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Abstract. Labeling for pathology detection is a laborious task, per-
formed by highly trained and expensive experts. Datasets often have
mixed formats, including a mix of pathology positional labels and cate-
gorical labels. Successfully combining mixed-format data from multiple
institutions for model training and evaluation is critical for model gener-
alization. Herein, we describe a novel machine-learning method to aug-
ment a categorical dataset with positional information. This is inspired
by the emerging data-centric AI paradigm, which focuses on systemat-
ically changing data to improve performance, rather than changing the
model. In order to improve on a baseline of reducing the positional labels
to categorical data, we propose a generalizable two-stage method that
directs model attention to regions where pathologies are highly likely
to occur, exploiting all the mixed-format data. The proposed approach
was evaluated using four different knee MRI pathology detection tasks,
including anterior cruciate ligament (ACL) integrity and injury age (5082
cases), and medial compartment cartilage (MCC) high-grade defects and
subchondral edema detection (4251 cases). For these tasks, we achieved
specificities and sensitivities between 90–94% and 78–93%, respectively,
which were comparable to the inter-reader agreement results. On all
tasks, we report an increase in AUC score, and an average of 8% speci-
ficity and 4% sensitivity improvement, as compared to the baseline app-
roach. Combining a UNet network with a morphological peak-finding
algorithm, our method also provides defect localization, with average
accuracies between 4.3–5.1 mm. In addition, we demonstrate that our
model generalizes well on a publicly available ACL tear dataset of 717
cases, without re-training, achieving 90% specificity and 100% sensitivity.
The proposed method can be used to optimize image classification tasks
in other medical or non-medical domains, which often have a mixture of
categorical and positional labels.
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1 Introduction

One of the key challenges to the clinical deployment of artificial intelligence mod-
els in medical imaging is the failure of models to generalize across institutions,
demographics, and imaging protocols [7]. Accordingly, it is important to train
and evaluate models over a broad variety of data sources, and to be able to
combine these sources efficiently in training.

However, different data sources which focus on the same pathology detection
task could include different label data types, as well as different image types. This
is especially true in knee MRI studies, where MRI orientations, protocols, and
scanners can significantly differ between unassociated institutions. In addition,
some data sources include positional labels such as point-landmarks or bounding
boxes, while others only include labels in the form of text or categories.

Combining defect bounding box labels with categorical labels was recently
explored in a large scale chest x-ray study, using multiple instance learning [8].
The results suggested that combining positional and categorical defect labels
can improve network attention and performance over purely categorical training.
Such attention focusing was previously accomplished in MRI studies by using
anatomical landmarks (i.e., that do not label a defect), including in recent knee
ACL and cartilage studies [1,9–11]. However, models combining different defect
label types were not addressed.

We present a two stage model to combine positional point-like defect land-
mark labels with categorical defect labels. The first stage was trained on posi-
tional labels to predict possible defect locations. A compact volume-of-interest
(VOI) was cropped around each predicted defect location, to improve network
attention. The second stage classified the pathologies in the VOIs using a con-
volutional network, and was trained on a combination of positional and categor-
ical labels. This two-stage technique overcomes the difficulties object and point
detection models face while training on class imbalanced sets [12] - a common
scenario in the medical field.

Our method was evaluated on four knee MRI defect detection and localiza-
tion tasks, including anterior cruciate ligament (ACL) integrity and injury age,
as well as medial compartment cartilage (MCC) high-grade defect and subchon-
dral osteoarthritis related edema underlying the cartilage defect. The classifi-
cation performance was comparable to the inter-reader agreement levels in the
radiologists’ reviews, and superior to a purely categorical baseline.

For a recent general review of pathology detection in MRI for ACL and
cartilage, we refer readers to [6].

The main contributions of this paper are:

– A method to efficiently combine categorical-label datasets with positional-
label datasets during training.

– The proposed method can train and infer on studies that include one or
multiple series.

– First models, to our knowledge, trained at this scale for ACL injury-age and
Osteoarthritis associated subchondral edema underlying the high grade car-
tilage defect pathology detection.
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– Leveraging the above-mentioned series and label type flexibility during train-
ing, we were able to use over 5,000 studies from over 25 institutions, as well
as validate on a publicly available dataset.

2 Data

The dataset included 5676 ACL reviews collected from 5082 imaging studies,
and 4759 MCC reviews, collected from 4251 studies. Studies were split between
training (66%), validation (21%) and test sets (13%). The split was performed in
two stages. First, we randomly sampled at a 70-30-10% ratio. Then, we randomly
sampled positive cases from the training set, until each positive category in the
test set had at least 100 cases. The data did not include multiple studies for any
single patient.

Studies were collected at over 25 different institutions, and differed in scanner
manufacturers, magnetic field strengths, and imaging protocols (Supplementary
Fig. 1). The most common series types included fat-suppressed (FS) sagittal
(Sag), coronal (Cor) and axial (Ax) orientations, using either T2-weighted (T2)
or proton-density (PD) protocols (Supplementary Table 1). For pathology detec-
tion, we used either SagFS, SagPD, or both.

Ground Truth Labeling Process. Each study was reviewed by at least one of
eight board-certified radiologists with an MSK fellowship. The review was per-
formed using either a structured form (for categorical labels) or a custom viewer.
Radiologists using the viewer also annotated the position of the defect. In both
formats, the same ACL and MCC defect categories were used (see Supplemen-
tary Tables 2 and 3). ACL categories included ACL defect (normal, degeneration,
partial tear, or complete tear) and ACL injury age (non-acute, or acute). For the
MCC, structured report categories included Cartilage defects (normal or slight
thinning, small high-grade defect, moderate high-Grade defect, or large high-
grade defect) and Edema underlying cartilage defects (none or trace edema, or
more than trace edema). The edema labeled in our dataset differs from the one
labeled in previous studies [1], since it is limited to non-traumatic, osteoarthri-
tis associated edema that is underlying a high-grade defect. This distinction is

Table 1. Available categorical and position-labeled data for different pathologies.

Labels Class ACL C. Tear ACL acute MCC edema MCC grade

Categorical 0 2323 2161 1327 1122

1 147 80 198 403

Positional 0 1794 1907 2260 1808

1 818 705 466 918

Total 5082 4853 4251 4251
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clinically important, since Osteoarthritis associated edema is a good predictor
of structural deterioration in knee osteoarthritis [5].

Notably, an annotated review could include the same location label type
(e.g., a small high-grade defect) multiple times in the same series, one for each
such observed defect on the cartilage surface.

Labels Used by Models. For model training and evaluation, we grouped label
categories to create 4 tasks that can assist in surgical decision making. For ACL,
we trained a model to differentiate Complete tear from Not-complete tear, and
another to predict Acute vs. Non-acute states. In the MCC, one task was High-
grade defect vs. Not-high-grade defect, and another was Underlying edema vs.
None or trace edema (Table 1 and Supplementary Table 4).

Inter-reader agreement analysis was conducted on 1398 studies with multiple
reviews. For training and testing, if two conflicting reviews for the same study
existed, the position-annotated review was preferred over the categorical-only
one.

3 Methods

Preprocessing Using Deep Reinforcement Learning. Images were auto-
matically cropped around the ACL or MCC prior to pathology detection. Two
anatomical landmarks, the Intercondylar Eminence and the Fibular Styloid, were
detected using a deep reinforcement learning model [2], and a VOI was positioned
with respect to the location of the landmarks. VOI dimensions were determined
by clinical experts to include the anatomy of interest (ACL or MCC).

The ACL VOI was a 75× 75× 75 mm3 cube, centered 2.5 mm anteriorly and
2.5 mm medially from the Intercondylar Eminence. The MCC VOI dimensions
were 80 mm (superior-inferior), 95 mm (Anterior-posterior) and 75 mm (left-
right). The VOI was located 27.5 mm superior, 12.5 mm anterior, and 12.5 mm
medial to the Intercondylar Eminence.

Cropped images were linearly interpolated in-plane to a 0.325 mm resolution.
Images with out-of plane resolution below 2 mm were sub-sampled (but never
interpolated out of plane) to approximately a 4 mm resolution. Images were then
intensity-standardized by clipping the 1st and 99th percentile intensities, followed
by volume normalization to 0 mean intensity and 1 standard deviation.

Baseline Convolutional Network. As a baseline to our proposed method,
we trained a 3D ResNet50 for each of the four tasks using the same preprocess-
ing steps described above. In order to include the position-annotated labels in
baseline training, we used their categorical labels only. Following preprocessing,
the VOI was in-plane padded to a square, and resized to 256× 256 pixels. The
number of slices was fixed to 24, by either padding or slicing. We also experi-
mented with 128 × 128 and 320 × 320 pixel images, which both achieved slightly
worse baseline results and were discarded.
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Fig. 1. Architecture. (a) The segmentation UNet is trained during Stage I, using MSE
loss to the Target map. (b) The classifier is trained during Stage II, using cropped VOI
that were centered either around a positional label created by the expert annotator,
or around a candidate label predicted by the UNet and peak-finding algorithm. (c)
During inference, positional labels are not used. If the peak-finding failed for the case,
the model predicts Class 0 (negative).

A dropout modification to the convolutional network allowed us to train a
single model on studies with either Sag FS, Cor FS, or both. The network had
two parallel encoders, one for Sag and another for Cor images. The features from
the encoders were concatenated and forwarded to a fully connected network.
Whenever one of the series was missing, its corresponding feature vector was
dropped-out, while the other feature vector was multiplied by two. This was
performed both in training and inference.

3.1 Proposed Model Using Mixed-Format Labels

The proposed method utilizes both categorical and positionally-labeled data
formats during training, which is performed in two stages, as explained below.
Models were trained using PyTorch 1.7.1 and Albumentations 1.1.0 software on
an AWS p3.x2large instance (16 GB v100 Tesla GPU), where 200 Stage I followed
by 50 Stage II epochs took 24 h. GPU memory allowed batch sizes up to 10 and
36 in Stage I and II, respectively.
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Fig. 2. Stage I results. Histograms for distances between the best candidate and the
nearest defect, along average distance d±std, sensitivity (Sn.) and Specificity (Sp.) for
each task. Distances are calculated for cases which were predicted positive by Stage II.

Stage I: Landmark. To locate potential defects, we used a Residual UNet
model [13], where each volume could have none, one, or many target positional
labels. During training, this stage used only pathology-positive studies, and only
series (i.e., volumes) with at least one positional annotation (Fig. 1a). Following
[15], for each volume, a target map was created, where each label in location
μ was replaced by an isotropic Gaussian sphere: IG = 1

σ
√
2π

e−‖x−μ‖2/2σ2
, with

σ = 10 mm. Training was performed with an MSE loss function, ADAM optimizer
(lr = 0.0001), 128 × 128 × 24 volume size, and a batch size of ten. A separate
UNet was independently trained for each of the four tasks.

Coordinates of potential defect landmarks (candidates) were extracted from
the UNet output, using a fast peak-finding algorithm, originally developed for
particle-tracking [3]. During training, all candidates were forwarded to Stage II.
During test and validation, only the “best” candidate was selected from each
series for stage II (see Supplementary Fig. 2). Whenever Stage I found no defect
candidates, the full model prediction was negative (class 0).

Stage II: Pathology Detection. Classification was performed using a 3D
ResNet50 with an ADAM optimizer (lr = 0.0001). For each task, the model was
trained and evaluated on 40× 40× 40 mm3 defect-VOI cubes, which were resized
to 128× 128×12 pixels. Each cube was centered around a single candidate defect
location that was predicted in stage I, or a location provided by our ground-truth
annotations (Fig. 1b). Limiting the classifier to these compact VOIs was meant
to improve network attention, and subsequent performance. Series for which
stage I found no candidates were not included in stage II training. Training was
performed by cross-entropy loss on each series, where the categorical ground
truth for the study (rather than series) was used. To assess the performance of
our complete model on unlabeled data, we only used locations predicted by the
trained stage I model during inference (Fig. 1c).

Perturbations and Augmentation Strategy. In both stages, augmentations
included blurring, uniform noise, gamma shift, horizontal flips (for Cor only) and
reverse ordering of slices (for Sag only). In addition, during stage II training, the
defect location was shifted uniformly in the [−3.5, 3.5] mm range in all axes.
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4 Results and Discussion

Baseline Convolutional Network Performance. The baseline convolu-
tional model was evaluated on two datasets: 1) including only categorical labels
(Labels = Categ. and Method = ResNet in Table 2) and, 2) a unified dataset
which included categorical labels originating from both the categorical and the
positional-annotated datasets (Labels = Both and Method = ResNet in Table 2).
When training the baseline model using the unified dataset, all positional-
annotated data was reduced to categorical format by taking the most severe
label for each study, and removing the positional information.

4.1 Performance of Proposed Model Using Mixed-Format Labels

Stage I: Landmark. Stage I training was designed to achieve high sensitivity,
since false positive studies would be filtered by stage II. Indeed, in three tasks we
observed sensitivity exceeding 95% (Fig. 2). By training on positive samples only
at stage I and using stage II for filtering, we circumvent difficulties encountered
when training object detection models on mostly negative samples.

The localization accuracy of stage I confirms that the defects are captured
by the 40× 40 × 40 mm3 VOI cubes used by the following stage (see Fig. 2).

Table 2. Ablation study of different training methods and datasets, where each model
was run 5 times using randomly initialized weights to produce average± std. Inter-
reader sensitivity and specificity appear in the last row.

Labels Categ Positional Positional Both Both Both Inter-

method ResNet two-stage two-stage ResNet two-stage two-stage reader

perturb + +

ACL Sp. 82.8± 1.3 92.4± 0.8 90.2± 0.7 89.4± 0.8 92.2± 0.4 92.2± 0.7 97

C. Tear Sn. 47.8± 5.8 65.4± 1.9 89.4± 1.0 91.0± 0.6 76.4± 1.2 92.6± 0.5 84

AUC 72.0± 0.6 90.8± 0.4 94.8± 0.4 95.8± 0.3 91.8± 0.4 97.0± 0.2

ACL Sp. 65.8± 1.7 89.8± 0.7 93.4± 1.0 94.0± 1.4 89.8± 1.0 92.2± 0.7 97

acute Sn. 74.8± 3.0 69.8± 1.5 73.0± 1.4 64.0± 0.9 72.4± 1.0 78.4± 1.0 74

AUC 75.6± 1.6 84.4± 0.5 87.6± 0.5 88.0± 0.6 85.8± 0.4 89.2± 0.4

MCC Sp. 73.6± 2.4 89.2± 0.7 94.0± 0.9 82.8± 1.2 90.8± 0.7 92.8± 0.7 92

edema Sn. 64.4± 2.7 68.3± 0.8 74.2± 0.7 80.8± 0.4 70.2± 0.7 78.4± 0.5 69

AUC 74.2± 1.2 86.4± 0.5 88.4± 0.5 87.4± 0.5 87.0± 0.9 90.2± 0.4

MCC Sp. 66.2± 1.5 92.4± 0.8 89.8± 0.7 87.6± 1.0 83.2± 1.2 89.0± 0.6 87

grade Sn. 77.8± 1.6 75.2± 0.7 80.4± 1.0 77.4± 0.5 85.4± 0.5 88.2± 0.4 84

AUC 79.6± 1.4 90.4± 0.5 91.6± 0.5 90.4± 0.5 91.0± 0.6 93.8± 0.4
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Stage II: Pathology Detection. Final classification results were obtained at
stage II inference, using the cropped volumes. Each volume was centered around
a best defect candidate predicted by stage I. The sensitivity, specificity, and AUC
are detailed under Two-stage method in Table 2. For ablation research, four dif-
ferent models were trained. Two models only used positional-labels in training
(Labels = Positional in Table 2). This was achieved by removing the positional
information from the annotations, and using only the categorical information.
The other two used both categorical and positional datasets, facilitated by our
two-stage combined approach (Labels = Both in Table 2). In addition, in two
of the four models we added a random perturbation shift to the best candi-
date location, sampled uniformly in the range [−3.5, 3.5] mm in each direction.
Evaluation was performed on the same data set for all four models.

Our combined method achieved specificities and sensitivities between 89–94%
and 78–93%, respectively, which were comparable to the inter-reader agreement
results. These results were, on average, 8% specificity and 4% sensitivity over the
baseline model. A McNemar’s test [4] comparing our method with the baseline
model (columns 7 and 5 in Table 2, respectively) yielded a 10−6 p-value. Since
the dataset is not class balanced, we also computed the p-values for positive cases
(sensitivity, p-value = 0.0001) and negative cases (specificity, p-value = 0.0008),
indicating that the performance improvement was statistically significant.

Our best results are comparable to the inter-reader agreement between the
board-certified MSK fellowship trained radiologists that labeled our ground-
truth data. Notably, it is unusual for a model to outperform noisy ground-truth
agreement rates in evaluation, unless the evaluation set is obtained from a higher-
quality source. However, our test set had disproportionately more positional-
annotated studies, which the radiologists established as more reliable (Supple-
mentary Table S5). Therefore, we maintain that higher performance evaluation
is possible, given the assumption that the test had higher quality labels.

Public Dataset Validation. The trained model utilized data from multiple
institutions, using various protocols, with either Cor, Sag or both orientations.
To further validate its generalizability, we evaluated performance, without any
re-training, on a publicly available ACL dataset [14]. The dataset included 917
Sag PDFS 12-bit grayscale images. 717 studies (≈76%) were classified as non-
injured, 182 (≈19%) partially injured, 45 (≈5%) completely ruptured. Since our
model differentiates complete tear from not complete tears, we mapped their
class labels from 1 to 0 and 2 to 1. Even though our network was trained on
data that typically had both Sag and Cor series, it achieved 90% specificity and
100% sensitivity, which were comparable to results on our test set.
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5 Conclusions

We proposed a novel method to flexibly combine categorical labels with posi-
tional labels during training, and demonstrated its applicability in four knee MRI
pathology detection tasks. Our method leverages available positional-annotated
data to attach location to categorical labels, which improves the overall model
performance. In addition, it reliably localizes the defects, which is useful in sev-
eral potential applications, such as computer aided diagnosis and AI-based qual-
ity assurance. We show that without any re-training, our model, which was
trained to use either one or two MRI orientations, can generalize well to a pub-
licly available, which included one orientation (Sag) only. Notably, our method
can be employed in other computer vision domains, such as captioning, where
similar mixed-format label types are often available during training.
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