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Abstract. Careful surgical planning facilitates the precise and safe
placement of implants and grafts in reconstructive orthopedics. Current
attempts to (semi-)automatic planning separate the extraction of rele-
vant anatomical structures on X-ray images and perform the actual posi-
tioning step using geometric post-processing. Such separation requires
optimization of a proxy objective different from the actual planning
target, limiting generalization to complex image impressions and the
positioning accuracy that can be achieved. We address this problem by
translating the geometric steps to a continuously differentiable function,
enabling end-to-end gradient flow. Combining this companion objective
function with the original proxy formulation improves target position-
ing directly while preserving the geometric relation of the underlying
anatomical structures. We name this concept Deep Geometric Supervi-
sion. The developed method is evaluated for graft fixation site identifi-
cation in medial patellofemoral ligament (MPFL) reconstruction surgery
on (1) 221 diagnostic and (2) 89 intra-operative knee radiographs. Using
the companion objective reduces the median Euclidean Distance error
for MPFL insertion site localization from (1) 2.29 mm to 1.58 mm and
(2) 8.70 px to 3.44 px, respectively. Furthermore, we empirically show
that our method improves spatial generalization for strongly truncated
anatomy.
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1 Introduction

Careful planning of the individual surgical steps is an indispensable tool for the
orthopedic surgeon, elevating the procedure’s safety and ensuring high levels of
surgical precision [4,6,14,15]. A surgical plan for routine interventions like lig-
ament reconstruction describes several salient landmarks on a 2D X-ray image
and relates them in a geometric construction [5,8,22]. Previous attempts to auto-
mate this planning type typically separate automatic feature localization with a
learning algorithm and geometric post-processing [11–13]. The separation allows
to mimic the manual step-wise workflow and enables granular control over each
planning step. However, this approach comes with the drawbacks of optimizing a
proxy criterion. While this surrogate has shown to be a low-error approximation
of the actual planning target for well-aligned anatomy, the strength of correla-
tion depends on the level of image truncation and the visibility of the contained
radiographic landmarks [2,24,27]. In manual planning, the user compensates for
these effects by extrapolating visual cues and using prior anatomical knowledge.
As the learning algorithm has no direct access to this knowledge, the variance
in correlation limits spatial generalization to unseen data with a broad range of
image characteristics. In this work, we develop and analyze a companion objec-
tive function that optimizes the planning target directly. We exploit that the
planning geometry can be formulated as a continuously differentiable function,
enabling end-to-end gradient flow. Through the combination with the original
optimization of anatomical feature localization, the relations of the planning
geometry can be retained. We name this concept Deep Geometric Supervision
(DGS). We test its effectiveness by studying the following research questions.

RQ 1. How does DGS affect the overall positioning accuracy?
RQ 2. Does DGS improve spatial generalisation on truncated images?
RQ 3. Can the potential improvements be applied to more complex imaging

data in an intra-operative setting?

The developed method is evaluated for medial patellofemoral ligament (MPFL)
reconstruction planning on diagnostic and intra-operative knee radiographs. This
planning involves calculating the Schoettle Point (SP) [22], which determines the
physiologically correct insertion point of the replacement graft and ensures long-
term joint stability. We demonstrate that DGS significantly improves localization
accuracy, increases the success rate of plannings to be within the required pre-
cision range of 2.5mm, and enables generalization to severely truncated images.

2 Materials and Methods

2.1 Automatic Approach to Orthopedic Surgical Planning

We build on the two-stage planning method proposed by Kordon et al. [12,13].
First, the positions of salient anatomical landmarks are automatically extracted
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using a multitask learning (MTL) approach. Then, the landmarks are interre-
lated through geometric post-processing to locate the actual planning target.

Fig. 1. Overview of the proposed method to automatic surgical planning with DGS.

In the first stage (Fig. 1-1), we want to optimize a mapping f t
θ : X → Yt

from the input domain X to several task solution spaces {Yt}t∈[T ]. θ marks
a set of trainable function parameters, and T is the number of parallel tasks
to solve. The function f t

θ is optimized in a supervised manner using M data-
points {xi, y

1
i , . . . , yT

i }i∈[M ] with ground truth yt
i . To exploit similarities between

tasks and maintain task-specific complexity at the same time, we employ hard
parameter-sharing [3,21]. Therefore, the model capacity θ is separated into
disjoint sets of shared parameters θsh and task-specific parameters {θt}t∈[T ].
According to Baxter [1], this separation can be interpreted as a subdivision
of function f t

θ into a meta learner fmeta
θsh : X → Z and task-specific learners

f task,t
θt : Z → Yt, such that the composition (f task,t

θt ◦ fmeta
θsh ) = f t

θsh,θt : X → Yt.
The task-specific parameters can be trained by minimizing the loss function
Lt
Proxy(·, ·) : Yt × Yt → R

+
0 . Following common practice in MTL literature, the

shared parameters of the meta learner are optimized using a linear combina-
tion of all task losses [23]. Using this rationale, we arrive at the empirical risk
minimization (ERM) objective

min
θsh; θ1,...,θT

∑T

t=1
L̂t
Proxy(θ

sh,θt), (1)
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where L̂t
Proxy(θ

sh,θt) ∧= 1
M

∑M
i=1 Lt

Proxy

(
f t

θsh,θt(xi), yt
i

)
is the task-specific

empirical risk estimated on the training data. For the specific example of SP
construction [22], we have to consider three distinct tasks (Fig. 1).

1. (t = 1): Keypoint detection of the posterior Blumensaat line point kblum and
turning point on the medial femur condyle ktmc. Both points are encoded
as heatmaps sampled from a bivariate Gaussian function with mean at the
point coordinates and standard deviation of σhm = 6px. The correspon-
dence between the predicted heatmap ŷ and ground truth heatmap y is
optimized using pixel-wise mean squared error (MSE) loss function given
by MSE(ŷ, y) = E ||ŷ − y||22. Consequently, L1

Proxy := MSE(ŷ1
i , y1

i ).
2. (t = 2): Line regression of the tangent to the posterior femur shaft cortex

lctx. The line is encoded as a heatmap, where the intensities are computed by
evaluating the point-to-line distances with a Gaussian function with σhm =
6px [11,13]. Similarly, L2

Proxy := MSE(ŷ2
i , y2

i ).
3. (t = 3): Semantic segmentation of the femur region S. As described in [11], S

can be combined with the line heatmap to mask the relevant section C ′ ⊆ C
of segmentation contour C ⊆ S for more precise positioning and angula-
tion in the subsequent major axis regression [26] of relevant line points. For
the loss function, we use a pixel-wise binary cross entropy (BCE) given by
BCE(ŷ, y) := − [y log(σ(ŷ)) + (1 − y) log(1 − σ(ŷ))] with sigmoid nonlinear-
ity σ. Consequently, L3

Proxy := BCE(ŷ3
i , y3

i ).

After extracting the relevant features, they are converted to geometric primitives
and interrelated according to the planning geometry (Fig. 1-2). This geometry
describes consecutive calculations to localize the planning target relevant to the
surgeon. For MPFL planning, the cortex tangent line is determined by major
axis regression [26] on relevant contour points. The SP can be approximated by
the center of the inscribed circle bounded by the tangent and two orthogonal
lines intersecting both detected keypoints (Fig. 1).

2.2 Deep Geometric Supervision (DGS)

The disconnect between the proxy function and the actual planning target limits
generalization to unfavorable but common image characteristics. We approach
this issue by introducing the concept of Deep Geometric Supervision. To this
end, we add a companion objective function to the original ERM term (Eq. 1)
that directly minimizes positioning errors of the planning target while retaining
the relations of the planning geometry (Fig. 1-3).

Mathematically, we start by combining all geometric steps in a single non-
parametric function g : Y1 × · · · × YT → P that operates on the outputs of the
anatomical feature extractor f t

θsh,θt . The output of g is the desired planning tar-
get, e.g., a keypoint. Next, we calculate the positioning error of the planning tar-
get with the loss function LDGS(·, ·) : P×P → R

+
0 . The empirical risk is given by

L̂DGS(θsh,θ1, . . . ,θT ) ∧= 1
M

∑M
i=1 LDGS

(
g

(
f1

θsh,θ1(xi), . . . , fT
θsh,θT (xi)

)
, pi

)
.
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Finally, adding this term to the original ERM formulation yields

min
θsh; θ1,...,θT

λ
∑T

t=1
L̂t
Proxy(θ

sh,θt)
︸ ︷︷ ︸

Anatomical Features

+(1 − λ) L̂DGS(θsh,θ1, . . . ,θT )
︸ ︷︷ ︸

Surgical Target

, (2)

where λ ∈ R is a multiplicative risk-weighting term. Here, LDGS := ||p̂i − pi||2.
Since the planning function g is not subject to trainable parameters, the mini-
mization of the additional risk term L̂DGS should directly contribute to updates
of θsh and θt. For that purpose, (g ◦ f t

θsh,θt) must be a continuously differen-
tiable function, such that (g ◦ f t

θsh,θt) ∈ C1(X ,P). To fulfill this constraint,
the representations and objective functions for keypoint and line regression
need to be changed from their original formulation in [13]. Matching the key-
point heatmaps with MSE is not feasible as it is typically followed by a subse-
quent non-differentiable argmax operation to extract the intensity peak’s x and
y coordinates. We instead use the regularized spatial-to-numerical transform
(DSNT) [18]. For that purpose, the predicted heatmap ŷ is rectified apply-
ing a spatial softmax and normalized with the L1 norm. The result of this
standardization ŷ′ is transformed to the numerical coordinate ĉ = DSNT(ŷ′)
in the range of [−1, 1] exploiting a probabilistic interpretation of ŷ′. This
allows the cost function to operate directly on numerical coordinates and opti-
mize the heatmaps implicitly. Finally, the keypoint loss function is updated to
L1
Proxy := ||ĉ1i −c1i ||2+DJS

(
p(ŷ1

i ) ‖N (y1
i , σ2

hmI2)
)
. p(·) is a probability mass func-

tion under the interpretation of the predicted coordinates as discrete bivariate
random vectors, and DJS(·‖·) is the Jensen-Shannon divergence which encour-
ages similarity of the heatmaps to a Gaussian prior [18].

A differentiable representation of the line’s position and orientation is
obtained by calculating raw image moments Mpq and second order cen-
tral moments μ′

pq on the line heatmap [7,20]. The centroid cx,y and ori-
entation angle γ are given by cx,y = (M10/M00,M01/M00) and γ =
1
2 arctan (2μ′

11/(μ′
20 − μ′

02)) + π
2 [μ′

20 < μ′
02]. [·] marks the Iverson bracket.

2.3 Model Variants

We define three model variants to evaluate the effect of DGS on planning accu-
racy and spatial generalization. A) Proxy, which uses all three anatomical detec-
tion tasks and uses the original ERM term Eq. 1 without DGS. The planning
target is calculated with geometric post-processing. B) Proxy−Seg+DGS, which
utilizes the updated ERM term Eq. 2. Here, g is used to calculate the planning
target, and the segmentation task is omitted. C) Proxy+DGS, which uses ERM
term Eq. 2 but keeps the segmentation task to allow direct comparison without
the external factor of different task and parameter counts.

2.4 Datasets and Training Protocol

Method evaluation was done on two radiographic image cohorts of the lateral
knee joint. Cohort 1) contains 221 diagnostic radiographs collected retrospec-
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tively from anonymized databases. For each image, the SP geometry was anno-
tated by an expert trauma surgeon with a proprietary tool by Siemens Health-
care GmbH. The femur polygon was labeled by a medical engineer using labelme
software [25]. The images were split into three sets for training (167), validation
(16), and testing (38) with stratified sampling [10]. There, all data showing a
steel sphere of 30 mm diameter was assigned to the test split, allowing conver-
sion from pixel to mm space. Cohort 2) contains 89 intra-operative X-ray images
from 43 patients acquired with mobile C-arm systems. Most images show severely
truncated bone shafts and instrumented anatomy. The images were annotated
by a medical engineer using a custom extension of labelme [25]. The data was
divided into training (61), validation (9), and test (19) with no patient overlap.
During optimization, the training data was augmented using horizontal flip-
ping (p = 0.5), rotation (α ∈ [−45◦, 45◦], p = 1), and scaling (s ∈ [0.8, 1.2],
p = 1) [13]. After min-max normalization of the images to the intensity range of
[0, 1], the data were standardized to the dimensions [H:256 × W:256] px by bi-
cubic sampling and zero-padding to preserve the original aspect ratios. For each
cohort and variant, an MTL hourglass network [13,17] (128 feature root) was
trained for 450 epochs using an Adam optimizer, a learning rate of 0.001/0.0006
(cohort 1/2), a batch size of 2, and multiplicative learning rate decay of 0.1 after
350 epochs. The risk-weighting with λ = 0.99 was re-balanced [9] by decreasing
λ ∈ [0.01, 0.99] by 0.01 every forth epoch. Implementation was done in PyTorch
v1.8 [19] (Python v3.8.12, CUDA v11.0) and reproducibility was confirmed.

3 Results

Effects on Feature Extraction and Positioning Accuracy (RQ 1). The
results of model evaluation on Cohort 1) are summarized in Fig. 2. DGS reduces
the median SP Euclidean Distance (ED) error from 2.29 [1.84, 2.82]CI95 mm
(A) to 1.68 [1.19, 2.17]CI95 mm (B) and 1.58 [1.152.09]CI95 mm (C), respectively
(Fig. 2-a). Between the two DGS variants, we observe no drop in performance
when additionally solving the segmentation task. This understanding lets us
reject insufficient model capacity or conflicting task configurations as a reason
for inferior performance of the proxy optimization. Furthermore, DGS increases
the number of predictions that fall within the clinically relevant precision range
of 2.5mm [22] from 63.2% (Model A) to 76.3% (Model B&C) (Fig. 2-b). Interest-
ingly, DGS slightly changes the spatial appearance of the line heatmaps, increas-
ing activations in the posterior aspect of the Blumensaat line (Fig. 2-c). Since
this area resides on the tangential extension of the shaft cortex, we argue that
activation in this region allows to compensate for small errors in line alignment.

Effects on Spatial Generalization (RQ2). To evaluate potential effects of
DGS on spatial generalization, we constructed a secondary test set with differ-
ent levels of shaft truncation. For this purpose, multiple crops per image were
created such that the visible bone shaft corresponds to a fixed ratio t ∈ [0.8, 2.7]
between bone axis length and femur head width. The results are summarized in
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Fig. 2. Summary of model evaluation on Cohort 1). a, violin plots of the positioning
errors on the test set (ED: Euclidean Distance; white dots mark individual planning
samples). Statistical significance was evaluated with a two-sided Mann-Whitney U rank
test. b, error distribution w.r.t. clinically relevant precision ranges. c, planning geom-
etry (red: prediction, green: ground truth) and spatial appearance of line heatmaps.
(Color figure online)

Fig. 3. We see considerable improvements for severely truncated shafts for both
variants with DGS. This observation is underlined by a strong Spearman’s rank
correlation of rs = −0.79 for Model A compared to moderate correlations of
rs = −0.48 and rs = −0.53 for the DGS Models B and C, respectively (p � 0.01
for all correlations). Visual inspection shows that the tangent determined via the
bone contour experiences a systematic angular offset in the postero-distal direc-
tion for very short shaft lengths. Optimization with DGS can recover the optimal
tangent direction in most of these cases despite insufficient image information.

Application to Complex Intra-Operative Data (RQ 3). The evaluation
on the intra-operative Cohort 2) is summarized in Fig. 4. Similar to Cohort
1), DGS reduces the positioning error significantly, yielding median ED scores
of 3.50 [2.47, 6.92]CI95 px and 3.44 [2.09, 6.67]CI95 px for Model A and B, respec-
tively. The improvements over the original proxy formulation with a median error
of 8.70 [5.06, 16.60]CI95 px can be explained by generally shorter shaft lengths
caused by a smaller field of view of the mobile C-arm imaging device and less
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standardized acquisition. As seen before, this characteristic leads to misaligned
tangent predictions during proxy optimization. The compensation effect previ-
ously identified in the DGS variants, which is characterized by additional acti-
vation peaks in the distal region of the femur, is clearly enhanced (Fig. 4-c).

4 Discussion

Directly optimizing the planning target position while preserving the geometric
relation of the anatomical structures promises a more precise, better generalizing,
and clinically motivated planning automation in orthopedics. To accommodate
this rationale, we developed and analyzed the concept of Deep Geometric Super-
vision. By interpreting the planning geometry as a differentiable function, the

Fig. 3. Dependencies of the model variants to different levels of bone shaft truncation.

Fig. 4. Evaluation on Cohort 2). a, test set positioning errors. b, relevant precision
classes. c, planning geometry (red: prediction, green: ground truth) and line heatmaps.
(Color figure online)
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planning target and the anatomical feature extractor can be optimized jointly.
Improving target positioning accuracy while maintaining the core idea of step-
wise geometric planning is a critical design decision that fosters clinical accep-
tance. Intriguingly, integrating the planning function into the computation graph
can be interpreted as learning with a known operator [16], allowing end-to-end
training and effectively reducing the upper error bound. In this context, it should
be noted that minimizing only the DGS term yields a trivial solution where the
extracted landmarks collapse to a single point at the planning target position.
While these solutions offer competitive precision, they are undesirable because
they do not mimic the clinically established planning workflow and cannot be
easily verified for anatomic fidelity. An important trait of DGS is the improve-
ment in spatial generalization. Especially in the intra-operative environment with
constrained patient and device positioning, we cannot always expect standard
acquisitions with sufficiently large bone shafts. There, DGS successfully bridges
the semantic gaps present in the current proxy optimization strategy, reducing
malpositioning when landmark visibility is limited. Besides these advantages,
our current implementation of the planning function imposes little geometric
constraints and, in theory, allows for different anatomical feature configurations
that arrive at the same planning target. Reducing the space of possible solutions
could ensure planning fidelity and smooth the optimization landscape.

Despite this limitation, our method effectively improves positioning accuracy
and spatial generalization in orthopedic surgical planning. At the same time, it
allows maintaining the clinically established planning geometry. We believe that
these aspects facilitate the translation of planning automation concepts to the
field and will ultimately motivate the development of new planning guidelines.

Disclaimer. The methods and information presented here are based on research and

are not commercially available.
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