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Abstract. Automated analysis of optical colonoscopy (OC) video
frames (to assist endoscopists during OC) is challenging due to varia-
tions in color, lighting, texture, and specular reflections. Previous meth-
ods either remove some of these variations via preprocessing (making
pipelines cumbersome) or add diverse training data with annotations
(but expensive and time-consuming). We present CLTS-GAN, a new
deep learning model that gives fine control over color, lighting, texture,
and specular reflection synthesis for OC video frames. We show that
adding these colonoscopy-specific augmentations to the training data
can improve state-of-the-art polyp detection/segmentation methods as
well as drive next generation of OC simulators for training medical stu-
dents. The code and pre-trained models for CLTS-GAN are available
on Computational Endoscopy Platform GitHub (https://github.com/
nadeemlab/CEP).
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1 Introduction

Colorectal cancer is the fourth deadliest cancer. Polyps, anomalous protrusions
on the colon wall, are precursors of colon cancer and are often screened and
removed using optical colonoscopy (OC). During OC, variations in color, tex-
ture, lighting, specular reflections, and fluid motion make polyp detection by a
gastroenterologist or an automated method challenging. Previous methods deal
with these variations either by removing specular reflections [13,14], removing
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color/texture [15], and correcting lighting [23] in the preprocessing steps (mak-
ing pipelines cumbersome) or by adding more diverse training data with expert
annotations (but expensive and time-consuming). If the automated methods can
be made invariant to color, lighting, texture, and specular reflections without
adding any preprocessing overhead or additional annotations, then these meth-
ods can act as effective second readers to gastroenterologists, improving the
overall polyp detection accuracy and potentially reducing the procedure time
(end-to-end colon wall inspection from rectum to cecum and back).

We present a new deep learning model, CLTS-GAN, that provides fine-
grained control over creation of colonoscopy-specific color, lighting, texture, and
specular reflection augmentations. Specifically, we use a one-to-many image-to-
image translation model with Adaptive Instance Normalization (AdaIn) and
noise input (StyleGAN [12]) to create these augmentations. Color and lighting
augmentations are performed by injecting 1D vectors (sampled from a uniform
distribution) using AdaIn, while texture and specular reflection augmentations
are incorporated by directly adding 2D matrices (sampled from a uniform dis-
tribution) to the latent features. The color and lighting vectors can be extracted
from one OC image and used to modify the color and lighting of another OC
image. We show that these colonoscopy-specific augmentations to the training
data can improve accuracy of the state-of-the-art deep learning polyp detection
methods as well as drive next generation OC simulators for teaching medical
students [7]. The contributions of this work are as follows:

1. CLTS-GAN, an unsupervised one-to-many image-to-image translation model
2. A novel texture loss to encourage a larger variety in texture and specular

generation for OC images
3. A method for augmenting colonoscopy frames that produces state-of-the-art

results for polyp detection
4. Latent space analysis to make CLTS-GAN more interpretable for generating

color, lighting, texture, and specular reflection

2 Related Works

The image-to-image translation task aims to translate an image from one domain
to another. Certain applications have access to ground truth information pro-
viding supervision for models like pix2pix [11]. Zhu et al. developed CycleGAN,
an image-to-image translation model without needing ground truth correspon-
dence [5]. This is done using a cycle consistency loss that drives other unsu-
pervised domain translation models. Examples include MUNIT [9] and Aug-
mented CycleGAN [1] which additionally incorporated noise to learn a many-
to-many domain translation. This many-to-many mapping lacks control over
specific image attributes. XDCycleGAN [17] and FoldIt [16] model one-to-many
image-to-image translation, however their networks functionally learn a one-to-
one mapping.

Generating realistic OC from CT scans has been used for OC simulators.
VRCaps uses a rendering approach to simulate a camera inside organs captured
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in CT scans [10]. For the colon, a simple texture is mapped on a mesh where OC
artifacts (e.g., specular reflections, fish-eye lense distortion) are added. However,
it cannot produce complex textures and colors normally found in OC. OfGAN
uses image-to-image translation with optical flow to transform colon simulator
images to OC [22]. It uses synthetic colonoscopy frames embedded with texture
and specular reflection, which improve the realism of generated images. The tex-
ture and specular mapping in the synthetic frames, however, restrict additional
texture and specular generation. Rivoir et al. use neural textures to create real-
istic and temporally consistent textures [19]. They require a full 3D mesh to
embed the neural textures making it difficult to augment annotated real videos.

Fig. 1. (a) shows user specified noise being used in F . zts is a set of 2D matrices
that goes through convolutional layers and is added to latent features throughout the
network. zcl is a 1D vector that goes through fully connected layers and is distributed
to AdaIn layers. Both zts and zcls are sampled from a uniform distribution and can be
sampled until the user is satisfied with the result. (b) depicts the forward cycle where
OC passes through G, predicting its noise vectors and VC. These are then passed into
F to reconstruct the image. F produces another OC image using different noise vectors
where Ladv is applied. (c) depicts the backwards cycle where a VC image with different
Zts is passed into F . The resulting two OC images have Ltext applied. One OC image
is used for reconstruction via G where Lcyc is applied.

3 Data

10 OC videos and 10 abdominal CT scans for virtual colonoscopy (VC) were
obtained at Stony Brook University Hospital. The OC videos were rescaled to
256× 256 and cropped to remove borders. Since the colon is deformable and
CT scans capture a single time point, there is no ground truth correspondence
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between OC and VC. The VC data uses triangulated meshes from abdominal CT
scans similar to [18]. Flythroughs were generated using Blender with two lights
on both sides of the camera to replicate a colonoscope. Additionally, the inverse
square fall-off property was applied to accurately simulate lighting conditions
in OC. A total of 3000 VC and OC frames were extracted. 1500 were used for
training while 900 and 600 were used for validation and testing.

4 Methods

CLTS-GAN is composed of two generators and three discriminators. One gen-
erator, G, uses OC to predict VC with two corresponding noise parameters.
The first parameter, zts, is a number of matrices that represent texture and
specular reflection information. The second parameter, zcl, is a 1D vector that
contains color and lighting information. The second generator, F , uses zts and
zcl to transform a VC image into a realistic OC image. Figure 1a shows how the
noise values are used in F . zcl is incorporated using AdaIn layers, which glob-
ally affects the latent features. zts is directly added to latent features offering
localized information. The complete objective function for the network is defined
as:

Lobj = λadvLadv + λcycLcyc + λtLt + λidtLidt (1)

Cycle consistency is used in many image-to-image translation models and
ensures features from the input are present in the output when transformed.
The cycle consistency loss used for OC is shown in Fig. 1b and defined as:

LOC
cyc (G,F,A) = Ex�p(A)‖x − F (Gim(x), Gcl(x), Gts(x))‖1 (2)

where x � p(A) represents a data distribution and Gim, Gcl and Gts represents
G’s output. Since G has additional outputs, the cycle consistency loss should
incorporate these extra vectors as seen in Fig. 1c.

LV C
cyc (G,F,A,Z) = Ex�p(A),z�p(Z)‖x − Gim(F (x, zcl, zts))‖1+

‖zcl − Gcl(F (x, zcl, zts))‖1+
‖zts − Gts(F (x, zcl, zts))‖1

(3)

The cycle consistency component of the objective loss function is defined as:

Lcyc = LOC
cyc (G,F,OC) + LV C

cyc (G,F, V C,Z) (4)

Each generator has a discriminator, D, which adds an adversarial loss so the
output resembles the output domain. The adversarial loss for each GAN is:

LGAN (G,D,A,B) = Ey�p(B)

[
log(D(y))

]
+ Ex�p(A)

[
log(1 − D(G(x))

]
, (5)

G has noise vectors in its output so an additional discriminator is required.
Rather than distinguishing noise values, a discriminator is applied to recreated
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images since our concern lies with the imaging rather than the noise. The discrim-
inator compares images produced by random noise vectors and vectors produced
by F. This adversarial loss is shown in Fig. 1b and is defined as:

Lrec
GAN (G,F,D,A) = Ex�p(A)

[
log(D(F (Gim(x), Gcl(x), Gts(x)))

]
+

Ex�p(A),z�p(Z)

[
log(1 − D(F (Gim(x), zcl, zts)))

]
,

(6)

The adversarial portion of the objective loss is as follows:

Ladv = LGAN (G,DG, OC, V C) + LGAN (F,DF , V C,OC)+
Lrec
GAN (G,F,Drec, OC)

(7)
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Fig. 2. To understand how zcl and zts affect the output, zcl and zts are individually
linearly interpolated. The top half shows interpolation between zcl values, while zts is
fixed. The colon-specific color and lighting gradually changes with zcl. The bottom half
shows zcl fixed, while zts is interpolated. The specular reflection shapes and texture
gradually change. The last row also shows fecal matter changing between images.

During training, F may ignore zts. To encourage using noise input, Lt is
added to penalize the network when different noise inputs have similar results.
The function penalizing the network is defined as:
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Ltext(I1, I2) =

{
α − ‖I1 − I2‖1 if α > ‖I1 − I2‖1
0 else

where I is an image and α they differ. F is applied to two different images, and
the OC images are compared using Lt as seen in Fig. 1c and defined as:

Lt = Ex�p(V C),z�p(Z)Ltext(F (x, zcl, z
1
ts), F (x, zcl, z

2
ts))

Lastly, an identity loss is added for stability. An image should be unchanged
if the input is from the output domain. It is only applied to G to encourage
texture and specular reflection generation. The identity loss is defined as:

Lidt(G,A) = Ex�p(A)‖x − Gim(x)‖1 (8)

The identity portion of the objective loss is defined as Lidt = Lidt(G,V C).
The generators are ResNets [8] with 9 blocks that use 23 MB. CLTS-GAN uses
PatchGAN discriminators [11], each using 3MB. The network was trained for
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Fig. 3. Showing the zcl vector being extracted from various reference images (top most)
and applied to target images (left most) to transfer its colon-specific color and lighting.
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200 epochs on an Nvidia RTX 6000 GPU with the following parameters: λadv =
1, λT = 10, λtext = 20, λidt = 1, and α = .1. Inference time is .04 s.

CLTS-GAN controls the output using zts and zcl. For VC, if two zcl values
are selected with a fixed zts they can be linearly interpolated and passed into F
creating gradual changes in the colon-specific color and lighting as seen in Fig. 2.
The strength of the specular reflections change with zcl since the lighting is being
altered. Similarly, zts can be linearly interpolated to provide gradual changes in
texture and specular reflection as well as fecal matter. Here the shape of the
specular reflections and texture fade in and out. Since changes in zts and zcl do
not lead to sporadic changes, they can be used in more meaningful ways.
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Fig. 4. Depicting our model using various zcl and zts values to generate realistic OC
images. The left most image is the input image for CLTS-GAN followed by the output
OC images. We show results on VC, VRCaps [10] data, and OfGAN [22] synthetic
input. Additional results can be found in Fig. 1 of the supplementary material.

Figure 3 shows the transfer of colon-specific color and lighting information
from one OC image to another. G extracts the zcl vector from the reference and
the VC and zts from the target. When these values are input to F it transfers
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the color and lighting from the reference to the target. zts remains fixed since
it is intended for generating realistic textures and specular for VC instead of
altering geometry dependant texture and specular of OC.

5 Results and Discussion

Figure 4 shows qualitative results for CLTS-GAN’s realistic OC generation using
VC images and data from VRCaps [10] and OfGAN [22]. The input was passed
to F with zts and zcl randomly sampled from a uniform distribution to show
a large variety in colon-specific color, lighting, texture and specular reflection.
More results can be found in the supplementary material. zts and zcl can be
individually changed to control the texture and specular reflection separately
from the color and lighting as shown in Figs. 2 and 3 of the supplementary
material.

Input Augmentation Input Augmentation

Fig. 5. Augmented data from CVC Clinic DB [2]. The images go through G to extract
VC and zts. zcl is sampled from a uniform distribution and passed into F .

To show quantitative evaluation of CLTS-GAN, PraNet [6], a state-of-the-art
polyp segmentation model, is trained with and without augmentation. PraNet
uses CVC Clinic DB [2] and HyperKvasir [4] for training. The images were aug-
mented with colon-specific color and lighting, while polyp specific textures and
speculars were preserved. Random zcl values are applied to training images by
extracting the VC and zts using G and passing the three values to F . Examples
are shown in Fig. 5. PraNet was trained having each image augmented 0, 1, and
3 times. When there was no augmentation or one augmentation the network
was trained for 20 epochs. To avoid overfitting on the shapes of the polyps, the
network was trained for 10 epochs when augmented 3 times. Testing results are
shown in Table 1. Data augmentation from CLTS-GAN improves the DICE, IoU,
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and MAE scores for various testing datasets. For the CVC-T dataset, using only
one augmentation appeared to have marginal improvement over using 3.

Table 1. PraNet results with and without dataset augmentation. Colon-specific color
and lighting augmentation was applied to avoid altering polyp specific textures. Results
for 1 and 3 additional images are shown in the second and third rows. Both show
improvement over PraNet without augmentation. PraNet with 1 augmentation is better
for CVC-T which indicates the network may have overfit on the shapes of polyps.

CVC-Colon DB [3] ETIS [20] CVC-T [21]

Dice↑ IoU↑ MAE↓ Dice↑ IoU↑ MAE↓ Dice↑ IoU↑ MAE↓
PraNet w/out Aug 0.712 0.640 0.043 0.628 0.567 0.031 0.871 0.797 0.10

PraNet w/ 1 Aug 0.750 0.671 0.037 0.704 0.626 0.019 0.893 0.824 0.007

PraNet w/ 3 Aug 0.781 0.697 0.030 0.710 0.639 0.027 0.884 0.815 0.010

In this work we present CLTS-GAN, a one-to-many image-to-image transla-
tion model for dataset augmentation and OC synthesis with control over color,
lighting, texture, and specular reflections. zts and zcl control these attributes, but
can be further disentangled. High intensity specular reflections can be extracted
with a loss and stored in a separate parameter. CLTS-GAN does not contain
temporal components. Adding multiple frames as input can get the network to
use the texture and specular information in a temporally consistent manner.
Moreover, in the future, we will also explore the utility of CLTS-GAN augmen-
tations in depth inference [15,17] and folds detection [16]. We hypothesize that
the full gamut of color-lighting-texture-specular augmentations can be used in
these scenarios to improve performance.
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