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Abstract. Class distribution plays an important role in learning deep
classifiers. When the proportion of each class in the test set differs from
the training set, the performance of classification nets usually degrades.
Such a label distribution shift problem is common in medical diagnosis
since the prevalence of disease vary over location and time. In this paper,
we propose the first method to tackle label shift for medical image classi-
fication, which effectively adapt the model learned from a single training
label distribution to arbitrary unknown test label distribution. Our app-
roach innovates distribution calibration to learn multiple representative
classifiers, which are capable of handling different one-dominating-class
distributions. When given a test image, the diverse classifiers are dynam-
ically aggregated via the consistency-driven test-time adaptation, to deal
with the unknown test label distribution. We validate our method on two
important medical image classification tasks including liver fibrosis stag-
ing and COVID-19 severity prediction. Our experiments clearly show the
decreased model performance under label shift. With our method, model
performance significantly improves on all the test datasets with different
label shifts for both medical image diagnosis tasks. Code is available at
https://github.com/med-air/TTADC.
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1 Introduction

Intelligent medical image diagnosis has witnessed great success on accurate pre-
dictions for various tasks such as disease staging [14,23], lesion diagnosis [9,15],
and severity prediction [11,25]. However, real-world use of classification models
is challenged by the inevitable shift in class distributions on test data at deploy-
ment [1,27,32,33]. Usually, the proportion of samples belonging to each class is
associated with patient demographics and region-related prevalence of disease,
which differs from one hospital to another. This issue is called label distribution
shift, which means that the label distribution can change across training and test
datasets. As label distribution plays a vital role in classification tasks [7,16], such
shift can make the learned classifier become suboptimal on unseen datasets, thus
suffering from performance degradation in testing.

Label distribution shifts are very common in medical diagnosis as the dis-
ease distributions vary across location and time. For example, the prevalence of
liver diseases significantly differs among regions due to the difference in vac-
cination coverage [31]. Such label shifts often degrade the performance of a
learned classifier on test data, leading to erroneous predictions as observed in
prior works [3,4,6]. For example, Davis et al. find that the prediction accuracy
of their machine learning models decreases due to the declining incidence of
acute kidney injury over time [6]. Since the proportion of normal and disease
cases differs between the screening and diagnostic scenarios, an accurate model
for screening purpose could perform poorly for diagnosis purpose, even for the
same disease [3]. Park et al. [20] show in three disease classification models
that dataset shifts including the label shift can lead to unreasonable predic-
tions. Despite being observed in many real applications, the problem of label
distribution shift has not yet been tackled for medical image diagnosis, severely
hindering the large-scale deployment of deep models in clinical practice.

To generalize model under label shift, if the label distribution of test data
can be known, such as the uniform distribution assumption made in [24,30],
the label shift can be alleviated by re-sampling training data or adjusting the
prediction probability in the softmax loss [22,24] accordingly. In practical sce-
narios, however, it is unlikely to anticipate the label distribution of test data,
which is usually unknown and arbitrary, and may even continuously change. In
this regard, we aim to mitigate label shift in a highly practical yet challeng-
ing setting, where the test label distribution is unknown and the trained model
itself must accommodate label shift by utilizing the test data only. To tackle
this problem, we consider two key ingredients. Firstly, since the test label dis-
tribution can be arbitrary, it is important to enlarge the capacity of models
for an extensive label distribution space. The difficulty lies in how to establish
such a representative space during model learning from the training set with
a fixed label distribution. Secondly, motivated by the recent test-time learning
works [28,29], although the knowledge of test dataset is unknown during model
training, it can be explored from the test data at inference time.

In this paper, to our best knowledge, we present the first work to effectively
tackle the label distribution shift in medical image classification. Our method
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Fig. 1. Overview of our proposed method for test-time adaptation by calibration of
medical image classification networks for label distribution shift.

learns representative classifiers with distribution calibration, by extending the
concept of balanced softmax loss [24,34] to simulate multiple distributions that
one class dominates other classes. Compared with [34], our method can be more
flexible and be more targeted for ordinal classification, as our one-dominating-
class distributions can represent more diverse label distributions and we use
ordinal encoding instead of one-hot encoding to train the model. Then, at model
deployment to new test data, we dynamically combine the representative classi-
fiers by adapting their outputs to the label distribution of test data. The test-time
adaptation is driven by a consistency regularization loss to adjust the weights
of different classifier. We evaluate our method on two important medical appli-
cations of liver fibrosis staging and COVID-19 severity prediction. With our
proposed method, the label shift can be largely mitigated with consistent per-
formance improvement.

2 Method

2.1 Problem Formulation of Label Distribution Shift

For disease diagnosis, consider a classification task that aims to train a model
to predict the disease class y correctly given an input image x. Let p̂(x, y) and
p̃(x, y) denote the training and test set distributions respectively. In practice,
a deployed model often suffers from label distribution shift, which means the
label distribution of training set p̂(y) is different from that of test set p̃(y), i.e.,
p̂(y) �= p̃(y), but the conditional distributions are consistent, i.e., p̂(x|y) = p̃(x|y).
This phenomenon is especially common in medical image classification, where the
disease label y is often the causal variable and the image data x can be regarded
as the manifestations of a disease [26,32]. According to the Bayesian inference
p̂(y|x)= p̂(x|y)p̂(y)

p̂(x) , the model prediction p̂(y|x) is strongly coupled with the label
distribution p̂(y), thus the shift in p̂(y) can cause erroneous prediction of p̂(y|x).



316 W. Ma et al.

Regarding this problem, our goal is to adapt a classifier that is learned from the
training set to perform well on any unseen test set with label distribution shift.

2.2 Learning Diverse Classifiers via Distribution Calibration

Since the test label distribution can be arbitrary, to generalize models under
label shift, we consider it is important to enlarge the capacity of classifiers to a
broad range of label distributions. However, during training, the model is only
presented to a fixed training label distribution thus has limited capacity. Inspired
by balanced softmax [24] which calibrates skewed label distribution to be uniform
by adding a compensating term to the softmax loss, we propose to learn diverse
classifiers via dedicated distribution calibration. As shown in Fig. 1, our insight is
to simulate representative one-dominating-class distributions so that the proper
combination of learned classifiers can handle arbitrary test label distribution.

Before introducing how to achieve distribution calibration, we first clarify the
ordinal encoding in our classification task. To encourage classification network
to learn the commonness of all classes and the distinctions between different
classes, we use ordinal encoding [18] instead of one-hot encoding for the ordinal
classes in our liver fibrosis staging and COVID-19 severity prediction tasks. This
ordinal encoding performs multiple binary classifications with sigmoid function
and combines the multiple binary outputs by taking the highest class that is
predicted as 1 as the final prediction. Furthermore, for distribution calibration
in our ordinal regression, we extend the balanced softmax to the sigmoid function
and derive the corresponding compensating term. Let p(yi = 1|x) be the desired
conditional probability for the expected label distribution, and p̂(yi = 1|x) be
the desired conditional probability of the training set, and assume p(yi = 1|x)
is expressed by the standard sigmoid function of the network output φi in i-th
ordinal vector: p(yi = 1|x) = eφi

1+eφi
, then the p̂(yi = 1|x) with the same output

φi can be expressed as:

p̂(yi = 1|x) =
e
φi−log

(
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i and ri are the positive label proportion in the i-th ordinal vector for

the expected label distribution p and factual label distribution respectively p̂,
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)
is the compensating term. The proof of Eq. (1)

is provided in the supplementary material.
In this way, the calibrated loss function is:

L̄cal = −
K−1∑
i=1

(yi log p̂(yi = 1|x) + (1 − yi) log (1 − p̂(yi = 1|x))) , (2)

where K denotes the total number of classes. This calibrated loss function
enables the model learned on the training label distribution to generate the
prediction for the expected label distribution.
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Moreover, we aim to properly construct different r′
i to simulate K one-

dominating-class distributions for K classifiers. Assume the proportion of dom-
inating class j is λ times other classes, then the value of r′

i can be calculated
as:

r′
i = 1 − i − 1i≥j · (1 − λ)

λ + K − 1
, (3)

where 1i≥j is the indicator function. The derivation of Eq. (3) can be found in
the supplementary material. Notably, our distribution-calibrated networks use
independent parameters only at the last stages and fully-connected layer of net-
works, while share the parameters at other layers (see the shared network χθ and
the independent networks ψθ in Fig. 1). This is motivated by the observation that
decoupling the representation learning and classification gives more generalizable
representations [10]. In this way, we obtain diverse classifiers to handle different
label distributions, but adding only minimal computational cost.

2.3 Test-Time Adaptation for Dynamic Classifier Aggregation

After obtaining diverse distribution-calibrated classifiers during training phase,
then at test time, the key is how to aggregate these classifiers to handle the
unknown test label distribution with the given inference samples. To build the
connection between the obtained classifiers and the test data, we aggregate the
outputs of all classifiers with learnable weights, which are dynamically adapted
using information implicitly provided by the test data. It’s worth to mention
that a set of test data, which can reflect the label distribution in the test center,
should be accessible simultaneously during this phase.

Specifically, the aggregated output is defined as p̂agg =
∑K

k=1 wkp̂k, where∑K
k=1 wk = 1 and p̂k is the output of k-th classifiers with the form of ordinal

vector. As different combination of {w1, w2, ..., wK} can enable the model to deal
with different test label distributions, the aim of our test-time adaptation is to
find the optimal combination for a given test set. Our assumption is that if the
aggregated model has adapted to a particular test label distribution, for the test
images generated from such a label distribution, the model should give similar
predictions to perturbed versions of the same image. Based on this assumption,
we design a consistency regularization mechanism to drive the test-time learning.
Given an input x, we generate two augmented views g(x) = v1 and g′(x) =
v2 using the data augmentation approaches, including rotating, flipping, and
shifting the images, and adding Gaussian noise to the images. The two views
are then forwarded to the trained model f(·) respectively, yielding the ordinal
encoded output f(v1) = p̂agg = w1 · p̂1 + w2 · p̂2 + · · · + wK · p̂K and f(v2) =
p̂′
agg = w1 · p̂′

1 + w2 · p̂′
2 + · · · + wK · p̂′

K . The consistency regularization for the
outputs of the two views is imposed with a cosine similarity loss:

Ltest = −cos(f(v1), f(v2)) = − f(v1) · f(v2)
‖f(v1)‖2 × ‖f(v2)‖2

, (4)

The loss Ltest drives the updates of the weights set {w1, w2, ..., wK} with the
implicit knowledge of label distribution on the test set, while the other network
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parameters of f(·) are frozen. This implicit knowledge is reflected by the con-
sistency that measures whether the aggregated model has adapted to the test
label distribution successfully. Each weight of {w1, w2, ..., wK} is initialized to
1
K and we use softmax function to maintain the sum of them equals to one after
each iteration. As a result, the test results can be obtained after the test-time
adaptation given the optimized weights set.

3 Experiment

3.1 Dataset and Experimental Setup

Datasets. We have validated our proposed method on two tasks: 1) liver fibrosis
staging with an in-house abdominal CT dataset, and 2) COVID-19 severity
prediction with a public chest CT dataset (iCTCF [17]). The liver CT dataset
consists of three centers with different label distributions, including 823 cases
from our center, 99 cases from external center A and 50 cases from external
center B. The ground truths of the liver fibrosis staging come from the pathology
results of liver biopsy. The liver fibrosis disease is divided into 5 stages, including
no fibrosis (F0), portal fibrosis without septa (F1), portal fibrosis with few septa
(F2), numerous septa without cirrhosis (F3) and cirrhosis (F4). Segmentation of
the liver is pre-computed with an out-of-the-box tool in a related clinical study,
so we adopt it in our paper as the region of interest for classification. The slice
thickness of the CT images is 5 mm and the in-plane resolution is 512 × 512.
For the COVID-19 dataset, it contains 969 cases from HUST-Union Hospital
for training and 370 cases from HUST-Liyuan Hospital for test. The severity
of COVID-19 is divided to 6 levels: control (S0), suspected (S1), mild (S2),
regular (S3), severe (S4) and critically (S5). The preprocessing and automatic
lung segmentation process are the same as a recent work [2] on this dataset.

Experimental Setting. For liver fibrosis staging, we take 630 cases from our
center as the training set, 193 cases from our center as evaluation set and the
data from two external centers as two different test sets. For COVID-19 severity
prediction, we use the data from HUST-Union Hospital for training and data
from HUST-Liyuan Hospital for test. Label distribution statistics of different
centers for both datasets are provided in supplementary.

Evaluation Metrics. For both tasks, the diagnosis performance is evaluated
with accuracy, area under the receiver operating characteristic curve (AUC) and
Obuchowski index (OI) [19], as reported in related works [2,5,21]. Considering
the AUC is defined for binary classification while ours are multi-class classifica-
tion tasks, we combine the classes and convert the multi-class classification to
several binary classifications. Specifically, we calculate the AUC of F0 vs F1-4,
F0-1 vs F2-4, F0-2 vs F3-4 and F0-3 vs F4 for the liver fibrosis staging, and the
AUC of S0 vs S1-5, S0-1 vs S2-5, S0-2 vs S3-5, S0-3 vs S4-5 and S0-4 vs S5 for
COVID-19 severity prediction. We report the average of all the AUC values as
overall performance. The Obuchowski index (OI) is a metric which is proved to
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Fig. 2. Analysis of model performance with label distribution shift.

have no bias when label distributions are different between training and test sets
[12].

Implementation Details. Considering model efficiency while still capturing
3D information in CT scans, we use ResNet-50 to get a vector of spatial features
and then forward the features of adjacent slices to a LSTM module and a fully
connected layer for classification. We train the models using Adam with an initial
learning rate of 1e − 5, a weight decay of 1e − 4 and batch size of 4. Our models
are implemented using a workstation with four NVIDIA TITAN Xp GPUs.

3.2 Experimental Results

Observation of Label Distribution Shift. Label distribution shift and data
distribution shift are two types of dataset shift, as introduced in previous work
[27]. We first clearly show in the multi-center liver CT datasets that under
label distribution shift, the performance of classification model would degrade.
Figure 2(a) and (b) present that the segmentation performance for region-of-
interest liver extraction is consistent between the evaluation set and test sets,
while the final classification performance of Obuchowski index largely decreases
by 12.9% and 27.5% at test set A and B. It worth to mention that the label dis-
tribution of evaluation set is consistent with the training set while the test sets
are not. In Fig. 2(c), we progressively adjust the class distribution of training set
to approach the label distribution of test set A, by random sampling a certain
proportion of images belonging to each class. We can see that the classification
performance increases when the class distribution of the training set becomes
closer to the test set. These experiments clearly demonstrate it is indeed the
label shift causes the performance drop of classification model in our datasets.

Comparison with State-of-the-Art Methods. We here compare our
method with state-of-the-art approaches for label shift in natural images as
strong competitors, including BALMS [24], which calibrates the training label
distribution to be uniform, LADE [8], which disentangles the training label
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Table 1. Quantitative comparison of different methods on the test sets of the two tasks.
Results are reported with average and standard deviation over three independent runs.

Methods Task 1: Liver fibrosis staging Task 2: COVID-19

Test center A Test center B Severity prediction

AUC Accuracy OI AUC Accuracy OI AUC Accuracy OI

Baseline 77.7± 0.7 52.5± 0.8 76.3± 0.5 68.8± 0.6 40.7± 0.9 66.3± 0.5 68.4± 0.8 36.2± 1.0 65.2± 0.6

BALMS [24] 80.3± 0.5 54.9± 0.5 78.3± 0.5 70.1± 0.7 44.0± 1.6 67.0± 0.4 69.5± 0.6 36.2± 1.0 66.4± 0.5

LADE [8] 80.6± 0.5 57.6± 0.8 78.5± 0.5 69.3± 0.6 46.0± 1.6 67.9± 0.5 68.3± 0.6 37.2± 0.9 66.2± 0.5

TADE [34] 80.9± 0.6 59.9± 1.9 79.2± 0.5 70.2± 0.8 47.3± 0.9 68.5± 0.7 69.6± 0.8 38.3± 1.6 68.4± 0.6

TENT [29] 78.9± 0.8 53.2± 0.5 77.0± 0.7 69.9± 0.5 42.7± 0.9 67.1± 0.5 69.1± 0.8 36.4± 0.8 65.6± 0.7

Focal Loss [13] 80.2± 0.6 53.2± 0.5 78.0± 0.5 69.1± 0.7 43.3± 0.9 67.7± 0.6 69.5± 0.6 36.5± 1.0 66.5± 0.5

TTADC (ours) 82.3±0.4 61.0±1.0 80.2±0.4 72.4±0.6 50.7±0.9 69.6±0.4 71.1±0.6 40.2±1.1 69.8±0.5

Fig. 3. Ablation analysis of our method on liver CT dataset. (a) Contribution of LDC
and TTA in our method; (b) Performance of our learned diverse classifiers on different
one-dominating-class distributions; (c) Effect of the value of λ on model performance.

distribution from the model prediction, and TADE [34], which also proposes
to train multiple networks with different expertise but their networks are less
representative than ours. Note that BALMS, LADE, and TADE need to use
our derived compensating term in Eq. 1 to be applied in our classification tasks
with ordinal regression. We also compare our method with TENT [29], which
is a general test-time adaptation approach for domain shift problem, and Focal
Loss [13], which can alleviate class imbalance by increasing the focus on hard
samples.

Table 1 presents the comparison results on the test centers of both liver
fibrosis staging and COVID-19 severity prediction. Our TTADC significantly
improves the model performance over baseline on all test sets, with 4.6%, 3.6%,
2.7% increase in AUC, 8.5%, 10.0%, 4.0% increase in Accuracy, and 3.9%, 3.3%,
4.6% increase in OI respectively, outperforming all the comparison methods. The
results validate the effectiveness of our distribution calibration and test-time
adaptation on addressing arbitrary label shift. Our method clearly outperforms
the domain adaptation method TENT, showing the necessity of designing app-
roach specifically for label shift. Although not significant, Focal loss can also
generally improve over baseline, indicating the alleviation of class imbalance
may help reduce the effect of label shift. The other methods on tackling label
shift generally outperform TENT and Focal loss. Our method and TADE which
learn multiple classifiers obtain better performance than BALMS and LADE
which use uniform distribution assumption, showing the importance of enlarg-
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ing the model capacity for proper test-time adaptation. Our method also clearly
outperforms TADE, demonstrating the combination of our one-dominating-class
distributions can represent more diverse test label distributions.

Ablation Analysis. Comprehensive ablation studies have been conducted with
the liver CT dataset to analyze the key ingredients regarding our TTADC. As
shown in Fig. 3(a), adding only the learning distribution-calibrated classifier
(LDC) or test-time adaptation (TTA) over baseline is not able to improve over
baseline. This is as expected since the two key components are strongly coupled,
i.e., the diverse classifiers need to be properly aggregated at test time for the
unknown label distribution. In Fig. 3(b), we manually sample a few images from
the training center to construct the test subsets with different one-dominating-
class distributions. We can see that given the test subset with k-th class domi-
nating other classes, the best performance comes from the k-th classifier, demon-
strating that our proposed distribution calibration successfully generate classi-
fiers that have expertise on different one-dominating-class distributions. More-
over, Fig. 3(c) compares the model performance trained with different λ in Eq. 3.
The results show that the optimal choice of λ is 2.

4 Conclusion

We present, to our best knowledge, the first method to generalize deep classifiers
to unknown test label distributions for medical image classification. Our meth-
ods innovates distribution calibration to learn multiple representative classifiers
during training, which are then dynamically aggregated via test-time adaptation
to deal with arbitrary label shift. Our method is general and experiments on two
important medical diagnosis tasks demonstrate the effectiveness of our method.
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