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Abstract. Alzheimer’s Disease (AD) is the most common form of
dementia and often difficult to diagnose due to the multifactorial eti-
ology of dementia. Recent works on neuroimaging-based computer-aided
diagnosis with deep neural networks (DNNs) showed that fusing struc-
tural magnetic resonance images (sMRI) and fluorodeoxyglucose positron
emission tomography (FDG-PET) leads to improved accuracy in a study
population of healthy controls and subjects with AD. However, this result
conflicts with the established clinical knowledge that FDG-PET better
captures AD-specific pathologies than sMRI. Therefore, we propose a
framework for the systematic evaluation of multi-modal DNNs and crit-
ically re-evaluate single- and multi-modal DNNs based on FDG-PET
and sMRI for binary healthy vs. AD, and three-way healthy/mild cog-
nitive impairment/AD classification. Our experiments demonstrate that
a single-modality network using FDG-PET performs better than MRI
(accuracy 0.91 vs 0.87) and does not show improvement when combined.
This conforms with the established clinical knowledge on AD biomark-
ers, but raises questions about the true benefit of multi-modal DNNs.
We argue that future work on multi-modal fusion should systematically
assess the contribution of individual modalities following our proposed
evaluation framework. Finally, we encourage the community to go beyond
healthy vs. AD classification and focus on differential diagnosis of demen-
tia, where fusing multi-modal image information conforms with a clinical
need.

1 Introduction

With life expectancies rising globally, dementia is becoming a growing concern
for individuals and society. Dementia is characterized by a progressive cogni-
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tive impairment that eventually requires individuals to be completely depen-
dent upon caregivers. While this process cannot be reversed, recent efforts have
focused on diagnosing subjects at an early stage to improve disease manage-
ment [4]. A particular focus has been on Alzheimer’s Disease (AD), given that
it is the most common form of dementia and benefits from large data-sharing
initiatives [21]. To date, a wide range of diagnostic tools are available for diag-
nosing AD: magnetic resonance imaging (MRI), positron emission tomography
(PET), cerebrospinal fluid (CSF), demographics, cognitive tests, and genetic
alterations [1]. Structural MRI (sMRI) captures regional atrophy of the brain,
whereas FDG-PET measures the brain’s glucose metabolism. FDG-PET plays a
major role in the clinical diagnosis of AD. It can detect functional brain changes
in AD early in the disease progression and can help to differentiate AD from
other causes of dementia such as frontotemporal and Lewy body dementia [22].
In the memory clinic, MRI and FDG-PET are among the most common neu-
roimaging methods used [26], where FDG-PET is considered to have a higher
diagnostic and prognostic accuracy [3,12].

Recently, studies on deep learning (DL) techniques have emerged that showed
that distinguishing healthy controls from AD subjects becomes more accurate
when learning from MRI and FDG-PET, rather than a single modality [24,29,
30]. However, this scenario is very different from that in a memory clinic. In
the clinic, the main objective is differential diagnosis to determine the type of
dementia, whereas studies on DL merely considered a single type of dementia,
namely AD [24,29,30]. When considering that both modalities assess neural
degeneration, but AD-specific changes are better captured by FDG-PET than
MRI [3,12], it seems surprising why combining MRI and FDG-PET with DL
would be beneficial when AD is the only form of dementia that is being studied.

In this work, we critically re-evaluate single- and multi-modal DL models
based on FDG-PET and structural MRI for classifying healthy vs. AD subjects.
We study three different modes of multimodal fusion: early, middle, and late
fusion. We evaluate each to investigate whether it truly benefits from multi-
modal data by performing ablation studies for which MRI and FDG-PET images
are paired randomly. Contrary to previous work, our experiments show that
FDG-PET alone is sufficient for AD diagnosis, which conforms with established
clinical knowledge about biomarkers in AD. We argue that future work on multi-
modal fusion should follow our proposed evaluation framework to systematically
assess the contribution of individual modalities.

Related Work. Most DL models for AD prediction are single-modal (see [7]
for an overview). In [9], the authors propose a 2D convolutional neural network
(CNN) using slices of sMRI volumes. However, recent work has shifted towards
3D CNN architectures for analyzing sMRI [2,8,14,18,19,23]. A sparse autoen-
coder is combined with a CNN in [23]. Korolev et al. [18] compare a 3D-VGG
and 3D-Resnet architecture. Both [2] and [8] use a 3D CNN for whole brain
MRIs. Regarding work related to FDG-PET, a 2D CNN has been used in [6,20],
and a 3D CNN in [28]. Finally, several works combined sMRI and FDG-PET
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[24,29,30]. In [24], the authors propose an early fusion approach by overlaying
gray matter (GM) tissues from MRI with the FDG-PET scans and evaluate
the effectiveness of their fusion strategy using a 3D CNN. In [30], a three-stage
framework based on middle and late fusion using MRI, FDG-PET, and single
nucleotide polymorphisms is proposed. The authors of [10] combine a 3D CNN
and LSTM. Finally, in [15], an early and a late fusion approach are presented
based on a 3D-VGG. The works on multi-modal fusion unanimously concluded
that fusing sMRI and FDG-PET improves prediction accuracy over using a single
modality, which conflicts with the established clinical knowledge that FDG-PET
better captures AD-specific pathologies than sMRI [3,12].

2 Methods

To determine the contribution of each modality in a multi-modal DNN, we pro-
pose a systematic evaluation framework. First, we consider each modality in
isolation by using a single branch 3D CNN. Next, we consider the joint contri-
bution of multiple modalities using a 3D CNN with either early, late, or middle
fusion (see Fig. 1). To assess whether multi-modal inputs are truly helpful, we
perform ablation experiments where MRI and FDG-PET images are paired ran-
domly. This allows us to quantify to importance of each modality.

2.1 CNN Architecture

We use a 3D ResNet as the base architecture for all models (more details in
supplemental Fig. S1). It comprises 12 convolutional layers with kernel size 33

in total. We use four residual learning blocks consisting of two convolutional
layers followed by batch normalization (BN) [16] and rectified linear unit (ReLU)
activation. We half the spatial resolution of feature maps in the last three residual
blocks by using a stride of 2. Finally, we perform global average pooling across
the spatial dimensions of the feature maps and use two linear layers to output a
log-probability. We use dropout in each residual block to reduce overfitting.

2.2 Fusion Strategies

We consider three strategies for fusing multi-modal data: early, late, and mid-
dle fusion (see Fig. 1). All three strategies follow the base CNN architecture
described above. Next, we describe the fusion strategies in detail.

Early Fusion. In early fusion, raw modalities are combined directly before being
passed to the network. Here, we follow the strategy proposed in [24]: gray matter
maps are obtained via Voxel-Based Morphometry (VBM) and used to mask the
FDG-PET intensities. In the resulting volume, the intensities of the FDG-PET
are effectively weighted by the MRI intensities. The network is a single branch
network that receives the combined MRI-FDG-PET volume as input.

Late Fusion. Late fusion is the most straight-forward approach to fuse multi-
modal data. Rather than fusing the images, it fuses the latent representations of
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Fig. 1. Overview of the three fusion strategies. Early fusion combines the MRI and PET
inputs in a single volume. Late fusion concatenates the latent representations coming
from each independent network. Middle fusion exchanges channels of the intermediate
feature maps along the network.

two separate networks. Here, we train two independent 3D ResNet branches, one
for MRI and one for FDG-PET. The features obtained from each branch after
global average pooling are then concatenated and passed through a Multi-layer
perceptron (MLP) [128, 64, number of classes] to obtain a log-probability that
accounts for both sources of information.

Middle Fusion. While early and late fusion are common in multi-modal anal-
ysis, we also explore an approach that fuses intermediate representations of
modality-specific networks [27]. In this approach, modality-specific information
are fused by dynamically exchanging feature maps between sub-networks of dif-
ferent modalities. This bi-directional exchange of information is self-guided by
considering individual channel importance, which is measured by the magnitude
of the BN scaling factor. This process is carried out under the �1 regularization to
penalize exchanging all channels. To further encourage sharing of information,
convolutional filter weights are shared across modalities. Note that BN layers
are not shared in order to determine the channel importance for each individual
modality. To the best of our knowledge, channel exchange has not been applied
for multi-modal fusion for AD prediction before.

2.3 Evaluation Scheme

Our main objective is to rigorously evaluate whether MRI is truly relevant for
diagnosing AD when FDG-PET is available too. For all of our experiments,
we train the models using FDG-PET and MRI data from the same patient.
During inference we define three different experiments based on the input data:
(i) correct, (ii) random PET, and (iii) random MRI. We use balanced accuracy
(BACC) to assess the predictive performance of models, because it is insensitive
to the relative frequency of class labels [5].

Correct. This strategy follows the standard training and testing scheme. For
each fusion strategy, we test the networks based on FDG-PET and MRI scans
from the same patient. If both modalities would be relevant for AD diagnosis, we
would expect this scenario to yield the highest predictive performance. It serves
as a baseline for the remaining experiments.
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Random MRI. In this experiment, we pair a patient’s true FDG-PET image
and diagnosis with an MRI of a randomly selected patient. If both modalities
would be relevant for the final decision, we would expect a significant drop in
performance with respect to the Correct MRI experiment. Otherwise, if perfor-
mance remains similar, the contribution of patient-specific anatomy, as captured
by the MRI, the MRI adds little additional information that is not available from
the FDG-PET.

Random PET. This experiment is similar to the previous experiment, but this
time we pair the correct MRI and diagnosis with a randomly selected FDG-PET
from another patient. The conclusions we can derive from this experiment are
the same as in the previous experiment, but focus on assessing the contribution
of FDG-PET.

2.4 Data Processing and Training Strategy

We use pre-processed FDG-PET scans and T1-weighted MRI scans from the
Alzheimer’s disease neuroimaging initiative (ADNI; [17]) database. Full details
about the pre-processing steps can be found at the ADNI website for FDG-PET1

and for MRI2. Both scans were additionally processed using SPM3 and CAT12
[13]. MRI scans were processed using the standard VBM pipeline in CAT124. We
use the gray matter (GM) tissue area of the brain as an input to the network.
FDG-PET scans were normalized and registered to the MNI152 template [11]
with 1.5 mm3 voxel size. We performed min-max scaling to rescale the image
intensity values to the range between 0 and 1. The final image size for both
modalities is 113 × 137 × 113.

Our dataset comprises 257 patients with AD, 370 healthy controls (CN),
and 611 patients with mild cognitive impairment (MCI); see the supplemental
Table S1 for additional information. We split the data into train/validation/test
sets with sizes roughly in 65/15/20% of the full dataset. We perform cross-
validation across 5 splits, based on a data stratification strategy that accounts
for sex, age and diagnosis. We only include baseline visits scans so that only
a single scan per patient is available. We train models for two tasks (i) binary
classification of healthy controls (CN) vs. patients with AD, and (ii) three-way
classification of CN vs. MCI vs. AD. All models are trained end-to-end using
a cross-entropy loss and data augmentation during training (up to 8◦ angle
rotation and 8 mm translation in each dimension). More information about the
training setup can be found in the supplemental Table S2.

3 Results

Testing on Random PET or MRI. Table 1 reports the results for the exper-
iments described in Sect. 2.3, for binary and three-way classification. We observe
1 http://adni.loni.usc.edu/methods/pet-analysis.
2 http://adni.loni.usc.edu/methods/mri-analysis.
3 https://www.fil.ion.ucl.ac.uk/spm/software/spm12.
4 http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf.

http://adni.loni.usc.edu/methods/pet-analysis
http://adni.loni.usc.edu/methods/mri-analysis
https://www.fil.ion.ucl.ac.uk/spm/software/spm12
http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf
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Table 1. Overview of the evaluation scheme for correct data, random MRI or random
PET. Numbers are mean balanced accuracy (BACC) and standard deviation across
folds.

Random MRI Random PET BACC 2-Class BACC 3-Class

Early fusion ✗ ✗ 0.885 ± 0.041 0.573 ± 0.023

Early fusion ✗ ✓ 0.696 ± 0.026 0.414 ± 0.015

Early fusion ✓ ✗ 0.720 ± 0.015 0.470 ± 0.028

Middle fusion ✗ ✗ 0.893 ± 0.036 0.530 ± 0.034

Middle fusion ✗ ✓ 0.527 ± 0.020 0.366 ± 0.028

Middle fusion ✓ ✗ 0.890 ± 0.020 0.528 ± 0.025

Late fusion ✗ ✗ 0.896 ± 0.019 0.577 ± 0.029

Late fusion ✗ ✓ 0.597 ± 0.029 0.368 ± 0.027

Late fusion ✓ ✗ 0.786 ± 0.080 0.527 ± 0.038

that when testing on the correct pair of scans, all fusion approaches perform sim-
ilarly for both tasks with two exceptions: Early Fusion achieves a mean BACC
approximately 0.01 lower for binary classification, and Middle Fusion a BACC
approximately 0.04 lower for three-class classification. Overall, we observe a sig-
nificant drop in performance between these two tasks, which is expected given
that MCI is not a true diagnosis, but a syndrome, which makes it highly hetero-
geneous, especially with limited amount of training data.

Interestingly, if we look at the results for the middle and late fusion models
when testing on partially random data, we observe a much larger drop in per-
formance when the FDG-PET is randomized; the accuracy is close to random
chance. On the other hand, randomizing the MRI data has much lower impact on
the overall performance. For binary classification the mean BACC drops around
0.11 for late fusion and merely 0.003 for middle fusion, which is much lower than
for the random PET experiments: 0.299 and 0.366, respectively. For early fusion,
results for both randomized experiments experience a significant drop compared
to using the original data. This outcome is expected, since early fusion results
in a single volume where the MRI acts as a mask to select regions from the
FDG-PET. If the pair of images is from different patients, anatomies are not
perfectly aligned and early fusion will remove important areas. Hence, the effect
of randomizing the MRI or the FDG-PET leads to a similar loss in information
and comparable drop in performance.

Training on Random MRI: The performance difference between randomizing
the FDG-PET data vs. the MRI (see Table 1) suggests that both modalities do
not have the same contribution to the models’ final decision. We decided to
further evaluate this hypothesis by defining an additional experiment: during
training, the FDG-PET remains associated to a specific patient, but the MRI is
exchanged with a random subject. Table 2 shows the results for two- and three-
class. Note that results for the original data (Correct) are identical to those
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in Table 1. For binary classification with correct data, middle and late fusion
outperform early fusion by at least 0.08 in mean BACC. Single modality PET
yields the best performance on correct data. When using a random MRI, the
BACC for early fusion decreases, but improves for late fusion, matching the
BACC of the single modality PET. For three-classes with correct data, using
PET and MRI data performs similarly with a 0.03 improvement for early and late
fusion, while middle fusion decreases in performance by 0.01 compared to using
only PET. For random MRI, we observe a strong improvement for middle fusion
(0.168) and late fusion (0.081), while the accuracy for early fusion decreases to
chance level.

Table 2. Training and testing on correct, and random MRI. Numbers are mean bal-
anced accuracy and standard deviation across folds.

CN vs. AD CN vs. MCI vs. AD

Correct Random MRI Correct Random MRI

PET only 0.905 ± 0.015 — 0.541 ± 0.034 —

MRI only 0.866 ± 0.029 — 0.536 ± 0.062 —

Early fusion 0.885 ± 0.041 0.729 ± 0.034 0.573 ± 0.023 0.365 ± 0.037

Middle fusion 0.893 ± 0.036 0.863 ± 0.026 0.530 ± 0.034 0.698 ± 0.087

Late fusion 0.896 ± 0.019 0.906 ± 0.022 0.577 ± 0.029 0.658 ± 0.015

Post-hoc Explanation via Relevance Maps: Relevance maps are a helpful
way of assessing the decision-making process of a classification model. In this
work, we use them to quantify how much individual modalities contribute to the
final prediction of the network. We use Integrated Gradients (IG; [25]) because
its axiomatic approach allows us to precisely quantify how much the MRI and
FDG-PET of a multi-modal CNN contribute to a particular prediction. Given a
patient’s images and a baseline, which is defined by the user (in our case a black
volume), IG computes voxel-wise contributions by integrating along the path
from the baseline input to the real input. Since the sum of all voxel-wise IG scores
equals the predicted log-probability, we can summarize the total contribution
of the MRI and FDG-PET by summing over the IG scores for the respective
modality. Figure 2 depicts the average absolute importance across 42 correctly
classified AD patients by the late fusion model for CN vs. AD. This example
clearly illustrates that the PET contributes significantly more to the overall
predictions. Overall, the PET contributes 1.77 times more to a prediction than
the MRI (sum of —IG— is 33.8 vs. 19.1), which confirms our results from above.

4 Discussion

We performed a thorough evaluation of the different methods across 5 splits. In
our first set of experiments, we observed that when training on correct data but
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Fig. 2. Mean absolute integrated gradients across 42 correctly classified AD patients
by the late fusion model. Illustrated is an axial slice located at the center of the volume.

introducing random FDG-PET or MRI data at test time, both the middle and
late networks were more sensitive to changes of PET. While this is already a
strong indicator of the bias of the neural network, our second set of experiments
(Table 2) give us better insights on the reasons behind this phenomenon. First
of all, the AD vs. CN classification experiments are consistent across Tables 1
and 2, which proves that the middle and late fusion networks rely mostly on
FDG-PET. These results are supported by the relevance maps in Fig. 2.

For the three-class experiment, the BACC is below 60%, confirming the dif-
ficulty of the task. MCI subjects are a heterogeneous group that may also suffer
from other types of dementia. Therefore, the amount of data required to train a
predictive model for this task is much larger than in a two-class setting. For this
challenging task, the usage of random MRIs led to a steep increase in accuracy
for middle and late fusion. We believe that randomizing the MRI data serves
as an augmentation mechanism during training. Given that in each epoch, the
model sees a different pair of FDG-PET and MRI scans, this is likely making
the networks more robust to alterations during inference.

Our results, while being aligned to previous medical findings, are in disagree-
ment with previous literature that favored the fusion of MRI and FDG-PET for
AD prediction. One reason for this difference could be that randomly exchanging
image pairs during training leads to a larger effective training data size, which
in turn allows the network to be more robust to changes in the data distribution
during inference (similarly observed in Table 2 for the random MRI experiments).
Additionally, by increasing the number of branches (e.g. two branches for the
late fusion) the amount of trainable parameters is almost doubled, which allows
the network to define more complex decision boundaries. This also makes the
networks more prone to overfitting as observed in the three-class experiment
when comparing late fusion on correct or random MRI. Finally, another poten-
tial reason is the importance of the PET pre-processing. For instance, [24] use
a different pre-processing for the image fusion (for which they report high accu-
racy) and different input for the uni-modal and concatenation networks. GM is
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used in image fusion and MNI-MRI for the other combinations. When we com-
pared the performance between processed and un-processed PET data, we noted
a decrease of about 7% (t-test P=0.01) in balanced accuracy.

5 Conclusion

In this work, we rigorously evaluated single- and multi-modal deep neural net-
works for AD diagnosis based on MRI and FDG-PET. Our results demonstrate
that a single-modality network using FDG-PET performs best for healthy/AD
classification. While this is in contrast with previous work on deep learning
for modality fusion, it does conform with the established clinical knowledge that
FDG-PET better captures AD-specific patterns of neurodegeneration than MRI.
We argue that recent work on multi-modal fusion, while technically sound, are
largely disconnected from the established clinical knowledge about biomarkers in
AD. We argue that future work on multi-modal fusion for AD diagnosis should
take the existing clinical knowledge better into account, and systematically assess
the contribution of individual modalities following our experimental setup. In the
future, we plan to conduct experiments for MCI vs. NC, validate our hypotheses
on different datasets and test other classification models.
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