions by
providing cross-sectional visualization of the retina and the targeted layers.

In the pre-operative setting, the gold standard for imaging this targeted
anatomy, is Optical coherence tomography (OCT), which is a non-invasive imag-
ing modality using infrared light interferometry to visualise retinal layer infor-
mation. Modern OCT systems use spatiotemporal signal averaging to capture
OCT images of excellent quality, enabling clinicians to easily differentiate retinal
tissues and layers. However, the long acquisition time during pre-operative OCT
scanning makes it unsuitable for the real-time visualization of an intervention.
Real-time acquisition is achieved by iOCT albeit at the expense of image quality.
More specifically, iOCT images have increased levels of speckle noise [24] and
low signal strength [21], which limit their interventional utility. Therefore, we
focus on computationally enhancing the quality of iOCT images provided by
current commercial clinical systems with the goal of augmenting the capabilities
of iOCT technology in the surgical setting without requiring expensive hardware
updates.

Image quality enhancement of OCT images has been addressed by various
works. Wiener filters [21], segmentation-based [8], registration-based [23] and
diffusion-based [2] methods, as well as methods that consider empirical speckle
statistics [18], successfully enhanced the OCT quality by reducing speckle noise
(denoising) and preserving image structures. However, similar methods can not
efficiently be applied on iOCT images and real-time scenarios due to their high
computational cost as well as the need of perfect image alignment and prolonged
scanning time.

Learning-based techniques using Generative Adversarial Networks (GANs)
[9] have been proposed for image quality enhancement or domain translation
of natural images [13,14,27]. Similar approaches have been adopted for medical
imaging modalities such as CT [26], PET [25] and OCT [1,7,10]. However, few
works have focused on intra-operative OCT image quality enhancement. In [16]
iOCT quality was improved using iOCT 3D cubes as the high resolution domain,
while in [17] super-resolution achieved through surgical biomicroscopy guidance.

This work concerns self-supervised super-resolution1 of iOCT images trans-
ferring the quality from high-resolution (HR) pre-operative OCT images to low-
1 We interchange “super resolution” and “quality enhancement” as usual in the liter-

ature.
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Fig. 1. (a): Surgery video frame. Left: Surgical biomicroscope view. Right: iOCT
frames. (b): From top to bottom: iOCT and preOCT with macular hole.

resolution (LR) iOCT images. As access to aligned LR-HR pairs is not avail-
able, previous approach [17] focused on estimating the HR image of each LR by
fusing multiple aligned iOCT video frames and then performing paired super-
resolution. Given the fact that their estimated HR images are still of inferior
quality compared to preOCT, we propose here a two-stage methodology for the
task of unpaired image quality enhancement of iOCT using available preOCT
images as HR domain. First, we train a CycleGAN [27] model using iOCT as
input and pre-operative, high quality, OCT as the target domain and learn the
image degradation process by training the backwards mapping network (HR
to LR). Subsequently, the latter is leveraged to generate pseudo iOCT images,
which contrary to the starting unpaired dataset, are now aligned with their pre-
OCT counterparts. Then, we apply super-resolution with pixel-level supervision
through Pix2Pix [13] using the generated pseudo iOCT images. To establish the
effectiveness of this approach we provide extensive quantitative analysis showing
we outperform existing, state-of-the-art learning based iOCT super-resolution
approaches.

2 Methods

In this section, we present the data used in our study, the two-stage super-
resolution approach and the quantitative metrics used for evaluation.

2.1 Datasets

The data used in this work are derived from an internal database of intra-
operative and pre-operative OCT scans accompanied with vitreoretinal surgery
videos acquired at Moorfields Eye Hospital, London, UK (see Fig. 1). The
data was acquired in accordance with the Declaration of Helsinki (1983 Revi-
sion) and its ethical principles. We use HR pre-operative OCT data (resolu-
tion of 512× 1024× 128 voxels) of 61 subjects which were acquired prior to the
surgery using Cirrus 5000 as well as LR intra-operative OCT data (resolution



108 C. Komninos et al.

Fig. 2. Different approaches for learning the mapping (G) between X and Y domains.

of 440× 300 pixels) acquired during the intervention using RESCAN 700 inte-
grated into the Zeiss OPMI LUMERA 700. Pre-operative OCT 2D frames were
extracted from the recorded 3D OCT scans.

2.2 Two-Stage Super-Resolution Approach

The task addressed in this work is super-resolution (SR) and quality enhance-
ment of iOCT images. Specifically, this task is formulated as domain translation
from the iOCT domain to the preOCT domain. In our first attempt, we used
CycleGAN’s architecture (Fig. 2.b) as one-stage approach to learn the bidirec-
tional domain translation between HR preOCT and LR iOCT images. However,
given that our iOCT and preOCT images are unpaired, and despite the fact
that CycleGAN has shown superior performance in unpaired tasks where no
pixel-level loss can be employed, as shown in our quantitative analysis it failed
to generate consistent results.

We therefore propose a two-stage approach (Fig. 2.c). In the first stage, we use
a CycleGAN model to learn the mappings between iOCT and preOCT domains.
We leverage the capability of the model to learn with consistency the backwards
mapping (from preoCT to iOCT), thus providing a generator that approximates
the degradation and domain translation from HR to LR. We then use the trained
backwards generator Gx to generate a pseudo (fake) iOCT that is pixel-wise
aligned with each real preOCT image. In the second stage, we train a model
that learns to map pseudo iOCT images (LR) to the preOCT domain (HR)
leveraging pixel-level supervision through the Pix2Pix model. Crucially, as we
show in the experimental section, the generator in the second stage sees only
pseudo iOCT inputs but is able to effectively generalize to real iOCT images.

2.3 Implementation Details

The dataset, 7808 pairs of preOCT and pseudo iOCT images, was split into:
training set (70%, 43 patients), validation set (15%, 9 patients) and test set
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(15%, 9 patients). Each patient’s image data were used only in one set. Pseudo
iOCT images were generated through the inference of the first stage network
achieving similarity of 87.49 Fréchet Inception Distance (see next section) with
respect to the real iOCT images.

We based the implementation of the building blocks (Pix2Pix, CycleGAN) of
our two-stage approach on the code available online2. Both networks use ResNet-
based generator [14] of nine residual blocks and are trained on input resolution
of 440× 300. All models are trained using Adam optimizer with initial learning
rate of 10−4 and a batch size of 4 for a total of 200 epochs. We used NVIDIA
Quadro P6000 GPU with 24 GB memory for our experiments.

2.4 Evaluation Metrics

To evaluate the performance of the proposed approach compared to the state-
of-the art learning based methods, given that the ground truth HR images do
not exist, we use five no-reference Image Quality Assessment (IQA) metrics,
i.e. Fréchet Inception Distance (FID) [11], Kernel Inception Distance (KID) [3],
perceptual loss function �feat [16], Global Contrast Factor (GCF) [19] and Fast
Noise Estimation (FNE) [12]. FID calculates the distance between distributions
of features of two image sets extracted from the ImageNet-pretrained Inception-
v3. KID is the squared Maximum Mean Discrepancy between Inception repre-
sentations extracted from Inception-v3. Perceptual loss �feat demonstrates how
perceptually similar are two image sets by calculating the distance of their rep-
resentations extracted by Deep Convolutional Network pretrained on Imagenet
[22]. GCF calculates the contrast at different resolution levels to calculate the
global contrast of the image while FNE measures the noise level of each image
of the dataset. We use |ΔGCF|, which quantifies the absolute difference of the
GCF that SR image yields compared to preOCT, and |ΔFNE|, which is the
absolute difference of the FNE that SR image yields with respect to preOCT.

Furthermore, we use full-reference metrics following the SR approaches in
natural images which apply image degradation techniques to the HR ground
truth images to create the LR counterparts. Peak signal-to-noise ratio (PSNR)
and Structural Similarity Index (SSIM) are used in our case to evaluate the per-
formance of each model using as input the pseudo iOCT images and comparing
its output with real preOCT images.

3 Results

In this section, we present the results obtained from the quantitative analysis
conducted to evaluate our approach.

2 https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix.

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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Fig. 3. From top to bottom: LR iOCT images, SR using [17], SR using our proposed
method.

3.1 Evaluation on Real iOCT Images

We compare the improvements in image quality of the iOCT images generated
by our model with respect to images from the preOCT domain. A total number
of 2352 iOCT frames, extracted from iOCT surgery videos of 9 patients, not
present in the train set, was used as test set. As ground truth HR images do not
exist, we use five different no-reference IQA metrics, described in Sect. 2.4: FID,
KID, �feat, |ΔGCF| and |ΔFNE|.

Table 1 summarises the results of our analysis. Super-resolution using our
method ranks first in terms of three out of five no-reference metrics, which
demonstrates that the iOCT image quality has been improved (see also Fig. 3)
and is closer to preOCT images. Our method is compared to the real iOCT
images, the state-of-the-art iOCT SR techniques [16,17] and the SR using Cycle-
GAN with unpaired LR and HR datasets (UnCycGAN). Regarding perceptual
metrics, our method exhibit the best FID value and close to the best KID and
�feat values, which demonstrates that our methods can generate SR images
that are perceptually more similar to the HR domain. In addition, |ΔGCF|
and |ΔFNE| metrics demonstrate that contrast and noise values of SR images
through our method are closer to the values of HR preOCT images, which are
the images with the best quality in our dataset. We assessed the statistical sig-
nificance of the reported values for |ΔGCF| and |ΔFNE| using a paired t-test
and all p-values were p < 0.001. Statistical significance can not be examined
for perceptual metrics (FID, KID, �feat) which return one value for all the test
set. Furthermore, our approach performs at 18.05 frames per second (FPS) with
iOCT images of size 440× 300 as input, which is appropriate for the real-time
requirement of our application.
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3.2 Evaluation on Pseudo iOCT Images

Prior works [4,14] used this standard evaluation technique but they applied
heuristic degradation processes to generate LR images from their HR coun-
terparts. However, iOCT quality can be affected by speckle noise, low signal
strength, different pathologies which are not trivial to simulate. Therefore, we
opt for learning the degradation processes. As described in Sect 2.2, during the
first training stage we learn the mapping from preOCT to pseudo iOCT and we
use it to create pseudo iOCT images that are aligned with our real preOCT for
testing, allowing full-reference metrics to be computed.

Table 1. Quantitative analysis on iOCT images. Arrows show whether higher/lower
is better.

No-reference

FID(↓) KID(↓) �feat(↓) |ΔGCF|(↓) |ΔFNE|(↓)

iOCT 166.06 0.183 527.00 2.33±0.6 7.95±0.6

[16] 171.40 0.191 445.91 2.42±0.5 2.83±0.1

[17] 125.67 0.115 435.48 0.85±0.4 3.99±0.1

UnCycGAN 133.33 0.132 356.48 0.87±0.3 2.26±0.1

Ours 123.09 0.120 379.37 0.41±0.3 2.09±0.1

Table 2. Quantitative analysis. Arrows show whether higher/lower is better.

Full-reference No-reference

PSNR (↑) SSIM (↑) FID (↓) KID (↓) �feat(↓) |ΔGCF| (↓) |ΔFNE| (↓)
pseudo iOCT 23.05±2.1 0.65±0.1 121.30 0.114 336.04 1.43±0.5 2.49±0.5

[16] 16.81±1.8 0.58±0.1 123.18 0.127 362.40 2.48±0.5 3.17±0.1

[17] 24.09±2.2 0.64±0.1 75.43 0.058 277.89 0.41±0.3 4.11±0.1

UnCycGAN 28.93±1.6 0.82±0.0 58.87 0.041 237.66 0.34±0.2 2.81±0.1

Ours 31.45±0.9 0.82±0.0 16.62 0.007 76.02 0.27±0.1 2.61±0.4

Thus, quantitative analysis using both full-reference, i.e. PSNR, SSIM, and
no-reference metrics was performed on 1152 pairs of pseudo iOCT and preOCT
images. The results are reported in Table 2. Our method outperforms all other
approaches both numerically and visually as shown in Fig. 4. According to six out
of seven metrics, our approach can generate SR images that have high perceptual
and structural similarity as well as similar levels of contrast and noise to preOCT
images. Paired t-test was used to assess the statistical significance of the pairwise
comparisons of the PSNR, SSIM, |ΔGCF| and |ΔFNE| reported values and all
p-values were p < 0.001.
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Fig. 4. From top to bottom: LR pseudo iOCT images, SR using [17], SR using our
proposed method, HR preOCT images.

4 Discussion and Conclusions

In our study, we propose a Super-resolution pipeline for iOCT images acquired
during vitreoretinal surgeries using pre-operatively acquired OCT images as HR
domain. Our methodology clearly outperforms both numerically and visually
previous proposed image quality enhancement methods.

First, we learn the degradation from preOCT (HR) domain to iOCT (LR)
domain through a CycleGAN model trained on unpaired images of the two
domains. Then, we apply the learned degradation process to generate pseudo
iOCT images from preOCT ones which allows us to create pairs of LR-HR
images. Finally, we train a Pix2Pix model on the LR-HR pairs to perform super-
resolution.

We quantitatively evaluate our pipeline using as input both iOCT images
extracted from real surgery videos and pseudo iOCT images generated through
the learned degradation process. The results demonstrate the superior improve-
ment that our method can achieve compared to already proposed techniques.

Future work will include qualitative analysis from expert clinicians and will
consider temporal information for the iOCT video super-resolution.
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Abstract. The morphological structure of retinal fundus blood vessels
is of great significance for medical diagnosis, thus the automatic retinal
vessel segmentation algorithm has become one of the research hotspots
in the field of medical image processing. However, there are still several
unsolved difficulties in this task: the existed methods are too sensitive to
the low-frequency noise in the fundus images, and there are few anno-
tated data sets available, and meanwhile, the retinal images of different
datasets vary greatly. To solve the above problems, we propose a domain
adaptive vessel segmentation algorithm with multiple image entrances
called MIUnet, which is robust to the etiological noises and domain shift
between diverse datasets. We apply Fourier domain adaptation and the
high-frequency component filtering modules to transform the raw images
into two styles, and simultaneously reduce the discrepancy between the
source domain and target domain retinal images. After that, images pro-
duced by the two modules are fed into a multi-input deep segmentation
model, and the full utilization of features from different modalities is
ensured by the deep supervision mechanism. Experiments prove that,
compared with other segmentation methods, the MIUnet has better per-
formances in cross-domain experiments, where the IoU reaches 63% when
trained on ARIA dataset and tested on the DRIVE dataset and 53% in
the opposite direction.

Keywords: Retinal fundus image · Retinal vessel segmentation ·
Domain adaptation

1 Introduction

Many ophthalmic diseases can show corresponding symptoms in the morphology
of retinal vessels, such as diabetic retinopathy, glaucoma, age-related macular
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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degeneration, hypertension, and atherosclerosis [12]. Consequently, fundus pho-
tography has been used as a routine clinical examination [10,22], and vascular
structure extraction is one of the most important procedures. In the early age of
digital technology, vessels were extracted by hand; however, manual segmenta-
tion is not precise and requires lots of labor and material costs [24]. The above
demands inspire the invention and development of automatic retinal vessel seg-
mentation algorithms.

In the computer vision field, image segmentation is a prerequisite for many
advanced image processing tasks, thus segmentation algorithms are always a hot
research field. Conventional segmentation algorithms can be roughly sorted into
two categories [15]: region-based approach [1], and edge-based approach [1,20];
these approaches usually focus on the characteristics of pixels and relationship
between pixels. In the recent decade, deep learning (DL) has become a universal
paradigm for plenty of machine learning algorithms, and the recent competitive
segmentation results are commonly achieved by DL-based methods. DL-based
methods offer end-to-end models which are more efficient in capturing the con-
textual relationship between pixels compared with traditional methods. There
are some representative models, such as Fully Convolutional Network [14], Deep
Parsing Network [13], SegNet [2], U-net [17], UNet++ [25], DeepLab family [3–6]
and so on; and in particular, many valuable methods have been proposed for the
sub-task of vascular segmentation, for instance, CE-Net [8] and CS-Net [16].

However, previous segmentation algorithms based on supervised learning
could not solve the following problems in retinal fundus vascular segmentation
well: 1) fundus images always suffer from imaging noise, and the vessels are
of limited contrast with the background; 2) domain shift between the training
(source) and test (target) data is unavoidable in practice [11,23], which severely
impacts the performance of segmentation models.

To deal with the above problem, we propose a domain adaptive segmenta-
tion model named MIUnet. This model leverages the Fourier domain adaptation
(FDA) [21] module and the high-frequency filtering (HFC) module to impose
the model’s generality and robustness. Within the model, the deep convolutional
modules with two input images are designed with a deep supervision mechanism,
which is adopted in the two entrance branches to supervise the feature extrac-
tion from the outputs of FDA and HFC modules. Our main contributions are
listed as follows:

– Our proposed segmentation method, MIUnet, uses FDA, HFC, and specifi-
cally built multi-input convolutional modules to address the problem of noise
and domain shift in the retinal vessel segmentation task.

– FDA and HFC modules are introduced to reduce the domain shift between
data domains and compress the imaging noise. The deep convolutional mod-
ules with a deep supervision mechanism are designed to fuse the feature infor-
mation of the outputs of FDA and HFC modules.

– Comparison experiments and ablation study are conducted, and the experi-
mental results show that MIUnet has better segmentation effect and gener-
alization ability compared to other state-of-the-art methods.
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Fig. 1. Illustration of our proposed method. In this figure, the source domain fundus
image is sampled from the DRIVE dataset, and the target domain image is from the
ARIA dataset. The FDA mutated image and the high-frequency component are input
into modules M1 and M2 respectively. The convolutional blocks in these two modules
have the same structure, and are distinguished by different colors; meanwhile, the
convolutional blocks in M3 are changed to residual blocks.

2 Methodology

Figure 1 shows the workflow of our proposed method MIUnet. Source domain
fundus image and the target domain image sampled from different datasets are
synthesized into the mutated image by Fourier Domain Adaptation (FDA) mod-
ule [21], and then input the mutated image into the HFC module to extract the
high-frequency component. The FDA mutated image and the high-frequency
component image are fed into two entrances of the multi-input segmentation
model. Finally, three vessel segmentation results are generated; the output of
M3 which combined two feature vectors is considered the final result, while the
other two outputs are used for deep supervision.

2.1 Fourier Domain Adaptation

FDA [21] is a kind of unsupervised domain adaptation method. The main idea
of FDA is that: convert fundus images into the frequency domain by fast Fourier
transformation (FFT), and then the low-frequency part of the amplitude of the
source domain image is replaced by the corresponding part of the target domain
image, in the end, the fused amplitude image and the phase image from the
source domain image are combined, and restored to a mutated fundus image by
inverse fast Fourier transformation (iFFT).

Given source domain dataset Ds = {(xi
s, y

i
s) ∼ P (xs, ys)}Ns

i=1 and target
domain dataset Dt = {xi

t ∼ P (xt)}Nt
i=1, while xs, xt ∈ R

H×W×3 are color picture
with height of H and width of W , and ys ∈ R

H×W is the vessel segmentation
ground truth of the source domain fundus image. Denote FFT as F (only con-
sider gray-scale image here, in color image each channel should be calculated
respectively):
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F(x)(u, v) =
H∑

h=1

W∑

w=1

x(h,w)e−j2π(uh
H + vw

W ), j2 = −1 (1)

And denote iFFT as F−1. Construct a square mask of the same size as the
raw fundus image:

M(i, j) = 1(i,j)∈[�(0.5−β)H�:�(0.5+β)H�,�(0.5−β)W�:�(0.5+β)W�] (2)

where β here is a ratio coefficient. Say the amplitude and phase maps of xs,
xt are fA

s /fP
s , fA

t /fP
t , and use FDA method to convert the source image into

target domain style. Denote the output mutated image as xm, then:

xm = F−1((M ◦ fP
s + (1 − M) ◦ fP

t )ejfs
A) (3)

As shown in Fig. 2, the mutated image retain not only the high-frequency
features from the source domain fundus image such as vascular thickness, branch,
etc., and also the low-frequency style information from target domain.

2.2 High-frequency Component Extraction Based on Gaussian
Filtering

Gaussian filtering is a common linear filtering method, it’s commonly used in
fundus image processing to deal with the noises caused by abnormal lighting
conditions, interference of electronic components, or ophthalmic diseases. There
are two important factors in this algorithm: σ refers to the standard variance, and
the size of the Gaussian kernel is 2k+1. Conduct a two-dimensional convolution
between the kernel matrix and the fundus image with a step size of 1, and this is
the so-called Gaussian filtering. Say the raw image is I, and all pixel values are
between [0, 1]. The Gaussian filtered image is G. Then, subtract the Gaussian
blurring map from the raw image, so it can be considered that the remaining
part is the high-frequency component of the fundus image:

Fig. 2. Samples of outputs of FDA and HFC modules.
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HFC(i, j) = I(i, j) − G(i, j) (4)

As shown in Fig. 2, the vascular structure in the high-frequency component reti-
nal image is much more pronounced in contrast to the background, compared to
the raw fundus image.

2.3 Multi-input Deep Vessel Segmentation Model

In the image segmentation task, pre-processing the raw images is one of the most
important procedures. In most cases, the selection of pre-processing methods is
usually based on empirical cognition, and in fact, it is hard to compare the feature
accessibility of outputs of fundus images by different pre-processing techniques.
The main idea of our proposed multi-input U-net is to take advantage of features
of fundus images pre-processed in different ways, and the aim is to make the
segmentation results outperform the results with inputs produced by two pre-
processing methods respectively.

As shown in Fig. 1, there are three modules M1, M2 and M3 and their archi-
tecture are all based on U-net [17]. M1 and M2 are the entrances for fundus
images from two modules: FDA mutated image and the high-frequency com-
ponent image. We suppose the two inputted images are equivalent in feature
accessibility, so the M1 and M2 share the same architecture, which is almost the
same as U-net. The difference between the two modules and U-net is that the
activation function is replaced with Leaky-ReLU, and the padding value in the
convolution blocks of M1 and M2 is set to 1 to preserve the size during convo-
lution. Regularize the final by Sigmoid function, and then the final outputs y1
and y2 are:

y1 = (M1(FDA(xs, xt)) (5)

y2 = M2(HFC(FDA(xs, xt))) (6)

M3 is also a unet-like module. Different from M1 and M2, M3 has only
3 layers, and inspired by [9,19] we replace the double-convolution block by a
kind of modified residual convolution blocks, which contains a 3× 3 convolution
module, a batch normalization module, a dropout module (with a dropout ratio
of 0.5) and Swish activation function. The outputs of the last double-convolution
blocks in M1 and M2 are denoted as ylatent

1 and ylatent
2 . Concatenate ylatent

1 and
ylatent
2 , and input the result into M3 such that the input of M3 fuses the features

of images in two different modalities. The above procedure is formulated as:

y3 = M3([ylatent
1 , ylatent

2 ]) (7)

The output of M3, y3, is the final segmentation result of MIUnet. y1, y2 and
y3 are all aligned with label ys, and y1 and y2 are used for deep supervision; the
alignment of y1 and y2 to ys could make sure that M1 and M2 can be consider
to be independent segmentation models, such that the information in fundus
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images in different modality can be fully utilized. We use binary cross entropy
as loss function to measure the distance between the prediction result and ground
truth, so the total loss function is:

Ltotal = λ1BCE(y1, ys) + λ2BCE(y2, ys) + BCE(y3, ys) (8)

where λ1 and λ2 are empirically set to 0.2 and 0.2.

3 Experiments

In order to prove the segmentation effect of MIUnet, comparison experiment and
ablation study are conducted. To test the cross-domain generality of the models,
the training set and testing set are from different datasets.

3.1 Experiment Settings

Datasets In our experiments, there are two datasets used:

1) ARIA [7] contains 147 labeled fundus images with a resolution of 768× 576,
with over 2/3 of them collected from people suffering from ophthalmic dis-
eases. The ARIA dataset is split randomly into the training set and valida-
tion/testing set in a ratio of 3:1. To make the fundus images from different
datasets similar in general styles such as field of view (FoV) and aspect ratio,
we crop the raw images into the shape of a square, and use a circle mask to
make the FoV a circle tangent to the edge of the squares.

2) DRIVE [18] contains 40 labeled images with a resolution of 565 × 584, and
vascular structure in most of the images in the DRIVE dataset is relatively
clear. All images were manually cropped such that the FoV area could be
tangent to all the edges of the images. DRIVE dataset had been already split
in half into training and testing set by its author.

All images are resized to a size of 512 × 512, and images in training set of
both datasets were all rotational augmented in four angles of 90/135/180/225◦.
Evaluation metrics 1) F1 score, which is the harmonic average of precision
and recall; 2) Accuracy, referring to the proportion of all correctly classified
pixels among all pixels; 3) AUC, which means the area between the Receiver
Operating Characteristic Curve and x-axis; 4) IoU, the interaction area of the
prediction and ground truth over the union area.
Implementation details: The experiments of comparison and ablation
study were all based on the Pytorch framework and used NVIDIA GeForce
RTX 3060 (12GB) graphics card. The numbers of channels in each convolution
block of M1 and M2 are set to [64, 128, 256, 612, 1024] from top to bottom, and
in M3 the numbers are [64, 128, 256]. The initial learning rate of the models was
0.001 and dropped to 0.1 times per 3 rounds when the ARIA dataset was used
as a training set and per 20 rounds when the training set was from the DRIVE
dataset (ARIA and DRIVE differ from each other in size). The Adam optimizer
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Fig. 3. Comparison on the segmentation result between MIUnet and baseline methods.
The colors of the dotted boxes and the background represent the source of training set
and testing set respectively.

was used, with β = (0.9, 0.999). The batch size was set to 2 due to the limitation
of computational resources. In the training process, epochs for all experiments
were 50 and an early stop strategy was applied.

3.2 Comparison and Ablation Study

To prove the cross-domain generalization ability of our proposed method, we con-
ducted a comparison experiment with several baseline methods and an ablation
experiment. Five baselines were introduced, including U-net [17], UNet++ [25],
SegNet [2], CE-Net [8] and CS-Net [16]. In the ablation study, modules were
removed one by one, firstly the FDA module was removed, and then we removed
the “multi-input” mechanism (only use U-net with HFC module), and finally
removed the HFC module.
(1) Comparison Table 1 presents the comparison result of all the methods on
the cross-domain experiment. From the table, it can be seen that our method
shows the optimal effect in almost all metrics among all the involved methods. In
the cross-domain experiment from ARIA to DRIVE (training set and validation
set is from ARIA and testing set is from DRIVE, hereinafter referred to as A-to-
D), all algorithms could produce meaningful results, which is manifested in their
high performance among baselines. However, some of the models perform badly
in the D-to-A experiment. A possible reason is that the fundus images in ARIA
are noisier than those in DRIVE because the proportion of images from patients
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Table 1. Comparisons and ablation study of MIUnet. RED, GREEN and BLUE are
the top three.

Method ARIA → DRIVE DRIVE → ARIA

F1 ACC AUC IoU F1 ACC AUC IoU

U-net 0.7252 0.9489 0.9630 0.5161 0.2907 0.9222 0.7503 0.1787

UNet++ 0.7468 0.9519 0.9665 0.5286 0.3082 0.9199 0.7790 0.1701

SegNet 0.7129 0.9499 0.9070 0.5539 0.5141 0.9338 0.8177 0.3577

CE-Net 0.7256 0.9466 0.9630 0.5367 0.6862 0.9356 0.9593 0.5348

CSNet 0.7394 0.9509 0.9653 0.5038 0.3864 0.9222 0.8390 0.2049

MIUnet w/o HFC, MI, FDA 0.7252 0.9489 0.9630 0.5161 0.2907 0.9222 0.7503 0.1787

MIUnet w/o MI, FDA 0.7304 0.9482 0.9614 0.5276 0.6822 0.9319 0.9617 0.5409

MIUnet w/o FDA 0.7677 0.9542 0.9715 0.6246 0.5655 0.9387 0.9405 0.4129

MIUnet (proposed) 0.7723 0.9559 0.9744 0.6307 0.7038 0.9442 0.9639 0.5359

with ophthalmic diseases and the severity of these diseases in ARIA is much
high than in DRIVE, meanwhile, the image quality of DRIVE is higher than
ARIA, particularly in contrast and brightness. The above situation illustrates
the domain shift between the two datasets, and apparently, it is better for A-
to-D experiments, and bad for D-to-A ones. Although UNet++ and CS-Net
show terrible results in the D-to-A experiment, they are the best two baselines
in A-to-D datasets, and also CE-Net achieves good performance in the D-to-
A experiment; but the proposed MIUnet still outperforms the above method
greatly.

Figure 3 shows the actual segmentation effect of several sample data, and at
the same time, we also show the corresponding segmentation result testing on the
validation set of the same dataset as the training set (called the same-domain
experiment). There are two samples shown, the first from the ARIA dataset,
and the second from DRIVE. As mentioned above, the segmentation results
in the D-to-A experiment of UNet++ and CS-Net are largely meaningless. In
contrast, the results of the same-domain experiment and the A-to-D experiment
are relatively good. It is found that the segmentation ability of CE-Net is more
stable, as it gives acceptable results in all cross-domain experiments. However,
in the outputs of CE-Net in the D-to-A experiment and CS-NET/UNet++ in
the A-to-D experiment, many small vessels are mislabeled in the segmentation
result, which means the segmentation capability of these baseline models are
not as good as the output MIUnet in detail. The experimental result proves the
cross-domain generalization ability of MIUnet.
(2) Ablation Study The ablation study is also contained in Table 1, which is
conducted to prove the necessity of the three main modules of MIUnet. Firstly we
tested the performance of MIUnet w/o HFC, MI, FDA modules, which is exactly
the naive U-net. After that, MIUnet w/o MI and FDA is also included, which
means the outputs of M2 were taken as final outputs. In the last experiment,
only the FDA module was removed.
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The experimental results show that, the FDA module significantly reduces
the domain discrepancy between source and target domain, especially in the
D-to-A experiment. The HFC module removes the low-frequency noises and
style-related information and thus enhances the robustness of the model. And
the multi-input convolutional model combines the outputs of the two modules
and turns the single parts into a whole. As a result, the segmentation model
MIUnet could have great robustness and generalization ability.

4 Conclusion

The retinal vessel segmentation algorithm is important for ophthalmic disease
diagnosis, but due to the noisy fundus images and little labeled data, the
researchers call for a robust model with generalization capability. This paper
proposes a domain adaptive method called MIUnet to address the above prob-
lem, which could take advantage of both the feature information from the outputs
of FDA and HFC modules, and use a deep supervision mechanism to support the
training process. In the experiments, the comparison and ablation study proves
the cross-domain generalization ability of MIUnet.
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Abstract. The accurate segmentation of retinal lesions from OCT
images can greatly aid ophthalmologists in evaluating retinal diseases.
However, it remains a challenge to accurately segment retinal lesions
in OCT images. This is due to the complicated pathological features
of retinal diseases, resulting in severe regional scale imbalance between
different lesions, and leading to the problem of target tendency of the
network during training, subsequently resulting in the segmentation per-
formance reduction for tiny-lesion. Aiming to solve these challenges, we
propose a novel multi-scale wavelet enhanced transformer network for
tiny-lesion segmentation in retinal OCT images. In the proposed model,
we first design a novel adaptive wavelet down-sampling module com-
bined with the pre-trained ResNet blocks as the feature extractor net-
work, which can generate a wavelet representation to improve the model’s
interpretability while avoiding feature loss, and further enhancing the
ability of the network to represent local detailed features. Meanwhile, we
also develop a novel multi-scale transformer module to further improve
the model’s capacity of extracting the multi-scale long-dependent global
features of the retinal lesions in OCT images. Finally, the proposed
method is evaluated on the public database of AI-Challenge 2018 for reti-
nal edema lesions joint segmentation, and the results indicate that the
proposed method achieves better segmentation performance than other
state-of-the-art networks, especially for tiny PED lesions with very small
regional proportions.

Keywords: OCT images · Lesion segmentation · Wavelet ·
Transformer
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1 Introduction

Retinal optical coherence tomography(OCT) is a non-invasive imaging technol-
ogy that enables the visualization of the cross-sectional structure of the retina,
and it has been widely used in the diagnosis of retinal diseases [11]. The accurate
segmentation of retinal lesions from OCT images can greatly assist ophthalmol-
ogists in the evaluation of retinal diseases. Recently, many convolutional neural
networks(CNNs) [5,8,13,16,20] have been proposed for medical image segmenta-
tion. Although these CNN-based methods have achieved excellent performance,
there are limitations in modeling explicit long-range dependent global features
due to the inherent locality of convolutional operations. To tackle these limita-
tions, existing studies improved the ability of the model to learn long-distance
dependency information by introducing transformer [4,18]. Several transformer-
based methods have been proposed for medical image segmentation and achieved
comparable performance with CNN-based approaches [2,7,12]. Retinal diseases
often co-occur in multiple morphologies, and as the disease progresses, there is
a severe imbalance in the ratio between different lesion regions. The problem
of target tendency during network training will lead to the performance drop
for the tiny-lesion. Despite the promising results of these CNN-and transformer-
based methods in image segmentation tasks, there are still considerable chal-
lenges when applying these methods to the segmentation of retinal lesions in
OCT images. These challenges include: 1) How to avoid feature loss when down-
sampling the feature map while improving the interpretability of the model and
further enhancing the network’s ability to represent local detailed features. 2)
How to improve the ability of the model to learn complex multi-scale global
contextual information in retinal OCT images.

Aiming to solve these challenges, we propose a novel multi-scale wavelet
enhanced transformer network for tiny-lesion segmentation in retinal OCT
images. Our main contributions are summarized as follows: (1) We propose a
novel adaptive wavelet down-sampling(AWDS) module combined with the pre-
trained ResNet blocks as the feature extractor network, which can generate
a wavelet representation to improve the model’s interpretability while avoid-
ing feature loss, and enhancing the ability of the network to represent local
detailed features in retinal OCT images. (2) A novel adaptive multi-scale trans-
former(AMsTrans) module is developed based on the transformer concept, which
can guide the model to explore complex multi-scale long-dependent global fea-
tures for different retinal lesions in OCT images. (3) We conduct extensive
experiments to evaluate the performance of the proposed method on the public
database: AI-Challenge 2018 for retinal edema lesions joint segmentation. The
experimental results show that, compared with other state-of-the-art segmenta-
tion methods, the proposed method can significantly improve the segmentation
performance of tiny-lesion while maintaining the segmentation performance for
large lesions.
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2 Method

2.1 Overall Architecture

As shown in Fig. 1(a), the proposed multi-scale wavelet enhanced transformer
network is designed based on the U-shaped architecture, which mainly consists
of three components: the encoder path which integrates the pre-trained ResNet
blocks with AWDS module, and is adopted to extract the feature information
of different scale receptive fields in the input image, the AMsTrans module is
appended on the top layer of encoder path to guide the model to explore com-
plex multi-scale long-dependent global features of retinal lesions, and the decoder
path to restore the spatial information with strong multi-scale global features
generated by AMsTrans module, and gradually fuse the multi-semantic contex-
tual information from different stages of encoder path.

Fig. 1. The overview of the proposed method. (a) The architecture of multi-scale
wavelet enhanced transformer network, (b) The details of adaptive wavelet down-
sampling module, (c) The structure of adaptive multi-scale transformer module.

2.2 The Encoder Path

Although CNNs have achieved significant performance in many challenging com-
puter vision tasks [5,8,10], they are essentially spatial approaches that lack inter-
pretability, and usually ignore the spectral information which is equally impor-
tant for representing image features. Wavelet transformation has a good local
detailed feature representation capacity in the time-frequency domain and can
present any local details in the image, so it is widely used to deal with various
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image problems [1,3,17]. Several prior works are dedicated to further improv-
ing the feature representation capacity by incorporating wavelet transformation
into CNNs [6,14,15]. Therefore, inspired by [15], to supplement those missing
spectral information in CNNs while improving the model’s interpretability, we
develop a novel feature extractor network by combining our newly proposed
AWDS module with pre-trained ResNet blocks [10], as shown in Fig. 1(a). The
details for the proposed AWDS module is shown in Fig. 1(b). In AWDS module,
we adopt 2D adaptive lifting scheme [15] to perform multi-resolution wavelet
transformation on the input feature maps Input ∈ R(C,H,W ) to generate four
wavelet sub-bands feature maps of LL ∈ R(C,H/2,W/2), LH ∈ R(C,H/2,W/2),
HL ∈ R(C,H/2,W/2), and HH ∈ R(C,H/2,W/2).

The Adaptive Horizontal Lifting Scheme: The input 2D feature map is first
split into the even(Ie [n, :] = I [2n, :]) and odd(Io [n, :] = I [2n + 1, :]) horizontal
components. Then, a horizontal updater(Uh) and a horizontal predictor (Ph) are
performed on the split components to generate the approximation LH and the
details HH sub-bands of the wavelet transformation as follows,

LH [n, :] = Ie [n, :] + Uh (Io [n, :]) (1)

HH [n, :] = Io [n, :] − Ph (LH [n, :]) (2)

where Uh and Ph are two learnable blocks consisting of convolutional operations
as shown in Fig. 1(b), both of which can adaptively optimize their coefficients
during training by gradients back-propagation.

The Adaptive Vertical Lifting Scheme: Similar to the adaptive horizontal
lifting scheme, take HH as an example, the input 2D feature map HH is first
split into the even(HHe [:, n] = HH [:, 2n]) and odd(HHo [:, n] = HH [:, 2n + 1])
vertical components. Then, a vertical updater(Uv) and a vertical predictor (Pv)
are performed on the split components to generate the approximation HH and
the details HL sub-bands of the wavelet transformation as follows,

HL [:, n] = HHe [n, :] + Uv (HHo [n, :]) (3)

HH [n, :] = HHo [n, :] − Pv (HL [n, :]) (4)

like Uh and Ph, both Uv and Pv are also learnable blocks consisting of convolu-
tional operations as shown in Fig. 1(b), both of which can adaptively optimize
their coefficients during training by gradients back-propagation.

It can be seen from Fig. 1 and Eq. (1, 2, 3 and 4) that the input fea-
ture map can be down-sampled without lossing any feature information by
2D adaptive lifiting scheme. Finally, LL ∈ R(C,H/2,W/2), LH ∈ R(C,H/2,W/2),
HL ∈ R(C,H/2,W/2), and HH ∈ R(C,H/2,W/2) are concatenated fed into a
Conv3 × 3 convolutional layer to adaptively fuse the features of different wavelet
sub-bands.
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2.3 The Adaptive Multi-scale Transformer Module

The large variation in shape and sizes between different retinal lesions result in
seriously imbalanced regional ratios, which often causes the problem of target
tendency in the training process of the network, and then leads to the reduction
of the segmentation performance for the lesions with a small regional propor-
tion. Therefore, it is crucial to improve the model’s ability to learn multi-scale
global features for accurate segmenting retinal lesions in OCT images. Trans-
former, with excellent ability to model long-range dependencies for sequence sig-
nal, is initially proposed for natural language processing(NLP) tasks [18]. With
the remarkable achievements of Transformer in NLP, many researchers have
explored the application of transformer in medical image segmentation [2,7].
However, these transformer-based methods mainly focused on exploring single-
scale long-dependent global features, ignoring the equally important modeling
of multi-scale long-dependent global features in medical images. Therefore, as
shown in Fig. 1(c), dedicated to exploring multi-scale global long-dependent fea-
ture modeling in retinal OCT images, we propose a novel AMsTrans module
appended to the top layer of the encoder path. It can be seen from Fig. 1 that,
different from commonly transformer which focusing on single scale features,
the proposed AMsTrans module takes feature maps with different scale recep-
tive fields at different stages of encoder path as input. First, the feature maps
from level-1(F1), level-2(F2), level-3(F3), and level-4(F4) are fed into a bilinear
interpolation down-sampling module followed by a Conv3 × 3 layer to normalize
the resolution and channels to the top layer feature map(FT ). Then, the nor-
malized feature maps(F1, F2, F3, and F4) and the top layer feature map (FT )
are respectively fed into a self-attention(SA) module, so as to explore the multi-
scale long-dependent global features in different receptive fields, which can be
analogized to the multi-head SA operation in the common transformer struc-
ture, where the SA operation of each scale feature map branch represents a SA
head of common transformer. In addition, inspired by artificial neuron(AN) [9],
the feature maps with multi-scale long-dependent global features are obtained
by weighted sum operation of different SA branch features followed by a Conv3
× 3 feature fusion layer,

FMs = Conv3 × 3

(
1 ∗ FT +

4∑
i=1

wiFi

)
(5)

where 1 is analogized to the bias in AN, while wi is the learnable weights obtained
by Conv1 × 1 followed by Sigmoid normalization layer, as shown in Fig. 1(c),

W = Sigmoid (Conv1 × 1 (Concat (FT , F1, F2, F3, F4))) ∈ RB,4,H,W (6)

where B, H, and W are the batch size, height and width of the feature maps,
respectively. Finally, the residual architecture is constructed by summing FT

with FMs to further enhance the model’s ability to model strong semantic
abstract features contained in the top layer, while avoiding the gradient van-
ishing.
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3 Experiments and Results

3.1 Dataset

We systematically evaluate the proposed method on the public database of AI-
Challenge 2018 for retinal edema lesions joint segmentation, including the seg-
mentation of retina edema(RE), sub-retinal fluid(SRF), and PED with severely
imbalanced regional proportions. The regional ratio of RE, SRF, and PED in
this database is counted as 0.8441:0.1493:0.0066, where the proportion of PED
is much smaller than RE and SRF, which poses a great challenge to accurate
segment PED lesion. The dataset contains 85 retinal OCT cubes (1024 × 512
× 128) with ground truth. We randomly divide the dataset into three exclusive
subsets for training, validation, and testing based on 3D cubes with a ratio of
6:2:2. Therefore, the training dataset contains 6528 B-Scan OCT images, while
validation and testing contain 2176 B-Scan OCT images, respectively.

Fig. 2. Segmentation results of different models, where red represents RE, blue is SRF,
and green indicates PED. (Color figure online)

3.2 Implementation Detail

For data preprocessing, we resize the retinal OCT B-Scan to 512 × 256 to
improve the computational efficiency, while avoiding excessive detail loss and
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maintaining the average aspect ratio. All experiments involved in this paper
were performed on the public platform Pytorch and RTX3090 GPU (24G). All
networks are optimized by Adam with the batch size 8 and maximum training
epochs of 100. The initial learning rate and weight decay were set to 0.0005 and
0.0001, respectively.

3.3 Comparison Study

As shown in Table 1, the proposed method achieves the highest average jaccard
coefficient and dice similarity score of 0.802 and 0.878, respectively. Although the
segmentation result of SRF lesion is slightly lower than UNet, the segmentation
performance of PED and RE are significantly improved, especially for PED, the
jaccard and dice of the proposed method are 20.23% and 17.53% higher than
UNet. Meanwhile, compared with AttUnet, which achieves the highest PED
lesion segmentation index among all comparison methods, the jaccard and dice
indices of PED lesion segmented by the proposed method are improved by 9.68%
and 5.96%, respectively. Worth noting that, the segmentation performance of
most transformer-based methods degrades in this task. It may be caused by the
weak ability of the transformer-based method to model complex local detailed
features in OCT images. We also compare with MsTGANet which was designed
for the Drusen small object segmentation task in retinal OCT images, and the
proposed method also achieves better segmentation performance. Furthermore,
Fig. 2 shows the segmentation results of different methods. As shown in Fig. 2,
the proposed method obtains better segmentation results than other models,
the mis-segmentation and missing-segmentation problems are significantly alle-
viated, especially for the PED lesion(Fig. 2(a) and Fig. 2(c)). These quantitative
and qualitative analysis results show that our proposed method can significantly
improve the segmentation performance of tiny-lesion while maintaining the seg-
mentation performance for large regional lesions in retinal OCT images.

Table 1. Quantitative results of different segmentation methods.

Methods Jaccard Average Dice Average

PED SRF RE PED SRF RE

UNet [16] 0.603 0.893 0.783 0.759 0.696 0.940 0.872 0.836

AttUNet [13] 0.661 0.839 0.766 0.755 0.772 0.896 0.863 0.844

Ce-Net [8] 0.474 0.885 0.778 0.712 0.585 0.936 0.870 0.797

CPFNet [5] 0.571 0.888 0.787 0.749 0.681 0.936 0.875 0.831

UNet++ [20] 0.583 0.888 0.787 0.753 0.695 0.937 0.874 0.835

TransUNet [2] 0.611 0.887 0.776 0.758 0.718 0.938 0.870 0.842

UTNet [7] 0.450 0.864 0.710 0.675 0.571 0.923 0.820 0.771

MsTGANet [19] 0.629 0.889 0.782 0.767 0.742 0.937 0.871 0.850

Proposed 0.725 0.888 0.793 0.802 0.818 0.937 0.879 0.878
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3.4 Wavelet Feature Representation Visualization

Figure 3 shows the feature reconstruction results of different sub-bands gener-
ated by the lifting scheme in different levels. The feature reconstruction results
of different sub-bands are very similar to traditional wavelet transformation.
It can be seen from Fig. 3 that the PED lesion features and retinal structure
information at different levels of the encoder path are preserved and enhanced.
The reconstruction results show that the proposed AWDS module can generate
a wavelet representation to improve the model’s interpretability while avoiding
feature loss, and further enhancing the ability of the network to represent local
detailed features.

Fig. 3. Wavelet feature representation visualization. Red arrows indicate PED lesions.
(Color figure online)

3.5 Ablation Study

We also conducted a variety of ablation studies to validate the effectiveness of the
mainly components in the proposed framework, where the modified U-shaped
network with pre-trained ResNet blocks and decoder is employed as the ‘Back-
bone’ model. Compared with Backbone model, the average jaccard and dice of
Backbone+AWDS are improved from 0.755 and 0.844 to 0.781 and 0.860 with
3.44% and 1.90% improvements, respectively. Meanwhile, the average jaccard
and dice of the Backbone+AMsTrans achieves 4.24% and 2.49% improvement
over Backboned, reaching 0.787 and 0.865, respectively. Finally, the proposed
method (Backbone+AWDS+MsA-Trans) achieves the highest average jaccard
and dice of 0.802 and 0.878, respectively, which are 6.23% and 4.03% higher
than Backbone model. These ablation experiment results demonstrate the effec-
tiveness of the mainly components in the proposed framework.
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4 Conclusion

In this paper, focusing on the challenges of the segmentation for retinal lesions
in OCT images, we propose a novel multi-scale wavelet enhanced transformer
network by integrating CNN, wavelet transformation, and transformer concept
for tiny-lesion segmentation in retinal OCT images. Specifically, the pre-trained
ResNet blocks combined with the newly proposed AWDS module is designed
as the extractor network to capture complicated pathological features in reti-
nal OCT images. Meanwhile, a novel AMsTrans module is developed to further
improve the model’s capacity to learn multi-scale long-dependent global fea-
tures. Finally, we evaluate the model’s performance by applying the proposed
method to a public database: AI-Challenge 2018 for retinal edema lesions joint
segmentation, where the proportion between different retinal lesions is severely
imbalanced. The experimental results show that, compared with other state-of-
the-art segmentation methods, the proposed method can significantly improve
the segmentation performance of tiny-lesion while maintaining the segmentation
performance for large lesions in retinal OCT images.

In the future, we will collect more retinal OCT data to build a larger and more
comprehensive database to further validate the performance of the proposed
method. Furthermore, working on improving the efficiency of the proposed model
is also an important task in our future research works.
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Abstract. Glaucoma causes irreversible vision loss due to damage to the
optic nerve, and there is no cure for glaucoma.OCT imaging modality is
an essential technique for assessing glaucomatous damage since it aids in
quantifying fundus structures. To promote the research of AI technology
in the field of OCT-assisted diagnosis of glaucoma, we held a Glaucoma
OCT Analysis and Layer Segmentation (GOALS) Challenge in conjunc-
tion with the International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI) 2022 to provide data
and corresponding annotations for researchers studying layer segmenta-
tion from OCT images and the classification of glaucoma. This paper
describes the released 300 circumpapillary OCT images, the baselines of
the two sub-tasks, and the evaluation methodology. The GOALS Chal-
lenge is accessible at https://aistudio.baidu.com/aistudio/competition/
detail/230.

Keywords: GOALS Challenge · Glaucoma classification · OCT layer
segmentation · Circumpapillary OCT

1 Introduction

Glaucoma is a chronic neurodegenerative condition that is one of the leading
causes of irreversible blindness in the world. It is a multifactorial optic neu-
ropathy characterized by progressive neurodegeneration of retinal ganglion cells
(RGCs) and their axons, resulting in retinal nerve fiber layer (RNFL) atten-
uation, a specific pattern of damage to the optic nerve head, and visual field
loss [1]. In 2020, about 80 million people have glaucoma worldwide [2], and this
number is projected to be 111.8 million in 2040 [3]. Optical coherence tomog-
raphy (OCT) is a powerful tool for diagnosing ocular diseases because of its
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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no radiation, non-invasive, high resolution, high detection sensitivity and other
characteristics [4,5]. In contrast to color fundus images, which can only provide
information about the surface of the retina, OCT images can provide cross-
sectional information about fundus structures. The retinal structures contain
RNFL, ganglion cell-inner plexiform layer (GCIPL), inner nuclear layer (INL),
outer plexiform layer (OPL), outer nuclear layer (ONL), external limiting mem-
brane (ELM), inner photoreceptor segment, inner/outer photoreceptor segment
junction, outer photoreceptor segment, retinal pigment epithelium (RPE) inter-
digitation, RPE/Bruch’s membrane complex, as well as choroid layer [6,7]. In
the diagnosis of glaucoma, the disease can be judged by observing changes in the
thickness of the optic nerve fiber layer, etc., which is easier to detect early glau-
coma than by observing fundus color images. The circumpapillary OCT image
corresponds to a circular scan located around the optic nerve head, where a
wealth of information about the different retinal layers can be found [8].

Currently, there are only a limited number of OCT datasets [9,10] available
in public, to facilitate researchers to conduct research on OCT images, we hold
a GOALS Challenge in conjunction with MICCAI 2022, aiming to provide cir-
cumpapillary OCT images for studying layer segmentation and glaucoma clas-
sification. This paper mainly introduces the 300 circumpapillary OCT images
released in the GOALS challenge, and provides baselines for the two sub-tasks
(Layer segmentation, and Glaucoma classification). Meanwhile, the evaluation
methods are described in detail.

2 Dataset

The 300 circumpapillary OCT images are randomly selected from previous glau-
coma study cohorts collected over the past five years in Zhongshan Ophthalmic
Center, Sun Yat-sen University, Guangzhou, China. The images are all acquired
by using a TOPCON DRI Swept Source OCT [11]. The acquired images are
saved in BMP format with a resolution of 1024 × 247 or in JPG format with
1270×763. In the GOALS Challenge, we store the images in PNG format with a
resolution of 1100×800. The summary of the GOALS dataset and its population
demographic are shown in Table 1.

Table 1. Summary of the GOALS dataset and the demographic of the population.

Person Eyes Age Gender (Female)

Total dataset Total 66 99 45.91±15.04 36.40%

Glaucoma 13 22 44.59±12.77 30.80%

Training set Total 16 24 39.08±14.08 31.30%

Glaucoma 4 7 40.86±9.23 25%

Preliminary set Total 19 30 44.8±16.32 42.11%

Glaucoma 4 7 42.92±17.09 75%

Final set Total 31 45 50.05±14.48 35.50%

Glaucoma 5 8 50±8.48 0%
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The GOALS dataset provides the glaucoma labels and the segmentation
masks of RNFL, GCIPL and choriod layers in the circumpapillary OCT images.
The glaucoma labels are determined by the clinical records, which can reflect the
findings from a series of eye examinations. The annotations of the layer segmen-
tation are manually marked by the ophthalmologists of the iChallenge-GOALS
study group. The iChallenge-GOALS study group contains ten ophthalmologists
from different hospitals who have been working in the ocular field for 5 years or
more. The 300 images are randomly divided into 2 subsets, and repeating this
operation 5 times, we obtain 10 subsets of the data, where each image appears in
5 different subsets. The 10 subsets are randomly assigned to the 10 ophthalmolo-
gists, that is, each image is labeled by 5 different ophthalmologists. The results of
the 5 initial labeling results are then aggregated by a more senior ophthalmolo-
gist for fusion. Specifically, The ophthalmologist need to delineate the upper and
lower margin of the RNFL, GCIPL and choroid regions, as shown in Fig. 1(A).
After that, the senior ophthalmologist analyze the 5 initial annotations of each
image, remove the annotations with large deviations, and average the remain-
ing initial annotations as the final annotation result for each image. We then
assign different pixel values to pixels within the boundaries of RNFL, GCIPL
and choroid layer to obtain the final ground truths of the layer segmentation
(RNFL: 0, GCIPL:80, choroid:160, elsewhere:255, as shown in Fig. 1(B)).

In GOALS Challenge, 300 images are divided into three partitions according
to the patient dimension, i.e. the images acquired from the same patient’s eyes
are guaranteed to be divided into the same partition. These three data partitions
correspond to the training set, the preliminary set, and the final set. The data
in the training set contains the original OCT images and their glaucoma labels
and layer segmentation masks, which are used for training models. While the
preliminary and final sets only contain the original OCT images, which are used
for testing models in preliminary and final rounds.

3 Baseline

We design a baseline model for each of the two challenge sub-tasks. As shown
in Figs. 2 and 3, we utilize a U-shape network with residual concept to achieve
the layer segmentation, and utilize a ResNet50 to perform the glaucoma classifi-
cation. The baseline codes are available at https://aistudio.baidu.com/aistudio/
competition/detail/230/0/related-material.

We implement the baselines via PaddlePaddle. During training, we use an
Adam optimizer with learning rate = 10−3 in the layer segmentation task, as well
as with learning rate = 10−6 in the glaucoma classification task. The training
procedure consist of 3000 iterations and 1000 iterations for layer segmentation
and glaucoma classification with a Nvidia Tesla V100-SXM2 GPU, respectively.
The batch sizes are 8 for both tasks.

https://aistudio.baidu.com/aistudio/competition/detail/230/0/related-material
https://aistudio.baidu.com/aistudio/competition/detail/230/0/related-material
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Fig. 1. Schematic diagram of the annotations for RNFL, GCIPL, and choroid layer
segmentation. (A) Annotations for the boundaries of the targets; (B) Segmentation
masks.

Fig. 2. A baseline framework for OCT layer segmentation.
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Fig. 3. A baseline framework for glaucoma classification.

4 Evaluation

In this section, we introduce the evaluation metrics for the two challenge sub-
tasks. For the layer segmentation task, a DICE coefficient and a mean Euclidean
distance (MED) are used to evaluate the predicted region and boundary, respec-
tively. For the glaucoma classification, the weighted combination of sensitivity
(Sen), specificity (Spe), accuracy (Acc), F1 score, and area under the receiver
operating characteristic curve (AUC) are utilized to evaluate the predicted
results.

4.1 Task 1: Layer Segmentation

To measure the accuracy of the predicted region, we use the frequently-used
DICE coefficient in the segmentation task:

Dice =
2|X ∩ Y |
|X| + |Y | (1)

where, X represents the segmented target pixel point set in the ground truth;
Y represents the segmented pixel point set in the prediction result; |X ∩ Y |
represents the intersection between X and Y ; |X| and |Y | represent the number
of the elements of X and Y . The formula for calculating the score corresponding
to the DICE metric is

ScoreDice = DICE × 10 (2)

In addition to evaluating the accuracy of the region segmentation, we also
evaluate the accuracy of the boundary of the segmentation results by using
Euclidean distance, due to the importance of the boundaries between the struc-
tural layers in the OCT images. Specifically, we first traverse each pixel on the
predicted boundary, and calculate the Euclidean distance from each pixel to
the nearest pixel on the gold standard boundary. Then the sum of the above
Euclidean distances is averaged based on the number of pixels on the predicted
boundary:

MED =
1
N

N∑

i=1

√
(xi − x0

i )2 + (yi − y0i )2 (3)
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where N is the number of pixels on the predicted boundary, (xi, yi) is the ith
pixel on the predicted boundary, and (x0

i , y
0
i ) is the nearest pixel on the boundary

of the ground truth to (xi, yi). The score corresponding to the MED metric is
calculated by

ScoreMED = (MED + 1)−0.3 (4)

Since the layer segmentation task contains the segmentation of the three
regions of RNFL, GCIPL and choroid, the DICE and MED metrics of these
three regions should be taken into account in the score calculation. In addition,
because the RNFL layer is more important for the diagnosis of glaucoma, we
assign higher weights to the scores obtained from RNFL segmentation:

Scoretask1 = 0.4 × ScoreRNFL + 0.3 × ScoreGCIPL + 0.3 × Scorechoroid (5)

Scoreregion = 0.5 × ScoreDICEregion + 0.5 × ScoreMEDregion ,

region ∈ {RNFL,GCIPL, choroid} (6)

4.2 Task 2: Glaucoma Classification

For glaucoma classification, we adopt five common metrics including Sen, Spe,
Acc, F1, and AUC:

Sen =
TP

TP + FN
(7)

Spe =
TN

TP + FP
(8)

Acc =
TP + TN

TP + FN + TN + FP
(9)

F1 =
2 × TP

2 × TP + FP + FN
(10)

where TP , TN , FP and FN represent the numbers of true positive, true neg-
ative, false positive, and false negative detection of the glaucoma. Sen, Spe and
Acc can reflect the proportions of positive samples, negative samples and all
samples predicted correctly, respectively. F1 provides a overall metric of the
model’s ability to detect comprehensively and accurately. And AUC reflects the
classification ability of the model when the positive and negative samples are
unbalanced. In our evaluation framework, these metrics are implemented via
scikit-learn package [12], which is an open source machine learning toolkit base
on Python. Since the GOALS dataset has a balanced distribution of positive and
negative samples, we assign the lowest weight to the AUC metric in the score
calculation.

Scoretask2 = (0.1 × AUC + 0.25 × Sen + 0.25 × Spe + 0.2 × ACC + 0.2 × F1) × 10 (11)

Based on the results of the baseline model, we find that positive and negative
samples in the GOALS dataset have obvious distinguishable image features, and
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therefore score high in Task 2. Hence, for preliminary and final rounds, a lower
weight is assigned to Task 2 in the score calculation:

Scoreround = 0.8 × Scoretask1 + 0.2 × Scoretask2,

round ∈ {preliminary, final} (12)

Since the preliminary leaderboard is visible to the players, one can adjust the
model parameters or strategies to get the best prediction on the preliminary set.
To avoid players’ results from getting overfitting results on the preliminary set
and getting high scores, we assign lower weights to the preliminary score when
counting the total challenge scores. Hence, the total score is:

Score = 0.3 × Scorepreliminary + 0.7 × Scorefinal (13)

Based on the evaluation criteria, our baselines receive 7.2802 score on the
preliminary set and 7.2398 score on the final set. The results of each specific
evaluation index are shown in Table. 2.

Table 2. The evaluation results of the baseline model on different datasets.

Dataset Preliminary set Final set

Score 7.2802 7.2398

Layer Segmentation RNFL DICE 0.8161 0.8433

RNFL ED 4.0597 4.151

GCIPL DICE 0.6295 0.6234

GCIPL ED 3.318 3.6011

choroid DICE 0.8193 0.8746

choroid ED 8.9155 9.8953

Glaucoma Classification AUC 0.9984 0.9927

F1 0.9346 0.8829

ACC 0.93 0.8687

SEN 1 1

SPE 0.86 0.74

5 Conclusion

In this paper, we introduce the GOALS Challenge at MICCAI 2022. In the chal-
lenge, we focus on OCT which is a powerful imaging technology for glaucoma
diagnostics. We design two challenge sub-tasks, including OCT layer segmenta-
tion of RNFL, GCIPL and choroid, and glaucoma classification. The dataset col-
lection and labeling process, as well as the result evaluation design are described
in detail in the paper. GOALS Challenge dataset and evaluation framework are
publicly accessible through the AI Studio website at https://aistudio.baidu.com/
aistudio/competition/detail/230. Participants are welcome to join the GOALS
Challenge and submit their predicted results on the website.

https://aistudio.baidu.com/aistudio/competition/detail/230
https://aistudio.baidu.com/aistudio/competition/detail/230
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Abstract. Since medical data with different characteristics can be
observed even with the same disease in a clinical environment, an
anomaly detection algorithm should be well applied to medical data that
are not seen. Focusing on a fact that an object photograph consists of
reflectance and illumination information, we propose a new data aug-
mentation method that can change illumination information for creating
a new fundus image by preserving the reflectance information includ-
ing the disease lesion information. Then our framework which is trained
with only normal data during training employs a reconstruction manner
with a self-supervised learning technique capable of identifying anoma-
lous images. Based on the reconstruction manner, our model is trained
to reconstruct the reflectance image, not the original image to leverage
the useful information which is the main component of the fundus image.
Furthermore, in order to boost the anomaly detection capability of our
proposal, we propose a pretext task for a self-supervised learning manner
to reduce intra-class variance by considering the distance of each feature
representation. An anomaly score, as a measure to classify the anoma-
lous data, is constructed based on the reconstruction error between the
original image and the reconstructed image. In addition, We extensively
evaluate our framework on the diabetic retinopathy fundus dataset. The
results demonstrate our framework’s superiority over the latest state-of-
the-art methods.

Keywords: Self-supervised learning · Anomaly detection · Fundus
image

1 Introduction

Clinically, anomaly detection of image-based biomarker [6–8] correlated with
disease information to determine patient status is an important task. In order
to diagnose the status of the retina, a fundus image is one of the standard
methods widely used to observe diseases that cause blindness, such as Diabetic
Retinopathy [5].

Although deep learning-based studies that are helpful for the identification
of image-based biomarker in a clinical environment have shown high-accuracy
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B. Antony et al. (Eds.): OMIA 2022, LNCS 13576, pp. 143–151, 2022.
https://doi.org/10.1007/978-3-031-16525-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16525-2_15&domain=pdf
https://doi.org/10.1007/978-3-031-16525-2_15


144 S. Ahn and J. Shin

research results, many studies are based on annotation information. However two
limitations can arise in research based on medical data with expert annotations
that can derive high performance. First, the acquisition of abnormal data is more
difficult than normal data that it is difficult to obtain sufficient characteristics of
data required to distinguish between normal and abnormal. Second, it can have
a much greater variety of features (e.g., size, shape, color) in unseen medical data
that can be encountered in an actual clinical environment compared to observ-
able features from the data used in learning. In other words, various features
of anomalies which can be occurred make it difficult to accurately identify the
biomarker by methods built on the basis of annotation.

The main focus of this paper is to propose an anomaly image-based biomarker
method based on a reconstruction approach with a self-supervised learning man-
ner to have a capability about distinction between normal and abnormal data
by considering the possible problems. The main contribution of this work can
be summarized into four-fold:

1. A novel reconstruction model is presented by exploiting a self-supervised
method to aid image-based biomarker to detect anomalies that are not seen
through the use of only normal data during training.

2. Based on the fact that objects can be divided into reflectance and illumi-
nation information, we propose an augmentation method to generate a new
augmented fundus image by preserving the reflectance information.

3. Our model is to reconstruct the reflectance image from which illumination
information has been removed so that we learn the representation of required
features to reconstruct data regardless of less useful information.

4. Pretext task technique with a self-supervised learning manner based on the
semi-hard negative mining strategy is combined in our framework to con-
trol the distance of intra-class variance, which further boosts the anomaly
detection performance.

2 Methodology

2.1 Illumination Information Change Augmentation

Medical data such as fundus images with different illumination information can
be obtained depending on the difference in the amount of light through the aper-
ture between the person and the measuring equipment. Even the data obtained
from the same person may have different illumination information. Since color
information may vary depending on the observation method, the features con-
stituting the image may be more important in medical data such as fundus
images. In consideration of the fact and focusing the object photograph can
be divided into two elements: reflectance and illumination information [11], we
make a division algorithm to get the reflectance image and illumination image
from the fundus image and construct a new fundus image that is changed the
illumination information, with reflectance information fixed as shown the Fig. 1.
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Fig. 1. Example of fundus images observed in an actual clinical environment. First
row: fundus images with various illumination information. Second and Third row: new
fundus images in which the illumination information of the image in the first line has
been changed using the illumination information of the fundus image in the red box.
(Color figure online)

2.2 Reconstruction for Reflectance Image

We first prepare two different fundus images x1, x2 to obtain a reflectance image
and an illumination image from each image by applying the division algorithm
(yellow lines on the Fig. 2). Then, as shown blue lines in Fig. 2, we make a
new normal fundus image x3 that has the reflectance information same with the
image x1 and the illumination information same with the image x2. Eventually,
we regard the new fundus image x3 as an original fundus image as well as the
fundus images x1 and x2. A little difference from the recent anomaly detection
based on the reconstruction approach is to restore input to the original image.
In order to encourage a model to fully exploit the feature representation exactly
from the normal fundus image, we let our model M restore the reflectance image
from the original image by giving less consideration to the information of illu-
mination. In other words, since our model exploit the reflectance information,
illumination information that can occur in a clinical environment is not signifi-
cantly affected by various problems for our model. Particularly, even if the image
x3 has the illumination information of the fundus image x2, our model is trained
to restore the reflectance image x3′

r1 to have a characteristic similar to xr1 based
on embedded feature representation z3r1 which indicate the encoded reflectance
information through an encoder ME . Then, x1 and x2 also are embedded into
feature space to get the representations z1r1 and z2r2 through the encoder, and
based on these, x1′

r1 and x2′
r2 are generated, respectively. Finally, as shown Fig. 2,

the reconstructed reflectance images x1′
r1 , x3′

r1 , and x2′
r2 are converted into the

reconstructed fundus images x1′
, x3′

, and x2′
by combining the illumination

information extracted from original fundus image x1 or x2 corresponding to the
same reflectance information.
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Fig. 2. Overview of the proposed methodology with self-supervised learning.

We employ the reconstruction process not only to compare the reconstructed
fundus images x′ and original fundus images x but also to compare the recon-
structed reflectance images x′

r and original reflectance images xr. To train our
model based on the reconstruction process, the reconstruction loss function is
defined as:

Lref =
∥
∥
∥x1′

r1 − xr1

∥
∥
∥ +

∥
∥
∥x3′

r1 − xr1

∥
∥
∥ +

∥
∥
∥x2′

r2 − xr2

∥
∥
∥ (1)

Limg = ‖x′
1 − x1‖ + ‖x′

3 − x1‖ + ‖x′
2 − x2‖ (2)

Lrec = Lref + Limg (3)

2.3 Semi-hard Negative Mining Strategy

In order for our model to estimate anomaly by reconstructing manner, the model
needs to be trained to minimize the intra-class variance of feature representa-
tions. However, even though the intra-class variance is minimized, similar fea-
tures should be embedded close to each other, and those with relatively different
features should be embedded far away in the distribution of intra-class. In order
to improve our model capability for detecting anomalies by considering both
the intra-class variance and the distance of embedded feature representation, we
leverage a pretext task based on a self-supervised learning technique with the
semi-hard negative mining strategy [10] to assist the reconstruction process. We
define the new fundus image x3 as an anchor image, the fundus image x1 which
has the same reflectance information of the anchor image as a positive image, and
the fundus image x2 which has different reflectance information of the anchor
image as a negative image. The three images are passed through the encoder ME
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to represent the feature of reflectance in the feature space, respectively. At this
time, we embed a negative features representation z2r2 through the encoder to
closer to the anchor features representation z3r1 in the feature space, but further
than the positive features representation z1r1 , but closer than the positive feature
representation z1r1 with margin α:

∥
∥z3r1 − z1r1

∥
∥ <

∥
∥z3r1 − z2r2

∥
∥ <

∥
∥z3r1 − z1r1

∥
∥ + α.

With this strategy, we train our modified mapping function by the encoder ME

with the following triplet loss:

Lself = d1 +

⎧

⎨

⎩

0, d1 ≤ d2 ≤ d1 + α
d2 − d1, d1 + α ≤ d2

d1 + α − d2, d2 ≤ d1

(4)

where d1 and d2 denote the Euclidean distances of the positive feature z1r1 and
negative feature z2r2 to anchor feature z3r1 , respectively. Therefore we train our
model to embed the feature representations with small intra-class variance by
considering the relative distance between feature representations.

Finally, with the previously defined loss functions, the overall training loss is
defined as:

L = Lrec + Lself (5)

3 Experiments and Result

3.1 Dataset

We perform experiments on the EyePACS dataset [2] which has the largest
publicly-accessible dataset for classifying the grade information of fundus images.
However, some fundus images have the problem of the variation in the quality
that can be considered anomaly data. Thus we employ the EyeQ [3] dataset
which is a subset of EyePACS and has fundus image quality grading informa-
tion. By excluding the low-quality fundus images, we set a training dataset con-
sisting of 11,892 fundus images with only normal class and a validation dataset
consisting of 832 fundus images with mixed-status both normal and abnormal.

3.2 Anomaly Score

In the testing phase, a test image xt is fed to our model, M , which yields a
reconstructed reflectance image xt′

r . Then, we generate the reconstructed fundus
image xt′

. Compared with the original image and the reconstructed image in
both the reflectance-based and the fundus-based, respectively, we calculate the
reconstruction error namely anomaly score. The anomaly score will be low if the
fundus image with no anomaly will be restored similar to the input, but on the
contrary, the anomaly score will be high if the fundus image with anomalies will
be restored differently from the input. Based on the anomaly score, we classify
the input data whether the normal or the abnormal.
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Table 1. Ablation study results for three major components of our proposal.

Methods Ablation Precision Sensitivity Specificity AUC

Color distortion 1 0.5860 0.5563 0.5647 0.6244

Cutout 1 0.5318 0.5197 0.5214 0.5406

Sobel filtering 1 0.5723 0.5446 0.5726 0.6091

Local pixel shuffling 1 0.5632 0.5399 0.5732 0.6098

Fundus image reconstruction 2 0.5751 0.5586 0.5709 0.6343

Without strategy 3 0.5690 0.5517 0.5720 0.6272

Hard negative mining strategy 3 0.5612 0.5521 0.5542 0.6129

Ours 0.5889 0.5670 0.5949 0.6550

3.3 Ablation Study

This comparison aims at investigating whether our framework can be an evalu-
ation model for the anomaly detection task or not. We first delineate the contri-
bution of our proposal via ablation studies of the three major components of our
model: illumination information change, reflectance image reconstruction, and
semi-hard negative mining strategy.

Illumination Information Change. In order to demonstrate that illumina-
tion information change has the advantage for pretext tasks with self-supervised
learning, we first keep our model learning scheme and compare the different aug-
mentation methods for pretext tasks. The result is shown in the second to fifth
rows in Table 1. For the pretext task for self-supervised learning, the illumina-
tion information change leads to signification better performance. Furthermore,
from this comparison result, we can infer that from the pretext task set up to do
self-supervised learning well, the best result can be derived when the physical
properties of the object remain unchanged as much as possible.

Reflectance Image Reconstruction. The sixth row in the Table 1 is the
performance if our model restores the fundus image directly. This suggests that
generating the original image can impair the capability of the model to perform
anomaly detection, given that the fundus image with various illumination can
occur in the clinical environment.

Semi-hard Negative Mining Strategy. If the normal data is only used to
perform anomaly detection, the intra-class variance of the extracted features
must be small. As shown in the seventh and eighth rows in Table 1, the use
of semi-hard negative mining which consider the distance between the feature
representations resulted in the best results, even though the use of a simple hard
negative mining strategy can lead to worse performance than not being used.

3.4 Comparison with the State-of-the-Arts(SOTA)

We compared our proposal with representative SOTA researches which worked
in the field of ophthalmology for anomaly detection. The abnormality of the
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Table 2. Performance of the comparison with SOTA for DR anomaly detection.

Methods Precision Sensitivity Specificity AUC

AutoEncoder [1] 0.4920 0.4870 0.4734 0.4777

F-AnoGAN [9] 0.5303 0.5188 0.5263 0.5384

SALAD [12] 0.5264 0.5274 0.5232 0.5572

Lesion2Void [4] 0.5680 0.5548 0.5664 0.6237

Ours 0.5889 0.5670 0.5949 0.6550

data was determined using the anomaly score derived from each model. Experi-
mental results identify the effectiveness of the reconstruction approach based on
reflectance information with the self-supervised technique in Table 2 and Fig. 3.
Furthermore, as shown Fig. 4, our model can distinguish the distinction between
the normal and the abnormal based on the anomaly score. Even though the F-
AnoGAN and SALAD researches are exploited for retinal status evaluation with
optical coherence tomography (OCT), compared with researches (Lesion2Void,
Ours), it can be observed that it’s not suitable for the anomaly detection task
with fundus image.

Fig. 3. Demonstration of ROC Curves.
We demonstrate that our proposal’s
AUC value is the highest compared to
other methods.

Fig. 4. The histogram of anomaly
scores for DR. We can observe that the
distribution of anomaly scores of both
normal and abnormal is different.
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Fig. 5. Qualitative results of our model on the dataset for fundus images including two
example images for normal and abnormal, respectively.

3.5 Qualitative Analysis

In order to show the performance of our proposal, we present a qualitatively com-
pared the pixel-level difference of anomaly localization between original images
and reconstructed images. Whether the image used as input is a normal image
or an abnormal image, we demonstrate that our proposal generates the recon-
structed image as a normal image. In particular, we can observe that the resid-
ual image, which represents the difference between the original image and the
reconstructed image, can serve as a good guide to the abnormal part. Thus our
proposal has been trained to a role as an image-based biomarker for anomaly
detection.

4 Conclusion

This paper is to study the problems that may arise in a clinical environment for
the anomaly detection task. We decomposed and recombined the original image
into reflectance and illumination images to overcome the problem in which illu-
mination information varies depending on the method of acquisition in a clinical
environment. We propose a framework that is trained with only normal data
based on the reconstruction manner for anomaly detection of fundus images.
In order to pay attention to the feature representation of normal data, unlike
other reconstruction-based models, we employ a technique of reproducing, not
original images, but reflectance images with the exclusion of illumination infor-
mation that can degrade the model’s performance. Furthermore, we employ the
self-supervised learning technique to fully exploit useful information from the
feature representations by considering the distance within the distribution of
intra-class. Furthermore, the experiments have proved that our framework can
be used as a biomarker for fundus images.
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Abstract. Glaucoma is one of the most severe eye diseases, charac-
terized by rapid progression and leading to irreversible blindness. It
is often the case that diagnostics is carried out when one’s sight has
already significantly degraded due to the lack of noticeable symptoms at
early stage of the disease. Regular glaucoma screenings of the popula-
tion shall improve early-stage detection, however the desirable frequency
of etymological checkups is often not feasible due to the excessive load
imposed by manual diagnostics on limited number of specialists. Con-
sidering the basic methodology to detect glaucoma is to analyze fundus
images for the optic-disc-to-optic-cup ratio, Machine Learning algorithms
can offer sophisticated methods for image processing and classification.
In our work, we propose an advanced image pre-processing technique
combined with a multi-view network of deep classification models to
categorize glaucoma. Our Glaucoma Automated Retinal Detection Net-
work (GARDNet) has been successfully tested on Rotterdam EyePACS
AIROGS dataset with an AUC of 0.92, and then additionally fine-tuned
and tested on RIM-ONE DL dataset with an AUC of 0.9308 outper-
forming the state-of-the-art of 0.9272. Our code is available on https://
github.com/ahmed1996said/gardnet

Keywords: Glaucoma classification · Color fundus images · Computer
aided diagnosis · Deep learning

1 Introduction

Glaucoma is an eye disease which is considered the leading cause of blindness.
It is caused by an increased pressure in the eyes as a result of fluid build up,
clinically known as intraocular pressure (IOP), which damages the optic nerve.
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Patients with glaucoma do not usually experience symptoms, as such, it is
referred to as the “silent thief of sight” [8]. A recent study [1] reported that
by the year 2040, 111.8 million people will be affected by this disease. Among
many types of glaucoma, there are two common types, specified by the structural
nature of the disease: angle closure glaucoma (ACG) and open angle glaucoma
(OAG). The former type is more common, while the latter progresses much faster
to complete blindness with no early intervention. While measuring the IOP may
sometimes help clinicians in diagnosis, it is difficult to take accurate readings
due to the unstable nature of the optical pressure. Clinicians have resorted to
examining the structure and appearance of optic disc (OD), such as the increase
of the cup-to-disc ratio (CDR) [8]: the ratio of the optic cup diameter to the
diameter of the OD. However, manual examination is time-consuming and is a
subject to the availability of a specialist. In order to release optometrists and
ophthalmologists from the burden of manual glaucoma screening, multiple deep
learning approaches are explored.

In this paper, we propose Glaucoma Automated Retinal Detection Network
(GARDNet): a combined methodology of sophisticated image pre-processing and
robust multi-view network architecture for glaucoma classification. Our model
was trained and tested on AIROGS training dataset [17] with images of different
quality and resolution. In order for our model to produce consistent and robust
results regardless of the input’s quality, we introduced a localization of the area of
interest with the following pre-processing pipeline. GARDNet extracts bounding
boxes around the OD, and then applies multiple random affine and non-linear
transformations, as well as such image processing techniques as Contrast Limited
Adaptive Histogram Equalization (CLAHE). Overall, we have validated eight
models with over 150 experiments, and combined three best performing models in
a multi-view network manner. Our proposed methodology allowed us to achieve
AUC of 0.9308 on an external testing dataset, outperforming the state-of-the-art
model by Fumero et al. [5] which achieved 0.9272 on the same dataset. This work
does not aim to propose a new algorithm nor expand on an existing one. We aim
to propose and validate a robust solution for glaucoma classification.

2 Related Works

Glaucoma related research is mainly focused on automated screening methods
and OD segmentation as well as its outer area, with the following classification
of referable/no-referable glaucoma. For example, Dibia et al. in [2] proposed to
extract from segmented OD such features of eye fundus images as OD area,
cup diameter, rim area and other important features to calculate then Cup-
to-disc ratio (CDR), which is commonly used as glaucoma indicator. Although
the proposed methodology has a strong logical foundation, it was tested on a
rather small dataset. Furthermore, many papers introduce deep-learning meth-
ods to classify glaucoma. Lee et al. in [9] proposed fully automated CNN, called
M-Net, based on a modified U-Net [12] to segment OD and optic cup (OC).
For the glaucoma classification task, the team used pretrained ResNet50 and
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affine transformations for image preprocessing, achieving AUC of 0.96 on the
small dataset, REFUGE [4]. Similar approach of two-step glaucoma screening
was presented by Sreng et al. [16], segmenting OD with DeepLabV3, and then
classifying glaucoma with various deep CNNs such as AlexNet, GoogleNet, and
InceptionV3. The authors worked with several datasets and achieved promising
results, but faced some limitations when generalizing between datasets. Maadi
et al. in [10] followed the same segment-and-classify approach. As a novelty, the
authors modified classical U-Net model, introducing pre-trained SE-ResNet50
on the encoding layers, which achieved better results.

In a more recent work, Phasuk et al. in [11], proposed improvements of
disc-aware ensemble network (DENet) which incorporate the information from
general fundus image with the information from optic disc area. This allowed
to achieve AUC of 0.94 on a combined testing set from RIM-ONE-R3 [7] and
Drishti-GS [15].

Fig. 1. Preprocessing pipeline used
in our experiments on the AIROGS
dataset to crop the regions of interest
from the original images.

Fig. 2. Our multi-view network is com-
posed of three different CNNs trained
on different views of the color fundus
images. wn refers to the weight coeffi-
cient corresponding to model n, and pn
is the soft-max probability predictions
in model n.

3 Method

3.1 Preprocessing

The AIROGS dataset [17] used in our experiments have non-uniform dimensions.
We therefore begin by resizing all images to a fixed dimension of 256 × 256
pixels. In addition, we apply CLAHE transformation with a clipping limit value
of 0.01, and then feed our resized images to a U-Net model [12] pretrained on
optic disc segmentation [14] using the RIM-ONE v3 dataset [6]. The generated
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optic disc segmentation masks are then converted to bounding box coordinates,
with padding determined by taking 30% of the segmented optic disc’s diameter.
We then proceed with cropping the original image based on the values of the
bounding box coordinates, and finally resize the cropped image to a uniform
dimension of 256 × 256 pixels. In the case where the pretrained network fails
to segment the optic disc, we default by taking a center crop of size 85% of
the image width, followed by a resize to 256 × 256 pixels. This accounts for
approximately 20% of our dataset. Figure 1 illustrates our overall preprocessing
pipeline.

3.2 Multi-view Classification Network

Our glaucoma classification model, GARDNet, is composed of a multi-view net-
work of three different convolutional neural networks (CNNs) trained on differ-
ent views of the color fundus images, as illustrated in Fig. 2. The first network
is trained on the original resized images, whereas the second network is trained
on the cropped disc area generated from the preprocessing strep, and finally, the
third network is trained on the polar transformed cropped images. The training
of each model is done independently. The model choice in the final multi-view
network is based on ablation studies using different architectures, as reported
in later sections. The intuition behind the multi-view network is that, experi-
mentally, the model with uncropped images performed better than the cropped
images. This is likely due to the error introduced by the pretrained disc seg-
mentation model that is used to crop the images. At the same time, cropped
images containing the optic disc area are most important for glaucoma diagno-
sis, as stated in the literature [9] and shown experimentally in our GradCAM
[13] visualization Fig. A.1. We therefore retain both models in the final multi-
view network. Lastly, in the final model, we apply polar transformation, which
converts the image representation from Cartesian coordinates to polar coordi-
nates system. For a point (u, v) in the Cartesian space, we obtain the radius r
and angle θ as follows [3]:{

r =
√

u2 + v2

θ = tan−1( v
u )

↔
{

u = r cos θ

v = r sin θ
(1)

The transformation converts the radial relationship between the optic disc,
cup, and background to a spatial hierarchical structure, which may provide an
alternative view to the classification model and help capture more complex fea-
tures. Phasuk et al. [11] claims that this transformation enhances the low level
information in the optic disc region. The final classification prediction is obtained
by taking a weighted average of the three soft-max predictions, followed by
assigning the prediction label to the class that scored the highest probability.
In the final multi-view network, we assign higher weight (w = 2) to the model
trained on uncropped images, as it performed better on the validation set. The
other two models generally performed similarly and therefore share the same
weight.
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4 Datasets

Rotterdam EyePACS AIROGS. The Rotterdam EyePACS AIROGS
dataset [17] consists of 113,893 color fundus images. Only the training set is pub-
lic and available to be downloaded, which has 101,442 gradable images (images
of acceptable quality). The testing set consists of 11,000 gradable and ungrad-
able images but it is not accessible to the public which limited our ability to use
in this paper. Each image in the dataset is annotated by an expert as “referable
glaucoma” or “no referable glaucoma”. The images are high in resolution and do
vary in size. The dataset has significant class imbalance, where the size of “no
referable glaucoma” (normal) class is approximately 15 times greater than the
“referable glaucoma” class.

Fig. 3. 5-fold cross-validation applied on our dataset, where Tn is the test results
evaluated using the model trained on fold n and Taverage is the average test results
across all k = 5 folds.

RIM-ONE DL. Retinal IMage database for Optic Nerve Evaluation for Deep
Learning (RIM-ONE DL) dataset [5] is used in this project as an external testing
dataset, which consists of 313 normal and 172 glaucomatous fundus images. All
images were segmented, then cropped around the cup-disc area. There are two
training/testing split versions of this dataset; one was split randomly and the
other was split by hospitals in Madrid and Zaragoza. We chose to report the
results on the one split by the hospitals. The training set consists of 311 images,
and the testing set contains 174 images.

5 Experimental Setup

For the following datasets, all the images were resized to 256 × 256. To address
the problem of the imbalanced classes in both datasets, we utilize weighted cross
entropy as a loss function, with the weights assigned for class j being wj =
nsamples/(nclasses · nsamplesj ) . In other words, the class weights are inversely
proportional to their respective class probabilities. The evaluation metrics used
are receiver operating characteristic area under curve (ROC AUC) and F-score
(F1).
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Rotterdam EyePACS AIROGS. Our models were trained for 50 epochs on a
single NVIDIA A100 GPU with a batch size of 64. An Adam optimizer was used
with a learning rate ranging between 1×10−4 – 1×10−3. For some experiments,
we apply data augmentations consisting of random vertical flip (p = 0.5), random
horizontal flip (p = 0.5) and random rotation (degrees=(−10◦,+10◦)). In some
experiments, we apply CLAHE transformation, as inspired by previous works.
The advantage of using CLAHE is that it enhances the contrasts and dampens
any noise amplification [11]. Given that the original testing set is not available,
we split the training data into training and testing splits, using approximately
90/10 percents. To validate the robustness of our models, we performed 5-fold
cross-validation by splitting the training data into training and validation, with
approximately 80/20%, as illustrated in Fig. 3. As a result, the dataset sizes for
training, validation, and testing are 73,154, 18,288 and 10,000, respectively.

RIM-ONE DL. For this dataset, our main goal is to validate our model trained
on the Rotterdam EyePACS AIROGS generalizability on a completely new
unseen dataset. We visually noticed that the optic disc occupied a larger area in
the image. We therefore retrain our best model with scaling augmentation that
mimics this behavior, and results in a model invariant to images with different
scales. We fine-tuned our pretrained models using dropout rate of 0.2, learning
rate of 5 × 10−3 and augmentations such as random horizontal and vertical flips
as well as scaling. Since the RIM-ONE DL dataset is already cropped around the
optic disc (OD) area, our multi-view network for this experiment consisted of
only two models, while ignoring the model trained on original uncropped images.
This makes our proposed solution applicable to different datasets with varying
sizes and crops.

6 Experiments and Results

Rotterdam EyePACS AIROGS. Table 1 shows a summary of our experi-
ments on the Rotterdam EyePACS AIROGS dataset. On the cropped data, we
performed multiple experiments using different convolutional neural networks
such as EfficinetNet-B0, EfficinetNet-B1, MobileNet-V3, ResNet18, ResNet34,
ResNet50 and DenseNet in addition to Vision Transformer (ViT-Base) with
patch size 16. We experimented with several experimental hyperparameters such
as dropout, applying CLAHE and augmentations. Our best performance on the
cropped images was obtained with EfficientNet-B0 model with dropout (p = 0.5),
CLAHE and augmentations, gaining an AUC of 0.90 ± 0.01 and F1-score of 0.77
± 0.01. To verify the performance of our cropped images vs. the original images,
we trained the original images on the same model configurations as our best
model, and obtained a higher AUC of 0.91 ± 0.01 and F1-score of 0.79 ± 0.01.
Additionally, we further repeated the training of the best scoring model on the
uncropped images using polar transformations, which obtained a slightly inferior
performance of AUC 0.85 ± 0.02 and F1-score of 0.76 ± 0.01.
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RIM-ONE DL. Table 2 summarizes our testing results on the RIM-ONE DL
dataset after fine-tuning our pretrained models (Experiment #10 and #14) on
the RIM-ONE DL training split. As shown in Table 2, our multi-view network
achieves a better performance compared to [5], obtaining an AUC of 0.9308 and
F1-Score 0f 0.9170. The individual CNNs corresponding to Experiments #10 and
#14 obtained an inferior performance of AUC 0.87954 and 0.9088 respectively.

Table 1. Experimental results on the Rotterdam EyePACS AIROGS dataset.
D=dropout, A=augmentations, C=CLAHE, S=scaling transformation, P=polar
transformation. EfficientNet-B0original refers to EfficientNet-B0 model trained on the
original (uncropped) data.

ID Model D A C P S Test AUC Test F-1

1 Resnet34 0.74 ± 0.02 0.74 ± 0.01

2 Resnet18 0.75 ± 0.02 0.74 ± 0.01

3 Resnet34 � 0.78 ± 0.01 0.75 ± 0.01

4 ViT-B224×224 0.78 ± 0.01 0.75 ± 0.01

5 DenseNet-121 0.79 ± 0.04 0.71 ± 0.06

6 MobileNet-V3 Large 0.79 ± 0.02 0.78 ± 0.00

7 EfficientNet-B1 0.81 ± 0.02 0.80 ± 0.01

8 EfficientNet-B0 0.81 ± 0.02 0.79 ± 0.01

9 Resnet50 0.82 ± 0.02 0.80 ± 0.00

10 EfficientNet-B0 � � � � 0.85 ± 0.02 0.76 ± 0.01

11 EfficientNet-B0 � � 0.87 ± 0.01 0.80 ± 0.01

12 MobileNet-V3 Large � � � 0.89 ± 0.01 0.77 ± 0.01

13 EfficientNet-B0 � � � � 0.89 ± 0.01 0.76 ± 0.01

14 EfficientNet-B0 � � � 0.90 ± 0.01 0.77 ± 0.01

15 EfficientNet-B0original � � � 0.91 ± 0.01 0.79 ± 0.01

16 Multi-view network
(#14, #15)

0.92 0.80

17 Multi-view network
(#10, #14, #15)

0.92 0.80

7 Discussion

Our results indicate that the models trained on the uncropped images performed
much better than the cropped images. We hypothesize that this is due to errors
introduced by the pretrained disc segmentation model that is used to crop the
images. Furthermore, our experiments show that using dropout improves the
performance, and therefore is a good strategy for overfitting. Additionally, using
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Table 2. Experimental results on RIM-One DL dataset.

Model Test AUC Test F-1

Fumero et al. [5] 0.9272 –

Experiment #10 (Ours) 0.8795 0.8517

Experiment #14 (Ours) 0.9088 0.8974

Multi-view network (#10, #14) (Ours) 0.9308 0.9170

augmentations and CLAHE on top of dropout significantly improves the perfor-
mance. By using augmentations and CLAHE, we increase the effective dataset
size and also overcome model overfitting, making it robust to spatial and color
transformations.

Furthermore, the ViT-B model did not perform as good as the EfficientNet-
B0 model. The Vision Transformer model requires a large amount of data to
perform as well as CNNs, therefore we hypothesize that its inferior performance
is probably due to the relatively small number of training samples. In addition,
ResNet18 and ResNet34 models performed worse, as smaller models are not able
to capture the complex features in our dataset.

The multi-view network outperformed all previous experiments in the
AIROGS dataset. By combining our three best performing CNNs, each trained
on a different view of the same data, we achieve an AUC of 0.92. Furthermore, we
give more classification decision weight to the best performing CNN, Experiment
#15 (Table 1), which helped achieve this performance.

For the RIM-ONE DL experiments, we can conclude that our multi-view
network, GARDNet, generalizes well on this dataset when fine-tuned on the
training set. While experiment #10 and #14 did not exceed in performance
compared to the previous state-of-the-art, the multi-view network composed of
these two models scored a higher AUC score than Fumero et al. [5]. We hypoth-
esize that our model performed better due to our image processing methods
such as CLAHE and polar transformations, as well as the availability of a large
dataset for pretraining. Furthermore, as our results indicate, multi-view networks
outperform individual models.

Finally, we address the results obtained in Experiment #16 from Table 1. As
we can see, on the AIROGS dataset, our multi-view model without the polar net-
work performs as good as the Multi-view model with all three networks (Exper-
iment #16). While this may indicate that the polar network has no positive
contribution to the overall model, we argue that our results on the external
dataset prove the opposite. As shown in Table 2, the polar model alone (Exper-
iment #10) had achieved inferior performance in comparison to the cropped
model (Experiment#14), but when combined in a multi-view network, the result
achieved is significantly higher than the individual networks.
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8 Conclusion

In this paper, we introduced a multi-view network GARDNet for glaucoma
classification composed of three different CNNs trained on different views of
color fundus images. Trained on the AIROGS dataset and tested on an external
dataset, RIM-ONE DL, our results indicate that the multi-view network signif-
icantly improves the performance when compared to individual models. On the
external test dataset, we get superior performance to the previous state-of-the-
art model by Fumero et al. [5]. In future works, we would like to extend the
weighted averaging of the multi-view network predictions, such that the weights
are determined systematically as learnable parameters rather than being con-
stant.
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Abstract. Fundus photograph is an important basis for ophthalmolo-
gists to diagnose retinal diseases. Due to the limitations of the optical
system design for portable fundus cameras, there still exist typical image
defects leading to low quality images. There are stray light defects such
as atomization area, shadow ring, bright spot, central dark hole and so
on. Since the camera empty shot in a dark environment can reflect impor-
tant device-specific characteristics of typical defects, we propose a novel
framework to execute image defects repairing by template compensation
based on camera empty shots for portable fundus cameras. First, noise
reduction is employed from a camera empty shot image. Then, a defect
compensation template based on empty shot is generated. For each fun-
dus image, an adjusted ratio is optimized in different defect areas of the
customized compensation template. Finally, this template is applied to
compensate and repair the stray light defects in order to improve image
quality for the target image captured from the same camera. Experimen-
tal results show that our proposed method is effective, and it is able to
obtain fundus images in better quality.

Keywords: Camera empty shot · Image defect · Image repair ·
Template compensate

1 Introduction

Portable fundus cameras are more convenient in screening and clinical scenarios
than desktop fundus camera. Due to the limitation of the light path and lens
size in the portable fundus camera, the quality of the fundus images is prone
to be affected by stray light, which is not expected but reaches the surface of
photosensitive equipment (e.g. charge coupled device, CCD) after propagation.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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In current design of optical system in portable fundus cameras, stray light
still can not be eliminated completely, but it is suppressed to be in a certain
extent. The images taken by portable fundus cameras are more or less affected by
stray light. Strong stray light can seriously affect ophthalmologists’ diagnosis and
needs to be eliminated. Deep learning, such as [31,32], is not suitable for built-
in processing module due to increasing costs of camera hardware. As a result,
suppressing stray light defects using traditional image processing technology is
necessary and crucial.

Stray light generation is related to all the optical surface and component
surface of the optical system. Light sources will be more or less affected by the
scattering, transmission and absorption from these surfaces during transmission
to the detector. The quantitative analysis of stray light is very difficult. With the
rapid development of optical technology and a variety of photoelectric detection
technologies, the sensitivity of optical system increases greatly, and the detection
threshold becomes lower and lower. The influence of stray light is often amplified.
At the same time, the progress and development of computing ability makes it
possible to analyze, locate and eliminate stray light in software level.

To the best of our knowledge, currently there is no existing work discussing
the issue of stray light elimination in fundus images taken from portable cameras.
In this paper, we will propose a novel algorithm for stray light elimination in
fundus images captured by portable cameras.

2 Related Work

Typical image defect repairing methods include image enhancement and image
inpainting. We will discuss in details as below.

2.1 Image Enhancement

The visual characteristics of stray light in fundus images are somewhat similar to
the common image atomization phenomenon, which can be used for reference to
remove stray light. Common defogging algorithms can be divided into algorithm
based on image enhancement and algorithm based on image restoration.

Typical image enhancement methods include: histogram equalization [1],
adaptive histogram equalization [2], contrast limited adaptive histogram equal-
ization (CLAHE), Retinex algorithm [3–5], wavelet transform, homorphic fil-
tering, etc. Histogram equalization (HLE) [1] is mainly used to enhance the
contrast of images with small dynamic range by changing the histogram of the
image to change the gray level of each pixel in the image. Adaptive histogram
equalization (AHE) [2] can obtain more image details by changing the local
histogram. CLAHE overcomes over-amplified noise problem in AHE by using
contrast limiting for each small area. The Retinex-based method [3–5] is based
on the consistency of color perception, removing the influence of illumination of
ambient light and enhancing the reflection information of the image. Dichromatic
reflection model [27,28] is used to remove object highlights.
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Haze removal algorithm based on image restoration mainly uses atmospheric
degradation model. The typical algorithms are the dark channel defogging
algorithm [6] proposed by He et al. and defogging algorithm based on guided
filtering [22]. Other representative algorithms include single image defogging
algorithm [23,24], fast image recovery algorithm [25], and Bayesian defogging
algorithm [26]. Dark channel prior theory points out that there is one color
channel of each pixel always has a very low gray value in the fog-free image, so
the gray value of all pixels in the whole dark channel is approximately 0. The
defogging model is as follows: I(x) = J(x)t(x)+A(1−t(x)), in which, I(x) is the
existing image (to be fogged), J(x) is the original fog-free image to be restored,
A is the global atmospheric optical composition, and t(x) is the perspective rate.

Traditional defogging algorithm in natural environment can be used for ref-
erence, but it is under the assumption of uniformly distribution of fogs. As a
result, it can not be directly applied to the elimination of stray light atomiza-
tion phenomenon in non-uniformly distribution in most cases.

2.2 Image Inpainting

The existing image restoration work can be divided into two main categories.
The first category includes traditional diffusion-based or patch-based approaches
with low-level characteristics. The second category is based on deep learning.

Traditional diffusion or patch-based methods such as [7–10,12] usually use
variational algorithms or patch similarity to propagate information from the
background region to the missing region. Criminisi et al. [11] uses known regions
to fill the missing regions by the priority of pixel blocks. PatchMatch [13] uses a
fast nearest neighbor field algorithm.

Recently, methods based on deep learning have made great achievements in
the field of image inpainting. Initial work [14,15] trains convolutional neural net-
works for denoising and repairing small areas. Context encoder [16] uses the full
connection layer in image repair work. Demir [18] et al. introduce residual learn-
ing and PatchGAN on the basis of [17]. Yu et al. [19] propose the mechanism of
contextual attention. Two networks are used to refine the repair results. Dilated
convolution [17], partial convolution [20] and gate convolution [21] are used to
help the network to learn better learn features.

Typical image defects in fundus images include central white spot, shadow
area, atomization area, etc. The existing algorithms are not targeting stray light
defects in fundus images. In general, image enhancement can be used to reduce
the interference of weak or partial distortion defect, and image inpainting can
be used to repair serious distortion area. Due to the limitation of built-in hard-
ware resources in portable fundus camera, deep learning is not suitable and the
traditional image processing is more friendly. In addition, typical defects such as
central dark ring, central dark spot and central white spot have not been inves-
tigated, where customized defect repair algorithm need to be explored further.
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3 The Proposed Method

As illustrated in Fig. 1, we propose an image defect repair algorithm based on
camera empty shot images, which will provide a new solution for defect repair
and optimization of fundus images. The effective image information can be sepa-
rated from the aliasing image signal by using empty shot image. First, we prepro-
cess camera empty shot image to avoid the influence of noise(especially highlight
noise) on subsequent processing. Then, a compensation template is determined
and the defect area is located according to camera empty shot image. Using
defect area and fundus image, the compensation weight of the fundus image is
further determined. Finally, the defect area of fundus image is compensated by
adjusting the compensation template with appropriate weights.

Fig. 1. The flowchart of the proposed framework.

3.1 Camera Empty Shot Image

The image taken by a fundus camera against a pure color background or even
in a dark space is called a camera empty shot image. Each camera only need to
capture the empty shot images once as for calibration before leaving the factory.
There is no obvious illumination imbalance caused by the shooting environment
and no reflection imbalance of the subject itself. It can be considered that empty
shot image mainly reflects the difference of camera’s imaging ability caused by
hardware and the optical path design.

Ideally, the empty shot should also be a pure color image, typically in white
light. The bright area in the empty shot image will appear as a bright spot in
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the fundus images. Dark areas in the empty shot image will appear as shadows
in the fundus images. Colored backgrounds in different RGB channels presents
similar pixel distribution property. As a result, we typically apply the camera
empty shot captured from black background.

3.2 Compensation Template

Generating the Initial Template. Based on our observation, the distribution
characteristics of stray light in the fundus image is similar and consistent to main
distribution of stray light in camera empty shot image, as illustrated in Fig. 2.
Inspired by this, we think the influence of stray light can be weakened with the
help of camera empty shot image.

Because stray light is mainly caused by camera system, the area is relatively
fixed. According to the fundus images and empty shot images, we can roughly
locate the areas where stray light appears. The reference region is selected outside
the stray light region. Figure 2 shows an example of compensation templates for
RGB channels. In the second row of Fig. 2, the intensity of blue or red indicates
how many pixels should be added or reduced to the fundus image.

Fig. 2. Comparison between fundus image and empty shot image.

The compensation method is as follows:

Iresult = I − w × Imask, (1)

where Iresult is the optimized result of fundus image, I is the original fundus
image, and Imask is the template generated by the empty shot image. The param-
eter w is the adjustment weight of the compensation template. For the compensa-
tion template, defects that appear as bright spot correspond to a positive values
in Imask, and defects that appear as shadow correspond to negative values in
Imask. By subtraction, the bright spot in the fundus image is weakened and the
shadow is enhanced to a brighter level.
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Adjusting Compensation Weights. When a camera takes fundus images, the
lighting conditions, the subjects’ lens diopter and retinal reflection ability are
all different, so stray light intensity will be different. It is difficult to find a fixed
universal compensation template. Therefore, we need to adjust the compensation
template according to actual situation of fundus image.

The camera imaging problem is mainly divided into the bright spot in the
camera center and the shadow ring around the bright spot. Compensation tem-
plate can be adjusted according to bright spot and shadow. Set different weights
for bright spot and shadow, wbright, wdark.

Fig. 3. Examples of camera empty shots: (a) Original fundus image (b) Empty shot
image (c) Blue channel of empty shot image (d) Results locating defect area. (Color
figure online)

The bright spot and shadow are mainly caused by optical path design.
Although there are some differences among the devices, the distribution is
roughly similar. Camera defect usually appears in the image center. As shown in
Fig. 3, the bright spot defect region Dbright is in the green ring, and the shadow
defect region Ddark is between the red and green ring.

ĪBackground is the reference pixel value of the empty shot image, which is the
average value of Arearef . The constant factor c is the total number of pixels
in this reference area. In the defect area of the empty shot image, threshold
segmentation is performed to locate the imaging bright spot Areabright and
shadow area Areadark of the fundus image. The reference pixel value of empty
shot image is ĪBackground. (i, j) is pixel coordinate, as

ĪBackground =
1
c

c∑

i=1

I(Arearef ) (2)

Areabright = {(i, j)|E(i, j) > ĪBackground, (i, j) ∈ Dbright} (3)
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Areadark = {(i, j)|E(i, j) < ĪBackground, (i, j) ∈ Ddark} (4)

w =

⎧
⎨

⎩

wbright, if (i, j) ∈ Dbright,
wdark, if (i, j) ∈ Ddark,

0, otherwise.

where E is empty shot image, wbright is the weight of bright spot area, wdark

is the weight of shadow area. According to the position of Areabright and
Areadark in the image, we can get the brightness difference between defect region
(Areabright, Areadark) and the reference region. wbright and wdark are adjusted
based on the brightness differences of the fundus image and empty shot image:

M(I(Arearef )) =
1
m

m∑

i=1

G(I(Arearef (i))) (5)

wbright =
M(I(Areabright)) − M(I(Areareference))
M(E(Areabright)) − M(E(Areareference))

(6)

wdark =
M(I(Areadark)) − M(I(Areareference))
M(E(Areadark)) − M(E(Areareference))

(7)

where m is the total pixels number in Area, I is the fundus image, G() is the
Gaussian filtering function, and M() is to obtain the mean value in Area of
image I after Gaussian filtering. The adjusted weights wbright and wdark are
calculated according to the ratio of the corresponding areas of fundus image and
empty shot image.

4 Evaluations

4.1 Data Set and Experimental Setup

As a pioneer work, a private dataset is applied in this evaluation. It is collected by
Beijing Hospital, captured in in 3792×2824 pixels using a portable fundus cam-
era, HuiMouMed FC-800. It consists of 117 fundus images (20 subjects) taken
by 13 different cameras with the same model. Each camera is applied to shoot
its corresponding empty shot images, with a size of 3792 × 2824 pixels. A total
13 of camera empty shot images are collected in a dark room by photographing
black color cards while the diopter of camera optical system is 0◦.

Our method is implemented in Python and C++ and it runs on the Intel Core
I5 under Windows 10. Defect areas and reference areas need to be determined
according to the empty shots of dataset. Based on this dataset, it is observed
that the bright spot defect area is within 180 pixels from the image center, the
shadow defect area is within 300 pixels from the image center, the reference area
is within 700–850 pixels from the image center.



Image Defect Repair Using Camera Empty Shot 169

4.2 Experimental Results

We mainly use the brightness standard deviation (Brightness STD) and local
similarity to measure image quality. The brightness standard deviation is calcu-
lated using defect region and mean value of reference region. The local similarity
is defined as the average SSIM [30] value, which is applied to evaluate the degree
of similarity between a local area and its surroundings by taking brightness,
contrast and structure into consideration, as:

LocalSimilarity =
1
n

n∑

i=1

SSIM(Areadefect, Areai) , (8)

where Areadefect is the defect region, Areai is the i-th reference region near
Areadefect, both in rectangle. n is the total number of reference areas (here we
take n=8 for left, right, upper, below, upper left, upper right, lower left, lower
right positions).

The greater the value is, the higher the image quality is. Since image defects
are concentrated near the center of the image, the metrics are calculated with a
square area with 600 × 600 pixels in the center of the original image.

At the same time, the existing methods such as gamma correction (GC),
contrast limited adaptive histogram equalization (CLAHE) [2] and dark channel
defogging [6] are used for comparison in the experiments.

Table 1. The evaluation results of our proposed method.

Methods Original GC [29] CLAHE [2] DarkChannel [6] Ours

Brightness STD 22.99 21.71 41.31 16.11 14.09

Local similarity 0.659 0.472 0.362 0.653 0.721

As it can be seen from Table 1, compared to the original images, our pro-
posed algorithm reduces the brightness standard deviation by 8.9, increases the
local similarity by 0.062 while the overall image quality in visual representation
(especially in hue) keeps unchanged. Based on our observation, other existing
methods change the image hue more or less. In addition, our method weakens the
bright spot area and enhances the shadow area in the fundus image. Basically,
the optimized image results have higher image quality.

Figure 4 shows that the optimized image has better image quality in the cen-
tral defect area, and the compensation template reduces bright spot, shadow and
atomization in the original image. It proves the feasibility of the compensation
template derived from camera empty shot images.
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Original image Gamma correction CLAHE Dark channel Ours

Fig. 4. Comparison between different methods.

5 Conclusions

In this paper we propose an image defect repair algorithm based on camera
empty shot. Camera empty shot image can reflect typical imaging defects caused
by optical path and the design of optical system. Using this feature, a compensa-
tion template is generated to compensate stray light. Considering the brightness
characteristics of fundus image, the compensation weight of the fundus image is
adjusted and the compensation template is optimized. Finally, the template is
applied to execute the final compensation step. Experimental results show that
our proposed method is effective. The bright spot area is weakened, the shadow
area is enhanced, and the image information entropy is improved.
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Abstract. When a typical wide field fundus camera takes two fundus images as
a pair, two patterns of illumination beams (the top and bottom, left and right) are
turned on respectively.Due to the influence of the illumination beams, the reflected
and scattered light haze are observed in neighboring regions, which results in
partial or even complete occlusion of retinal structures. In this paper, we propose
a novel templatemask based image fusion algorithm forwidefield fundus cameras,
which splices available higher-quality regions from these two images in one pair,
and fuses them into a single high-quality image, which tries to keep complete
retinal structure. First, the region of interest (ROI) are obtained based on the
Hough circle transform, and these two images are adjusted by color and brightness
normalization based on Poisson fusion. Then, a customized template mask is
designed to fuse the higher-quality regions from this image pair. Finally, image
enhancement in brightness is carried out to further improve final image quality.
Experimental results on a variety of wide field fundus image pairs demonstrate
that the proposed method is effective, our method increases information entropy
by 0.051, standard deviation by 1.726, average gradient by 0.148 and spatial
frequency by 0.233.

Keywords: Wide field fundus camera · Image processing · Image fusion

1 Introduction

In typical wide field fundus cameras, there will be a strong stray light effect (fog-like
phenomenon) close to the built-in light sources, resulting in occlusion and irreversible
interference to retinal structures or lesions, so that the wide field fundus camera cannot
shoot only once to achieve high-quality imaging. A typical solution is to divide the
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four illumination beams around the observation axis into two lighting patterns (top and
bottom, left and right), and turn them on alternately to capture two wide field fundus
images as a capturing pair, as shown in Fig. 1. Therefore, it is necessary to develop an
image fusion algorithm for wide field fundus cameras to obtain a high-quality fundus
image with relatively complete retinal structures.

In traditional image fusion problems, the corresponding pixel pairs of two input
images are generally aligned (after image registration) and complementary. However,
wide field fundus camera images belong to a different case. High-quality central areas
of the image pair can be both retained and complementary. However, low-quality areas
close to light sources are almost unusable, only the relatively high-quality area in the
other image can be reserved. From this viewpoint, they are choose-one-from-two as the
same image area is in different light states in two patterns. In addition, the global and local
brightness of two input images are significantly different due to two different lighting
patterns. As a result, the boundary effects between reserved and discarded regions are
prone to produce obvious visual differences, resulting in unsatisfactory overall image
fusion results.

12

6

3939

12

6

(a) (b)

Fig. 1. A pair of wide field fundus images. (a) The first image (top and bottom light sources at 6
and 12 o’clock). (b) The second image (left and right light sources at 3 and 9 o’clock)

In this paper, we propose a template mask based image fusion algorithm for wide
field fundus cameras to obtain high-quality wide field fundus images. It was observed
that two wide field fundus images in the same pair are spatially complementary. That is
to say, there is a low-quality region near the light source in one image, a corresponding
better-quality region occurs in the other image at the sameposition. To take full advantage
of this property, an image fusion algorithm based on template mask is proposed, which
splices the available parts of twowide field fundus images and fuses them into a relatively
complete and high-quality fundus image.

2 Related Work

To preserve original accurate information as much as possible, pixel-wise image fusion
algorithms can be applied [1, 2], which can be divided into two categories: image fusion
based on spatial domain and image fusion based on transform domain.

Image fusion based on spatial domain is generally performed directly on the gray
space of image pixels. A most straightforward method is to use the maximummethod or
theweighted averagemethod [4] to select the pixel from two input images,whichoperates
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directly on the target pixel without considering the correlation between neighboring
pixels. When there is large information complementarity between images to be fused,
a region-based image fusion method can be applied, the fusion coefficients of different
to-be-used images can be determined according to the feature relations between the
pixels in a rectangular window at a certain position. Zhang [5] obtained the Laplacian
energy of the input image to measure the focusing degree, and realized the image fusion
by a sliding window. However, the computational complexity of this algorithm is high.
Principal component analysis is also a typical spatial domain method, Zhu [6] searched
for principal components of images by dimension reduction, and determined the weight
of each fusion image according to the energy of principal components. Chen [3] proposed
an image fusion algorithm based on edge detection. The improved ROEWA (Ratio of
ExponentiallyWeightedAverages) operator is used to detect image edge.Different image
fusion rules are set according to the high-frequency region and low-frequency region. In
addition, image fusion methods based on spatial domain also include false color image
fusion [7], image fusion based on modulation [8], image fusion based on statistics [9],
and so on.

Common fundus image fusion methods based on transform domain mainly include
fusion based on pyramid transform [10–13, 24] and wavelet transform [14–18, 21, 23].
The image fusion based on pyramid transform extracts the image detail information
on different decomposition scales and has a good fusion effect. However, after pyra-
mid decomposition, the data between decomposition layers is redundant, and the high-
frequency information might be seriously lost. The image fusion based on wavelet trans-
form can not only extract low-frequency information, but also obtain high-frequency
detailed information. However, because the wavelet transform uses row and column
down sampling, the image is not translation invariant, which easily leads to the distortion
of the fused image.

Different from traditional image fusion, image fusion for wide field fundus images
shouldnot only consider correlationbetweenpixels, but also abandon low-quality regions
where retinal structures near light source is covered. Paul et al. [22] proposed an image
fusion algorithm, where a mask generated by spectral analysis is used to score the
visibility of each pixel from source image, and each pixel in output image takes the
corresponding source pixel with the highest score. Its mask derived bigger transmission
region, unfriendly to strong fog-effect images. In this paper, based on the complemen-
tarity between two images from the same pair, an image fusion algorithm based on
well-defined template mask is proposed.

3 The Proposed Method

The proposed image fusion algorithm for wide field fundus cameras is shown in Fig. 2.
The algorithm consists of four parts: wide field fundus image pre-processing, color and
brightness normalization, image fusion based on template mask, and adaptive brightness
adjustment. For the input wide field fundus image pair, pre-processing is applied first to
improve image quality. Then, the color and brightness of the two pre-processed images
are normalized by Poisson fusion to reduce color and brightness differences. Next, the
high-quality regions of the two images are selected for fusion based on a template mask.
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Finally, the fusion image with low brightness is enhanced to further improve the overall
image quality.

3.1 Wide Field Fundus Image Pre-processing

Image Defogging and Registration. Due to the imaging characteristics of wide field
fundus cameras, the reflected and scattered light haze are observed in images, and there
is a difference of capturing times between the two wide field fundus images, leading to
possible offsets. Therefore, the image should be defogged and registered first. In this
paper, dark channel prior-based defogging algorithm [19] is used to obtain a wide field
fundus image with better quality to see clearer retinal structures. An image registration
algorithm based on SIFT feature points is used. Firstly, the brightness and contrast of the
image are improved to highlight the retinal detail. The SIFT feature points are detected,
which are filtered by RANSAC, and then the input images are registered. Through
registration, the center consistency of the two images can be guaranteed, the pixel error
at the joint after image fusion can be effectively reduced, and the stitching accuracy can
be improved.

Fig. 2. Block diagram of image fusion algorithm for wide field fundus cameras.

Region of Interest (ROI) Extraction. The effective retinal area of wide field fundus
image is approximately circular. In order to avoid the interference of useless areas outside
the retina, the circular retinal field of view (FOV) is extracted through Hough circle
detection. To ensure that the two images remain registered, they must use the same
circle to extract the FOV, so the average of the detected center and the average ROI size
of the two images is taken as the final result, and ROI of the two images is extracted



Template Mask Based Image Fusion Built-in Algorithm 177

with this result. As shown in Fig. 3, the retinal structures of the fundus become visible
and they are of better quality after pre-processing.

3.2 Color and Brightness Normalization Based on Poisson Fusion

Different light sources are used in the shooting of two wide field fundus images in the
same pair, which easily results in differences in brightness and color between these
two images, and obvious boundary is traced in the fusion result. In order to reduce
the influence of color and brightness differences on the fusion result, it is necessary to
normalize the color brightness of these two images.

During the Poisson fusion process, these two images are considered as foreground
and background respectively. It adjusts the color of the foreground image to that of the
background image, effectively reducing the brightness and color difference between two
images, weakening the image splicing boundary effect, and ensuring the overall color
balance of the fusion result.

Fig. 3. Results before (the first row) and after (the second row) pre-processing.

3.3 Image Fusion Based on Template Mask

Two fundus images of the same subject have spatial complementarity. In the low-quality
regions that must be discarded close to the light source, the image quality is relatively
better at the corresponding position of the other image. The images are divided using a
temple mask according to the distribution characteristics of stray light. An image fusion
algorithm based on a diagonal mask is proposed. The high-quality regions of the original
image are selected for fusion based on this template mask.

As shown in Fig. 4, according to the presence of stray light, the wide field fundus
images along the diagonal are divided into four parts. The top and bottom regions of
Image A (A1, A2) and the left and right areas of Image B (B3, B4) are the area without
stray light, which can be retained. Other areas are abandoned due to strong stray light.

Figure 4 (c) shows the corresponding relationship between the fusion result and the
two input images in each region. If the mask is directly generated according to the above
method for fusion, there will be obvious boundaries on the diagonal of the fused image.
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(a)  the first retinal image (b)  the second retinal image (c)  fusion vacancy map

Fig. 4. Region division method of wide field fundus image and fusion image

To further improve image quality, the width w is expanded outward along the direction
perpendicular to the boundary line of the image to be fused, so as to ensure that there are
overlapping regions between two images to be fused. The weighted average method is
applied to adjust the weight of pixel to eliminate the boundary effect. As shown in Fig. 5,
for the diagonal overlapping region S1, reduce the weight of Image A and increase the
weight of Image B along the arrow direction to make the boundary transition be smooth.
Similarly, for S2, S3 and S4, the same method is employed realize smooth transition of
color at the mask boundary.

The masks are generated according to the above method, and input image is mul-
tiplied by the corresponding masks to select the valid region. Finally, these images are
combined to obtain fused image with complete retinal structures.

weight

1

0

overlapping region

Image A Image B

(a) fusion vacancy map (b) S1 weight change curve

Fig. 5. Set the overlapping regions. (a) fusion vacancy map; (b) the weight change curve of the
overlapping region S1. Along the arrow direction, the weight of Image A in the fusion image
decreases from 1 to 0, and that of Image B in the fusion image increases from 0 to 1;

3.4 Adaptive Brightness Adjustment

Generally, the brightness of wide field fundus images is relatively low, which requires
a suitable image enhancement step. To avoid the influence of low-quality area, the
average pixel value in center region of Y channel in YUV color space is defined as the
brightness. The average brightness of the fused image from the training set data is taken
as the threshold. First, the gray values of all pixels in the 1% and 99% quartile are used as
the pixel minimum Pmin and maximum Pmax respectively. Then, the pixel values greater
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than Pmax and less than Pmin are truncated as Pmax or Pmin. Finally, the image is stretched
to 0–255 to obtain the final image enhancement result.

4 Evaluations

4.1 Data Set and Experimental Setup

The dataset used in our evaluation is a private dataset captured using Retivue with
Olympus Air A01, a Portable Wide Field Fundus Camera. It consists of 56 pairs of
image in 1920 × 1920 pixels, and each pair contains two wide field fundus images of
the same subject, the shooting time interval between the two images is about 100 ms.
The dataset is divided into two subsets: 26 image pairs as a training set (to determine
the threshold in module 4) and 30 image pairs as a test set.

It is conducted in Intel Core I5 under Win10 based on Python 3.7 and Opencv3.4.2.
The image fusion algorithm based on template mask has an adjustable parameter: over-
lapping area width w. If w is too small, there will still has boundary effect in the fusion
result. Ifw is too large, the stray light region in the original images that should have been
abandoned will still exist in the fusion result. Based on our experimental verification,
w = 100 is the most appropriate value for the target data set.

4.2 Results and Analysis

The proposed image fusion algorithm for wide field fundus cameras includes four mod-
ules: module 1 - wide field fundus image pre-processing, module 2 - image color and
brightness normalization based on Poisson fusion, module 3 - image fusion based on
template mask, and module 4 - adaptive brightness adjustment.

Validation of Each Module. First, the effectiveness of the image fusion algorithm
based on template mask (module 1 + module 3) is verified. Then, taking this as the
baseline, the effectiveness of module 2 and module 4 are verified.

Table 1. Results of this algorithm and traditional image fusion algorithm.

Fusion Algorithm
Information 

Entropy

Standard 

Deviation

Average 

Gradient

Spatial 

Frequency

Image Fusion Algorithm Based on 

Pixel Definition [21]
6.017 38.050 0.523 1.429

Image Fusion Algorithm Based on 

Diagonal Mask Pairs(baseline)
6.068 39.776 0.671 1.662
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According to Table 1, compared to the image fusion algorithm based on Pixel Defi-
nition [21], our proposed method is more effective, which increases information entropy
by 0.051, standard deviation by 1.726, average gradient by 0.148 and spatial frequency
by 0.233. Further, the module 2 and module 4 are successively added to the baseline.
Results are shown in Table 2. All evaluation indexes increase, indicating that the image
color and brightness normalization and adaptive brightness adjustment based on Poisson
fusion can effectively improve the quality of fusion results.

Table 2. Results of each experiment scheme.

Experiment Scheme Brightness
Information

Entropy

Standard 

Deviation

Average 

Gradient

Spatial 

Frequency

module 1 + module 3 - 6.068 39.776 0.671 1.662

module 1 + module 2 +

module 3
101 6.214 40.459 0.684 1.671

module 1 + module 2 +

module 3 + module 4
110 6.328 43.773 0.747 1.832

Validation of the Overall Algorithm. In order to verify the effectiveness of the algo-
rithm, three domain experts scores the fusion results from three aspects of image authen-
ticity, image clarity and overall quality. The image authenticity is based on whether there
is obvious noise or color distortion in images. Image clarity is according to whether
images are clearly visible, and whether the details are legible, blurred, or even lost.
Overall quality is combined with general features (such as brightness and contrast) and
structural features (such as vascular clarity, vascular density, and macular area contrast)
to comprehensively evaluate images. Since our method is aiming at a specific wide-field
fundus camera and there is no common overlap area in images, it is difficult to directly
compare with existing image fusion methods, so we mainly compare to a realted work
[22] in a similar strategy.

We compare them with Paul et al. [22] to evaluate the effectiveness of the algorithm.
According to Table 3, The proposed method is slightly lower than that in Paul et al.
[22] in terms of image authenticity, because there are still obvious traces in the diagonal
transition area of some images. But the image clarity and overall image quality are both
higher than those in Paul et al. [22]. It can be seen that our proposed method is better
and more effective. Some visual examples are provided in Fig. 6.
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Fig. 6. Examples of original images and the comparison between our method and Paul’s [22].

Table 3. Expert evaluation results (average of 30 pairs of data).

Image clarity
(0–10)

Image authenticity
(0–10)

Overall quality
(0–10)

Total
(0–30)

Paul et al. [22] 7.944 7.756 7.676 23.356

Ours 8.144 7.589 7.711 23.444

5 Conclusions

In this paper, an image fusion algorithm for wide field fundus cameras is proposed.
Image pre-processing is first conducted to eliminate the interference of invalid areas. An
image fusion algorithm based on template mask is applied, which selects high-quality
regions of wide field fundus images, and reduces the boundary effect of image fusion
by weighted average method. Aiming at low brightness of wide field fundus images, a
brightness adaptive image enhancement step is used to improve the information entropy
of fused images and finally output a clear and high-quality wide field fundus image.
Experimental results show that the proposed algorithm for wide field fundus cameras is
effective and it has a better fusion results.
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Abstract. Diabetic retinopathy (DR) is a serious vision-threatening condition
associatedwith diabetes and is the leading cause of visual impairment forworking-
age adults worldwide. Smartphone-based fundus imaging (SBFI) has the potential
to be combined with machine learning-based DR screening procedures to simul-
taneously improve global health equity and the prognosis of DR by increasing
patient accessibility to low-cost DR screening services. Federated learning is a
promising method to train machine learning models for DR grade classification
using large amounts of SBFI data, which can protect the privacy of sensitive patient
data at the same time. However, gradient inversion attacks have been shown to
be able to reconstruct private data using the model parameter gradient informa-
tion transmitted during federated learning updates. The purpose of this paper is to
investigate the privacy threat that gradient inversion attacks pose for reconstruct-
ing identifiable retinal fundus images during federated learning-based DR grade
classification training. Specifically, a novel metric called “SegmentationMatching
Score” (SMS) is proposed to quantify clinically relevant features present in fundus
images reconstructed during a gradient inversion attack that could be exploited
for patient identification information. Experimental results based on the FGADR
dataset demonstrate that reconstructed images could be correctly matched to their
corresponding source images using the SMS metric with a top-1 accuracy of
72.0%. These findings indicate that gradient inversion attacks pose a significant
threat for federated learning-based DR grade classification models and warrant
further investigation into viable defense strategies.

Keywords: Diabetic retinopathy · Gradient inversion attack · Federated learning

1 Introduction

Diabetic retinopathy (DR) is the leading global cause of visual impairment for working-
age adults, and it is estimated that 200 million individuals will suffer from DR by
2040 [1]. The DR severity grade is typically determined by assessing the presence and
magnitude of specific features clinically associated with the progression of the disease
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within color retinal fundus images as shown in Fig. 1 [2]. As visible features such as hard
exudates, microaneurysms, and hemorrhages are used to monitor disease progression, it
is critical that diabetic patients perform regular DR screening procedures to maximize
potential treatment options for vision loss prevention.

Fig. 1. Retinal fundus images taken from theFGADRdatasetwith associated annotations showing
examples of clinical features used for quantifying the DR severity grade.

Recently, there has been tremendous progress in applying machine learning models
for the task of DR grade classification [3–5]. The success of machine learning-based sys-
tems for DR screening procedures opens a wide range of possibilities for patient-centric
precision medicine. The benefits of using precision medicine to improve the standard of
care have been demonstrated in several medical disciplines [6]. Unfortunately, the cost of
DR screeningmay be prohibitive for some socioeconomic regions, contributing to global
health inequity [7]. However, advances in mobile technology have made it possible to
capture detailed retinal fundus images using smartphone-based fundus imaging (SBFI)
[8–11]. The combination of SBFI and autonomous DR screening procedures could dra-
matically improve the prognosis of DR globally by increasing patient accessibility to
low-cost DR screening services.

Althoughmachine learningmodels have displayed exceptional capability on specific
benchmark datasets, several challenges have to be overcome to successfully deploy and
integrate these models within the context of a SBFI patient-centric precision medicine
system for autonomous DR screening. Of particular importance is ensuring rigorous
patient privacy protection given the large volume of patient data that is required for
machine learning models to achieve robust and generalizable performance [12]. Retinal
fundus image data is especially sensitive to privacy violations as retinal recognition is
a reliable form of biometric identification and is used within many security systems
for identity verification [13, 14]. To help protect the privacy of patient data, federated
learning paradigms have been proposed, which mitigate privacy risks by ensuring that
during model training, the patient data never leaves the location where it is stored [15–
17]. Instead, the parameters of the machine learning model are sent to the location of the
data where training is performed on the local patient data and the updated parameters of
the machine learning model are sent back to the server. In the context of training a model
for DR grade classification using SBFI data stored locally on a patient’s smartphone,
each patient can be considered to represent their own federated learning institution.
During training, the model parameters are sent to the patient’s smartphone and updated
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on that device using the patient’s SBFI data. Zerka et al. demonstrated how 1-patient-
per-institution federated learning could be achieved in the extreme case where federated
institutions have only a single patient sample [18]. Such a training paradigm would
enable the inclusion of SBFI data from individual patients during model training without
requiring the potentially privacy compromising transport of their sensitive data to a
central location.

Fig. 2. Diagram of a gradient inversion attack being performed on a federated learning system
using parameter gradient updates intercepted by a malicious agent.

Despite the success of federated learning, it has been shown that sensitive patient
data used to train a federated model may be reconstructed from the underlying model
parameter gradient updates as shown in Fig. 2. This reconstruction process is known as
a gradient inversion attack [19, 20]. Of particular concern, in the context of training a
federated learning system using personal SBFI data, is that the 1-patient-per-institution
case has been shown to be especially vulnerable to gradient inversion attacks [21, 22].
Should a gradient inversion attack be successful, it may be possible for a malicious
agent to exploit sensitive patient information. Privacy breaches of this magnitude could
lead to a decreased willingness by patients to share their data, inevitably impeding the
development and deployment of potentially lifesavingmedicalmachine learningmodels.
Therefore, it is imperative that such vulnerabilities are thoroughly understood so that
robust defense strategies may be used to mitigate potential privacy threats.

The purpose of this work is to investigate the privacy threat posed by gradient inver-
sion attacks when training a 1-patient-per-institution federated learning model for DR
severity grade classification. Specifically, we are interested in measuring the amount of
information present in reconstructed images that can be exploited for patient identifi-
cation. Most image similarity metrics such as the structural similarity index (SSIM) do
not explicitly incorporate clinically relevant features into their computation. However,
prior research has shown the benefit of using clinical features such as the topology of
retinal vessel structures for identity verification, and it is foreseeable that clinical fea-
tures pertinent to DR grade classification, such as hard exudates, microaneurysms, and
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hemorrhages may also be valuable for patient identification [13]. Therefore, to quantify
the threat posed by gradient inversion attacks, we propose a novel metric called “Seg-
mentation Matching Score” (SMS), which assesses the capacity to correctly match the
patient identity of reconstructed images using the topology of several clinical features
relevant for DR grade classification extracted from these images. Themain contributions
of this work can be summarized as follows: 1) To the best of our knowledge, this is the
first attempt to analyze the quality of images reconstructed using a gradient inversion
attack in the context of federated learning based on 1-patient-per-institution SBFI data.
This work has the potential to expose privacy vulnerabilities in federated learning sys-
tems such that robust defense strategies may be developed to mitigate potential privacy
threats. 2) We propose the SMS metric to measure image similarity using clinically
relevant DR features. 3) Matching performance using the SMS metric is experimentally
validated through an ablation study and comparison to a SSIM baseline.

2 Methods and Materials

2.1 Data

Due to the lack of publicly available SBRI datasets, the Fine-GrainedAnnotatedDiabetic
Retinopathy (FGADR) datasetwas used in this research to emulate images captured from
a SBRI system [23]. This dataset has 1842 samples with image-level DR severity grading
and pixel-level annotation for clinical features including hard exudates,microaneurysms,
and hemorrhages. The image-level DR grade and pixel-level segmentation labels were
manually provided by a panel of ophthalmologists. Each image in the dataset has three
color channels and a spatial resolution of 1280 × 1280 pixels. Similar to the gradient
inversion attack framework proposed by Qu et al., all images were resized to a spatial
resolution of 224 × 224 pixels for experimental efficiency [24]. Data was partitioned
into training/testing sets using an 80/20 split respectively (1473 training images and 369
testing images). As 83.5% of the images within the test set had more-than-mild DR
(mtmDR), many of these images contained significant lesion features. Forty-six unique
source images were randomly selected to serve as candidates for reconstruction.

2.2 Federated Learning and Gradient Inversion Attack Framework

The specific network architecture chosen for the DR severity grade classification was
VGG16 [25], as this architecture has been heavily researched for deployment on smart-
phone computing hardware [26].Weights pretrained on ImageNet were used to initialize
the network. Before the federated learning updates were employed for the gradient inver-
sion attack process, model fine-tuning was performed for 100 epochs using the Adam
optimizer with a learning rate of 10−5. The purpose of this fine-tuning was to establish
model weights that could represent the likely training state of a DR grade classification
model during a gradient inversion attack. The federated learning updates were computed
using federated stochastic gradient descent (SGD) where each institution performed a
single step of SGD before returning the parameter gradient updates to the server. The
gradient inversion attack optimization was performed using the state-of-the-art inverting
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gradients framework proposed in [27]. This framework optimizes the pixel parameter
values of each reconstructed image to maximize the cosine similarity between the model
parameter gradient updates sent over the federated learning communication channel and
the gradient updates computed from each reconstructed image directly. Given the clinical
1-patient-per-institution context, each gradient inversion attack was performed using a
batch size of 1, where each batch contained one of the source images randomly selected
from the test set to serve as a reconstruction candidate. The hyperparameters used for the
inversion attack were set as the defaults recommended by Geiping et al. [27]. Specifi-
cally, the attack optimizationwas performedwith total variation regularization for 24000
iterations. The output of this process was a set of reconstructed images, each correspond-
ing to a specific source image sampled from the test set as described in Sect. 2.1. All
model architectures were implemented using PyTorch and trained on an NVIDIA RTX
3090 GPU.

2.3 Segmentation Matching Score

The goal of the SMS metric is to quantify the amount of clinically relevant informa-
tion present in the reconstructed images that is informative for patient identification.
Therefore, using the training data split described in Sect. 2.1, three segmentation mod-
els employing feature pyramid network (FPN) architectures with Resnet34 encoders
were trained to segment the spatial location of hard exudates, hemorrhages, and microa-
neurysms [28]. The segmentation models were trained for 100 epochs to minimize the
Dice loss. Optimization was performed using the Adam optimizer with a learning rate
of 10−4. For each of the three segmentation models, Dice scores were computed as a
measure of similarity between the extracted segmentation masks for each reconstructed
image and all images in the test set. A k-NN proximity search was used to find the top-k
most similar images in the test set for each reconstructed image using these Dice scores.
A reconstruction was considered to be successfully matched if the corresponding source
image used to generate the reconstruction was within the top-k most similar results. An
overview of the processing to compute this metric is shown in Fig. 3, where clinical fea-
tures are first extracted from reconstructed and test set images, and then used to match
the top-k most similar images.

Fig. 3. Overview of the process to match images reconstructed from the gradient inversion attack
with their corresponding source images using the SMS metric.
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2.4 Evaluation

Several image-based metrics were used to measure the quality of the images recon-
structed during the gradient inversion attack process, including the mean squared error
(MSE), peak signal-to-noise ratio (PSNR), learned perceptual image patch similarity
(LPIPS), and the structural similarity index measure (SSIM) [29, 30]. To evaluate the
performance of the segmentation models trained to compute the SMS metric, the sim-
ilarity between the corresponding computed segmentation masks from the source and
reconstructed images was calculated using the Dice and intersection over union (IoU)
score metrics. Furthermore, SSIM was chosen as the baseline for image matching per-
formance due to its widespread use throughout the research community as an established
image similarity metric [31], and image-based biometric comparison metric [32].

3 Results

3.1 Gradient Inversion Attack Performance

The average image-based similarity metrics computed to assess the quality of the recon-
structed images are shown in Table 1. The first row shows the average metrics computed
between each reconstructed image and the corresponding source image from the test
set. Two baselines were developed for comparison by calculating the evaluation metrics
between each reconstructed image and all test set images (row 2), and 20000 randomly
selected pairs of images from the test set (row 3). These results show an increase in
average image similarity as measured across all metrics when each reconstruction was
compared against its corresponding source image versus other images from the test set.
When comparing the mean performance metrics between rows 1 and 3 in Table 1, it
becomes apparent that there is a significant difference in the average SSIM similarity
(0.342 ± 0.032 versus 0.504 ± 0.047) while the difference in the average MSE sim-
ilarity was negligible (0.029 ± 0.009 versus 0.031 ± 0.019). This discrepancy may
indicate that the structural information extracted by the SSIM similarity metric is not
adequately represented in the reconstructed images. As such, SSIM may not be optimal
for measuring the similarity between images produced from a gradient inversion attack
and their corresponding source images.

Table 1. Mean performance metrics calculated on images reconstructed during the gradient
inversion attack process. The number inside the parentheses is the standard deviation.

Examples of reconstructed images can be seen in Fig. 4. Qualitatively, it can be
observed that several clinical features such as retinal blood vessel structures, location
of the optic disc and the macula, and the location of DR specific features such as hard
exudates are clearly present in the reconstructed images. Several differences between
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the reconstructions and their corresponding source images can also be observed. For
example, as seen in Fig. 4, parts of the retina appear darker in the reconstructed images
than in the source images, especially the retinal vessel structure.

Fig. 4. Examples of reconstructed fundus images produced from the gradient inversion attack
process. Each column shows an image pair where the top row shows the source image from the
FGADR dataset, and the bottom row shows the gradient inversion attack reconstruction.

3.2 Extracting Identifiable Clinical Features from Reconstructed Images

The Dice scores computed for each segmentation model during evaluation on the ground
truth test set were 0.371, 0.408, and 0.030 for hard exudates, hemorrhages, and microa-
neurysms, respectively. The poor performance of microaneurysm segmentation may
likely be due to the sparsity of microaneurysms in the images compared to hard exu-
dates and hemorrhages. The segmentation model performance comparing the extracted
masks from the reconstructed fundus images and corresponding source images were
computed as shown in Table 2. Microaneurysm segmentation performed worst, with
average Dice and IoU scores of 0.151 and 0.103, respectively. An example of a hard
exudate segmentation is shown in Fig. 5. The average Dice and IoU scores for hard exu-
date segmentation were 0.390 and 0.283, respectively. These results demonstrate how a
significant number of clinical features captured in the source image segmentation masks
are also represented in the segmentation masks extracted from the reconstructed images.

Fig. 5. Segmentation predictions for hard exudate features. The top row shows the segmentation
results for a source image sampled from the test set. The bottom row shows the segmentation
results for the corresponding image reconstructed from the gradient inversion attack.
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Table 2. Mean IoU and Dice scores comparing the extracted segmentation masks from recon-
structed images and source images. The standard deviation is shown within the parenthesis.

The ability to correctly match a reconstructed image to its corresponding source
image using clinical features extracted by the segmentation models was used to measure
how well the extracted clinical features from the reconstructed images could be used
for patient identification. Specifically, the matching performance was quantified by cal-
culating the top-k matching accuracy, corresponding to the percentage of reconstructed
images which had their matching source image within the top-k most similar results
as determined by the SMS calculation. To provide a baseline for comparison, image
matching was also computed using the SSIMmeasure as the similarity matching metric.
Additionally, an ablation study was performed to compute the matching performance
using hard exudate, hemorrhage, andmicroaneurysm features independently. Thematch-
ing performance results are shown in Table 3. The SMS metric performs best overall
with a top-1 matching accuracy of 72.0% while, the matching performance using the
SSIMmeasure performed worst overall with a top-1 matching accuracy of 10.0%. These
results indicate that the clinical features embedded within the reconstructed images can
provide pertinent information for patient identification.

Table 3. Matching accuracy describing the percentage of reconstructed images that can be
successfully matched with their corresponding source image using clinically relevant features.

4 Conclusions

The results from this work demonstrate that important clinical features within retinal
fundus images can be reconstructed from federated model parameter gradient updates
using state-of-the-art gradient inversion attack approaches. The proposed SMS metric
was shown to successfully match reconstructions to their source images with a top-1
matching accuracy of 72.0%. Furthermore, the matching accuracy using the SMSmetric
was shown to be superior to the matching accuracy using the SSIM measure. Future
work will include: 1) Qualitative analysis of the reconstructed images using quality
ratings from clinical ophthalmologists. 2) Evaluation of the performance of DR grade
classification using reconstructed images. 3) Identification matching will be extended
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using non-lesion-based features such as the segmentation of retinal vessels, the optic
cup, and the optic disc. 4) The relationship between the choice of gradient inversion
attack loss function and the resulting SSIM similarity between the reconstructed images
and the corresponding source images will be investigated.
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16. Konečný, J., McMahan, H.B., Ramage, D., Richtárik, P.: Federated optimization: distributed
machine learning for on-device intelligence (2016). https://doi.org/10.48550/arXiv.1610.
02527

17. McMahan, B.,Moore, E., Ramage, D., Hampson, S., Arcas, B.A.Y.: Communication-efficient
learning of deep networks from decentralized data. In: Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

18. Zerka, F., et al.: Privacy preserving distributed learning classifiers – sequential learning with
small sets of data. Comput. Biol. Med. 136, 104716 (2021)

https://doi.org/10.3791/55958
https://doi.org/10.1155/2008/280635
https://doi.org/10.48550/arXiv.1610.02527


192 C. Nielsen et al.

19. Yin, H., et al.: See through Gradients: image batch recovery via GradInversion. In: 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16332–
16341. IEEE (2021). https://doi.org/10.1109/CVPR46437.2021.01607

20. Zhu, L., Liu, Z., Han, S.: Deep leakage from gradients. In: Advances in Neural Information
Processing Systems, vol. 32, Curran Associates, Inc. (2019)

21. Huang, Y., Gupta, S., Song, Z., Li, K., Arora, S.: Evaluating gradient inversion attacks and
defenses in federated learning. In: Advances in Neural Information Processing Systems, vol.
34, pp. 7232–7241. Curran Associates, Inc. (2021)

22. Subbanna, N., Wilms, M., Tuladhar, A., Forkert, N.D.: An analysis of the vulnerability of
two common deep learning-basedmedical image segmentation techniques to model inversion
attacks. Sensors 21, 3874 (2021)

23. Zhou, Y., Wang, B., Huang, L., Cui, S., Shao, L.: A benchmark for studying diabetic retinopa-
thy: segmentation, grading, and transferability. IEEE Trans. Med. Imaging 40, 818–828
(2021)

24. Qu, L., Balachandar, N., Zhang, M., Rubin, D.: Handling data heterogeneity with generative
replay in collaborative learning for medical imaging. Med. Image Anal. 78, 102424 (2022)

25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition (2015). https://doi.org/10.48550/arXiv.1409.1556

26. Wang, P., Hu, Q., Fang, Z., Zhao, C., Cheng, J.: DeepSearch: a fast image search framework
for mobile devices. ACM Trans. Multimedia Comput. Commun. Appl. 14, 1–22 (2018)

27. Geiping, J., Bauermeister, H., Dröge, H., Moeller, M.: Inverting gradients - how easy is it to
break privacy in federated learning? In: Advances in Neural Information Processing Systems,
vol. 33, pp. 16937–16947. Curran Associates, Inc. (2020)

28. Lin, T.-Y., et al.: Feature pyramid networks for object detection. In: 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 936–944. IEEE (2017). https://
doi.org/10.1109/CVPR.2017.106

29. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error
visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

30. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of
deep features as a perceptual metric. In: 2018 IEEE/CVFConference on Computer Vision and
Pattern Recognition, pp. 586–595. IEEE (2018). https://doi.org/10.1109/CVPR.2018.00068

31. Nilsson, J., Akenine-Möller, T.: Understanding SSIM. arXiv preprint arXiv:2006.13846
(2020)

32. Hofbauer, H., Rathgeb, C., Uhl, A., Wild, P.: Image metric-based biometric comparators: a
supplement to feature vector-based Hamming distance? In: 2012 BIOSIG - Proceedings of
the International Conference of Biometrics Special Interest Group (BIOSIG), pp. 1–5 (2012)

https://doi.org/10.1109/CVPR46437.2021.01607
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1109/CVPR.2018.00068
http://arxiv.org/abs/2006.13846


Extraction of Eye Redness
for Standardized Ocular Surface

Photography

Philipp Ostheimer1(B), Arno Lins2, Benjamin Massow3, Bernhard Steger4,5,
Daniel Baumgarten1, and Marco Augustin5

1 Institute of Electrical and Biomedical Engineering,
UMIT TIROL - Private University for Health Sciences,

Medical Informatics and Technology, Hall in Tirol, Austria
philipp.ostheimer@umit-tirol.at

2 Department of Medical and Health Technologies,
MCI - The Entrepreneurial School, Innsbruck, Austria

3 Department of Mechatronics, MCI - The Entrepreneurial School,
Innsbruck, Austria

4 Department of Ophthalmology and Optometry, Medical University of Innsbruck,
Innsbruck, Austria

5 Occyo GmbH, Innsbruck, Austria

Abstract. Color photography is the basis to evaluate ocular surface
imaging biomarkers such as eye redness. Different grading scales are
hereby used clinically to examine the severity of eye redness ranging
from a white to a red eye. Currently used imaging and grading is time
consuming and subjective. In this work we propose a baseline pipeline
to assess the ocular redness based on standardized images of the ocular
surface. Images were acquired using a novel ocular surface photography
system, specifically tailored for standardized imaging in terms of lighting,
focus and position. The pipeline comprises three major steps in extract-
ing the eye redness: (i) defining a region-of-interest in the image of the
ocular surface, (ii) detection of scleral tissue by tiling the high-resolution
images and subsequent classification of the tiles and (iii) quantification
of ocular redness based on image features. The pipeline was evaluated on
a data set containing external eye images of healthy subjects and showed
promising results on the detection of scleral tiles, which can subsequently
be used for eye redness extraction. The performance and the simplicity of
the approach makes the baseline pipeline a suitable candidate for further
development and translating the concept to clinical patient data.

Keywords: Ophthalmic photography · Ocular surface · Sclera ·
Classification · Feature extraction · Machine learning · External eye

1 Introduction

Bulbar redness becomes visible due to the enlargement of conjunctival and epis-
cleral blood vessels. The redness can occur either by inflammation and irritation
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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of the bulbar conjunctiva or sclera, or by systemic disease [8]. Reference-image-
based grading scales were introduced to clinical practice since the 1980 s s in
order to ease the comparison during follow-up visits. Grading the redness allows
to track changes and consequently enables to confirm or alter treatment plans
[11]. Reference-image-based grading scales usually contain a range of images of
the ocular surface. Each grading is showing a different severity from a white to a
red eye. The reference images of a visual grading scale are either drawings (e.g.,
Efron [3]) or photographs (e.g., DBR [6]). The scales also differ from each other
by the number of divisions in severity, e.g., Efron offers five grades, whereas
IER only has four and the MC-D scale has even six grades [11]. Furthermore,
Efron et al. [3] recorded significant discrepancy between observers and challeng-
ing interchangeability between his investigated scales. Hence, one can conclude
that comparability of judging ocular redness is challenging when these subjective
grading of ocular redness is used. Hence a different approach to grade bulbar red-
ness is to use digital images in combination with algorithms to extract different
redness features. Currently the Oculus Keratograph 5M (Oculus Optikgeraete
GmbH, Wetzlar, Germany) is the only commercially available imaging device
offering a standardized way of imaging the ocular surface, which is the key
requirement for objective grading based on digital images [9]. Other approaches
include detailed description on how to image and grade bulbar redness with slit
lamps equipped with a camera sensor [7,13]. Objective quantification based on
digital images here is mainly based on the red color intensity extraction and/or
vessel edge detection [11]. Furthermore, the approaches differ in the region-of-
interest (ROI) to be evaluated, e.g., consider all visible sclera [2,12] or predefined
regions such as rectangles, which are placed manually [1,10,13].

In this work we propose a pipeline to assess the ocular redness based on high-
resolution images acquired with a novel ocular surface photography system. The
clinical prototype used to gather the image data is specifically designed to acquire
photographs of the ocular surface in a standardized fashion in terms of location,
focus, illumination and operator-independence. The baseline pipeline contains a
fixed definition of the ROI placed nasally and temporally of the pupil center,
tiling the ROIs in multiple non-overlapping patches, which are consequently
classified as sclera and non-sclera. Eventually, an intensity based redness feature
is determined for all sclera tiles.

2 Methods

An automated baseline pipeline for the extraction of eye redness is proposed
and was verified on a data set containing ocular surface images from healthy
volunteers. The major components of the pipeline are depicted in Fig. 1 and
described in detail in the following.
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Fig. 1. Sketch of the proposed baseline pipeline for the automated determination of the
eye redness based on ocular surface photography. Standardized, high-resolution ocular
surface images (1) are hereby split into temporal and nasal ROIs (2). The ROIs are
further split in smaller tiles (3), which are automatically classified as sclera or non-
sclera (4). Eventually, the eye redness is determined for the sclera patches (5) before
the results are forwarded for further interpretation and analysis (6).

2.1 High-Resolution, Standardized Ocular Surface Photography
System

A clinical prototype of an ophthalmic imaging system enabling standardized
ocular surface photography was utilized in this work. Based on a novel lens
design the prototype enables high-resolution imaging of the ocular surface for a
field-of-view of 21.3 mm × 16.0 mm with a lateral resolution of approx. 15 µm.
The system includes a fixation target, an integrated eye tracker and a single
acquisition mode illumination unit. The device aims to provide reproducible and
centered photographs of the ocular surface, which are independent of environ-
mental conditions such as room lighting and also operator-independent. Hence,
standardized imaging regarding focus, position and lighting is ensured, which
paves the way for automated analysis of ocular surface imaging biomarkers such
as ocular redness.

2.2 Image Data Set

Both eyes of healthy volunteers were imaged for the verification of the proposed
pipeline. The research project was approved by the Research Committee for Sci-
entific Ethical Questions from the UMIT TIROL (RCSEQ, 3012/22). Informed
consent was obtained from all volunteers prior to inclusion into this study. The
image data set comprised 17 volunteers of different sex (12 males/5 females), iris
color (11 brown, 2 blue, 4 green), age (26 to 46 years) and skin color.
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Image Acquisition and Pre-processing. To record RGB color images (4768 pixels
× 3580 pixels; 8 Bit color depth) the imaging unit was color calibrated using a
standardized white reflectance target. During image acquisition the iris is tracked
and its central position is stored in order to compensate for the positioning
tolerance allowed for imaging during post-processing. Vignetting correction is
applied to the acquired images and the corners are cropped to improve the
uniformity. An example image and important anatomical landmarks are shown
in Fig. 2.

Fig. 2. Ocular surface image of a healthy left eye and anatomical regions as defined
and used for the automated extraction of the eye redness.

2.3 Automated Sclera Detection

ROI Determination and Image Tiling. A temporal and nasal ROI with a size
of 1600 pixels × 1000 pixels is defined in a horizontal distance of 1600 pixels
from the center of the iris to the center of the ROI. Each ROI is consequently
subdivided into 8 × 5 tiles with a tile size of 200 pixels × 200 pixels. The tiles
are smoothed with a Gaussian filter (7 × 7; σ = 1) to reduce noise.

Image Tile Annotation and Classification. In a next step the tiles are classified
as sclera or non-sclera as anatomical differences, e.g., iris size or different abili-
ties of the subjects to open their eyes can affect the areas, which can be used to
determine the eye redness eventually. As a baseline model a random forest based
on first order intensity features and texture based features (Haralick) was trained
after manually annotating all tiles by two observers. A split of 76.5% and 23.5%
for the training and test data set was defined. This split was chosen to investi-
gate the tile correlation and randomly apply training in leave-entire-subjects-out
manner (13 training subjects to 4 test subjects).
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2.4 Eye Redness Extraction

The eye redness is determined for each sclera image tile. For the verification
of the proposed approach the eye redness is determined as defined by Fieguth
et al. [4] based on the color intensity level

fr(S) =
1
|S|

∑

i∈S

2(SR)i − (SG)i − (SB)i
2[(SR)i + (SG)i + (SB)i]

, (1)

where S is the sub-image to input with composite components (SR, SG and SB

for each color channel) and without black pixels. The redness is normalized by
the denominator in a range of −0.5 < fr < 1, where a completely red image
equals a value of 1.

2.5 Ocular Surface Tile Annotation

To label the image tiles a custom-made tool was developed for rapid and reliable
annotation. The annotation tool is showing the whole image as well as the tile
to be annotated side-by-side enabling a quick annotation for the majority of
the tiles. Image tiles were annotated as sclera if only the sclera was visible and
as non-sclera if no sclera, e.g., skin (including eyelashes), iris or a mix of them
was visible. A screenshot of the annotation tool is shown in Fig. 3 next to some
exemplary tiles of each class.

Fig. 3. (A) A custom-made annotation tool was used to label the image tiles. The
whole image as well as a zoom-in of the current patch to be labeled is shown. Using
the keyboard the tiles can be efficiently labeled. (B) Exemplary image tiles and their
annotation (1: sclera; 0: non-sclera). A mix of structures, e.g., sclera and skin was
labeled as non-sclera.
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3 Experiments and Results

3.1 Ocular Surface Tile Annotation

Tiling the 34 images resulted in 2720 non-overlapping image patches. Each tile
was manually annotated by two observers and classified as either sclera or non-
sclera. The annotation process took less then one hour for the two observers and
showed an agreement of 96.99%. The two observers disagreed on 82 tiles which
were consequently removed from the data set for the subsequent steps, result-
ing in 2638 tiles for further analysis. The chosen ROIs and the used definition
resulted in 47.57% sclera and 52.43% non-sclera tiles.

3.2 Automated Tile Classification

For the classification of the tiles a random forest was trained on intensity- and
texture- based features. These features include six gray level co-occurrence matri-
ces features (contrast, correlation, dissimilarity, homogeneity, angular second
moment, energy) for eight different directions (every 45◦) and four different pixel
offsets (2, 3, 5, 7) resulting in 192 texture-based features [5]. Intensity based fea-
tures comprised the mean and standard deviation for each color channel (R, G,
B) as well as for the gray-scaled transformed image. Furthermore, the Fieguth
redness was added resulting in a total of 201 features for each tile.

Feature Selection. The random forest was trained on the full set of features
(RFall). Afterwards the feature importance was investigated and the classifier
was retrained with only the ten most important features (RF10), see Table 1. A
third set of features (RFcorr) was selected by computing the correlation between
all features and removing highly correlated features, i.e. features with an absolute
correlation coefficient >0.90, which resulted in the seven features reported in
Table 1.

Table 1. Resulting features from reduction of the 201 features by feature importance
(RF10) and by correlation (RFcorr). For the gray level co-occurrence matrices based fea-
tures the pixel offsets and directions are described in the following way: (offset, angle).
List of features in table: channel mean (mean), standard deviation (std), correlation
(corr), homogeneity (homogen), energy (E) and Fieguth redness (fr).

Model Features (descending order of importance for RF10)

RF10 meanG, corr(7,315), corr(7,45), meanR, corr(7,225), stdgray, meanB ,
stdG, corr(5,45), corr(5,0)

RFcorr homogen(5,90), homogen(5,180), E(2,45), corr(7,90), meanR, stdR, fr
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Table 2. Scores of random forest classifiers with different features based on the eval-
uation of the test data set. Listed are the model, the number of features (nf ), the
accuracy (acc), the precision (prec), the recall (rec) and the F1-score (F1).

Model nf acc prec rec F1

RFall 201 0.971 0.97 0.97 0.97

RF10 10 0.943 0.94 0.94 0.94

RFcorr 7 0.974 0.97 0.98 0.97

Training and Evaluation. A random forest was trained for each of the feature
sets (RFall, RF10, RFcorr). The training data contained the images of both eyes
from 13 subjects. The performance of the classifier on the test data set containing
eight images of four subjects is shown in Table 2.

Classification Examples. Figure 4 shows examples of the automated classification
based on the random forest model RFcorr in comparison to the labels by the two
observers.

Fig. 4. (A) Shows an example of an automated tile classification with disagreements
between inter-observers and false classification. (B) Shows the results of an automated
tile classification with an agreement between the manual annotation and the prediction.
(C) Shows an enlarged view of tile examples for true classifications, inter-observer
disagreement and false classification from (A).

3.3 Redness Extraction

Based on the Fieguth redness of all tiles heatmaps were generated to investigate
the results of the healthy subjects. Examples are visualized in Fig. 5(A) and (B),
where in case of a birthmark the variation in determined redness is apparent.
This birthmark presence is also visible as redness score outliers when the redness
scores are plotted for each individual eye and also differentiated by eye color for
each tile, which is shown in Fig. 5(C) and (D).
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Fig. 5. (A) Shows the ROIs and the respective redness heatmaps of a subject with-
out any ocular surface abnormality. (B) Shows the ROIs and the respective redness
heatmaps of a subject with a birthmark on the ocular surface. (C) Shows Fieguth red-
ness scores for each eye. (D) Shows the Fieguth redness scores separated by eye color.

4 Conclusion

A baseline pipeline to automatically determine the bulbar redness based on
ocular surface photographs was developed and verified with a data set containing
external eye photographs of 34 eyes of 17 healthy volunteers. The proposed
pipeline was designed to address the main problems usually defined for objective
image-based eye redness extraction: (i) Define a ROI to assess the redness and (ii)
detection of scleral tissue to eventually (iii) extract the redness based on image
features. These problems were addressed for the first time for a novel ocular
surface photography system, which was specifically tailored for standardized
imaging.

ROI Definition. The ROI was defined automatically using the iris center as a ref-
erence. Two rectangles, temporal and nasal, were defined to partially overlap the
iris and cover the majority of the visible sclera. Using this definition the result-
ing tiles were balanced between sclera and non-sclera patches for subsequent
classification. Expanding the ROI in the inferior direction as well as towards the
peripheral region could be considered to expand the area for redness assessment.

Sclera Classification. External eye image tiles where classified as sclera or non-
sclera using random forests. The classifiers were trained for different number of
intensity and texture features after manually labeling the image tiles. The label-
ing process was done conservatively, i.e., tiles which did not display only sclera
tissue, were labeled as non-sclera. The classifiers made wrong predictions for tiles,
which showed abnormalities like birthmarks or where only small parts of non-
sclera structures were present. The best performance was achieved with a model
trained on three intensity- and four texture- based features (F1-score of 0.97).
Adding more classes will be part of future investigation, e.g., iris, birthmarks
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and lesions. This would potentially improve reliability for subsequent redness
interpretation. Increasing the complexity of the problem will also lead to the
need to explore other models, e.g., based on deep learning.

Redness Extraction. In this work we used intensity-based redness extraction to
determine the bulbar redness of tiles. The use of image tiles eases the comparison
of the redness between eye images of different subjects, since the redness can be
averaged based on the number of tiles labeled as sclera and their location can be
compared over time. In future work this approach should be expanded to also
include texture based features, e.g., based on vessel edges.

In the future, the objectively assessed redness based on the standardized pho-
tographs must be correlated to clinical reference-image-based grading of different
redness for clinical evaluation. Hence, the data set must be further expanded for
healthy subjects and also include patient data as the number of images currently
is limited. The proposed simple baseline pipeline provided excellent results in
terms of classification and feasibility for healthy subjects, which implicitly vali-
dates the standardization characteristic of the novel ocular surface photography
system. Hence, standardized external eye photography can be key for reliable
and high-throughput ocular surface imaging biomarker extraction.
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