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Abstract. A three-dimensional computational model based on finite elements
was developed to evaluate the thermal behaviour of composite slabs with steel
deck exposed to a standard fire. The resulting numerical temperatures are then
used to obtain a new analytical method, which is an alternative to the simplified
method provided by the standard, to accurately determine the temperatures at
the reinforcing bars (rebar). The fitting of the analytical model to the numerical
data was done by solving a linear least squares problem using the singular value
decomposition. The resulting formula fits very well the numerical data, allowing
to make predictions of the temperature in the rebar with an approximation error
equal to zero and an estimating error at least 77% lower than that obtained with
the proposal included in the standard.

Keywords: Transient heat transfer problem · Computational simulation ·
Concrete-steel slab · Fire rating · Least squares method · Singular value
decomposition

1 Introduction

Steel-concrete composite slabs consist of a profiled steel deck which can be used as
permanent formwork, and a reinforced concrete. Usually the concrete is reinforced with
an anti-crack mesh on top and individual reinforcing bars (rebars) within the ribs (see
Fig. 1). The use of composite slabs in buildings is very popular as these building ele-
ments offer some advantages for the structures, such as reducing the dead weight of the
structures while speeding up the construction process.

Composite slabs may suffer considerable damage in the event of a fire, as the steel
elements responsible for the slabs bending resistance capacity are significantly impaired
in the event of a fire. To ensure that this building element is fire-resistant, in accordance
with the regulations and standards, it is, therefore, necessary to carry out a thermal
analysis prior to the static analysis. The fire resistance of this type of element is then
determined by standard fire tests, taking into account load-bearing capacity (R), thermal
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Fig. 1. Composite slab with trapezoidal (left) and re-entrant (right) steel deck.

insulation (I) and integrity (E). In order for a composite slab to demonstrate fire resis-
tance according to the criteria of the European Standard EN13501-2 [7], it must be able
to prevent large deformations or deformation velocities in case of fire, i.e. it must be
load-bearing (R) and also provide thermal insulation that limits the temperature rise on
the unexposed side (I). Finally, the composite slabs must prevent the passage of flames
and hot gases through cracks or holes in order to contain the fire from below (E).

This paper deals with the determination of the thermal behaviour of composite slabs
under a standard ISO -834 fire [11], focusing on the temperature evolution at the rein-
forcing bar (rebar). The rebar and the upper flange, web and lower flange of the steel
deck are the structural components of the composite slab that are mainly affected by the
temperature. An accurate and reliable estimation of the temperatures in these structural
components is required, especially to determine the load-bearing criterion (R), as these
temperatures have a direct influence on the reduction factors for the steel and concrete
strength and thus on the bending resistance of the slabs.

Among the various ways to determine the fire rating of a composite slab, the devel-
opment of standard experimental fire tests is the most expensive and time-consuming.
Alternatively, Annex D of EN 1994-1-2 [6] provides the guidelines for estimating fire
resistance based on the simplified calculation method, but this method is based on stud-
ies conducted long time ago and is currently outdated. The third method is to simulate
computationally the experimental fire tests by means of numerical methods. Computer
simulations are of great importance in this field because they allow a reliable and real-
istic description of the physical phenomena, including the effects of different fire sce-
narios, such as natural fires.

In [1,2], a series of computational simulations of the thermal effects on compos-
ite slabs where developed, with different steel deck geometries in a standard fire. The
full-scale tests were simulated with 3D finite elements using Matlab Partial Differen-
tial Equations Toolbox (PDE Toolbox) [15]. The results were used to formulate a new
proposal that enables to estimate of the temperatures in the slab components (lower
and upper flange, web and rebar), which is an alternative to the EN1994-1-2 standard.
Taking the numerical results as reference values, the proposed analytical method allows
a more accurate estimation of the temperatures for different time values (45, 60, 90
and 120 min). However, since the coefficients of the new proposal are obtained by fit-
ting the numerical data using the Generalised Reduced Gradient (GRG) optimisation
method [13], there is no certainty that the solution is optimal or only quasi-optimal.
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In the present work, new coefficients for the analytical method are proposed. To
obtain the coefficients, the linear least squares method is used rather than an optimisa-
tion method. The resulting problem does not have full rank, so it must be solved using
the singular value decomposition method. This method guarantees that the calculated
solution is the one that minimises the sum of squared deviations.

This paper is structured as follows. In Sect. 2 the thermal problem to be solved is
presented. Section 2.3 is devoted to the simplified method provided by the standard for
the calculation of temperatures in the rebar. The new analytical proposal for estimat-
ing the temperatures at the rebar is proposed in Sect. 3. This section also includes a
brief description of the calculation method used to perform the thermal analysis and
of the different approaches used to obtain the new proposal. The article ends with the
presentation of some final considerations in Sect. 4.

2 Transient Thermal Problem

This section is devoted to the description of the non-linear transient thermal problem
that must be modelled and solved in the multi-domain body corresponding to the com-
posite slab under standard fire conditions. The heat flux acting on the unexposed side
depends on the ambient temperature and the heat flux acting on the fire exposed side
depends on the standard fire defined by the ISO -834 fire curve [11].

2.1 Physical Multidomains

The 3D heat transfer problems are solved for four different composite slabs with differ-
ent geometries shown in Fig. 2. Two composite slabs with trapezoidal geometry, Con-
fraplus 60 and Polydeck 59s, and two slabs with re-entrant geometry, Multideck 50 and
Bondek, were selected (see Fig. 2).

Fig. 2. Geometry and dimensions [mm] of the modelled slabs. (a) Confraplus 60. (b) Polydeck
59S. (c) Multideck 50. (d) Bondek.
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The 3D computational models were developed in accordance with a realistic rep-
resentation of the physical model of the composite slabs. The geometry of the models
takes into account the exact shape of the surfaces from a representative volume of the
slab. The selected cross-section has the side edges bounded by the centre of the upper
flange and includes a rib and part of the anti-crack mesh. The length of the specimens is
200 mm in order to include the representative effect of all the components and the anti-
crack mesh. The multidomain developed consists of four subdomains: the steel deck,
the concrete, the reinforcing bars and the anti-crack. Thus, the materials that make up
the physical sub-domains of the slabs are carbon steel (steel deck, rebar and anti-crack
mesh) and concrete.

Confraplus 60 is a trapezoidal model profile manufactured by ArcelorMittal. The
collaborating steel deck is made of S350 steel and the model uses a thickness of
1.25 mm. The geometric characteristics are shown in the Fig. 2a. The Polydeck 59S
model is the second trapezoidal profile selected. The ArcelorMittal Polydeck 59S
model, shown in Fig. 2b, consists of a steel deck with S450 steel and a thickness of
1 mm. The re-entrant model shown in Fig. 2c is the Multideck 50 manufactured by
Kingspan Structural Products. This product has a steel deck with S450 steel grade and
a thickness of 1 mm. The second type of re-entrant slab studied is Bondek, designed
and manufactured by Lysaght. The slab consists of a steel profile with grade S350 and
the model with a thickness of 1 mm was chosen (see Fig. 2d). These geometries were
chosen based on geometric differences and current use.

The energy equation governs the heat conduction inside the physical domain

ρ (T )Cp (T )
∂T
∂ t

= ∇ · (λ (T )∇T ) , (1)

where T represents the temperature [◦C], ρ(T ) is the specific mass [kg/m3], Cp(T ) is
the specific heat [J/kgK], λ (T ) is the thermal conductivity [W/mK], t is the time [s] and
∇ = (∂x,∂y,∂z) is the gradient. Equation (1), is based on the heat flow balance, for the
infinitesimal material volume, in each spatial direction.

The thermal properties (ρ(T ), Cp(T ) and λ (T )) of the materials that compose the
slabs are determined by the Eurocodes [4–6] (steel and concrete), and are temperature
dependent. Therefore, the specific mass ρ(T ), the specific heat Cp(T ) and the ther-
mal conductivity λ (T ) vary with the temperature, introducing the non-linearity of the
Eq. (1).

Once the heat flux on the surface exposed to fire changes with time, the Eq. (1) is
time-dependent and holds a transient thermal state for the slab. Thus, to determine the
temperature field along time, the solution of the Eq. (1) is required. Furthermore, to
solve the problem correctly, it is necessary to apply the boundary conditions according
to the ISO-834 fire curve in the physical domain [3].

2.2 Boundary Conditions Corresponding to a Standard Fire

To set the boundary conditions, we need to master the different types of heat trans-
fer acting on the slabs, i.e. conduction, convection and radiation. The composite slabs
are subjected to three main boundary conditions, namely the exposed surface, the
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non-exposed surface and the insulated surfaces. They all follow the guidelines of the
Eurocode EN1991-1.2 [6].

Fig. 3. Boundary conditions.

In the exposed side of the slab, the boundary conditions comprise the heat transfer
by convection and radiation and are given by

λ (T )∇T.−→n = αc (T∞ −T )+φεmε f σ
(
T 4

∞ −T 4) (2)

where −→n is the unitary vector normal to the external face, φ is the view factor, αc

is the convection coefficient, εm is the emissivity of the material, ε f is the emissivity
of fire, σ is the Stefan-Boltzmann constant and T∞ is the gas temperature of the fire
compartment. Equation (2) represents the heat flux that arrives to the steel deck by radi-
ation and convection based on the gas bulk temperature. The convection coefficient is
αc = 25 W/m2K, the emissivity of steel is εm = 0.7 and the fire emissivity is ε f = 1.
The boundary conditions parameters are represented in Fig. 3.

The view factor (φ ) is a term that quantifies the geometric relation between the
surface emitting radiation and the receiving surface. This parameter has no dimensions
and depends on the rib surface’s orientations and the distance between the radiative
surfaces. The Crossed-Strings method, proposed by Hotell H. C. in 1950 [8], is used to
determine the view factor.

Equation (2) includes the gas temperature, T∞, of the fire compartment, which fol-
lows the standard fire curve ISO-834 (T∞ = TISO) given by

TISO = 20+345log10 (8t+1) , (3)

where TISO is given in [◦C] and t in [min] [11].
The top part of the composite slab (unexposed side) is also an important side to

determine the temperature evolution. After all, it will determine the heat transfer from
the slab to the above compartment. Following the standard EN1991-1-2 recommenda-
tions, the heat effect on the unexposed side may be defined by the heat flux by convec-
tion, using αc = 9 W/m2K, to include the radiation effect [5]. The boundary condition
in the upper surface of the slab is given by Eq. (4),

λ (T )∇T.−→n = αc (T −T∞) (4)
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where T∞ is the room temperature. The adiabatic boundary conditions, given by Eq. (5),
are applied to the other four surfaces of the slab (front, back, left and right):

λ (T )∇T.−→n = 0. (5)

2.3 Analytical Method Provided by the Standard Eurocode

The simplified calculation method for the load-bearing criterion (R) presented in
Eurocode EN1994 1.2 [6] can be applied to simply supported composite slabs when
subjected to a ISO -834 standard fire [11]. In order to calculate the bending moment
resistance of the composite slab (sagging moment), the standard provides the following
analytical method for estimating the temperatures at the rebar (θr):

θr = c0 + c1
u3

h2
+ c2z+ c3

A
Lr

+ c4α + c5
1
l3

(6)

where the temperature θr are given in [◦C]. The parameter l3 is the distance within
the ribs, u3 represents the distance from the middle of the ribar to the lower flange in
[mm], h2 is the height of the rib in [mm], the z-factor represents the position of the rebar
concerning the slab rib given by

1
z
=

1
√

1
u1

+
1

√
1
u2

+
1

√
1
u3

(7)

in [mm−0.5], α corresponds to the angle formed between the web component of the
steel deck and the horizontal direction in degrees [◦], A/Lr is the ratio between the
concrete volume and exposed area per meter of rib length of the steel deck, it is given
in [mm], and its calculation is performed through

A
Lr

=
h2

(
l1+l2

2

)

l2 +2

√

h2
2 +

(
l1−l2

2

)2
. (8)

The coefficients ci in Eq. (6) are given by EN1994 1.2 [6], which depends on the time
of fire resistance (fire rating) that must be achieved (60 min, 90 min or 120 min).

3 Improving the Analytical Method with Numerical Results

To improve the simplified method proposed by the standard, the thermal problem was
solved computationally for different values of the concrete thickness (h1). The values
of the numerical temperatures obtained were used to define an alternative analytical
method to the simplified method.
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3.1 Computational Solution by Finite Elements Method

The Eq. (1) is discretised by finite elements within the physical subdomains correspond-
ing to the different materials. Figure 4a shows the geometry of a representative volume
of a composite slab Multideck, and Fig. 4b shows the corresponding mesh, both gener-
ated by Matlab PDE Toolbox.

Fig. 4. Representative volumes of the Multideck 50 modelled in Matlab. (a) Geometry. (b) Finite-
elements mesh.

The discretization of Eq. (1) by finite elements method (FEM) leads to the energy
matrix formulae

C(T )Ṫ +K(T )T = F (9)

where Ṫ is the vector of time derivatives of the nodal temperatures,C is the capacitance
matrix, K is the conductivity matrix and F is the vector of the thermal loads that includes
the boundary conditions (for details see, for example, [12]). The solution of the first
order non-linear system of ordinary differential Eqs. (9), considering T (t0) = T 0 and
the respective boundary conditions, enables to determine the temperature at each node
of the mesh, illustrated in Fig. 4b, over the time interval

[
t0, t f

]
.

Matlab (R2021a) PDE toolbox was used to develop and solve the nonlinear transient
thermal analysis. The finite element model of the composite slab uses only the tetrahe-
dron finite element type. This finite element is defined by four nodes and uses linear
interpolation functions. The resulting mesh includes the four sub-domains concrete,
steel deck, rebar and anti-crack mesh, each of which has its own thermal properties.
The solution of Eq. (9) is computed by the built-in function ode15s [18].

The finite element computational model described here has been validated in previ-
ous work (see [1]) with the experimental results published by Lim and Wade [14] and
Piloto et al. [17].

3.2 Improving the New Proposal with an Optimization Method

In [1] a parametric study was developed to determine the influence of concrete thick-
ness h1 on the temperatures used to determine the fire resistance of composite slabs
according to the load-bearing criterion (R). A total of 20 numerical simulations were
performed. The simulations considered h1 values of 60, 70, 90, 110 and 125 mm for the
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two trapezoidal geometries and of 50, 70, 90, 110 and 125 mm for the two re-entrant
geometries. These values are the most frequently used dimensions in building practise.

Based on the results of the parametric study, new coefficients ci where proposed
for the simplified method given by the Eq. (6). In addition, the inclusion of a new term
responsible for the inclusion of the effects of the variation of the thickness h1 of the con-
crete slab was proposed. The thickness h1 was explicitly included in the mathematical
model multiplied by coefficient c6:

θnew = c0 + c1
u3

h2
+ c2 z+ c3

A
Lr

+ c4 α + c5
1
l3
+ c6 h1. (10)

The coefficients for these new proposal methods were determined by fitting the
mathematical model represented by the Eqs. (10) to the numerical results of the para-
metric study with h1 considering the four different composite slab geometries. The coef-
ficients were determined by minimising the sum of the squared deviations between the
numerical and analytical temperatures. This sum was minimised using the Generalised
Reduced Gradient (GRG) optimisation method [13].

Table 1. Coefficients of the new proposal obtained by optimization method (New OP).

Fire rating c0 c1 c2 c3 c4 c5 c6

45 min 99.82 100.20 106.00 –11.83 2.07 –3983.08 –0.06

60 min –880.00 923.77 389.18 –30.70 2.96 –5263.73 –0.12

90 min 117.69 961.63 –526.70 28.09 0.74 –5803.21 –0.35

120 min –151.22 834.65 31.95 –8.06 2.21 –7000.32 –0.60

The resulting coefficients for the estimation of temperatures on the rebar, through
Eqs. (10), are included in Table 1. It is worth mentioning that, in addition to the stan-
dard fire resistance ratings of 60, 90, and 120 min, the new proposal also comprises the
coefficients for the fire rating of 45 min. Analyzing the new coefficients presented in
the Table 1, it turns out that c6 is the smallest of the coefficients, showing that h1 has a
reduced effect on the rebar temperature, compared to the other parameters. However, it
is a non-negligible effect that increases with time of fire resistance ratings. Although,
as the coefficients in Table 1 were obtained by a numerical optimization method, there
is no certainty that the solution is optimal. Consequently, a new approach is proposed
to obtain these coefficients based on the linear least-squares method.

3.3 Improving the New Proposal by the Linear Least Squares Method

For each fire rating, new coefficients c j, j = 0,1,2, . . . ,6, must be provided so that the
values calculated by Eq. (10) are approximately equal to the corresponding numerical
temperatures θi, with i = 1,2, . . . ,20, for the four different types of steel deck geome-
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tries and for the five different values of h1. This results in the need for the approximate
solution of the following overdetermined linear system of equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c0 + c1a1 .2 + c2a1 .3 + c3a1 .4 + c4a1 .5 + c5a1 .6 + c6a1 .7 ≈ θ0

c0 + c1a2 .2 + c2a2 .3 + c3a2 .4 + c4a2 .5 + c5a2 .6 + c6a2 .7 ≈ θ1
...

...
...

...
...

...
...

c0 + c1a20 .2 + c2a20 .3 + c3a20 .4 + c4a20 .5 + c5a20 .6 + c6a20 .7 ≈ θ19

(11)

where ai .2 = u3/h2, ai .3 = z, ai .4 = A/Lr, ai .5 = α , and ai .6 = 1/l3 represents the geo-
metrical parameters of one of the four composite slabs (Confraplus 60, Polydeck 59S,
Multideck 50, or Bondek), and ai .7 = h1 is the corresponding concrete thickness (50,
70, 90, 110 or 125 mm).

The solution of the system (11), in the least squares sense, corresponds to the
solution x = [c0 c1, . . . , c6]

T ∈ IR7, which minimises the sum of the squared difference
between the two sides of the 20 equations, viz,

min
x

20

∑
i=1

(

θi −
6

∑
j=0

ciai j

)2

. (12)

The system (11) can be written in the matrix form as
⎡

⎢
⎢
⎢
⎣

1 a1 .2 a1 .3 a1 .4 a1 .5 a1 .6 a1 .7

1 a2 .2 a2 .3 a2 .4 a2 .5 a2 .6 a2 .7
...

...
...

...
...

...
...

1 a20 .2 a20 .3 a20 .4 a20 .5 a20 .6 a20 .7

⎤

⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎣

c0

c1
...
c6

⎤

⎥
⎥
⎥
⎦

≈

⎡

⎢
⎢
⎢
⎣

θ0

θ1
...

θ20

⎤

⎥
⎥
⎥
⎦

⇔ Ax ≈ b (13)

where A ∈ IR20×7 and b ∈ IR20×1. The condition given by Eq. (12) is equivalent to the
minimization of the squared norm of the residual, ‖r‖ = ‖b−Ax‖, of the system Ax ≈
b, i.e.,

min
x

‖b−Ax‖2 . (14)

This least squares problem could be solved in different ways if A had full column
rank, but A had only rank 5. In all four composite slab models, u3 = h2 is verified so
that the second column of A is equal to the first (ai.2 = 1 for i= 1, . . . ,20). As a result,
the least squares problem has multiple solutions. However, of all the solutions to the
Eq. (14), there is only one that also minimises the norm of x (see for example [10]).
This solution can be obtained by decomposing it into singular values. The singular
value decomposition of A is

A= UDVT . (15)

where U ∈ IR20×20, D ∈ IR7×7 and V ∈ IR7×7. The matrix D is a diagonal matrix with
the singular values of the matrix A. Two of them are zeros because of the rank of the
matrix A. These matrices can be decomposed to separate the singular values that are
not zero:

U= [U1U2] , D=
[
D1 0
0 0

]
, and V=

[
VT

1
VT

2

]
(16)
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where U1 ∈ IR20×5, D1 ∈ IR5×5 and V1 ∈ IR5×5. The matrix D1 includes the non-singular
values of A. The solution of the least squares problem (14) is then given by

x= V1D−1
1 UT

1 b. (17)

The new coefficients obtained by this method are presented in Table 2.

Table 2. Coefficients for the new proposal obtained by least squares method (New LS).

Fire rating c0 c1 c2 c3 c4 c5 c6

45 min 1074.7 1074.7 –2005.1 123.02 –2.3751 –1833.9 –0.056628

60 min 1364.8 1364.8 –2510.3 154.60 –3.2784 –2307.9 –0.12413

90 min 1794.8 1794.8 –3272.5 203.24 –4.6096 –3018.4 –0.35139

120 min 2005.7 2005.7 –3580.4 222.61 –5.2642 –3328.4 –0.60330

3.4 Comparison of the Results

To compare the accuracy of the new coefficients, Table 3 shows the values of error mea-
surements obtained with the new proposal, given by Eq. (10), and with the simplified
method proposed by standard EN1994-1.2 [6] and given by Eq. (6). In the case of the
new proposal, the results were obtained with the new coefficients derived in the previ-
ous section by the least squares method (New LS) and with the coefficients previously
obtained by optimisation (New OP) and presented in the Table 1.

In Table 3, the values obtained by the analytical methods yi for i= 1,2, . . . ,20 given
by the simplified method or by the new proposal are compared with the numerical
results θi for i = 1,2, . . . ,20 (right-hand side of the system (13)). According to the
recommendations of Chai and Draxler [9], the Root Mean-Squared Error (RMSE) is
used as an error measure to compare the results:

RMSE =

√
1

20

20

∑
i=1

(θi − yi)2, (18)

and the Bias, given by

Bias =
1

20

20

∑
i=1

(θi − yi). (19)

To complement the RMSE and Bias metrics, the Standard Deviation of the Error (SDE)
is also considered. The SDE simply corresponds to:

SDE =
√

RMSE2 −Bias2. (20)

From a statical point of view, the Bias is a basic indicator of the systematic error in a
prediction and the SDE is the equivalent indicator of the random error. In the artificial
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Table 3. Errors measures of the different proposals

Fire rating: 45 min 60 min 90 min 120 min

Proposal Bias RMSE SDE Bias RMSE SDE Bias RMSE SDE Bias RMSE SDE

New LS 0 1.163 1.163 0 2.192 2.192 0 6.539 6.539 0 6.538 6.539

New OP –10.62 21.38 18.56 –13.90 28.36 24.72 –15.64 31.69 27.56 –15.64 31.689 27.56

EN1994-1.2 – – – 46.21 54.18 28.28 202.2 204.1 28.29 202.16 204.13 28.29

intelligence (AI) context, the bias represents the approximation error and the SDE the
estimation error [16].

The results obtained in Table 3 show that the temperatures obtained with the new
proposal, with the coefficients obtained by the least squares method (New LS), fit the
numerical results very well. It allows the smallest errors for all fire ratings, including
a zero value for the bias (estimation error). In the context of machine learning (ML),
the reduction to zero of the approximation error shows that the new proposal overfits
the available numerical data [16]. The other errors are very small compared to the oth-
ers proposals. Compared to the formulae provided in the standards, this new proposal
makes it possible to reduce the SDE (approximation error) by 77%, in the case of fire
ratings of 90 and 120 min, and by 92%, in the case of a fire rating of 45 min.

It can also be observed that the temperatures estimated by the simplified method of
Eurocode EN1994-1.2 are usually lower than the numerical temperatures, as the Bias
is always positive. Compared to the standard proposal, the new proposal, with New
OP coefficients, helps to improve the temperature estimation for each fire rating time.
However, they are not as efficient in reducing errors as the coefficients obtained by least
squares (New LS).

4 Conclusion

In this work, a realistic computational model was used to simulate the thermal behaviour
of composite slabs subjected to standard fire conditions. The results of the numerical
simulations make it possible to determine the temperatures for different slab geometries
and compare them with those resulting from the simplified calculation method of the
standard EN1994-1.2.

The numerical values were compared with the simplified analytical method pro-
vided in the standard for estimating temperatures in the reinforcing bar (rebar). The
results show that the simplified method gives temperatures that are very far from the
numerical values, indicating that its formulation needs to be revised.

To improve the analytical calculation proposal, new coefficients are presented,
obtained by fitting the numerical data using a linear least squares method. This method
leads to the resolution of an overdetermined linear system where the coefficient matrix
has an incomplete column rank, resulting in the problem having multiple solutions.
Resolving this system by decomposition into singular values guarantees obtaining a
solution that minimises the squared norm of the residue of the linear system. The results
show that the new coefficients enable to improve the estimation of the temperatures in
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the rebar, allowing to zero the estimation error and to get an approximation error at least
77% lower than that obtained with the formulae included in the standard.
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