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Abstract. Automatic breast lesion segmentation in ultrasound (US)
videos is an essential prerequisite for early diagnosis and treatment. This
challenging task remains under-explored due to the lack of availability
of annotated US video dataset. Though recent works have achieved bet-
ter performance in natural video object segmentation by introducing
promising Transformer architectures, they still suffer from spatial incon-
sistency as well as huge computational costs. Therefore, in this paper,
we first present a new benchmark dataset designed for US video seg-
mentation. Then, we propose a dynamic parallel spatial-temporal Trans-
former (DPSTT) to improve the performance of lesion segmentation in
US videos with higher computational efficiency. Specifically, the proposed
DPSTT disentangles the non-local Transformer along the temporal and
spatial dimensions, respectively. The temporal Transformer attends tem-
poral lesion movement on different frames at the same regions, and the
spatial Transformer focuses on similar context information between the
previous and the current frames. Furthermore, we propose a dynamic
selection scheme to effectively sample the most relevant frames from
all the past frames, and thus prevent out of memory during inference.
Finally, we conduct extensive experiments to evaluate the efficacy of the
proposed DPSTT on the new US video benchmark dataset.

1 Introduction

Automatic segmentation of breast lesions in ultrasound (US) video is essential
for computer-aided clinical examination and treatment [5]. Compared with the
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Fig. 1. Each column contains sample frames from a video in the breast lesion segmen-
tation dataset, with high-quality pixel-level annotations marked in red. (Color figure
online)

image segmentation, the segmentation in US video is more in line with the
practice as it provides additional temporal information for the target object. It
can be formulated as a binary labeling problem aiming to automatically segment
target lesions in pixel level from a breast US video. This challenging task is rarely
explored due to the lack of availability of published annotated US video datasets.

Although many convolutional neural networks (CNN), such as U-Net [9] and
its variants [10,13], have achieved outstanding performance on various bench-
marks by learning robust representative features for US image segmentation.
Directly applying these image segmentation methods to independently process
each US video frame may fail to capture temporal context information and result
in temporal inconsistency. Recently, Transformers become increasingly popu-
lar in video object segmentation tasks [3]. To model long-range relationships,
Transformers employ a self-attention mechanism to calculate pairwise similari-
ties between all input units. As a representative, space-time memory (STM) [7]
leverages a memory network to read relevant information from a temporal buffer
of all preceding frames. The STM performs dense matching in the feature space
to capture context information with an unlimited receptive field. However, the
non-local property of STM may result in mismatching since that lesions in US
videos usually appear in local neighborhoods across memory frames. In addition,
the memory would increase linearly with the length of videos during inference,
which inevitably brings huge computational costs and may encounter memory
overflow.

To tackle the above challenges, we first introduce a new US video dataset
with accurate frame-wise annotation in pixel level for breast lesion segmentation;
see Fig. 1 for examples. Then, we propose a Dynamic Parallel Spatial-Temporal
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Fig. 2. Overview of the proposed DPSTT framework. Our network consists of two
encoders (a memory encoder for the past frames, and a query encoder for the cur-
rent frame), a parallel pair of spatially- and temporally-decoupled Transformer and
a decoder. The memory encoder takes an RGB image and its corresponding lesion
mask as input, whilst the query encoder only takes an RGB image. Here we repeat the
memory encoder for the previous frame for better visualization.

Transformer (DPSTT) framework for US video segmentation. Specifically, fol-
lowing STM, we first extract pairs of key and value embedding from the cur-
rent frame and all frames in the memory with a convolution-based encoder.
Subsequently, we split the memory module into two parallel temporally- and
spatially-decoupled Transformer blocks. In the temporally-decoupled block, the
obtained key maps are spatially divided into multiple non-overlapped patches,
and the attention is only calculated in the same regions between embedding
of the current frame and those of memory frames. Such a temporal operation
makes the modeling of pixel movements of breast lesions easier. By contrast, the
spatially-decoupled block calculates the attention between the embedding of the
current frame and that of the previous one in a non-local manner, which mod-
els the global similarity of stationary background texture between two adjacent
frames. Moreover, to prevent unlimited growth of memory during inference, we
also develop a non-uniform adaptive memory selection scheme to dynamically
update the frames in the memory based on the similarity metric. In summary,
the contributions of our method are threefold: (1) We are the first to present an
annotated benchmark dataset specifically designed for the task of breast lesion
segmentation in US videos, which would promote the progress of the medical
video process. (2) We propose a Dynamic Parallel Spatial Temporal Transformer
(DPSTT) framework for US video segmentation to improve lesion segmenta-
tion performance with higher computational efficiency. (3) We have conducted
extensive experiments to evaluate the proposed DPSTT. Experimental results
demonstrate that our method outperforms state of the arts by a large margin.
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2 Method

The overall framework of the proposed DPSTT is shown in Fig. 2. Given a US
video sequence, we regard the current frame as the query frame, the past frames
with annotated object masks as the memory frames. During the video segmen-
tation process, both memory frames and the query frame are first encoded into
pairs of key and value maps through the memory encoder and the query encoder,
respectively. Different from STM that constructs a global memory read module
over the video space, we disentangle the non-local attention into two paral-
lel lightweight modules along the spatial and temporal dimensions. The keys
and values further go through the spatially-decoupled and temporally-decoupled
Transformers. Specifically, the spatial Transformer takes the keys and values
from the query and the previous frames to extract the global background con-
text information, while the temporal Transformer takes the keys and values at
the same local regions from the query and memory frames to aggregate the tem-
poral movement of target objects at the same time. The outputs of the spatial
and temporal Transformers are finally sent to the decoder, which estimates the
target mask for the query frame.

2.1 Query and Memory Encoder

Both the query and memory encoders share the same structure except for the
input. Similar to STM, we utilize the ResNet50 [4] as the backbone network and
modify the first convolutional layer to take a 4-channel input for the memory
encoder. Then two parallel convolutional layers are utilized to further embed
the backbone network output into a pair of key and value maps by reducing its
channel size to 1/8 and 1/2, respectively. We denote by kQ ∈ R

H×W×C/8 and
vQ ∈ R

H×W×C/2 the key and the value maps for the query frame, where H is
the height, W is the width and C represents the channel size of the feature map.
Similarly, each individual of T memory frames (T ≥ 1) is independently embed-
ded into key and value maps. The resulting key and value maps are represented
as kM ∈ R

T×H×W×C/8 and vM ∈ R
T×H×W×C/2. For ease of description, we

also denote the corresponding key and value maps of the previous frame by kP

and vP , which have the same resolution as kQ and vQ.

2.2 Parallel Spatial Temporal Transformer

Different from the memory read module in STM that simultaneously processes
similarity matching between all pixels of the query frame and memory frames,
we disentangle this expensive module into two much easier components: a
temporally-decoupled Transformer for extracting local features along the tempo-
ral dimension, and a spatially-decoupled Transformer block for capturing global
features between the query frame and its previous frame in a non-local manner.

For the temporal Transformer, given the memory key kM and the query key
kQ, we split them into s2 non-overlapped patches along both height and width
dimensions. Each region is represented by kMk

ij ∈ R
H/s×W/s×C/8, k ∈ [1, T ] for
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the memory and kQ
ij ∈ R

H/s×W/s×C/8 for the query respectively, where i, j ∈
[1, s] denote the index of the local region. We then group the local memory
regions by temporal dimension, i.e., PM

ij = {kM1
ij , · · · ,kMT

ij }. Then the temporal
Transformer measures the local similarity with:

f(PMk
ij ,kQ

ij) = Softmax
(
exp(PMk

ij ⊗ kQ
ij)

)
, (1)

where ⊗ denotes the dot product. With the soft weights, the memory values are
subsequently retrieved by a weighted summation as follows:

vT
ij =

T∑

k=1

f(PMk
ij ,kQ

ij)v
Mk
ij . (2)

The resulting vT
ij concatenated with the query value at the same location, is

further organized into a new tensor according to its location index to produce
the temporal Transformer output yT . By doing so, continuous movements of the
target object in a smaller spatial region can be detected without the disturbance
of redundant temporal features.

For the spatial Transformer, we assume the previous frame has less movement
or appearance difference compared with the query frame. The previous frame
with its estimated mask would help provide coarse guidance for the query frame.
Therefore, the similarity matching between the previous and the query frame is
performed in a non-local manner with

f(kQ,kP ) = Softmax
(
exp(kQ ⊗ kP )

)
. (3)

Then the output of the spatial Transformer is generated by

yS = [vQ, f(kQ,kP )vP ]. (4)

In this way, the spatial Transformer pays more attention to the global static
background context information. Finally, these two decoupled spatial and tem-
poral Transformers are calculated in parallel and their outputs yS and yT are
concatenated and further refined by a convolutional operation.

2.3 Decoder

The decoder takes the refined output of the decoupled spatial and temporal
Transformers to estimate the lesion mask for the query frame. We follow the
refinement module in [7] to build the decoder, which upscales the feature map
gradually by a set of residual convolutional blocks. Finally, We minimize the
binary cross-entropy(BCE) loss and the dice loss between the object masks Ŷ
and the ground truth labels Y .

2.4 Dynamic Memory Selection

Though spatial and temporal Transformers benefit from storing enough infor-
mation in the memory frames, storing all the past frames is impossible and may
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Table 1. Quantitative comparison with different methods on the proposed dataset.

Methods Jaccard Dice Precision Recall FPS

UNet [9] 62.47± 0.53 73.03± 0.36 79.46± 0.20 72.72± 0.45 88.18
UNet++ [13] 61.24± 0.73 71.79± 0.53 82.80± 0.04 68.84± 1.09 40.9
TransUNet [2] 53.58± 0.37 65.47± 0.21 71.67± 0.13 66.82± 0.20 65.1
SETR [12] 54.80± 0.68 66.49± 0.59 75.33± 0.15 66.43± 1.04 21.61
OSVOS [8] 56.74± 0.59 70.98± 0.33 77.78± 0.92 64.04± 0.98 27.25
ViViT [1] 54.46± 0.32 67.39± 0.29 75.54± 0.03 66.83± 0.59 24.33
STM [7] 68.58± 0.56 78.62± 0.43 82.01± 0.35 79.10± 0.44 23.17
AFB-URR [6] 70.34± 0.25 80.18± 0.15 80.08± 0.32 85.91±0.15 11.84
Ours 73.64±0.18 82.55±0.20 83.89±0.13 84.55± 0.29 30.5

lead to memory overflow. To eliminate unnecessary features, we propose a sim-
ple yet effective selection mechanism to dynamically update the memory frames.
We maintain a fixed K memory frames for segmenting the tth query frame if
t > K, or all of the past frames as memory frames if t ≤ K. Then we update the
memory buffer by selecting the most K relevant frames. For example, assume
that we have memory frames M for segmenting the tth frame (t > K), when
moving forward to the (t+ 1)th frame, we adopt the cosine metric and sort the
resulting similarity values with

Sort{Cos(kQt+1 ,kMk), Cos(kQt+1 ,kMt)}, k ∈ [1,K]. (5)

Then the memory frames can be updated by adding the tth frame at the tail
and removing the one with the least similarity value. It is noteworthy that our
dynamic memory selection speeds up the temporal attention calculation, and
performs online adaptation without additional training.

Time Complexity. With such a pipeline, we significantly reduce the compu-
tational complexity of memory read module in STM from O(TH2W 2C) into
O(KH2W 2C/(s4)) for the temporally-decoupled block and O(H2W 2C) for the
spatially-decoupled block. Although T = 3 is chosen in the training process,
T would increase linearly with the video length during inference, which would
be much larger than a predetermined K. In addition, the computation of the
temporal Transformer would be more efficient when s becomes larger.

3 Experiments

3.1 Dataset and Implementation

Here we describe the newly collected dataset, specifically designed for the task of
breast lesion segmentation in US videos. Sample frames of the breast US videos
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are shown in Fig. 1. The breast US dataset comprises 63 video sequences, one
video sequence per person, 4619 frames annotated with pixel-level ground truth
by experts. These videos are collected from different US devices and their spatial
resolution varies from 580×600 to 600×800. To ease training, we further crop the
video sequences to a spatial resolution of 300×200. For quantitative comparison,
we employ several widely used segmentation evaluation metrics, namely, Jaccard
similarity coefficient (Jaccard), Dice similarity coefficient (Dice), Precision and
Recall; see [11] for their definitions. Moreover, we adopt five-fold cross-validation
on our dataset to statistically test different video segmentation methods.

We implement our network using the PyTorch framework with an NVIDIA
RTX 3090 graphics card. In our experiments, all the input US frames are empir-
ically resized to 240×240 and the training epoch is set to 100. During training,
we sample T (T = 3) temporally ordered frames with random skip N frames
(N ≤ 5) from a US video. We set the batch size to 4 and learning rate to 1e− 4.
We use the binary cross-entropy(BCE) loss and the dice loss with the weight of
0.5 and 0.5 during the training process. For the temporal Transformer, we set s
to be 2. During inference, when the size of memory frames exceeds K (K = 10),
the dynamic selection mechanism is activated to eliminate the redundant frame
for the memory.
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Fig. 3. Visual comparison with competitive video-based methods on two breast lesion
cases.

3.2 Comparison with State-of-the-Art Methods

Quantitative Comparisons. As shown in Table 1, we qualitatively compare
our method with state-of-the-art methods, including image-based segmentation
methods (UNet [9], UNet++ [13], TransUNet [2] and SERT [12]) and video-based
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Table 2. Ablation study on different transformer combination strategies. T denotes
the temporal block and S is the spatial block. ×N denotes repeating N times.

Stacking strategies Jaccard Dice Precision Recall

S(x1) 70.92± 0.15 80.07± 0.19 81.63± 0.25 82.77± 0.66
T(x1) 71.09± 0.15 80.24± 0.21 83.61± 0.26 80.88± 0.43
S-T(x1) 72.64± 0.18 81.58± 0.23 83.63± 0.11 82.99± 0.47
T-S(x1) 72.86± 0.18 81.86± 0.21 82.75± 0.08 84.02± 0.44
T||S(x1) 73.64±0.18 82.55±0.20 83.89±0.13 84.55±0.29
S-T(x3) 72.03± 0.18 81.22± 0.19 82.69± 0.20 83.07± 0.25
T-S(x3) 72.72± 0.22 81.68± 0.29 83.18± 0.09 83.67± 0.61
T||S(x3) 72.15± 0.29 81.64± 0.24 83.11± 0.47 83.10± 0.15

segmentation methods (OSVOS [8], ViViT [1], STM [7], AFB-URR [6]). From
the results, we can observe that the video-based methods are prone to outperform
image-based methods with higher evaluation scores, which demonstrates that
leveraging temporal information provides promising benefits for breast lesion seg-
mentation in US videos. More importantly, among all video-based segmentation
methods, our DPSTT has achieved the highest Jaccard score of 73.64 and the
Dice score of 82.55. It indicates that our method, combined with a CNN-based
encoder and spatial-temporal Transformers, is able to simultaneously learn both
high- and low-level cues and thus achieves significant improvements over those
pure Transformer methods, such as SERT and ViViT. Table 1 also reports the
inference speed performance of different methods. Due to the parallel operation
of the decoupled Transformers, our method reduces much redundant computa-
tion and thus runs the fastest compared with other video-based approaches.

Qualitative Comparisons. Figure 3 visualizes the qualitative comparison of
lesion masks among different video segmentation methods. We can observe that
our method can provide more precise masks than STM and AFB-URR with
more consistent boundaries. This is because our dynamic selection mechanism
provides the most relevant memory and preserves the spatial consistency.

3.3 Ablation Study

The Effect of Transformers. We evaluate the effect of different Transformers
by removing the spatial and temporal blocks separately in Table 2. It shows that
the combination of both modules consistently results in better performance. This
is because any decoupled Transformer can’t simultaneously capture both sta-
tionary texture and moving information. We further compare different stacking
strategies in the row 3–5. It shows that stacking such two different Transformers
in parallel performs better than in an interweaving way, no matter starting from
spatial or temporal blocks. Moreover, it is also observed that only one parallel
temporal and spatial blocks are good enough to capture representative features.
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Table 3. Ablation study on different memory selection strategies.

Sample strategies Jaccard Dice Precision Recall

Skip memory 73.06± 0.19 82.10± 0.21 83.61± 0.16 84.13± 0.30
Random memory 72.76± 0.16 81.94± 0.19 83.04± 0.09 83.95± 0.30
Dynamic memory 73.64±0.18 82.55±0.20 83.89±0.13 84.55±0.29

The Effect of Dynamic Memory. We investigate different memory selection
strategies by comparing the segmentation performance with skip memory (every
five frames) in STM, random memory of fixed size as well as our dynamic memory
in Table 3. The results show that the random memory performs worst than the
other two strategies. This phenomenon verifies our assumption that good enough
memory can provide benefits for segmentation performance.

4 Conclusion

In this paper, we present the first pixel-wise annotated benchmark dataset for
breast lesion segmentation in US videos. Then a Dynamic Parallel Spatial-
Temporal Transformer framework is proposed for US video segmentation. More-
over, an efficient dynamic memory selection is further developed based on the
similarity metric to prevent memory overflow. Finally, we conduct extensive
experiments to evaluate the efficacy of our method.
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