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Abstract. Data diversity and volume are crucial to the success of train-
ing deep learning models, while in the medical imaging field, the diffi-
culty and cost of data collection and annotation are especially huge.
Specifically in robotic surgery, data scarcity and imbalance have heav-
ily affected the model accuracy and limited the design and deployment
of deep learning-based surgical applications such as surgical instrument
segmentation. Considering this, we rethink the surgical instrument seg-
mentation task and propose a one-to-many data generation solution that
gets rid of the complicated and expensive process of data collection and
annotation from robotic surgery. In our method, we only utilize a sin-
gle surgical background tissue image and a few open-source instrument
images as the seed images and apply multiple augmentations and blend-
ing techniques to synthesize amounts of image variations. In addition,
we also introduce the chained augmentation mixing during training to
further enhance the data diversities. The proposed approach is evalu-
ated on the real datasets of the EndoVis-2018 and EndoVis-2017 surgi-
cal scene segmentation. Our empirical analysis suggests that without the
high cost of data collection and annotation, we can achieve decent sur-
gical instrument segmentation performance. Moreover, we also observe
that our method can deal with novel instrument prediction in the deploy-
ment domain. We hope our inspiring results will encourage researchers
to emphasize data-centric methods to overcome demanding deep learn-
ing limitations besides data shortage, such as class imbalance, domain
adaptation, and incremental learning. Our code is available at https://
github.com/lofrienger/Single SurgicalScene For Segmentation.

A. Wang and M. Islam—Co-first authors.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Wang (Eds.): MICCAI 2022, LNCS 13437, pp. 355–364, 2022.
https://doi.org/10.1007/978-3-031-16449-1_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16449-1_34&domain=pdf
https://github.com/lofrienger/Single_SurgicalScene_For_Segmentation
https://github.com/lofrienger/Single_SurgicalScene_For_Segmentation
https://doi.org/10.1007/978-3-031-16449-1_34


356 A. Wang et al.

1 Introduction

Ever-larger models processing larger volumes of data have propelled the extraor-
dinary performance of deep learning-based image segmentation models in recent
decades, but obtaining well-annotated and perfectly-sized data, particularly in
the medical imaging field, has always been a great challenge [6]. Various causes,
including tremendous human efforts, unavailability of rare disease data, patient
privacy concerns, high prices, and data shifts between different medical sites,
have made acquiring abundant high-quality medical data a costly endeavor.
Besides, dataset imperfection like class imbalance, sparse annotations, noisy
annotations and incremental-class in deployment [20] also affects the training
and deployment of deep learning models. Moreover, for the recent-developed
surgery procedures like the single-port robotic surgery where no dataset of the
new instruments is available [5], the segmentation task can hardly be accom-
plished. In the presence of these barriers, one effective solution to overcome the
data scarcity problems is to train with a synthetic dataset instead of a real one.

A few recent studies utilize synthetic data for training and achieve similar
and even superior performance than training with real data. For example, in
the computer vision community, Tremblay et al. [19] develop an object detec-
tion system relying on domain randomization where pose, lighting, and object
textures are randomized in a non-realistic manner; Gabriel et al. [7] make use
of multiple generative adversarial networks (GANs) to improve data diversity
and avoid severe over-fitting compared with a single GAN; Kishore et al. [14]
propose imitation training as a synthetic data generation guideline to introduce
more underrepresented items and equalize the data distribution to handle corner
instances and tackle long-tail problems.

In medical applications, many works have focused on GAN-based data syn-
thesizing [3,10,11,18], while a few works utilize image blending or image com-
position to generate new samples. For example, mix-blend [8] mixes several syn-
thetic images generated with multiple blending techniques to create new training
samples. Nonetheless, one limitation of their work is that they need to manually
capture and collect thousands of foreground instrument images and background
tissue images, making the data generation process trivial and time-consuming.
In addition, E. Colleoni et al. [4] recorded kinematic data as the data source to
synthesize a new dataset for the instrument - Large Needle Drivers. In compar-
ison with previous works, our approach only utilizes a single background image
and dozens of foreground instrument images as the data source. Without costly
data collection and annotation, we show the simplicity and efficacy of our dataset
generation framework.

Contributions. In this work, we rethink the surgical instrument segmentation
task from a data-centric perspective. Our contributions can be summarized as
follows:
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– With minimal human effort in data collection and without manual image
annotations, we propose a data-efficient framework to generate high-quality
synthetic datasets used for surgical instrument segmentation.

– By introducing various augmentation and blending combinations to the fore-
ground and background source images, and training-time chained augmen-
tation mixing, we manage to increase the data diversity and balance the
instruments class distribution.

– We evaluate our method on two real datasets. The results suggest that
our dataset generation framework is simple yet efficient. It is possible to
achieve acceptable surgical instrument segmentation performance, even for
novel instruments, by training with synthetic data that only employs a single
surgical background image.

2 Proposed Method

2.1 Preliminaries

Data augmentation has become a popular strategy for boosting the size of a
training dataset to overcome the data-hungry problem when training the deep
learning models. Besides, data augmentation can also be regarded as a regulari-
sation approach for lowering the model generalization error [9]. In other words, it
helps boost performance when the model is tested on a distinct unseen dataset
during training. Moreover, the class imbalance issue, commonly seen in most
surgical datasets, can also be alleviated by generating additional data for the
under-represented classes.

Fig. 1. Demonstration of the proposed dataset generation framework with
augmenting and blending. With minimal effort in preparing the source images, our
method can produce large amounts of high-quality training samples for the surgical
segmentation task.
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Blending is a simple yet effective way to create new images simply by image
mixing or image composition. It can also be treated as another kind of data
augmentation technique that mixes the information contained in different images
instead of introducing invariance to one single image. Denote the foreground
image and background image as xf and xb, we can express the blended image
with a blending function Θ as

x = Θ(xf , xb) = xf ⊕ xb (1)

where ⊕ stands for pixel-wise fusion.
Training-time augmentation can help diversify training samples. By mix-

ing various chained augmentations with the original image, more image varia-
tions can be created without deviating too far from the original image, as pro-
posed by AugMix [12]. In addition, intentionally controlling the choices of aug-
mentation operations can also avoid hurting the model due to extremely heavy
augmentations. A list of augmentation operations is included in the augmenta-
tion chains, such as auto-contrast, equalization, posterization, solarization, etc.

2.2 Synthesizing Surgical Scenes from a Single Background

Background Tissue Image Processing. We collect one background tissue
image from the open-source EndoVis-2018 dataset1 where the surgical scene is
the nephrectomy procedures. The critical criterion of this surgical background
selection is that the appearance of the instrument should be kept as little as
possible. In the binary instrument segmentation task, the background pixels
are all assigned with the value 0. Therefore, the appearance of instruments
in the source background image will occupy additional effort to handle. Vari-
ous augmentations have been applied to this single background source image
with the imgaug2 library [13], including LinearContrast, FrequencyNoiseAlpha,
AddToHueAndSaturation, Multiply, PerspectiveTransform, Cutout, Affine, Flip,
Sharpen, Emboss, SimplexNoiseAlpha, AdditiveGaussianNoise, CoarseDropout,
GaussianBlur, MedianBlur, etc. We denote the generated p variations of the
background image as the background images pool Xp

b = {x1
b , x

2
b , ..., x

p
b}. As

shown in Fig. 1, various augmented background images are generated from the
single source background tissue image to cover a wide range of background dis-
tribution.

Foreground Instruments Images Processing. We utilize the publicly avail-
able EndoVis-2018 [1] dataset as the open resource to collect the seed fore-
ground images. There are 8 types of instruments in the EndoVis-2018 [1] dataset,
namely Maryland Bipolar Forceps, Fenestrated Bipolar instruments, Prograsp
Forceps, Large Needle Driver, Monopolar Curved Scissors, Ultrasound Probe,
Clip Applier, and Suction Instrument. We only employ 2 or 3 images for each

1 https://endovissub2018-roboticscenesegmentation.grand-challenge.org/.
2 https://github.com/aleju/imgaug.

https://endovissub2018-roboticscenesegmentation.grand-challenge.org/
https://github.com/aleju/imgaug
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instrument as the source images. We extract the instruments and make their
background transparent. The source images are selected with prior human knowl-
edge of the target scenes to ensure their high quality. For example, for some
instruments like Monopolar Curved Scissors, the tip states (open or close) are
crucial in recognition, and they are not reproducible simply by data augmen-
tation. Therefore, we intentionally select source images for such instruments to
make it possible to cover different postures and states. In this way, we aim to
increase the in-distribution data diversity to substantially improve generalization
to out-of-distribution (OOD) category-viewpoint combinations [15]. Since we get
rid of annotation, the instrument masks are applied with the same augmenta-
tions as the instruments to maintain the segmentation accuracy. We denote the
generated q variations of the foreground images as the foreground image pool
Xq

f = {x1
f , x2

f , ..., xq
f}. Figure 1 shows some new synthetic instruments images.

The foreground images pool, together with the background images pool, forms
the augmented images pool, which is used for the following blending process.

Blending Images. After obtaining the background image pool Xp
b and the

foreground image pool Xq
f , we randomly draw one sample from these two pools

and blend them to form a new composited image. Specifically, the foreground
image is pasted on the background image with pixel values at the overlapped
position taken from the instruments. Furthermore, considering the real surgical
scenes, the number of instruments in each image is not fixed. We also paste two
instrument images on the background occasionally. Due to this design, we expect
the model could better estimate the pixel occupation of the instruments in the
whole image. Denoting the blended image as xs, finally, the blended images pool
with t synthetic images can be presented as Xt

s = {x1
s, x

2
s, ..., x

t
s} = {Θ(xi

f , xj
b)},

where i = 1, 2, ..., p and j = 1, 2, ..., q.

In-training Chained Augmentation Mixing. Inspired by AugMix [12], we
apply the training-time chained augmentation mixing technique to further make
the data more diverse and also improve the generalization and robustness of the
model. The number of augmentation operations in each augmentation chain is
randomly set as one, two, or three. The parameters in the Beta distribution and
the Dirichlet distribution are all set as 1. We create two sets of augmentation
collections, namely AugMix-Soft and AugMix-Hard. Specifically, AugMix-Soft
includes autocontrast, equalize, posterize and solarize, while AugMix-Hard has
additional color, contrast, brightness, and sharpness augmentations. The overall
expression of the synthetic training sample after the training-time augmentation
mixing with N chains is

xAM
s = m · Θ(xf , xb) + (1 − m) ·

N∑

i=1

(wi · Hi(Θ(xf , xb))) (2)

where m is a random convex coefficient sampled from a Beta distribution, wi is
also a random convex coefficient sampled from a Dirichlet distribution control-
ling the mixing weights of the augmentation chains. Both distribution functions
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have the same coefficient value of 1. Hi denotes the integrated augmentation
operations in the ith augmentation chain.

3 Experiments

3.1 Datasets

Based on effortlessly collected source images and considering the contents in real
surgery images, we apply a wide range of augmentation and blending operations
to create abundant synthetic images for training. Only one background tissue
image is adopted to generate our synthetic datasets. Specifically, for the case
of 2 source images per instrument, we first organize the dataset Synthetic-A
with 4000 synthetic images, and only one instrument exists in each synthetic
image. Then we consider adding up additional 2000 synthetic images to build the
dataset Synthetic-B where each image contains 2 distinct instruments. Moreover,
we utilize one more source foreground image for each instrument and generate
2000 more synthetic images, among which 80% contain one instrument, and the
remaining 20% contain 2 different instruments. This dataset with 8000 samples
in total is named Synthetic-C.

To evaluate the quality of the generated surgical scene dataset, we con-
duct binary segmentation experiments with our synthetic datasets and the real
EndoVis-2018 [1] dataset. We also evaluate on EndoVis-2017 [2] dataset to show
that the model trained with our synthetic dataset also obtains good general-
ization ability to handle new domains with unseen instruments like the Vessel
Sealer.

Fig. 2. Qualitative comparison of the binary segmentation results. (b) repre-
sents the ground truth. (c), (d), (e), and (f) show the results obtained from models
trained with the EndoVis-2018 dataset and our three synthetic datasets.
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3.2 Implementation Details

The classic state-of-the-art encoder-decoder network UNet [17] is used as our
segmentation model backbone. We adopt a vanilla UNet architecture3 with
Pytorch [16] library and train the model with NVIDIA RTX3090 GPU. The
batch size of 64, the learning rate of 0.001, and the Adam optimize are identi-
cally used for all experiments. The binary cross-entropy loss is adopted as the loss
function. We use the Dice Similarity Coefficient (DSC) to evaluate the segmenta-
tion performance. The images are resized to 224×224 to save the training time.
Besides, we refer to the implementation4 of AugMix [12] to apply training-time
chained augmentation mixing.

3.3 Results and Discussion

We evaluate the quality and effectiveness of our generated dataset with the
EndoVis-2018 [1] and EndoVis-2017 [2] datasets, with the latter one considered
as an unseen target domain because it does not contribute to our synthetic
dataset generation. The results in Table 1 indicate that our methods can com-
plete the segmentation task with acceptable performance for both datasets. As
shown in Fig. 2, the instruments masks predicted by our models only have min-
imal visual discrepancy from the ground truth. Considering our datasets only
depend on a few trivially collected source images and get rid of gathering and
annotating hundreds of real data samples, the result is promising and revolu-
tionary for low-cost and efficient surgical instrument segmentation.

Table 1. Overall results of the binary surgical instrument segmentation in
DSC (%) with the EndoVis-2018 dataset and our three synthetic datasets.
AM is short for the training-time augmentation mixing. Best results of ours are shown
in bold.

Train Test on EndoVis-2018 Test on EndoVis-2017

AM-None AM-Soft AM-Hard AM-None AM-Soft AM-Hard

EndoVis-2018 81.58 83.15 82.91 83.21 84.06 83.43

Synthetic-A 56.82 66.74 71.03 72.74 72.23 65.13

Synthetic-B 57.37 69.42 72.53 72.65 73.21 72.41

Synthetic-C 59.28 71.48 73.51 74.37 75.69 75.16

3.4 Ablation Studies

To show the efficacy of our training-time chained augmentation mixing, we first
conduct experiments with a relevant data augmentation technique - ColorJitter,
3 https://github.com/ternaus/robot-surgery-segmentation.
4 https://github.com/google-research/augmix.

https://github.com/ternaus/robot-surgery-segmentation
https://github.com/google-research/augmix
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which randomly changes the brightness, contrast, and saturation of an image.
Training with the Synthetic-C dataset, our augmentation strategy outperforms
ColorJitter significantly with 5.33% and 4.29% of DSC gain on EndoVis-2018
and EndoVis-2017 datasets.

We then study the effectiveness of training with synthetic data in handling
the class-incremental issue in the deployment domain. Compared with EndoVis-
2018 [1] dataset, there are two novel instruments in EndoVis-2017 [2], namely
the Vessel Sealer and the Grasping Retractor. Following our proposed framework
in Fig. 1, we generate 2000 synthetic images for the novel instruments and com-
bine them with EndoVis-2018 [1] for training. As indicated in the highlighted
area of Fig. 3(a), the model manages to handle the class-incremental problem
to recognize the Vessel Sealer, with only minimal effort of adding synthesized
images. The overall performance on the test domain improves significantly, as
shown in Fig. 3(b).

Image GT

Endo18 Endo18 + Syn17

83.21

84.06

83.43

85.08

85.72

85.04

Endo18 Endo18 + Syn17

AugMix-None AugMix-Soft AugMix-Hard

DSC (%)

83.5

83.0

84.0

84.5

85.5

85.0

86.0

(a) Qualitative comparison (b) Quantitative comparison

Fig. 3. Qualitative and quantitative results of the class-incremental case.
The novel instrument Vessel Sealer is highlighted with the yellow rectangle in (a). The
overall performance on EndoVis-2017 [2] gets greatly improved as shown in (b). (Color
figure online)

While sufficient well-annotated datasets are not common in practice, a few
high-quality data samples are normally feasible to acquire. We further investigate
the effect of introducing a small portion of real images when training with syn-
thetic data. We randomly fetch 10% and 20% of the EndoVis-2018 [1] dataset
and combine it with our Synthetic-C dataset. The results in Table 2 indicate
that only a small amount of real data could provide significant benefits. Com-
pared with training with the real EndoVis-2018 [1] dataset, the models from the
synthetic-real joint training scheme can efficiently achieve similar performance
regarding adaptation and generalization.
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Table 2. Results of synthetic-real joint training. Adding only a small portion of
real data can greatly improve the segmentation performance.

Test Train

Synthetic-C Synthetic-C
+ 10% Endo18

Synthetic-C
+ 20% Endo18

Endo18

EndoVis-2018 73.51 80.65 82.45 82.91

EndoVis-2017 75.16 82.10 82.48 83.43

4 Conclusion

In this work, we reevaluate the surgical instrument segmentation and propose a
cost-effective data-centric framework for synthetic dataset generation. Extensive
experiments on two commonly seen real datasets demonstrate that our high-
quality synthetic datasets are capable of surgical instrument segmentation with
acceptable performance and generalization ability. Besides, we show that our
method can handle domain shift and class incremental problems and greatly
improve the performance when only a small amount of real data is available.
Future work may be extended to more complicated instrument-wise segmenta-
tion and other medical applications. Besides, by considering more prior knowl-
edge in practical surgical scenes, such as cautery smoke and instruments shadow,
the quality of the synthetic dataset can be further improved.
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