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Abstract. Diffusion MRI tractography is an advanced imaging technique for
quantitative mapping of the brain’s structural connectivity. Whole brain tractogra-
phy (WBT) data contains over hundreds of thousands of individual fiber stream-
lines (estimated brain connections), and this data is usually parcellated to create
compact representations for data analysis applications such as disease classifica-
tion. In this paper, we propose a novel parcellation-freeWBT analysis framework,
TractoFormer, that leverages tractography information at the level of individual
fiber streamlines and provides a natural mechanism for interpretation of results
using the attention mechanism of transformers. TractoFormer includes two main
contributions. First, we propose a novel and simple 2D image representation of
WBT, TractoEmbedding, to encode 3D fiber spatial relationships and any feature
of interest that can be computed from individual fibers (such as FA or MD). Sec-
ond,we design a network based on vision transformers (ViTs) that includes: 1) data
augmentation to overcome model overfitting on small datasets, 2) identification
of discriminative fibers for interpretation of results, and 3) ensemble learning to
leverage fiber information from different brain regions. In a synthetic data exper-
iment, TractoFormer successfully identifies discriminative fibers with simulated
group differences. In a disease classification experiment comparing several meth-
ods, TractoFormer achieves the highest accuracy in classifying schizophrenia vs
control. Discriminative fibers are identified in left hemispheric frontal and parietal
superficial white matter regions, which have previously been shown to be affected
in schizophrenia patients.
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1 Introduction

Diffusion MRI (dMRI) tractography is an advanced imaging technique that enables
in vivo reconstruction of the brain’s white matter (WM) connections [1]. Tractogra-
phy provides an important tool for quantitative mapping of the brain’s connectivity
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using measures of connectivity or tissue microstructure [2]. These measures have shown
promise as potential biomarkers for disease classification using machine learning [3–5],
which can improve our understanding of the brain in health and disease [6].

Defining a good data representation of tractography for machine learning is still an
open challenge, especially at the fiber level. Performingwhole brain tractography (WBT)
on one individual subject can generate hundreds of thousands (or even millions) of fiber
streamlines. WBT data is usually parcellated to create compact representations for data
analysis applications. While most popular analyses of the brain’s structural connectivity
rely on coarse-scaleWMparcellations [2], recent studies have demonstrated the power of
analyzing WBT at much finer scales of parcellation using high-resolution connectomes
[7, 8]. While such approaches enable WBT analysis at a very high resolution (e.g., a
32k × 32k connectivity matrix), they are still quite high-dimensional and not able to
represent information directly extracted from individual fibers.

Another challenge inmachine learning for tractography analysis is the limited sample
size (number of subjects) of many dMRI datasets. Developing data augmentation meth-
ods to increase sample size is a known challenge in structural connectivity research [9].
Small sample sizes limit the use of recently proposed advanced learning techniques such
as Transformers [10] and Vision Transformers (ViTs) [11], which are highly accurate
[12] but usually require a large number of samples to avoid overfitting [13].

Finally, an important challenge in deep learning for neuroimaging is to be able to
pinpoint location(s) in the brain that are predictive of disease or affected by disease
[14]. While interpretability is a well-known challenge in deep learning [15, 16], newer
methods such as ViTs have shown advances in interpretability for vision tasks [17, 18].

In this paper, we propose a novel parcellation-freeWBT analysis framework, Tracto-
Former, that leverages tractography information at the level of individual fiber stream-
lines and provides a natural mechanism for interpretation of results using the self-
attention scheme of ViTs. TractoFormer includes two main contributions. First, we
propose a novel 2D image representation of WBT, referred to as TractoEmbedding,
based on a spectral embedding of fibers from tractography. Second, we propose a ViT-
based network that performs effective and interpretable group classification. In the rest
of this paper, we first describe the TractoFormer framework, then we illustrate its perfor-
mance in two experiments: classification of synthetic data with true group differences,
and disease classification between schizophrenia and control.

2 Methods

2.1 Diffusion MRI Datasets and Tractography

We use two dMRI datasets. The first dataset is used to create the embedding space and
includes data from 100 subjects (29.1± 3.7 years; 54 F, 46M) from the Human Connec-
tome Project (www.humanconnectome.org) [19], with 18 b= 0 and 90 b= 3000 images,
TE/TR= 89/5520ms, resolution= 1.25× 1.25× 1.25 mm3. The second dataset is used
for experimental evaluations and includes data from 103 healthy controls (HCs) (31.1±
8.7; 52 F, 51 M) and 47 schizophrenia (SCZ) patients (35.8± 8.8; 36 F and 11 M) from
the Consortium for Neuropsychiatric Phenomics (CNP) (https://openfmri.org/dataset/
ds000030) [20], with 1 b= 0 and 64 b= 1000 images, TE/TR= 93/9000 ms, resolution
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= 2 × 2 × 2 mm3. WBT is performed using the two-tensor unscented Kalman filter
(UKF) method [21, 22] (via SlicerDMRI [23, 24]) to generate about one million fibers
per subject. UKF has been successful in neuroscientific applications such as disease
classification [25] and population statistical comparison [26], and it allows estimation of
fiber-specific microstructural properties (including FA and MD). Fiber tracking param-
eters are as in [27]. Tractography from the 100 HCP are co-registered, followed by
alignment of each CNP WBT using a tractography-based registration [28].

Fig. 1. TractoEmbedding overview. Each input fiber in WBT (a) is represented as a point in a
latent embedding space (b), where nearby points correspond to spatially proximate fibers. Then,
embedding coordinates of all points (fibers) are discretized onto a 2D grid, where points with
similar coordinates are mapped to the same or nearby pixels (c). Next, features of interest from
each fiber (e.g., mean fiber FA) are mapped (d) as the intensity of the pixel corresponding to that
fiber. This generates a 2D image representation, i.e., a TractoEmbedding image (e).

2.2 TractoEmbedding: A 2D Image Representation of WBT

The TractoEmbedding process includes three major steps (illustrated in Fig. 1). First, we
perform spectral embedding to represent each fiber in WBT as a point in a latent space.
Spectral embedding is a learning technique that performs dimensionality reduction based
on the relative similarity of each pair of points in a dataset, and it has been successfully
used for tractography computing tasks such as fiber segmentation [29], fiber clustering
[30], and tract atlas creation [27]. To enable a robust and consistent embedding of WBT
data from different subjects for population-wise analysis, we first create a groupwise
embedding space using a random sample of fibers from co-registered tractography data
from 100 subjects (see Sect. 2.1 for data details). This process uses spectral embedding
[31] with a pairwise fiber affinity based on mean closest point distance [30, 32]. Next, to
embed newWBT data, it is aligned to the 100-subject data [28], followed by computing
pairwise fiber affinities to the population tractography sample. Then, eachfiber of the new
WBT data is spectrally embedded into the embedding space, resulting in an embedding
coordinate vector for each fiber.We note that our process of spectral embedding is similar
to that used for tractography clustering [30] and we refer the readers to [30] for details.
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In the second step, the coordinates of each fiber of the newWBT data are discretized
onto a 2D grid for creation of an image. Each dimension of the embedding coordinate
vector corresponds to the eigenvectors of the affinity matrix sorted in descending order.
A higher order indicates a higher importance of the coordinate to locate the point in
the embedding space. A previous work has applied embedding coordinates for effective
visualization of tractography data [33]. In our study, we choose the first two dimensions
for each point and discretize them onto a 2D embedding grid1. A grid size parameter
defines the image resolution.

In the third step, we map the measure of interest associated with each fiber to the
corresponding pixel on the embedding grid as its intensity value. This generates a 2D
image, i.e., the TractoEmbedding image. When multiple fibers that are spatially prox-
imate are mapped to the same voxel, we can compute summary statistics from these
fibers, such as max, min, and mean (mean is used in our experiments).

Fig. 2. TractoEmbedding images generated from the left hemisphere data of one randomly
selected CNP subject. (1) Spatially proximate fibers from the same anatomical tracts are mapped
to nearby pixels using TractoEmbedding. (2) Fibers from the left hemisphere, right hemisphere
and commissural regions can be used individually to create a multi-channel image. (3) Multiple
TractoEmbedding images are generated using the full WBT and two random samples (80% of the
full WBT). (4) Multiple TractoEmbedding images are generated using different features of inter-
est, including the mean FA per fiber, the mean MD per fiber, and the number of fibers mapped to
each voxel. (5) Multiple TractoEmbedding images are generated at different resolutions (scales).
Inset images give a zoomed visualization of a local image region.

TractoEmbedding has several advantages (as illustrated in Fig. 2). First, TractoEm-
bedding is a 2D image that preserves the relative spatial relationship of every fiber pair
in WBT in terms of the pixel neighborship in the 2D image (Fig. 2(1)). In this way,
TractoEmbedding enables image-based computer vision techniques such as CNNs and

1 While embeddings from the first 3 dimensions can be used to generate 3D TractoEmbedding
images, our unpublished results show that this decreases group classification performance
potentially due to the data sparsity where many voxels on the 3D grid do not have any mapped
fibers.
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ViT to leverage fiber spatial similarity information. (In the case where multiple fibers
are mapped to the same voxel, to quantify the similarity of such fibers, we computed the
mean pairwise fiber distance (MPFD) across the fibers. The average ofMPFDs across all
voxels with multiple fibers is 5.7 mm, which is a low value representing highly similar
fibers through the same voxel.) Second, TractoEmbedding enables a multi-channel rep-
resentation where each channel represents fibers from certain brain regions. This allows
independent and complementary analysis of WBT anatomical regions, such as the left
hemispheric, the right hemispheric and the commissural fibers in our current study. Thus,
the TractoEmbedding is a 3-channel 2D image (Fig. 2(2)). Third, multiple TractoEmbed-
ding images are generated by performing random downsampling of each subject’s input
WBT (Fig. 2(3)). This naturally and effectively increases training sample size for data
augmentation for learning-based methods, which is particularly important for methods
that require a large number of samples. Fourth, TractoEmbedding can be generally used
to encode any possible features of interest that can be computed at the level of individ-
ual tractography streamlines (Fig. 2(4)). This enables TractoEmbedding’s application in
various tractography-based neuroscientific studies where particular WM properties are
of interest. Fifth, TractoEmbedding allows a WBT representation at different scales in
terms of the resolution of the embedding grid (Fig. 2(5)). With a low resolution, multiple
fibers tend to be mapped into the same voxel, enabling WBT analysis at a coarse-scale
fiber parcel level; with a high resolution, an individual fiber (or a few fibers) is mapped
to any particular voxel, enabling WBT analysis at a fine-scale individual fiber level.

Fig. 3. TractoFormer framework including an ensemble ViT network with input multi-channel
TractoEmbedding images using multi-sample data augmentation. Attention maps are computed
from ViTs for identification of fibers that are discriminative for classification.

2.3 TractoFormer: A ViT-Based Framework for Group Classification

Figure 3 shows the proposed TractoFormer architecture, which leverages an ensemble of
three ViTs to process the three-channel input TractoEmbedding images. Our design aims



TractoFormer: A Novel Fiber-Level Whole Brain Tractography Analysis Framework 201

to address the aforementioned challenges of sample size/overfitting and interpretability.
First, we leverage the multi-sample data augmentation (Fig. 2(3)) to reduce the known
overfitting issue of ViTs on small sample size datasets [13]. Second, we leverage the
self-attention scheme in ViT to identify discriminative fibers that are most useful to
differentiate betweengroups. The interpretation of theViT attentionmaps [11] is aidedby
our proposedmulti-channel architecture, which can enable inspection of the independent
contributions of different brain regions.

In detail, for each input channel, we use a light-weight ViT architecture (see Sect. 2.4
for details). An ensemble of the predictions is performed by averaging the logit outputs
across the ViTs. For data augmentation, for each input subject, we create 100 Trac-
toEmbedding images using randomly downsampled WBT data (80% of the fibers). For
interpretation of results, in each ViT we compute the average of the attention weights
for each token across all heads per layer, then recursively multiply the averaged weights
for the first to the last layer, and finally map the joint token attention scores back to the
input image space2. This generates an attention score map where the values indicate the
importance of the corresponding pixels when classifying the TractoEmbedding image
(as shown in Fig. 3). We identify the pixels with higher scores using a threshold T,
and then identify the fibers that are mapped to these pixels when performing TractoEm-
bedding. These fibers are thus the ones that are highly important when classifying the
TractoEmbedding image. We refer to the identified fibers as the discriminative fibers.

2.4 Implementation Details and Parameter Setting

Our method is implemented using PyTorch (v1.7.1) [34]. For each ViT, we use 3 layers
with 8 heads, a hidden size of 128, and a dropout rate of 0.2 (grid search for {3, 4, 5},
{4, 6, 8}, {128, 256}, and {0.2, 0.3}, respectively). Adam [35] is used for optimization
with a learning rate 1e−3 and a batch size 64 for a total of 200 epochs. Early stopping is
adopted when there is no accuracy improvement in 20 continuous epochs. 5-fold cross-
validation is performed for each experiment below and the mean accuracy and F1 scores
are reported. T is set to be the mean + 2 stds of the scores in an attention map. The
computation is performed using NVIDIA GeForce 1080 Ti. On average, each epoch
(training and validation) takes ~30 s with 2 GB GPU memory usage when using data
augmentation and 160× 160 resolution. The code will be made available upon request.

2.5 Experimental Evaluation

Exp 1: Synthetic Data. The goal is to provide a proof-of-concept evaluation to assess if
the proposed TractoFormer can 1) successfully classify groupswith trueWMdifferences
and 2) identify the fibers with group differences in the WBT data for interpretation. To
do so, we create a realistic synthetic dataset with true group differences, as follows.
From the 103 CNP HC data, we add white Gaussian noise (signal-to-noise ratio at 1 [36,
37]) to the actual measured mean FA value of each fiber in the WBT data. Repeating
this process twice generates two synthetic groups of G1 and G2, each with 103 subjects.
We then modify the mean FA of the fibers belonging to the corticospinal tract (CST)

2 Following instructions from: https://github.com/jeonsworld/ViT-pytorch.

https://github.com/jeonsworld/ViT-pytorch
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(a random tract selected for demonstration) in G2 to have a true group difference. To
do so, we decrease the mean FA of each CST fiber in G2 by 20%, a synthetic change
suggested to introduce a statistically significant difference in tractography-based group
comparison analysis [36]. We apply the TractoFormer to this synthetic data to perform
group classification and identify the discriminative fibers.

Exp 2: Disease Classification Between HC and SCZ. The goal is to evaluate the pro-
posed TractoFormer in a real neuroscientific application for brain disease classification.
Previous studies have revealed widespread WM changes in SCZ patients using dMRI
techniques [38]. In our paper, we apply TractoFormer to investigate the performance of
using tractography data to classify between HC and SCZ in the CNP dataset. For inter-
pretation purposes, we compute a group-wise attention map by averaging the attention
maps from all subjects that are classified as SCZ, from which the discriminative Trac-
toEmbedding pixels and discriminative fibers are identified. We compare our method
with three baseline methods. The first one performs group classification using fiber par-
cel level features and a 1D CNN network [39], referred to as the FC-1DCNN method.
Briefly, for each subject, WBT parcellation is performed using a fiber clustering atlas
[27], resulting in a total of 1516 parcels per subject. The mean feature of interest (i.e.,
FA or MD) along each parcel is computed, leading to a 1D feature vector with 1516
values per subject. Then, a 1D CNN is applied to the feature vectors to perform group
classification. For parameters, we follow the suggested settings in the author’s imple-
mentation3. The secondmethodperformsgroup classification using track-density images
(TDI) [40] and 3D ResNet [41], referred to as the TDI-3DResNet method. Briefly, a 3D
TDI, where each voxel represents streamline count, is generated per subject and fed
into a 3D ResNet for group classification. The third baseline method performs group
classification using TractoEmbedding images, but instead of using the proposed ViT,
it applies ResNet [41], a classic CNN architecture that has been shown to be highly
successful in many applications. We refer to this method as ResNet. For the ResNet and
TractoFormer methods, we perform classification with and without data augmentation.
We also provide interpretability results using Class Activation Maps (CAMs) [42] in
ResNet.

3 Results and Discussion

Exp 1: Synthetic Data. TractoFormer achieved, as expected, 100% group classifica-
tion accuracy because of the added synthetic feature changes to G2. Figure 4 shows
the identified discriminative fibers in one example G2 subject based on its subject-
specific attention map and the G2-group-wise attention map. The discriminative fibers
are generally similar to the CST fibers with synthetic changes.

3 https://github.com/H2ydrogen/Connectome_based_prediction.

https://github.com/H2ydrogen/Connectome_based_prediction
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Fig. 4. (a) TractoEmbedding FA images of one example G2 subject (320 × 320). (b) G2-
group-wise and subject-specific attention maps (discriminative threshold in red). (c) Identified
discriminative fibers, with comparison to the CST fibers with synthetic changes.

Exp 2: Disease Classification Between HC and SCZ. Table 1 shows the classifica-
tion results of each compared method. In general, the FA measure gives the best result.
The FC-1DCNN method generates lower accuracy and F1 scores than the methods that
benefit from data augmentation. Regarding the 3 TractoEmbedding-based methods, we
can observe that including data augmentation greatly improves the classification perfor-
mance. The ensemble architecture gives the best overall result (at resolution 160 × 160
with FA feature), with a mean accuracy of 0.849 and amean F1 of 0.770. Figure 5 gives a
visualization of the discriminative fibers from group-wise and subject-specific attention
maps. In general, our results suggest that the superficial fibers in the frontal and parietal
lobes have high importance when classifying SCZ and HC under study. Multiple studies
have suggested these white matter regions are affected in SCZ [43–45]. In ResNet (at
resolution 160× 160with FA feature), CAM identifies the fibers related to the brainstem
and cerebellum. The ViT- and ResNet-based methods focus on different brain regions,
possibly explaining the accuracy difference of the two methods.

Table 1. Comparison across different methods: the mean accuracy and the mean F1 (the first and
second values, respectively, per cell) across the cross-validation are reported.

Method Resolution FA MD Density
FC-1DCNN n.a. 0.808/0.669 0.780/0.636 0.767/0.603
TDI-3DCNN n.a. n.a. n.a. 0.764/0.589

Data Augmentation no aug with aug no aug with aug no aug with aug

ResNet
80×80 .719/.491 .819/.751 .758/.607 .753/.659 .630/.506 .744/.634

160×160 .712/.544 .829/.753 .764/.525 .769/.662 .742/.580 .761/.674
320×320 .653/.524 .778/.685 .761/.572 .703/.604 .728/.533 .694/.524

TractoFormer 
(stack input)

80×80 .804/.751 .808/.738 .649/.606 .774/.695 .741/.702 .774/.701
160×160 .716/.506 .816/.732 .724/.616 .733/.682 .708/.486 .808/.754
320×320 .783/.480 .783/.653 .791/.710 .691/.635 .783/.480 .811/.721

TractoFormer 
(ensemble)

80×80 .788/.623 .824/.758 .716/.600 .766/.724 .791/.533 .808/.743
160×160 .783/.480 .849/.770 .808/.698 .841/.732 .733/.525 .799/.689
320×320 .783/.480 .758/.645 .816/.619 .845/.742 .741/.489 .801/.726
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Fig. 5. Discriminative fibers identified in the disease classification (SCZ vs HC) experiment,
corresponding to the best performing results using FA and resolution 160 × 160.

4 Conclusion

We present a novel parcellation-free WBT analysis framework, TractoFormer, which
leverages tractography information at the level of individual fiber streamlines and pro-
vides a natural mechanism for interpretation of results using attention. We propose
random sampling of tractography as an effective data augmentation strategy for small
sample size WBT datasets. Future work could include an investigation of ensembles of
different fiber features in the same network,multi-scale learning to useTractoEmbedding
images with different resolutions together, and/or combination with advanced computer
vison data augmentation methods. Overall, TractoFormer suggests the potential for deep
learning analysis of WBT represented as images.
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