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Abstract. Considering the difficulty to obtain complete multi-modality
MRI scans in some real-world data acquisition situations, synthesiz-
ing MRI data is a highly relevant and important topic to comple-
ment diagnosis information in clinical practice. In this study, we present
a novel MRI synthesizer, called AutoGAN-Synthesizer, which auto-
matically discovers generative networks for cross-modality MRI syn-
thesis. Our AutoGAN-Synthesizer adopts gradient-based search strate-
gies to explore the generator architecture by determining how to fuse
multi-resolution features and utilizes GAN-based perceptual searching
losses to handle the trade-off between model complexity and perfor-
mance. Our AutoGAN-Synthesizer can search for a remarkable and
light-weight architecture with 6.31 Mb parameters only occupying
12 GPU hours. Moreover, to incorporate richer prior knowledge for
MRI synthesis, we derive K-space features containing the low- and
high-spatial frequency information and incorporate such features into
our model. To our best knowledge, this is the first work to explore
AutoML for cross-modality MRI synthesis, and our approach is also
capable of tailoring networks given either different multiple modalities
or just a single modality as input. Extensive experiments show that our
AutoGAN-Synthesizer outperforms the state-of-the-art MRI synthesis
methods both quantitatively and qualitatively. The code are available at
https://github.com/HUuxiaobin/AutoGAN-Synthesizer.
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1 Introduction

Magnetic Resonance Imaging (MRI) has currently become prominent in neurol-
ogy with the use of high-field scanners, given that MRI contrasting agent is less
likely to cause an allergic reaction compared with X-ray or CT scan using iodine-
based substances [24]. However, due to modality corruption, incorrect machine
settings, allergies to specific contrast agents, and limited available time [7], it
is often not guaranteed to obtain a complete set of MRI sequences to provide
rich information for clinical diagnosis and therapy. In this regard, the develop-
ment of cross-modality or cross-protocol MRI synthesis techniques is important
to homogenize and “repair” such real-world data collections via efficient data
infilling and re-synthesis, and make them accessible for algorithms that require
complete data sets as input [2,10,23,30].

Recently a large number of algorithms for medical image synthesis have been
proposed with the rapid growth of deep learning techniques [6,11,27,37]. Among
them, generative adversarial networks (GANs) with the advantage of recovering
an unprecedented level of image realism [15] have achieved significant advance-
ment for medical image synthesis. For example, Ea-GANs [32] incorporated
edge information and focused on the textural details of image content struc-
ture for cross-modality MRI synthesis. SA-GANS [33] added a sample-adaptive
path additionally to learn the relationship of each sample with its neighboring
training samples. MM-GAN [5] and mustGAN [34] were designed to deal with
multi-modal MRI synthesis with structures capable of fusing latent representa-
tions of each input modality. However, these state-of-art methods [5,7,10,13,32–
34,36,38] fixed the network architecture for various input modality combinations
(e.g., T1, T1-weighted, Flair, T1+Flair, etc.) and ignored the mapping unique-
ness between each source domain and target domain pair, and therefore could not
reach the optimal solution for all situations using the same network structure.

Inspired by the great potential of neural architecture search (NAS) in com-
puter vision field [8,17–19,25,31,35,40], we explore NAS to automatically find
an optimal network with fewer computation costs and parameters for different
input modalities. Searching for a dedicated MRI synthesizer is essentially promis-
ing because the problem nature of using one network for many synthesis tasks
caters to the NAS principle of construing one search architecture for multi-jobs.
However, how to search the architecture of generative networks according to the
different input modalities given to the synthesizer is still unexplored so far. In
this paper, we aim to adaptively optimize and construct the neural architecture
that is capable of understanding how to extract and merge features according
to different input modalities. Specifically, we adopt a GAN-based structure as
the backbone of NAS, where the generator of the GAN is searched by gradient-
based NAS from the multi-scale module-based search space. Our main contribu-
tions of the AutoGAN-Synthesizer are as follows: (1). Aiming at the recovery of
realistic texture while constraining model complexity, we propose a GAN-based
perceptual searching loss that jointly incorporates the content loss and model
complexity. (2). To incorporate richer priors for MRI synthesis, we exploit MRI
K-space knowledge containing low-frequency (e.g., contrast and brightness) and
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Fig. 1. (a). Overall architecture of our proposed AutoGAN-Synthesizer. The
AutoGAN-Synthesizer contains two parts: 1) A NAS-based generator to adaptively
build up an architecture based on input modalities (X1+k, X2+k or X3+k). Xi+k rep-
resents the input with i modalities and the corresponding K-space features (denoted
as k). 2) A discriminator to distinguish between the synthesis and real modality. (b).
Generator search space consisting of three modules to capture and fuse the detailed
information and the global features from different multi-scale branches: horizontal mod-
ule, extension module and the composite module. (c). An example of an optimized
generator including the three proposed modules.

high-frequency information (e.g., edges and content details), to guide the NAS
network to extract and merge features. (3). Considering that the low- and high-
resolution of multi-scale networks can capture the global structure and local
details respectively, we use a novel multi-scale module-based search space which
is specifically designed for multi-resolution fusion. The module-based searching
setting is also capable of reducing search time while maintaining the perfor-
mance. (4). Finally, our searching strategy can produce a light-weight network
with 6.31 Mb parameters from module-based search space only taking 12 GPU
hours and achieve state-of-the-art performance. From our knowledge, this is the
first work to explore AutoML for cross-modality MRI synthesis tasks.

2 Proposed Method

Motivation: Most recent-used networks for MRI synthesis usually adopt an
encoder-decoder structure [7,14,32,38], which recovers the high-resolution fea-
tures mainly based on the low-resolution representation received from successive
convolutional blocks in the encoder. This latent representation contains only
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high-level features and loses lots of detailed information, leading the recovered
images neither semantically strong nor spatially precise. Inspired by the fact that
the low- and high-resolution branches of multi-scale networks are capable of cap-
turing global structure and preserving the local details respectively [8,22,28], we
design a generator based on a multi-scale structure including three modules: hor-
izontal module connects different resolution input in parallel without any fusion,
extension module adds a downsampling block to extend a lower-resolution scale
and composite module fuses cross-resolution representations to exchange infor-
mation. An overview of our AutoGAN-Synthesizer is shown in Fig. 1. Specifically,
the framework contains an adaptive generator constructed by neural architecture
search according to input modalities and a typical discriminator to distinguish
between predictions and ground truths.

2.1 NAS-Based Generator Search

Generator Search Space: There exists an open question on how to extract or
fuse the features of modalities in a multi-scale generator. To solve this question,
we propose three different modules (Fig. 1(b)) to give guidelines for extracting
and merging multi-resolution features: namely horizontal module, extension mod-
ule and composite module. These three modules behave differently to mimic the
coarse-to-fine framework and exploit multiple possibilities of multi-scale fusion.
Specifically, the horizontal module horizontally connects features via convolu-
tion block without feature fusion among multi-scales. As shown in Fig. 1(b),
the feature resolution at the same scale keeps identical but is reduced by 0.5
when the scale goes deeper. The extension module extends a lower-resolution
scale via a down-sampling block. This connection helps to exploit the high-
level priors extracted at the low-resolution scale and simultaneously remain the
unchanged resolution at the high-resolution scale. The composite module merges
multi-resolution features by skip connection, stride convolution and up-sampling
block, which can be summarized as:

Fg =
∑

Mr→g(Fr) (1)

where r is the resolution of the input feature maps while g is the resolution
of the output features. Fr represents the input feature maps with resolution r
and Fg denotes the output feature maps with resolution g after combing all the
features from other resolution scales. Mr→g(·) is the mapping function defined
as follows:

Mr→g(Fr) =

⎧
⎨

⎩

Fr r == g
Upsampled Fr r < g

Downsampled Fr r > g
(2)

Compared with the common fusion scheme [5,26], that only fuses high-
resolution features with the upsampled low-resolution features unidirectionally,
this module aggregates the feature fusion via a bidirectional way among multi-
resolution representations. Thus, this powerful multi-resolution fusion scheme
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catches more spatial information extracted from all resolution scales and there-
fore is semantically stronger.

The combination of three modules constructs a superior neural architecture
which gives guidance on how to extract and merge the features catering to the
requirements of different input modalities. An example of an optimized gen-
erator could be found in Fig. 1(c). The input modalities are imported into a
super-network with two fixed horizontal modules, S modules selected from hor-
izontal, extension, and composite modules candidates, and a final composite
module followed by a 1×1 convolutional layer. During the searching process, the
progressive structure can gradually add the multi-resolution modules and endow
the output with multi-resolution knowledge.

2.2 GAN-Based Perceptual Loss Function

In order to recover a realistic and faithful image, we add both the perceptual
and pixel-level loss into our generator loss function:

LGenerator = Lcontent + λadvLadv + λcomplexityLcomplexity, (3)

where Lcontent is the content loss consisting of pixel-level loss (mean square
loss) and texture-level loss (perceptual loss) between the ground-truth and recon-
structed images. Ladv is the adversarial loss based on binary cross-entropy formu-
lation to make the reconstructed image closer to the ground-truths. Lcomplexity

is the loss term for calculating the model complexity (e.g., FLOPS, consuming
time, and model size).

2.3 K-space Learning

K-space is the spatial frequency representation of MRI images. Due to the long
scan time acquiring MRI images, several MRI reconstruction methods based on
under-sampled K-space learning are proposed for fast MRI [1,9,14]. Inspired by
this, we embed K-space learning into our pipeline to introduce frequency priors
of MRI images, which is defined as follows:

x̂(k) = F [x]{k} =
∫

R2
e−jk·rx(r) dr, (4)

where k ∈ R
2 represents the spatial frequency and j2 = −1. x(r) is the pixel

intensity in real space while x̂(k) is the calculated intensity in frequency domain.
K-space is computed according to the input modalities and is used as the input
together with the MRI images in real space.

2.4 Implementation Details

Searching Setting: For each different input modality, we search for a new
architecture to give guidance on how to extract and fuse the multi-modality fea-
tures. First, we train the warm-up stage (ten epochs) to get desirable weights of
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convolution layers and then train a searching stage with 200 epochs for optimiz-
ing the structure of architecture. For updating the parametric model, we adopt
the standard SGD optimizer with the momentum of 0.9 and the learning rate
decays from 0.025 to 0.001 by cosine annealing strategy [20]. Besides, to optimize
the architecture parameters, Adam optimizer [16] is used with a learning rate
of 0.0005. The batch size is 16 by randomly cropping and padding image size
240 × 240. Overall, the whole searching process consumes 12 h.

Training Setting: After finding an architecture, we train this for 500 epochs
with batch size 16 and image size 240 × 240. The Adam optimizer with the
learning rate of 0.0005 is adopted. All training experiments are implemented in
Pytorch with a Tesla V100.

3 Experimental Results

3.1 Experimental Settings

We evaluate the performance of AutoGAN-Synthesizer on one-to-one and
multiple-to-one cross-modality MRI synthesis tasks using two public brain MRI
datasets: BRATS2018 and IXI. BRATS2018 dataset [3,4,21] collects multi-
modality MR image sets from patients with brain tumors including four dif-
ferent modalities: native (T1), T1-weighted and contrast-enhanced (T1ce), T2-
weighted (T2), and T2 Fluid Attenuated Inversion Recovery (FLAIR), where
each scan has the size of 240 × 240 × 155. In this paper, we conduct one-to-one
and multi-to-one synthesis tasks on BRATS2018 dataset to show the effective-
ness of our method. Following [7], we randomly select 50 low grade glioma (LGG)
from total 75 LGG patients as the training set while another unseen 15 patients
are selected as the test. Following [7,32,34], we also use the public IXI dataset1 to
verify the model generalization. IXI dataset collected multi-modality MR images
from healthy subjects at three different hospitals. It is randomly divided into
training (25 patients), validation (5 patients), and test patients (10 patients).
For each subject, after removing some cases with major artifacts, approximately
100 axial cross sections that contained brain tissue are manually selected.

Evaluation Metrics: Following studies [32,33], three metrics are used to
evaluate the quantitative performance: normalized root mean-squared error
(NRMSE), peak signal-to-noise ratio (PSNR) and structural similarity (SSIM)
[29].

1 https://brain-development.org/ixi-dataset/.

https://brain-development.org/ixi-dataset/
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Table 1. Quantitative results of Flair-T2 (BRATS2018 dataset) and T1-T2 (IXI
dataset) MRI cross-modality synthesis tasks.

Methods Flair-T2 (BRATS2018 dataset) T1-T2 (IXI dataset) Model size

PSNR SSIM NRMSE PSNR SSIM NRMSE Params(M)

CycleGAN [39] 20.70 ± 2.37 0.83 ± 0.05 0.45 ± 0.14 23.03 ± 1.01 0.74 ± 0.05 0.48 ± 0.05 11.38

Pix2pix [12] 24.64 ± 3.97 0.88 ± 0.04 0.34 ± 0.19 25.70 ± 1.61 0.84 ± 0.05 0.32 ± 0.06 54.41

pGAN [7] 25.20 ± 4.34 0.89 ± 0.04 0.34 ± 0.22 26.62 ± 1.72 0.85 ± 0.05 0.29 ± 0.06 11.36

cGAN [7] 23.67 ± 3.99 0.87 ± 0.04 0.35 ± 0.16 23.77 ± 1.80 0.77 ± 0.05 0.31 ± 0.06 11.37

Hi-Net [38] 24.46 ± 3.56 0.87 ± 0.04 0.32 ± 0.15 25.63 ± 1.50 0.83 ± 0.05 0.33 ± 0.06 3.87

Ours 25.54±3.91 0.90±0.03 0.30±0.17 27.37±1.81 0.86±0.04 0.29±0.05 6.30

3.2 Comparisons with State-of-the-Art Methods

To verify the performance of our AutoGAN-Synthesizer, we compare it with five
recent state-of-the-art methods: CycleGAN [39], Pix2pix [12], pGAN and cGAN
[7], and Hi-Net [38]. To ensure a fair comparison with state-of-the-art methods,
we train all networks on the same dataset by the open-source implementations
as well as the recommended hyper-parameters from authors.

Fig. 2. Qualitative results of FLAIR −→T2 synthesis experiments on glioma patients in
BRATS2018 dataset. Compared with other state-of-art results, our synthetic images
recover favorable tissue contrast, tumor, and anatomy knowledge which have great
potential in clinical diagnoses and treatments.
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Fig. 3. Visual performance of synthetic T2 modality difference maps compared with
other state-of-art methods on BRATS2018 dataset.

One-to-One Cross-Modality MRI Synthesis Tasks: We focus on synthe-
sizing T2 contrasts that are complementary to T1 contrasts, and offer better
information for investigating fluid-filled structures within tissue. The experi-
mental results for one-to-one synthesis tasks are listed in Table 1. For FLAIR-T2
cross-modality synthesis task, Table 1 shows that our AutoGAN achieves better
performance than other cutting-edge methods on three metrics. Figures 2 and 3
show the qualitative comparison between our proposed AutoGAN and other five
state-of-art methods on BRATS2018 dataset. The difference maps are generated
based on the pixel intensity and visualized in the type of heat maps. It can be
seen that our synthetic images have clearer details in the zoomed rectangles, and
also preserve favorable tissue contrast, tumor, and anatomy knowledge which
have great potentials in clinical diagnoses and treatments. Overall, our methods
could reach higher fidelity with the target images and our method can search for
satisfactory synthesis networks which are better than manually designed archi-
tectures. The superiority of AutoGAN is mainly attributed to our module-based
search space, which can well exploit the information fusion between the low- and
high-resolution features. As shown in Table 1, the quantitative results on the IXI
dataset also imply that our AutoGAN achieve better generalization than other
methods.

Model Complexity: It can be seen from Table 1 that our AutoGAN achieves
SOTA performance only using very light-weight network architecture with 6.30
Mb parameters, which is nearly half of the other manually-designed networks
(around 11 Mb) [7,39].

Multiple-to-One Cross-Modality MRI Synthesis Tasks. To verify the
effectiveness of our method on multiple-to-one tasks, we conduct experiments
with different combinations of input modalities on BRATS2018 dataset in
Fig. 4(b). Compared with Hi-Net that is specifically designed for two modali-
ties input, our AutoGAN demonstrates considerable improvements, with PSNR
rising from 24.95 dB (Hi-Net) to 27.12 dB (ours) in the task of FLAIR+T1−→T2.
Figure 4(b) also verifies that our method can fuse multiple input modalities and
provide a promising performance. In addition, it illustrates that more input
modality knowledge can also boost the synthesis performance. Figure 4(a) shows
qualitative results of different multiple modalities input tested on the searched
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Fig. 4. Multiple-to-one MRI cross modality synthesis tasks on BRATS2018 dataset:
(a). Qualitative comparison of difference maps. (b). Quantitative results.

models by our AutoGAN. The results of FLAIR+T1+T1ce−→T2 task are much
better than the other three configurations in visualization, which is consistent
with the observation from quantitative evaluation. It also verifies that differ-
ent modalities contains partly complementary knowledge, which can boost the
synthesis performance.

3.3 Ablation Study

Study of Each Component: We conduct an ablation study to demonstrate
the effectiveness of each component, i.e., the perceptual and adversarial part of
our loss function, and the MRI K-space learning strategy. In Fig. 5(a), we list
all results of different configurations on these three components in FLAIR −→T2
synthesis tasks on BRATS2018 dataset. It indicates that the perceptual and
adversarial loss can further improve quantitative performance. After adding the
perceptual and adversarial loss, our algorithm can rehabilitate highly-realistic
images with better structure similarity and peak signal-to-noise ratio. Further-
more, MRI K-space features embedded in the network can introduce additional
information and therefore can also boost performance improvement. Figure 6
shows the qualitative results of the ablation study. We find that adding each
component successively can obtain better synthetic images. In Fig. 6, the FLAIR
image has poor quality and therefore is challenging to synthesize a reasonable
T2 image. However, with the help of perceptual loss, adversarial loss, and K-
space learning, the results are further improved and the missing part is gradually
compensated.

Effectiveness of Our Search Strategy: To verify the effectiveness of our
search strategy in AutoGAN, we compare our search strategy with random pol-
icy by randomly sampling 20 models from our search spaces. From Fig. 5(b),
compared with random policy, our AutoGAN can search superior networks with
less model size but better performance. More specifically, the networks from
random policy have a wide range of model sizes from 6 Mb to around 12.5 Mb.
But the search strategy of our AutoGAN is capable of constraining the model
size of network within a much smaller interval by greatly reducing both the
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Fig. 5. (a). Ablation study of our GAN-based loss and MRI K-space features on
BRATS2018 dataset (FLAIR −→T2). (b). Comparison of our search strategy with ran-
dom policy. Our AutoGAN can search light-weight networks with better performance.

Fig. 6. Visualization results of our ablation study, showing the effectiveness of three
components in our pipeline: i.e., perceptual loss, adversarial loss and K-space learning.
The version of baseline represents the network without three components, +perceptual
means the baseline with only perceptual loss, +adversarial denotes baseline with per-
ceptual and adversarial loss and +Kspace represents our complete method with per-
ceptual, adversarial loss and K-space learning.

lower-bound and the upper-bound of the model sizes without sacrificing the per-
formance. This superiority makes it easier to deploy AI models in a variety of
resource-constrained clinical scenarios.

4 Conclusion

We propose AutoGAN-Synthesizer to automatically design a generative network
knowing how to extract and fuse features according to different input modalities
for cross-modality MRI synthesis. A novel GAN-based perceptual searching loss
incorporating specialized MRI K-space features is proposed to rehabilitate a
highly-realistic image and to balance the trade-off between model complexity
and performance. The proposed method outperforms other manually state-of-
art synthesis algorithms and restores faithful tumor and anatomy information.
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