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Abstract. Registration of pre-operative and post-recurrence brain
images is often needed to evaluate the effectiveness of brain gliomas treat-
ment. While recent deep learning-based deformable registration meth-
ods have achieved remarkable success with healthy brain images, most
of them would be unable to accurately align images with pathologies
due to the absent correspondences in the reference image. In this paper,
we propose a deep learning-based deformable registration method that
jointly estimates regions with absent correspondence and bidirectional
deformation fields. A forward-backward consistency constraint is used to
aid in the localization of the resection and recurrence region from voxels
with absence correspondences in the two images. Results on 3D clinical
data from the BraTS-Reg challenge demonstrate our method can improve
image alignment compared to traditional and deep learning-based regis-
tration approaches with or without cost function masking strategy. The
source code is available at https://github.com/cwmok/DIRAC.

Keywords: Absent correspondences · Patient-specific registration ·
Deformable registration

1 Introduction

Registration of pre-operative and post-recurrence brain MRI images plays a sig-
nificant role in discovering accurate imaging markers and elucidating imaging sig-
natures for aggressively infiltrated tissue, which are crucial to the treatment plan
and diagnosis of intracranial tumors, especially brain gliomas [11,26]. To better
understand the location and extent of the tumor and its biological activity after
resection, pre-operative and follow-up structural brain MRI scans of a patient
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first need to be aligned accurately. However, deformable registration between the
pre-operative and follow-up scans, including post-resection and post-recurrence,
is challenging due to possible large deformations and absent correspondences
caused by tumor’s mass effects [7], resection cavities, tumor recurrence and tis-
sue relaxation in the follow-up scans.

Conventional registration methods mostly deal with the absent correspon-
dence issue by (1) excluding the similarity measure of pathological regions [3,5],
2) replacing the pathological images with quasi-normal appearance [9,18,30] or
3) joint registration and segmentation framework [4,27]. Excluding the patho-
logical regions often requires manual delineation [3] or initial seed [4,17] of the
tumor regions in brain scans, which are often prohibitive and daunting to acquire
in terms of labour cost and resources. Replacing the pathological image with the
quasi-normal appearance, alternately, avoids the prerequisite of a prior patho-
logical segmentation. However, modeling the tumor-to-quasi-normal appearance
with a statistical model [9,18] often requires extra image scans, i.e., image scans
from a healthy population. Moreover, existing approaches based on quasi-normal
images require accurate registration to a common atlas space for quasi-normal
reconstruction. Ironically, accurate alignment with images suffered from mass
effect is very hard to achieve without reconstruction. Therefore, the registration
and reconstruction problems with quasi-normal approaches need to be inter-
leaved in a costly iterative optimization process. Alternatively, an unsupervised
approach [27] to accommodate resection and retraction of tissue was proposed
for registering pre-operative and intra-operative brain images. Their method
alternates between registering the brain scans using the demons algorithm with
an anisotropic diffusion smoother and segmenting the resection using the level
set method in the space with high image intensity disagreement. Chitphakdithai
et al. [4] extended this idea to a simultaneous registration and resection esti-
mation approach with the expectation-maximization algorithm and a prior on
post-resection image intensities. Nevertheless, these methods rely on the costly
iterative optimization, which can be up to ∼ 3.5 h per case [17].

While recent deep learning-based deformable registration (DLDR) meth-
ods have achieved remarkable registration speed and superior registration accu-
racy [2,6,10,13,15,23–25], these registration algorithms are incapable of accu-
rately registering pre-operative and post-recurrence images due to the absent
correspondence problem. A learning-based registration method for images with
pathology was presented in [8] which dealt with missing correspondence by joint
estimating the vector-momentum parameterized stationary velocity field (vSVF)
and quasi-normal image to drive the registration. Nevertheless, the reconstruc-
tion of the quasi-normal image requires explicit tumor segmentation in the train-
ing phase. Moreover, the large deformation caused by the mass effect of tumor
is difficult to model without resorting to complex multi-stage warping pipelines.

In this paper, we present an unsupervised joint registration and segmentation
learning framework, in which a large deformation image registration network and
a forward-backward consistency constraint are leveraged to estimate the valid and
absent correspondence regions along with the dense deformation fields in a bidirec-
tional manner, for pre-operative and post-recurrence registration. Instead of using
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Fig. 1. Overview of the proposed method (Left) and the semantic representation of
the forward-backward consistency constraint (Right). Our method jointly estimates
the bidirectional deformation fields and locates regions with absent correspondence
(denoted as mask). The regions with absent correspondence are excluded in the simi-
larity measure during training. For brevity, the magnitude loss of the masks is omitted
in the figure.

a manual delineation or image intensity disagreement to segment the pathological
regions, our method leverages the forward-backward consistency constraint of the
bidirectional deformation fields to explicitly locate regions with absent correspon-
dence and excludes them in the similarity measure in an unsupervised manner. We
present extensive experiments with a pre-operative and post-recurrence brain MR
dataset, demonstrating that our method achieves accurate registration accuracy
in brain MR scans with pathology.

2 Methods

Our goal is to establish a dense non-linear correspondence between the pre-
operative scan and the post-recurrence scan of the same subject, where regions
without valid correspondence are excluded in the similarity measure during opti-
mization. Our method builds on the previous DLDR method [24] and extends
it to accommodate the absent correspondence issue in the pre-operative and
post-recurrence scans.

2.1 Bidirectional Deformable Image Registration

Let B and F be the pre-operative (baseline) scan B and post-recurrence (follow-
up) scan defined over a n-D mutual spatial domain Ω ⊆ R

n. In this paper, we
focus on 3D deformable registration, i.e., n = 3 and Ω ⊆ R

3 and assume that B
and F are affinely aligned to a common space.

Figure 1 depicts an overview of our method. We parametrize the deformable
registration problem as a bidirectional registration problem ubf = fθ(B,F ) and
ufb = fθ(F,B) with CNN, where θ is a set of learning parameters and ubf repre-
sents the displacement field that transform B to align with F , i.e., B(x+ubf (x))
and F (x) define similar anatomical locations for each voxel x ∈ Ω (except voxels
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with absent correspondence). The proposed method works with any CNN-based
DLDR methods. In order to accommodate the large deformation and variation
of anatomical structures caused by the tumor’s mass effect, we parametrize an
example of the function fθ with the conditional deep Laplacian pyramid image
registration network (cLapIRN) [24], which is capable of large deformation and
rapid hyperparameter tuning for the smoothness regularization in a wide range
of applications [12]. Despite the multi-resolution optimization strategy used in
the cLapIRN, vanilla cLapIRN is incapable of accurately registering images with
absent correspondence, i.e., missing correspondence caused by the tumor resec-
tion and recurrence, edema and cavity. Therefore, instead of measuring the sim-
ilarity of B and F for every voxel x ∈ Ω, our method estimates the regions with
absent correspondence in both B and F domains using the bidirectional displace-
ment fields and the forward-backward consistency constraint, and only measures
the similarity on regions with valid correspondence during optimization.

2.2 Forward-Backward Consistency Constraint

Conventionally, regions with absent correspondence can be detected by com-
paring the appearance or image intensities of the warped scan to the target
scan or an atlas [18,27]. However, corresponding regions in the pre-operative
and post-recurrence scans may have different intensity profiles, which make
their approaches less robust in practice. Therefore, we depart from approaches
with spatial prior and extend the forward-backward consistency [19,21,28,29]
instead. We design a forward-backward consistency constraint to locate regions
with absent correspondence in the baseline and follow-up scans. The forward-
backward (inverse consistency) error δbf from B to F is defined as:

δbf (x) = |ubf (x) + ufb(x + ubf (x))|2. (1)

We estimate the regions with absent correspondence by checking the consis-
tency of the forward and backward displacement fields. For any voxel x, if there
is a significant violation of inverse consistency in x, i.e., δbf (x) > τbf , the voxel x
is either without valid correspondence or the displacement field is not accurately
estimated. τbf is the pre-defined threshold and is defined as follows:

τbf =
∑

x∈{x|F (x)>0}

1
Nf

(|ubf (x) + ufb(x + ubf (x))|2
)

+ α, (2)

where the first term grants a tolerance interval that allows estimation errors
to increase with the overall complexity of the registration and α is a constant.
Then, we create a binary mask mbf to mark voxels with absent correspondence
as follows:

mbf (x) =

{
1, if (A � δbf )(x) ≥ τbf

0, otherwise
(3)

where A denotes an averaging filter of size (2p + 1)3 and � denotes a convolu-
tion operator with zero-padding p. Since the estimated registration fields will
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Fig. 2. Example axial T1ce MR slices of resulting warped images (B to F ) from the
baseline methods and our proposed method. Registration artefacts are highlighted with
yellow arrows. The forward-backward errors (δfb and δbf ) of our method are shown next
to our result. The estimated regions with absent correspondence from our method are
overlaid with the baseline and follow-up scans (in red). (Color figure online)

fluctuate during learning, we apply an averaging filter to the estimated forward-
backward error to stabilize the estimation of the binary mask as well as to
alleviate the effect of outliers to the mask estimation. For the mask mfb in the
backward to forward direction, we can define it in a symmetric way with ufb

and ubf exchanged. We set α = 0.015 and p = 4 in all our experiments. The
values of α and p are determined by measuring the forward-backward error of
the pathological regions from a vanilla cLapIRN model.

2.3 Inverse Consistency

Since the decision of regions with absent correspondence is highly dependent on
the inverse consistency error in our method, we further enforce the inverse con-
sistency on the regions with valid correspondence. Mathematically, the inverse
consistency loss Linv is defined as:

Linv =
∑

x∈Ω

(δbf (x)(1 − mbf (x)) + δfb(x)(1 − mfb(x))), (4)

where the measure of inverse consistency error δ is masked with the regions with
valid correspondence (1 − m) via elementwise multiplication.

2.4 Objective Function

Given the deformation fields φbf = Id + ubf and φfb = Id + ufb, where Id
is the identity transform. The objective of our proposed method is to compute
the optimal deformation fields that minimize the dissimilarity measure of B(φbf )
and F as well as B and F (φfb) in regions with valid correspondence. Specifically,
we adopt the negative local cross-correlation (NCC) with masks to exclude the
similarity measure of regions without valid correspondence as shown in Eq. 5.

Ls = −NCC(F,B(φbf ), (1 − mbf )) − NCC(B,F (φfb), (1 − mfb)). (5)
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Fig. 3. Boxplots illustrate that the average target registration error (TRE) near tumor
(left) and far from tumor (right). The mean (μ) and standard deviation (σ) are shown
next to the 75th percentile of each box.

To encourage smooth solution and penalize implausible solutions, we adopt
a diffusion regularizer:

Lr = ||∇ubf ||22 + ||∇ufb||22. (6)

Hence, the complete loss function is therefore:

L = (1 − λreg)Ls + λregLr + λinvLinv +
λm

N
(|mbf |1 + |mfb|1), (7)

where λreg, λinv and λm are the hyperparameters to balance the loss functions.
N denotes the number of voxels in the mutual spatial domain Ω and the last
term is to avoid the trivial solution where all voxels are marked in mbf and
mfb. During training, we follow the conditional registration framework in [24]
to sample λreg ∈ [0, 1] and set λreg = 0.3 in the inference phase. Formally, the
optimal learning parameters θ∗ is estimated by minimizing the complete loss L
function using a training dataset D, as follows:

θ∗ = arg min
θ

[
E(B,F )∈D L(

B,F,ubf ,ufb,mbf ,mfb

)]
. (8)

3 Experiments

Data and Pre-processing. We evaluate our method on the brain tumor MR
registration task using the 3D clinical dataset from the BraTS-Reg challenge [1],
which consists of 160 pairs of pre-operative and follow-up brain MR scans of
glioma patients taken from different timepoint. Each timepoint contains native
T1, contrast-enhanced T1-weighted (T1ce), T2-weighted and FLAIR MRI. 140
pairs of scans are associated with 6 to 50 manual landmarks in both scans and 20
scans with landmarks in the follow-up scan only. All scans have carried out stan-
dard processing, including skull stripping, affine spatial normalization and resam-
pled to the 1 mm3 isotropic resolution. We use the DeepMedic [14] to segment the
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tumor core in each pre-operative scan. The tumor segmentation map is used in
cost function masking for baseline methods. For learning-based methods, we fur-
ther resample the scans to size of 160 × 160 × 80 with 1.5 × 1.5 × 1.94 mm3

isotropic resolution in the training phase and upsample the solutions to 1 mm3

isotropic resolution with bilinear interpolation in the evaluation. We perform 5-
fold cross-validation and divide the 140 pairs of scans into 5 folds with equal size.
In each group, we join 4 folds of data and the additional 20 pairs of scans as train-
ing set and validation set, and 1 fold as the test set. Specifically, for each group, we
split the dataset into 122, 10, and 28 cases for training, validation and test sets.

Implementation. Our proposed method and the other baseline methods are
implemented with PyTorch 1.9 and deployed on the same machine, equipped
with an Nvidia Titan RTX GPU and an Intel Core (i7-4790) CPU. We build our
method on top of the official implementation of 3-level cLapIRN with default
parameters available in [22]. We set λreg, λinv and λm to 0.3, 0.5 and 0.01, respec-
tively. We use Adam optimizer with a fixed learning rate 0.0001. All learning-
based methods are trained from scratch.

Measurement. We register each pre-operative scan to the corresponding
follow-up scan of the same patient, propagate the landmarks of the follow-up
scan using the resulting deformation field and measure the mean target registra-
tion error (TRE) of the paired landmarks with Euclidean distance in millime-
tres. We divide the landmarks into two sets: 1) landmarks within 30mm from the
tumor region (Near tumor), and 2) landmarks outside the 30mm tumor region
(Far from tumor), using tumor segmentation maps and morphological dilation.
We further measure the robustness of the registration. We follow [1] to define
the robustness for a pair of scans as the relative number of successfully regis-
tered landmarks, i.e., 1 if the average distance of all the landmarks in the target
and warped images is reduced after registration and 0 means none of the dis-
tances is reduced. As the local deformation at voxel p is invertible if and only
if the Jacobian determinant of p (|Jφ|(p)) is larger than zero, we also measure
the number of percentage of the voxels with Jacobian determinant smaller or
equal to 0 (denoted as %|Jφ|≤0). We also measure the elapsed time in seconds
for computations of each case in the inference phase (Ttest).

Baseline Methods. We compare our method (denotes as DIRAC) with a
conventional approach (denoted as Elastix [16]) and two cutting edge DLDR
methods (denoted as VM [2] and cLapIRN [24]). For Elastix, we use the offi-
cial implementation in the SimpleElastix library [20], which includes a 3-level
iterative optimization scheme. For VM and cLapIRN, we use their official imple-
mentations with the best parameters reported in their papers. We also report
the results of methods with cost function masking using the tumor core seg-
mentation map for each method (denoted with postfix -CM). Note that the cost
function masking strategy in learning-based methods is defined as excluding the
similarity measure of the tumor region during the training phase, and the tumor
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Table 1. Quantitative results of the pre-operative and follow-up brain MR registration.
Results are provided as mean ± (standard deviation) Initial: spatial normalization.
Runtime result highlighted with a asterisk (∗) denotes runtime with CPU only. To our
knowledge, Elastix does not have a GPU implementation. ↑: higher is better, and ↓:
lower is better.

Method Near Tumor Far from Tumor

TRE↓ Robustness↑ %|Jφ|≤0 ↓ TRE↓ Robustness↑ %|Jφ|≤0 ↓ Ttest(sec)↓
Initial 6.94 ± (5.22) − − 5.64 ± (5.10) − − −

Elastix-CM 4.19 ± (3.46) 0.71 ± (0.34) 0.16 ± (0.89) 2.73 ± (3.15) 0.72 ± (0.31) 0.08 ± (0.48) 120.17*±(6.31)
VM-CM 4.19 ± (3.08) 0.82 ± (0.27) 0.32 ± (0.42) 2.56 ± (1.98) 0.82 ± (0.23) 0.27 ± (1.53) 0.069 ± (0.001)
cLapIRN 3.73 ± (2.85) 0.80 ± (0.30) 0.51 ± (0.45) 2.03 ± (1.18) 0.80 ± (0.25) 0.21 ± (0.10) 0.023 ± (0.004)

cLapIRN-CM 3.40 ± (2.66) 0.82 ± (0.28) 0.83 ± (0.67) 1.92 ± (1.13) 0.82 ± (0.24) 0.32 ± (1.59) 0.024 ± (0.005)

DIRAC 3.31 ± (2.77) 0.82 ± (0.28) 0.18 ± (0.20) 1.91 ± (1.04) 0.82 ± (0.24) 0.12 ± (0.24) 0.023 ± (0.005)
DIRAC-D 3.26 ± (2.78) 0.83 ± (0.27) 0.13 ± (0.16) 1.86 ± (0.98) 0.82 ± (0.25) 0.08 ± (0.15) 0.025 ± (0.005)

segmentation is hidden during the inference phase, as opposed to conventional
methods. All DLDR methods are trained from scratch with T1ce MR scans as
input, except for our variant (denoted as DIRAC-D), which employs both the
T1ce and T2-weighted scans of each case as input.

Results and Discussions. Figure 3 illustrates the box-and-whisker plots of
average TRE of registered landmarks based on landmarks inside the 30 mm
tumor boundary (Group 1) in the left graph as well as the one for the remain-
ing landmarks in the right graph across the 140 subjects (Group 2). Among
deformable image registration methods with single MR modality as input, our
method DIRAC has the lowest mean registration error of 3.31 and 1.91 mm in
groups 1 and 2, respectively, which improves the registration error of our base-
line method cLapIRN significantly by 0.42 mm (−11%) and 0.17 mm (−8%) in
groups 1 and 2, respectively. Among the alternative methods, methods with
cost function masking (-CM) show significant improvement over their baseline
method in group 1 and the improvement gain in group 2 is less significant, sug-
gesting that implicitly or explicitly enforcing the smooth deformations inside
the masked tumor regions is effective to the registration near the tumor regions.
Table 1 shows a comprehensive summary of the registration error, robustness,
local invertibility and runtime results across the 140 subjects. As opposed to
the alternative methods using cost function masking, our methods (DIRAC and
DIRAC-D) have achieved the best overall results in a fully unsupervised manner
without sacrificing the runtime advantage of learning-based methods. Compar-
ing the results of DIRAC and DIRAC-D, our variant DIRAC-D, which leverages
additional MR modality, slightly improves the registration error by 1.5% and
2.6% in groups 1 and 2, respectively. Figure 2 shows qualitative examples of the
registration results for each method and the estimated regions with absent cor-
respondence by our method. The results demonstrate our method is capable of
accurately locating the regions without valid correspondence, i.e., the tumor and
cerebral edema in the baseline scan of subject 2, and explicitly excluding these
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regions in similarity measure during the training phase further reduces artefacts
in the patient-specific registration.

4 Conclusion

We have proposed a unsupervised deformable registration method for the pre-
operative and post-recurrence brain MR registration, which capable of joint reg-
istration and segmentation of regions with absent correspondence. We introduce
a novel forward-backward consistency constraint and a pathological-aware sym-
metric loss function. Compared to existing deep learning-based methods, our
method addresses the absent correspondence issue in patient-specific registra-
tion and shows significant improvement in registration accuracy near the tumor
regions. Compared to conventional methods, our method inherits the runtime
advantage from deep learning-based approaches and does not require any man-
ual interaction or supervision, demonstrating immense potential in the fully-
automated patient-specific registration.
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