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Abstract Gaussian graphical models are a powerful statistical tool to describe the
concept of conditional independence between variables through a map between a
graph and the family of multivariate normal models. The structure of the graph is
unknown and has to be learned from the data. Inference is carried out in a Bayesian
framework: thus, the structure of the precision matrix is constrained by the graph
through a G-Wishart prior distribution. In this work we first introduce a prior dis-
tribution to impose a block structure in the adjacency matrix of the graph. Then
we develop a Double Reversible Jump Monte Carlo Markov chain that avoids any
G-Wishart normalizing constant calculation when comparing graphical models. The
novelty of this procedure is that it looks for block structured graphs, hence proposing
moves that add or remove not just a single link but an entire group of them.

Keywords Bayesian statistics · Double reversible jump · G-Wishart prior

1 Introduction

The increasing capacity of human beings of collecting large amount of data gave rise
to the need of developing models to study how variables interact with one another.
Benefits of such discoveries arewell known, for example in clinical and genetic appli-
cations it is useful to understand how risk factors are related so that patient-specific
therapies may be planned. See [5, 9, 27] for cancer applications. The same reasoning
applies to problems in economics, for example [25] studied the interconnectedness
of credit risk.

Probabilistic graphical modeling is a possible approach to the task of studying the
dependence structure among a set of variables. It relies on the concept of conditional
independence between variables that is described through a map between a graph
and a family of multivariate probability models. When such a family of probabilities
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is chosen to be Gaussian, those models are known as Gaussian graphical models
[12]. This is the choice made throughout the paper, which is the most common in
the literature.

Let X be a p-random vector distributed as Np(0,�). � is the covariance matrix
and we assume X to be centered without loss of generality. Let G = (V, E) be an
undirected graph, where V = {1, . . . , p} is the set of nodes and E is the set of undi-
rected edges. X is said to be Markov with respect to G if, for any edge (i, j) that
does not belong to E , the i-th and j-th variables are conditionally independent given
all the others. Moreover, under the normality assumption, the conditional indepen-
dence relationship between variables can be represented in terms of the null elements
of the precision matrix K = �−1. Therefore the following equivalence provides an
interpretation of the graph

Xi ⊥⊥ X j | X−(i j) ⇐⇒ (i, j) /∈ E ⇐⇒ ki j = 0, (1)

where X−(i j) is the random vector containing all elements in X except the i-th
and the j-th. Each node is associated to one of the variables of interest and its
links describe the structure of the non-zero elements of the precision matrix. The
absence of a link between two vertices means that the two corresponding variables
are conditionally independent, given all the others. Usually, G is unknown and it is
the goal of the statistical inference, along with K . Such a process is also known as
structural learning. In aBayesian framework,we set aG-Wishart prior distribution for
the precision matrix K [1, 20] , which is attractive as it is conjugate to the likelihood.
Since the graph G is considered to be a random variable having values in the space
G of all possible undirected graphs with p nodes, we need to specify a prior on it. A
common practice is to choose an uniform distribution over G. This is appealing for its
simplicity but it assigns most of its mass to graphs with a “medium” number of edges
[9]. On the other hand, it is known that an undirected graph is uniquely identified by
its set of edges E . Therefore it is simpler to define a prior on E , which then naturally
induces a prior overG. In this setting, themost natural choice is to assign independent
Bernoulli priors to each link. The Bernoulli parameters θ could be different from
edge to edge, but one usually assigns a common value. For example, [9] suggested to
choose θ = 2/(p − 1) to induce more sparsity in the graph. Scott and Carvalho [21]
placed instead a Beta hyperprior on that parameter, a solution known as multiplicity
correction prior. Similarly, [22] described amultivariate Bernoulli distribution where
edges are not necessarily independent. A common feature of previously described
priors is that they are non-informative. The only type of prior information they can
include in the model is the expected sparsity.

In this work we propose a prior for the graph that aims to be informative, accord-
ing to the prior information available for the application at hand. Since the graph
describes the conditional dependence structure of variables involved in complex and
high-dimensional phenomena, it is unrealistic to assume that prior knowledge is
available for one-to-one relationships between the observed quantities. It is instead
more reasonable to assume that variables may be grouped in smaller subsets. This
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is common in biological application where the groups may be families of bacteria
[17], or genomics where groups of genes are known to be part of a common process.
Also in market basket analysis products and customers can easily be grouped; see,
for instance [6].

We propose a class of priors, called block graph priors, that encodes such informa-
tion and imposes a block structure in the adjacency matrix that describes the graph.
We allow variables in different groups only to be fully connected or not connected at
all. Therefore, the goal is no longer in looking for all possible relationships between
nodes but on deriving the underlying pattern between groups.

We introduce a Reversible Jump sampler that leverages the structure induced by
our new prior. In particular, we generalize the procedure by Lenkoski [13]. The
resulting method is called Block Double Reversible Jump (BDRJ for short). Its main
feature is that itmodifies, at each step of the chain, an entire block of links to guarantee
a block structure that is always compatible with our hypotheses.

The remainder of the paper is organized as follows. Section2 introduces the block
structured graph priors and Sect. 3 provides the sampling strategy. In Sect. 4 we
present a simulation study along with a comparison against an existing approach.
Finally, we conclude with a brief discussion in Sect. 5.

2 Block Structured Graph Priors

The starting point for our proposed model is that we assume the p observed variables
to be grouped, a priori, in M mutually exclusive groups. Each group has cardinality
ni and

∑M
i=1 ni = p. We admit the possibility of having some ni = 1, as long as

M < p. Groups whose cardinality is equal to one are called singletons.
We aim to study relationships between groups of variables. Therefore the usual

graph representation G = (V, E), where V is the set of nodes and E is set of links,
is redundant. Indeed we assume that groups are given and links have to satisfy
a precise block structure. As a consequence, we synthesize those information by
defining a new space of undirected graphs whose nodes represent the chosen groups
of variables and links represent the structure of relationships between them. Namely,
let VB = {B1, . . . , BM } be a partition of V in M groups that are available a priori.
Then we define GB = (VB, EB) to be an undirected graph whose nodes are the sets
Bk, k = 1, . . . , M and that allows for self-loops if nk > 1. Namely,

EB ⊂ EB =
{
(l,m)|l,m ∈ VB, ∧ l < m, (l, l)|l ∈ VB, ∧ nl > 1

}
. (2)

In graph theory, graphs that have self-loops are calledmultigraphs. Finally, let GB be
the set of all possible multigraphs GB having VB as set of nodes. In the following,
we want to clarify the relationship between this space and G.

Consider GB ∈ GB and G ∈ G. By definition, the set of nodes of the first multi-
graph is obtained by grouping together the nodes of the second graph. What about
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Fig. 1 The map from multigraph GB ∈ GB (left) to its block structured form G ∈ B (right)

the set of edges? Is there any relation between the two sets? The following map
defines a relationship between them. Let ρ : GB → G, such that GB = (VB, EB) 	→
G = (V, E) by the following transformations

V = {Bl,h, l = 1, . . . nh, h = 1, . . . M} = {1, . . . , p}
if (l,m) ∈ EB ⇒ (i, j) ∈ E ∀i ∈ Bl, ∀ j ∈ Bm

if (l,m) /∈ EB ⇒ (i, j) /∈ E ∀i ∈ Bl, ∀ j ∈ Bm (3)

A visual representation of this mapping is given in Fig. 1. Once ρ is set we are able
to associate each GB in GB to one and only one G in G, since ρ is clearly injective.
We refer to GB as the multigraph form of G.

Nevertheless, ρ is not surjective which implies that there are graphs that do not
have a representative inGB . Indeed, only those graphswith a particular block structure
can be represented in amultigraph form. A non surjectivemap is the key ingredient to
define a subset ofG of block structured graphs that satisfy ourmodelling assumptions.
Let us consider the image of ρ, denoted by B. It is the subset of G containing all
the graphs having p nodes and a block structure consistent with VB . Moreover,
ρ : GB → B is a bijection, which means that every graph G ∈ B is associated to its
representativeGB ∈ GB via ρ−1.We say thatG ∈ B is the block graph representation
of the multigraph GB ∈ GB . This synthesised representation of block graphs allows
us to work in a space where we can use standard tools of graphical analysis. In a
different setting, [4] adopts a similar approach to model the conditional dependence
across Markov processes.

In particular, such a representation allows us to introduce a class of priors that
encodes the knowledge about the partition of the nodes. We place zero mass proba-
bility on all those graphs that belong to G\B, which is the set of all those graphs that
do not satisfy our block structure constraint. Then, we place a standard prior, say
πB(·), over GB , which is possible as it is a space of undirected multigraphs where
links can be considered to be independent with one another. Finally, we map the
results in B using ρ−1. Namely

π(G) ∝
{

πB
(
ρ−1(G)

)
, if G ∈ B

0, if G ∈ G\B.
(4)
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We refer to those priors as block graph priors. In this work, we consider a block-
Bernoulli prior, π(G), that is obtained by applying (4) to πB(GB) = θ |EB |(1 −
θ)(

M
2 )−|EB |, that is the Bernoulli prior where each link has prior probability of inclu-

sion θ , which is fixed a priori. The reasoning used to define block priors is similar to
priors described in [7]. However, in this case we are not limiting the learning of the
graph to the class of the decomposable ones but to block structured graphs.Moreover,
this limitation is not due to computational limitations but because prior knowledge is
available. In the next section we present a method to learn such a structure. In prin-
ciple, one can still apply such prior to limit the analysis to the class of decomposable
block graphs to exploit their properties. However, in this work we do not make such
assumption and we present a method that is valid also for non-decomposable graphs.

3 Sampling Strategy

One of the difficulties in the development of efficient methods for structural learning
is the presence of the G-Wishart prior distribution. Given a random matrix K , we
say that K |G, b, D ∼ G-Wishart (b, D) if its density is

P (K | G, b, D) = IG (b, D)−1 |K | b−2
2 exp

{

−1

2
tr (KD)

}

�PG (K ) , (5)

where b and D are fixed hyperparameters, PG is the space of all p × p symmetric
and positive definite matrices whose null elements are associated to links absent in
graph G and

IG(b, D) =
∫

PG

|K | b−2
2 exp

{

−1

2
tr (KD)

}

dK , (6)

is an intractable normalizing constant. Numerical methods to approximate such a
constant [1] are unstable in high dimensional problems [9, 15]. Several techniques
that avoid any calculation of IG(b, D) are available in the literature, but an exhaustive
review of them is beyond the goals of this work. In the following, we limit ourselves
to present how our proposed method, called Block Double Reversible Jump (BDRJ
for short). It generalizes the procedure by Lenkoski [13] to get a Reversible Jump
chain defined over the joint space of graph and precision matrix that visits only
the subspace B of block structured graphs. Note that if one is interested only in
decomposable graph models, the normalizing constant IG(b, D) can be computed
explicitly and it would be enough to use a standard Metropolis-Hastings algorithm
without resorting to the usage of the Reversible Jump technique presented in the
remaining part of this paper.

We denote the current state of the chain by (K [s],G[s]), with K [s] ∈ PG[s] . The pro-
posed state (K ′,G ′) is constructed in two subsequent steps; in Sect. 3.1 we describe
the proposal for the new graph G ′ and then in Sect. 3.2 we discuss how to get the
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proposed precision matrix K ′ ∈ PG ′ . Once that (K ′,G ′) has been drawn, we accept
or reject the whole state with a Metropolis-Hastings step.

3.1 Construction of Proposed Graph G′

A common factor in most of the existing MCMC methods for graphical models
is to set up chains such that the proposed graph G ′ = (V, E ′) belongs to the one-
edge-away neighbourhood of G. Namely, nbdp(G) = nbd+

p (G) ∪ nbd−
p (G) where

nbd+
p (G) and nbd−

p (G) are the sets of undirected graphs having p nodes that can
be obtained by adding, or removing, an edge to G ∈ G, respectively. A step in the
Markov chain that selects G ′ ∈ nbdp(G[s]) is said to be a local move.

The proposedBDRJ approach is innovative becausewederivemoves thatmodifies
an entire block of links, not just a single one. In other words, our moves are local in
GB but not in G. Suppose G[s] ∈ B, we propose a new graph G ′ ∈ B by first drawing
its multigraph representation G ′

B ∈ GB from

q(G ′
B |G[s]) = 1

2
Unif

(
nbdB,+

M

(
ρ−1(G[s])

)) + 1

2
Unif

(
nbdB,−

M

(
ρ−1(G[s])

))
,

(7)
where nbdB

M(G[s]
B ) is the one-edge-away neighbourhood of G[s]

B = ρ−1(G[s]) with
respect to the space of multigraphs GB . Addition and removal moves are chosen
with the same probability. Given this choice, q(G ′

B |G[s]) chooses, with uniform
probability, which link is to be added (or removed). Finally ρ is applied once again
to map the resulting multigraph back in B to obtain G ′, i.e. setting G ′ = ρ

(
G ′

B

)
. A

closer look at (7) reveals how our multigraph representation allows us to use standard
tools of structural learning in the space GB to get non-standard proposal in the usual
space G.

3.2 Construction of Proposed Precision Matrix K′

Once that the graph is selected, we need to specify a method to construct a pro-
posed precision matrix K ′ that satisfies the constraints imposed by the new graph.
The method by Wang and Li [26] based on the partial analytical structure of the
G-Wishart appears to be an efficient choice. However, it strongly relies on the possi-
bility of writing down an explicit formula for the full conditional of the elements of
K . Such results, presented in [20], can be handled in practice only if at each step of
the graph only one link of the graph is modified. Instead, the proposal distribution
presented in Sect. 3.1 modifies an arbitrary number of links. Hence, it is complicated,
if possible at all, to generalize the method by Wang and Li [26] to such framework.
As a consequence, we rely on a generalization of the Reversible Jumpmechanism by
Lenkoski [13]. The idea is that is it possible to guarantee the positive definiteness of
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K ′ and the zero constraints imposed by G ′ just by working on the Cholesky decom-
position matrix �[s] of K [s]. Indeed, [20] and [1] showed that the zero constraints
imposed by G[s] on the off-diagonal elements of K [s] induce a precise structure and
properties on �[s]. Let ν(G[s]) = {(i, j) | i, j ∈ V, i = j or (i, j) ∈ E [s]} be the set
of the diagonal elements and the links belonging to G[s] and define the set of free
elements of �[s] as �ν(G[s]) = {φi j | i, j ∈ ν(G[s])}. The remaining entries, that we
simply refer to as non-free elements, are uniquely determined through the completion
operation [1, Prop. 2] as a function of the free elements.

Suppose the proposed graphG ′ is obtained by adding edge (l,m) to themultigraph
representation of G[s]. The set of links that are changing in G is L = {(i, j) | i, j ∈
V, i < j, (i, j) ∈ E ′, (i, j) /∈ E [s]}. Its cardinality l = |L| is arbitrary and, in gen-
eral, different from one. We call V (L) = Bl ∪ Bm the set of the vertices involved
in the change. Note that ν(G ′) = ν(G[s]) ∪ L . Our solution to define the new free
elements is to maintain the same value for all the ones that are not involved in the
change and to set the new ones by perturbing the current, non free elements, inde-
pendently and all with the same variance σ 2

g . Namely, draw ηh ∼ind N (φ
[s]
h , σ 2

g ) and
set φ′

h = ηh for each h ∈ L . Then, it is enough to derive all non free elements of 	′
though completion operation and finally to set K ′ = (�′)T�. Note that, by doing
so, we are generating a random variable η of length l that matches the dimension
gap between K and K ′. As usual, the dimension decreasing case is deterministically
defined in terms of the dimension increasing one.

4 Simulation Study

Wecompare our performances to theBirth andDeath approach (BDMCMCfor short)
proposed byMohammadi andWit [14] and available in theRpackageBDgraph [16].

All final estimates, both from BDRJ and BDMCMC outputs, were obtained by
controlling the Bayesian False Discovery Rate, as presented in [18] and [3]. Per-
formances are assessed in terms of the standardized Structural Hamming Distance
(Std-SHD, [23]) and the F1-score [2, 19]. The first one prefers lower values, the
second one higher values. Following the same approach of [14, 24], precision matrix
estimation is measured using one half of the Stein loss score (SL) [8] which is equal
to the Kullback-Leibler divergence [10] between Np(0, K−1

true) and Np(0, K̂
−1

).
In the first experiment, we set p = 40, n = 500 and M = p/2 groups of equal

size, which leads to off-diagonal blocks of size 2 × 2. The true underlying graph
is itself a block structured graph (see Fig. 2), while the true precision matrix was
sampled by drawing from a G-Wishart

(
3, I p

)
. σ 2

g was set equal to 0.5 after a little
tuning phase. 400,000 iterations were run plus 100,000 extra iterations as burn-in
period that were discarded. A simple visual inspection of Fig. 2 suggests that BDRJ
is more precise than BDMCMC. The number of misclassified edges is rather low,
Std-SHD = 0.0243, and it is well balanced between false positiveness (10) and nega-
tiveness (9). Many true discoveries are achieved and indeed it has F1-score = 0.954.
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Fig. 2 The adjacency matrices of true underlying graph (middle panel), the BDRJ one (leftmost
panel) and the one obtained using BDgraph (rightmost panel). Squares represent the included
links, crosses stand for edges that are wrongly classified

BDMCMC does not recognize the block structure of the true graph, actually it does
not even look for such a structure because the prior information can not be included
in the model. It estimates the probability of inclusion of every possible link indepen-
dently from the others. This entails more errors in the final estimate as well as a less
informative structure of the graph. It would be hard to explain why there are missing
edges within some structures that are clearly blocked ones. We repeated the same
experiments for 18 different dataset: the true underlying graphswere randomly gener-
ated by sampling from (4) with different sparsity indices θ uniformly distributed in
[0.2, 0.6]. The mean values, along with the standard deviations, for the F1-scores
are 0.845(0.13) and 0.80(0.03) and for the Std-SHD we have 0.053(0.04) and
0.060(0.02), respectively for BDRJ andBDMCMC.We see that BDRJ ismore unsta-
ble with respect to BDMCMC. This is probably due to the fact that we used the same
σ 2
g for all dataset, without tuning it every time. However both indices prefer BDRJ.
The second experiment is inspired by a simulation studypresented in [11] that aims

to learn a graph and precisionmatrix under a noisy setting. The true underlying graph
G is displayed in Fig. 3. We sample K true|G ∼ G-Wishart(3, I p) and set K noisy to be
a random perturbation of K true: every possible value is perturbed, with probability s,
by adding a random noise 0.1u. Here u ∼ Unif (−k∗, k∗), where k∗ = maxi< j |k truei j |.
Finally, data are generated from Np

(
0, K−1

noisy

)
. To investigate the behaviour under

different volumes of noise, s = 0.10, 0.20, 0.25,we repeat each experiment 15 times.
Results are reported in Table1.

BDRJ outperforms BDMCMC on every dataset and with respect to all indices we
considered. Its robustness is due to the fact that to conclude that a whole block has
to be inserted in the final graph a single, isolated link is not enough. Those isolated
values are not compatible with the block structured graph that BDRJ is looking for,
therefore they are rightly ignored. On the other hand, BDMCMC does not look for
any particular structure, hence it does not recognize the perturbed values as noise.
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Fig. 3 The true underlying graph (leftmost panel) used to generate the true precision matrix K true
(middle panel). The rightmost panel is K noisy (obtained with s = 0.25). For plotting purposes, we
removed the diagonal in both precision matrices

Table 1 F1-score, Std-SHD and Stein loss SL under different noise levels s

s = 0.1 s = 0.2 s = 0.25

F1-score BDRJ 0.75 (0.035) 0.70 (0.043) 0.68 (0.043)
BDMCMC 0.44 (0.022) 0.405 (0.028) 0.066 (0.042)

SHD BDRJ 0.039 (0.004) 0.047 (0.043) 0.049 (0.005)
BDMCMC 0.063 (0.002) 0.36 (0.042) 0.071 (0.003)

SL BDRJ 0.24 (0.030) 0.32 (0.041) 0.37 (0.060)
BDMCMC 1.00 (0.032) 1.05 (0.036) 1.08 (0.059)

Values in bold are the ones preferred by the corresponding index

5 Discussion

In the setting of graphical models, this work proposed a new class of priors, called
block graph priors. They allow to include in the model the prior knowledge available
about the partition of the nodes. We also introduced a new sampling strategy that
leverage these priors to look only for a block structured graph, whose block, if
included, have to be complete. In someapplications, as the number of variables grows,
the importance of each possible dependence loses of interest as it is more natural,
and more interpretable, to understand the general structure of dependencies. This is
the case of genomics applications as genes may be grouped in pathways, therefore
a block structured graph is expected and more interpretable. Another example is
market basket analysis which aims to find patterns of association between retailed
items so that they can be bundled together to the end of delivering an appealing
offer. Finally, we compared our model, on synthetic data, with BDMCMC. In both
experiments, BDRJ estimates are better in terms of Std-SHD, F1-score and SL.

As future developments, we aim to further develop the BDRJ technique, expand
the simulation study by investigating the behaviour of BDRJ when the underlying
graph has incomplete blocks and to assess its performances in realworld applications.
Moreover, experiments are performed using groups of only two nodes. Larger groups
imply larger jumps of the chain in the state space and therefore they are less likely to
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be accepted. We aim to better investigate the behaviour of our methodology in such
cases. We would also like to understand if the proposed methodology could be also
extended to Gaussian structured chain graph models for modelling the DAG model
induced by the chain components. Finally, we would like to add flexibility to the
model by allowing for a random partition of the nodes.
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