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Abstract. Disease progression models are crucial to understanding
degenerative diseases. Mixed-effects models have been consistently used
to model clinical assessments or biomarkers extracted from medical
images, allowing missing data imputation and prediction at any time-
point. However, such progression models have seldom been used for entire
medical images. In this work, a Variational Auto Encoder is coupled with
a temporal linear mixed-effect model to learn a latent representation of
the data such that individual trajectories follow straight lines over time
and are characterised by a few interpretable parameters. A Monte Carlo
estimator is devised to iteratively optimize the networks and the statis-
tical model. We apply this method on a synthetic data set to illustrate
the disentanglement between time dependant changes and inter-subjects
variability, as well as the predictive capabilities of the method. We then
apply it to 3D MRI and FDG-PET data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) to recover well documented patterns of
structural and metabolic alterations of the brain.

Keywords: Variational auto encoders · Mixed-effects models · Disease
progression models · Alzheimer’s Disease

1 Introduction

Estimating progression models from the analysis of time dependent data is a
challenging task that helps to uncover latent dynamics. For the study of neu-
rodegenerative diseases, longitudinal databases have been assembled where a
set of biomarkers (medical images, cognitive scores and covariates) are gathered
for individuals across time. Understanding their temporal evolution is of crucial
importance for early diagnosis and drug trials design, especially the imaging
biomarkers that can reveal a silent prodromal phase.

In this context, several approaches have been proposed for the progression
of scalar measurements such as clinical scores or volumes of brain structures
[12,18,29] or series of measurements across brain regions forming a network
[4,21]. These approaches require the prior segmentation and extraction of the
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measurements from the images. Providing progression models for high dimen-
sional structured data without prior processing is still a challenging task. The
difficulty is to provide a low dimensional representation of the data, where each
patient’s trajectory admits a continuous parametrization over time. It should
allow sampling at any time point, be resilient to irregularly spaced instances
and disentangle temporal alterations from the inter-patients variability. 0

1.1 Related Work

When dealing with high dimensional data, it is often assumed that the data can
be encoded into a low dimensional manifold where the distribution of the data
is simple. Deep Generative Neural Networks such as Variational Auto Encoders
(VAE) [19] allow finding such embeddings. Several approaches have explored
longitudinal modeling for images within the context of dimensionality reduction.

Recurrent Neural Networks (RNN) provide a straightforward way to extract
information from sequential data. Convolutional networks with a recurrent struc-
ture have been used for diagnosis prediction using MRI [11] or PET [23] scans
in Alzheimer’s Disease (AD). The main caveat of these approaches is that the
recurrent structure is highly sensible to the temporal spacing between instances
which is troublesome in the context of disease modeling, where visits are often
missing of irregularly spaced.

Mixed-effects models provide an explicit description of the progression of each
patient, allowing to sample at any timepoint. Through a time reparametrization,
all patients are aligned on a common pathological timeline, and individual tra-
jectories are parametrised as small variations (random effects) around a reference
trajectory (fixed effects) that can be seen as the average scenario. Now consid-
ered a standard tool in longitudinal modeling [21,28,29], mixed-effects models
have yet been scarcely used for images within the context of dimension reduction.
In [24], a RNN outputs the parameters of a mixed-effect model that describes
patients’ trajectories as straight lines in the latent space of a VAE across time.

Self supervised methods have proposed to alleviate the need for labels, in our
case the age of the patients at each visit. In [9], the encoder of a VAE learns
a latent time variable and a latent spatial variable to disentangle the temporal
progression from the patient’s intrinsic characteristics. Similarly, in [30], the
encoder is penalized with a cosine loss that imposes one direction in the latent
space that corresponds to an equivalent of time. Both these methods allow the
model to learn a temporal progression that does not rely on the clinical age of
the patients, offering potential for unlabeled data, at the cost of interpretability
of the abstract timeline and the ability to sample at any given timepoint.

Longitudinal VAEs architectures have been proposed in order to endow
the latent space with a temporal structure. Namely, Gaussian Process VAEs
(GPVAE) [7] introduced a more general prior for the posterior distribution in
the latent space, in the form of a Gaussian Process (GP) that depends on the
age of the patients [13] as well as a series of covariates [2,26]. This approach



Longitudinal Variational Auto Encoders 5

poses challenges as to the choice of parametrization for the Gaussian Process,
and does not provide an expected trajectory for each patient.

Diffeomorphic methods provide progression models for images. The main
approaches are based off of the geodesic regression framework [3,25] and allow
learning a deformation map that models the effect of time on the images for a
given subject. While providing high resolution predictions, these methods show
limited predictive abilities further in time when compared to mixed-effects mod-
els, that aggregate information from all the subjects at different stages of the
disease [6].

1.2 Contributions

In this context, we propose to endow the latent space of a VAE with a linear
mixed-effect longitudinal model. While in [24], the networks predict the random
effects from visits grouped by patients, we propose to enrich a regular VAE
that maps each individual visits to a latent representation, with an additional
longitudinal latent model that describes the progression of said representations
over time. A novel Monte Carlo Markov Chain (MCMC) procedure to jointly
estimate the VAE and the structure of its representation manifold is proposed.
To sum up the contributions, we:

1. use the entire 3D scan without segmentation or parcellation to study rela-
tions across brain regions in an unsupervised manner,

2. proceed to dimension reduction using a convolutional VAE with the added
constraint that latent representations must comply with the structure of a
generative statistical model of the trajectories,

3. provide a progression model that disentangles temporal changes from
changes due to inter-patients variability, and allows sampling patients’ tra-
jectories at any timepoint, to infer missing data or predict future progression,

4. demonstrate this method on a synthetic data set and on both MRI and
PET scans from the Alzheimer’s Disease Neuroimaging Initiative (ADNI),
recovering known patterns in normal or pathological brain aging.

2 Methodology

2.1 Representation Learning with VAEs

Auto Encoders are a standard tool for non-linear dimensionality reduction, com-
prised of an encoder network qφ that maps high dimensional data x P X to
z P Z, in a smaller space refered to as the latent space, and a decoder network
pθ : z P Z �→ x̂ P X . VAEs [19] offer a more regularized way to populate the
latent space. Both encoder and decoder networks output variational distributions
qφ(z|x) and pθ(x|z), chosen to be multivariate Gaussian distributions. Adding a
prior q(z), usually the unit Gaussian distribution N (0, I), on Z allows to derive a
tractable Evidence Lower BOund for the log-likelihood ELBO “ Lrecon `βLKL

where Lrecon is the �2 reconstruction error, LKL is the Kullback-Leibler (KL)
divergence between the approximate posterior and the prior on the latent space
and β balances reconstruction error and latent space regularity [16].
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2.2 Longitudinal Statistical Model

In this section, we propose a temporal latent variables model that encodes disease
progression in the low-dimensional space Z. Given a family of observations from
N patients {xi,j}1ďiďN , each observed at ages ti,j for 1 ď j ď ni visits, and their
latent representations {zi,j}, we define a statistical generative model with

zi,j “ p0 ` [
eξi(ti,j ´ τi)

]
v0 ` wi ` εi,j

where eξi and τi, respectively the acceleration factor and the onset age of patient
i, allow an affine time warp aligning all patients on a common pathological
timeline, and wi P Z is the space shift that encodes inter-subjects variability,
such as morphological variations across regions that are independent from the
progression. These parameters position the individual trajectory with respect to
the typical progression that is estimated at the population level. These three
parameters form the random effects of the model ψr. Vectors wi and v0 need
to be orthogonal in order to uniquely identify temporal and spatial variability.
We choose the Gaussian priors for the noise εi,j „ N (0, σ2

ε) and random effects
τi „ N (t0, σ2

τ ), ξi „ N (0, σ2
ξ ) and wi „ N (0, I). The parameters p0 P Z, v0 P Z,

t0 P R are respectively a reference position, velocity and time and describe the
average trajectory. Together with the variances σε, στ , σξ, they form the fixed-
effects of the model ψf . We note ψ “ (ψr, ψf ).

2.3 Longitudinal VAE

We combine dimension reduction using a regular β-VAE and the aforementioned
statistical model to add a temporal structure to the latent space. To do so, we
consider a composite loss that accounts for both the VAE loss and the goodness-
of-fit of the mixed-effect model:

L “ Lrecon ` βLKL ` γLalign where

⎧
⎨

⎩

Lrecon “ ř
i,j ||xi,j ´ x̂i,j ||2

LKL “ ř
i,j KL(qφ(z|xi,j)||N (0, I))

Lalign “ ř
i,j ||zi,j ´ ηi

ψ(ti,j)||2

where zi,j and x̂i,j are the modes of qφ(xi,j) and pθ(zi,j), and ηi
ψ(ti,j) “

p0 ` [
eξi(ti,j ´ τi)

]
v0 ` wi is the expected position of the latent representa-

tion according to the longitudinal model and γ balances the penalty for not
aligning latent representations with the linear model. Since the loss is invariant
to rotation in Z, we set p0 “ 0 and v0 “ (1, 0, · · · , 0).

Since Lalign is a �2 loss in the latent space, it can be seen as the log-likelihood
of a Gaussian prior zi,j „ N (ηi

ψ(ti;j), I) in the latent space, which defines an
elementary Gaussian Process, and which supports the addition of GP priors in
the latent space of VAEs to model longitudinal data [13,26]. Besides, X can be
seen as a Riemannian manifold, the metric of which is given by the pushforward
of the Euclidean metric of Z through the decoder, such that trajectories in X
are geodesics, in accordance with the Riemannian modeling of longitudinal data
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[5,14,24,28,29]. The metric on X thus allows to recover non linear dynamics, as
is often the case for biomarkers. Our approach thus bridges the gap between the
deep learning approach to longitudinal data and a natural generalization of well
studied disease progression models to images.

Network Implementation and Estimation. Both the encoder and decoder
are chosen to be vanilla convolutional Neural Networks (4 layers of Convolu-
tion with stride/BatchNorm/ReLU and transposition for decoder) with a dense
layer towards the latent space, as described in Fig. 1. The implementation is in
PyTorch and available at https://github.com/bsauty/longitudinal-VAEs.

Algorithm 1: Monte Carlo estimation of the Longitudinal VAE
Input : Longitudinal visits {(xi,j , ti,j)} and hyperparameters β and γ.
Output: Estimation of (φ, θ) for the VAE and ψ for the temporal model.
Init : Initialize (φ, θ) as a regular β-VAE.

Set k “ 0 and z0 “ qφ(x);
while not converged do
Simulation

Draw candidates ψc
r „ p(.|ψk

f ) ; // Sampling with prior p(.|ψk
f )

∀i, j compute ηi
ψk

(ti,j) ; // Expected latent trajectories

Compute likelihood ratio ω “ min

(
1,

q(ψc
r |zk,ψk

f )

q(ψk
r |zk,ψk

f
)

)

if u „ U(0, 1) ą ω then ψk`1
r � ψc

r else ψk`1
r � ψk

r

Approximation Compute sufficient statistics Sk for ψk
r

Maximisation ψk`1
f � ψ∗

f (Sk)
VAE optimization Run one epoch using L with the target latent representation
ηi

ψk for Lalign and update zk`1
� qφ(x)

end

Fig. 1. Images {xi,j} are encoded into Z such that the {zi,j} are close to the estimated
latent trajectories. Individual trajectories (straight lines) are parametrized with wi,τi

and eξi as variations around the reference trajectory (orange arrow). (Color figure
online)

https://github.com/bsauty/longitudinal-VAEs
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The difficulty lies in the joint estimation of (θ, φ) and ψ, which are co-
dependant since Lalign depends on ηi

ψ and ψ depends on the encoded repre-
sentation z “ qφ(x). The longitudinal statistical model is part of a family of
geometric models that have been studied in [20,29]. Given {zi,j}, we can proceed
to a Maximum a Posteriori estimation of ψ with the MCMC-SAEM procedure
in which the estimation step of an EM algorithm is replaced by a stochastic
approximation. See [1,22] for details. Given the target trajectories {ηi

ψ}, the
weights from both networks of the VAE is optimized through backpropagation
using L with an optimizer with randomized batches. Both estimation schemes
are iterative so we designed a Monte Carlo estimator for (φ, θ, ψ), presented in
Algorithm 1, alternating between both schemes.

Once calibrated with a training set, we freeze the VAE parameters (φ, θ) and
fixed effects ψf , and learn the individual parameters ψr, via gradient descent of
the likelihood, to personalize the model for new subjects.

Hyperparameters are dim(Z), which should be small enough to allow the
mixed-effect model to be interpretable but big enough to reach good reconstruc-
tion; β, which should minimize overfitting while not impairing reconstruction
quality; and γ, which should also not be too big to avoid loosing contextual infor-
mation in Z. These parameters were set using grid search. Lastly, the MCMC-
SAEM is computationaly inexpensive compared to backpropagation so memory
footprint and runtime are similar to training a regular VAE. All training was
performed with a Quadro RTX4000 8Go GPU.

3 Experiments and Results

3.1 Results on Synthetic Experiments

We first validated our approach on a synthetic data set of images of silhouettes
of dimension 64× 64 [10] . Over time, the silhouette raises its left arm. Different
silhouettes are generated by varying the relative position of the three other limbs,
all of them raising their left arm in time. The motion is modulated by varying
the time stamp at which the motion starts and the pace of motion. This is
done using an affine reparametrization of the time stamp ti,j of the silhouette
with Gaussian log-acceleration factor ξi and onset age τi. This data set contains
N “ 1, 000 subjects with n “ 10 visits each, sampled at random time-points.

We choose dim(Z) “ 4 to evaluate the ability of our model to isolate temporal
changes (motion of the left arm) from the independent spatial generative factors
(the position of the other 3 limbs). Results are displayed in Fig. 2. The 5-fold
reconstruction mean squared errors (MSE) (times 10´3) for train/test images are
7.88˘.22/7.93˘.29, showing little over-fitting. Prediction error for missing data,
when trained on half-pruned data set, is 8.1˘.78 which shows great extrapolation
capabilities. A thorough benchmark of six former approaches on this data set was
provided in [9] displaying similar MSE to ours. Although a couple of approaches
[9,30] also disentangle time from space, ours is the only one to yield the true
generative factors, with the direction of progression encoding the motion of the
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left arm and the 3 spatial directions orthogonal to it encoding legs spreading,
legs translation, and right arm position respectively.

3.2 Results on 3D MRI and PET Scans

We then applied the method to 3D T1w MRI and FDG-PET scans from the pub-
lic ADNI database (http://adni.loni.usc.edu). For MRI, we selected two cohorts:
patients with a confirmed AD diagnosis at one visit at least (N “ 783 patients
for a total of Ntot “ 3,685 images) and Cognitively Normal (CN) patients at all
visits for modeling normal aging (N “ 886 and Ntot “ 3, 205). We considered
PET data for AD patients only (N “ 570 and Ntot “ 1, 463). Images are regis-
tered using the T1-linear and PET-linear pipelines of the Clinica software [27]
and resampled to 80× 96× 80 resolution.

We set dim(Z) “ 16 for both modalities, as it is the smallest dimension
that captured the reported dynamics with satisfying resolution. For MRI, error
(10´3) for train/test reconstruction and imputation on half-pruned data set for
the AD model are 14.15 ˘ .12/15.33 ˘ .23 and 18.65 ˘ .76, again showing little
over-fit and good prediction abilities. In Fig. 3, the reference trajectory for AD
patients reveals the structural alterations that are typical of AD progression.
The control trajectory displays alterations more in line with normal aging.

We tested differences in the mean of individual parameters between sub-
groups using Mann-Whitney U test within a 5-fold cross-validation. AD average
onset age occured earlier for women than for men: 72.2˘.4 vs. 73.7˘.6 years,
p < 3.10´7˘5.10´8). APOE-ε4 mutation carriers experience also earlier onset

Fig. 2. Synthetic experiment. (a) the average trajectory over time (left to right) on first
row, followed by its translation in the directions w1 “ (0, 1, 0, 0) and w2 “ (0, 0, 1, 0)
in the latent space (second and third row). (b) the gradient of the image at p0 “ 0 in
the 4 directions of the latent space v0, w1, w2, w3. (c) data of a test subject (first row),
its reconstructed trajectory (second row) and the ground truth (third row)

http://adni.loni.usc.edu/
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than non-carriers (71.8˘.2 vs 73.1˘.4, p < 3.3.10´2˘6.10´3) and greater pace of
progression (.1˘3.10´2 vs ´.08˘2.10´2, p < 1.4.10´4˘6.10´3). The normal aging
model shows an earlier onset for men (71.2˘.4 vs 73.7˘.6, p < 3.10´10˘6.10´11).
These results are in line with the current knowledge in AD progression [15,17]
and normal aging [8]. For PET scans, the 5-fold train/test reconstruction MSE
(10´2) are 4.71 ˘ .32/5.10 ˘ .23 (Fig. 4).

Fig. 3. (a) Sagittal, coronal and axial views of the population trajectory over patho-
logical time (left to right) for the AD cohort. Enlargment of the ventricles and atrophy
of the cortex and the hippocampus are visible. Red squares around the hippocampus
are positioned at the 5 stages of the Schelten’ scale used in the clinics to evaluate AD
progression. (b) Coronal view of the estimated normal aging scenario, with matched
reparameterized age distribution. Atrophy is also visible but to a smaller extent. As is
common in atlasing methods, these images average anatomical details from different
subjects to provide a population trajectory, and are thus not as sharp as true images.
(Color figure online)

Fig. 4. Sagittal, coronal and axial views of the average trajectory for FDG-PET scans,
showing decreased level of metabolism across brain regions.
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4 Conclusion

We proposed a generative Variational Autoencoder architecture that maps lon-
gitudinal data to a low dimensional Euclidean space, in which a linear spatio-
temporal structure is learned to accurately disentangle the effects of time and
inter-patient variability, while providing interpretable individual parameters
(onset age and acceleration factor). This is the first approach to provide a pro-
gression model for 3D MRI or PET scans and it relies on vanilla deep learning
architectures that only require the tuning of the loss balance. We showed that
it bridges the gap between former approaches to handle longitudinal images,
namely GP-VAEs, and Riemannian disease progression models. The method
applied to MRI and PET data retrieves known patterns of normal and patho-
logical brain aging but without the need to extract specific biomarkers. It does
not only save time but also makes the approach independent of prior choice of
biomarkers.

Current work focuses on linking this progression model of brain alterations
with cognitive decline, and exploring disease sub-types in the latent space.
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