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Abstract

This chapter gives an overview on (1) lichen-
forming fungi, lichen photobionts and
peculiarities of lichen symbiosis such as
gains and losses of lichenization, species
concepts, specificity, morphodemes and
morphotype pairs, non-lichen mutualistic fun-
gal interactions with unicellular algae and
cyanobacteria and mycophycobioses; (2) the
mycobiont–photobiont interface, water
relations and gas exchange, mycobiont-
derived secondary metabolites and the accu-
mulation of heavy metals or radionuclides;
(3) the microbiome of lichen thalli, i.e. the
bacteriome (epi- and endolichenic bacteria),
lichenicolous and endolichenic fungi,
lichenicolous lichens and the virome of lichens
and their allies; (4) fossil lichens and their
microbiome; (5) lichen–animal interactions
such as the micro- and mesofauna of lichen
thalli, lichenivory in invertebrates and vertebrates,
endo-and epizoochory; (6) lichenomimesis in
animals and flowering plants.
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6.1 Introduction

Lichens are the symbiotic phenotype of nutrition-
ally specialized fungi, ecologically obligate
biotrophs which acquire fixed carbon from a pop-
ulation of minute photobiont cells (Honegger
1991a, b). Lichen-forming fungi (also referred to
as lichen mycobionts) are, like plant or animal
pathogens or mycorrhizal fungi, a polyphyletic,
taxonomically diverse group of nutritional
specialists, but are otherwise normal
representatives of their fungal classes. They differ
from non-lichenized taxa by their manyfold
adaptations to symbiosis with a population of
minute photobiont cells (Honegger 2009).
Lichenization is an ancient and very successful
nutritional strategy, approximately 17% of extant
fungal species being lichenized (Lücking et al.
2017a).

Lichens were the first mutualistic symbiosis
discovered. The Swiss botanist Simon
Schwendener (1829–1919) realized that the thal-
lus of lichens is built up by a fungus which
harbours a population of genetically different,
minute green algal or cyanobacterial cells in its
thalline interior (Schwendener 1867, 1869;
Honegger 2000). Upon closer examination,
lichen thalli represent not a dual or triple
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symbiosis of a C-heterotrophic partner, i.e., a
lichen-forming fungus (the mycobiont) and a
photoautotrophic partner, either a green alga
and/or a cyanobacterium (the photobiont, also
termed cholorobiont or cyanobiont, respectively),
but consortia with an unknown number of
participants (Fig. 6.1a–b; Honegger 1991a, b) or
complex ecosystems, respectively (Hawksworth
and Grube 2020). Lichenicolous and
endolichenic fungi and bacterial epi- and
endobionts are very common and widespread,
their taxonomic affiliation and potential roles for
the symbiosis having been intensely studied in the
last decades (see Sects. 6.5.1–6.5.5).
Endolichenic fungal and actinobacterial
symbionts and epithalline bacteria were already
present in Chlorolichenomycites devonicus, a fos-
sil lichen of the Early Devonian (ca. 415 Ma old,
see Sect. 6.6.2; Honegger et al. 2013a).
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Fig. 6.1 The lichen thallus as a consortium with an
unknown number of participants: (a, b) Scanning electron
microscopy (SEM) micrograph of a cross-section of Sticta
sylvatica, collected in Brittany, with bacterial, fungal,
cyanobacterial and protozoan epibionts. A cyphella is
tangentially sectioned, details in (b). Abbreviations thal-
lus: C: cyphella (aeration pore); UC upper cortex, PH

photobiont layer (Nostoc sp.); M medullary layer, LC
lower cortex with tomentum (T ). Abbreviations of
epibionts: a actinobacteria, b bacteria, cy cyanobacterial
filament, f fungal hyphae, ta testate amoeba, presumably
Assulina sp., its shell being composed of self-made sili-
ceous shell-plates (idiosomes)

As pointed out by Hawksworth (2016), there is
no need to change the concept of lichen in the
light of these findings. The term symbiosis, as
defined by de Bary (1879), refers to genetically
different organisms living together, neither the
outcome of their interaction (parasitic,
commensalistic or mutualistic relationships, the
term mutualism having been introduced by Van
Beneden in 1875) nor the number of organisms
involved was defined.

Until the end of the twentieth century, the
taxonomy of lichen-forming fungi and their
photobionts was based on morphological, chemi-
cal and structural characters. In the twenty-first
century, molecular tools, bioinformatics and
rapidly growing databases facilitated the study
of the inter- and intraspecific diversity of lichen-
forming fungi and their photobionts, their
phylogenies, but also the intrathalline
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biodiversity and the pro- and eukaryotic
microbiome of lichen thalli.
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6.2 Lichen-Forming Fungi (LFF)

6.2.1 Gains and Losses
of Lichenization

Lichenization was repeatedly acquired (14–23
lichenization events in the Ascomycota, 6–7 i
the Basidiomycota), but also repeatedly lost in
favour of a saprotrophic, lichenicolous or para-
sitic mode of nutrition (Lücking et al. 2017a, b;
Nelsen et al. 2020). Examples of relatively
recently de-lichenized taxa among the
Lecanoromycetes are the lichenicolous
Raesaenenia huuskonenii (syn. Protousnea
huuskonenii, Parmeliaceae, Lecanorales; Divakar
et al. 2015; Fig. 6.6h–i) or the lignicolous
Xylographa constricta (Baeomycetaceae,
Baeomycetales; Spribille et al. 2014).

6.2.2 Species Concepts
and Phylogenies

The genus and species name of a lichen refers to
the fungal partner, irrespective of it being symbi-
otic in nature or axenically cultured apart from its
photobiont (Hawksworth 2015). Attempts to refer
to the aposymbiotically cultured mycobiont as
. . .-myces (e.g. Xanthoriomyces parietinae for
aposymbiotically cultured Xanthoria parietina;
Thomas 1939) are obsolete. The photoautotrophic
partner(s) of lichens have their own names and
phylogenies. Traditionally, lichens were
described on the basis of morphological
(morphospecies) and chemical characters (sec-
ondary metabolites: chemospecies). Molecular
tools provided novel insights into phylogenies,
evolutionary trends and taxonomic relationships
in general and in questions related to the delimi-
tation of species in particular (Lücking et al.
2021). Many well-known morphospecies turned
out to comprise either cryptic species or
morphodemes (see Sects. 6.2.3 and 6.2.4).

In their 2016 classification, Lücking and
colleagues listed 19,387 accepted species of
lichenized fungi in 995 genera, 115 families,
39 orders and eight classes, the vast majority
being ascomycetes; Lecanoromycetes, the largest
and most anciently lichenized class among extant
ascomycetes, comprises more than 15,100 spp.
(Lücking et al. 2017a, b). Only 172 species,
15 genera, five families, five orders in one class
belong to the basidiomycetes (Lücking et al.
2017a, b), but molecular data of more than
300 species of basidiolichens were not yet
published. In the meantime, new taxa of
basidiolichens have been described (Coca et al.
2018; Dal-Forno et al. 2019; Lücking et al. 2022).
However, large numbers of species and genera of
lichenized asco- and basidiomycetes await molec-
ular analysis.

Based on molecular datasets, large numbers of
new species, numerous new genera, families, few
orders (e.g., the ascolichen orders Eremithallales;
Lücking et al. 2008, Leprocaulales; Lendemer
and Hodkinson 2013, Collemopsidales; Pérez-
Ortega et al. 2016, or the basidiolichen order
Leptostromatales; Hodkinson et al. 2014) and
classes (e.g. Lichinomycetes; Reeb et al. 2004;
Coniocybomycetes; Prieto et al. 2013) have been
described. Within 6 years (2010–16), more than
half of all genera of LFF were subjected to
changes (Lücking et al. 2017a, b), and this work
continues. Intense biodiversity analyses have
been performed in areas and ecosystems which
have so far been poorly investigated. An example
is the TICOLICHEN project in Costa Rica, the
major tropical lichen biodiversity inventory
initiated in 2002 by Robert Lücking and
colleagues (Lücking et al. 2004).

Molecular phylogenies give fascinating
insights into evolutionary processes and biogeo-
graphic developments. Examples are (1) the
calicioid ascomycetes, predominantly crustose
species with prototunicate asci whose ascospores
achieve maturation in a mazaedium. Their asci
disintegrate before the ascospore wall is fully
differentiated, spore maturation being completed
in a powdery mass, the mazaedium, at the surface
of the ascoma (Honegger 1985). Based on this
feature, mazaediate ascomycetes were formerly



classified in the order Caliciales within the
Lecanoromycetes. Today, mazaediate taxa fall
into four classes: Lecanoromycetes,
Eurotiomycetes, Arthoniomycetes and
Coniocybomycetes (Prieto et al. 2013;
Wijayawardene et al. 2020). (2) the leprose
lichens with no sexual reproductive stages and
morphologically very simple thalli built up by
loosely interwoven hyphae which secrete interest-
ing secondary metabolites and are in contact with
green algal cells, forming a powdery mass with
no stratification. Today leprose lichens of the
genus Lepraria are classified in the
Stereocaulaceae, Leprocaulon in the
Leprocaulaceae (Lecanoromycetes; Lendemer
and Hodkinson 2013), Botryolepraria in the
Verrucariaceae (Eurotiomycetes; Kukwa and
Pérez-Ortega 2010) and Andreiomyces in
Andreiomycetaceae (Arthoniomycetes;
Hodkinson and Lendemer 2013). Moreover,
leprose thalli are formed in fertile taxa such as
Chrysothrix (rarely fertile; Chrysothrichaceae,
Arthoniomycetes; Nelsen et al. 2009; Liu et al.
2018) or in Chaenotheca furfuracea (syn.
Coniocybe f.; Coniocybaceae,
Coniocybomycetes). (3) Phylogeographic studies
provided insights into large-scale population
histories, e.g., of Lobaria pulmonaria in North
America or in the post-glacial re-colonization of
the Alps (Lerch et al. 2018; Allen et al. 2021), or
of the cosmopolitan Psora decipiens (Leavitt
et al. 2018).
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6.2.3 Species Pairs and Cryptic
Species

The species pair concept in lichenology is based
on the observation that some morphologically
similar lichens differ in their reproductive mode,
i.e., are either fertile or asexually reproducing, the
fertile stage having been assumed to be the pri-
mary species (Crespo and Pérez-Ortega 2009).
Many sexual–asexual species pairs turned out to
represent a monophyletic lineage. The Porpidia
flavocoerulescens and P. melinodes species pair
was hypothesized to maintain asexual reproduc-
tion under optimal conditions, but sexual

reproduction and re-lichenization for escaping
from a suboptimal symbiosis (Buschbom and
Mueller 2006). In the presumed Letharia
columbiana (fertile) and L. vulpina species pair
L. columbiana turned out to comprise five cryptic
taxa, hybridization and polyploidization included
(Kroken and Taylor 2001; Altermann et al. 2016;
Ament-Velásquez et al. 2021).

Many other morphospecies turned out to com-
prise numerous cryptic species
(e.g. Pseudocyphellaria crocata comprising
13 spp.; Lücking et al. 2017a, b), the most
extreme examples being (1) the lichenized basid-
iomycete Dictyonema glabratum (syn. Cora
pavonia), which comprises at least 126 taxa
(Lücking et al. 2014, 2016; Moncada et al.
2019); upon closer examination these hidden
basidiolichen species turned out to be morpholog-
ically distinct, although the differences are recog-
nizable to the expert’s eye only. (2) the species
complex of the cosmopolitan crustose lichenized
ascomycete Lecanora polytropa comprises up to
103 cryptic species (Zhang et al. 2022).

6.2.4 Morphodemes
and Morphotype Pairs
(= Photosymbiodemes)

Morphodemes are formed by phylogenetically
distinct taxa which differentiate the same
morphotype; examples are found in the Sticta
filix (Ranft et al. 2018) or the Sticta weigelii
complexes (Moncada et al. 2021). On the other
hand, morphologically distinct lichens, some of
which had been classified in different genera,
turned out to be congeneric or even conspecific.
This phenomenon was first observed in tripartite
lichens with a morphologically distinct
cyanobacterial and a green algal morphotype,
i.e., in Ricasolia amplissima (lobate chloromorph
with cephalodia) and Dendriscocaulon
bolacinum (fruticose cyanomorph; Dughi 1937),
chimaeric forms included (James and Henssen
1976). Photosymbiodemes formed by lobate
chloromorphs and fruticose, dendriscocauloid
cyanomorphs occur in various peltigeralean
genera (Sticta, Lobaria, Ricasolia; Paulsrud



et al. 1998; Magain et al. 2012; Tønsberg et al.
2016; Ranft et al. 2018). Photosymbiodemes with
morphologically similar lobate chloro- and
cyanomorphs occur in Peltigera spp. (Goffinet
and Bayer 1997; see Fig. 15.1f in Honegger
2012).
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Vastly different morphologies formed by the
same fungal species were found in Endocena and
Chirleja spp. (Icmadophilaceae); their coccoid
green algal photobiont was not investigated
(Fryday et al. 2017). A very peculiar morphotype
pair is formed by two crustose lichens with either
a trebouxioid or a trentepohlioid green algal
photobiont (Ertz et al. 2018). The sterile,
sorediate Buellia violaceofusca (formerly classi-
fied in Lecanoromycetes), which associates with
different phylospecies of the genus Trebouxia
(Trebouxiophyceae), and the fertile
Lecanographa amylacea (Arthoniomycetes)
with a Trentepohlia photobiont (Ulvophyceae)
turned out to be conspecific. This was the first
example of a lichen-forming ascomycete with a
trebouxioid and a trentepohlioid morphotype. As
in non-lichenized fungi the species name refers to
the sexually reproducing stage (teleomorph).
Lecanographa amylacea most likely captures
trebouxioid photobiont cells from adjacent crus-
tose or leprose lichens to form the sorediate (ana-
morphic) morphotype (Ertz et al. 2018).

6.2.5 Non-lichen Mutualistic Fungal
Interactions
with Cyanobacteria
and Unicellular Green Algae

It is astonishing that no Zygomycetes,
Glomeromycetes or Chytridiomycetes are
among the extant LFF. However, in each of
these classes, which are phylogenetically older
than asco- and basidiomycetes, at least one exam-
ple of a mutualistic symbiosis with either a
cynobacterial or green algal partner was reported.

The Glomeromycetes Geosiphon pyriformis
forms a very ancient endocyanosis with Nostoc
sp. at the soil surface, the cyanobacterial
photobiont being incorporated in hyphae which
subsequently differentiate a bladder at the soil

surface. The Nostoc filaments are kept in
membrane-bound vesicles (perialgal vacuoles) in
the fungal cytoplasm where they undergo cell
division, are photosynthetically active and fix
atmospheric N2. The first glomeromycetan mono-
saccharide transporter characterized was shown
to function at the symbiotic interface of
Geosiphon with its cyanobacterial partner
(Schüssler et al. 2006, 2007; review: Schüssler
2012).

Under certain environmental conditions,
mutualistic interactions between non-lichenized
fungi and algae are formed without prior
co-evolutionary adaptation. The zygomycete
Mortierella elongata and the unicellular green
alga Nannochloropsis oceanica are both biotech-
nologically cultured on large scale to produce
lipids for biofuel. In co-culture, both partners
interact, the algal cells adhere to the fungal
hyphae and finally become internalized, leading
to a green mycelium (Du et al. 2019). This situa-
tion resembles the Geosiphon–Nostoc symbiosis,
although a green alga instead of a cyanobacterium
is involved.

Chytrids are saprobes or parasites of fungi,
algae, plants and amphibians (reviews: Powell
2017; Longcore et al. 2020). Parasites of phyto-
plankton attack free-living algal species (Van den
Wyngaert et al. 2018) and have a devastating
effect on commercially grown algal cultures
(Hoffman et al. 2008; Longcore et al. 2020).
The chytrid Rhizidium phycophilum forms a fac-
ultative mutualism with a Bracteacoccus
sp. (Sphaeropleales; syn. Chlorococcales) and
can only be cultured in the presence of this zoo-
sporic green algal species. The alga is not
parasitized, it even grows larger and more prolific
and reveals an up to eight-fold increase in
biovolume in co-culture as compared to axenic
culture under the same conditions. This is the first
report of a mutualistic interaction between a
chytrid and a green alga (Picard et al. 2013).

The ascomycetous yeast Saccharomyces
cerevisiae (Saccharomycotina) and filamentous
ascomycetes such as Aspergillus nidulans
(Eurotiomycetes) form mutualistic interactions
with the flagellate unicellular Chlamydomonas
reinhardtii (Chlamydomonadales,



Chlorophyceae), although with different levels of
productivity and without differentiating thallus-
like structures as seen in lichen-forming
ascomycetes (Hom and Murray 2014) However,
C. reinhardtii cells are protected by A. nidulans
from bacteria and their toxins (Krespach et al.
2020). Two extremely halotolerant organisms,
the black yeast Hortaea werneckii
(Teratosphaeriaceae, Capnodiales), which can
switch from filamentous growth to the yeast
form, and the flagellate unicellular green alga
Dunaliella atacamensis (Chlamydomonadales),
were found to interact in co-cultures (Muggia
et al. 2020b). Despite close fungal–algal contacts,
neither a mutual benefit, nor an antagonistic inter-
action was observed. Nevertheless, such
heterotroph–autotroph contacts might be the
beginning of a stable symbiotic interaction.
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6.2.6 Mycophycobioses

Mycophycobioses are mutualistic fungal
interactions with quantitatively predominant,
multicellular algal hosts. Mycophycias ascophylli
(Capnodiales incertae sedis, Dothideomycetes;
Toxopeus et al. 2011; Wijayawardene et al.
2020) inhabits the intertidal brown algae Pelvetia
canaliculata and Ascophyllum nodosum (Fucales,
Phaeophyceae) in the upper littoral of the Atlan-
tic, only its minute ascomata being visible at the
surface of the seaweed’s receptaculum (gamete-
producing structure; Fig. 6.2), their very thin veg-
etative hyphae being best visible in ultrathin
sections (Xu et al. 2008). In fresh water,
Phaeospora lemaneae (syn. Leptosphaeria
lemaneae; Verrucariales, Eurotiomycetes)
associates with the red alga Lemanea fluviatilis
(Batrachospermales, Rhodophyta; Brierley 1913;
Hawksworth 2000). M. ascophylli improves the
desiccation tolerance of the zygotes of its brown
algal host A. nodosum (Garbary and London
1995). Improved desiccation tolerance was also
hypothesized for the red algal host L. fluviatilis
upon infection with P. lemaneae (Hill 1992), but
experimental data are missing.

About 100 species of fungal endophytes of
seaweeds (Phaeophyta, Rhodophyta,

Chlorophyta) were identified, some of them pro-
ducing bioactive secondary metabolites
(Noorjahan et al. 2021).

6.2.7 Secondary Metabolites

Lichen thalli are a rich source of interesting poly-
phenolic secondary metabolites, many of them
with bioactive properties. Most of them are pro-
duced by the mycobiont, others by endolichenic
fungi or by epi- or endolichenic bacteria (see
below). Lichen compounds evolved early in the
radiation of filamentous fungi (Armaleo et al.
2011). Polyketide synthase (PKS) genes were
most likely gained by horizontal gene transfer
from actinobacteria before the radiation in
Leotiomyceta, which gave rise to the extant
crown group of Ascomycota (Schmitt and
Lumbsch 2009). PKS genes have been repeatedly
lost in non-lichenized ascomycetes but retained
and even duplicated in most lichenized
ascomycetes (Schmitt and Lumbsch 2009). How-
ever, also in lichenized taxa were PKS gene
clusters repeatedly lost (Pizarro et al. 2020).

The chemistry of mycobiont-derived second-
ary metabolites, the so-called lichen products, has
attracted considerable interest, with a large body
of literature having been published from the late
nineteenth century onwards (e.g. Zopf 1896,
1907; Asahina and Shibata 1954; Culberson
1969, 1970; Culberson and Elix 1989; Culberson
et al. 1977; Huneck and Yoshimura 1996;
Huneck 2001; Elix and Stocker-Wörgötter
2008); a database of high-resolution tandem
mass spectrometry (MS/MS) spectra for lichen
metabolites is available (Olivier-Jimenez et al.
2019).

It is not known in which form the secondary
metabolites are excreted by the fungal cells (pos-
sibly as glycosides?). In their soluble form, they
are passively translocated into the apoplastic con-
tinuum during the wetting and drying cycles and
crystallize either at on the surface of ascomata
(e.g. bellidiflorin in Cladonia spp.; Fig. 6.3a, or
haemoventosin in Ophioparma ventosa;
Fig. 6.3b–c), on the thallus surface
(e.g. anthraquinones such as parietinic or



solorinic acid, pulvinic acid derivatives such as
vulpinic or rhizocarpic acid, or depsides such as
atranorin), many of them giving the thallus its
characteristic colouration; others
(e.g. depsidones such as physodic or protocetraric
acid) crystallize on the surface of medullary
hyphae and even on green algal photobiont cells
in the thalline interior (Fig. 6.3d; Honegger
1986b). In soredia, mycobiont and photobiont
cells are often heavily loaded with crystalline
secondary metabolites which enhance their
hydrophobicity (Fig. 6.3e). Crystalline lichen
products are almost insoluble in aqueous systems
below pH 7. Many mycobiont-derived secondary
metabolites are produced in sterile, aposymbiotic
culture (Thomas 1939; Yamamoto et al. 1985;
Honegger and Kutasi 1990; Culberson and
Armaleo 1992; Stocker-Wörgötter et al. 2013;
Díaz et al. 2020; Jeong et al. 2021, etc.).
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Fig. 6.2 Mycophycobiosis
in the knotted kelp
(Ascophyllum nodosum), a
common brown alga
(Fucaceae, Phaeophyceae)
in the littoral of the
Northern Atlantic (a); its
gametes are produced in
conceptacles (c) in stalked
receptacles (r). (b) Gametes
are oozing out of the ostiole
of conceptacles. Arrows
point to ascomata of
Mycophycias ascophylli
(Mycosphaerellaceae,
Capnodiales,
Dothideomycetes),
recognizable as tiny black
dots between conceptacles.
(c) Stained semi-thin
section with ascoma
(pseudothecium) of
M. ascophylli

Numerous PKS gene clusters have been
characterized (e.g. Miao 1999; Armaleo et al.

2011; Wang et al. 2014; Bertrand and Sorensen
2018; Bertrand et al. 2018; Calchera et al. 2019;
Pizarro et al. 2020; Sveshnikova and Piercey-
Normore 2021; Gerasimova et al. 2022; Singh
et al. 2022), many of them being not expressed
in the lichen thallus. Thus, LFF have an unex-
plored biosynthetic potential (Bertrand et al.
2018; Gerasimova et al. 2022).

As most LFF are slow-growing organisms,
lichen-derived PKS genes were transferred into
fast-growing non-lichenized ascomycetes. A
Pseudevernia furfuracea-derived PKS gene was
successfully expressed in baker’s yeast
(S. cerevisiae), the depside lecanoric acid being
synthesized (Kealey et al. 2021). The transfer of
lichen-derived PKS genes in filamentous
ascomycetes such as Aspergillus spp. lead to suc-
cessful transcription (Wang et al. 2016), but for
unknown reasons, secondary products were often
not synthesized (Gagunashvili et al. 2009; Yang
et al. 2018; Bertrand and Sorensen 2019a, b).
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Fig. 6.3 Developmentally regulated biosynthesis of sec-
ondary metabolites. (a) Cladonia bellidiflora with usnic
and squamatic acid in the thallus and bellidiflorin in the
bright red ascomata. (b, c) The saxicolous, crustose
Ophioparma ventosa with haemoventosin in the bright
red ascomata. (c) LDI-MSI showing the tissue-specific
accumulation of usnic, thamnolic, miriquidic and
divaricatic acid in the thallus and haemoventosin in the
epihymenial layer of the ascomal disc; from Le Pogam

et al. (2016, modified); courtesy of Pierre Le Pogam and
Joël Boustie. (d) LTSEM (low temperature scanning elec-
tron microscopy) of the algal layer in in cryofixed, freeze-
fractured Cetrelia olivetorum, with crystals of olivetoric
acid on fungal hyphae and algal cell. (e) LTSEM of the
margin of a soralium of Physcia adscendens. Secondary
metabolites crystallize on hyphae and algal cells of devel-
oping soredia, thus increasing the hydrophobicity of their
surfaces

Lichens have been used in traditional medicine
around the globe (Crawford 2019). In the last
decades, a large body of literature was published
on interesting pharmaceutical properties of
β-glucans such as lichenans (e.g. Caseiro et al.
2022), important cell wall components of
Lecanoromycetes (Honegger and Haisch 2001),
and of a wide range of lichen-derived secondary
metabolites with antibiotic, anti-inflammatory,
antiproliferative, antiviral, antineurodegenerative,
antioxidant activities, etc. (various authors in
Ranković 2019; reviews: Boustie and Grube
2005; Boustie et al. 2011; Bhattacharyya et al.
2016; Studzinska-Sroka et al. 2017; Ingelfinger

et al. 2020; Ureña-Vacas et al. 2021). Best
investigated is usnic acid (Macedo et al. 2021;
Xu et al. 2022), whose antibacterial properties
were detected by Stoll et al. (1947).

6.3 Lichen Photobionts

6.3.1 Diversity and Specificity

In her 1988 compilation, Tschermak-Woess listed
44 genera of lichen photobionts:
15 cyanobacterial, 27 chlorophycean, one
xanthophycean and one phaeophycean



or

(Tschermak-Woess 1988). All of these taxa had
been described on the basis of morphological
characters. From 1989 onwards, molecular tools,
applied either to cultured (aposymbiotic)
photobiont isolates or to whole thallus DNA
preparations, revolutionized our knowledge of
lichen photobiont diversity. In 2021, Sanders
and Masumoto summarized the current state of
the art. They listed 52 genera of lichen
photobionts: 13 cyanobacterial,
36 chlorophycean, two xanthophycean and one
phaeophycean (Sanders and Masumoto 2021).
New photobiont genera had been described
(e.g. Heveochlorella, Trebouxiophyceae; Sanders
et al. 2016, or Bracteacoccus, Chlorophyceae;
Masumoto 2020).
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The Verrucariales (three families, 55 genera,
>800 spp.), which comprises terrestrial, but also
numerous fresh water and marine species,
harbours the highest photobiont diversity. The
only phaeophycean (Petroderma maculiforme in
Wahlenbergiella tavaresiae) and xanthophycean
photobionts (Heterococcus sp. in Verrucaria and
Hydropunctaria spp., Xanthonema sp. in
Staurothele clopimoides) are symbiotic with
verrucarialean taxa (review: Sanders and
Masumoto 2021). Many photobiont taxa associ-
ate exclusively with marine LFF. Examples are
the cyanobacterial Hyella sp. in Collemopsidium
halodytes (syn. Arthopyrenia h., Xanthopyr-
eniaceae) or Rivularia sp. in Lichina pygmaea
and L. confinis (Lichinales, Lichinomycetes; see
Figs. 15.1.p-r in Honegger 2012). Among marine
green algal photobionts of marine Verrucariaceae
are the ulvophycean Blidingia minima (with
Turgidosculum ulvae; Pérez-Ortega et al. 2018),
Halophilum ramosum, Lithotrichon pulchrum,
Paulbroadya petersii, Pseudendoclonium
submarinum and Undulifilum symbioticum (with
Hydropunctaria and Wahlenbergiella spp.), or
the trebouxiophycean Prasiola spp. in Mastodia
tessellata (Sanders and Masumoto 2021;
Černajová et al. 2022).

The genus Trebouxia harbours the most com-
mon and widespread unicellular green algal
photobionts of LFF; Trebouxia spp. are
photobionts of Parmeliaceae (>2760 spp.;
Lücking et al. 2017a, b), Teloschistaceae (>810

spp.), etc. Tschermak-Woess (1988) listed seven
species, Sanders and Masumoto (2021) 27 plus
several unnamed phylospecies and clades,
whence five had been transferred from
Pseudotrebouxia (which no longer exists), and
19 species have been newly described from
1989 onwards. In Asterochloris, the second-
most common genus, Tschermak-Woess (1988)
listed one species, Sanders and Masumoto (2021)
18 plus several unnamed phylospecies and clades;
four of these Asterochloris spp. had been trans-
ferred from Trebouxia to Asterochloris (A. erici,
A. glomerata, A. italiana, A. magna).
Asterochloris spp. are photobionts of Cladonia
and Stereocaulon spp. and many other taxa
(Sanders and Masumoto 2021), new phylogenetic
lineages having been recently described (Kosecka
et al. 2021).

Trebouxia and Asterochloris spp. are
characterized by their large, lobate chloroplast
with central pyrenoid. Chloroplast lobation and
its interspecific variation was visualized with
Confocal Laser Scanning Microscopy (CLSM;
Trebouxia: Muggia et al. 2012; Bordenave et al.
2021; Asterochloris: Škaloud and Peksa 2008;
Moya et al. 2015; Škaloud et al. 2015; Kim
et al. 2017).

As in LFF, considerable cryptic diversity was
found among lichen photobionts; examples in
Trebouxia (Singh et al. 2019; Muggia et al.
2020a, b; Kosecka et al. 2022), Coccomyxa
(Darienko et al. 2015; Malavasi et al. 2016),
Dictyochloropsis or Symbiochloris, respectively
(Dal Grande et al. 2014; Škaloud et al. 2016),
Trebouxiophyceae (Metz et al. 2019)
Trentepohliales (Borgato et al. 2022).

Unfortunately lichen thalli cannot be routinely
resynthesized by combining cultured myco- and
photobionts. Therefore, the specificity and selec-
tivity of the symbiosis cannot yet be investigated
under controlled experimental conditions. Our
knowledge about the range of acceptable partners
per fungal species or genotype is based on
analyses of specimens collected in nature. Ideally,
sampling was done over the whole geographic
range of the fungal species.

Many (the majority?) of LFF with trebouxioid
or trentepohlioid photobionts associate with more



or

than one algal species or genotype; examples are
Xanthoria parietina with Trebouxia decolorans
or T. arboricola (Nyati et al. 2014) or cosmopoli-
tan species of Stereocaulon, Cladonia or
Lepraria, which reveal low specificity towards
their photobiont (Kosecka et al. 2021). In
Cladonia spp., external factors such as climate
or soil chemical properties have an impact on
photobiont selection (Pino-Bodas and Stenroos
2021; Škvorová et al. 2022); severe heavy metal
pollution even induced a switch from
Asterochloris to Trebouxia spp. (Osyczka et al.
2020).
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Based on light microscopy studies, the algal
cell population of lichen thalli was assumed to be
uniform, but molecular tools revealed
intrathalline photobiont diversity. Different
photobiont species or genotypes of the same
photobiont may grow within the same thallus
(for special relationships such as morphotype
pairs, see Sect. 6.2.4, or tripartite lichens, see
Sect. 6.3.2, respectively). In all thalli of Ramalina
farinacea were two unnamed Trebouxia spp.
found with different physiological properties
(Casano et al. 2011; del Hoyo et al. 2011). In
45% of Evernia mesomorpha were multiple
genotypes of one Trebouxia species found
(Piercey-Normore 2006). In 30 out of 104 thalli
of Tephromela atra or Rhizoplaca
melanophthalma, respectively, were
co-occurring Trebouxia spp. found (de Carolis
et al. 2022). Only once were two genotypes of
T. decolorans found in a thallus of X. parietina
(Nyati et al. 2014).

Some Trebouxia photobionts were found free-
living in nature (Bubrick et al. 1984), but they are
not common members of aerophilic algal
communities. In contrast, photobionts of the
genera Apatococcus, Stichococcus, Coccomyxa,
Elliptochloris, Myrmecia, Symbiochloris,
Prasiola (all Trebouxiophyceae) or Trentepohlia
(Ulvophyceae) are common in the free-living
state, many of them having been found in soil
samples along an altitudinal gradient (Stewart
et al. 2021) or in biological soil crust
communities (Flechtner et al. 2013; Borchhardt
et al. 2017). This should be kept in mind when
exploring microalgal diversity in whole thallus
extracts: adhering fragments of symbiotic

propagules from other lichens or free-living
algae might be included. Ideally, lichen
photobionts are isolated from the algal layer of
dissected thallus fragments and cultured under
sterile conditions prior to genetic analysis (Nyati
et al. 2013, 2014).

6.3.2 Tripartite Lichens

(a) Lichens with a mixed photobiont layer com-
prising green algae and cyanobacteria. In a
few lichens, the photobiont layer comprises
a green algal and a cyanobacterial partner,
both being photosynthetically active.
Examples are (a) Euopsis granatina with
Trebouxia aggregata as a green algal and
Gloeocapsa sanguinea as cyanobacterial
photobiont (Büdel and Henssen 1988);
(b) Muhria urceolata (Jørgensen and Jahns
1987, syn. Stereocaulon urceolatum;
Högnabba 2006) and (c) various
cyanomorphs of Pseudocyphellaria spp.
(Ps. rufovirescens, Ps. lividofusca, Ps.
dissimilis, Ps. hookeri, Ps. crocata) and
Sticta fuliginosa, all with Nostoc
sp. (Henskens et al. 2012). In some of these
peltigeralean species the green algal partner
was detected when ribitol, the characteristic
carbohydrate produced by numerous green
algal photobionts (Hill 1976; Honegger
1997), was identified among the
photobiont-derived mobile carbohydrates in
the thalli (Henskens et al. 2012).

(b) Cephalodiate species are green algal lichens
which capture repeatedly a diazotrophic cya-
nobacterium as a secondary photobiont (see
Fig. 15.16 a–k in Honegger 2012), either at
the upper (e.g. in green algal Peltigera spp.)
or at the lower surface (e.g. in Solorina spp.)
or at both surfaces (Lobaria pulmonaria;
Cornejo and Scheidegger 2013) and incor-
porate it in either an external (e.g. Peltigera
aphthosa, Stereocaulon ramulosum)
internal cephalodium (e.g. Solorina crocea,
Nephroma arcticum). Capture of a
cyanobacterial partner occurs in young
lobes of the green algal lichen, mature
cephalodia being found in fully grown
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areas of the lobes (Cornejo and Scheidegger
2013). The cyanobacterial photobionts in
cephalodia are photosynthetically active,
i.e., satisfy their demands of fixed carbon,
but are diazotrophic, i.e., reduce atmo-
spheric N2 into bioavailable ammonium,
highest N2 fixation rates being achieved
under microaerobic conditions. In mature
cephalodia of Peltigerales with Nostoc as
the secondary photobiont, the percentage of
heterocysts, i.e., the site of N2 fixation, is
elevated (up to 55%) as compared to either
cyanobacteria as primary photobiont of
cyanolichens (approx. 5–8%) or free-living
Nostoc spp. (Englund 1977; Hyvärinen et al.
2002). It is particularly interesting to see
how lichen mycobionts generate
microaerobic conditions, optimal for N2 fix-
ation, by forming a dense cortex around
external cephalodia, which differs
anatomically from the thalline cortex (see
Fig. 15.16d–f and i–k in Honegger 2012).
By 3D imaging using X-ray computed
tomography at the microscopy level
(Micro-CT, allowing for non-destructive
analysis of the 3D-geometry in solid
specimens; Elliott and Dover 1982; Hunter
and Dewanckele 2021), the cephalodia were
quantified (Gerasimova et al. 2021); in
Lobaria pulmonaria the internal cephalodia
amounted for 0.73%, in Peltigera
leucophlebia (external cephalodia) for
0.97% of thallus volume.

(c) Cephalodiate species are found in all green
algal Peltigerales (Peltigera and Solorina
spp. etc. [Peltigeraceae] and Lobaria, Sticta,
Pseudocyphellaria spp., etc. [Lobariaceae]),
in all representatives of the genera
Stereocaulon (Stereocaulaceae,
Lecanorales), Placopsis (Trapeliaceae,
Baeomycetales; Ott et al. 1997), but also in
some crustose taxa such as Calvitimela
aglaea (syn. Lecidea shushanii or
Tephromela aglaea, respectively,
Tephromelataceae, Lecanorales; Hertel and
Rambold 1988; Bendiksby et al. 2015).

6.3.3 Cyanotrophy

Cyanotrophy, i.e., the close contact of lichens
with free-living cyanobacterial colonies, first
observed in Bryonora spp. (Poelt and Mayrhofer
1988), might be common and widespread among
saxicolous, epiphytic and soil crust lichens
(Elbert et al. 2012; Cornejo and Scheidegger
2016; Gasulla et al. 2020). The contacting lichen
benefits from fixed nitrogen, as produced by
diazotrophic cyanobacteria, as is also the case in
bryophyte interactions with free-living
cyanobacteria (Gavazov et al. 2010; Warshan
et al. 2017). Epiphytic bryophyte–cyanobacteria
associations can serve as a reservoir for lichen
cyanobionts (Cornejo and Scheidegger 2016).

6.4 Peculiarities of Lichen
Symbiosis

6.4.1 A. Symbiotic vs. Free-Living LFF

In nature, the majority of LFF are symbiotic, but
physiologically they do not depend on
lichenization. Soon after the discovery of lichen
symbiosis by Schwendener (1867, 1869), the first
culturing and resynthesis experiments with LFF
and their photobionts were carried out (Stahl
1877; Bonnier 1886, 1889). From large numbers
of lichen-forming ascomycetes, sterile cultures
have been established, starting with either
ascospores, soredia or hyphal fragments which
had been scratched out of dissected thalli
(e.g. Lange de la Camp 1933; Thomas 1939;
Ahmadjian 1959, 1962; Honegger and
Bartnicki-Garcia 1991; Crittenden et al. 1995;
Stocker-Wörgötter 1995, etc.). Single-spore
isolates derived from one meiosis (i.e. the content
of one ascus) facilitated the analysis of mating
type systems (Honegger et al. 2004a; Honegger
and Zippler 2007; Scherrer et al. 2005). Thus,
LFF are ecologically obligate, but physiologically
facultative biotrophs. However, some LFF most
likely acquire additional carbohydrates as
saprotrophs. Hyphae of Icmadophila ericetorum



or Baeomyces rufus on decaying wood grow deep
into the substratum and penetrate the lignified cell
walls (see Figs. 12 and 14 in Honegger and
Brunner 1981). In large numbers of
Lecanoromycetes, a whole arsenal of genes
encoding enzymes for carbohydrate degradation
was identified (Resl et al. 2022).
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LFF are seldom macroscopically visible in a
non-lichenized state in nature. Examples are
(1) juvenile developmental stages of Rhizocarpon
spp. (Rhizocarpales), recognizable as a strongly
melanized, black prothallus in search of a com-
patible photobiont, or (2) the optionally
lichenized Schizoxylon albescens (Ostropales)
on the bark of Populus tremula, which grows as
a saprobe on dead wood of poplar (Muggia et al.
2011), or (3) the lichenized Conotrema spp. and
their non-lichenized, saprotrophic stage which
had been described as Stictis spp., optional
lichenization presumably allowing to increase
the ecological amplitude (Wedin et al. 2004,
2005).

6.4.2 Morphogenetic Capacity
of the Mycobiont

In order to keep their photoautotrophic partner
photosynthetically active, LFF have to grow at
the surface of the substrate, thus exposing their
thallus to temperature extremes, illumination,
ultra-violet (UV) radiation included and to con-
tinuous fluctuations in water content, i.e. to regu-
lar drying and wetting cycles. Many mycobiont-
derived cortical secondary metabolites such as
parietin or atranorin are autofluorescent,
i.e. absorb UV light and transform it into longer
wavelengths (Fernandez-Marin et al. 2018);
therefore, they were assumed to protect the
myco- and photobiont from UV damage and to
provide the photobiont cell population with
wavelengths matching the absorption spectra of
photosynthesis; however, the latter hypothesis
was not supported by experimental approaches
(Fernandez-Marin et al. 2018). The biosynthesis
of secondary metabolites is enhanced by season-
ally or experimentally elevated UV radiation
(BeGora and Fahselt 2001; Bjerke et al. 2002,

2005; Solhaug et al. 2009). However, there are
yet unknown genetic factors causing quantitative
differences in cortical secondary metabolites
among thalli of the same species growing side
by side (Bjerke et al. 2005; Itten and Honegger
2010).

Foliose, band-shaped or fruticose lichen thalli
with internal stratification are the most complex
vegetative structures in the fungal kingdom.
However, less than half of all lichens reveal this
morphology and anatomy, the majority forming
either microfilamentous, microglobose, crustose,
leprose, gelatinous or squamulose thalli with no
internal stratification (see Figs. 15.1a–y and 15.8
a–e in Honegger 2012). Many crustose taxa grow
within the uppermost zone of the substratum
where they meet their photobiont; examples are
Arthopyrenia halodytes (syn. Pyrenocollema h.)
with cyanobacterial photobiont (Hyella spp.) in
the calcareous shell of limpets (Patella spp.,
Mollusca) or barnacles (Cirripedia, Crustacea),
Graphis spp. with trentepohlioid photobiont in
bark, etc. (see Fig. 15.1a–b in Honegger 2012).

6.4.3 The Mycobiont–
Photobiont-Interface

In all lichenized asco- and basidiomycetes, the
photoautotrophic partner is located outside the
contacting fungal hyphae, with different types of
mycobiont–photobiont interfaces being
differentiated, ranging from simple wall-to-wall
apposition to transparietal (formerly termed intra-
cellular) or intraparietal haustoria (Honegger
1986a, b, 1991a; see micrographs in Fig. 15.13
a–l in Honegger 2012). When compared with
biotrophic plant pathogenic fungi such as rusts
or powdery mildews or with arbuscular mycorrhi-
zal fungi, which form lobate or arbuscular
transparietal haustoria, i.e., a large exchange sur-
face in close contact with the plasma membrane
of the host cell, the mycobiont–photobiont con-
tact site in lichen is surprisingly simple (see
Fig. 1a–f in Honegger 1993): in intraparietal
haustoria, as formed by Parmeliaceae,
Teloschistaceae, Cladoniaceae, etc., the
mycobiont does not pierce the cellulosic cell
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wall of the chlorobiont (Trebouxia or
Asterochloris spp., respectively; see Fig. 15.13
a–l in Honegger 2012). A whole range of genes
encoding carbohydrate-active enzymes and sugar
transporters were identified in 46 representatives
of Lecanoromycetes; these LFF would be able to
enzymatically degrade the cellulosic cell wall of
their photobiont; many of them are likely acquir-
ing additional carbohydrates as saprotrophs (Resl
et al. 2022).
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Simple wall-to-wall apposition is found in
asco- and basidiolichens with Coccomyxa or
Elliptochloris chlorobionts; these incorporate
enzymatically non-degradable, sporopollenin-
like algaenans in a thin outermost cell wall layer
(Honegger and Brunner 1981; Brunner and
Honegger 1985; see Fig. 15.3 a–c in Honegger
2012).

6.4.4 Water Relations and Gas
Exchange

LFF and their photobionts are poikilohydrous
organisms (Greek poikilos: variable; Greek
hydror: water) and as such unable to control
their water relations. They survive fluctuations
in water content between saturation and desicca-
tion (less than 10% water dw-1) unharmed and
are metabolically dormant during drought stress
events, but recover within few minutes upon
rehydration (Scheidegger et al. 1995). During
desiccation, the cyanobacterial and green algal
cells shrivel and the fungal hyphae cavitate, as
seen in Low Temperature Scanning Electron
Microscopy preparations of frozen-hydrated
specimens, but irrespective of these dramatic
changes, the cellular membrane systems remain
intact, as visualized in ultrathin sections prepared
from cryofixed, freeze-substituted specimens in
Transmission Electron Microscopy (Honegger
and Peter 1994; Honegger et al. 1996; Honegger
and Hugelshofer 2000; see Fig. 16.5a–c i
Honegger 2009). Poikilohydrous water relations
are also characteristic of lichenicolous and
endolichenic fungi and lichen-associated bacteria.

In lichen thalli water and dissolved nutrients
are passively taken up at the thallus surface by the

conglutinate cortex and/or rhizinae with hydro-
philic wall surfaces and passively translocated
into the photobiont and medullary layers. As
shown with LTSEM techniques, a flux of solutes
occurs within the fungal apoplast, mostly in the
thick, glucan-rich outer wall layer and underneath
the thin hydrophobic wall surface layer
(Honegger and Peter 1994); the latter is built up
primarily by mycobiont-derived hydrophobin
protein (Scherrer et al. 2000, 2002; Scherrer &
Honegger, 2003), the characteristic hydrophobic
lining of aerial hyphae in the fungal kingdom
which self-assembles at the liquid–air interface
(Wösten et al. 1993; Wessels 1997; Wösten
2001). Despite being located in the thalline inte-
rior, the hyphae of the photobiont and medullary
layers are aerial, their hydrophobin layer spreads
over the wall surfaces of the photobiont cell pop-
ulation, thus sealing the apoplastic continuum
with a hydrophobic coat (Fig. 6.4). The same
happens in the lichenized basidiocarp of
Dictyonema glabratum (syn. Cora pavonia;
Trembley et al. 2002a, b). The mycobiont-derived
hydrophobic wall surface layer plays a crucial
role in the functioning of the symbiosis. In
co-cultures under sterile conditions, hydrophobin
protein is synthesized at an early stage of thallus
resynthesis at the contact site of Usnea
hakonensis and its chlorobiont (Trebouxia sp.;
Kono et al. 2020).

Traditionally, gas exchange of lichens was
measured in the same way as in plant leaves,
i.e., outside the thallus which is built up by the
heterotrophic partner. However, CO2 diffusion
through the cortex is blocked in fully hydrated
thalli; this was interpreted as a depression of
photosynthesis at high moisture contents, and
water was assumed to fill the intercellular space
in the thalline interior (Lange and Tenhunen
1981). In ultrastructural studies, the hydrophobic
lining of the wall surfaces in the algal and medul-
lary layers was shown to prevent water from
accumulating outside the apoplastic continuum,
the algal and medullary layers being gas-filled at
any level of hydration (Honegger 1991a, b). The
mycobiont of macrolichens amounts to approx.
80% of thalline biomass, the photobiont cell pop-
ulation to approx. 20% or less. The cortex is



translucent when wet, but opaque when dry, and
chlorophyll fluorescence is highest in fully
hydrated thalli. It was postulated that there should
be enough mycobiont-derived respiratory CO2 in

the thalline interior to secure the photosynthetic
activity of the photobiont in fully hydrated thalli
(Honegger 1991a). By oximetric measurements
of electron transport within thalli and fluorimetric
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Fig. 6.4 Diagram
illustrating the apoplastic
continuum and intrathalline
gas exchange in
Parmeliaceae with
Trebouxia photobiont.
After Honegger (1991a),
modified. The mobile
carbohydrates, as produced
by the different genera of
green algal or
cyanobacterial photobionts,
are summarized by Hill
(1976) and Honegger
(1997)
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measurements of photosynthesis in
Flavoparmelia caperata and its Trebouxia
chlorobiont, ten Veldhuis et al. (2019) showed
that photosynthetic O2 and photosynthates are
taken up by the mycobiont and its respiratory
CO2 by the chlorobiont, the algal and fungal
energy metabolism being mutually linked, a per-
fect recycling system.
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6.4.5 Heavy Metal and Radionuclides

Lichens absorb not only water and nutrients, but
also pollutants, heavy metals and radionuclides
included. Thus, they are used in biomonitoring
studies in urban and industrial areas (Nimis
et al. 2002; Abas 2021). They have also been
used as silent chronists of early nuclear weapon
testing and of the Chernobyl and Fukushima
accidents (Seaward 2002; Saniewski et al.
2020; Dohi et al. 2021; Anderson et al. 2022).
Heavy metals are bound in insoluble complexes
within the thallus. Characteristic lichen
communities develop on heavy metal rich rock
substrates. 5000 ppm of copper were found in
the crustose thalli of Lecanora vinetorum: i
grows on wooden supports in vineyards in
South Tyrolia which, for decades, were sprayed
12 times per year with copper sulfate as a fungi-
cide to protect the Vitis cultivars (Poelt and
Huneck 1968); the mycobiont-derived xanthone
vinetorin is assumed to form insoluble copper
complexes.

6.5 The Microbiome of Lichen
Thalli

6.5.1 The Bacteriome: Bacterial
Epi- and Endobionts of Lichen
Thalli

At least since the Early Devonian (approx.
415 Ma ago), non-photosynthetic bacteria live
on the thallus surface of lichens, and filamentous
actinobacteria are found on their cortex and in the
thalline interior (Fig. 6.5a–b; Honegger et al.
2013b). In the twenty-first century, the taxonomic

diversity and potential role of the bacteriome for
lichen symbiosis was intensely explored, as
reviewed by Grube and Berg (2009), Grube
et al. (2012, 2016), and Grimm et al. (2021).

Many lichens live in nutrient-poor habitats
such as bare rock surfaces, steppe and desert or
oligotrophic boreal-arctic ecosystems. Numerous
plant-beneficial bacteria have been identified in
the rhizosphere of plants (Burr et al. 1984;
Davison 1988); some of them fix nitrogen, others
solubilize phosphate or act as antagonists of plant
pathogens and thus are important in sustainable
agriculture (Romano et al. 2020). Considering the
ubiquitous bacterial epi- and endobionts of lichen
thalli (Fig. 6.5c–j), the question was: are there any
lichen-beneficial bacteria (Honegger 1991b)?
Maria Cengia Sambo (1924, 1926) was the first
to culture and identify an Azobacter associated
with lichens and referred to its potential role as a
N2-fixing partner; she introduced the term
polysymbiosis. In the last decades, a whole
range of nitrogen-fixing representatives of
Rhizobiales and Frankia have been characterized
as associates of lichen thalli (Hodkinson and
Lutzoni 2009; Bates et al. 2011; Erlacher et al.
2015; Eymann et al. 2017; Almendras et al. 2018,
etc.). Some lichen-associated Rhizobiales synthe-
size β-carotenes (Pankratov et al. 2020). The most
common and widespread bacterial symbionts of
lichens are representatives of Alphaproteo-
bacteria. The bacterial community may change
upon infection of the thallus by lichenicolous
fungi or lichens (Wedin et al. 2016).
Chlorolichens carry different bacterial
communities than cyanolichens (Almendras
et al. 2018).

In non-lichenized fungi, the intimate bacterial–
fungal interaction triggers the biosynthesis of sec-
ondary metabolites such as archetypal
polyketides in A. nidulans (Schroeckh et al.
2009) or a cryptic meroterpenoid pathway in
A. fumigatus (König et al. 2013).

Comparative analyses of the bacteriome of
lichens from different ecosystems were
performed, e.g., the littoral (Sigurbjornsdottir
et al. 2014; Parrot et al. 2015; West et al. 2018),
high mountain areas such as alpine soil crust
lichens (Muggia et al. 2013), the Andean Paramo
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Fig. 6.5 Epi– and endolichenic bacteria past (a, b) and
present (c–j). (a, b) Charcoalified, cross-fractured frag-
ment of the green algal lichen Chlorolichenomycites
salopensis, 415 Ma old, with endolichenic fungi (e) and
actinobacterial filaments (a) in the thalline interior (a) and
bacteria (b) on the surface of the cortex (b). After
Honegger et al. (2013b). (c) Thallus margin of Peltigera
praetextata with actinobacterial filaments (a) around pro-
truding hyphae (trichogynes?). (d) Actinobacterial
filaments (a) overgrowing the mycobiont–photobiont
interface in the algal layer of Pleurosticta acetabulum.
(e, f) Bacterial colonies growing on the surface of the

upper cortex of Parmelia sulcata. (g–j) The fruticose
thallus of the reindeer lichen Cladonia arbuscula, a con-
glutinate, tubiform axis with peripheral photobiont layer
and bacterial epi- and endobionts. (g) Cross-sections of the
young (top) and older part of the thallus. (h) SEM of a
longitudinal section, the conglutinate axis being built up
by thick-walled parallel hyphae. (i) Bacteria growing on
the inner surface of the axis near the tip of the thallus. (j)
Cross-section of the basal, old part of the axis with large
numbers of bacteria (b) growing between the thick walls of
the fungal hyphae ( f )



(Sierra et al. 2020), the Qinghai–Tibet Plateau
(Hei et al. 2021) or tropical rainforests (Mara
et al. 2011). The best investigated is the
microbiome of the lung lichen, Lobaria
pulmonaria, as reviewed by Grimm et al. (2021).
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In the desiccated state, i.e., in herbaria, some
bacterial symbionts retain their viability for
decades (Cernava et al. 2016), whereas lichen
myco- and photobionts die off within a few
years of storage at room temperature (Honegger
2003). Thus, herbaria with specimens from
remote areas might be a source of interesting
bacterial associates of lichens, some of them
with biologically interesting properties (Cernava
et al. 2016). In nature, bacterial associates of
lichen thalli survive drought stress unharmed
(Cernava et al. 2018).

Within thalli, the species richness and cell
density of lichen-associated bacteria increase
from peripheral, young growing zones to older,
non-growing areas. In the lobate Xanthoparmelia,
the highest bacterial diversity was found in the
centre (Mushegian et al. 2011), in the fruticose
reindeer lichen Cladonia arbuscula or in the
podetia of Cladonia squamosa in basal parts
(Cardinale et al. 2008; Noh et al. 2020;
Fig. 6.5g–i); some of the bacterial associates of
old thallus areas are likely involved in
biodegradative processes.

Vertical transmission of the microbiome
(except the Nostoc cyanobiont of cephalodia)
via symbiotic propagules occurs in the lung
lichen (Lobaria pulmonaria; Aschenbrenner
et al. 2014); with high probability isidia and thal-
lus fragments of most other species also carry at
least part of the microbiome at their surface, but
whether soredia with very hydrophobic surfaces
(Fig. 6.3e) carry bacteria remains to be seen.
Lichen-inhabiting invertebrates have their own
bacteriome on their surfaces (Chasiri et al. 2015).

Lichen-associated bacteria have attracted con-
siderable interest as potential producers of novel
secondary compounds with biotechnological
potential, the focus being on actinobacteria
(González et al. 2005; Parrot et al. 2015,
2016a, b; Suzuki et al. 2016).

6.5.2 Lichenicolous Fungi

Approximately 2320 spp. of lichenicolous asco-
and basidiomycetes have been described
(Fig. 6.6); 2000 spp. are obligately, 62 spp. facul-
tatively lichenicolous and 257 spp. are
lichenicolous lichens (Diederich et al. 2018),
new families, new genera and species being con-
tinuously described from ecosystems which had
not been previously investigated. Examples
are representatives of Pleostigmataceae and
Melanina spp. among the Chaetothyriomycetidae
in crustose lichens from subalpine areas (Muggia
et al. 2021), or Crittendenia spp. lichenicolous
representatives of Pucciniomycotina
(Basidiomycota; Millanes et al. 2021). A well-
preserved lichenicolous Lichenostigma sp.,
(Arthoniomycetes, Ascomycota) was found on
fossil Ochrolechia sp. in palaeogene amber
(approx. 24 Ma old; Kaasalainen et al. 2019).

Some lichenicolous fungi have a minor impact
on their host (e.g. mycocalicialean Sphinctrina
spp. on Pertusaria spp., Fig. 6.6e), others have a
devastating effect, killing the fungal and photoau-
totrophic partner (e.g. the corticialean
basidiomycetes Marchandiomyces aurantiacus
and M. corallinus on Physcia and Parmelia
spp.; Fig. 6.6b). Only a few lichen spp. regenerate
after an attack by the athelialean basidiomycete
Athelia arachnoidea (Fig. 6.6a), whose asexual
state is Rhizoctonia carotae, a pathogen of carrots
(Adams and Kropp 1996), but the free space
created by the killing effect is soon occupied by
fast-growing crustose taxa such as Biatora spp.
(Motiejûnaitë and Jucevièienë 2005).

Several lichenicolous fungi stimulate, proba-
bly via secretion of hormones, gall formations in
their hosts (Hawksworth and Honegger 1994).
Examples are the verrucarialean Telogalla olivieri
on Xanthoria parietina, or the parmeliacean
Raesaenenia huuskonenii on Bryoria spp.
(Fig. 6.6h–i). The characteristic galls of members
of the Biatoropsis usnearum complex
(Tremellales, Basidiomycota; Fig. 6.6d; Millanes
et al. 2016a) on Usnea spp. are basidiomata of the
parasite. Even hyperparasitism was detected



(e.g. Tremella huuskonenii, parasite of
R. huuskonenii on Bryoria sp., Fig. 6.6j; Lindgren
et al. 2015).
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Fig. 6.6 Lichenicolous (parasitic) ascomycetes (c, e, f, g,
h, i) and basidiomycetes (a, b, d, j). (a) Athelia
arachnoidea (Atheliales, Agaricomycetes) killing Physcia
tenella. (b) Marchandiomyces corallinus (Corticiales,
Agaricomycetes) on Physcia stellaris; courtesy of Erich
Zimmermann. (c) Ascomata of Neobarya peltigerae
(Clavicipitaceae, Sordariomycetes) on rhizinae of
Peltigera sp. From Zimmermann and Feusi (2018), cour-
tesy of Erich Zimmermann. (d) Basidioma (arrow) of
Biatoropsis usnearum (Tremellales, Tremellomycetes) on
Usnea ceratina. (e, e′) Mazaediate ascomata of
Sphinctrina turbinata (Mycocaliciaceae, Eurotiomycetes)
on dissected Pertusaria pertusa; (ac) ascoma of
P. pertusa. (f, g) thallus squamule of Cladonia
macrophylla invaded by Phaeopyxis punctum (Helotiales,
Leotiomycetes), black dots in (f) are ascomata of the
parasite, whitish dots are adhering soredia of the lichen.

(g) Stained semi-thin section of C. macrophylla with cor-
tex (c), photobiont (ph) and medullary layer (m) of the
lichen-forming ascomycete and ascoma of the parasite (ac
Pp); arrows point to the primordium of an ascoma of the
parasite with trichogynes protruding through the cortex of
the lichen. From Honegger 2012. (h–j) Horsehair lichens
(Bryoria fuscescens in h, B. pikei in i–j) invaded by curled
gall-inducing Raesaenenia huuskonenii (syn. Phacopsis or
Protousnea huuskonenii, respectively; Parmeliaceae,
Lecanoromycetes). (h) Infected Bryoria fuscescens, from
Zimmermann and Feusi (2020), courtesy of Erich
Zimmermann. (j) basidioma of the hyperparasite Tremella
huuskonenii (Tremellales, Tremellomycetes) developing
on the gall of the lichenicolous R. huuskonenii on
B. pikei. (i, j) From Lindgren et al. (2015), courtesy of
Paul Diederich

Various investigators found basidiomycetous
yeasts as symptomless endolichenic fungi on and
in lichen thalli, belonging to the Tremellomycetes
(Agaricomycotina), Cystobasidiomycetes or
Agaricostilbomycetes (Pucciniomycotina;
review: Diederich et al. 2018). Examples are
Fellomyces spp. (Cuniculitremataceae,
Tremellales; Prillinger et al. 1997; Lopandic
et al. 2005), the Cyphobasidium usnicola

complex and other Cyphobasidium spp. on vari-
ous macrolichens (Cystobasidiales; Millanes et al.
2016b; Spribille et al. 2016), or Lichenozyma
pisutiana in Cladonia spp. (Cystobasidiales;
Černajová and Škaloud 2019). These basidiomy-
cetous yeasts are widespread, but not ubiquitous
in lichen thalli (Lendemer et al. 2019). Particu-
larly interesting are tremellalean lichenicolous
fungi which produce galls on their host lichen,
but switch between a yeast and a hyphal stage, the
former being located on and in the cortex of the
lichen, as visualized with FISH (fluorescent in



situ hybridization techniques; Spribille et al.
2016). Examples are Tremella lethariae on
Letharia vulpina (Tuovinen et al. 2019),
T. macrobasidiata and T. varia on Lecanora
spp. (Tuovinen et al. 2021).
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Some lichenicolous fungi reduce the growth
rate and the production of secondary metabolites
of their host (e.g. Plectocarpon spp. on Lobaria
pulmonaria; Asplund et al. 2018; Merinero and
Gauslaa 2018), others degrade the secondary
metabolites of their host (e.g. parietin of
Xanthoria parietina by the capnodialean
Xanthoriicola physciae; Edwards et al. 2017, or
lecanoric acid by hypocrealean Fusarium spp. on
Lasallia spp.; Lawrey et al. 1999), thus
facilitating the attack of opportunistic fungi
and/or enhancing the grazing pressure by
lichenivorous invertebrates (Lawrey et al. 1999;
Asplund et al. 2016). More and different second-
ary metabolites than in the lichen proper were
found in Cladonia foliacea upon infection with
the lichenicolous Heterocephalacria bachmannii
(Filobasidiales, Tremellomycetes), the antioxi-
dant potential of the thallus being enhanced
(Khadhri et al. 2019).

6.5.3 Lichenicolous Lichens

Lichenicolous lichens (Fig. 6.7a–c) are a group of
specialists whose ascospore-derived germ tubes
start their development in the thallus of a host
lichen, which they invade; some of them take
over the photobiont host, others acquire a differ-
ent green algal partner (see below). The parasitic
lichen overgrows its host and differentiates its
own thallus. The first known lichenicolous lichen,
Rhizocarpon lusitanicum, parasite of Pertusaria
spp., was described by Nylander in 1865 when
lichen symbiosis was not yet defined. In their
2018 compilation, Diederich et al. listed
257 spp. of lichenicolous lichens and their hosts,
representatives of 63 genera, 28 families,
16 orders and four classes of ascomycetes. The
vast majority are Lecanoromycetes, the most
species-rich genera being Rhizocarpon (33 spp.),
Acarospora (27 spp.) and Caloplaca (26 spp.;
Diederich et al. 2018).

Fig. 6.7 Lichenicolous lichens. (a) Diploschistes
muscorum (Ostropales) invading and overgrowing
Cladonia chlorophaea. (ac) ascomata. (b) Caloplaca
anchon-phoeniceon (Teloschistales) invading Aspicilia
calcarea. (c) Rhizocarpon effiguratum (Rhizocarpales)
invading Acarospora oxytona

The acquisition of the photobiont by the
lichenicolous Diploschistes muscorum on
Cladonia spp. was investigated using light
microscopy techniques applied to symbiotic and
cultured photobiont cells (Friedl 1987). In the first
developmental stage on Cladonia sp.,
D. muscorum was shown to associate with
Asterochloris irregularis (syn. Trebouxia
irregularis), the unicellular green algal partner
of the Cladonia host; subsequently algal
switching occurred, A. irregularis being replaced
by Trebouxia showmanii (Friedl 1987) and/or
other Trebouxia spp. (Wedin et al. 2016).
Diploschistes spp. associate with diverse
photobiont species, as concluded from molecular
investigations of D. diacapsis in Mediterranean
soil crust communities, up to four different
Trebouxia spp. having been found in one thallus
(Moya et al. 2020).
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6.5.4 Endolichenic Fungi (ELF)

Whereas the diversity of lichenicolous fungi has
been intensely investigated from the nineteenth
century onwards, the presence of numerous
symptomless endolichenic fungi in lichen thalli
was first detected towards the end of the twentieth
century (Petrini et al. 1990). Today, more than
200 spp. of endolichenic fungi are known, pre-
dominantly ascomycetes, few basidio- and
zygomycetes, 135 having been identified at spe-
cies level; they were isolated from 114 lichen
species, the majority being parmeliacean
macrolichens (Chakarwarti et al. 2020).

Most ELF are saprobic generalists, but also
several wood-decay asco- and basidiomycetes
were found such as the xylarialean Xylaria,
Hypoxylon and Daldinia spp., or the agaricales
Schizophyllum commune and the russulales
Heterobasidion annosum (Fig. 6.8). Lichen thalli
as a refuge of wood-decay fungi: an unexpected
result! Some ELF are plant pathogens, a few are
also endophytes of plants (Arnold et al. 2009;
U’Ren et al. 2010, 2012). The biology of
endolichenic fungi is poorly investigated; they
absorb polyols such as mycobiont-derived

mannitol from the apoplastic continuum of the
lichen thallus (Yoshino et al. 2020).

Fig. 6.8 Comparatively thin hyphae of symptomless
endolichenic fungi (arrows) growing between the medul-
lary hyphae of Peltigera leucophlebia. Broad arrows point
to clamp connections of an endolichenic Agaricomycetes.
After Honegger (2012)

Upon isolation into sterile culture, ELF turned
out to be a rich source of interesting bioactive
secondary metabolites. More than 140 novel
compounds have been identified, many of them
with pharmaceutical potential such as antibiotic,
antiviral, antifungal, anti-inflammatory, antiproli-
ferative or antioxidant properties (reviews: Gao
et al. 2016; Kellogg and Raja 2017; Tripathi and
Joshi 2019; Agrawal et al. 2020; Wethalawe et al.
2021). Considering that only approximately 5%
of lichen species have so far been investigated for
ELF, there are lots of interesting work ahead.

6.5.5 The Virome of Lichens

Upon isolation into sterile culture, the first
mycoviruses in the mycobiome of lichens were
detected in the so-called dust lichens, i.e., the
leprose thalli of Lepraria incana
(Stereocaulaceae, Lecanoromycetes; LiCV1) and
Chrysothrix chlorina (Chrysotrichaceae,
Arthoniomycetes; CcCV1). LiCV1 and CcCV1
are classified in the genus Alphachrysovirus (fam-
ily Chrysoviridae; Petrzik et al. 2019) whose host
range comprises fungi, plants and possibly insects
(Kotta-Loizou et al. 2020). Upon closer examina-
tion, i.e., with fluorescent in situ hybridization
techniques, CcCV1 was located not in the lichen
mycobiont proper, but in an associated Penicil-
lium citreosulfuratum (Eurotiomycetes; Petrzik
et al. 2019).

Lichen photobionts were shown to harbour
plant viruses such as the cauliflower mosaic
virus (Petrzik et al. 2013). With immunogold
labelling techniques applied to ultrathin sections,
viruses contained in more than 70 years old sterile
cultures of Trebouxia aggregata, photobiont of
Xanthoria parietina, were shown to be located in
the algal cytoplasm, not in the chloroplast; upon
mechanical transmission to plant host cells these
phycobiont-derived viruses were infective
(Petrzik et al. 2015).

In a study on virus diversity in the
metagenome of the saxicolous Umbilicaria
phaea, five novel viruses were detected, one of



them, a Caulimovirus, being associated with the
Trebouxia photobiont and the four others, belong-
ing to the Myoviridae, Podoviridae and
Siphoviridae, with bacterial associates of the
lichen, but so far, no mycoviruses have been
found (Merges et al. 2021).
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RNA virus diversity was investigated in an
extract of a microcosm, predominantly consisting
of Cladonia spp. and other Lecanoromycetes and
their trebouxiophycean photobionts, overgrowing
bryophytes, non-lichenized ascomycetes,
cyanobacteria, free-living green algae, fern
(spores?) and minute animals living therein, as
seen in SSU rRNA sequences (Urayama et al.
2020). A total of 65 operational taxonomic units
(OTUs) were achieved, 17 belonging to
Partitiviridae (five to the genus Alphapartitivirus,
one to Betapartitivirus, the host range of both
genera comprising fungi and plants; Vainio et al.
2018), plus representatives of 10 additional viral
families and several unclassified dsRNA and
ssRNA viruses (Urayama et al. 2020).

The impact of viral infections on the biology
and whether horizontal virus transfers occur
between the partners of lichen symbiosis and
their allies remain to be investigated.

6.6 Fossil Lichens and Their
Microbiome

6.6.1 Fossil vs. Extant Lichens

Fungi colonized terrestrial environments in the
Proterozoic, presumably associating with the
even more ancient cyanobacteria, the latter hav-
ing been present already in the Archean (approx.
2400 Ma), but colonized terrestrial habitats from
the Proterozoic onwards, as concluded from fossil
records and molecular clock analyses (Strother
and Wellman 2016; Lutzoni et al. 2018;
Demoulin et al. 2019; Garcia-Pichel et al. 2019).
Trebouxiophyceae, unicellular green algae, and
Trentepohliales, filamentous green algae, were
present from the Proterozoic onwards, some
extant taxa of both groups being the main
photobionts of extant LFF (Lutzoni et al. 2018;
del Cortona et al. 2020). Thus, lichenization is

assumed to be an ancient fungal lifestyle, but
fossil records are very scarce and partly difficult
to interpret (Fig. 6.9).

According to molecular phylogenetic datasets,
the clades of ascomycetes which gave rise to
extant lichens did not radiate before the Silurian
(approx. 450 Ma; Lutzoni et al. 2018) or even the
Mesozoic (approx. 250 Ma; Nelsen et al. 2019).
According to the latter authors ascolichens, as we
know them today, are younger than previously
assumed, did not predate the evolution of vascular
plants and were not among the (extinct) early
fungal colonizers of terrestrial habitats. Neverthe-
less, the lichen lifestyle was most likely
established in the common and widespread
nematophytes and Prototaxites spp. (review:
Selosse and Strullu-Derrien 2015). The manyfold
problems related to the interpretation of fungal
fossils are summarized by Berbee et al. (2020).

6.6.2 Palaeozoic Fossils

An approx. 600 Ma old lichen-like association
was preserved in marine phosphorite of the
Doushantuo Formation in South China (Yuan
et al. 2005). Mats of cyanobacterial or coccoidal
algal cells were invaded by extremely thin fila-
mentous hyphae with diameters below 1 micron,
a characteristic feature of actinobacteria, not fungi
(Honegger 2018); thus, the Doushantuo fossils
are not lichens.

Nematophytes, an extinct phylum of presum-
ably lichenized fungi with no modern analogues
and thus not represented in molecular phyloge-
netic trees of living species, were common and
widespread constituents of terrestrial cryptogamic
ground covers from the late Silurian to the late
Devonian. They comprise the families
Nematothallaceae (genera Nematothallus,
Cosmochlaina, Tristratothallus; Edwards et al.
2013, 2018) and Nematophytaceae (genera
Nematoplexus, Nematasketum and the enigmatic
Prototaxites; Edwards and Axe 2012). After long
debates about their taxonomic affiliation
nematophytes are currently interpreted as pre-
sumably lichenized thalloid fungal structures
(Edwards et al. 2013, 2018). Cross-fractures of



some nematophyte fossils reveal the same strati-
fication as found in lichens, with a conglutinate
peripheral cortex and a medullary layer built up
by interwoven hyphae, but photobiont cells are
missing; they might have been lost during fossili-
zation. In charcoalifying experiments with extant
cyanobacterial lichens, the fungal partner was
well preserved, and so were the thick mucilagi-
nous sheaths of the Nostoc photobiont, but most
of the cyanobacterial cells proper were lost
(Honegger et al. 2013a).
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Fig. 6.9 Fossil lichens, an overview. 1. Yuan et al.
(2005); 2. Retallack (2009); 3. Retallack (2020);
4. Edwards et al. (2013, 2018); Honegger et al. (2018);
5. Honegger et al. (2013a); 6. Taylor et al. (1995, 1997),
Karatygin et al. (2009); 7. Jurina and Krassilov (2002);
8. Stein et al. (1993), Jahren et al. (2003); 9. Ziegler
(2001); 10. Wang et al. (2010), Fang et al. (2020); 11.
Matsunaga et al. (2013); 12. Mägdefrau (1957), Rikkinen
and Poinar (2002), Rikkinen (2003), Hartl et al. (2015),
Kaasalainen et al. (2015, 2017, 2020), Rikkinen et al. (2018);

13. Poinar Jr. et al. (2000), Rikkinen and Poinar (2008); 14.
MacGinitie (1937), Peterson (2000). Chronostratigraphy
(International Commission on Stratigraphy (ICS) chart
2019; Hounslow 2020): Periods in Ma. Neoproterozoic
(1000-541); Cam: Cambrian (541-484); Ord: Ordovician
(485-443); Sil: Silurian (443-419); Dev: Devonian
(419-358); Carb: Carboniferous (358-298); Perm: Permian
(298-251): Tri: Triassic (251-201); Jur: Jurassic (201-145);
Cretac: Cretaceous (145-66); Paleo: Paleogene (66-23). After
Honegger (2018), modified

Prototaxites spp., enigmatic fossils with erect
axes, built up by hyphae of various diameters,
ranging from pencil size dimensions as in the

mid-Ordovician (Darrivilian, approx. 460 Ma
old) P. honeggeri (Retallack 2020) to more than
8 metres long stems, as in the mid-Devonian
(early Givetian, approx. 385 Ma old) P. loganii,
were interpreted as presumably lichenized fungi,
coccoid photobiont cells having been resolved at
the surface of the axes of both species (Retallack
and Landing 2014; Retallack 2020). However, it
remains unclear how the few coccoid algal cells
should have provided enough carbohydrate to
nourish these large fungal structures;
nematophytes were assumed to be associated
with Prototaxites (Selosse and Strullu-Derrien
2015). Delicate fruiting structures at the surface



of the axes were seldom retained; luckily the
hymenial layer was preserved in a series of petro-
graphic thin sections of P. taiti of the Kidston and
Lang collection. The ascomata of P. taiti combine
features of extant ascomycetes, i.e., Taphrino-
mycotina (Neolectomycetes lacking croziers)
and Pezizomycotina (epihymenial layer secreted
by paraphyses), but Prototaxites is not an ances-
tor of the latter (Honegger et al. 2018).
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The mid-Devonian Spongiophyton
minutissimum is a presumed lichen, built up by
a conglutinate, tissue-like, porate fungal cortex
around a central cavity; a photobiont was not
resolved (Taylor et al. 2004).

Winfrenatia reticulata is a permineralized fos-
sil lichen, 10 cm long, 2 mm thick, from the
Lower Devonian Rhynie chert (approx. 400 Ma
old; Taylor et al. 1995, 1997). A presumed
mucormycete forms a basal mat and
superimposed ridges built up by parallel hyphae
which are in contact with coccoid cyanobacterial
cells interspersed with a filamentous cyanobacte-
rium (Karatygin et al. 2009). However,
Winfrenatia might be a fragment of a larger thal-
loid organism such as a nematophyte (Honegger,
unpubl.).

The oldest lichenized ascomycetes with
dorsiventally organized, internally stratified thal-
lus so far found are charcoalified fragments of
Cyanolichenomycites devonicus, a cyanobacterial
lichen with Nostoc-like photobiont (Fig. 6.10a,
b), and Chlorolichenomycites salopensis, a pre-
sumed green algal lichen whose globular
photobiont cells were retained as framboidal
pyrite (Fig. 6.10c–e; Honegger et al. 2013a).
Both fossils were extracted from a Lower Devo-
nian siltstone from the Welsh Borderland
(approx. 415 Ma old). Despite their striking struc-
tural similarity with extant Lecanoromycetes
lichens, the taxonomic affiliation of these fossils
remains unclear. They might either belong to the
nematophytes or represent the earliest known
members of extant lichenized ascomycetes
(Hawksworth 2012; Lutzoni et al. 2018); in the
latter case, some molecular clock estimates would
require recalibration.

6.6.3 Mesozoic Fossils

Daohugouthallus ciliiferus, a well-preserved,
band-shaped lichen resembling extant
Parmeliaceae such as Pseudevernia furfuracea,
was found in mid Jurassic sediments (approx.
165 Ma old) in north-eastern China (Inner
Mongolia; Wang et al. 2010; Fang et al. 2020).

Very well preserved is the Mesozoic
Honeggeriella complexa, a dorsiventrally
organized, foliose lichen from the Early Creta-
ceous of Vancouver Island (Valanginian-
Hauterivian boundary, ca. 133 Ma old) with dis-
tinct green algal layer and haustorial complexes at
the mycobiont–photobiont interface comparable
to those found in extant taxa (Matsunaga et al.
2013).

6.6.4 Cenozoic Fossils

Large numbers of well-preserved lichens were
found in Cenozoic Baltic and Bitterfeld (approx.
50–35 Ma old) and in Dominican amber (approx.
16 Ma old). Excellent external and internal struc-
tural preservation allows to identify taxa similar
or closely related to extant species (Hartl et al.
2015), most of them having been epiphytes on the
resin-producing trees (e.g. Pinus spp. in
N-Europe). Among the fruticose-pendulous
lichens in Baltic amber are alectorioid taxa and
Usnea spp. (Kaasalainen et al. 2015, 2020).
Among the foliose lichens is Anzia electra, com-
mon and widespread in Baltic and Bitterfeld
amber, but today extinct in Europe (Rikkinen
and Poinar 2002; Schmidt et al. 2013). Very
well preserved Parmelia ambra and
P. isidiiveteris (Poinar Jr. et al. 2000) and
Phyllopsora dominicanus (Rikkinen and Poinar
2008) were found in Dominican amber. Among
the crustose lichens in Baltic amber are calicioid
taxa (Rikkinen 2003; Rikkinen et al. 2018) and
Ochrolechia spp. (Kaasalainen et al. 2019).

There are many more types of amber world-
wide whose fossils await thorough investigation,
the oldest ones dating back to the Carboniferous
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Fig. 6.10 Fossil lichens from the Lower Devonian
(ca. 415 Myr old) with dorsiventrally organized, stratified
thallus (a, c–d) in comparison with extant
Lecanoromycetes (b, e). (a) Cyanolichenomycites
devonicus with conglutinate cortex and a Nostoc-like
cyanobiont in the photobiont layer; in contrast to the
well-preserved gelatinous sheaths (gs) only few

cyanobacterial cells (bold arrow) are retained. (b)
Peltigera praetextata (Peltigerales) with Nostoc sp. as
cyanobiont. (c–d) Chlorolichenomycites salopensis with
thin peripheral cortex and globose, presumed green algal
photobiont, the latter being preserved as framboidal pyrite.
(e) Pleurosticta acetabulum (Lecanorales); chlorobiont:
Trebouxia sp. After Honegger et al. (2013a), modified



period (approx. 320 Ma old). DNA has been
successfully extracted, amplified and sequenced
from invertebrate and plant fossils in Dominican
and Lebanese amber, the oldest ones being
approx. 120–135 Ma old (Poinar 1994).
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6.6.5 The Microbiome of Fossil
Lichens

In the dorsiventrally organized thallus of the
Lower Devonian Chlorolichenomycites
salopensis were bacterial colonies growing on
the surface of the cortex and actinobacteria and
lichenicolous fungi in the thalline interior, com-
parable to the situation in extant lichens
(Fig. 6.5a, b; Honegger et al. 2013b).

Fructifications of Lichenostigma
sp. (Lichenostigmatales, Arthoniomycetes) were
found on Ochrolechia sp. in palaeozoic amber
(Kaasalainen et al. 2019), Lichenostigma spp.
being common and widespread lichenicolous
fungi of extant lichens (Hafellner and Calatayud
1999; Diederich et al. 2018). A wide range of
filamentous fungi were found on decaying crus-
tose lichens embedded in amber, such as well-
preserved toruloid taxa, conidiomata of
dematiaceous hyphomycetes resembling extant
genera such as Sporidesmium, Taeniolella and
Taeniolina (Kettunen et al. 2016, 2018).

6.7 Lichen–Animal Relations

6.7.1 The Micro- and Mesofauna
of Lichen Thalli

Many interactions of lichens with protozoans,
invertebrates and vertebrates have been reported.
Among lichen–invertebrate interactions are
rotifera, amoebae (Figs. 6.1a, b and 6.11a),
ciliates, tardigrades (Fig. 6.11b), mites
(Fig. 6.12a, b), spiders, nematodes, collembola
and insects (springtails, barklice, lepidopterans,
grasshoppers, etc.) which live between and
below, some even within lichen thalli (reviews:
Gerson 1973; Gerson and Seaward 1977;
Sharnoff 1998; Segerer 2009). Epiphytic lichen

biomass on oak correlated significantly with the
abundance of arthropods, tardigrades and rotifera
in central Maine (Stubbs 1989). The microfauna
of one lichen species (Xanthoria parietina), col-
lected in Lithuania, comprised 16 protozoan taxa,
three tardigrades, two Nemathelminthes and three
rotifera (Šatkauskienė 2012). In 26 terricolous
lichen samples from Svalbard and Spitzbergen,
23 species of tardigrades were identified
(Zawierucha et al. 2017). On Cladonia rei grow-
ing on heavy metal-contaminated post-smelting
dumps in Poland, 50 species of oribatid mites
were recorded (Skubała et al. 2014).

Fig. 6.11 Representatives of the microfauna of lichen
thalli. (a) Testate amoeba with agglutinate shell, predomi-
nantly composed of diatoms, in the tomentum of Sticta
fuliginosa, collected in La Réunion. (b) Tardigrade on the
surface of a campylidium (conidioma) of the foliicolous
Lasioloma arachnoideum collected in Tanzania by Edit
Farkaš

Some of these allies of lichen thalli find shel-
ter, others are lichenivorous (see below) or
bacterivorous (Liu et al. 2011). Even pest insects
of fruit and nut trees find shelter under epiphytic
lichens; therefore, agricultural experts recom-
mend fruit growers to control or even prevent
lichen growth either mechanically or chemically
in their orchards.

6.7.2 Lichenivory: Invertebrates

Lichens have always been part of terrestrial food
webs. The Silurian-Devonian nematophytes, pre-
sumably lichenized fungi, were grazed by



arthropods, presumably millipedes, as seen in
grazing marks on the thallus surface with adher-
ing coprolites (fossil faecal pellets), some of
which contain hyphae or even small fragmentary
remains of the thalli (Edwards et al. 1995, 2020).
Grazing marks, presumably from arthropods, and
faecal pellets were found on fossil foliose lichens
in Palaeogene Bitterfeld amber (Schmidt et al.
2022).
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Fig. 6.12 Lichenivory and endozoochory in oribatid
mites. In captivity Trhypochthonius tectorum (a) and
Trichoribates trimaculatus (b, b′) were feeding on the
hymenium (c) or the upper cortex and algal layer (d),
respectively, of Xanthoria parietina; adjacent Physcia
orbicularis was not grazed. Faecal pellets contained viable
fungal and algal cells (Trebouxia arboricola), the latter

growing out upon incubation on Parafilm (f) in a wet
chamber; mycelia grew out on agarized non-nutrient min-
eral medium (g). Yellow crystals of parietin ( p) are formed
on and around the mycelium. The identity of the fungal
and algal isolates was investigated with molecular tools.
After Meier et al. (2002)

There is a large body of literature on
lichenivorous invertebrates (Gerson and Seaward
1977; Rambold 1985; Sharnoff 1998; Segerer
2009). In feeding experiments, Arthropoda such
as mites (Acari), springtails (Collembola),
barklice (Psocoptera) or beetles (Coleoptera) and
Gastropoda such as door and pillar snails
(Clausiliidae, Cochliopsidae) were all shown to
graze the upper cortex and algal layer of Parmelia
and Physcia spp. down to the medullary layer
(Schmidt et al. 2022). Lichens were assumed to

be protected from lichenivory by their content in
secondary metabolites (Stahl 1904). However,
many invertebrates consume even those parts of
lichen thalli which contain large amounts of sec-
ondary products unharmed, crystals of these fun-
gal metabolites passing the digestive tract
unchanged (Zopf 1907; Hesbacher et al. 1995;
Asplund and Wardle 2013; Gadea et al. 2019).
Lichenivorous mites are selective in their food
choice, some lichen species being avoided
(Reutimann and Scheidegger 1987; Fröberg
et al. 2003). In molluscs (slugs and snails), a
preference was noted for thallus areas or even
species with low contents in secondary
metabolites (Benesperi and Tretiach 2004;
Asplund 2011). Arion fuscus preferentially feeds
on the large internal cephalodia of Nephroma
arcticum, probably because these lack secondary
metabolites (Asplund 2010; Asplund and Gauslaa
2010). Feeding experiments with thalli whose



secondary products had been removed by rinsing
in acetone were preferentially grazed (Gauslaa
2005; Boch et al. 2011, 2015). Gall-producing
lichenicolous fungi (Plectocarpon spp.) reduce
the growth rate and the production of secondary
metabolites in Lobaria pulmonaria (Asplund
et al. 2016; Merinero and Gauslaa 2018), thus
making the infected thallus areas more palatable
and increasing the grazing pressure by snails
(Asplund et al. 2016).

6 Lichens and Their Allies Past and Present 159

6.7.3 Lichenivory: Vertebrates

No vertebrate lives exclusively on a lichen diet,
but in many regions, lichens are a substantial part
of total food intake when other, preferred food
such as buds, leaves, tubers and fruits are season-
ally unavailable. Mat-forming terrestrial lichens
such as Cladonia spp., and epiphytic species are a
substantial part of the diet of reindeers and cari-
bou (Rangifer tarandus) in Arctic tundras
(Heggberget et al. 2002), but also of other
ungulates such as deer, chamois or alpine Ibex
in montane and alpine ecosystems of the Northern
and Southern Hemisphere (Parrini et al. 2009;
Yockney and Hickling 2000), of camelids
(guanacos, llamas) in South America (Follmann
1964) and of numerous smaller mammals such as
marmots, flying squirrels (Rosentreter et al.
1997), voles, etc. (reviews: Richardson and
Young 1977; Sharnoff and Rosentreter 1998;
Segerer 2009). Trampling damage occurs in rein-
deer lichen stands in subarctic and arctic tundras
when large herds are feeding in dry weather;
reindeer lichens (Cladonia spp.), like all other
lichens, are elastic and flexible when wet, but
very brittle in the dry state, thus being fragmented
by the hooves of ungulates, recovery taking more
than 30 years (Pegau 1970; den Herder et al.
2003; Théau et al. 2005; Heggenes et al. 2017,
2020).

However, trampling damage and overgrazing
are not the only reasons for the decline of lichen
heaths in Arctic ecosystems. In response to global
warming, the Arctic is greening, deciduous
shrubs and graminoids increasingly outcompete
the terricolous lichen communities, as observed in

situ and with remote sensing technologies over
time (Myers-Smith et al. 2011, 2019; Fraser et al.
2014; Aartsma et al. 2020; Berner et al. 2020).
Increasing summertime temperatures are also
causing the decline of cyanobacterial and other
lichens in soil crust communities on the Colorado
Plateau, where neither grazing nor anthropogenic
disturbances are evident (Finger-Higgens et al.
2022).

Large quantities, i.e., 30–75% of total food
intake of beard lichens, especially Usnea
longissima and Bryoria spp., are consumed by
colobine primates (snub-nosed monkeys;
Fig. 6.13) of the genus Rhinopithecus (R. bieti,
R. roxellana, R. brelichii) in Western China and
adjacent Tibetan mountain areas (Xiang et al.
2007; Grueter et al. 2009, 2012; Li and Ang
2009; Kirkpatrick and Grueter 2010; Liu et al.
2013; Bissell 2014; Xiang 2014). The rare and
endangered lowland R. strykeri was shown to eat
15 lichen spp. in captivity, but these amounted to
less than 3% of his diet (Yang et al. 2019).
Barbary macaques (Macaca sylvanus) in high-
altitude fir forests in the Ghomaran Rif and other
mountain areas in Marocco eat lichens only in
harsh winters when no other food is available
(Mehlman 1988).

Lichens are rich in easily digestible
carbohydrates such as β-glucans in the fungal
cell walls such as lichenin (Honegger & Haisch,
2001) but have only low protein content. Rein-
deer and caribou seasonally feed on mushrooms
(Inga 2007), whereas colobines consume
mushrooms, invertebrates (Xiang et al. 2007;
Yang et al. 2016) and vertebrates such as flying
squirrels or bird’s eggs (Grueter et al. 2009), and
even infanticide followed by cannibalism was
observed (Xiang and Grueter 2007).

6.7.4 Endozoochory

Faecal pellets of lichenivorous invertebrates are
probably common and widespread symbiotic
propagules, but rarely described and experimen-
tally investigated. Jahns (1987) reported on a
novel type of symbiotic propagule in Solorina
crocea but did not realize that these were



germinating faecal pellets of lichenivorous snails.
In light microscopy studies, numerous
investigators observed intact fungal and/or algal
cells or thallus fragments in the intestines or
faecal pellets of lichenivorous invertebrates, e.g.,
in oribatid mites (Acari; Lawrey 1980; Meier
et al. 2002), springtails (Collembola; Lawrey
1980), butterfly larvae (Lepidoptera; Rambold
1985; Brodo et al. 2021), termites (Termitidae;
Barbosa-Silva and Vasconcellos 2019; Barbosa-
Silva et al. 2019b), and molluscs (snails and
slugs, Gastropoda; Baur et al. 2000; Fröberg
et al. 2001; Boch et al. 2011, 2015).
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Fig. 6.13 Lichenivory in
vertebrates. Yunnan black
snub-nosed monkey
(Rhinopithecus bieti)
feeding on Usnea
longissima and other beard
lichens. Courtesy of Fabio
Nodari

However, in only a few lichen–invertebrate
interactions was the viability of the cells
contained in faecal pellets tested with culturing
experiments. Gut transmission of viable
mycobiont and photobiont cells was found in
oribatid mites which had been feeding on
Xanthoria parietina (Fig. 6.12a–g); the identity
of both partners in these cultures was identified

with molecular tools (Meier et al. 2002). Physcia
adscendens and Lobaria pulmonaria were fed to
nine gastropod species and the regeneration rate
out of their faecal pellets tested. To a varying
percentage, P. adscendens grew out of the faeces
of all nine gastropod species (9/9), L. pulmonaria
out of eight (8/9; Boch et al. 2011, 2015). No
germination was observed in faecal pellets of
lichenivorous snails and barklice which had
been feeding on foliicolous lichens in a tropical
rainforest (Lücking and Bernecker-Lücking
2000).

Various investigators report on partly severe
grazing damage in saxicolous and epiphytic
lichen communities (e.g. Baur et al. 1995, 2000;
Gauslaa et al. 2006; Skinner 2021), but consider-
ing the high regeneration rates of lichens out of
detached thallus fragments and faecal pellets of
lichenivorous invertebrates, there is also a poten-
tial for rejuvenation which deserves investigation.



in
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6.7.5 Epizoochory

Epizoochory is probably a very common and
widespread mode of dispersal of symbiotic
propagules, thallus fragments or faecal pellets of
lichenivorous invertebrates, but only few
investigations have been published. Only few
viable cells of the mycobiont and photobiont are
required for regenerating a new thallus. Three
types of epizoochory can be distinguished:

1. Lichens growing on animals (invertebrates and
vertebrates). Examples are (a) limpets (Patella
spp., Mollusca) and barnacles (Cirripedia) in
the littoral fringe whose calcareous shell is
inhabited by Pyrenocollema halodytes (syn.
Arthroprenia halodytes, Collemopsidium h.)
and its cyanobacterial photobiont (Hyella
caespitosa; see Fig. 15.1a in Honegger
2012). (b) foliose lichens growing together
with fungi, algae and liverworts on the back
of large weevils of the genus Gymnopholus in
New Guinea (Gressitt et al. 1965; Gressitt
1966), which are getting several years old, as
concluded from the lichen growth on their
back (Gressitt 1970, 1977). This epizoic cryp-
togamic community is inhabited by mites,
rotifers and nematodes; even a new family,
genus and species of oribatid mites
(Symbioribatidae, Symbioribates papuensis)
were discovered which live among the
cryptogams on the weevils’ back (Aoki
1966). Liverworts, lichens and fungi were
also found growing on Costa Rican Shield
Mantis (Choeradodis spp., Mantodea;
Lücking et al. 2010). (c) lichens growing on
the shell of some, but by far not all Giant
Tortoises (Geochelone elephantopus)
Galapagos (Hendrickson and Weber 1964).

2. Lichens being actively sampled for nesting or
camouflage. Vertebrates: (a) Many birds such
as hummingbirds, chaffinks, etc., use lichens
for camouflage of their nest, which then seem
to be part of the branch on which it is posi-
tioned; ideally these lichens continue to grow
on the surface of the nest (Graves and Dal
Forno 2018). On branches without lichen
cover, fragments of bright-grey lichens on the

surface of birds nests reflect light, concealment
by light reflection being an important mode of
camouflage (Hansell 1996). (b) Flying
squirrels (Glaucomys sabrinus) use lichens as
nesting material and food, soft Bryoria spp.,
having low contents of secondary metabolites,
are preferentially collected (Rosentreter and
Eslick 1993; Hayward and Rosentreter 1994).
Invertebrates: (a) Larvae of bagworms
(Psychidae, Lepidoptera) mount tiny
fragments of the lichens on which they feed
to their silk bag as a very efficient camouflage
(McDonogh 1939; see Fig. 16.16a, b in
Honegger 2009). (b) Barklice cover the body
of their nymph with minute fragments of
lichens, algae and sand granules (Henderson
and Hackett 1986), and so do the larvae of the
green lacewing (Nodita pavida; syn.), which
become invisible under their load of tiny
lichen fragments (Slocum and Lawrey 1976).
(c) Several species of lichenivorous, terrestrial
snails of the genus Napaeus (Gastropoda,
Pulmonata) actively paste fragments of lichens
to their shell (Allgaier 2007; Holyoak et al.
2011).

3. Passive sampling. Soredia, isidia and other
symbiotic propagules, tiny thallus fragments
or faecal pellets adhere to animal or human
vectors and thus get dispersed. Examples are
(a) mites carrying soredia (Stubbs 1995).
(b) lichenivorous termites most likely carry
fragments of lichens to their nest where a
species-rich lichen community develops
(Aptroot and Cáceres 2014; Barbosa-Silva
et al. 2019a). (c) Woodpeckers are neither
lichenivorous nor do they collect lichens for
camouflage or nest building, but were found to
carry vegetative propagules of lichens on their
feet, chest and tail feathers in samples in a
Finnish Natural History Museum (Johansson
et al. 2021). (d) humans carry propagules or
fragments of lichens on their clothes, as first
described in cases of woodcutters disease, an
allergic reaction to usnic acid containing
lichens, in housewives in contact with their
husbands clothes (Mitchell and Champion
1965; Aalto-Korte et al. 2005). The load of
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plant seeds, moss and lichen propagules on
clothes of visitors of the Antarctic was thor-
oughly investigated, largest amounts having
been found on socks of field working scientists
(Huiskes et al. 2014). However, most of these
lichen propagules on human clothes likely end
up in the washing machine rather than invad-
ing Antarctic ecosystems.

Long-distance anthropogenic dispersal of epi-
phytic lichens on economic or ornamental plants
is probably quite common (Bailey 1976). An
example is Xanthoria parietina, which was not
native to Australia, but is now growing around
wineries in the Barossa Valley and elsewhere. In
comparative RAPD-analyses of sterile cultured
isolates of the mycobiont, some of the isolates
from Australia and New Zealand clustered with
those from southern France and Spain (Honegger
et al. 2004a, b). It could be that X. parietina was
brought to these areas with plants or cuttings of
grape wine (Vitis vinifera). Similarly, Brodo et al.
(2021) concluded that X. parietina was anthropo-
genically transported from coastal to inland areas
in Canada, presumably with trees from nurseries.

6.8 Lichenomimesis

6.8.1 Lichenomimesis in Animals

Large numbers of invertebrates mimick lichens
and are thus not easily detected by potential
predators (Figs. 6.14a–e). The earliest report of
lichenomimesis in insects is a moth lacewing,
Lichenipolystoechotes angustimaculatus
(Neuroptera, Ithonidae), co-occurring with the
mesozoic Daohugouthallus ciliiferus, which
beautifully mimicked the pattern of the lichen on
its wings (Fang et al. 2020). Extant examples are
(1) lichen moths (Arctiinae, Lepidoptera) in their
caterpillar (e.g. Catocala ilia; Fig. 6.14c) and/or
adult stage such as Cleorodes lichenaria, the
Brussels lace moth, whose lichenivorous caterpil-
lar and moth stage mimick epiphytic lichens;
(2) various species of bush crickets
(Tettigoniidae, also termed katydids, in the
genera Lichenomorphus, Lichenodracula,

Markia, etc.; Braun 2011; Cadena-Castañeda
2011, 2013; Fig. 6.14a); one of them, Anapolisia
maculata, even mimics foliicolous lichens in a
tropical rainforest (Fig. 6.14b; Lücking and
Cáceres 2002). (3) stick insects (Phasmatidae,
syn. Phasmidae, such as Extatosoma tiaratum),
or (4) spiders such as the North American Giant
Lichen Orb Weaver (Araneus bicentenarius;
Fig. 6.14d).

Among vertebrates, many frogs mimic lichens,
such as the N-American Dryophytes versicolor
(syn. Hyla versicolor), the Brazilian
Bokermannohyla pseudopseudis (Leite et al.
2012) or the Australian tree frog Litoria
genimaculata (Vanderduys 2012); the
colouration may vary depending on the habitat.
Foliicolous lichen communities are mimicked by
tree frogs in Tanzanian (Leptopelis ulugurensis;
Farkas and Pocs 1989) and S-American
rainforests (Boana rufitela, syn. Hyla rufitela;
Lücking and Cáceres 2002). Lichenomimesis
occurs also in reptiles such as Rhampholeon
spinosus (Chamaeleonidae) or Uroplatus sikorae
and other Uroplatus spp. (Gekkonidae).

6.8.2 Lichenomimesis in Members
of the Araceae (Flowering
Plants)

A unique type of lichenomimesis occurs in
petioles (leaf stalks) of some members of the
Arum family (Araceae, monocotyledonous
flowering plants). Representatives of several
genera have spots on their petioles which resem-
ble lichens (Fig. 6.15a–f); particularly interesting
are Amorphophallus spp. (Barthlott 1995;
Hejnowicz and Barthlott 2005; Claudel et al.
2019), among others A. gigas, the Giant Arum,
which forms the largest inflorescence in the plant
kingdom. One giant leaf per growing season
grows out of the large tuber of these Araceae; it
is fleshy and thus the vulnerable petiole resembles
the stem of a lichen-covered tree, various types of
crustose lichens being mimicked (Figs. 6.15a–f).
This optical signal is obviously perceived by
potential herbivores which assume these leaf
stalks to be inedible wooden stems.
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Fig. 6.14 Lichenomimesis in insects (a–c) and spiders (d).
(a–b) Katydids (Tettigoniidae, bush crickets). (a) Nymphs
of Lichenodraculus matti on beard lichen (Usnea sp.);
courtesy of David Weiller. (b) Anapolisia maculata mim-
icking foliicolous lichens in a tropical rainforest in Costa

Rica; courtesy of Andrea Bernecker, in Lücking and
Cáceres (2002). (c) Caterpillar of the Ilia Underwing Moth
(Catocala ilia); courtesy of Erik Adams. (d) Giant Lichen
Orb Spider (Araneus bicentenarius); courtesy of Jim
Petranka and Becky Elkin

Fig. 6.15 Lichenomimesis in petioles (leaf stalks) of
Araceae with characteristic patterns mimicking crustose
lichens. (a) the bud of Amorphophallus gigas is protected
by three ephemeral bracts. (b) Detail of a mature petiole of
A. gigas. (c) A. dactylifer, mimicking representatives of

the genus Graphis. (d) A. decus-silvae, mimicking
Pertusaria spp. (e) A. pseudoharmandii (syn.
Pseudodracontium harmandii). (f) Typhonium venosum.
Images taken in the Botanical Garden of the University of
Zürich



Lichenomimesis is also seen in other Araceae
such as Typhonium venosum (voodoo lily;
Fig. 6.15f). The inflorescences of these Araceae
emit a remarkable scent, reminiscent of decaying
meat, partly intermixed with dung
(e.g. horsedung in T. venosum), which attracts
copro-necrophagous insects, some of them acting
as pollinators (Claudel 2021). These plants of the
Arum family successfully mimic elements of the
fungal (i.e. lichens) and of the animal kingdoms.
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6.9 Conclusions and Outlook

Molecular genetics have revolutionized our view
on the biodiversity of LFF, their photobionts and
their microbial associates. These investigations
will continue at a global scale.

Lots of fossils, lichens and lichen-like
organisms, from the Palaeozoic to the Cenozoic
await thorough investigation.

The search for bioactive compounds, as pro-
duced by lichen-forming and endolichenic fungi
and their bacterial associates will be intensified,
several promising components having already
been found. Examples are (1) usnic acid with
antimicrobial, antiproliferative and antiviral
properties (Macedo et al. 2021), as produced by
various representatives of the Parmeliaceae in the
lichenized and axenically cultured state
(Yamamoto et al. 1985; Stocker-Wörgötter et al.
2013; Xu et al. 2022) and by endolichenic Strep-
tomyces cyaneofuscatus (Parrot et al. 2016a);
(2) antiproliferative cyaneodimycin from the
same isolate of S. cyaneofuscatus (Parrot et al.
2016a) or (3) uncialamycin, a potent antibiotic
with antiproliferative activity produced by Strep-
tomyces uncialis, an endolichenic
actinobacterium in Cladonia uncialis (Nicolaou
et al. 2007, 2021; Parrot et al. 2016b). It will be
interesting to see whether some of these products
with pharmaceutical potential will reach the clini-
cal trial phases. The large-scale production of
mycobiont-derived secondary metabolites, either
by heterologous expression in fast-growing fungi
or by chemical synthesis, will be a challenge.
S. uncialis-derived uncialamycin is chemically
synthesized (Nicolaou et al. 2007).

Many bacterial associates of lichen thalli are in
close contact with mycobiont-derived secondary
metabolites with antibiotic properties, and some
bacterial associates of lichens were shown to syn-
thesize antibiotics (review: Grimm et al. 2021); an
example is Streptomyces cyaneofuscatus, pro-
ducer of usnic acid, which was isolated from the
marine lichen Lichina confinis which does not
synthesize usnic acid (Parrot et al. 2016a). The
biotransformation of usnic acid into a compound
with lower antibiotic activity was observed in
several lichen-associated bacteria (Noël et al.
2021). The question is: are some of the epi- and
endolichenic bacteria resistant to antibiotics?
Bacterial antibiotic resistance emerged in the
pre-antibiotic era; an example is the
co-evolutionary adaptation of methicillin-
resistant Staphylococcus aureus on hedgehogs
whose skin is infected with antibiotic producing
dermatophytes (Larsen et al. 2022).

Lichen-invertebrate and -vertebrate
interactions deserve a closer examination as
regards the dispersal of lichens and their allies.
It would be interesting to see what birds carry on
their feet and feathers in terms of symbiotic
propagules (soredia, isidia, blastidia) or minute
thallus fragments as well as faecal pellets of
lichenivorous invertebrates or the minute
lichenivorous mites proper. Examining the load
of lichen propagules on the feathers and feet of
birds with annual bipolar migration such as South
Polar Skuas (Catharacta maccormicki, syn.
Stercorarius m.) or Arctic Terns (Sterna
paradisaea), which are assumed to be vectors of
lichens with bipolar distribution (review:
Garrido-Benavent and Pérez-Ortega 2017),
would be particularly interesting. But also lichen
dispersal by smaller birds, which are regularly
landing on lichen-covered surfaces, should be
investigated, for example, in collaboration with
ornithologists during their ringing activities
(Bailey and James 1979).

To conclude: there are lots of interesting work
ahead, both in the field and laboratory.
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