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Abstract. This paper proposes a novel and fast self-supervised solution
for sparse-view CBCT reconstruction (Cone Beam Computed Tomogra-
phy) that requires no external training data. Specifically, the desired
attenuation coefficients are represented as a continuous function of 3D
spatial coordinates, parameterized by a fully-connected deep neural net-
work. We synthesize projections discretely and train the network by min-
imizing the error between real and synthesized projections. A learning-
based encoder entailing hash coding is adopted to help the network
capture high-frequency details. This encoder outperforms the commonly
used frequency-domain encoder in terms of having higher performance
and efficiency, because it exploits the smoothness and sparsity of human
organs. Experiments have been conducted on both human organ and
phantom datasets. The proposed method achieves state-of-the-art accu-
racy and spends reasonably short computation time.
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1 Introduction

Cone Beam Computed Tomography (CBCT) is an emerging medical imaging
technique to examine the internal structure of a subject noninvasively. A CBCT
scanner emits cone-shaped X-ray beams and captures 2D projections at equal
angular intervals. Compared with the conventional Fan Beam CT (FBCT),
CBCT enjoys the benefits of high spatial resolution and fast scanning speed [19].
Recent years have witnessed the blossoming of low dose CT, which delivers a
significantly lower radiation dose during the scanning process. There are two
ways to reduce the dose: decreasing source intensity or projection views [8]. This
paper focuses on the latter, i.e., sparse-view CBCT reconstruction.

Sparse-view CBCT reconstruction aims to retrieve a volumetric attenuation
coefficient field from dozens of projections. It is a challenging task in two respects.
First, insufficient views lead to notable artifacts. As a comparison, the traditional
CBCT obtains hundreds of images. The inputs of sparse-view CBCT are 10×
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fewer. Second, the spatial and computational complexity of CBCT reconstruc-
tion is much higher than that of FBCT reconstruction due to the dimensional
increase of inputs. CBCT relies on 2D projections to build a 3D model, while
FBCT simplifies the process by stacking 2D slides restored from 1D projections
(but in the sacrifice of time and dose).

Existing CBCT approaches can be divided into three categories: analytical,
iterative and learning-based methods. Analytical methods estimate attenuation
coefficients by solving the Radon transform and its inverse. A typical example is
the FDK algorithm [7]. It produces good results in an ideal scenario but copes
poorly with ill-posed problems such as sparse views. The second family, iterative
methods, formulates reconstruction as a minimization process. These approaches
utilize an optimization framework combined with regularization modules. While
iterative methods perform well in ill-posed problems [2,20], they require sub-
stantial computation time and memory. Recently, learning-based methods have
become popular with the rise of AI. They use deep neural networks to 1) predict
and extrapolate projections [3,22,24,28], 2) regress attenuation coefficients with
similar data [11,27], and 3) make optimization process differentiable [1,6,10].
Most of these methods [3,11,22,27] need extensive datasets for network train-
ing. Moreover, they rely on neural networks to remember what a CT looks like.
Therefore it is difficult to apply a trained model of one application to another.
While there are self-supervised methods [1,28], they operate under FBCT set-
tings considering network capacity and memory consumption. Their performance
and efficiency drop when applied to the CBCT scenario.

Apart from the aforementioned work designated for CT reconstruction,
efforts have been made to deal with other ill-posed problems, such as 3D recon-
struction in the computer vision field. Similar to CT reconstruction, 3D recon-
struction uses RGB images to estimate 3D shapes, which are usually represented
as discrete point clouds or meshes. Recent studies propose [13,16] Implicit Neu-
ral Representation (INR) as an alternative to those discrete representations. INR
parameterizes a bounded scene as a neural network that maps spatial coordinates
to metrics such as occupancy and color. With the help of position encoder [14,21],
INR is capable to learn high-frequency details.

This paper proposes Neural Attenuation Fields (NAF), a fast self-supervised
solution for sparse-view CBCT reconstruction. Here we use ‘self-supervised’ to
highlight that NAF requires no external CT scans but the X-ray projections of
the interested object. Inspired by 3D reconstruction work [13,16], we parameter-
ize the attenuation coefficient field as an INR and imitates the X-ray attenuation
process with a self-supervised network pipeline. Specifically, we train a Multi-
Layer Perceptron (MLP), whose input is an encoded spatial coordinate (x, y, z)
and whose output is the attenuation coefficient μ at that location. Instead of
using a common frequency-domain encoding, we adopt hash encoding [14], a
learning-based position encoder, to help the network quickly learn high-frequency
details. Projections are synthesized by predicting the attenuation coefficients of
sampled points along ray trajectories and attenuating incident beams accord-
ingly. The network is optimized with gradient descent by minimizing the error
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between real and synthesized projections. We demonstrate that NAF quanti-
tatively and qualitatively outperforms existing solutions on both human organ
and phantom datasets. While most INR approaches take hours for training, our
method can reconstruct a detailed CT model within 10–40 minutes, which is
comparable to iterative methods.

In summary, the main contributions of this work are:

– We propose a novel and fast self-supervised method for sparse-view CBCT
reconstruction. Neither external datasets nor structural prior is needed except
projections of a subject.

– The proposed method achieves state-of-the-art accuracy and spends relatively
short computation time. The performance and efficiency of our method make
it feasible for clinical CT applications.

– The code will be publicly available for investigation purposes.

2 Method

2.1 Pipeline

The pipeline of NAF is shown in Fig. 1. During a CBCT scanning, an X-ray
source rotates around the object and emits cone-shaped X-ray beams. A 2D panel
detects X-ray projections at equal angular intervals. NAF then uses the scanner
geometry to imitate the attenuation process discretely. It learns CT shapes by
comparing real and synthesized projections. After the model optimization, the
final CT image is generated by querying corresponding voxels.

NAF consists of four modules: ray sampling, position encoding, attenuation
coefficient prediction, and projection synthesis. First, we uniformly sample points

Fig. 1. NAF pipeline. Gray block: The CBCT scanner captures X-ray projections from
different views. Blue block: NAF simulates projections. Orange block: NAF is optimized
by comparing real and synthesized projections. Green block: NAF generates a CT
model by querying corresponding voxels. (Color figure online)



NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction 445

along X-ray paths based on the scanner geometry. A position encoder network
then encodes their spatial coordinates to extract valuable features. After that,
an MLP network consumes the encoded information and predicts attenuation
coefficients. The last step of NAF is to synthesize projections by attenuating
incident X-rays according to the predicted attenuation coefficients on their paths.

2.2 Neural Attenuation Fields

Ray Sampling. Each pixel value of a projection image results from an X-ray
passing through a cubical space and getting attenuated by the media inside.
We sample N points at the parts where rays intersect the cube. A stratified
sampling method [13] is adopted, where we divide a ray into N evenly spaced
bins and uniformly sample one point at each bin. Setting N greater than the
desired CT size ensures that at least one sample is assigned to every grid cell
that an X-ray traverses. The coordinates of sampled points are then sent to the
position encoding module.

Position Encoding. A simple MLP can theoretically approximate any func-
tion [9]. Recent studies [18,21], however, reveal that a neural network prefers to
learn low-frequency details due to “spectral bias”. To this end, a position encoder
is introduced to map 3D spatial coordinates to a higher dimensional space.

A common choice is the frequency encoder proposed by Mildenhall et al. [13].
It decomposes a spatial coordinate p ∈ R

3 into L sets of sinusoidal components
at different frequencies. While frequency encoder eases the difficulty of training
networks, it is considered quite cumbersome. In medical imaging practise [26,28],
the size of encoder output is set to 256 or greater. The following network must
be wider and deeper to cope with the inflated inputs. As a result, it takes hours
to train millions of network parameters, which is not acceptable for fast CT
reconstruction.

Frequency-domain encoding is a dense encoder because it utilizes the entire
frequency spectrum. However, dense encoding is redundant for CBCT recon-
struction for two main reasons. First, a human body usually consists of several
homogeneous media, such as muscles and bones. Attenuation coefficients remain
approximately uniform inside one medium but vary between different media.
High-frequency features are not necessary unless for points near edges. Second,
natural objects favor smoothness. Many organs have simple shapes, such as spin-
dle (muscle) or cylinder (bone). Their smooth surfaces can be easily learned with
low-dimensional features.

To exploit the aforementioned characteristics of the scanned objects, we use
the hash encoder [14], a learning-based sparse encoding solution. The equation
of hash encoder MH is:

MH(p;Θ) = [I(H1), · · · , I(HL)]T , H = {c|h(c) = (
⊕

cjπj) mod T}. (1)

Hash encoder describes a bounded space by L multiresolution voxel grids. A
trainable feature lookup table Θ with size T is assigned to each voxel grid. At
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each resolution level, we 1) detect neighbouring corners c (cubes with different
colors in Fig. 1(b)) of the queried point p, 2) look up their corresponding features
H in a hash function fashion h [23], and 3) generate a feature vector with linear
interpolation I. The output of a hash encoder is the concatenation of feature
vectors at all resolution levels. More details of hash function and its symbols can
be found in [14].

Compared with frequency encoder, hash encoder produces much smaller out-
puts (32 in our setting) with competitive feature quality for two reasons. On the
one hand, the many-to-one property of hash function conforms to the sparsity
nature of human organs. On the other hand, a trainable encoder can learn to
focus on relevant details and select suitable frequency spectrum [14]. Thanks to
hash encoder, the subsequent network is more compact.

Attenuation Coefficient Prediction. We represent the bounded field with
a simple MLP Φ, which takes the encoded spatial coordinates as inputs and
outputs the attenuation coefficients μ at that position. As illustrated in Fig. 1(c),
the network is composed of 4 fully-connected layers. The first three layers are 32-
channel wide and have ReLU activation functions in between, while the last layer
has one neuron followed by a sigmoid activation. A skip connection is included
to concatenate the network input to the second layer’s activation. By contrast,
Zang et al. [28] use a 6-layer 256-channel MLP to learn features from a frequency
encoder. Our network is 10× smaller.

Attenuation Synthesis. According to Beer’s Law, the intensity of an X-ray
traversing matter is reduced by the exponential integration of attenuation coef-
ficients on its path. We numerically synthesize the attenuation process with:

I = I0 exp(−
N∑

i=1

μiδi), (2)

where I0 is the initial intensity and δi = ‖pi+1 − pi‖ is the distance between
adjacent points.

2.3 Model Optimization and Output

NAF is updated by minimizing the L2 loss between real and synthesized projec-
tions. The loss function L is defined as:

L(Θ,Φ) =
∑

r∈B

‖Ir(r) − Is(r)‖2, (3)

where B is a ray batch, and Ir and Is are real and synthesized projections for
ray r respectively. We update both hash encoder Θ and attenuation coefficient
network Φ during the training process.

The final output is formulated as a discrete 3D matrix. We build a voxel
grid with the desired size and pass the voxel coordinates to the trained MLP to
predict the corresponding attenuation coefficients. A CT model thus is restored.
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3 Experiments

3.1 Experimental Settings

Data. We conduct experiments on five datasets containing human organ and
phantom data. Details are listed in Table 1.

Human Organ : We evaluate our method using public datasets of human organ
CTs [4,12], including chest, jaw, foot and abdomen. The chest data are from
LIDC-IDRI dataset [4], and the rest are from Open Scientific Visualization
Datasets [12]. Since these datasets only provide volumetric CT scans, we gener-
ate projections by a tomographic toolbox TIGRE [5]. In TIGRE [5], we capture
50 projections with 3% noise in the range of 180◦. We train our model with these
projections and evaluate its performance with the raw volumetric CT data.

Phantom : We collect a phantom dataset by scanning a silicon aortic phantom
with GE C-arm Medical System. This system captures 582 500 × 500 fluo-
roscopy projections with position primary angle from −103◦ to 93◦ and position
secondary angle of 0◦. A 512 × 512 × 510 CT image is also generated with inbuilt
algorithms as the ground truth. We only use 50 projections for experiments.

Baselines. We compare our approach with four baseline techniques. FDK [7]
is firstly chosen as a representative of analytical methods. The second method
SART [2] is a robust iterative reconstruction algorithm. ASD-POCS [20] is
another iterative method with a total-variation regularizer. We implement a
CBCT variant of IntraTomo [28], named IntraTomo3D, as an example of
frequency-encoding deep learning methods.

Implementation Details. Our proposed method is implemented in
PyTorch [17]. We use Adam optimizer with a learning rate that starts at 1×10−3

and steps down to 1 × 10−4. The batch size is 2048 rays at each iteration. The
sampling quantity of each ray depends on the size of CT data. For example,
we sample 192 points along each ray for the 128 × 128 × 128 chest CT. We
use the same hyper-parameter setting for hash encoder as [14]. More details
of hyper-parameters can be found in the supplementary material. All experi-
ments are conducted on a single RTX 3090 GPU. We evaluate five methods
quantitatively in terms of peak signal-to-noise ratio (PNSR) and structural sim-
ilarity (SSIM) [25]. PSNR (dB) statistically assesses the artifact suppression
performance, while SSIM measures the perceptual difference between two sig-
nals. Higher PNSR/SSIM values represent the accurate reconstruction and vice
versa.

Table 1. Details of CT datasets used in the experiments.

Dataset name CT dimension Scanning method Scanning range Number of projections Detector resolution

Chest [4] 128 × 128 × 128 TIGRE [5] 0◦–180◦ 50 256 × 256
Jaw [12] 256 × 256 × 256 TIGRE [5] 0◦–180◦ 50 512 × 512
Foot [12] 256 × 256 × 256 TIGRE [5] 0◦–180◦ 50 512 × 512
Abdomen [12] 512 × 512 × 463 TIGRE [5] 0◦–180◦ 50 1024 × 1024
Aorta 512 × 512 × 510 GE C-arm −103◦–93◦ 50 (582) 500 × 500
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3.2 Results

Performance. Our method produces quantitatively best results in both human
organ and phantom datasets as listed in Table 2. Both PSNR and SSIM values
are significantly higher than other methods. For example, the PSNR value of our
method in the abdomen dataset is 3.07 dB higher than that of the second-best
method SART.

We also provide visualization results of different methods in Fig. 2. FDK
restores low-quality models with notable artifacts, as analytical methods demand
large amounts of projections.

Table 2. PSNR/SSIM measurements of five methods on five datasets.

Chest Jaw Foot Abdomen Aorta

FDK [7] 22.89/.78 28.59/.78 23.92/.58 22.39/.59 12.11/.21

SART [2] 32.12/.95 32.67/.93 30.13/.93 31.38/.92 27.31/.77

ASD-POCS [20] 29.78/.92 32.78/.93 28.67/.89 30.34/.91 27.30/.76

IntraTomo3D [28] 31.94/.95 31.95/.91 31.43/.91 30.43/.90 29.38/.82

NAF (Ours) 33.05/.96 34.14/.94 31.63/.94 34.45/.95 30.34/.88

Fig. 2. Qualitative results of five methods. From left to right: examples of X-ray pro-
jections, slices of 3D CT models reconstructed by five methods, and the ground truth
CT slices.
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Fig. 3. Slice-wise performance of itera-
tive and learning-based methods on the
abdomen dataset.

Fig. 4. Performance under different
number of views on the abdomen
dataset.

Iterative method SART suppresses noise in the sacrifice of losing cer-
tain details. The reconstruction results of ASD-POCS are heavily smeared
because total-variation regularization encourages removing high-frequency
details, including unwanted noise and expected tiny structures. IntraTomo3D
produces clean results. However, edges between media are slightly blurred, which
shows that the frequency encoder fails to teach the network to focus on edges.
With the help of hash encoding, results of the proposed NAF have the most
details, clearest edges and fewest artifacts. Figure 3 indicates that NAF outper-
forms other methods in all slices of the reconstructed CT volume.

Figure 4 shows the performance of iterative methods and learning-based
methods under different number of views. It is clear that the performance
increases with the rise of input views. Our methods achieves better results than
others under most circumstances.

Time. We record the running time of iterative and learning-based methods
as shown in Fig. 5. All methods use CUDA [15] to accelerate the computation
process. Overall, the methods spend less time on datasets with small projections
(chest, jaw and foot) and increasingly more time on big datasets (abdomen
and aorta). IntraTomo3D requires more than one hour to train the network.
Benefiting from the compact network design, NAF spends similar running time
to iterative methods and is 3× faster than the frequency-encoding deep learning
method IntraTomo3D.

Fig. 5. Running time that iterative and learn-based methods take to converge to stable
results.
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4 Conclusion

This paper proposes NAF, a fast self-supervised learning-based solution for
sparse-view CBCT reconstruction. Our method trains a fully-connected deep
neural network that consumes a 3D spatial coordinate and outputs the atten-
uation coefficient at that location. NAF synthesizes projections by attenuating
incident X-rays based on the predicted attenuation coefficients. The network is
updated by minimizing the projection error. We show that frequency encoding is
not computationally efficient for tomographic reconstruction tasks. As an alter-
native, a learning-based encoder entitled hash encoding is adopted to extract
valuable features. Experimental results on human organ and phantom datasets
indicate that the proposed method achieves significantly better results than other
baselines and spends reasonably short computation time.
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