
Federated Search Using Query Log
Evidence

João Damas1,2, José Devezas1,2, and Sérgio Nunes1,2(B)

1 INESC TEC, Porto, Portugal
sergio.nunes@fe.up.pt

2 Faculty of Engineering, University of Porto, Porto, Portugal

Abstract. In this work, we targeted the search engine of a sports-related
website that presented an opportunity for search result quality improve-
ment. We reframed the engine as a Federated Search instance, where each
collection represented a searchable entity type within the system, using
Apache Solr for querying each resource and a Python Flask server to
merge results. We extend previous work on individual search term weigh-
ing, making use of past search terms as a relevance indicator for user
selected documents. To incorporate term weights we define four strategies
combining two binary variables: integration with default relevance (lin-
ear scaling or linear combination) and search term frequency (raw value
or log-smoothed). To evaluate our solution, we extracted two query sets
from search logs: one with frequently submitted queries, and another with
ambiguous result access patterns. We used click-through information as a
relevance proxy and tried to mitigate its limitations by evaluating under
distinct IR metrics, including MRR, MAP and NDCG. Moreover, we
also measured Spearman rank correlation coefficients to test similarities
between produced rankings and reference orderings according to user
access patterns. Results show consistency across all metrics in both sets.
Previous search terms were key to obtaining a higher effectiveness, with
runs that used pure search term frequency performing best. Compared
to the baseline, our best strategies were able to maintain quality on fre-
quent queries and improve retrieval effectiveness on ambiguous queries,
with up to ∼six percentage points better performance on most metrics.

Keywords: Information retrieval · Federated search · Domain-specific
search

1 Introduction

This work was developed in the context of a Portuguese sports website focused on
delivering all types of football-related information at national and international
level. Our research focused on improving the current search engine by reframing
the problem as an instance of Federated Search, as well as proposing changes
to the indexing and retrieval processes by incorporating influence from previous
searches in order to help predict future relevance. The underlying assumption
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Marreiros et al. (Eds.): EPIA 2022, LNAI 13566, pp. 794–805, 2022.
https://doi.org/10.1007/978-3-031-16474-3_64

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16474-3_64&domain=pdf
https://doi.org/10.1007/978-3-031-16474-3_64

Federated Search Using Query Log Evidence 795

is that, by incorporating external information, we can positively impact the
retrieval performance.

This document is structured as follows. Section 2 presents a definition of
Federated Search, as well as relevant proposals on new indexing strategies for
similar contexts. Section 3 provides an overview of the available collections, with
Sect. 4 detailing the indexing modifications by the introduction of previous search
terms. Section 5 provides an overview of how the retrieval process and the overall
system work, including our proposed modifications for new relevance formulas.
The solution is evaluated in Sect. 6, with Sect. 7 reflecting on the results and
potential future work.

2 Related Work

Federated search is a classic information retrieval task that involves querying a
set of independent search engines and then centrally merging the results to pro-
vide a single result list to the user [14]. This task involves four phases: Resource
Description, Resource Selection, Results Merging and Results Presentation [4],
with the first and third being the most relevant in our context. The first phase
concerns the indexing process. After resources are selected and their relevant
documents retrieved, in the Results Merging phase there is the need to order
them in a single ranking. Even if they have similarities in the retrieval process,
they are not equal and, therefore, query scores for documents from different
resources cannot be directly compared [1].

We center our survey on previous research focused on new indexing strategies,
particularly those that use past searches to enrich document representations. The
motivation is that people might remember the document not by its content, but
by some description given by another person other than the author.

Fagin et al. [6] present a system that uses three separate indices to index an
intranet’s pages: one for their content, one for the title and related metadata,
and one that combines all anchor text leading to that page. Ding et al. [5] use
a similar approach, but with an index based on previous searches. They reason
that a single source of evidence “is not enough to construct a good website search
engine, especially when the page is new or seldom accessed”. This is an important
point that resembles our work closely: we expect to have a heavy tail of pages that
are less visited and, therefore, would suffer from a lack of data problem if trying
to use solely log data for indexing. In their tests, they compared their proposed
approach with a single index with all the combined content and concluded that
the former performed better. Moreover, the log index proved most effective in
retrieving some top results instead of a full relevant set.

Zhou et al. [17] also use a three-fold index using anchor texts and search log
entries, however, their work differs on index construction, with a sliding window
to capture surrounding text, as well as term propagation between consecutive
pages visited through referrer information. Not all propagated terms have the
same importance, as terms from pages closer to the one being processed assume
higher weights. Their best results also came when linearly combining the separate
indices instead of merging all terms into a single structure.

796 J. Damas et al.

Oakes et al. [12] take an extreme approach and index documents only by
previous search terms. They argue that, in a system with multilingual documents
and searches, this strategy allows to merge all previous searches, regardless of
language, providing users with easier access to documents in a broader set of
languages, as many can be present in the index. Terms are weighted in a TF-
IDF like approach. In our case, this strategy alone wouldn’t likely work, due to
the heavy-tail limitation presented above.

3 Resource Description

The system incorporated four different collections, corresponding to the same
amount of distinct searchable entity types within the search engine, amongst
the most frequently searched. The first collection stored a sample of 2,000 com-
petitions. Each one had a name stored in a description-like field, as well as,
occasionally, an abbreviation. A separate collection stores teams. Each team in
our collected sample of 5,000 entries had a unique name stored in a dedicated
field. The third collection contains entities of type Manager. Each one of the
3,000 sampled managers had their full name stored. Moreover, there was a key-
words field that stored alternative designations, similar to nicknames, for them.
However, this field was rarely filled, with only 2.4% of sample entries containing
a non-empty value associated. Finally, the last collection holds entities of type
Player, which are grouped together to form teams. Our sample contained 10,000
players, storing their name, past teams and in-field preferred positions.

4 Search Term Payloads

We added one extra field to all collections, searchTerms, that stored these terms,
alongside a search relevance weight for each one. We used the formula provided
by Oakes et al. [12] to calculate search term relevance. However, this relevance
was complementary to the overall document relevance score instead of a replace-
ment. The difference also shows how the goals between both works differed: in
the original proposal, authors aimed at exploring how this technique could aid
in multilingual search, while we intended to facilitate previous search pattern
recognition for future searchers. More specifically, given an entity e, for each
query term t, they defined its search relevance with a TF-IDF like weight as:
Weight(t, e) = TFt,e × log N

Et
where TFt,e is the number of searches for entity

e that use term t, Et is the number of entities whose term t led to a click in it
and N is the total number of documents (here, limited to our samples’ size).

Their weighting scheme, despite being based on a traditional relevance for-
mula, allowed to highlight terms that were often used to reach an entity, were
seldom used to search others, or ideally both. In order to achieve an optimal
weighting scheme, and because term frequency differences between distinct terms
for a given entity were sometimes considerable, we implemented two variants.
The first is as described, while the second utilizes logarithmic term frequency.

Federated Search Using Query Log Evidence 797

To incorporate this into collection documents, we made use of a Lucene
feature that was recently ported to Solr: payloads.1 The idea is to associate some
score to individual terms that, here, represents a relevance confidence weight.

5 Execution Flow

Despite the actual search process responsibility being delegated to Solr, we were
not able to implement a fully federated solution within it. The lack of out-of-the-
box support for a federated architecture led us to introduce a middleware server,
using Python’s Flask2, that interacted with Solr to query collections and then
merge results locally. When a user submitted a query, the server would build the
request object that was then sent through the Solr API to each collection. Upon
receiving all results, score normalization was performed, before sending a final
ordered list back to the client.

5.1 Querying Independent Collections

Given the difference in schemas, requests had to be adjusted according to the
entity that was being queried. We started by constructing the common core of
the request. This included defining the query parser and general options. We
opted to use Solr’s eDismax query parser3 due to its flexibility, namely support-
ing, e.g., field-dependent boosts. In addition, the stopwords parameter was set
to false, so that these terms weren’t removed during the analyzer pipeline. More-
over, despite the existence of a dedicated Payload query parser, that wasn’t what
met our needs: we intended on calculating document relevance by Solr standards
and by term payloads, not one or the other. We used eDismax to calculate tra-
ditional document relevance and made use of the in-built payload function and
the possibility of defining custom, calculated fields for each returned document.
This function takes a payload field and a term and returns the respective weight
or 0 otherwise. Upon receiving a query, the server splits it using a whitespace
delimiter and creates one custom field per term. Each term is assigned a sequen-
tial field (payload 0, payload 1, ...) that searches the searchTerms field common
to all entities.

Given this common core, we added the search fields, along with the respective
boosts, for each entity, so that we could take advantage of the data structure to
value matches on more relevant fields. Furthermore, we replicated these boosts
into a phrase search parameter. This way, not only could we boost documents
that matched terms in a given field, but also on consecutive term occurrences,
much like phrase querying. Boost wise, we valued an entity’s main name most
over all other fields, followed by other stored designations (e.g., nicknames, abbre-
viations), and, finally, other entity-specific fields (e.g., former teams for managers
and players).
1 https://lucidworks.com/post/solr-payloads/.
2 https://flask.palletsprojects.com/en/1.1.x/.
3 https://lucene.apache.org/solr/guide/8 4/the-extended-dismax-query-parser.html.

https://lucidworks.com/post/solr-payloads/
https://flask.palletsprojects.com/en/1.1.x/
https://lucene.apache.org/solr/guide/8_4/the-extended-dismax-query-parser.html

798 J. Damas et al.

5.2 Incorporating Payload Scores

Having queried a collection, the resulting documents all have a score field, with
the estimated Solr relevance formula result, as well as payload * fields, one for
each query term issued. To merge these scores, we use a set of strategies based
both on linear scaling and linear combination of factors and terms, respectively.
To this end, given a document relevance score RelS and payload scores PL0..n for
that document, we defined and experimented with 4 strategies. In the first strat-
egy, Prod, the document’s final score linearly scaled with the matching payload
scores, that is: ScoreProd = RelS × ∏n

i=0 PLi, [PLi �= 0].
On the other hand, the Sum strategy performed a linear combination between

the relevance score and the sum of the matching payload scores: ScoreSum = α×
RelS+(1−α)×∑n

i=0 PLi, α ∈ [0, 1] where the α parameter could attribute more
or less importance to term payloads and defaulted to 0.5. The last two strategies
follow from the first ones, but with log-smoothing. The ProdLog strategy is
similar to Prod, but the sequence product of the payloads was log-smoothed.
Finally, the SumLog incorporation strategy was derived from Sum, similarly to
Prod and ProdLog, i.e., the summation component is log-smoothed.

5.3 Results Merging

The last step in the retrieval process was the merging of results from all four
collections in order to produce one ordered list. To merge documents, we had
to normalize their scores, so that they could be comparable between different
collections. One of the most well-known algorithms for this task is CORI [3]. For
a given document D retrieved from collection C, CORI defines its normalized
score as FinalScore = SD ∗ 1+0.4∗SC

1.4 , where SD is the original document score
(after term payload incorporation) and SC is the collection’s score, while the
normalization constants are a product of experimentation.

An important component in score normalization is the document’s origin col-
lection’s score. This value should reflect the retrieved documents’ overall impor-
tance for the final ordered list, thus its value could be the difference between a
document placing in the top 10 or much further down. We followed the work of
Hawking et al. [10], who, inspired by Rasolofo et al. [13], used a LMS strategy
to calculate a collection’s score. LMS, short for “using result Length to calcu-
late Merging Score” [13], requires no collection metadata or samples, ranking
collections based on the result set size for a given query. More specifically, a
collection’s LMS score is defined as: LMSC = log

(
1 + |RC |×K∑n

i=1 |Ri|
)

where |Ri| is
the size of the result set returned by collection i for the query, n is the number
of collections to merge, and K is a scaling constant. In the original proposal, the
authors set a value of K = 600, which we adopted.

6 Evaluation

To evaluate our solution, we used a collection of real queries and evaluated the
performance under several standard metrics. In order to annotate test queries
with the correct answers, we used click information as a relevance proxy. The

Federated Search Using Query Log Evidence 799

work of Joachims et al. [8] exposes the potential dangers of using click-through
information to this end. To mitigate these problems, a diverse set of metrics was
adopted. In order to validate the results, behavior across metrics should remain
reasonably consistent. Finally, when possible, work that supports the use of click-
through data as an acceptable replacement for manual relevance judgement was
cited.

6.1 Datasets

We used two distinct sets of queries to analyze the engine’s behavior under differ-
ent circumstances and scenarios. Queries were mostly short, with a large major-
ity spanning no longer than 2 terms. The first set of queries contained popular
queries in terms of frequency. To build it, we collected the 200 most frequently
submitted queries and all the entities clicked as a result of that search, keep-
ing only the most clicked one, alongside the number of clicks it received. Liu et
al. [11] concluded that, for navigational queries, it was possible to automatically
annotate queries with the most clicked result as the correct answer, obtaining
over 96% accuracy on the annotation process when compared to manual judge-
ments. In our context, queries were expected to be predominantly navigational,
as users mostly sought a specific entity when searching. On average, the top
clicked result in each of the 200 queries had an average click share of 85%. More-
over, in nearly 120 queries the top clicked result had over 90% of all clicks for
that query. Such skewness towards one result was also a good indicator that
helped validate the automation of the annotation process.

The second set of queries consisted of interrogations that produced high
variability in clicked results, i.e., different entities were considered the correct
answer depending on the search session, and none of them had a noticeable click
share majority. In this case, we filtered queries based on individual entity click
entropy, using the formula presented by Kulkarni et al. [9]. The building process
followed a similar flow to the frequent queries set. We started by collecting the
200 queries with the highest entropy value. However, this time, we considered
all results clicked as potential answers. In this case, the top clicked results had
an average click share of 36.9%. Thus, due to the ambiguous nature of these
queries, we considered multiple possible answers per query. Accordingly, these
query sets will be referred to as Frequent Query Set (FQS) and Entropy Query
Set (EQS).

6.2 Evaluation Metrics

To evaluate the robustness of the system, both query sets were tested against
different metrics. As we had no access to a test collection with full relevance
judgements for all documents, we avoided measures that directly dealt with
recall. More specifically, we used Mean Reciprocal Rank (MRR) [16], includ-
ing a click-weighted variant proposed by Walter Underwood [15], Mean Average
Precision (MAP) [2], Success (at N), a percentage of queries with at least one
correct answer in the top N results, as proposed by Zhu et al. [18] (with values
N = {1, 5}). Moreover, for the Entropy Query Set, we also used Normalized

800 J. Damas et al.

Discounted Cumulative Gain (nDCG) [7], as well as Spearman’s rank corre-
lation coefficient, which assesses if the relationship between two variables from
dependent samples (here, ranking positions) can be characterized as a monotonic
function, i.e., both variables grow in the same direction. Statistical hypothesis
testing was performed to assess if coefficient values varied significantly between
different strategies in our solution and if there were improvements over the base-
line.

6.3 Results and Discussion

We now present the obtained results, partitioned by query set. All metrics were
applied with a cutoff at ranking 10. In the following subsections, we consider each
independent combination of search term payload score calculation and incorpora-
tion as an independent search engine. The engine resulting from the combination
of Pure TF (in payload calculation) and the product operator (in payload incor-
poration) is referred to as PProd. CurrSol represents the baseline that is the
current solution in the product engine. Finally, NoPayload refers to a local base-
line for our solution, where there was no search term payload in use, i.e., plain
federated Solr. Regarding Sum and Sumlog strategy variants, we experimented,
a priori, with α values in the range [0, 1], with a step of 0.1, in order to assess the
best linear combination weights. Optimality was achieved when α = 0.3, that is,
the document’s score was made mostly from search term payloads (70%). As we
approached both extremes of the tested range, performance tended to get worse,
as expected.

Frequent Query Set. Results for the Frequent Query Set are shown in Table 1.
For each metric we highlight the strategies that had the highest value. An imme-
diate observation is that the performance of the plain Solr baseline (NoPayload)
ranks worst in every metric. More specifically, in around 47% of the queries,
the engine was able to return the correct result in the first position, and only
in a little over two-thirds placed it in the top 5. This was further corroborated
by the lower values of weighted and unweighted MRR, reflecting the typically
lower ranking positions where correct results were found. Note that, by consid-
ering only one correct answer per query, unweighted MRR and MAP values were
equal, therefore we show only one designation, in this case the former.

Regarding the different combinations of our solution, it appeared that using
Sumlog for search term payload incorporation, regardless of the TF type used
for its calculation, lead to worse results. In fact, when using TF Log, results
were almost comparable to not using payloads at all. This was likely a sign
that both the Sumlog incorporation strategy and logarithmic TF calculation
flattened payload values beyond significance. The latter’s effect could be seen
on the other variants as well: when compared to their Pure TF counterpart, no
variant performed better on any metric. In the remaining three strategies (PProd,
PSum and PProdlog), performances were more similar and close to the CurrSol
baseline. As for the other two, they were almost indistinguishable performance-
wise. When compared to the CurrSol baseline, results were also very similar, with
a small advantage for the baseline in the Success@5 metric. Indeed, frequently

Federated Search Using Query Log Evidence 801

searched entities already produced good results, as was shown by these results.
Therefore, the main conclusion was that some of the combinations of our solution
were capable of replicating the good results already provided by the baseline for
these situations.

Table 1. Evaluation results for the Frequent Query Set.

Strategy MRR@10 wMRR@10 Success@1 Success@5

CurrSol 0.84535 0.99580 0.83696 0.87370

NoPayload 0.56864 0.66987 0.47283 0.68478

PProd 0.84375 0.99508 0.83696 0.85326

PSum 0.84013 0.99476 0.83152 0.85326

PProdlog 0.82201 0.97689 0.79348 0.85326

PSumlog 0.66498 0.78311 0.56522 0.78804

LProd 0.80471 0.95340 0.76630 0.85326

LSum 0.68554 0.83061 0.59239 0.80435

LProdlog 0.76771 0.91409 0.70109 0.84783

LSumlog 0.60714 0.70529 0.51630 0.73370

Finally, we focused on one metric and looked at its individual values for all
queries across one of the top combinations, PProd, and the CurrSol baseline.
We chose Average Precision (AP) as the metric to observe, not only due to its
robustness, but also since it considered multiple answers per query, an important
factor so that we could more confidently perform the same analysis later on the
Entropy Query Set. Figure 1a shows the obtained values. As expected, values
were very close, reflecting what was obtained in their averages. Despite being
able to keep a better performance for a short while, the current production
engine then had a slower rate of descent for the lowest scoring queries.

Entropy Query Set. Evaluation results for this query set are presented in
Table 2. Furthermore, note that, while the NDCG column label reads NDCG@10,
the values presented are the arithmetic average for all queries, and not individual

Fig. 1. AP values per query in descendent order for each query set.

802 J. Damas et al.

values. Once again, the local baseline of not having search payload incorporation
achieves the worst performance of any combination, a repeated behavior. MAP,
which was equivalent to MRR in the Frequent Query Set, also follows a similar
pattern, though with even lower values. Finally, the newly introduced metric,
NDCG@10, also suggests that there wasn’t much gain as we moved in the ranking
when compared to other strategies. Being a pattern present in both query sets,
this confirms that payloads are key for improving retrieval performance.

Sumlog strategy variants are, once again, the ones with the lowest perfor-
mance, demonstrating the low expressiveness of payloads in that scenario. How-
ever, contrary to the Frequent Query Set, there were more strategies that suggest
an improvement over the CurrSol baseline. More specifically, both PProd and
LProd surpass other strategies in all metrics (e.g., they are the only ones with a
MAP value over 0.8). Moreover, they also present the highest discounted cumu-
lative gain, with NDCG@10 values of around 0.82 each. In terms of correct result
presence in the top 1 and 5 ranking positions, other strategies, such as PSum
and PProdlog, perform nearly as well as the former two. In fact, their difference
in other metrics is usually small (around 3% points maximum in MAP).

Table 2. Evaluation results for the Entropy Query Set.

Strategy MRR@10 wMRR@10 MAP@10 Success@1 Success@5 NDCG@10

CurrSol 0.7682 0.9540 0.7492 0.7324 0.8388 0.7451

NoPayload 0.5082 0.7187 0.4822 0.3966 0.6760 0.5198

PProd 0.8304 0.9955 0.8011 0.7989 0.8659 0.8201

PSum 0.8216 0.9953 0.7797 0.7933 0.8547 0.8035

PProdlog 0.8233 0.9927 0.7880 0.7933 0.8603 0.8038

PSumlog 0.6974 0.9133 0.6617 0.5978 0.8436 0.6979

LProd 0.8317 0.9932 0.8102 0.7989 0.8715 0.8161

LSum 0.7832 0.9683 0.7472 0.7263 0.8547 0.7648

LProdlog 0.8042 0.9865 0.7760 0.7654 0.8547 0.7825

LSumlog 0.6057 0.7458 0.5803 0.4916 0.7709 0.6043

The last metric we used, the Spearman ranking correlation coefficient, was
used to assess which, if any, of our combinations produced rankings that were,
on average, closer to the results users tend to click on. Therefore, we performed
hypothesis tests by comparing each combination from our solution with the
CurrSol baseline and verifying if we could confidently state that correlation val-
ues tend to be higher. We started by assessing the coefficient data’s normality
using the Shapiro-Wilk normality test. The null hypothesis H0 states that the
data follows a normal distribution, and can be rejected if the p-value falls under
the chosen alpha, which we adopted to a standard 0.05. After running on all coef-
ficient datasets (from our solution and the CurrSol baseline), the p-value was
always much lower than the threshold set, therefore the normality assumption
failed every time. Thus, we discarded parametric tests that relied on the normal-
ity assumption. Our choice was then the non-parametric Wilcoxon signed-rank

Federated Search Using Query Log Evidence 803

test. This test is a reliable alternative when there is no support for data normal-
ity and can be used to assess if there are significant changes in the distribution
of two variables, and if these changes are one or two-sided. Given two variables
X and Y, the null hypothesis is H0 : X ≤ Y . Our interest was then in check-
ing which combinations were able to reject the null hypothesis. Once again, we
considered a threshold of p = 0.05. Table 3 shows the obtained results. Results
below the defined threshold are marked with an asterisk (*). Values lower than
0.001 are highlighted with a double asterisk (**).

Table 3. Wilcoxon signed-rank test p-values for Spearman correlation coefficients.

Strategy p-value

NoPayload 0.922

PProd 1.352e−12**

PSum 1.521e−6**

PProdlog 4.444e−9**

PSumlog 0.036*

LProd 1.311e−7**

LSum 0.007*

LProdlog 3.685e−6**

LSumlog 0.517

Results show that, for both NoPayload and LSumlog strategies, we can’t
state that the correlation coefficients are higher than the baseline. Moreover, the
PSumlog strategy, despite being able to reject the null hypothesis, results in a
much higher value (0.036), attributing less confidence to this strategy as well.
Otherwise, all strategies’ results allow us to say that they produce rankings with
higher correlation to typical user result access patterns. Finally, Fig. 1b shows the
individual AP values for this query set. Differences are more noticeable in this
scenario, also reflecting the enhancement visible when evaluating this query set.
There is a sudden break for our strategy towards the worst performing queries.
This is likely due to the correct answer inclusion strategy: we consider all queries
that had at least one answer present in the samples, no matter how often it was
clicked. For queries that closely resemble this edge case, it was not possible for
our solution to place them in the top 10 answers. Overall, our solution appears
to produce much better results according to user access patterns.

7 Conclusions

In this work, we took an existing sports search engine and proposed reframing
it as a Federated Search instance, where each collection corresponds to a search-
able entity type. We also indexed previous search terms for a given document, a
strategy that was shown to have high discriminative power. Each term’s weight

804 J. Damas et al.

is derived from a TF-IDF adaption, reflecting how often it was used to reach
that and other documents. To incorporate payload values, we defined four strate-
gies as a product of two binary variables: score update (linear scaling or linear
combination) and previous search term frequency (raw value or log-smoothed).
Finally, for merging and normalization, we made use of previous work on CORI
variations that used returned result set size as a main signal for collection quality.

Our evaluation process consisted of comparing results from different combi-
nations of our proposed solution and the current production engine. For this,
we extracted two query sets from the search logs, one with the most frequents
queries and one with the most ambiguous ones (entropy set). To annotate queries
with the correct answer, we had to resort to using clicks as a relevance proxy.
For the frequent query set, there was one correct answer, the most clicked entity,
since they always had a high click share, averaging 85%. As for the entropy query
set, a majority was seldom found, hence all entities clicked were considered in a
way to reflect graded relevance. In order to mitigate limitations of this approach,
we used several distinct IR metrics, including MAP, MRR and NDCG. Results
for frequent queries show that we were able to match the current system qual-
ity, and, additionally, increase retrieval effectiveness up to six percentage points
on most collected metrics for ambiguous queries. Raw search term frequency
achieves better results than its counterpart, with both linear scaling and com-
bination providing the best results alongside it, with a slight advantage for the
former. In fact, stability was observed across metrics for different strategies, rein-
forcing confidence on the reliability of the evaluation methodology. This shows
how a single, uniform and integrated system was able to provide quality answers
for a diverse set of information needs and queries. Moreover, it demonstrates how
past searches can be a positive influence in relevance determination for document
ordering for future searchers.

As future work, it would be interesting to experiment with other types of
incorporation strategies beyond what was tested here. This could lead to a more
systematic analysis in order to assess possible patterns concerning optimal strat-
egy types. Another possible continuation includes replicating the behavior of the
current system by favoring terms used more recently, so as to avoid wrongful bias
of possible search term spikes. Regarding evaluation, quality measurement under
real system usage would further aid in testing the solution’s quality.

Acknowledgements. This paper would have not been possible without the collabo-
ration of the zerozero.pt team, who kindly provided us continuously refined search logs
that were the foundation of the work developed. This work is financed by National
Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a
Tecnologia, within project LA/P/0063/2020.

References

1. Arguello, J.: Federated search for heterogeneous environments. Ph.D. thesis,
Carnegie Mellon University (2011)

2. Buckley, C., Voorhees, E.M.: Evaluating evaluation measure stability. SIGIR
Forum 51(2), 235–242 (2017)

Federated Search Using Query Log Evidence 805

3. Callan, J.P., Lu, Z., Croft, W.B.: Searching distributed collections with inference
networks. In: Proceedings of the 18th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, SIGIR 1995, New
York, NY, USA, pp. 21–28. ACM (1995)

4. Callan, J.: Distributed information retrieval. In: Advances in Information Retrieval,
pp. 127–150. Kluwer Academic Publishers, Boston (2005)

5. Ding, C., Zhou, J.: Log-based indexing to improve website search. In: Proceedings
of the 2007 ACM Symposium on Applied Computing - SAC 2007, New York, NY,
USA, p. 829. ACM Press (2007)

6. Fagin, R., et al.: Searching the workplace web. In: Proceedings of the Twelfth
International Conference on World Wide Web - WWW 2003, New York, NY, USA,
p. 366. ACM Press (2003)

7. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques.
ACM Trans. Inf. Syst. 20(4), 422–446 (2002)

8. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings
of the Eighth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining - KDD 2002, New York, NY, USA, p. 133. ACM Press (2002)

9. Kulkarni, A., Teevan, J., Svore, K.M., Dumais, S.T.: Understanding temporal
query dynamics. In: Proceedings of the Fourth ACM International Conference on
Web Search and Data Mining, WSDM 2011, New York, NY, USA, pp. 167–176.
ACM (2011). https://doi.org/10.1145/1935826.1935862

10. Li, P.V., Thomas, P., Hawking, D.: Merging algorithms for enterprise search. In:
Proceedings of the 18th Australasian Document Computing Symposium, ADCS
2013, New York, NY, USA, pp. 42–49. ACM (2013)

11. Liu, Y., Fu, Y., Zhang, M., Ma, S., Ru, L.: Automatic search engine performance
evaluation with click-through data analysis. In: Proceedings of the 16th Interna-
tional Conference on World Wide Web, WWW 2007, New York, NY, USA, pp.
1133–1134. ACM (2007)

12. Oakes, M., Xu, Y.: A search engine based on query logs, and search log analysis by
automatic language identification. In: Peters, C., et al. (eds.) CLEF 2009. LNCS,
vol. 6241, pp. 526–533. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15754-7 64

13. Rasolofo, Y., Abbaci, F., Savoy, J.: Approaches to collection selection and results
merging for distributed information retrieval. In: Proceedings of the Tenth Interna-
tional Conference on Information and Knowledge Management, CIKM 2001, New
York, NY, USA, pp. 191–198. ACM (2001)

14. Shokouhi, M., Si, L.: Federated search. Found. Trends R© Inf. Retr. 5(1), 1–102
(2011). http://dx.doi.org/10.1561/1500000010

15. Underwood, W.: Measuring search relevance with MRR (2016). https://observer.
wunderwood.org/2016/09/12/measuring-search-relevance-with-mrr/. Accessed
June 2022

16. Voorhees, E.M., Tice, D.M.: Building a question answering test collection. In: Pro-
ceedings of the 23rd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 2000, New York, NY, USA, pp.
200–207. ACM (2000)

17. Zhou, J., Ding, C., Androutsos, D.: Improving website search using web server
logs. In: Proceedings of the 2006 Conference of the Center for Advanced Studies
on Collaborative Research - CASCON 2006, New York, USA, p. 22. ACM Press
(2006)

18. Zhu, H., Raghavan, S., Vaithyanathan, S., Löser, A.: Navigating the intranet with
high precision. In: Proceedings of the 16th International Conference on World Wide
Web - WWW 2007, New York, NY, USA, p. 491. ACM Press (2007)

https://doi.org/10.1145/1935826.1935862
https://doi.org/10.1007/978-3-642-15754-7_64
https://doi.org/10.1007/978-3-642-15754-7_64
http://dx.doi.org/10.1561/1500000010
https://observer.wunderwood.org/2016/09/12/measuring-search-relevance-with-mrr/
https://observer.wunderwood.org/2016/09/12/measuring-search-relevance-with-mrr/

	Federated Search Using Query Log Evidence
	1 Introduction
	2 Related Work
	3 Resource Description
	4 Search Term Payloads
	5 Execution Flow
	5.1 Querying Independent Collections
	5.2 Incorporating Payload Scores
	5.3 Results Merging

	6 Evaluation
	6.1 Datasets
	6.2 Evaluation Metrics
	6.3 Results and Discussion

	7 Conclusions
	References

