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Abstract. Collaboration among multiple data-owning entities (e.g.,
hospitals) can accelerate the training process and yield better machine
learning models due to the availability and diversity of data. However,
privacy concerns make it challenging to exchange data while preserv-
ing confidentiality. Federated Learning (FL) is a promising solution that
enables collaborative training through exchange of model parameters
instead of raw data. However, most existing FL solutions work under
the assumption that participating clients are honest and thus can fail
against poisoning attacks from malicious parties, whose goal is to dete-
riorate the global model performance. In this work, we propose a robust
aggregation rule called Distance-based Outlier Suppression (DOS) that
is resilient to byzantine failures. The proposed method computes the dis-
tance between local parameter updates of different clients and obtains
an outlier score for each client using Copula-based Outlier Detection
(COPOD). The resulting outlier scores are converted into normalized
weights using a softmax function, and a weighted average of the local
parameters is used for updating the global model. DOS aggregation can
effectively suppress parameter updates from malicious clients without
the need for any hyperparameter selection, even when the data distri-
butions are heterogeneous. Evaluation on two medical imaging datasets
(CheXpert and HAM10000) demonstrates the higher robustness of DOS
method against a variety of poisoning attacks in comparison to other
state-of-the-art methods. The code can be found at https://github.com/
Naiftt/SPAFD.

Keywords: Federated learning · Parameter aggregation · Malicious
clients · Outlier suppression

1 Introduction

Medical institutions often seek to leverage their data to build deep learning
models for predicting different diseases [10,23]. However, limited access to data
can impede the learning process [27] or introduce bias towards the local data
[18]. Hence, collaborative learning is vital to expand data availability and max-
imize model performance. Federated Learning (FL) [20] provides a paradigm
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Fig. 1. Federated Learning (FL) in the presence of a malicious client. Distance-based
Outlier Suppression (DOS) aggregation rule (right) can be applied to robustly aggre-
gate local parameter updates.

where multiple institutions/devices can use their data to train local models and
exchange their model parameters regularly with a central server. The server
aggregates the local model parameters to update a global model, which is shared
back to the clients. This allows all parties to preserve their data locally and offers
better results while maintaining data privacy. Recent works have underscored
the importance of FL in medical imaging [9,30].

Typically, FL algorithms (e.g., FedAvg [24]) operate under the assumption
that clients participate in the protocol honestly and their data distributions
are identical. However, the competitive nature of the participants makes them
vulnerable to poisoning attacks. Real-world FL is susceptible to a variety of
targeted/untargeted attacks [12,34] and byzantine faults [19]. Techniques pro-
posed to tackle non-iid data [20] cannot handle malicious parties that attempt
to deteriorate the global model performance. Though many robust aggregation
rules have been proposed for byzantine-tolerant FL [5,14,33], such methods often
require a careful choice of hyperparameters (e.g., prior knowledge of proportion
of malicious clients) and are vulnerable to more sophisticated attacks [11].

The core contribution of this work is a novel robust aggregation rule called
Distance-based Outlier Suppression (DOS) for byzantine-tolerant FL. The pro-
posed framework (see Fig. 1) enables the central server to suppress local param-
eter updates from malicious clients during aggregation. The DOS framework is
enabled by computing distances (Euclidean and cosine) between local parame-
ter updates of different clients and detecting outliers in this distance space. A
state-of-the-art, parameter-free outlier detection algorithm called COPOD [21] is
applied to compute the outlier score for each client based on the above distances.
Finally, the outlier scores are mapped to client-specific weights, and weighted
average of local parameter updates is utilized for global model update. The
proposed DOS aggregation rule demonstrates high robustness against diverse
poisoning attacks under both iid (CheXpert) and non-iid (HAM10000) settings.
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2 Related Work

Most FL algorithms aim to minimize the following loss function:

minθ∈Rd {F(θ) := ∑n
i=1 αiFi(θ)} , (1)

where n is the number of clients, Fi is the loss function for the ith client, and
αi is a value between 0 and 1 that weights the contribution of the ith client.
Popular aggregation rules such as FedAvg [24] either assign equal weights to
all clients (αi = 1/n,∀ i = 1, 2, . . . , n) or assign weights to the clients based
on the relative size of their training sets. Such schemes have shown effective
outcomes under the assumption of honest clients and iid data distributions.
FedProx [20] was introduced to tackle heterogeneity and non-iid data across
clients. Progressive Fourier Aggregation (PFA) was introduced in [6] to improve
stability by preventing an abrupt drop in accuracy. While these methods promise
convergence, they do not consider noisy parameters [32] or malicious parties that
attempt to hinder learning or cause it to converge to poor local minima.

Since FL requires communication between the server and clients, it is sus-
ceptible to random network errors that can deliver abnormal parameters to the
server or malicious parties that attempt to corrupt the learning process. Such
failures are defined as Byzantine failures [19]. In such settings, there are two
types of attacks: (i) targeted attacks that cause the global model to misclassify
a selected class (e.g., backdoor attacks [2], model poisoning attacks [3,4], and
data poisoning attacks [25]) and (ii) untargeted attacks that harm the model’s
performance across all classes [20]. Moreover, there are techniques designed to
make the attack more stealthy [34]. Other potential attacks include label-flipping,
where the model is trained on incorrect labels [12], and crafted model attacks
[11] that formulate the attack as an optimization problem. In this paper, we
mainly focus on untargeted attacks since they are more lethal to the learning
process.

Several robust aggregation rules have been proposed to defend against Byzan-
tine failures. Krum [5] selects the parameter update that is closest to the mean
parameter update of all clients. Coordinate-Wise-Median [33] calculates the
median because it is less sensitive to outliers as opposed to the mean. Trimmed
Mean [33] sorts the parameter values and discards a fraction of each coordinate’s
smallest and largest values. Bulyan was proposed in [14] to further improve
the robustness. However, most of these methods require hyperparameter selec-
tion (e.g., proportion of outliers to be discarded) and are susceptible to crafted
model attacks [11]. More recently, Robust Federated Aggregation (RFA) [28],
which relies on aggregation using the geometric median, and SparseFed [26],
which uses global top-k update sparsification and device-level gradient clipping,
have been proposed to mitigate poisoning attacks.

3 Proposed Method

We propose Distance-based Outlier Suppression (DOS), a robust FL aggregation
rule (see Algorithm 1) that can defend against different untargeted poisoning
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Algorithm 1. Distance-based Outlier Suppression (DOS)
Require: Initialize parameter vector θ0 ∈ R

d for global model
1: for t = 0, 1, . . . , T − 1 do
2: Server: Server broadcasts θt to all clients
3: for all i ∈ [n] in parallel do
4: Client i: Learn local parameters θt+1

i using suitable local optimizer.
5: Send θ̂t+1

i to server. Note that θ̂t+1
i �= θt+1

i for malicious clients.
6: end for
7: Server: DOS aggregation rule:
8: Compute Euclidean and cosine distance matrices ME and MC , respectively
9: Compute outlier scores rE = COPOD(ME), rC = COPOD(MC)

10: Compute average outlier score r = (rE + rC)/2

11: Compute normalized client weights as wi =
exp(−ri)∑n

j=1 exp(−rj)

12: Update global model based on weighted average of local parameters

θt+1 =
∑n

i=1wiθ̂
t+1
i

13: end for

attacks on FL as long as the proportion of clients experiencing byzantine-failures
is less than 50%. Suppose that there are n clients in the FL setup, and their
goal is to learn the global model parameters θ that minimizes the objective
function in Eq. (1). Note that a proportion p of these clients (p < 50%) can
be malicious and may not share the same objective as the other honest clients.
Similar to FedAvg, the global model parameters are initialized to θ0. In each
of the T communication rounds, the current global model parameters θt are
broadcast to all clients. Each client i ∈ [n] learns the local model parameters
θt+1

i based on their local data using a suitable optimizer and sends θ̂t+1
i back

to the server. While θ̂t+1
i is expected to be a faithful version of θt+1

i (except
for known transformations like compression) for honest clients, this may not
be the case for malicious clients. The server computes the updated global model
parameters using the DOS aggregation rule. The proposed DOS aggregation rule
consists of three key steps:

Distance Computation: The server starts with calculating the Euclidean and
cosine distances between the local parameters sent by the clients as follows:

dE
ij = ||θ̂i − θ̂j ||2, dC

ij = 1 − θ̂T
i θ̂j

||θ̂i||2||θ̂j ||2 ,

where i, j = 1, 2, . . . , n. Here, the time index t is skipped for convenience. The
(n × n) distance matrices ME = [dE

ij ] and MC = [dC
ij ] are then computed and

utilized for outlier detection. Unlike existing methods such as [5,14,33], where
outlier detection is performed directly on the model parameter space, the pro-
posed DOS method performs outlier detection in the distance space.
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Outlier Score Computation: After exploring various anomaly detection
methods such as Random Forest [29], Local Outlier Factor (LOF) [7], and K-
means [22], we selected the Copula Based Outlier Detection (COPOD) method
[21] due to several factors. Firstly, other methods require choosing the percent-
age of abnormal data points (in our case clients) in advance, whereas COPOD is
parameter-free, thus making it more robust. Moreover, COPOD is known to be
computationally efficient even in high dimensional settings because it utilizes the
marginals of the joint distributions, thereby allowing for greater flexibility and
individual modeling of each dimension. Finally, the COPOD method also has
desirable interpretability properties since it is based on modeling the tail prob-
abilities along each dimension. In general, the COPOD function takes a (n × d)
matrix as input, where each row represents a sample and each column represents
an attribute of the sample to produce a n-dimensional vector of outlier scores
r = [r1, r2, . . . , rn], where ri ∈ (0,+∞) represents the relative likelihood that
the sample i is an outlier (true outliers are expected to have larger values of ri).
In DOS, we compute rE = COPOD(ME) and rC = COPOD(MC) and average
these two vectors to obtain the final outlier score r = (rE + rC)/2.

Fig. 2. Left: Distribution of the multiclass multilabel CheXpert dataset among clients
where each stacked bar represents the number of positive cases for class 0 to 12. Right:
Distribution of the multiclass HAM1000 dataset in non-iid case among clients where
each stacked bar represents the number of samples for class 0 to 6.

Weighted Average Aggregation: Ideally, the local parameter updates of
those clients with higher outlier scores must be suppressed and the local param-
eters of clients with lower outlier scores must be amplified. To achieve this goal,
we apply a softmax function to the outlier score vector with a temperature
parameter of −1 and use the resulting output as the normalized weights for each
client, i.e.,

wi =
exp(−ri)∑n

j=1 exp(−ri)
, i = 1, 2, · · · , n.

The local parameters of the clients are aggregated using the following rule:

θt+1 =
∑n

i=1wiθ̂
t+1
i .



678 N. Alkhunaizi et al.

4 Experiments

4.1 Datasets

CheXpert: CheXpert is a large chest X-ray dataset with uncertainty labels
and expert comparison [17]. We use ‘CheXpert-small’, a multi-class multi-label
dataset that contains 191,456 chest X-ray images for training. The dataset is
imbalanced and has 13 pathology categories. In addition, it has a percentage
of uncertain data, and [17] suggests either ignoring the uncertain labels during
training or mapping all instances to zero or one. In our experiments, all uncer-
tain labels were mapped to zero. The TorchXRayVision library [8] was used to
preprocess the data, where every image has a 224 × 224 resolution. We divide
the training images equally between the clients as shown in Fig. 2 (Left), where
the last stacked bar represents the testing dataset that we use to measure the
global model’s performance after each round. We use the CheXpert dataset to
evaluate our method in the iid setting.

Table 1. Area under the receiver operating characteristic curve (AUC) with different
types of poisoning attack scenarios on the Chexpert dataset. T-M stands for Trimmed
Mean [33]. The last column represents the average AUC over five presented scenarios.

No attack Label flip 10% Mix attack 40% Noise 40% Noise & Scaled 40% Avg

FedAvg 0.70 0.69 0.50 0.50 0.50 0.58
Median 0.70 0.69 0.69 0.69 0.54 0.66
T-M 0.70 0.69 0.69 0.50 0.50 0.62
Krum 0.66 0.66 0.64 0.63 0.67 0.65
DOS 0.70 0.69 0.68 0.69 0.67 0.68

HAM10000: HAM10000 is a multi-class dataset consisting of 10,015 dermo-
scopic images from different populations [31]. It consists of 7 categories of pig-
mented lesions where every image was resized to 128 × 128. The train-test split
is 8,910 and 1,105 images, respectively. We use this dataset to test our method
in the non-iid case as shown in Fig. 2 (Right).

4.2 FL Setup

In all our experiments, we assume n = 10 clients. The well-known ResNet-18
[16] model, as well as a custom Convolutional Neural Network (CNN) with two
convolutional layers, a ReLU activation function, and two fully connected layers
are used as the architectures for both global and local models. Each client only
has access to its local dataset and the local models are trained using Stochastic
Gradient Descent (SGD) [13] with a learning rate of 0.01. We implement all
our experiments using the Pytorch framework [1]. Using a batch size of 16 for
CheXpert, each client is trained for a total of 100 rounds with 1 local step in
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each round that goes through the entire dataset. As for the HAM10000 dataset,
we iterate through the whole dataset with a batch size of 890 for each client.
We train it for a total of 250 rounds with 5 local steps for each client. This
experiment was performed to show that the batch size does not impact the
DOS aggregation rule. The evaluation metric is the Area Under the Receiver
operating characteristic curve (AUC), which is calculated after each round of
communication on the testing dataset. For the CheXpert dataset [17], the AUC
was calculated for each class and the macro average was taken over all classes.
For the HAM1000 dataset [31], the average AUC was computed for all possible
pairwise class combinations to minimize the effect of imbalance [15].

Fig. 3. Performance on CheXpert dataset using ResNet-18 model: The first two rows
show AUC on a test set after each round for six scenarios in the following order (left
to right): No Attack, Label Flip 10%, Mix Attack 40%, Noise 40%, Noise and Scaled
40%, and Crafted Attack 40%. The bottom two rows show the normalized weights of
each client after each round.

4.3 Poisoning Attacks and Baseline Aggregation Rules

We assume that up to p ≤ 40% of these clients could be malicious, i.e., at most
4 out of the 10 clients are malicious. We consider 5 different attacks on the
CheXpert dataset: (i) Label Flip 10% - label-flipping by one of the clients, (ii)
Mix Attack 40% - transmission of Gaussian noise by two clients and label-
flipping by two clients, (iii) Noise 40% - transmission of Gaussian noise by
four clients, (iv) Noise and Scaled 40% - transmission of a mix of Gaussian
noise and scaled parameters by four clients, and (v) Crafted 40% - crafted
model attack with four clients based on [11] (with the aggregation rule being



680 N. Alkhunaizi et al.

unknown to the attacker). On the HAM1000 dataset, 2 attacks were considered:
(i) Noise 30% - transmission of Gaussian noise by three clients, and (ii) Mix
Attack 40% - transmission of Gaussian noise by two clients, scaled parame-
ter by a factor of 100 by one client, and scaled parameter by a factor of −0.5
(directionally opposite to the true parameters) by one client. The robustness of
the proposed DOS method was benchmarked against the following aggregation
rules: FedAvg [24], Coordinate-Wise-Median [33], Trimmed Mean [33] and Krum
[5]. For both datasets, a No Attack scenario was also considered to evaluate
the performance of DOS when all the clients are benign (honest).

4.4 Results and Discussion

Figure 3 compares all the aggregation rules under six different scenarios on the
CheXpert dataset. Table 1 summarizes the average AUC for all the aggregation
rules and it can be observed that DOS aggregation rule performs consistently well
against all attack scenarios. In contrast, all the other aggregation rules had lower
accuracy values in one or more scenarios. Furthermore, it can be observed from
Fig. 3 that the weights of the malicious clients (shown in red) are almost always
close to zero, indicating that the DOS method is able to effectively suppress
the parameter updates from malicious clients. The performance of DOS method
is also comparable to that of RFA [28], with DOS method having a marginal
edge when the proportion of malicious clients was higher (40%). Only in the
case where 40% of clients transmitted Gaussian noise, the RFA method had a
significantly lower accuracy (0.625) compared to the DOS method (0.69).

Fig. 4. Performance on HAM10000 dataset using a custom CNN model. The top-left
plot shows AUC on the test set for DOS aggregation for the 3 scenarios. The normalized
weights of each client after each round for the 3 scenarios are also depicted.

Figure 4 shows the performance of the DOS rule under three different sce-
narios on the HAM10000 dataset. In all cases, DOS performed with a high AUC
score without dropping its overall performance. The main advantage of DOS
lies in its ability to account for both Euclidean and cosine distance, thereby
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addressing both positive and negative scaling. It also successfully detects Gaus-
sian noise attacks and label-flip attacks, leveraging the strengths of the COPOD
method. Since DOS combines three different approaches, it is hard to design
model poisoning attacks that can successfully circumvent it.

Proportion of Malicious Clients: Since our approach treats malicious weight
updates as outliers, the protocol will fail when a majority of clients are malicious.
We conducted experiments by fixing the number of clients and increasing the pro-
portion of malicious clients from 10% to 60%, in steps of 10%. As expected, the
DOS approach was robust until the proportion of malicious clients was less than
or equal to 50% and failed when the proportion was 60% (e.g., for HAM10000
dataset, the AUC values were 0.695, 0.697, 0.696, 0.711, 0.710, and 0.554 for
10%, 20%, 30%, 40%, 50%, and 60% corruption, respectively. In comparison,
the AUC without any attack was 0.70). This is the reason for choosing the pro-
portion of malicious clients as 40% for most of our experiments. Thus, the DOS
method is appropriate only for the honest majority scenario.

Different Number of Clients: We conducted experiments by fixing the pro-
portion of malicious clients to 40% and increasing the number of clients from
5 to 40. The AUC values were 0.725, 0.700, 0.692, and 0.674 for 5, 10, 20 and
40 clients, respectively. We observe a minor degradation in accuracy when the
number of clients increases and it requires more rounds to converge. Therefore,
the DOS approach may be more suitable for cross-silo FL settings.

Non-IID Setting: We have conducted experiments under five different non-iid
settings, where we randomly partition the HAM10000 dataset among 10 clients.
For all the five experiments, the convergence trends and the final accuracy were
similar (between 0.69 and 0.71) to the iid case, showing that the DOS method
can work well in the non-iid setting.

4.5 Conclusions and Future Work

We presented Distance-based Outlier Suppression (DOS), a novel robust aggre-
gation rule that performs outlier detection in the distance space to effectively
defend against Byzantine failures in FL. We proved the effectiveness and robust-
ness of our method using two real-world medical imaging datasets. In future,
we aim to prove theoretical convergence and extend this framework to ensure
fairness between FL clients, based on the contribution of their local datasets.
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