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Abstract. Albeit the Dice loss is one of the dominant loss functions
in medical image segmentation, most research omits a closer look at its
derivative, i.e. the real motor of the optimization when using gradient
descent. In this paper, we highlight the peculiar action of the Dice loss in
the presence of missing or empty labels. First, we formulate a theoretical
basis that gives a general description of the Dice loss and its derivative. It
turns out that the choice of the reduction dimensions Φ and the smooth-
ing term ε is non-trivial and greatly influences its behavior. We find and
propose heuristic combinations of Φ and ε that work in a segmentation
setting with either missing or empty labels. Second, we empirically vali-
date these findings in a binary and multiclass segmentation setting using
two publicly available datasets. We confirm that the choice of Φ and ε
is indeed pivotal. With Φ chosen such that the reductions happen over
a single batch (and class) element and with a negligible ε, the Dice loss
deals with missing labels naturally and performs similarly compared to
recent adaptations specific for missing labels. With Φ chosen such that
the reductions happen over multiple batch elements or with a heuris-
tic value for ε, the Dice loss handles empty labels correctly. We believe
that this work highlights some essential perspectives and hope that it
encourages researchers to better describe their exact implementation of
the Dice loss in future work.

1 Introduction

The Dice loss was introduced in [5] and [13] as a loss function for binary image
segmentation taking care of the class imbalance between foreground and back-
ground often present in medical applications. The generalized Dice loss [16]
extended this idea to multiclass segmentation tasks, thereby taking into account
the class imbalance that is present across different classes. In parallel, the Jac-
card loss was introduced in the wider computer vision field for the same pur-
pose [14,17]. More recently, it has been shown that one can use either Dice or
Jaccard loss during training to effectively optimize both metrics at test time [6].
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The use of the Dice loss in popular and state-of-the-art methods such as No
New-Net [9] has only fueled its dominant usage across the entire field of medical
image segmentation. Despite its fast and wide adoption, research that explores
the underlying mechanisms is remarkably limited and mostly focuses on the loss
value itself building further on the concept of risk minimization [8]. Regarding
model calibration and inherent uncertainty, for example, some intuitions behind
the typical hard and poorly calibrated predictions were exposed in [4], thereby
focusing on the potential volume bias as a result of using the Dice loss. Regarding
semi-supervised learning, adaptations to the original formulations were proposed
to deal with “missing” labels [7,15], i.e. a label that is missing in the ground
truth even though it is present in the image.

In this work, we further contribute to a deeper understanding of the spe-
cific implementation of the Dice loss, especially in the context of missing and
empty labels. In contrast to missing labels, “empty” labels are labels that are
not present in the image (and hence also not in the ground truth). We will first
take a closer look at the derivative, i.e. the real motor of the underlying opti-
mization when using gradient descent, in Sect. 2. Although [13] and [16] report
the derivative, it is not being discussed in detail, nor is any reasoning behind
the choice of the reduction dimensions Φ given (Sect. 2.1). When the smoothing
term ε is mentioned, no details are given and its effect is underestimated by
merely linking it with numerical stability [16] and convergence issues [9]. In fact,
we find that both Φ and ε are intertwined, and that their choice is non-trivial
and pivotal in the presence of missing or empty labels. To confirm and validate
these findings, we set up two empirical settings with missing or empty labels in
Sects. 3 and 4. Indeed, we can make or break the segmentation task depending
on the exact implementation of the Dice loss.

2 Bells and Whistles of the Dice Loss: Φ and ε

In a CNN-based setting, the weights θ ∈ Θ are often updated using gradient
descent. For this purpose, the loss function � computes a real valued cost �(Y, Ỹ )
based on the comparison between the ground truth Y and its prediction Ỹ in
each iteration. Y and Ỹ contain the values yb,c,i and ỹb,c,i, respectively, pointing
to the value for a semantic class c ∈ C = [C] at an index i ∈ I = [I] (e.g. a voxel)
of a batch element b ∈ B = [B] (Fig. 1). The exact update of each θ depends
on d�(Y, Ỹ )/dθ, which can be computed via the generalized chain rule. With
ω = (b, c, i) ∈ Ω = B × C × I, we can write:

d�(Y, Ỹ )
dθ

=
∑

b∈B

∑

c∈C

∑

i∈I

∂�(Y, Ỹ )
∂ỹb,c,i

∂ỹb,c,i

∂θ
=

∑

ω∈Ω

∂�(Y, Ỹ )
∂ỹω

∂ỹω

∂θ
. (1)

The Dice similarity coefficient (DSC) over a subset φ ⊂ Ω is defined as:

DSC(Yφ, Ỹφ) =
2|Yφ ∩ Ỹφ|
|Yφ| + |Ỹφ| . (2)
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Fig. 1. Schematic representation of Y , having a batch, class and image dimension,
respectively with |B| = B, |C| = C and |I| = I (similarly for Ỹ ). The choice of Φ,
i.e. a family of subsets φ over Ω defines the extent of the reductions in sDSC(Yφ, Ỹφ).
From left to right, we see how the choice of Φ, and thus an example subset φ in blue,
is different between the image-wise (DLI), class-wise (DLCI), batch-wise (DLBI) and
all-wise (DLBCI) implementation of DL.

This formulation of DSC(Yφ, Ỹφ) requires Y and Ỹ to contain values in {0, 1}. In
order to be differentiable and handle values in [0, 1], relaxations such as the soft
DSC (sDSC) are used [5,13]. Furthermore, in order to allow both Y and Ỹ to
be empty, a smoothing term ε is added to the nominator and denominator such
that DSC(Yφ, Ỹφ) = 1 in case both Y and Ỹ are empty. This results in the more
general formulation of the Dice loss (DL) computed over a number of subsets
Φ = {φ}:

DL(Y, Ỹ ) = 1 − 1
|Φ|

∑

φ∈Φ

sDSC(Yφ, Ỹφ) = 1 − 1
|Φ|

∑

φ∈Φ

2
∑

ϕ∈φ yϕỹϕ + ε
∑

ϕ∈φ(yϕ + ỹϕ) + ε
. (3)

Note that typically all φ are equal in size and define a partition over the domain
Ω, such that

⋃
φ∈Φ φ = Ω and

⋂
φ∈Φ φ = 0. In dDL(Y, Ỹ )/dθ from Eq. 1, the

derivative ∂DL(Y, Ỹ )/∂ỹω acts as a scaling factor. In order to understand the
underlying optimization mechanisms we can thus analyze ∂DL(Y, Ỹ )/∂ỹω. Given
that all φ are disjoint, this can be written as:

∂DL(Y, Ỹ )
∂ỹω

= − 1
|Φ|

⎛

⎜⎝
2yω∑

ϕ∈φω (yϕ + ỹϕ) + ε
− 2

∑
ϕ∈φω yϕỹϕ + ε

(∑
ϕ∈φω (yϕ + ỹϕ) + ε

)2

⎞

⎟⎠ , (4)

with φω the subset that contains ω. As such, it becomes clear that the specific
action of DL depends on the exact configuration of the partition Φ of Ω and the
choice of ε. Next, we describe the most common choices of Φ and ε in practice.
Then, we investigate their effects in the context of missing or empty labels.
Finally, we present a simple heuristic to tune both.

2.1 Configuration of Φ and ε in Practice

In Fig. 1, we depict four straightforward choices for Φ. We define these as the
image-wise, class-wise, batch-wise or all-wise DL implementation, respectively
DLI, DLCI, DLBI and DLBCI, thus referring to the dimensions over which a com-
plete reduction (i.e. the summations

∑
ϕ∈φ in Eq. 3 and Eq. 4) is performed.
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We see that in all cases, a complete reduction is performed over the set of image
indices I, which is in line with all relevant literature that we consulted. Fur-
thermore, while in most implementations B > 1, only in [11] the exact usage
of the batch dimension is described. In fact, they experimented with both DLI

and DLBI, and found the latter to be superior for head and neck organs at
risk segmentation in radiotherapy. Based on the context, we assume that most
other contributions [5,6,9,10,13,18] used DLI, although we cannot rule out the
use of DLBI. Similarly, we assume that in [16] DLCI was used (with addition-
ally weighting the contribution of each class inversely proportional to the object
size), although we cannot rule out the use of DLBCI.

Note that in Eq. 3 and Eq. 4 we have assumed the choice for Φ and ε to be
fixed. As such, the loss value or gradients only vary across different iterations
due to a different sampling of Y and Ỹ . Relaxing this assumption allows us to
view the leaf Dice loss from [7] as a special case of choosing Φ. Being developed
in the context of missing labels, the partition Φ of Ω is altered each iteration
by substituting each φ with ∅ if

∑φ
ϕ yϕ = 0. Similarly, the marginal Dice loss

from [15] adapts Φ every iteration by treating the missing labels as background
and summing the predicted probabilities of unlabeled classes to the background
prediction before calculating the loss.

Based on our own experience, ε is generally chosen to be small (e.g. 10−7).
However, most research does not include ε in their loss formulation, nor do
they mention its exact value. We do find brief mentions related to convergence
issues [9] (without further information) or numerical stability in the case of
empty labels [10,16] (to avoid division by zero in Eq. 3 and Eq. 4).

2.2 Effect of Φ and ε on Missing or Empty Labels

When inspecting the derivative given in Eq. 4, we notice that in a way ∂DL/∂ỹω

does not depend on ỹω itself. Instead, the contributions of ỹϕ are aggregated over
the reduction dimensions, resulting in a global effect of prediction Ỹφ. Conse-
quently, the derivative in a subset φ takes only two distinct values corresponding
to yω = 0 or yω = 1. This is in contrast to the derivative shown in [13] who used
a L2 norm-based relaxation, which causes the gradients to be different for every
ω if ỹω is different. If we work further with the L1 norm-based relaxation (fol-
lowing the vast majority of implementations) and assuming that

∑
ϕ∈φω ỹϕ � ε,

we see that ∂DL/∂ỹω will be negligible for missing or empty ground truth labels.
Exploiting this property, we can either avoid having to implement specific losses
for missing labels, or we can learn to predict empty maps with a good configu-
ration of Φ. Regarding the former, we simply need to make sure

∑
ϕ∈φω yϕ = 0

for each map that contains missing labels which can be achieved by using the
image-wise implementation DLI. Regarding the latter, non-zero gradients are
required for empty maps. Hence, we want to choose φ large enough to avoid∑

ϕ∈φω yϕ = 0 for which a batch-wise implementation DLBI is suitable.
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2.3 A Simple Heuristic for Tuning ε to Learn from Empty Maps

We hypothesized that we can learn to predict empty maps by using the batch-
wise implementation DLBI. However, due to memory constraints and trade-off
with receptive field, it is often not possible to go for large batch sizes. In the limits
when B = 1 we find that DLI = DLBI, and thus the gradients of empty maps will
be negligible. Hence, we want to mimic the behavior of DLBI with B � 1, but
using DLI. This can be achieved by tuning ε to increase the derivative for empty
labels yω = 0. A very simple strategy would be to let ∂DL(Y, Ỹ )/∂ỹω for yω = 0
be equal in case of (i) DLBI with infinite batch size such that

∑
ϕ∈φω yϕ �= 0 and

negligible ε and (ii) DLI with non-negligible epsilon and
∑

ϕ∈φω yϕ = 0. If we
set

∑
ϕ∈φω ỹϕ = v̂ we get:

2
∑

ϕ∈φω yϕỹϕ
(∑

ϕ∈φω (yϕ + ỹϕ)
)2 =

ε
(∑

ϕ∈φω ỹϕ + ε
)2 ⇒ 2av̂

(bv̂)2
=

ε

(v̂ + ε)2
, (5)

with a and b variables to express the intersection and union as a function of
v̂. We can easily see that when we assume the overlap to be around 50%, thus
a ≈ 1/2, and

∑
ϕ∈φω yϕ ≈ ∑

ϕ∈φω ỹϕ = v̂, thus b ≈ 2, we can find ε ≈ v̂. It is
further reasonable to assume that after some iterations v̂ ≈ E

∑
ϕ∈φω yϕ, thus

setting ε = v̂ will allow DL to learn empty maps.

3 Experimental Setup

To confirm empirically the observed effects of Φ and ε on missing or empty labels
(Sect. 2.2), and to test our simple heuristic choice of ε (Sect. 2.3), we perform
experiments using three implementations of DL on two different public datasets.

Setups I, BI and Iε: In I and BI, respectively DLI and DLBI are used to
calculate the Dice loss (Sect. 2.1). The difference between I and Iε is that we use
a negligible value for epsilon ε = 10−7 in I and use the heuristic from Sect. 2.3 to
set ε = E

∑
ϕ∈φω yϕ in Iε. From Sect. 2.2, we expect I (any B) and BI (B = 1) to

successfully ignore missing labels during training, still segmenting these at test
time. Vice versa, we expect BI (B > 1) and Iε (any B) to successfully learn what
maps should be empty and thus output empty maps at test time.

BRATS: For our purpose, we resort to the binary segmentation of whole brain
tumors on pre-operative MRI in BRATS 2018 [1,2,12]. The BRATS 2018 training
dataset consists of 75 subjects with a lower grade glioma (LGG) and 210 subjects
with a glioblastoma (HGG). To construct a partially labeled dataset for the
missing and empty label tasks, we substitute the ground truth segmentations of
the LGGs with empty maps during training. In light of missing labels, we would
like the CNN to successfully segment LGGs at test time. In light of empty
maps, we would like the CNN to output empty maps for LGGs at test time.
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Based on the ground truths of the entire dataset, in Iε we need to set ε = 8, 789
or ε = 12, 412 when we use the partially or fully labeled dataset for training,
respectively.

ACDC: The ACDC dataset [3] consists of cardiac MRI of 100 subjects. Labels
for left ventricular (LV) cavity, LV myocardium and right ventricle (RV) are
available in end-diastole (ED) and end-systole (ES). To create a structured par-
tially labeled dataset, we remove the myocardium labels in ES. This is a realistic
scenario since segmenting the myocardium only in ED is common in clinical prac-
tice. More specifically, ED and ES were sampled in the ratio 3/1 for Iε, resulting
in ε being equal to 13,741 and 19,893 on average for the myocardium class dur-
ing partially or fully labeled training, respectively. For LV and RV, ε was 21,339
and 18,993, respectively. We ignored the background map when calculating DL.
Since we hypothesize that DLI is able to ignore missing labels, we compare I to
the marginal Dice loss [15] and the leaf Dice loss [7], two loss functions designed
in particular to deal with missing labels.

Implementation Details: We start from the exact same preprocessing, CNN
architecture and training parameters as in No New-Net [9]. The images of the
BRATS dataset were first resampled to an isotropic voxel size of 2 × 2 × 2 mm3,
such that we could work with a smaller output segment size of 80 × 80 ×
48 voxels as to be able to vary B in {1, 2, 4, 8}. Since we are working with a
binary segmentation task we have C = 1 and use a single sigmoid activation in
the final layer. For ACDC, the images were first resampled to 192 × 192 × 48
with a voxel size of 1.56 × 1.56 × 2.5 mm3. The aforementioned CNN architecture
was modified to use batch normalization and pReLU activations. To compensate
the anisotropic voxel size, we used a combination of 3 × 3 × 3 and 3 × 3 × 1
convolutions and omitted the first max-pooling for the third dimension. These
experiments were only performed for B = 2. In this multiclass segmentation
task, we use a softmax activation in the final layer to obtain four output maps.

Statistical Performance: All experiments were performed under a five-fold
cross-validation scheme, making sure each subject was only present in one of the
five partitions. Significant differences were assessed with non-parametric boot-
strapping, making no assumptions on the distribution of the results [2]. Results
were considered statistically significant if the p-value was below 5%.

4 Results

Table 1 reports the mean DSC and mean volume difference (ΔV) between
the fully labeled validation set and the predictions for tumor (BRATS) and
myocardium (ACDC). For both the label that was always available (HGG or
MYOED) and the label that was not present in the partially labeled training
dataset (LGG or MYOES), we can make two observations. First, configurations



The Dice Loss in the Context of Missing or Empty Labels 533

Table 1. Mean DSC and mean ΔV. HGG and MYOED are always present during
training while LGG and MYOES are replaced by empty maps under partial labeling.
Configurations that we expect to learn to predict empty maps are highlighted (since we
used a fully labeled validation set, we expect lower DSC and ΔV). Comparing partial
with full labeling, inferior (p < 0.05) results are indicated in italic.

Labeling B DSC ΔV [ml]

HGG/MYOED LGG/MYOES HGG/MYOED LGG/MYOES

I BI Iε I BI Iε I BI Iε I BI Iε

BRATS

Full

1 0.89 0.89 0.89 0.89 0.89 0.89 −4 −4 −7 −8 −7 −9

2 0.89 0.89 0.89 0.89 0.88 0.88 −5 −5 −7 −9 −10 −12

4 0.89 0.89 0.89 0.88 0.90 0.89 −6 −5 −7 −11 −7 −11

8 0.89 0.89 0.89 0.89 0.88 0.89 −6 −4 −6 −12 −10 −9

Partial

1 0.89 0.89 0.83 0.88 0.88 0.23 −5 −5 −12 −11 −12 −88

2 0.89 0.83 0.82 0.88 0.24 0.16 −6 −12 −13 −12 −89 −96

4 0.89 0.82 0.83 0.88 0.20 0.20 −6 −12 −12 −15 −93 −94

8 0.89 0.82 0.83 0.88 0.20 0.23 −6 −12 −12 −14 −94 −90

ACDC
Full 2 0.88 0.88 0.87 0.89 0.89 0.89 −1 0 −2 −3 0 −3

Partial 2 0.88 0.80 0.80 0.88 0.08 0.06 0 −11 −14 −5 −129 −131

I and BI (B = 1) delivered a comparable segmentation performance (in terms
of both DSC and ΔV) compared to using a fully labeled training dataset. Sec-
ond, using configurations BI (B > 1) and Iε the performance was consistently
inferior. In this case, the CNN starts to learn when it needs to output empty
maps. As a result, when calculating the DSC and ΔV with respect to a fully
labeled validation dataset, we expect both metrics to remain similar for HGG
and MYOES . On the other hand, we expect a mean DSC of 0 and a |ΔV| close
to the mean volume of LGG or MYOES . Note that this is not the case due to
the incorrect classification of LGG or MYOES as HGG or MYOED, respectively.
Figure 2 shows the Receiver Operating Characteristic (ROC) curves when using
a partially labeled training dataset with the goal to detect HGG or MYOED

based on a threshold on the predicted volume at test time. For both tasks, we
achieved an Area Under the Curve (AUC) of around 0.9. Figure 3 shows an
example segmentation.

When comparing I with the marginal Dice loss [15] and the leaf Dice loss [7],
no significant differences between any method for myocardium (MYOED = 0.88,
MYOES = 0.88), LV (LVED = 0.96, LVES = 0.92) and RV (RVED = 0.93,
RVES = 0.86 − 0.87) were found in both ED and ES.
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Fig. 2. ROC analysis if we want to detect the label that was always present during
training by using different thresholds on the predicted volume. In the legend we also
report the AUC for each setting.

Fig. 3. Segmentation examples for BRATS (top) and ACDC (bottom). The ground
truths for LGG and MYOES were replaced with empty maps during training (GTtrain).
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5 Discussion

The experiments confirmed the analysis from Sect. 2.2 that DLI (equal to DLBI

when B = 1) ignores missing labels during training and that it can be used
in the context of missing labels naively. On the other hand, we confirmed that
DLBI (with B > 1) and DLI (with a heuristic choice of ε) can effectively learn
to predict empty labels, e.g. for classification purposes or to be used with small
patch sizes.

When heuristically determining ε for configuring Iε (Eq. 5), we only focused
on the derivative for yω = 0. Of course, by adapting ε, the derivative for yω = 1
will also change. Nonetheless, our experiments showed that Iε can achieve the
expected behavior, indicating that the effect on the derivative for yω = 1 is
only minor compared to yω = 0. We wish to derive a more exact formulation of
the optimal value of ε in future work. We expect this optimal ε to depend on
the distribution between the classes, object size and other labels that might be
present. Furthermore, it would be interesting to study the transition between
the near-perfect prediction for the missing class (DLI with small ε) and the
prediction of empty labels for the missing class (DLI with large ε).

All the code necessary for exact replication of the results including prepro-
cessing, training scripts, statistical analysis, etc. was released to encourage fur-
ther analysis on this topic (https://github.com/JeroenBertels/dicegrad).

6 Conclusion

We showed that the choice of the reduction dimensions Φ and the smoothing
term ε for the Dice loss is non-trivial and greatly influences its behavior in the
context of missing or empty labels. We believe that this work highlights some
essential perspectives and hope that it encourages researchers to better describe
their exact implementation of the Dice loss in the future.
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