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Abstract. Accurate brain tumor segmentation from Magnetic Reso-
nance Imaging (MRI) is desirable to joint learning of multimodal images.
However, in clinical practice, it is not always possible to acquire a com-
plete set of MRIs, and the problem of missing modalities causes severe
performance degradation in existing multimodal segmentation methods.
In this work, we present the first attempt to exploit the Transformer for
multimodal brain tumor segmentation that is robust to any combinatorial
subset of available modalities. Concretely, we propose a novel multimodal
Medical Transformer (mmFormer) for incomplete multimodal learning
with three main components: the hybrid modality-specific encoders that
bridge a convolutional encoder and an intra-modal Transformer for both
local and global context modeling within each modality; an inter-modal
Transformer to build and align the long-range correlations across modal-
ities for modality-invariant features with global semantics corresponding
to tumor region; a decoder that performs a progressive up-sampling and
fusion with the modality-invariant features to generate robust segmenta-
tion. Besides, auxiliary regularizers are introduced in both encoder and
decoder to further enhance the model’s robustness to incomplete modali-
ties. We conduct extensive experiments on the public BraTS 2018 dataset
for brain tumor segmentation. The results demonstrate that the proposed
mmFormer outperforms the state-of-the-art methods for incomplete mul-
timodal brain tumor segmentation on almost all subsets of incomplete
modalities, especially by an average 19.07% improvement of Dice on tumor
segmentation with only one available modality. The code is available at
https://github.com/YaoZhang93/mmFormer.
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1 Introduction

Automated and accurate segmentation of brain tumors plays an essential role
in clinical assessment and diagnosis. Magnetic Resonance Imaging (MRI) is a
common neuroimaging technique for the quantitative evaluation of brain tumors
in clinical practice, where multiple imaging modalities, i.e., T1-weighted (T1),
contrast-enhanced T1-weighted (T1c), T2-weighted (T2), and Fluid Attenuated
Inversion Recovery (FLAIR) images, are provided. Each imaging modality pro-
vides a distinctive contrast of the brain structure and pathology. The joint learn-
ing of multimodal images for brain tumor segmentation is essential and can sig-
nificantly boost the segmentation performance. Plenty of methods have been
widely explored to effectively fuse multimodal MRIs for brain tumor segmen-
tation by, for example, concatenating multimodal images in channel dimension
as the input or fusing features in the latent space [17,23]. However, in clinical
practice, it is not always possible to acquire a complete set of MRIs due to data
corruption, various scanning protocols, and unsuitable conditions of patients. In
this situation, most existing multimodal methods may fail to deal with incom-
plete imaging modalities and face a severe degradation in segmentation perfor-
mance. Consequently, a robust multimodal method is highly desired for a flexible
and practical clinical application with one or more missing modalities.

Incomplete multimodal learning, also known as hetero-modal learning [8],
aims at designing methods that are robust with any subset of available modalities
at inference. A straightforward strategy for incomplete multimodal learning of
brain tumor segmentation is synthesizing the missing modalities by generative
models [18]. Another stream of methods explores knowledge distillation from
complete modalities to incomplete ones [2,10,21]. Although promising results
are obtained, such methods have to train and deploy a specific model for each
subset of missing modalities, which is complicated and burdensome in clinical
application. Zhang et al. [22] proposed an ensemble learning of single-modal
models with adaptive fusion to achieve multimodal segmentation. However, it
only works when one or all modalities are available. Meanwhile, all these methods
require complete modalities during the training process.

Recent methods focused on learning a unified model, instead of a bunch of
distilled networks, for incomplete multimodal segmentation [8,16]. For example,
HeMIS [8] learns an embedding of multimodal information by computing mean
and variance across features from any number of available modalities. U-HVED [4]
further introduces multimodal variational auto-encoder to benefit incomplete mul-
timodal segmentation with generation of missing modalities. More recent meth-
ods also proposed to exploit feature disentanglement [1] and attention mecha-
nism [3] for robust multimodal brain tumor segmentation. Fully Convolutional
Network (FCN) [11,15] has achieved great success in medical image segmenta-
tion and is widely used for feature extraction in the methods mentioned above.
Despite its excellent performance, the inductive bias of convolution, i.e., the local-
ity, makes FCN difficult to build long-range dependencies explicitly. In incomplete
multimodal learning of brain tumor segmentation, the features extracted with
limited receptive fields tend to be biased when dealing with varying modalities.



mmFormer: Multimodal Medical Transformer 109

Fig. 1. Overview of the proposed mmFormer, which is composed of four hybrid
modality-specific encoders, a modality-correlated encoder, and a convolutional decoder.
Meanwhile, auxiliary regularizers are introduced in both encoder and decoder. The skip
connections between the convolutional encoder and decoder are hidden for clear display.

In contrast, a modality-invariant embedding with global semantic information of
tumor region across different modalities may contribute to more robust segmen-
tation, especially when one or more modalities are missing.

Transformer was originally proposed to model long-range dependencies for
sequence-to-sequence tasks [19], and also shows state-of-the-art performance on
various computer vision tasks [5]. Concurrent works [7,14,20] exploited Trans-
former for brain tumor segmentation from the view of backbone network. How-
ever, the dedicated Transformer for multimodal modeling of brain tumor segmen-
tation has not been carefully tapped yet, letting alone the incomplete multimodal
segmentation.

This paper aims to exploit Transformer to build a unified model for incom-
plete multimodal learning of brain tumor segmentation. We propose Multimodal
Medical Transformer (mmFormer) that leverages hybrid modality-specific
encoders and a modality-correlated encoder to build the long-range dependen-
cies both within and across different modalities. With the modality-invariant
representations extracted by explicitly building and aligning global correlations
between different modalities, the proposed mmFormer demonstrates superior
robustness to incomplete multimodal learning of brain tumor segmentation.
Meanwhile, auxiliary regularizers are introduced into mmFormer to encourage
both encoder and decoder to learn discriminative features even when a cer-
tain number of modalities are missing. We validate mmFormer on the task of
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multimodal brain tumor segmentation with BraTS 2018 dataset [12]. The pro-
posed method outperforms the state-of-the-art methods in the average Dice
metric over all settings of missing modalities, especially by an average 19.07%
improvement in Dice on enhancing tumor segmentation with only one available
modality. To the best of our knowledge, this is the first attempt to involve the
Transformer for incomplete multimodal learning of brain tumor segmentation.

2 Method

In this paper, we propose mmFormer for incomplete multimodal learning of
brain tumor segmentation. We adopt an encoder-decoder architecture to con-
struct our mmFormer, including a hybrid modality-specific encoder for each
modality, a modality-correlated encoder, and a convolutional decoder. Besides,
auxiliary regularizers are introduced in both encoder and decoder. An overview
of mmFormer is illustrated in Fig. 1. We elaborate on the details of each com-
ponent in the followings.

2.1 Hybrid Modality-Specific Encoder

The hybrid modality-specific encoder aims to extract both local and global con-
text information within a specific modality by bridging a convolutional encoder
and an intra-modal Transformer. We denote the complete set of modalities by
M = {FLAIR, T1c, T1, T2}. Given an input of Xm ∈ R

1×D×H×W with a size
of D × H × W , m ∈ M , we first utilize the convolutional encoder to generate
compact feature maps with the local context and then leverage the intra-modal
Transformer to model the long-range dependency in a global space.

Convolutional Encoder. The convolutional encoder is constructed by stacking
convolutional blocks, similar to the encoder part of U-Net [15]. The feature
maps with the local context within each modality produced by the convolutional
encoder Fconv

m can be formulated as

Flocal
m = Fconv

m (Xm; θconvm ) (1)

where Flocal
m ∈ R

C× D

2l−1 × H

2l−1 × W

2l−1 , C is the channel dimension, and l is the
number of the stages in the encoder. Concretely, we build a five-stage encoder,
and each stage consists of two convolutional blocks. Each block contains cascaded
group normalization, ReLU, and convolutional layers with kernel size of 3, while
the first convolutional block in the first stage only contains a convolutional layer.
Between two consecutive blocks, a convolutional layer with stride of 2 is employed
to downsample the feature maps. The number of filters at each level of the
encoder is 16, 32, 64, 128, and 256, respectively.
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Intra-modal Transformer. Limited by the intrinsic locality of the convolu-
tional network, the convolutional encoder fails to effectively build the long-range
dependency within each modality. Therefore, we exploit the Intra-modal Trans-
former for explicitly long-range contextual modeling. The Intra-modal Trans-
former contains a tokenizer, a Multi-head Self Attention (MSA), and a Feed-
Forward Network (FFN).

As Transformer processes the embeddings in a sequence-to-sequence manner,
the local feature maps Flocal

m produced by the convolutional encoder is first flat-
tened into a 1D sequence and transformed into token space by a linear projection.
However, the flattening operation inevitably collapses the spatial information,
which is critical to image segmentation. To address this issue, we introduce
a learnable position embedding Pm to supplement the flattened features via
element-wise summation, which is formulated as

Ftoken
m = Flocal

m Wm + Pm, (2)

where Ftoken
m ∈ R

C′× DHW

23(l−1) denotes the token and Wm denotes the weights
of linear projection. The MSA builds the relationship within each modality by
looking over all possible locations in the feature map, which is formulated as

headim = Attention(Qi
m,Ki

m,Vi
m) = softmax(

Qi
mKiT

m√
dk

)Vi
m, (3)

MSAm = [head1m, ..., headNm]Wo
m, (4)

where Qi
m = LN(Ftoken

m )WQi
m , Ki

m = LN(Ftoken
m )WKi

m , Vi
m =

LN(Ftoken
m )WV i

m , LN(·) is layer normalization, dk is the dimension of Km,
N = 8 is the number of attention heads, and [·, ·] is a concatenation opera-
tion. The FFN is a two-layer perceptron with GELU [9] activation. The feature
maps with global context within each modality produced by the intra-modal
Transformer is defined as

Fglobal
m = FFNm(LN(z)) + z, z = MSAm(LN(Ftoken

m )) + Ftoken
m , (5)

where Fglobal
m ∈ R

C′× DHW

23(l−1) .

2.2 Modality-Correlated Encoder

The modality-correlated encoder is designed to build the long-range correlations
across modalities for modality-invariant features with global semantics corre-
sponding to the tumor region. It is implemented as an inter-modal Transformer.

Inter-modal Transformer. In contrast to the intra-modal Transformer, the
inter-modal Transformer combines the embeddings from all modality-specific
encoders by concatenation as the input multimodal token, which is defined as

Ftoken = [δFLAIRF
global
FLAIR, δT1cF

global
T1c , δT1F

global
T1 , δT2F

global
T2 ]W + P, (6)
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where δm ∈ {0, 1} is a Bernoulli indicator that aims to grant robustness when
building long-range dependencies between different modalities even when some
modalities are missing. This kind of modality-level dropout is randomly con-
ducted during training by setting δm to 0. In case of missing modalities, the
multimodal token for the missing modalities will be held by a zero vector. Sub-
sequently, it is processed by MSD and FFN for modality-invariant features
across modalities, which is formulated as

Fglobal = FFN(LN(z)) + z, z = MSA(LN(Ftoken)) + Ftoken, (7)

where Fglobal ∈ R
C′× DHW

2(l−1) .

2.3 Convolutional Decoder

The convolutional decoder is designed to progressively restore the spatial reso-
lution from high-level latent space to original mask space. The output sequence
Fglobal of the modality-correlated Transformer is reshaped into feature maps cor-
responding to the size before flattening. The convolutional decoder has a sym-
metric architecture of convolutional encoder, similar to U-Net [15]. Besides, the
skip connections between encoder and decoder are also added to keep more low-
level details for better segmentation. The features from convolutional encoders
of different modalities at a specific level are concatenated and forwarded as skip
features to the convolutional decoder.

2.4 Auxiliary Regularizer

Conventional multimodal learning models tend to recognize brain tumors relying
on the discriminative modalities [1,3]. Such models are likely to face severe degra-
dation when the discriminative modalities are missing. Therefore, it is critical to
encourage each convolutional encoder to segment brain tumors even without the
assistance of other modalities. To this end, the outputs of convolutional encoders
are upsampled by a shared-weight decoder to segment tumors from each modal-
ity separately. The shared-weight decoder has the same architecture with the
convolutional decoder. Besides, we also introduce auxiliary regularizers in the
convolutional decoder to force the decoder to generate accurate segmentation
even when certain modalities are missing. It is achieved by interpolating the
feature maps in each stage of the convolutional decoder to segment tumors via
deep supervision [6]. Dice loss [13] is employed as the regularizer. Combining the
training loss of the network’s output with the auxiliary regularizers, the overall
loss function is defined as

L = 1 − Dice = 1 − 2
∑C

c=1

∑Nc

i=1 gci p
c
i

∑C
c=1

∑Nc

i=1 gc2i +
∑C

c=1

∑Nc

i=1 pc2i
, (8)

Ltotal =
∑

i∈M

Lencoder
i +

l−1∑

i=1

Ldecoder
i + Loutput, (9)
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Table 1. Results of the proposed method and state-of-the-art unified models, i.e.,
HeMIS [8] and U-HVED [4], on BraTS 2018 dataset [12]. Dice similarity coefficient
(DSC) [%] is employed for evaluation with every combination settings of modalities. •
and ◦ denote available and missing modalities, respectively.

Modalities Enhancing Tumor Tumor Core Whole Tumor

F T1c T1 T2 U-HeMIS U-HVED Ours U-HeMIS U-HVED Ours U-HeMIS U-HVED Ours

• ◦ ◦ ◦ 11.78 23.80 39.33 26.06 57.90 61.21 52.48 84.39 86.10

◦ • ◦ ◦ 62.02 57.64 72.60 65.29 59.59 75.41 61.53 53.62 72.22

◦ ◦ • ◦ 10.16 8.60 32.53 37.39 33.90 56.55 57.62 49.51 67.52

◦ ◦ ◦ • 25.63 22.82 43.05 57.20 54.67 64.20 80.96 79.83 81.15

• • ◦ ◦ 66.10 68.36 75.07 71.49 75.07 77.88 68.99 85.93 87.30

• ◦ • ◦ 10.71 27.96 42.96 41.12 61.14 65.91 64.62 85.71 87.06

• ◦ ◦ • 30.22 32.31 47.52 57.68 62.70 69.75 82.95 87.58 87.59

◦ • • ◦ 66.22 61.11 74.04 72.46 67.55 78.59 68.47 64.22 74.42

◦ • ◦ • 67.83 67.83 74.51 76.64 73.92 78.61 82.48 81.32 82.99

◦ ◦ • • 32.39 24.29 44.99 60.92 56.26 69.42 82.41 81.56 82.20

• • • ◦ 68.54 68.60 75.47 76.01 77.05 79.80 72.31 86.72 87.33

• • ◦ • 68.72 68.93 75.67 77.53 76.75 79.55 83.85 88.09 88.14

• ◦ • • 31.07 32.34 47.70 60.32 63.14 71.52 83.43 88.07 87.75

◦ • • • 69.92 67.75 74.75 78.96 75.28 80.39 83.94 82.32 82.71

• • • • 70.24 69.03 77.61 79.48 77.71 85.78 84.74 88.46 89.64

Average 46.10 46.76 59.85 62.57 64.84 72.97 74.05 79.16 82.94

where C is the number of segmentation classes, and Nc is the number of voxels of
class c, gci is a binary indicator if class label c is the correct classification for pixel
i, pci is the corresponding predicted probability, M = {FLAIR, T1c, T1, T2},
and l is the number of stages in the convolutional decoder.

3 Experiments and Results

Dataset and Implementation. The experiments are conducted on BraTS
2018 dataset1 [12], which consists of 285 multi-contrast MRI scans with four
modalities: T1, T1c, T2, and FLAIR. Different subregions of brain tumors are
combined into three nested subregions: whole tumor, tumor core, and enhancing
tumor. All the volumes have been co-registered to the same anatomical tem-
plate and interpolated to the same resolution by the organizers. Dice Similarity
Coefficient (DSC) as defined in Eq. (8) is employed for evaluation. The frame-
work is implemented with PyTorch 1.7 on four NVIDIA Tesla V100 GPUs. The
input size is 128 × 128 × 128 voxels and batch size is 1. Random flip, crop, and
intensity shifts are employed for data augmentation. The mmFormer has 106M
parameters and 748G FLOPs. The network is trained with the Adam optimizer
with an initial learning rate of 0.0002 for 1000 epochs. The model is trained for
about 25 h with 17G memory on each GPU.

1 https://www.med.upenn.edu/sbia/brats2018/data.html.

https://www.med.upenn.edu/sbia/brats2018/data.html
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Performance of Incomplete Multimodal Segmentation. We evaluate the
robustness of our method to incomplete multimodal segmentation. The absence
of modality is implemented by setting δi, i ∈ {FLAIR, T1c, T1, T2} to be zero
for dropping the specific modalities at inference. We compare our method with
two representative models using shared latent space, i.e., HeMIS [8] and U-
HVED [4]. For a fair comparison, we use the same data split in [21] and directly
reference the results. In Table 1, our method significantly outperforms HeMIS
and U-HVED on the segmentation of enhancing tumor and tumor core on all
the 15 possible combinantions of available modalities and the segmentation of the
whole tumor on 12 out of 15. In Table 2, we show that with the increased number
of missing modalities, the average improvement obtained by mmFormer is more
considerable. Meanwhile, it is observed that mmFormer gains more improvement
when the target is more difficult to segment. These results demonstrate the
effectiveness of mmFormer for incomplete multimodal learning of brain tumor
segmentation. Figure 2 shows that even with one modality available, mmFormer
can achieve proper segmentation for brain tumor.

Fig. 2. Segmentation results of mmFormer with various available modalities.

We also compare mmFormer with ACN [21]. ACN relies on knowledge dis-
tillation for incomplete multimodal brain tumor segmentation. In the case of N
modalities in total, ACN has to train 24−2 times to distill 2N −2 student models
for all conditions of missing modalities, while our mmFormer only learns once
by a unified model. Specifically, ACN is trained for 672 h with 144M parameters
for 1 teacher and 14 student models, while mmFormer requires only 25 h with
106 M parameters. Nevertheless, the average DSC for enhancing tumor, tumor
core, and whole tumor of mmFormer (59.85, 72.97 and 82.94, respectively) is
still close to it of ACN (61.21, 77.62, and 85.92, respectively).

Performance of Complete Multimodal Segmentation. We compare our
method with a recent Transformer-based method, i.e., TransBTS [20], for multi-
modal brain tumor segmentation with full modalities. We reproduce the results
with the official repository. TransBTS obtains DSC of 72.66%, 72.69%, and
79.99% on enhancing tumor, tumor core, and the whole tumor, respectively. Our
mmFormer outperforms TransBTS on all subregions of brain tumor with DSC
of 77.61%, 85.78%, and 89.64%, demonstrating the effectiveness of mmFormer
even for complete multimodal brain tumor segmentation.
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Ablation Study. We investigate the effectiveness of intra-modal Transformer,
inter-modal Transformer, and auxiliary regularizer as three critical components
in our method. We analyze the effectiveness of each component by excluding one
of them from mmFormer. In Table 3, we compare the performance of the three
variants to mmFormer with DSC, averaging over the 15 possible combinations
of input modalities. It shows that intra-modal Transformer, inter-modal Trans-
former, and auxiliary regularizer bring performance improvement across all the
tumor subregions.

Table 2. Average improvements of
mmFormer upon HeMIS [8] and U-
HVED [4] with different numbers of miss-
ing modalities evaluated by DSC [%].

Regions # of missing modalities

0 1 2 3

Enhancing +7.98 +8.91 +13.57 +19.07

Core +7.19 +4.68 +8.62 +15.34

Whole +3.04 +2.89 +5.57 +11.75

Table 3. Ablation study of critical
components of mmFormer.

Methods Average DSC [%]

Enhancing Core Whole

mmFormer 59.85 72.97 82.94

w/o IntraTrans 56.98 71.83 81.32

w/o InterTrans 56.05 70.28 81.12

w/o Aux. Reg 55.78 69.33 81.65

4 Conclusion

We proposed a Transformer-based method for incomplete multimodal learning
of brain tumor segmentation. The proposed mmFormer bridges Transformer
and CNN to build the long-range dependencies both within and across different
modalities of MRI images for a modality-invariant representation. We validated
our method on brain tumor segmentation under various combinations of missing
modalities, and it outperformed state-of-the-art methods on the BraTS bench-
mark. Our method gains more improvements when more modalities are missing
and/or the target ones are more difficult to segment.
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