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Abstract. Segmenting both bone surface and the corresponding acous-
tic shadow are fundamental tasks in ultrasound (US) guided orthopedic
procedures. However, these tasks are challenging due to minimal and
blurred bone surface response in US images, cross-machine discrepancy,
imaging artifacts, and low signal-to-noise ratio. Notably, bone shadows
are caused by a significant acoustic impedance mismatch between the
soft tissue and bone surfaces. To leverage these complementary features
between these highly related tasks, we propose a single end-to-end net-
work with a shared transformer-based encoder and task independent
decoders for simultaneous bone and shadow segmentation. To share com-
plementary features, we propose a cross task feature transfer block which
learns to transfer meaningful features from decoder of shadow segmen-
tation to that of bone segmentation and vice-versa. We also introduce a
correspondence consistency loss which makes sure that network utilizes
the inter-dependency between the bone surface and its corresponding
shadow to refine the segmentation. Validation against expert annota-
tions shows that the method outperforms the previous state-of-the-art
for both bone surface and shadow segmentation.

Keywords: Multi-task · Ultrasound · Bone segmentation · Shadow
segmentation

1 Introduction

There has been a significant interest in incorporating ultrasound (US) imaging
for computer assisted orthopedic surgery (CAOS) procedures owing to its non-
invasive, radiation-free, and cost-effective nature. However, due to bone surfaces
appearing only several millimeters (mm) in thickness along with noisy artifacts,
researchers have been focusing on developing automated bone segmentation and
enhancement methods [7]. These bone surfaces generally have the highest inten-
sity in US images which is then followed by a low-intensity region, namely bone
shadows. Bone shadow is the result of a high acoustic impedance mismatch
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between the bone surface and the adjacent soft tissue, which reflects the US
signal to the transducer. The bone shadow information is essential to guide the
orthopedic surgeon to a standardized viewing plane with minimal noise and arti-
facts. Hence, both bone surface and shadow segmentation are crucial to CAOS
procedures.

Recent literature on bone and shadow segmentation focus on learning individ-
ual networks for each problem separately [1–3,13]. However, in [11], Wang et al.
[11] proposed a pre-enhancement network that leverages bone shadow informa-
tion for bone surface segmentation. The bone shadow was obtained using a bone
shadow enhancement method where a signal transmission map is constructed
from the local phase bone image features [6]. The enhanced bone shadow infor-
mation has also been used in [12] where a multi-task learning-based method to
segment bone shadow region is proposed.

It should be noted that bone shadow is a signal void that indicates the loss
of energy as US waves propagate through bone tissues. Thus, the quality of bone
surface segmentation can have major impact on shadow segmentation accuracy
and vice-versa. However, existing works do not fully exploit the structure of
these highly related tasks. Despite being closely-related, existing top networks
for bone and shadow segmentation have significantly different and specialized
architectures. Our proposed method explores the idea of exploiting shared fea-
tures for a more compact network and taking advantage of interactions between
the two tasks to generate a better feature representation. We hypothesize that
the interrelation between bone and shadow response in US images can be lever-
aged to significantly improve the quality of both learned networks. In summary,
we present the following contributions in this paper:

– We are the first to integrate two highly-related homogeneous tasks into a
single framework for unified bone surface and shadow segmentation. The
common encoder brings powerful synergy across both tasks when extract-
ing shared deep features for the two tightly-coupled problems.

– We propose a cross task feature transfer block to extract complementary
features at decoders to improve the quality of performance in the multi-task
learning framework.

– We propose a task correspondence consistency loss to further regularize the
network by ensuring the transitivity between the two related predictions.

– We conduct extensive experiments using the in vivo US scans of knee, femur,
distal radius, spine, and tibia bones collected using two US machines and
demonstrate that the proposed method is competitive with other individual
specialized state-of-the-art methods.

2 Method

2.1 Preliminaries

Instead of using only B-mode US scan as input, the proposed network takes the
concatenation of three filtered images along with the original B-mode US scan
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(US(x, y)). The filtered images are shown in Fig. 1(a)–(d). This has been done to
reduce the domain discrepancy between the images obtained using different US
machine settings or different orientations of the transducer. During the extrac-
tion of filtered images we have used the original parameters and constant val-
ues described in [6,8]. The Local Phase Tensor Image (LPT (x, y)) is computed
by defining odd and even filter responses using [8]. Local Phase Bone Image
LP (x, y) is computed using: LP (x, y) = LPT (x, y) × LPE(x, y) × LwP A(x, y),
where LPE(x, y) and LwPA(x, y) represent the local phase energy and local
weighted mean phase angle image features, respectively. These two features are
computed using monogenic signal theory as [6]. Bone Shadow Enhanced image
BSE(x, y) is obtained by modeling the interaction of Ultrasound signal at posi-
tion (x,y) within the tissues as scattering and attenuation information using the
method proposed in [6],

BSE(x, y) = [(CMLP (x, y) − ρ)/[max(USA(x, y), ε)]δ] + ρ

Here the confidence map is denoted by CMLP (x, y) which is obtained by model-
ing the US signal propagation inside the tissue considering bone feature in local
phase bone image LP(x, y). USA(x, y) maximizes the visibility of bone features
with high intensity inside a local region. δ represents the tissue attenuation coef-
ficient. ρ is related to echogenicity confining the bone surface and ε is a small
constant to avoid division by zero.

Fig. 1. (a) B-mode US scan. Thick white arrows point to the bone response in US
image. (b) LPT (c) LP (d) BSE (e) Bone Surface Segmentation and (f) Bone Shadow
Segmentation.

2.2 Network Architecture

We propose Shadow and Surface Segmentation Network (SSNet) for simultane-
ous bone surface and shadow segmentation from US images which is illustrated
in Fig. 2. SSNet is composed of a shared LeViT-based encoder to extract global
and long-range spatial features and two CNN-based decoders with a cross task
feature transfer block to leverage complementary features between the two tasks.

(i) LeViT-based Shared Encoder: The shared encoder for bone and shadow
surface segmentation is built based on the LeViT architecture [5]. The encoder



Simultaneous Bone and Shadow Segmentation Network 333

part consists of four 3×3 convolution layers with stride 2 initially followed by three
transformer blocks. Features from the convolution layers are forwarded to the
LeViT transformer blocks which require fewer floating-point operations (FLOPs)
than ViTs [4]. The local and global features at different scales are exploited by
concatenating the features from both transformer and convolution layers.

(ii) CNN-based Decoders: The decoder part of the network consists of two
separate branches for bone surface and shadow segmentation. Inspired by UNet
[10], the features from decoders are concatenated with skip connection to effec-
tively reuse spatial information of feature maps. The resolution from the previous
layers is recovered using the cascaded upsampling technique similar to UNet. The
decoder blocks consist of a 3×3 convolution, batch normalization layer followed
by a ReLU layer.
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Input US 
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Fig. 2. An overview of the proposed SSNet for simultaneous bone surface and shadow
segmentation from US images.

2.3 Cross Task Feature Transfer Block

To leverage the joint-learning capabilities of these two highly-related tasks, we
propose a cross task feature transfer (CTFT) block used in between the two
decoders. CTFT extracts complementary features from the two decoder branches
using a squeeze and excitation block [9] and forwards them to the next decoder
blocks of respective branches. We use squeeze and excitation block to learn which
features of the surface segmentation decoder would help in segmenting bone
shadow and vice-versa. Squeeze and excite enables dynamic channel-wise feature
re-calibration thus help extract features that contributes to the complementary
task. The details of CTFT are illustrated in Fig. 3. It takes in two inputs: Fsurface
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Fig. 3. An overview of the Cross Task Feature Transfer Block.

and Fshadow corresponding to the feature maps of bone surface and shadow
decoders. Fsurface is passed through a squeeze and excite layer to obtain the
residual Rsurface which is added to Fshadow to obtain F̂shadow. F̂shadow is then
passed to the next block of the shadow segmentation decoder. Similarly, Fshadow

is passed through a squeeze and excite layer to obtain the residual Rshadow which
is added to Fsurface to obtain F̂surface.

2.4 Task Correspondence Consistency Loss

To guarantee both networks capture the inter-dependency between bone surface
and its corresponding shadow, we introduce two additional loss terms called Task
Correspondence Consistency Loss. For an US image X ∈ X , the annotations
Y = (y1, y2) is a set of labels containing bone surface and shadow segmentation
masks, respectively. Let, Ŷ = (ŷ1, ŷ2) be the predictions of the decoder networks.
Our additional loss term includes two mapping F1 : y1 → y2 and F2 : y2 → y1.
For any US image X, each loss term ensure consistency by translating in between
bone surface and shadows, i.e., y1 → F1(y1) ≈ y2. The task corresponding
consistency loss further regularizes the network to produce robust segmentation
masks for both task and prevent them to contradict each other. The proposed
Task Correspondence Consistency Loss LTCC(X,Y ) is defined as:

LTCC(X,Y ) = LBCE(y1, F2(ŷ2)) + LBCE(y2, F1(ŷ1)).

3 Experiments and Results

Dataset: The study includes 25 healthy volunteers with the approval of the
institutional review board (IRB). Total 1042 different US images have been
collected using SonixTouch US machine (Analogic Corporation, Peabody, MA,
USA) with 2D C5-2/60 curvilinear and L14-5 linear transducer. For independent
testing, 3 new subjects have been included in the study. Using handheld wireless
US scans (Clarius C3, ClariusMobile Health Corporation, BC, Canada), a total
of 185 scans have been collected. Depending on the depth setting, scan resolu-
tion varies between 0.1 mm to 0.15 mm. As both transducer and reconstruction
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pipelines are different, Clarius have low image quality. The scans include knee,
femur, radius, and spine data and all of them are manually segmented by an
expert ultrasonographer. For the Sonix dataset, a random 80:20 split has been
applied based on the subject, making the final training set with 834 samples and
the test set with 208 samples.

Implementation Details: SSNet is trained using a batch size of 32. For train-
ing both branches, a two-step training phase is adapted. Each of these steps are
trained until convergence. The weights and bias of the network are optimized
using Adam optimizer with a learning rate of 10−4. All US scans and their cor-
responding masks are resized to 224×224 pixels and rescaled between 0 to 1. All
transformer blocks in the LeViT architecture were pre-trained on ImageNet-1k.
The overall loss function we use to train the multi-task network is,

Ltotal(X,Y ) = LBCE(y1, ŷ1) + LBCE(y2, ŷ2) + LTCC(X,Y ).

Binary-cross entropy loss has been used between the prediction and the ground
truth, which is expressed as,

LCE(p,p̂) = −
⎛
⎝ 1

wh

w−1∑
x=0

h−1∑
y=0

(p(x, y) log(p̂(x, y))) + (1− p(x, y)) log(1− p̂(x, y))

⎞
⎠ .

Here, w and h represents the dimension of ultrasound scan, p(x, y) denotes the
pixel in scan and p̂(x, y) denotes the output prediction at a specific location
(x, y). Test images can be forwarded through the network for both tasks in
one shot. The experiments are carried out on a Linux workstation with Intel
3.50 GHz CPU and a 12GB NVidia Titan Xp GPU using the PyTorch framework.
Dice coefficients are used to measure the segmentation performance of different
methods.

Quantitative Comparison: For bone shadow segmentation, we compare the
performance of our proposed method with that of UNet [10], MFG-CNN [11],
and PSPGAN MTL [12]. PSPGAN MTL is the current state-of-the-art for bone
shadow segmentation. For bone surface segmentation, we compare with UNet
[10], MFG-CNN [11] without the classification labels, and LPT+GCT [13]. All
the methods are trained using the same training dataset as used to train the pro-
posed method. PSPGAN-MTL uses a conditional shape discriminator to enforce
bone interval boundaries which provides more accurate and robust bone segmen-
tation. Instead of using bone interval boundaries during the training, we enforce
the boundary from the bone surface segmentation mask during inference instead.
Average test results are shown in Table 1. It can be observed that the shared
network SSNet outperforms the current state-of-the-art [12] and individual net-
works for both bone and shadow segmentation (paired t-test < 0.05).

Qualitative Comparison: We present sample qualitative results in Fig. 4 for
both bone surface and shadow segmentation. It can be observed that the current
state-of-the-art methods result in either missed shadow regions or disjoint bone
segmentation maps. As our proposed method uses the inter-dependency between
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Table 1. Results averaged over 5 folds. Numbers correspond to dice score with standard
deviation. Boldface numbers indicate the best segmentation performance.

SonixTouch Clarius

Method Surface (%) Shadow (%) Surface (%) Shadow (%)

UNet [10] 76.01 ± 0.20 88.33 ± 0.06 75.11 ± 0.31 84.03 ± 0.14

MFG-CNN [11] 81.05 ± 0.06 − 82.23 ± 0.14 −
LPT + GCT [13] 81.65 ± 0.10 − 83.05 ± 0.21 −
PSPGAN-MTL [12] − 93.49 ± 0.06 − 91.01 ± 0.18

SSNet + CTFT + TCC loss (ours) 87.03 ± 0.21 96.18 ± 0.43 83.33 ± 0.31 93.01 ± 0.23

these tasks, we see a significant improvement with less discrepancies compared
to the ground truth annotations.

Fig. 4. Top Row - Bone surface segmentation. Bottom Row - Bone shadow segmen-
tation. (a) Input US scan (b) Ground Truth (c) Output from current state-of-the-art
[13] (surface), [12] (shadow) (d) Ours.

4 Discussion

Ablation Study: To understand the contribution of each individual module
in the proposed SSNet, we conduct an ablation study and report it in Table 2.
It can be observed that addition of CTFT helps improve the performance of
both surface and shadow segmentation by injecting complementary features to
the respective decoders. Also, using the propose task consistency (LTCC) further
regularizes the network and boosts the segmentation performance.

Importance of Joint Learning: Qualitative results in Fig. 5 shows the impor-
tance of the joint learning framework. The result from cascaded network demon-
strates that the faulty output from either of the network can produce wrong
corresponding prediction. Cascaded network corresponds to using a deep net-
work to predict the bone shadow map from bone surface segmentation map and
vice-versa. For example, missing or joint boundaries in bone surface segmenta-
tion may result in wrong bone intervals in shadow network as demonstrated in
the top row of Fig. 5. Similarly, over or under-segmented bone shadow predic-
tions may produce faulty surface estimations. However, as each of the decoders
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Table 2. Ablation study. Numbers correspond to dice score.

SonixTouch Clarius

Method Surface (%) Shadow (%) Surface (%) Shadow (%)

SSNet (Base) 82.95 ± 0.13 93.34 ± 0.06 81.71 ± 0.20 90.94 ± 0.22

SSNet + CTFT 84.03 ± 0.11 94.88 ± 0.16 81.13 ± 0.19 92.43 ± 0.18

SSNet + CTFT + LTCC (ours) 87.03 ± 0.21 96.18 ± 0.43 83.33 ± 0.31 93.01 ± 0.23

in our network is specialized for their respective task and further regularized by
ensuring cross-task consistency, our network produces more consistent results.

Fig. 5. (a) Input US scan (b) Surface ground truth (c) Shadow ground truth (d) Top
row corresponds to output from an individual bone surface segmentation network and
bottom row corresponds to output from an individual bone shadow segmentation net-
work (e) Top row corresponds to cascaded shadow segmentation output generated
using the segmentation from individual network and bottom row corresponds to cas-
caded surface segmentation output generated using the segmentation from individual
network (f) Surface output from ours (g) Shadow output from ours.

Effectiveness of CTFT: In Table 3, we show that adding CTFT to the base
network improves the segmentation performance. To further validate the claim,
we conduct more experiments as seen in Table 3. It can be observed that adding
CTFT to a joint-UNet architecture results in a boost in performance.

Table 3. Ablation study. All results are reported in Dice score.

SonixTouch Clarius

Method Surface (%) Shadow (%) Surface (%) Shadow (%)

Joint-UNet 76.45± 0.03 86.06± 0.15 75.11± 0.33 84.01± 0.17

Joint-UNet + CTFT 77.19± 0.17 89.01± 0.15 75.81± 0.21 84.71± 0.11
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5 Conclusion

Accurate, complete, and robust bone and shadow segmentation are important to
make ultrasound an essential imaging modality in clinically acceptable orthope-
dics procedures. In this paper, we propose an end-to-end network to simultane-
ously perform robust and accurate bone and shadow segmentation by leveraging
complementary features between the two tasks. The main novelty of our work
lies in (1) the first systematic design of exploiting interrelation between two
tasks to improve both bone and shadow segmentation, and (2) the design of
fusion method of CNN and vision transformer to leverage multi-task learning
while optimizing accuracy-efficiency trade-off. We believe the multi-task learn-
ing framework is an important contribution to the field of US-based orthopedic
procedures.
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