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Abstract. Learning spatiotemporal features is an important task for
efficient video understanding especially in medical images such as
echocardiograms. Convolutional neural networks (CNNs) and more
recent vision transformers (ViTs) are the most commonly used meth-
ods with limitations per each. CNNs are good at capturing local con-
text but fail to learn global information across video frames. On the
other hand, vision transformers can incorporate global details and long
sequences but are computationally expensive and typically require more
data to train. In this paper, we propose a method that addresses the
limitations we typically face when training on medical video data such
as echocardiographic scans. The algorithm we propose (EchoCoTr) uti-
lizes the strength of vision transformers and CNNs to tackle the problem
of estimating the left ventricular ejection fraction (LVEF) on ultrasound
videos. We demonstrate how the proposed method outperforms state-of-
the-art work to-date on the EchoNet-Dynamic dataset with MAE of 3.95
and R2 of 0.82. These results show noticeable improvement compared to
all published research. In addition, we show extensive ablations and com-
parisons with several algorithms, including ViT and BERT. The code is
available at https://github.com/BioMedIA-MBZUAI/EchoCoTr.
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1 Introduction

In medical imaging, there are different imaging modalities that are crucial to real-
time clinical assessment and visualization. An example of this is echocardiogra-
phy, which produces spatiotemporal data made of a sequence of two-dimensional
(2D) images. When dealing with spatiotemporal data, it is essential to learn the
spatial information as well as take into account the temporal factor in these
sequences for an accurate diagnosis. In order to detect abnormalities and certain
diseases, cardiologists also tend to take into consideration the temporal infor-
mation when measuring the left ventricular ejection fraction (LVEF) or while
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assessing heart wall motion [5]. LVEF can be measured as the difference in the left
ventricle volume at end-diastole and end-systole divided by the end-diastolic vol-
ume estimated from the apical four-chamber (a4c) or apical-two chamber (a2c)
views of the heart. LVEF is an important biomarker that can predict heart fail-
ure (HF), which is a serious condition that can be caused when the heart cannot
pump enough blood and consequently, oxygen to other parts of the body. In
2018, heart failure contributed to 13.4% of the recorded deaths in the United
States [16]. Early diagnosis of HF will help cardiologists prescribe medications
and encourage patients to have effective lifestyles [18]. Heart failure is typically
diagnosed if LVEF is less than the normal range (50–80%). Echocardiography
is the most common imaging modality used to assess cardiac function by mea-
suring the left ventricle volume, wall thickness and LVEF since it is real-time,
low-cost, ionizing radiation free, portable and a highly sensitive tool compared
to other modalities. However, ultrasound technology has many drawbacks, such
as operator-dependence, noise, artifacts and decreased contrast that may affect
its quality which could lead to a high inter- and intra- observer variability in the
diagnosis [17].

In this paper, we study the impact of different CNNs and transformer models
to estimate left ventricle ejection fraction (LVEF) from ultrasound videos. Con-
volutional neural networks (CNNs) have shown great success when training the
models to tackle problems in medical or natural images. However, vision trans-
formers have shown that they may be good contenders to CNNs when solving
certain image analysis problems. There are major differences between the two
approaches. CNNs have limited receptive fields in the initial layers, but can pro-
gressively enlarge the field of view through convolution operations. In contrast,
vision transformers (ViTs), can have the entire field of view starting from the
initial layers through the self-attention process. However, unlike CNNs, ViTs do
not have inductive bias and hence typically require a large amount of data to
train on which is not always available especially in medical imaging. A research
study shows that the initial layers of a ViT cannot acquire local information if
the dataset is small, which highly impacts the model accuracy [9]. Hence, having
a method that combines the strengths of both CNNs and ViTs, to work efficiently
with spatiotemporal data in medical imaging assessment, is of great value.

Our contribution in this work is three fold:

– We propose EchoCoTr (Echo Convolutional Transformer) which is a method
that is able to analyze echocardiography video sequences by combining the
strength of CNNs and vision transformers to accurately estimate the heart’s
ejection fraction. Even though EchoCoTr is adapted from UniFormer [6] which
worked on natural video datasets, some changes were made to address the
challenging problems we face such as proper frame sampling.

– We show how our proposed method outperforms all published work to-date
on a large scale public dataset [8,10], which does not require: 1) information
regarding the position of end-systolic (ES) and end-diastolic (ED) frames, 2)
segmentation masks as EchoNet-Dynamic’s beat-to-beat pipeline [8], and 3)
a pre-defined length of the cardiac scan.
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– We compare our proposed method with several existing deep learning algo-
rithms and perform thorough ablation studies to provide a deep discussion of
the results.

2 Related Works

Many research papers [11,13,14,19] were introduced to improve the segmen-
tation of the left ventricle to accurately estimate ejection fraction. Silva et al.
[12] used a 3D CNN with residual learning blocks to estimate ejection frac-
tion from transthoracic echocardiography (TTE) exams. Ouyang et al. [8] pro-
posed a deep learning approach to estimate the beat-to-beat ejection fraction
and predict heart failure with reduced ejection fraction (HFrEF) by combining
the semantic segmentation results and the clip-level ejection fraction predic-
tion using spatiotemporal CNN [15]. Recently, Reynaud et al. [10] proposed a
transformer model based on residual auto-encoder to reduce the dimensions fol-
lowed by Bidirectional Encoder Representations from Transformers (BERT) for
end-systolic (ES) and end-diastolic (ED) frame detection and ejection fraction
estimation. Understanding spatiotemporal data using transformers can also be
found in other medical imaging domains. Latest research areas have been focus-
ing on using transformers to diagnose COVID-19 [4,20,21] and perform 3D image
segmentation of multi-organ and on brain tumor datasets [2].

A recent work was proposed by Li et al. [6] in a modified transformer ver-
sion that combines the strengths of 3D CNNs and spatiotemporal transformers.
The UniFormer has three main components. The first component is Dynamic
Position Embeddings (DPE) which maintains the spatiotemporal positions of
the video tokens by applying 3D depthwise convolution without padding. The
second component is Multi-Head Relation Aggregator (MHRA) which learns the
local token relations to ignore the redundancy due to the small differences found
in adjacent frames in the initial layers. However, in the last two stages, MHRA
learns the global token affinity, which is similar to the self-attention scheme. The
last component is Feed Forward Network (FFN) which has two linear layers.

3 Methods

In this section, we describe the frames sampling approach, model architecture
and the proposed method when estimating ejection fraction from echocardio-
graphic videos.

3.1 Frames Sampling

Deep learning networks require a fixed number of video frames from each scan.
However, EchoNet-Dynamic videos contain one or more cardiac cycles, which
also vary in the number of frames per cycle (approximately 20-30 frames). More-
over, the differences between the adjacent video frames are small. Because of
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Fig. 1. The overall architecture of EchoCoTr is based on UniFormer [6]. Echocardio-
graphic videos will be first sampled, to introduce dissimilarity between the frames, then
fed to the UniFormer model to predict the LVEF for the entire video sequence.

that, we had to perform a video frame sampling by experimenting with different
number of frames {32, 36, 40} and uniform frequencies {2, 4, 6} adapted by [8].
The sampling operation starts with a random clip within the range of [0 - (Num-
ber of original video frames - (Number of sampling video frames - 1) * Sampling
frequency)]. Prior to that, in the case of short videos, frames filled with zeros will
be added to the end of the video. The strength of using video sampling techniques
replaces the traditional methods that clinicians do, which requires knowing the
location of ES and ED frames before calculating the LVEF. In addition to that,
as the location of ES and ED frames are already known beforehand, we also
experimented with only selecting ES and ED frames from the video to check if
these are sufficient to give an adequate LVEF prediction. A summary of some
experiments related to video sampling is found in Table 2.

3.2 Architecture Overview

EchoCoTr builds on UniFormer [6] to address both the challenges of the local
redundant features and the complex dependency among the video frames in the
cardiac echo scans. Subtle differences between adjacent frames make it impor-
tant that the network selects the most representative frames when estimating
LVEF. Therefore, we had to adapt an architecture that effectively learns the
local features without redundancy in the adjacent frames while capturing the
global information along the video. An illustration of the overall architecture is
found in Fig. 1. Before feeding the ultrasound videos to the UniFormer model to
generate LVEF prediction, we sample the video frames to introduce dissimilar-
ity and make sure that there is no redundancy between the neighboring frames.
Before each stage in the UniFormer model, 1× 2× 2 convolution with stride of
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1× 2× 2 is applied. However, to downsample the spatiotemporal dimensions of
the input video, 3× 4× 4 convolution with stride of 2× 4× 4 is used instead in
the first stage. As a method for echocardiography, we experimented with two
different UniFormer variants: UniFormer-S and UniFormer-B with the aim of
investigating the impact of the number of UniFormer blocks on the LVEF esti-
mation. The number of UniFormer blocks used for EchoCoTr-S (small model)
and EchoCoTr-B (baseline version) are {3, 4, 8, 3} and {5, 8, 20, 7}, respectively.
The drop rates are set to 0.1 for EchoCoTr-S and 0.3 for EchoCoTr-B.

3.3 Existing Methods for LVEF Estimation

In this subsection, for the sake of ablations and comparisons, we present recent
published methods that addressed LVEF prediction. The work of [10] has shown
that using a BERT model could be used to estimate LVEF. First, the dimensions
of the input videos are reduced to a vector of size (Batch Size×Number of
Frames) × 1024 using a ResNetAE [3] encoder. Two sampling strategies were
introduced by [10]. The first is mirroring (M), which places the repeated sequence
between the ES and ED frames after the last annotated frame. The second
strategy is random sampling (R), which adds up 10-70% of the distance between
the two annotated frames before and after the sampled frames from a heart
cycle. However, the result that was reported did not outperform [8] that used
a spatiotemporal convolution based ResNet (ResNet (2+1)D) [15]. Therefore,
we compare our proposed method with the BERT method [10] and with other
transformer models, such as DistilBERT and ViT.

4 Experiments

In this section, we aim to give a brief summary of the dataset used and experi-
mental setup that we had for our experiments.

4.1 Datasets

EchoNet-Dynamic. [7] is the largest publicly available dataset of echocardio-
graphic scans for the apical four-chamber (a4c) view of the heart acquired from
the Stanford University Hospital. It consists of 10,030 videos in total. Each video
consists of a sequence of 112× 112 grayscale images and traces for the left ven-
tricle end-systole (ES) and end-systole (ED) frames. In addition, every video is
labelled with the corresponding end-systolic volume (ESV), end-diastolic volume
(EDV) and ejection fraction (EF).

4.2 Experimental Setup

The data split sizes for training, validation and testing are 7460, 1288 and 1277,
respectively. This is the same split chosen by [7]. All selected hyperparameters
are optimized experimentally. The evaluation metrics used are mean absolute
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error (MAE), root mean squared error (RMSE) and R-squared (R2). In addition
to that, we also compare the floating point operations (FLOPs) values for the
different models using fvcore package [1].

EchoCoTr Experiments: EchoCoTr models are trained on an NVIDIA A100
GPU for 45 epochs. The batch sizes used for EchoCoTr-S and EchoCoTr-B are
25 and 16, respectively. AdamW is used as an optimizer with a value of 1e-
4 for both the learning rate and weight decay. Both models were pretrained
on the Kinetics-400 dataset with different pretraining strategies. EchoCoTr-S is
pretrained on 16× 1× 4 frames with sampling stride of 8. However, the weights
used for EchoCoTr-B is 32 × 1 × 4 frames with sampling stride of 4. Frame
resolutions are kept as same as in the original public dataset (112× 112).

Other Experiments. BERT, DistilBERT and ViT models are trained for 5
epochs with batch size of 2, which is small because of the large model size.
AdamW is used as an optimizer with a learning rate of 1e-5 and weight decay
of 1e-2. Images are padded to be 128× 128 in size to facilitate fair comparison
and easy integration for the three models. The Hugging Face Python library is
used for the transformer experiments.

Table 1. Comparison with the state-of-the-art results on EchoNet-Dynamic dataset.
"R." and "M" are the sampling methods proposed by [10], which refer to random
and mirroring sampling. EchoNet-Dynamic (1) predicts the clip-level LVEF using 32
frames. EchoNet-Dynamic (2) uses the segmentation and clip-level LVEF outputs to
evaluate the beat-to-beat LVEF estimation for the entire video sequence. One sample
from the testing dataset is used to calculate the FLOPs.

Model No. of frames FLOPs MAE ↓ RMSE ↓ R2 ↑

UVT R. [10] 128 130.00G 6.77 8.70 0.48
UVT M. [10] 128 130.00G 5.95 8.38 0.52
R3D [8] 32 92.273G 4.22 5.62 0.79
MC3 [8] 32 97.656G 4.54 5.97 0.77
EchoNet-Dynamic [8] (1) 32 91.974G 4.22 5.56 0.79
EchoNet-Dynamic [8] (2) beat-to-beat - 4.05 5.32 0.81
EchoCoTr-B 36 44.907G 3.98 5.34 0.81
EchoCoTr-S 36 19.611G 3.95 5.17 0.82

5 Results

As Table 1 shows, our EchoCoTr-S model, which was trained on only 36
frames with sampling frequency of 4 (3.95 MAE), outperforms the state-of-the-
art results reported by [8,10]. It is also noticeable from the results that the



376 R. Muhtaseb and M. Yaqub

EchoCoTr-S experiment (3.95 MAE) performed slightly better than EchoCoTr-
B (3.98 MAE). We test the effect of various sampling frequencies and sizes on
the LVEF prediction. Results in Table 2 show that a sampling frequency of 4
frames achieves the best result for both small and baseline models. In addition,
the optimal number of frames is found to be 36 for both models. Surprisingly,
training both EchoCoTr-S and EchoCoTr-B models on only two frames (ES and
ED) from each video achieves lower yet satisfactory results (4.432 and 4.494
MAE).

Table 2 also displays the results of our experiments that we performed using
BERT, DistilBERT and ViT. We only report the experiments for the mirror-
ing sampling strategy, as it achieved better results than the random one in
[10]. Results suggest that the BERT model with the mirroring sampling on 36
and 128 frames (5.788 and 5.950 MAE, respectively) [10] performs better than
DistilBERT and ViT when estimating LVEF. Moreover, reducing the number
of frames to 36 was negatively impacting DistilBERT’s MAE score the most
(6.689).

Table 2. Ablation study: Summary of experiments performed on the EchoNet-
Dynamic Dataset using EchoCoTr and transformer models. The sampling strategy
used for BERT, DistilBERT and ViT experiments is mirroring [10]. 2∗ refers to the
two video frames used, which are ES and ED.

Model Frequency No. of frames Batch size MAE ↓ RMSE ↓ R2 ↑

BERT - 36 2 5.788 8.137 0.545
BERT [10] - 128 2 5.950 8.380 0.520
DistilBERT - 36 2 6.689 9.234 0.414
DistilBERT - 128 2 6.430 8.940 0.451
ViT - 36 2 6.454 8.955 0.448
ViT - 128 2 6.527 9.053 0.436
EchoCoTr-S - 2∗ 25 4.432 5.998 0.759
EchoCoTr-S 2 36 25 4.168 5.541 0.795
EchoCoTr-S 4 32 25 3.966 5.290 0.813
EchoCoTr-S 4 36 25 3.947 5.174 0.821
EchoCoTr-S 4 40 25 4.010 5.326 0.810
EchoCoTr-S 6 36 25 4.135 5.434 0.803
EchoCoTr-B - 2∗ 16 4.494 6.205 0.743
EchoCoTr-B 2 36 16 4.184 5.590 0.791
EchoCoTr-B 4 36 16 3.980 5.342 0.809
EchoCoTr-B 6 36 16 4.068 5.410 0.804
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6 Discussion

In this paper, we propose EchoCoTr which is a method that combines the
strengths of 3D CNNs and vision transformers for spatiotemporal echocardiog-
raphy assessment in order to estimate LVEF on ultrasound videos.

The results in Table 1 show that the model trained using EchoCoTr-S on only
36 frames with a uniform sampling frequency of 4 (3.95 MAE), outperforms
the state-of-the-art results reported by EchoNet-Dynamic on the beat-to-beat
pipeline for LVEF prediction (4.05 MAE). In addition, unlike EchoNet-Dynamic,
our method does not require the segmentation masks. Furthermore, our score is
also better than the result that EchoNet-Dynamic stated for 32 frames and
a sampling frequency of 2 frames (4.22 MAE). As illustrated in Table 2, a
proper video sampling strategy plays a role in improving the results when using
EchoCoTr models. This might be due to the different details that the model
attends to spatially and temporally. For instance, not all adjacent frames might
be needed during training and frames from multiple heart cycles are likely needed
to provide a better temporal representation. Furthermore, we think that 36
frames with sampling frequency of 4 is found to be an ideal configuration to
the problem at hand, because it covered multiple cardiac cycles (4-5 cycles)
while skipping redundant and similar frames in most of the videos found in the
EchoNet-Dynamic dataset. Hence, this has led to a more accurate estimation
of LVEF prediction for the entire video. In fact, the frame sampling strategy
we propose is aligned with the clinical guidelines that suggest estimating LVEF
from up to 5 cardiac cycles.

Another remarkable result found is that EchoCoTr achieves satisfactory LVEF
estimations when trained on only two frames (ES and ED). Due to its design,
it ignores the local redundant features but learns the long-range dependencies.
This follows the same methodology that clinicians do when calculating the EDV
and ESV values to estimate LVEF.

It is also clearly seen from Table 2 that training on 36 frames achieves compara-
ble results to 128 frames for BERT, DistilBERT and ViT models. However, all
these experiments did not perform as well as our proposed method. We hypothe-
size that these models could not capture the temporal information as effectively
as our proposed method while learning the local features within different frames.
We believe that EchoCoTr-B performed marginally less than EchoCoTr-S due
to its large architectural size that might be an overkill for the LVEF estimation
problem.

7 Conclusion

We propose EchoCoTr which utilizes CNNs’ discriminative spatial ability with
transformers’ temporal perception to estimate LVEF from a set of sampled
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frames from multiple heart cycles. The method outperforms other recent work
when estimating ejection fraction on the EchoNet-Dynamic dataset. The goal of
this paper is not to comprehensively study the performance of different trans-
former models, but to compare their performances with our CNN-Transformer
method on spatiotemporal image analysis. For future work, it is valuable to study
the effect of self-supervision on EchoCoTr’s performance by using the unlabelled
frames from each video. EchoNet-Dynamic dataset size proved to be enough to
produce good results using EchoCoTr and spatiotemporal convolutional neural
networks. Furthermore, it is also worth experimenting with the impact of per-
formance on smaller datasets and datasets with abnormal motion of the heart.
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