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Abstract. Graph neural network (GNN) has achieved tremendous suc-
cess in histological image classification, as it can explicitly model the
notion and interaction of different biological entities (e.g., cell, tissue
and etc.). However, the potential of GNN has not been fully unleashed
for histological image analysis due to (1) the fixed design mode of graph
structure and (2) the insufficient interactions between multi-level entities.
In this paper, we proposed a novel spatial-hierarchical GNN framework
(SHGNN) equipped with a dynamic structure learning (DSL) module
for effective histological image classification. Compared with traditional
GNNs, the proposed framework has two compelling characteristics. First,
the DSL module integrates the positional attribute and semantic repre-
sentation of entities to learn the adjacency relationship of them during
the training process. Second, the proposed SHGNN can extract rich and
discriminative features by mining the spatial features of different enti-
ties via graph convolutions and aggregating the semantic of multi-level
entities via a vision transformer (ViT) based interaction mechanism. We
evaluate the proposed framework on our collected colorectal cancer stag-
ing (CRCS) dataset and the public breast carcinoma subtyping (BRACS)
dataset. Experimental results demonstrate that our proposed method
yield superior classification results compared to state-of-the-arts.
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1 Introduction

Histopathological examination is considered as the “golden standard” for diagno-
sis and treatment planning of many diseases [1,2]. For example, in clinical prac-
tice, gastroenterologists need to manually assess the histological images obtained
by whole-slide scanning systems [3,4]. However, due to the complex morphology
and structure of human tissues and the continuum of histologic features pheno-
typed across the diagnostic spectrum, it is a tedious and time-consuming task to
manually classify the histological images [5,6]. Therefore, automatic histological
image classification is highly demanded in clinical practice.

Over the years, convolutional neural networks (CNNs) [7,8] have greatly pro-
moted the development of computational pathology. For example, Bai et al. [9]
employed a pretrained google inception net (GoogLeNet) for learning high-level
representations and further constructed a softmax classifier for patch-level clas-
sification of NHL histological images. Li et al. [10] proposed an atrous DenseNet
(ADN) to integrate atrous convolutions with the dense block to extract mul-
tiscale features for histological image classification. However, one of the main
shortcomings of CNN-based approaches is that convolution kernels only deal
with regular pixel-wise regions and thereby ignore the notion of biological enti-
ties (e.g., cell, tissue and etc.), which are essential for the histological image
classification task and interpretability analysis [11].

Recently, graph neural networks (GNNs) [12–14] has shown great potential
in modeling the notion and interaction of biological entities [11,15–19] for his-
tological image classification. For example, Zhou et al. [19] first extracted the
nuclei in histological images and constructed a cell-level graph according to the
spatial relationship, and then designed an GNN to process the cell-level graph
and performed image classification. In addition to cell-level graph, Pati et al. [11]
proposed a HACT for pathological image analysis, where they introduced the
tissue-level graph by the superpixel technique. Although the above GNN-based
methods are able to improve the performance of histological image analysis, they
still have two shortcomings that prevent them from achieving more satisfactory
results. On the one hand, existing methods [11,19] connect the entities to gener-
ate a static graph representation according to the prior hypothesis, which lacks
sufficient medical explanation and thus may degrade the representation capabil-
ity of the graph. On the other hand, HACT [11] aligns multi-level entities and
aggregates them by the add operation, resulting in the information loss and the
insufficient interaction.

In this paper, we propose a novel spatial-hierarchical GNN framework (called
SHGNN) equipped with dynamic structure learning (DSL) to explore the spa-
tial topology and hierarchical dependency of the multi-level biological entities
for improving histological image classification. We first design a DSL module to
integrate the positional attribute and semantic feature representation of entities
to automatically learn the adjacency relationship among different entities dur-
ing the training process. By using such a dynamic learning scheme, the proposed
framework is capable of capturing the task-related information for dynamic graph
structure building, leading to more reliable message passing. More importantly,
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Fig. 1. Overview of the proposed framework. An analytical scheme with L = 3 levels is
used for illustration. Multi-level biological entities are extracted and processed by our
proposed SHGNN with DSL, to construct task-related graph structure and excavate
spatial-hierarchical features for classification. Note that not all nodes and hierarchical
relations are shown for visual clarity.

we adopt graph convolutional operations to mine the spatial features of differ-
ent nodes (entities) and further design a novel vision transformer (ViT) paradigm
to attentively aggregate the semantic of multi-level entities, obtaining more rich
and discriminative features for high accurate classification. We conduct extensive
experiments on our collected colorectal cancer staging (CRCS) dataset and the
public breast carcinoma subtyping (BRACS) dataset to evaluate our proposed
framework. The experimental results demonstrate that our method consistently
outperforms state-of-the-art approaches on both datasets. Our code is made avail-
able at https://github.com/HeLongHuang/SHGNN.

2 Methodology

Figure 1 illustrates the pipeline of the proposed approach. We first extract the
multi-level entities from the histological images, including the nuclei and the
tissues with different scales (see Fig. 1(a)). Each entity is regarded as a node of
the graph, for which the representation is extracted by the ImageNet [20] pre-
trained CNN encoder. For the DSL module (see Fig. 1(b)), we construct inde-
pendent learning branches on the position attribute and feature representation
of entities, and further combine their embedded representation as the judgment

https://github.com/HeLongHuang/SHGNN


184 W. Hou et al.

basis of adjacency relationship, so as to achieve the construction of dynamic
multi-level graphs. The multi-level graphs are fed in parallel into the proposed
spatial-hierarchical graph neural network (see Fig. 1(c)) for spatial relationship
learning and hierarchical interaction to generate the final graph representation.
The final graph representation of the histological image is fed into an attention
pooling layer with a multi-layer perceptron (MLP) head to produce the classifi-
cation result in a supervised manner. In the following subsections, we will detail
the multi-level entities extraction, the design of DSL module, and the learning
strategy of SHGNN, respectively.

2.1 Multi-level Entities Extraction

For a given sample, let the histological image X and classification label Y be
a single observation in a dataset {Xi, Yi}Ni=1. To construct a biologically mean-
ingful representation for X, we conduct multi-level histological entity analysis
in X, including (1) cell analysis and (2) multi-scale tissue analysis. Cell analy-
sis aims to characterize the low-level cell information. Specifically, a pretrained
HoVer-Net [21] is used to obtain the segmentation masks of nuclei. The fea-
ture representation of each cell entities is a 512-dimensional vector, which is
extracted by processing the patches centered around nuclei centroids via a pre-
trained ResNet34 encoder [7]. We denote the feature set of cell-level entities as
V0 ∈ R

|V0|×512, where |V0| denote the number of cell-level entities. Multi-scale
tissue analysis aims to effectively depict the high-level tissue microenvironments
with different scales of shape (e.g., stroma, vessel and etc.). Specifically, the SLIC
superpixel [22] algorithms with different scales (the number of superpixels per
image) are employed to obtain the segmentation masks of multi-scale tissues.
The feature representation of each tissue is figured out by averaging the 512-
dimensional deep features [7] of the patches cropped from the tissue. We denote
the feature set of tissue-level entities at scale s ∈ S as Vs ∈ R

|Vs|×512, where
|Vs| denote the number of tissue-level entities at scale s. After cell analysis and
multi-scale tissue analysis, L = S + 1 levels of entities are extracted. According
to the image size and hardware conditions, L can be appropriately increased to
achieve more fine-grained hierarchical entity analysis.

2.2 Dynamic Structure Learning

Previous methods [11,19] often link the entities to generate a static graph repre-
sentation based on the prior hypothesis, such as spatial distance adjacent matrix
and k-nearest neighbor adjacent matrix. However, these methods lack medical
explanation, which may degrade the representation capability of the graph. As
shown in Fig. 1, we propose a DSL module to dynamically learn the adjacent
relations between entities. Specifically, we comprehensively consider the feature
representation Vl and position attribute Pl of lth level entities as the judgment
basis, where the position attribute Pl ∈ R

|Vl|×2 is the 2D-spatial coordination
of the centroid of the entity. We first align Vl and Pl to the embedding space by
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two projection layers and concatenate them to obtain the joint representation
Jl. This process can be written as:

Jl = Concat[σ(P�
l W1), σ(V�

l W2)], (1)

where W1 and W2 are learnable weight matrices of fully-connected (FC) layer.
Concat[·] denotes the concatenation operation and σ denotes the activation func-
tion, such as LeakyReLU. Next, in the space Jl, we use an online k-Nearest
Neighborhood (k-NN) criteria to build the topology for each entity. Specifically,
within a threshold distance dmin, an edge euv ∈ El is built for each entity v ∈ Vl

if:
u ∈ {w | ||v, w||2 ≤ min(dk, dmin),∀v, w ∈ Vl} , (2)

where ||v, w||2 is the L2 distance of v and w in the space Jl. min(·) is the
minimum operation. dk is the kth smallest distance in ||v, w||2.

The entities of each level are fed into the DSL module respectively to generate
the adjacent matrix. Formally, the graph representation of multi-level entities
can be represented as Gl = {Vl, El}, l ∈ {0, 1, ..., L − 1}. Specially, G0 denotes
the cell graph while the others denote the tissue graphs. It is worth noting that
the proposed DSL module is embedded into our model end-to-end, so that the
multi-level graph structure can dynamically change and is able to autonomously
capture task-related information for more reliable message passing.

2.3 Spatial-Hierarchical Graph Neural Network

Spatial Graph Convolution. As shown in Fig. 1, we adopt a graph convolu-
tion to extract the spatial features in the spatial dimension of multi-level graphs.
Formally, the forward propagation rule of multi-level graphs can be written as

˜Gl = σ(GraphSAGE(Gl)), (3)

where ˜Gl denotes the generated graph. GraphSAGE represents the inductive
graph convolution [23] used in our model, which allows the message passing in
the spatial dimension of multi-level graph. It should be noted that other spatial
graph convolutions with different massage passing mechanism also can be used
to explore the different relationship between extracted entities. σ(·) denotes the
activation function, such as ReLU.

Attentive Hierarchical Interaction. As shown in Fig. 1, based on the biolog-
ical affiliation of cell and tissues, each cell entity has subordinate relation with
a determinate tissue entity at every scale, forming |V0| sequences in hierarchical
dimension. Inspired by the long-range dependency modeling ability and atten-
tion mechanism of Transformer [24], we incorporate a vision transformer(ViT)
paradigm [25] into our network to investigate the hierarchical interaction between
the multi-level entities and selectively aggregate the interaction information to
produce the final graph representation for classification. Specifically, each hierar-
chical sequence is tokenized and attached with positional embedding as the input
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of a Transformer encoder consisting of Multi-Headed Self-Attention [24], layer
normalization (LN) [26] and MLP blocks. In addition, an extra learnable classi-
fication token is prepended to the hierarchical sequence, and its representation
at the output layer of the Transformer encoder serves as the final representa-
tion. By inputting all hierarchical sequences to this ViT module, the multi-level
graphs are transformed into a novel graph representation ˜Gcls ∈ R

|V0|×D, where
D is the output dimension of ViT. This process can be written as

˜Gcls = ViT(˜G0, ˜G1, ..., ˜GL−1). (4)

Classification Layer. Based on the graph ˜Gcls with spatial and hierarchi-
cal information of histological image, a more reliable output prediction can be
obtained by:

Ŷ = MLP(Readout(˜Gcls)), (5)

where Readout is a global attention pooling layer [27] for generating represen-
tation for the final graph. For the network training, the cross-entropy loss is
adopted for classification tasks and the objective loss is defined as

L = − 1
N

N
∑

i=1

T
∑

j=1

Yij log(Ŷij), (6)

where N is the number of samples, T is the number of classes.

3 Experiments

3.1 Clinical Datasets and Evaluation Protocols

CRCS Dataset. CRCS dataset contains 5610 colorectal histological images
with the fixed size of 512 px × 512 px. Based on strict proofs, all images were
scanned at ×20 and manually marked by licensed clinicians, and have three
types of labels: Normal, low grade intraepithelial neoplasia (LGIN) and high
grade intraepithelial neoplasia (HGIN).

BRACS Dataset. BRACS [28] contains 4391 breast histological images
scanned with an Aperio AT2 scanner at 0.25 µm/pixel resolution. The aver-
age size of images is 1778 px × 1723 px. The images were annotated as being
Normal, Benign, Usual ductal hyperplasia (UDH), Atypical Ductal Hyperplasia
(ADH), Flat Epithelial Atypia (FEA), Ductal Carcinoma In Situ (DCIS), and
Invasive.
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Experimental Setup. The area under the curve (AUC) is used as the evalua-
tion metric. For each trial, five repeated 3-fold cross-validations (3-fold CVs) are
adopted. All trials are conducted on a workstation with an Intel i9-9820X @ 4.1
GHz CPU and four NVIDIA GeForce RTX 2080Ti (11 GB) GPUs. The extrac-
tion of multi-level entities is implemented using Histocartography library [29].
Our GCN model is implemented by Pytorch Geometric [30]. Considering the
resolution of histological images, the graph construction parameters of different
data sets are set as follows. For CRCS, two-scale (200, 300 superpixels per image)
tissue analysis is adopted (L = 3). For BRACS, one-scale (700 superpixels per
image) tissue analysis is adopted (L = 2). The k was tuned from {3, 5, 7, 9}.
The dmin was tuned from {1, 5, 10, 15}, respectively. The Adam optimizer was
adopted, and the network was trained for 60 epochs. The learning rate is initially
set to 1e−4 and decays to 1e−5 after 40 epochs.

3.2 Comparison with State-of-the-Arts

We first compare the proposed method with two CNN based methods: (1)
GoogleNet [9], (2) ADN [10], as well as two GNN based methods: (3) CGC-
Net [19], (4) HACT [11]. The comparative results on CRCS and BRACS datasets
are shown in Table 1 and Table 2, respectively. Generally, due to the advantage
of the biological entity oriented modeling, the overall performance of GNN based
methods is better than that of CNN based methods. As our method not only con-
siders the task-related information for graph structure design but also excavates
the interaction information of the multi-level entities, our method outperforms
the existing SOTAs on both two datasets.

Table 1. Comparison on the CRCS dataset. The mean AUC values are reported.

Method Normal LGIN HGIN Macro

GoogleNet [9] 89.27 98.97 89.58 92.61
ADN [10] 87.63 99.26 87.18 91.36
CGC-Net [19] 91.22 92.47 92.46 92.05
HACT [11] 92.58 95.11 96.13 94.61
Ours 95.50 96.08 96.74 96.11

Table 2. Comparison on the BRACS dataset. The mean AUC values are reported.

Method Normal Benign UDH ADH FEA DCIS Invasive Macro

GoogleNet [9] 93.86 87.33 75.19 80.78 96.25 91.90 98.80 89.16
ADN [10] 95.27 89.71 83.10 83.55 91.21 84.93 99.22 89.57
CGC-Net [19] 96.54 91.67 86.11 85.81 97.09 96.09 98.73 93.15
HACT [11] 96.49 93.40 86.22 85.52 97.65 96.70 99.27 93.61
Ours 96.71 93.82 89.85 90.76 97.50 97.12 99.28 95.01
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3.3 Ablation Study

We first compare the DSL module with traditional fixed methods for graph
structure design, including random adjacency matrix, space distance adjacency
matrix and k-NN adjacency matrix [11,19], shown in Fig. 2(a). It can be observed
that our DSL module is superior to the traditional fixed methods, as DSL
module introduced the task-related information for enhancing the presentation
capability of the graph. We also compare the attentive hierarchical interaction
of SHGNN with add, multiplication, and concatenation forms [11], shown in
Fig. 2(b). Overall, the proposed method consistently outperforms the fixed non-
interactive methods, since the attention mechanism can adaptively select the
useful multi-level entities for the task and hierarchical interaction can produce
more abundant information for the decision-making.

Fig. 2. Ablation study of the proposed framework.

3.4 Visualization of Proposed Framework

Figure 3 visualizes the learning process and attention map of the proposed frame-
work. On the one hand, the middle figures show the evolution process of the cell
graph structure, which indicates the proposed DSL module can dynamically
refine the graph structure. On the other hand, the attention map (see right fig-
ures) can be obtained by the global attention pooling layer conducted on ˜Gcls,
which may aid clinical diagnosis and potentially lead to biomarker discoveries.
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Fig. 3. Visualization of learning process and attention map of proposed framework. The
first row: a sample from CRCS dataset. Second row: a sample from BRACS dataset.

4 Conclusion

In this paper, we propose a novel deep graph neural network for automatic his-
tological image classification. The first advantage of the proposed model is to
dynamically learn the connection structure of multi-level biological entities that
better serves as the input of SHGNN for the classification task. Further, our
proposed SHGNN combines spatial graph convolution with an attentive hierar-
chical interaction mechanism to simultaneously capture the spatial-hierarchical
feature of the histological images, so that the potential of multi-level entities can
be fully unleashed. Experimental results on two clinical datasets demonstrate
our model achieves state-of-the-art performance over the existing models. The
main limitation of our method lies in the relatively larger complexity comes
from the extraction of multi-level entities. In the future, we will develop more
computation-efficient strategies to accelerate the computation of the framework
and evaluate our framework on other tasks.
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