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Abstract. This paper reports a CPU-level real-time stereo matching
method for surgical images (10 Hz on 640× 480 image with a single core
of i5-9400). The proposed method is built on the fast LK algorithm,
which estimates the disparity of the stereo images patch-wisely and in
a coarse-to-fine manner. We propose a Bayesian framework to evaluate
the probability of the optimized patch disparity at different scales. More-
over, we introduce a spatial Gaussian mixed probability distribution to
address the pixel-wise probability within the patch. In-vivo and synthetic
experiments show that our method can handle ambiguities resulted from
the textureless surfaces and the photometric inconsistency caused by the
non-Lambertian reflectance. Our Bayesian method correctly balances the
probability of the patch for stereo images at different scales. Experiments
indicate that the estimated depth has similar accuracy and fewer out-
liers than the baseline methods in the surgical scenario with real-time
performance. The code and data set are available at https://github.com/
JingweiSong/BDIS.git.

Keywords: Stereo matching · Bayesian theory · Posterior probability
inference

1 Introduction

Real-time 3D intra-operative tissue surface shape recovery from stereo images is
important in Computer Assisted Surgery (CAS). The reconstructed depth is a
crucial for dense Simultaneous Localization and Mapping (SLAM) [23,24], AR
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system [11,28] and diseases diagnosis [13,18]. All stereo matching procedures fol-
low the pinhole camera model [2] and conduct image rectification, undistortion,
and disparity estimation. The stereo matching techniques are normally classi-
fied into two categories regarding disparity estimation: prior-free and learning-
based. Conventional prior-free methods estimate the pixel-wise disparity using
the image alignment techniques [8,12,14,20,25]. Based on the left-right image
consistency assumption (photo-metric or feature-metric), they either use corner
feature registration, dense direct pixel searching, or a combination. Differently,
Deep Neural Network (DNN) based techniques directly learn the disparity from
the training image pairs [3,16,26,29,30]. Although DNN methods are reported
to be efficient, the results may be invalidated with changing parameters such as
focal length and baseline or a large texture difference between the training and
testing data [1,19]. Moreover, the DNN-based methods heavily depend on the
size and quality of the annotated training data, which are not accessible in many
CAS scenarios.

In the category of prior-free methods, ELAS [8] is still one of the most widely
used stereo matching algorithms due to its robustness and accuracy [23,24,32,
33]. It is also the most popular method in the industry [4,31]. ELAS uses Sobel
descriptors to match sparse corners as the supporting points and triangulate the
pixel-wise disparity prior. Then, the optimal dense disparity is retrieved with its
proposed maximum a-posteriori algorithm. Its two-step process requires around
0.25–1 s on a single modern CPU core. This paper aims for a faster CPU-based
stereo matching method.

The Dense Inverse Searching (DIS) [14] shows the potential of dense direct
matching without the time-consuming sparse supporting points alignment. By
resizing the left and right images to several coarse scales, it adopts and modi-
fies the Lucas-Kanade (LK) optical flow algorithm [17] for fast estimating the
pixel-wise optimal disparity. [14] demonstrates that real-time computation is
possible with its patch-based coarse-to-fine dense matching, where patch refers
to an arbitrary squared image segment. However, DIS is strictly built based on
the photometric consistency and surface texture abundance assumptions, which
cannot always be satisfied in CAS. The two main challenges are the texture-
less/dark surfaces and the serious non-Lambertian reflectance. The weak/dark
texture, which widely exists in CAS, leads to ambiguous photometric consis-
tency. Meanwhile, non-Lambertian reflectance brings uneven disturbance on the
surfaces, and it cannot be eliminated by just enforcing the patch normaliza-
tion [21].

In this paper, to deal with photometric inconsistency and non-Lambertian
reflectance in stereo matching, we propose a Bayesian Dense Inverse Searching
(BDIS) to quantify the posterior probability of each optimized patch. A spatial
Gaussian Mixture Model (GMM) is further adapted to quantify pixel-wise con-
fidence within the patch. The final pixel-wise disparity is the fusion of multiple
local overlapping patches, reducing the impact of those patches suffering from the
textureless/dark surfaces or the non-Lambertian reflectance. In extreme cases,
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it is beneficial to give up the disparity estimation of some patches identified as
dubious. In particular, this work has the following contributions:

– A Bayesian approach is developed to quantify the posterior probability of the
patch.

– A spatial GMM is introduced to quantify the pixels’ confidence within the
patch.

– To our knowledge, BDIS is the first single core CPU based stereo matching
approach that achieves similar performance to the near real-time method
ELAS.

2 Methodology

2.1 Multiscale DIS

Figure 1 shows the DIS (based on fast LK) algorithm for stereo matching pro-
posed by [14]. It is a modified version of the LK algorithm. We use the fast DIS
as our base framework. Note that the variational refinement module in [14] is
abandoned because it has a small (less than 0.5%) contribution in promoting
the accuracy. The modified fast LK based DIS is achieved by minimizing the
following objective function:

Δu = argminΔu′
∑

x

[Ir (x + u) − Il(x + Δu′)]2 , (1)

where x is the processed location, u is the estimated disparity in the loop, Il and
Ir are the left image patch and right image, and Δu is the optimal update of
u at one loop. Different from authentic LK, Δu′ is moved from the right image
to the left image patch. The improvement avoids the expensive re-evaluation of
the Hessian on the right image. (1) is traversed on all patches at different scales.
The disparity at the fine-scale level is initialized at the optimized coarse scale.
The optimal disparity at the location x is the weighted fusion with all covering
patches using inverse residual:

ûx =
∑

k∈Ω

1/max(‖Il(x + u(k)) − Ir(x)‖2, 1)∑
k∈Ω 1/max(‖Il(x + u(k)) − Ir(x)‖2, 1)

u(k), (2)

where Ω is the set of patches covering the position x, u(k) is the estimated
disparity of the patch k and max(·, ·) selects the maximum value. The pixel-wise
disparity ûx is the weighted average of the estimated disparities from all patches,
wherein the weight is the inverse residual of brightness.
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Fig. 1. The framework of the DIS algorithm [14]. It uses 3 scale levels as an example.

2.2 The Bayesian Patch-Wise Posterior Probability

The residual-based weighted average fusion (2) suffers from the ambiguities
brought by the textureless/dark surface and non-Lambertian reflectance. The
textureless/dark surface leads to ambiguous local minima of the cost function
penalizing photometric inconsistency (1) and misleads the algorithm to be over-
confident on the estimation. Furthermore, the photometric consistency presump-
tion is seriously violated on the surface affected heavily by the non-Lambertian
reflectance. The affine lighting changes formulation in previous large-scale SLAM
studies [7] cannot fully tackle the complex and severe non-Lambertian reflectance
in CAS. In both situations, the weights retrieved from the photometric residuals
(2) are misleading. To overcome the difficulty in defining the confidence of the
estimated disparity, we propose a Bayesian model to correctly estimate the con-
fidence in the presence of textureless surface and non-Lambertian reflectance.
Since the uncertainty distribution of both the left and right scenes is unclear, it
is difficult to conduct the direct inference of the posterior probability in terms
of disparity. Thus, we implicitly infer the probability with Bayesian modeling
using Conditional Random Fields (CRF) [27]. The posterior probability of the
patch-wise disparity u(k) is

p(u(k)|Il, Ir) ∝ p(Ir|Il,u(k))
p(Ir, Il,u(k))

∝ p(Ir|Il,u(k))

Σ
u

(k)
i ∈Pp(Ir|Il,u

(k)
i )

∝ p(Ir|Il,u(k))

Σ
u

(k)
i ∈P′p(Ir|Il,u

(k)
i )

r,

(3)
where P is the domain of all possible choice of u(k)

i . To reduce computational
load, r is applied as the constant compensation ratio for all patches within the
window. P is reduced to a small window P ′ assuming the rest candidates are
numerically trivial.

Equation (3) indicates that the posterior probability of the disparity can be
obtained by traversing the probability on all possible u(k)

i . And the possible
choice of disparity is equal to window size s. Even though the posterior probabil-
ity suffers from the textureless surface and non-Lambertian reflectance, the illu-
mination consistency probability is proportional to the residuals because the set
of neighboring disparities is within one patch, and the impact of the issues is con-
sistent. Thus, we model the illumination consistency probability p(Ir|Il,u

(k)
i ,x)
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based on the Boltzmann distribution [15] as

p(Ir|Il,u
(k)
i ) = exp

(
−‖Il(u

(k)
i ) − Ir(u

(k)
i )‖2F

2σ2
rs2

)
, (4)

where ‖·‖F is the Frobenius norm and σr is the hyperparameter to describe the
variance of the brightness. The relative posterior probability can be obtained
with (3) and (4). Generally, the absolute exponential parameter of the Boltzmann
distribution denotes the entropy of the state. In our case, such entropy is defined
as (4). Image with abundant texture has more entropy loss. Hence, the entropy
item is highly related to the photometric inconsistency loss.

Figure 2 shows the relationship between the illumination consistency proba-
bility density function and the texture. The response is stronger on the textured
surface. The residuals are always small in the textureless surface, no matter how
the left and right images are aligned. (2) cannot correctly measure the weights
while (4) describes the relative probability of the estimation. Moreover, it tests
the local convergence to filter the Saddle point solutions.

Fig. 2. The probability density function of the textureless region.

2.3 The Prior Spatial Gaussian Probability

In addition to the patch-wise posterior probability of the disparity in the last
section, a spatial GMM is adopted to estimate pixel-wise probability within
the patch. Considering that medical images are natural images, a multivariate
Gaussian distribution is adopted to measure the confidence of the pixel-wise
probability using a Gaussian mask. In accordance with the multivariate Gaussian
distribution, the center of the patch has higher confidence than the edge pixels
since those central pixels preserve more information for inference. Assuming all
pixels in the patch are i.i.d, we have

p(u(k)|Il, Ir,x) ∝ p(u(k)|Il, Ir) exp

(
−

∑
ξ(k)(x)‖x − ξ(k)(x)‖2F

2σ2
s

)
, (5)

where ξ(k)(x) is the set of all pixel positions within the patch k in image coordi-
nate. σs is the 2D spatial variance of the probability. Note that (5) is independent
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of the patch and can therefore be pre-computed before the process. Combining
(3), (4) and (5), the final pixel-wise posterior probability distribution can be
represented as follows,

p(u(k)|Il, Ir,x)∝exp

(
−

∑
ξ(k)(x)‖x − ξ(k)(x)‖2F

2σ2
s

) exp

(
−‖Il(u

(k))−Ir(u
(k))‖2

F
2σ2

rs
2

)
∑

u
(k)
i ∈P exp

(
− ‖Il(u

(k)
i )−Ir(u

(k)
i )‖2

F
2σ2

rs
2

) .

Finally, it should be emphasized that (4) and (5) are not the cost functions
but probability/weight for each patch or pixel. Costly optimization steps are
avoided.

3 Results and Discussion

BDIS was compared with DIS [14], SGBM [12] and ELAS [8] on the in-vivo and
the synthetic data sets1. The computations were implemented on a commercial
desktop (i5-9400) in C++. DNN-based methods PSMNet [5] and GwcNet [10]
were also compared for completeness and the computation was conducted on
the GTX 1080ti in PyTorch. The public in-vivo stereo videos from [9] were
adopted which contains 200 images with size 640×480 and 200 images with size
288×360. All stereo images were rectified, undistorted, calibrated, and vertically
aligned with the provided intrinsic and extrinsic parameters. We also provided
a synthetic data set generated from an off-the-shelf virtual phantom of a male’s
digestive system. A virtual handheld colonoscope was placed inside the colon and
was manipulated to go through the colon to collect the depth and stereo images.
The 3D game engine Unity3D2 was used to generate the sequential stereo and
depth images with a pin-hole camera in size 640×480. The synthetic distortion-
free data has accurate intrinsic and extrinsic parameters. Both diffuse lighting
(100 frames) and non-Lambertian reflectance (100 frames) were simulated. γ was
set to 0.75 for 640×480 and 0.25 for 288×360 data to discard the patch without
enough valid pixels. σr and σs were set to 4; the sampling within one Bayesian
window was 5; the disturbance from the convergence was 0.5 and 1 pixel.

3.1 Quantitative Comparisons on the Synthetic Data Set

BDIS was compared quantitatively with the baseline methods ELAS, SGBM,
DIS, PSMNet, and GwcNet. The comparison between the prior-based DNN-
based method and BDIS is for completeness only. The default setting of PSMNet
and GwcNet were strictly followed. The pre-trained networks were adopted and
finetuned with the labeled 300 (training) and 50 (validation) synthetic images for
training and validation. Both were trained with Adam optimizer in 300 epochs.

Table 1 and Fig. 3 show the comparisons on the synthetic data set, which
are unaffected by distortion and inaccurate camera parameters. Considering
1 Readers are encouraged to watch the attached video and test the code.
2 https://unity.com/.

https://unity.com/
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Fig. 3. Sample reconstructions in Diffuse lighting and Lambertian reflectance scenarios.

Table 1. The results on the synthetic data with diffused light and Lambertian
reflectance.

ELAS SGBM DIS BDIS GwcNet PSMnet

Diffuse
light

Median error 0.178 0.512 0.251 0.161 0.542 0.417

Mean error 0.220 1.113 0.753 0.320 0.809 0.641

Valid pixels (1000) 166.77 103.92 288.41 208.44 100.00 301.42

Non-
Lambertian
reflectance

Median error 0.198 0.710 0.376 0.163 0.271 0.731

Mean error 0.235 1.400 1.051 0.379 0.662 1.027

Valid pixels (1000) 81.50 74.29 295.92 204.42 106.38 301.46

the median error, BDIS is the best and has 9.55% and 17.68% higher accu-
racy than ELAS in diffuse lighting and non-Lambertian reflectance. The results
indicate that BDIS is more advantageous in the scenario of non-Lambertian
reflectance over ELAS, thus more robust in surgical scenarios. Results also show
that BDIS cannot handle the edges well. Figure 3 and Table 1 reveal the bad
mean error comparison is attributed to the small group of far-out points on the
dark regions/edges. The number of valid prediction suggest BDIS produces more
predictions but suffers from inaccurate dark region predictions.

Readers may notice the bad performance of DNN, which contradicts the
conclusion from [1]. The reason is that the finetuning training process does not
yield satisfying model parameters. The synthetic data set for transfer learning
and the data used to pre-train the DNN are significantly different in terms of
textures. Studies [6,22] indicate that the performance of the convolutional DNN
is heavily dependent on the image texture, and efforts were devoted to bridging
the domain gap [6,34]. The bad training process indicates its strong dependency
on the training data set, which can be avoided using prior-free methods. Further
tests will be conducted on labeled in-vivo data set.
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3.2 Qualitative Comparisons on the In-vivo Dataset

We compared ELAS, BDIS, DIS, and SGBM on the in-vivo data sets. Since
no ground truth is provided, DNN-based methods cannot be implemented. We
aim to show that BDIS achieves similar accuracy as ELAS since near real-time
ELAS is widely used in the community. Based on the scope-to-surface distance,
the samples were categorized into five groups. Results show that BDIS achieves
an average 0.4–1.66 mm (median error) and 0.65–2.32 mm (mean error) deviation
from ELAS’s results.

The invalid/dark/bright pixels lead to photometric inconsistency in the
stereo matching process. Figure 4 shows the qualitative comparisons of ELAS,
DIS, SGBM, and BDIS on the relatively well-textured images. Generally, BDIS
achieves similar performance as ELAS but better matches pixels at the image
edge with fewer outliers. DIS and SGBM suffer from the wrong edges. Invalid
pixels inevitably exist on the edges of the rectified image after the image undis-
tortion. Thus, in the coarse-level patch disparity estimation, patches with more
invalid pixels are more likely to fail in convergence or yield local minima (abnor-
mal depth) due to insufficient information. The dubious predictions, however,
substantially influence the prediction and the initialization of the disparity at the
finer-scale patch optimization (as in (2)). BDIS solves the problem by quantify-
ing the posterior probability, discarding the patch that does not converge, and
lowering the patches’ probabilities with invalid pixels. Although the discarded
patch does not help yield disparity, other patches compensate for the loss. If one
pixel is not covered by any patch, we follow ELAS not to optimize the pixel.

Another noticeable problem is the ambiguous local minima in the cost func-
tion, which penalizes the photometric inconsistency. Figure 4 shows BDIS has
fewer local minima than DIS and SGBM and is similar to ELAS. Figure 4 (a–
b) indicates that the BDIS addresses the patchs’ probabilities with textured
and alleviates the ambiguous disparity from the textureless surface. Figure 4
(c–e) show that the ambiguities caused by the illumination have been greatly
reduced. The quantitative results also provide evidence on its side. It should be
emphasized that this work does not enforce any prior smoothness constraint in
the optimization process.

We additionally tested BDIS and ELAS on the surfaces with serious non-
Lambertian reflectance (Fig. 5). The photometric consistency of this data dete-
riorates significantly. Figure 5 shows that the center of the soft tissue is exposed
to intense lighting while the marginal region is dark. Figure 5 indicates that
ELAS suffers from the ambiguity on the marginal dark regions while BDIS can
ignore or estimate most dark pixels correctly.

3.3 Processing Rate Comparison

We compared the time consumption of ELAS, DIS, and BDIS on a single core
of CPU (i5-9400). BDIS runs 10 Hz on 640 × 480 image and 25 Hz on 360 × 288
image while ELAS achieves 4 Hz and 11 Hz. The two DNN methods GwcNet
and PSMnet run 3 Hz and 5 Hz on GTX 1080ti. BDIS consumes double the
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time of DIS. The majority of the extra time of BDIS is devoted to patch-wise
window traversing. Since the sampling window size is 5 in the experiment, 5 more
times residual estimations are needed. In general, BDIS achieves similar/better
performance over ELAS but runs 2 times faster.

Fig. 4. Sample recovered shapes of the 5 classes. Circles mark the regions with large
error.

Fig. 5. The qualitative comparisons on the heavy Lambertian reflectance and dark
case.
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4 Conclusion

We propose BDIS, the first CPU-level real-time stereo matching approach for
CAS. BDIS inherits the fast performance of DIS while being more robust to
textureless/dark surface and severe non-Lambertian reflectance. It achieves sim-
ilar or better performance in accuracy as the near real-time method ELAS. A
Bayesian approach and a spatial GMM are developed to describe the relative
confidence of the pixel-wise disparity to achieve the performance. Experiments
indicate that BDIS has fewer outliers than DIS and achieves a lower amount of
outlier predictions than the near real-time ELAS.
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