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Abstract. Unsupervised domain adaptation (UDA) has been vastly
explored to alleviate domain shifts between source and target domains,
by applying a well-performed model in an unlabeled target domain via
supervision of a labeled source domain. Recent literature, however, has
indicated that the performance is still far from satisfactory in the pres-
ence of significant domain shifts. Nonetheless, delineating a few target
samples is usually manageable and particularly worthwhile, due to the
substantial performance gain. Inspired by this, we aim to develop semi-
supervised domain adaptation (SSDA) for medical image segmentation,
which is largely underexplored. We, thus, propose to exploit both labeled
source and target domain data, in addition to unlabeled target data in a
unified manner. Specifically, we present a novel asymmetric co-training
(ACT) framework to integrate these subsets and avoid the domination
of the source domain data. Following a divide-and-conquer strategy, we
explicitly decouple the label supervisions in SSDA into two asymmetric
sub-tasks, including semi-supervised learning (SSL) and UDA, and lever-
age different knowledge from two segmentors to take into account the dis-
tinction between the source and target label supervisions. The knowledge
learned in the two modules is then adaptively integrated with ACT, by
iteratively teaching each other, based on the confidence-aware pseudo-
label. In addition, pseudo label noise is well-controlled with an expo-
nential MixUp decay scheme for smooth propagation. Experiments on
cross-modality brain tumor MRI segmentation tasks using the BraTS18
database showed, even with limited labeled target samples, ACT yielded
marked improvements over UDA and state-of-the-art SSDA methods and
approached an “upper bound” of supervised joint training.

1 Introduction

Accurate delineation of lesions or anatomical structures is a vital step for clinical
diagnosis, intervention, and treatment planning [24]. While recently flourished
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deep learning methods excel at segmenting those structures, deep learning-based
segmentors cannot generalize well in a heterogeneous domain, e.g., different clini-
cal centers, scanner vendors, or imaging modalities [4,14,16,20]. To alleviate this
issue, unsupervised domain adaptation (UDA) has been actively developed, by
applying a well-performed model in an unlabeled target domain via supervision
of a labeled source domain [5,15,18,19]. Due to diverse target domains, however,
the performance of UDA is far from satisfactory [9,17,31]. Instead, labeling a
small set of target domain data is usually more feasible [25]. As such, semi-
supervised domain adaptation (SSDA) has shown great potential as a solution
to domain shifts, as it can utilize both labeled source and target data, in addi-
tion to unlabeled target data. To date, while several SSDA classification methods
have been proposed [8,13,23,29], based on discriminative class boundaries, they
cannot be directly applied to segmentation, since segmentation involves complex
and dense pixel-wise predictions.

Recently, while a few works [6,10,26] have been proposed to extend SSDA
for segmentation on natural images, to our knowledge, no SSDA for medical
image segmentation has yet been explored. For example, a depth estimation
for natural images is used as an auxiliary task as in [10], but that approach
cannot be applied to medical imaging data, e.g., MRI, as they do not have
perspective depth maps. Wang et al. [26] simply added supervision from labeled
target samples to conventional adversarial UDA. Chen et al. [6] averaged labeled
source and target domain images at both region and sample levels to mitigate
the domain gap. However, source domain supervision can easily dominate the
training, when we directly combine the labeled source data with the target data
[23]. In other words, the extra small amount of labeled target data has not been
effectively utilized, because the volume of labeled source data is much larger
than labeled target data, and there is significant divergence across domains [23].

To mitigate the aforementioned limitations, we propose a practical asym-
metric co-training (ACT) framework to take each subset of data in SSDA in a
unified and balanced manner. In order to prevent a segmentor, jointly trained by
both domains, from being dominated by the source data only, we adopt a divide-
and-conquer strategy to decouple the label supervisions for the two asymmetric
segmentors, which share the same objective of carrying out a decent segmenta-
tion performance for the unlabeled data. By “asymmetric,” we mean that the
two segmentors are assigned different roles to utilize the labeled data in either
source or target domain, thereby providing a complementary view for the unla-
beled data. That is, the first segmentor learns on the labeled source domain data
and unlabeled target domain data as a conventional UDA task, while the other
segmentor learns on the labeled and unlabeled target domain data as a semi-
supervised learning (SSL) task. To integrate these two asymmetric branches,
we extend the idea of co-training [1,3,22], which is one of the most established
multi-view learning methods. Instead of modeling two views on the same set of
data with different feature extractors or adversarial sample generation in con-
ventional co-training [1,3,22], our two cross-domain views are explicitly provided
by the segmentors with the correlated and complementary UDA and SSL tasks.
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Fig. 1. Illustration of our proposed ACT framework for SSDA cross-modality (e.g.,
T2-weighted to T1-weighted MRI) image segmentation. Note that only target domain
specific segmentor θ will be used in testing.

Specifically, we construct the pseudo label of the unlabeled target sample based
on the pixel-wise confident predictions of the other segmentor. Then, the seg-
mentors are trained on the pseudo labeled data iteratively with an exponential
MixUp decay (EMD) scheme for smooth propagation. Finally, the target seg-
mentor carries out the target domain segmentation.

The contributions of this work can be summarized as follows:

• We present a novel SSDA segmentation framework to exploit the different
supervisions with the correlated and complementary asymmetric UDA and
SSL sub-tasks, following a divide-and-conquer strategy. The knowledge is then
integrated with confidence-aware pseudo-label based co-training.

• An EMD scheme is further proposed to mitigate the noisy pseudo label in
early epochs of training for smooth propagation.

• To our knowledge, this is the first attempt at investigating SSDA for medi-
cal image segmentation. Comprehensive evaluations on cross-modality brain
tumor (i.e., T2-weighted MRI to T1-weighted/T1ce/FLAIR MRI) segmenta-
tion tasks using the BraTS18 database demonstrate superiority performance
over conventional source-relaxed/source-based UDA methods.

2 Methodology

In our SSDA setting for segmentation, we are given a labeled source set Ds =
{(xs

i , y
s
i )}Ns

i=1, a labeled target set Dlt = {(xlt
i , ylt

i )}N lt

i=1, and an unlabeled target
set Dut = {(xut

i )}Nut

i=1 , where Ns, N lt, and Nut are the number of samples for
each set, respectively. Note that the slice xs

i , x
lt
i , and xut

i , and the segmentation
mask labels ys

i , and ylt
i have the same spatial size of H × W . In addition, for

each pixel ys
i:n or ylt

i:n indexed by n ∈ R
H×W , the label has C classes, i.e.,
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ys
i:n, ylt

i:n ∈ {1, · · · , C}. There is a distribution divergence between source domain
samples, Ds, and target domain samples, Dlt and Dut. Usually, N lt is much
smaller than Ns. The learning objective is to perform well in the target domain.

2.1 Asymmetric Co-training for SSDA Segmentation

To decouple SSDA via a divide-and-conquer strategy, we integrate Dut with
either Ds or Dlt to form the correlated and complementary sub-tasks of UDA and
SSL. We configure a cross-domain UDA segmentor φ and a target domain SSL
segmentor θ, which share the same objective of achieving a decent segmentation
performance in Dut. The knowledge learned from the two segmentors is then
integrated with ACT. The overall framework of this work is shown in Fig. 1.

Conventional co-training has focused on two independent views of the source
and target data or generated artificial multi-views with adversarial examples,
which learns two classifiers for each of the views and teaches each other on
the unlabeled data [3,22]. By contrast, in SSDA, without multiple views of the
data, we propose to leverage the distinct yet correlated supervision, based on
the inherent discrepancy of the labeled source and target data. We note that
the sub-tasks and datasets adopted are different for the UDA and SSL branches.
Therefore, all of the data subsets can be exploited, following well-established
UDA and SSL solutions without interfering with each other.

To achieve co-training, we adopt a simple deep pseudo labeling method [27],
which assigns the pixel-wise pseudo label ŷi:n for xut

i:n. Though UDA and SSL
can be achieved by different advanced algorithms, deep pseudo labeling can be
applied to either UDA [32] or SSL [27]. Therefore, we can apply the same algo-
rithm to the two sub-tasks, thereby greatly simplifying our overall framework.
We note that while a few methods [28] can be applied to either SSL or UDA like
pseudo labeling, they have not been jointly adopted in the context of SSDA.

Specifically, we assign the pseudo label for each pixel xut
i:n in Dut with the

prediction of either φ or θ, therefore constructing the pseudo labeled sets Uφ

and Uθ for the training of another segmentor θ and φ, respectively:

Uφ = {(xut
i:n, ŷφ

i:n = arg max
c

p(c|xut
i:n;φ)); if max

c
p(c|xut

i:n;φ) > ε}, (1)

Uθ = {(xut
i:n, ŷθ

i:n = arg max
c

p(c|xut
i:n; θ)); if max

c
p(c|xut

i:n; θ) > ε}, (2)

where p(c|xut
i:n; θ) and p(c|xut

i:n;φ) are the predicted probability of class c ∈
{1, · · · , C} w.r.t. xut

i:n using θ and φ, respectively. ε is a confidence threshold.
Note that the low softmax prediction probability indicates the low confidence
for training [18,32]. Then, the pixels in the selected pseudo label sets are merged
with the labeled data to construct {Ds, Uθ} and {Dlt, Uφ} for the training of φ
and θ with a conventional supervised segmentation loss, respectively. Therefore,
the two segmentors with asymmetrical tasks act as teacher and student of each
other to distillate the knowledge with highly confident predictions.
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Algorithm 1: An iteration of the ACT algorithm.
Input: batch size N , λ, η, ε, Ds, Dlt, Dut, current network parameters ωφ, ωθ;

Sample {(xs
i , ys

i )}N
i=1, {(xlt

i , ylt
i )}N

i=1, and{(xut
i )}N

i=1from Ds, Dlt, andDut, respectively;

Initialize Uφ = ∅, Uθ = ∅;
for i ← 1 to N do

ŷφ
i:n = argmaxc p(c|xut

i:n;φ); and ŷθ
i:n = argmaxc p(c|xut

i:n; θ)

if maxc p(c|xut
i:n;φ) > ε: update Uφ ← Uφ ∪ {(xut

i:n, ŷθ
i:n) with Eq. (1);

if maxc p(c|xut
i:n; θ) > ε: update Uθ ← Uθ ∪ {(xut

i:n, ŷθ
i:n) with Eq. (2);

end

Obtain Ũφ = {EMD(Uφ
i , {(xlt

i , ylt
i )}N

i=1;λ)}|Uφ|×N
i=1 with Eq. (3);

Obtain Ũθ = {EMD(Uθ
i , {(xs

i , ys
i )}N

i=1;λ)}|Uθ|×N
i=1 with Eq. (4);

Update ωφ ← ωφ − η∇(L(ωφ, Ds) + L(ωφ, Ũθ)); ωθ ← ωθ − η∇(L(ωθ, Dlt) + L(ωθ, Ũφ));
Output: Updated network parameters ωφ and ωθ.

2.2 Pseudo-label with Exponential MixUp Decay

Initially generated pseudo labels with the two segmentors are typically noisy,
which is significantly acute in the initial epochs, thus leading to a deviated
solution with propagated errors. Numerous conventional co-training methods
relied on simple assumptions that there is no domain shift, and the predictions
of the teacher model can be reliable and be simply used as ground truth. Due
to the domain shift, however, the prediction of φ in the target domain could
be noisy and lead to an aleatoric uncertainty [7,11,12]. In addition, insufficient
labeled target domain data can lead to an epistemic uncertainty related to the
model parameters [7,11,12].

To smoothly exploit the pseudo labels, we propose to adjust the contribution
of the supervision signals from both labels and pseudo labels as the training
progresses. Previously, vanilla MixUp [30] was developed for efficient data aug-
mentation, by combining both samples and their labels to generate new data for
training. We note that the MixUp used in SSL [2,6] adopted a constant sampling,
and did not take the decay scheme for gradual co-training. Thus, we propose to
gradually exploit the pseudo label by mixing up Ds or Dlt with pseudo labeled
Dut, and adjust their ratio with the EMD scheme. For the selected Uφ and Uθ

with the number of slices |Uφ| and |Uθ|, we mix up each pseudo labeled image
with all images from Ds or Dlt to form the mixed pseudo labeled sets Ũθ and
Ũφ. Specifically, our EMD can be formulated as:

Ũφ = {(x̃lt
i:n = λxlt

i:n + (1 − λ)xut
i:n, λỹlt

i:n = λylt
i:n + (1 − λ)ŷθ

i:n)}|Uθ|×N
i , (3)

Ũθ = {(x̃s
i:n = λxs

i:n + (1 − λ)xut
i:n, λỹs

i:n = λys
i:n + (1 − λ)ŷφ

i:n)}|Uφ|×N
i , (4)

where λ = λ0exp(−I) is the MixUp parameter with the exponential decay w.r.t.
iteration I. λ0 is the initial weight of ground truth samples and labels, which
is empirically set to 1. Therefore, along with the increase over iteration I, we
have smaller λ, which adjusts the contribution of the ground truth label to be
large at the start of the training, while utilizing the pseudo labels at the later
training epochs. Therefore, Ũφ and Ũθ gradually represent the pseudo label sets
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Fig. 2. Comparisons with other UDA/SSDA methods and ablation studies for the
cross-modality tumor segmentation. We show target test slices of T1, T1ce, and FLAIR
MRI from three subjects.

of Uφ and Uθ. We note that the mixup operates on the image level, which is
indicated by i. The number of generated mixed samples depends on the scale of
Uφ and Uθ in each iteration and batch size N . With the labeled Ds, Dlt, as well
as the pseudo labeled sets with EMD Ũφ and Ũφ, we update the parameters of
the segmentors φ and θ, i.e., ωφ and ωθ with SGD as:

ωφ ← ωφ − η∇(L(ωφ,Ds) + L(ωφ, Ũθ)), (5)

ωθ ← ωθ − η∇(L(ωθ,Dlt) + L(ωθ, Ũ
φ)), (6)

where η indicates the learning rate, and L(ωφ,Ds) denotes the learning loss on
Ds with the current segmentor φ parameterized by ωφ. The training procedure
is detailed in Algorithm 1. After training, only the target domain specific SSL
segmentor θ is used for testing.

3 Experiments and Results

To demonstrate the effectiveness of our proposed SSDA method, we evalu-
ated our method on T2-weighted MRI to T1-weighted/T1ce/FLAIR MRI brain
tumor segmentation using the BraTS2018 database [21]. We denote our proposed
method as ACT, and used ACT-EMD for an ablation study of an EMD-based
pseudo label exploration.

Of note, the BraTS2018 database contains a total of 285 patients [21] with the
MRI scannings, including T1-weighted (T1), T1-contrast enhanced (T1ce), T2-
weighted (T2), and T2 Fluid Attenuated Inversion Recovery (FLAIR) MRI. For
the segmentation labels, each pixel belongs to one of four classes, i.e., enhancing
tumor (EnhT), peritumoral edema (ED), necrotic and non-enhancing tumor core
(CoreT), and background. In addition, the whole tumor covers CoreT, EnhT,
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Table 1. Whole tumor segmentation performance of the cross-modality UDA and
SSDA. The supervised joint training can be regarded as an “upper bound”.

Method DICE Score (DSC) [%] ↑ Hausdorff Distance (HD) [mm] ↓
Task T1 FLAIR T1CE Ave T1 FLAIR T1CE Ave

Source only No DA 4.2 65.2 6.3 27.7 ± 1.2 55.7 28.0 49.8 39.6 ± 0.5

Target only SSL:5 43.8 54.6 47.5 48.6 ± 1.7 31.9 29.6 35.4 32.3 ± 0.8

SIFA [5] UDA 51.7 68.0 58.2 59.3 ± 0.6 19.6 16.9 15.0 17.1 ± 0.4

DSFN [31] UDA 57.3 78.9 62.2 66.1 ± 0.8 17.5 13.8 15.5 15.6 ± 0.3

DSA [9] UDA 57.7 81.8 62.0 67.2 ± 0.7 14.2 8.6 13.7 12.2 ± 0.4

SSCA [17] UDA 59.3 82.9 63.5 68.6 ± 0.6 12.5 7.9 11.2 11.5 ± 0.3

SLA [26] SSAD:1 64.7 82.3 66.1 71.0 ± 0.5 12.2 7.1 10.5 9.9 ± 0.3

DLD [6] SSAD:1 65.8 81.5 66.5 71.3 ± 0.6 12.0 7.1 10.3 9.8 ± 0.2

ACT SSAD:1 69.7 84.5 69.7 74.6± 0.3 10.5 5.8 10.0 8.8± 0.1

ACT-EMD SSAD:1 67.4 83.9 69.0 73.4 ± 0.6 10.9 6.4 10.3 9.2 ± 0.2

ACT SSAD:5 71.3 85.0 70.8 75.7± 0.5 10.0 5.2 9.8 8.3± 0.1

ACT-EMD SSAD:5 70.3 84.4 69.8 74.8 ± 0.4 10.4 5.7 10.2 8.8 ± 0.2

Joint training Supervised 73.2 85.6 72.6 77.1 ± 0.5 9.5 4.6 9.2 7.7 ± 0.2

and ED. We follow the conventional cross-modality UDA (i.e., T2-weighted to
T1-weighted/T1ce/FLAIR) evaluation protocols [9,17,31] for 8/2 splitting for
training/testing, and extend it to our SSDA task, by accessing the labels of 1–5
target domain subjects at the adaptation training stage. All of the data were
used in a subject-independent and unpaired manner. We used SSDA:1 or SSDA:5
to denote that one or five target domain subjects are labeled in training.

For a fair comparison, we used the same segmentor backbone as in DSA [9]
and SSCA [17], which is based on Deeplab-ResNet50. Without loss of generality,
we simply adopted the cross-entropy loss as L, and set the learning rate η = 1e−3
and confidence threshold ε = 0.5. Both φ and θ have the same network structure.
For the evaluation metrics, we adopted the widely used DSC (the higher, the
better) and Hausdorff distance (HD: the lower, the better) as in [9,17]. The
standard deviation was reported over five runs.

The quantitative evaluation results of the whole tumor segmentation are pro-
vided in Table 1. We can see that SSDA largely improved the performance over
the compared UDA methods [9,17]. For the T2-weighted to T1-weighted MRI
transfer task, we were able to achieve more than 10% improvements over [9,17]
with only one labeled target sample. Recent SSDA methods for natural image
segmentation [6,26] did not take the balance between the two labeled supervi-
sions into consideration, easily resulting in a source domain-biased solution in
case of limited labeled target domain data, and thus did not perform well on tar-
get domain data [23]. In addition, the depth estimation in [10] cannot be applied
to the MRI data. Thus, we reimplemented the aforementioned methods [6,26]
with the same backbone for comparisons, which is also the first attempt at the
medical image segmentation. Our ACT outperformed [6,26] by a DSC of 3.3%
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Table 2. Detailed comparison of Core/EnhT/ED segmentation. Results are averaged
over three tasks including T2-weighted to T1-weighted, T1CE, and FLAIR MRI with
the backbone as in [9,17].

Method DICE Score (DSC) [%] ↑ Hausdorff Distance (HD) [mm] ↓
Task CoreT EnhT ED CoreT EnhT ED

Source only No DA 20.6 ± 1.0 39.5 ± 0.8 41.3 ± 0.9 54.7 ± 0.4 55.2 ± 0.6 42.5 ± 0.4

Target only SSL:5 27.3 ± 1.1 38.0 ± 1.0 40.2.3 ± 1.3 51.8 ± 0.7 52.3 ± 0.9 46.4 ± 0.6

DSA [9] UDA 57.8 ± 0.6 44.0 ± 0.6 56.8 ± 0.5 25.8 ± 0.4 34.2 ± 0.3 25.6 ± 0.5

SSCA [17] UDA 58.2 ± 0.4 44.5 ± 0.5 60.7 ± 0.4 26.4 ± 0.2 32.8 ± 0.2 23.4 ± 0.3

SLA [26] SSDA:1 58.9 ± 0.6 48.1 ± 0.5 65.4 ± 0.4 24.5 ± 0.1 27.6 ± 0.3 20.3 ± 0.2

DLD [6] SSDA:1 60.3 ± 0.6 48.2 ± 0.5 66.0 ± 0.3 24.2 ± 0.2 27.8 ± 0.1 19.7 ± 0.2

ACT SSDA:1 64.5± 0.3 52.7± 0.4 69.8± 0.6 20.0± 0.2 24.6± 0.1 16.2± 0.2

ACT SSDA:5 66.9± 0.3 54.0± 0.3 71.2± 0.5 18.4± 0.4 23.7± 0.2 15.1± 0.2

Joint training Supervised 70.4 ± 0.3 62.5 ± 0.2 75.1 ± 0.4 15.8 ± 0.2 22.7 ± 0.1 13.0 ± 0.2

w.r.t. the averaged whole tumor segmentation in SSDA:1 task. The better per-
formance of ACT over ACT-EMD demonstrated the effectiveness of our EMD
scheme for smooth adaptation with pseudo-label. We note that we did not man-
age to outperform the supervised joint training, which accesses all of the target
domain labels, which can be considered an “upper bound” of UDA and SSDA.
Therefore, it is encouraging that our ACT can approach joint training with five
labeled target subjects. In addition, the performance was stable for the setting
of λ from 1 to 10.

In Table 2, we provide the detailed comparisons for more fine-grained segmen-
tation w.r.t. CoreT, EnhT, and ED. The improvements were consistent with the
whole tumor segmentation. The qualitative results of three target modalities
in Fig. 2 show the superior performance of our framework, compared with the
comparison methods.

In Fig. 3(a), we analyzed the testing pixel proportion change along with the
training that has both, only one, and none of two segmentor pseudo-labels, i.e.,
the maximum confidence is larger than ε as in Eq. (1). We can see that the
consensus of the two segmentors keeps increasing, by teaching each other in the
co-training scheme for knowledge integration. “Both” low rates, in the beginning,
indicate φ and θ may provide a different view based on their asymmetric tasks,
which can be complementary to each other. The sensitivity studies of using a
different number of labeled target domain subjects are shown in Fig. 3(b). Our
ACT was able to effectively use Dlt. In Fig. 3(c), we show that using more EMD
pairs improves the performance consistently.
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Fig. 3. Analysis of our ACT-based SSDA on the whole tumor segmentation task.
(a) The proportion of testing pixels that both, only one, or none of the segmentors
have high confidence on (b) the performance improvements with a different number of
labeled target domain training subjects, and (c) a sensitivity study of changing different
proportion of EMD pairs of |Ũφ| × N and |Ũθ| × N .

4 Conclusion

This work proposed a novel and practical SSDA framework for the segmentation
task, which has the great potential to improve a target domain generalization
with a manageable labeling effort in clinical practice. To achieve our goal, we
resorted to a divide-and-conquer strategy with two asymmetric sub-tasks to
balance between the supervisions from source and target domain labeled samples.
An EMD scheme is further developed to exploit the pseudo-label smoothly in
SSDA. Our experimental results on the cross-modality SSDA task using the
BraTS18 database demonstrated that the proposed method surpassed the state-
of-the-art UDA and SSDA methods.
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and P41EB022544.
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