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Abstract. The diagnosis of stroke, a leading cause of death in the world,
using computed tomography (CT) scans, makes it possible to assess the
severity of the incident and to determine the type and location of the
lesion. The fact that the brain has two hemispheres with a high level of
anatomical similarity, exhibiting significant symmetry, has led to exten-
sive research based on the assumption that a decrease in symmetry is
directly related to the presence of pathologies. This work is focused on the
analysis of the symmetry (or lack of it) of the two brain hemispheres,
and on the use of this information for the classification of computed
tomography brain scans of stroke patients. The objective is to contribute
to a more precise diagnosis of brain lesions caused by ischemic stroke
events. To perform this task, we used a siamese network architecture
that receives a double two-dimensional image of a CT slice (the original
and a mirrored version) and a label that reflects the existence or not of
a visible stroke event. The network then extracts the relevant features
and can be used to classify brain-CT slices taking into account their
perceived symmetry. The best performing network exhibits an average
accuracy and F1-score of 72%, when applied to CT slices of previously
unseen patients, significantly outperforming two state-of-the-art convolu-
tional network architectures, which were used as baselines. When applied
to slices chosen randomly, that may or may not be from the same patient,
the network exhibits an accuracy of 97%, but this performance is due in
part to overfitting, as the system is able to learn specific features of each
patient brain.

Keywords: Ischemic stroke · Computed tomography · Symmetry
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1 Introduction

According to the World Stroke Organization, stroke is the second leading cause
of death and disability in the world, with about 13 million cases annually [9].
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In this work only ischemic strokes were considered, since they represent a large
fraction of all stroke events. Ischemic stroke occurs when a vessel supplying blood
to the brain is obstructed, leading to damage or death of brain cells. It is usually
caused by blood clots in a brain vessel or by narrowing of the blood vessels that
irrigate the brain due to a process of atherosclerosis [15].

The diagnosis is made based on the evaluation of the symptoms and images
resulting from Magnetic Resonance Imaging (MRI) or Computed Tomography
(CT - used in this paper) exams. CT is most often chosen due to its widespread
availability and short imaging time, but the resulting images are harder to inter-
pret by automated means. The exams should be performed immediately upon
admission, in order to identify and evaluate as rapidly as possible the existing
lesions. The time elapsed since the onset of the stroke is crucial for the treatment
and recovery of the patient. Recovery depends on the severity of the stroke, and
the faster the diagnosis and treatment, the greater the chance of recovering the
penumbra, which is the area around the ischemic region that can be recovered
[15]. CT scans, obtained shortly after the incident, can detect the presence of
ischemic or hemorrhagic lesions as well as the location and extent of the lesion,
and exclude situations that can be confused with strokes [16].

There are several types of CT scans that can detect different changes in
brain structures. The first exam most commonly performed is the Non-Contrast
Computed Tomography (NCCT), since it enables the quick identification of the
stroke type (ischemic or hemorrhagic) [14]. Depending on the type, other exams
may follow. In our case, since only patients with ischemic stroke are considered,
the exams that are usually performed later include Computed Tomography Per-
fusion (CTP) and Computed Tomography Angiography (CTA).

A human brain has two roughly symmetrical hemispheres, separated by the
longitudinal fissure, which is a membrane filled with Cerebro-Spinal Fluid (CSF)
[19]. This is usually known as the Mid-Sagittal Plane (MSP), because it is a
virtual plane perpendicular to the brain, which divides it into left and right
halves [19,21]. It is well known that the two hemispheres display both anatomical
and functional asymmetries and this has been a significant topic of research [13].
Several results have shown that the asymmetry of the hemispheres is correlated
with the presence of brain injuries [10,20], tumors [2,23], or mental illness [18].

The results presented in this paper are based on an approach that uses the
level of symmetry between the two brain hemispheres to detect the presence or
absence of stroke. The approach is based on the use of a siamese network, a
particular neural network architecture developed to identify similarities between
images, in this case symmetric ones1.

After introducing the problem, we present some related work and describe
the methodology used in the construction of the dataset, including image prepro-
cessing and data augmentation. We then present and discuss the results obtained
with the different architectures and the conclusions obtained from this work.

1 Code available at: https://github.com/anagilvieira/siamese_network.git.

https://github.com/anagilvieira/siamese_network.git
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2 Related Work

One of the most effective methods for stroke segmentation was developed by
Chen et al. [3], who proposed a framework consisting of two convolutional neural
networks (CNNs) to segment stroke lesions using diffusion-weighted imaging
(DWI), a specific MRI technique. One of the networks was a combination of two
DeconvNets and the other one was a multiscale convolutional label evaluation
network whose purpose is to evaluate the lesions detected by the first network,
removing potential false positives.

Chin et al. [4] proposed a method that was used to assist neurologists in the
diagnosis to improve the chances of recovery. This work developed a CNN for
the early detection of ischemic stroke, which accepted as input CT images of
the brain enriched with MRI data. Skull bone and other structures that might
mislead the model were removed, since these structures exhibited similar pixel
intensities as the ischemic area. The authors reported an accuracy of 93% in the
classification task.

Recently, Herzog and Magoulas [8] proposed a method based on brain asym-
metry to identify early dementia and its diverse stages, such as amnestic early
mild cognitive impairment and Alzheimer’s disease. They analyzed the struc-
tural and functional cerebral changes in both hemispheres using supervised
machine learning algorithms and convolutional neural networks. The dataset
was composed of brain asymmetries features, extracted from MRI scans from
the Alzheimer’s disease neuroimaging initiative database. The proposed pipeline
achieved an accuracy that ranged from 75% to 93% for the mentioned diseases.
Furthermore, this method offers a promising low-cost alternative for the classi-
fication of dementia and could potentially be useful in other brain degenerative
disorders that are accompanied by visible changes in brain symmetry.

Inspired by the characteristics of the siamese network, Barman et al. [1]
proposed a siamese neural network (DeepSymNet) for the detection of ischemic
stroke from CTA images. This method enabled them to detect the changes in
symmetry of vascular and brain tissue texture of the two brain hemispheres in
parallel. The model was tested on a clinical dataset of 217 patients, and an AUC
(Area Under the Curve) greater than 0.89 was obtained.

To perform brain symmetry studies on large neuroimaging archives, reliable
and automatic detection of the mid-sagittal plane (MSP) is required to extract
the brain hemispheres. However, traditional planar estimation techniques fail
when the MSP presents a curvature caused by existing pathology or a natu-
ral phenomenon known as brain torque. As a result, midline estimates can be
inaccurate. To address this matter, Gibicar et al. [6] suggested an unsupervised
midline estimation method that consisted of three main stages: head angle cor-
rection, control point estimation, and midline generation. The technique was
applied on a slice-by-slice basis for more accurate results and is able to provide
accurate delineation of the midline even in the septum pellucidum (exactly in
the middle of the brain), which is a source of failure for traditional approaches.

Our approach differs from these and other related works in that we use only
CT data obtained at the time of hospital admission. This makes the problem
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harder, since the changes in the brain images are more subtle, but also potentially
more relevant in a clinical setting.

3 Dataset and Methods

The data used in this work was collected from ischemic stroke patients at Hospital
de Santa Maria, in Lisbon. The dataset is composed of non-contrast computed
tomography images, in DICOM format. The data was properly anonymized to
preserve participant privacy and to meet all ethical requirements. In order to
use only the most relevant slices of each NCCT, those in which the ischemic
stroke can be detected, the 3D data was converted to 2D slices, each normalized
to a size of 512× 512 pixels. The final dataset used in the tests consists of slices
chosen from different brain regions of different patients. The dataset is balanced
and includes 340 images of each class, where one class corresponds to the absence
of visible effects of stroke (and therefore expected symmetry of the hemispheres)
and the other class corresponds to visible stroke effects (leading to a lack of
symmetry). The images were annotated by one of the authors, Ana Catarina
Fonseca, an expert neurologist.

Given the limited size of the dataset, we applied data augmentation tech-
niques, namely Gaussian blur, to the data. In the experimental procedure, we
used stratified 5-fold cross-validation where, besides making sure that all the
folds contained approximately the same number of images for each class, we also
ensured that all the slices corresponding to one patient were included in a single
fold, in order to avoid overfitting and label information leakage.

3.1 Image Preprocessing

We used image preprocessing techniques to transform raw image data into a
clean image data. This process was one of the most time-consuming since CT
scan images are very complex and present several undesired characteristics.

Windowing. A CT scan consists of a set of points called voxels. The voxels
represent elementary three-dimensional tissue volumes. The ‘color’ of each voxel
is conventionally displayed as a shade of grey, corresponding to the density of
brain tissue at that location and is called the attenuation value, which is given
in Hounsfield Units (HU) [7]. It is a relative quantitative measurement of radio
density used by radiologists in the interpretation of CT images, and is calculated
as

HU =
(μv − μw)

μw
× K, (1)

where μv is the calculated voxel attenuation coefficient, μw is the water attenu-
ation coefficient, and K is an integer constant, standardized as taking the value
1000 [7]. To set the appropriate window for the color range, we define two param-
eters: windows level (WL), also known as windows center, and windows width
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(WW). The windows level is the midpoint of the range of the CT numbers and is
responsible for the image brightness, while the windows width is the range of the
CT numbers that an image contains and is responsible for the image contrast.

All values above the upper level appear as white and all values below the lower
level appear as black [22]. In our case we want to see the details of the brain, so we
need to choose a window that maximizes contrast while not losing information.
If the range is chosen poorly some gradations may poorly visible [22]. We found
that picking a range between 0 and 80 for CTs, i.e., WL = 40 and WW= 80
provided best results, which coincides with the window most commonly selected
for stroke analysis.

Figure 1 shows two sample images from an NCCT (WL:40, WW:80) and
CTA (WL:60, WW:360), respectively, where a lesion caused by ischemic stroke
can be seen near the left ventricle. The lesion is marked by a red circle. As is
clear from the figure, the choice of the correct window enables us to see more
details and, consequently, makes it easier to detect the asymmetry between the
two hemispheres.

Fig. 1. Ischemic stroke lesions after two different windowing techniques were applied.

Head Tilt Correction. A common phenomenon in medical imaging devices
is that they produce distorted brain images under certain circumstances, which
can mislead visual inspection and lead to false clinical interpretation. The main
reasons for this include the lack of a correct immobilization of the patients,
inexperience of the technicians, and deficient calibration [10]. In order to correct
the head tilt it is necessary to find the correct rotation angle, in order to align
the MSP with the y-axis [8,19]. For that, the external contours of the brain
were determined and an ellipse that best matches these contours was computed.
Finally, the angle between the ellipse and the vertical axis was used to align
the image. Figure 2 illustrates the same brain slice with and without head tilt
correction.
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Since the design of the external contours does not always fit the head opti-
mally, there are images where the orientation of the head is not correctly aligned
with the y-axis. This happens because of the slight (white) lines around the brain
that causes interference in determining external contours.

Skull Stripping. Skull stripping is a fairly common process used with CT
imaging because it is possible to focus only on the brain tissue, which is where
the lesions are, and obtain a better segmentation of the different brain areas [4].
In fact, without the skull stripping step, the network attention was commonly
focused on the eye region or on the bones around the brain.

Skull stripping was performed by subtracting from the original image an
image where only the bone was visible, creating a resulting image with only the
brain tissue. Figure 2 illustrates a slice before and after skull stripping.

Fig. 2. Main steps in CT images processing.

3.2 Symmetry Detection

Originally proposed for signature verification, similarity detection has been used
extensively in various computer vision applications [1,5,11,12,17]. Similarity
detection can be used to perform symmetry detection by using as inputs the
original image and a mirrored image. We decided to use the siamese network
(SiameseNet) to process two images, the original and a mirrored one. Unlike
many other CNNs used in image recognition, this network does not assign a
class to images, it only assesses the similarity between them.

The name is due to the fact that it is composed of two exactly equal con-
volutional neural networks that share the same parameters and weights. This
network takes two images as input and calculates the similarity between them.
Figure 3 represents the main stages of our siamese network. The first step is
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Fig. 3. Important stages of siamese network.

the feature extraction, where we used two CNNs (subnetwork 1 and subnetwork
2) to extract the features of each image. The network is trained with a label
that reflects whether the two input images correspond to a visible stroke event
(and are therefore less symmetric) or not. The output of each subnetwork was
subsequently flattened (F1 and F2). The second step is the comparison between
the two feature vectors. The difference of each subnetwork output is computed
and the absolute value is used to generate a new feature vector D. Finally, the
network output is the probability of the two input images being symmetric or
not, reflecting the probability of stroke. The smaller the value of D, the more
likely the images are to be symmetric and, therefore, to not exhibit evidence of
stroke.

3.3 Proposed Architecture

Since the siamese network is made up of two equal networks, the network is
trained, in each iteration, with a set of double images as input, the set size
given by the batch size. One of the networks, subnetwork 1, takes as input the
‘original’ slices, with a resolution of 512× 512, while subnetwork 2 takes as input
the ‘mirrored’ slices, as shown in Fig. 3.

Table 1 shows in detail the characteristics of the different layers in our archi-
tecture. The feature extraction process is composed by 2D convolutional layers,
2D batch normalization layers, max pooling layers and a flatten layer, generat-
ing a feature vector with size 8192. The entire network uses ReLU activations,
except for the prediction layer that uses softmax activation. After feature extrac-
tion and subtraction, two fully connected layers were used, the first generating
a vector of size 1024 and the second generating a vector of size 2, one output
unit for each class.

The model was trained and evaluated using stratified 5-fold cross-validation,
for 200 epochs with a batch size of 32, using the ADAM optimizer with an initial
learning rate of η = 0.00001. Since high weight values increase the chances of
overfitting, L2 regularization with a weight factor λ = 0.0005 was used, applying
a penalty for higher weight values. The model used 11M trainable parameters.
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Table 1. Siamese network architecture.

Operation layer Number of filters Filter size Stride value Padding value Output

Input layer 1× 512× 512

2D convolution 64 5× 5 2 2× 2 64× 256× 256

ReLU 64× 256× 256

Batch normalization 2D 64× 256× 256

Max pooling 64 2× 2 2 0 64× 128× 128

2D convolution 128 5× 5 2 2× 2 128× 64× 64

ReLU 128× 64× 64

Batch normalization 2D 128× 64× 64

Max pooling 128 2× 2 2 0 128× 32× 32

2D convolution 256 3× 3 2 1× 1 256× 16× 16

ReLU 256× 16× 16

Batch normalization 2D 256× 16× 16

Max pooling 256 2× 2 2 0 256× 8× 8

2D convolution 512 3× 3 2 1× 1 512× 4× 4

ReLU 512× 4× 4

Batch normalization 2D 512× 4× 4

Flatten 8192
Fully connected 1024
Fully connected 2

3.4 Loss Function

When working with siamese networks, the most commonly used loss function
is the contrastive loss, which is commonly used to compute a similarity score
by calculating the Euclidean distance between the feature vectors [5]. However,
since this is a classification task, we choose to use the cross entropy loss, given
by L(yi, ŷi) = −(yi log ŷi + (1 − yi) log(1 − ŷi)) where yi and ŷi are the actual
class and the predicted class, respectively.

4 Results

To assess the performance of the siamese network architecture on this dataset,
we performed an empirical comparison with two alternative baseline architec-
tures, the SimResNet-18 and the ResNet-50. All models were trained using a
PowerEdge C41402 server with an NVIDIA 32GB Tesla V100S.

ResNet-50. ResNet is a commonly used deep convolutional neural network
architecture that normally exhibits good performance in image classification
tasks. Other types of CNNs have difficulty optimizing the parameters during
training because of vanishing gradients. ResNet minimizes these problem by
using residual connections in parallel with the convolutional layers. We tested
ResNets with 18 layers, 34 layers and 50 layers (three common variations of
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ResNet) and found that the best performance was obtained using ResNet-50.
With this model, we achieved 62% accuracy, using 23M parameters and 174min
of training time.

SimResNet-18. Initially motivated by the idea of combining ResNet and the
siamese network architecture [17], we also tested an alternative approach where
the ResNet is used only for the feature extraction step. The siamese network
consists of two ResNets for feature extraction, where one of them accepts the
original CT slice and the other accepts the mirrored slice. Since the ResNet
uses a Global Average Pooling (GAP) layer after the last convolution layer,
the resulting output is a feature vector with a size of 512, which is used to
calculate the absolute value of the difference. The remaining components of
the architecture are similar to those described for the SiameseNet. The feature
vectors are subtracted, the absolute value of the difference is computed, and the
images are classified into one of the two existing classes using a fully connected
layer.

In this architecture, we tested different ResNet models, and after analyzing
the number of parameters, the training time, and the results, opted for the 18-
layer model. The hyperparameters used were the same as for the siamese network
and the architecture used 11M parameters. This approach reached 64% accuracy
and required 154min to train.

Experimental Results. Table 2 summarizes the classification performance of
the proposed architecture, SiameseNet, compared with the SimResNet-18 and
ResNet-50 baselines. The results presented in the table show that the siamese
network clearly outperforms the other two models, with an accuracy and F1-
values of 72%. The runtime for training the SiameseNet in the proposed dataset
was 144min. Although the overall accuracy was not very high in absolute terms,
it is the best result known to us for this specific problem, ischemic stroke clas-
sification from CT scans.

Table 2. Model classification performance.

Model Accuracy Precision Recall F1-score

ResNet-50 0.62 ± 0.09 0.71 ± 0.14 0.47 ± 0.27 0.57 ± 0.17
SimResNet-18 0.64 ± 0.04 0.73 ± 0.12 0.48 ± 0.12 0.58 ± 0.07
SiameseNet 0.72 ± 0.13 0.75 ± 0.17 0.69 ± 0.25 0.72 ± 0.14

The low accuracy results obtained with ResNet-50 are most likely due to
the fact that CT images have several features that make model learning diffi-
cult. When ResNet models are added to the Siamese network (SimResNet-18),
we see an improvement in performance, although not very significant. Finally,
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the siamese network architecture exhibits a considerable improvement in perfor-
mance over the two baselines. However, the overall accuracy is still relatively low,
mainly due to the fact that the dataset is small and the task very challenging.

The relatively high variance of the performance measures is essentially due
to two factors. First, since the dataset is small and it cannot be guaranteed that
all patients have the same number of samples, there is relevant variation on the
fold size. In fact there are patients with 45 labeled slices and others with only 3
labeled slices. Imposing the restriction that all slices from the same patient were
in only one of the folds is probably a significant source of performance variation
between different folds.

In other experiments, when stratification was not used to guarantee that all
the slices of one patient were in a single fold, we observed significant information
leakage between the training and test sets, leading to the model not learning the
features relevant to the problem but focusing on features that relate different
slices of the same patient. In this case, when the dataset is split randomly, we
obtained the results shown in Table 3. The results correspond to a very high
accuracy for the SiameseNet (97%) but also for the two baseline networks. How-
ever, these results are not reliable nor reproducible in a clinical environment,
since the network is using features that are not relevant to the problem, such as
the dimension of the slices, or some other features that are only correlated with
specific characteristics of the patient and not of the stroke effects.

Table 3. Model classification performance with random dataset splitting.

Model Accuracy Precision Recall F1-score

ResNet-50 0.89 ± 0.04 0.87 ± 0.08 0.92 ± 0.07 0.89 ± 0.05
SimResNet-18 0.91 ± 0.03 0.89 ± 0.04 0.93 ± 0.040 0.91 ± 0.03
SiameseNet 0.97 ± 0.02 0.96 ± 0.02 0.97 ± 0.03 0.97 ± 0.02

5 Conclusions and Future Work

We proposed to use a siamese network architecture for the detection of ischemic
stroke, based on the fact that detected asymmetry of brain hemispheres is
strongly correlated with evidence of stroke. The architecture obtained 72% accu-
racy and F1-score, on average, on an independent test set. Although the absolute
value of the accuracy remains low and insufficient for clinical use, this architec-
ture may become the starting point for other studies that use the lack of sym-
metry between the brain hemispheres to diagnose pathologies from CT scans.

During the development of the work, we took special care to avoid infor-
mation leakage between the training and test sets, a phenomenon that leads to
overfitting and limits reproducibility in a clinical setting. In some experiments,



Using a Siamese Network to Detect Ischemic Stroke 169

we achieved unexpectedly high performance values, until we realized that the
model was learning from features uncorrelated with the target task.

There are some aspects of the presented work that can be improved. One
of these aspects is image preprocessing. Although the skull stripping process is
mostly successful there are slices where small portions of non-brain tissue are
mistakenly removed. This happens because all the white pixels in the image are
removed when only the white pixels around the brain (bone) should be removed.

Another possible improvement is the removal of the CSF area since the inten-
sity of the pixels is the same as the ischemic zone and can mislead the model.

Finally, the limited size of the dataset is one of the causes for the limited
performance of the model. In total, slices from only 60 patients were used, with
35 patients associated with class 1 and 25 patients assigned to class 0. One
avenue to increase the performance of the model would be to label more data
and select the same number of slices from each patient, avoiding overfitting, data
leakage, and selection bias.
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