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Abstract Scalar-on-image regression aims to investigate changes in a scalar
response of interest based on high-dimensional imaging data. We propose a novel
Bayesian nonparametric scalar-on-image regression model that utilises the spatial
coordinates of the voxels to group voxels with similar effects on the response to have
a common coefficient. We employ the Potts-Gibbs random partition model as the
prior for the random partition in which the partition process is spatially dependent,
thereby encouraging groups representing spatially contiguous regions. In addition,
Bayesian shrinkage priors are utilised to identify the covariates and regions that are
most relevant for the prediction. The proposedmodel is illustrated using the simulated
data sets.

Keywords Bayesian nonparametric · Gibbs-type priors · Potts model ·
Clustering · Generalised Swendsen-Wang · High-dimensional imaging data

1 Introduction

Through advances in data acquisition, vast amounts of high-dimensional imaging
data are collected to study phenomena in many fields. Such data are common in
biomedical studies to understand a disease or condition of interest [2, 5, 39, 44], and
in other fields such as psychology [3, 42], social sciences [7, 15, 17, 38], economics
[12, 26, 27], climate sciences [30, 31], environmental sciences [4, 11, 22] and more.
While extracting features from the images based on predefined regions of interest
favours interpretation and eases computational and statistical issues, changes may
occur in only part of a region or span multiple structures. In order to capture the
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complex spatial pattern of changes and improve accuracy and understanding of the
underlying phenomenon, sophisticated approaches are required that utilize the entire
high-dimensional imaging data. However, the massive dimension of the images,
which is often in the millions, combined with the relatively small sample size, which
at best is usually in the hundreds, pose serious challenges.

In the statistical literature, this is framed as a scalar-on-image regression (SIR)
problem [10, 14, 16, 19]. SIR belongs to the “large p, small n” paradigm; thus,
many SIR models utilise shrinkage methods that additionally incorporate the spatial
information in the image [10, 14, 16, 18, 19, 24, 37, 40, 46]. In the SIR problem, the
covariates represent the image value at a single pixel/voxel, i.e. a very tiny region,
and the effect on the response is most often weak, unreliable and difficult to inter-
pret. Moreover, neighbouring pixels/voxels are highly correlated, making standard
regression methods, even with shrinkage, problematic due to multicollinearity.

To overcome these difficulties, we develop a novel Bayesian nonparametric (BNP)
SIRmodel that extracts interpretable and reliable features from the images by group-
ing voxels with similar effects on the response to have a common coefficient. Specif-
ically, we employ the Potts-Gibbs model [21] as the prior of the random image
partition to encourage spatially dependent clustering. In this case, features repre-
sent regions that are automatically defined to be the most discriminative. This not
only improves the signal and eases interpretability, but also reduces the compu-
tational burden by drastically decreasing the image dimension and addressing the
multicollinearity problem. Moreover, it allows sharp discontinuities in the coeffi-
cient image across regions, which may be relevant in medical applications to capture
irregularities [46].

In this direction, [19] proposed the Ising-DP SIRmodel, which combines an Ising
prior to incorporate the spatial information in the sparsity structure with a Dirichlet
Process (DP) prior to group coefficients. Still, the spatial information is only incor-
porated in the sparsity structure and not in the BNP clustering model, which could
result in regions that are dispersed throughout the image. Instead, we propose to
incorporate the spatial information in the random partition model, encouraging spa-
tially contiguous regions. Further advantages of the nonparametric model include
a data-driven number of clusters, interpretable parameters, and efficient computa-
tions. Moreover, we combine this with heavy-tailed shrinkage priors [41] to identify
relevant covariates and regions.

The remainder of this article is organized as follows. Section2 outlines the devel-
opment of the SIR model based on the Potts-Gibbs models. Section3 derives the
MCMC algorithm for posterior inference using the generalized Swendsen-Wang
(GSW) [47] algorithm for efficient split-merge moves that take advantage of the spa-
tial structure. Section4 illustrates the methods through simulation studies. Section5
concludes with a summary and future work.
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2 Model Specification

We introduce the statistical models that form the basis of the proposed Potts-Gibbs
SIR model: SIR, random image partition model and shrinkage prior.

2.1 Scalar-on-Image Regression

SIR is a statistical linear method used to study and analyse the relationship between a
scalar outcome and two or three-dimensional predictor images under a single regres-
sion model [10, 14, 16, 19]. For each data point, i = 1, . . . , n, we have

yi = wT
i μ + xTi β + εi , εi

i id∼ N
(
0, σ 2

)
, (1)

where yi is a scalar continuous outcomemeasure,wi = (wi1, . . . , wiq)
T ∈ R

q is a q-
dimensional vector of covariates, and xi = (xi1, . . . , xip)T ∈ R

p is a p-dimensional
image predictor. Each xi j indicates the value of the image at a single pixel with spatial
location s j = (s j1, s j2)T ∈ R

2 for j = 1, . . . , p. We define μ = (μ1, . . . , μq)
T ∈

R
q as a q-dimensional fixed effects vector and β = (

β(s1), . . . , β(sp)
)T

(with β j :=
β(s j )) as the spatially varying coefficient image described on the same lattice as xi .
We model the high-dimensional β by spatially clustering the pixels into M regions
and assuming common coefficients β∗

1 , . . . , β
∗
M within in each cluster, i.e. β j = β∗

m
given the cluster label z j = m. Thus, the prior on the coefficient image is decomposed
into two parts: the random image partition model for spatially clustering the pixels
and a shrinkage prior for the cluster-specific coefficients β∗ = (

β∗
1 , . . . , β

∗
M

)T
. The

SIR model in (1) can be extended for other types of responses through a generalized
linear model framework (GLM) [23].

2.2 Random Image Partition Model

The image predictors are observed on a spatially structured coordinate system.
Exchangeability is indeed no longer the proper assumption as the images contain
covariate information, that wewish to leverage to improvemodel performance in this
high-dimensional setting. Todo so,we combineBNP randompartitionmodels,which
avoid the need to prespecify the number of clusters, allowing it be determined and
growwith the data, with a Potts-like spatial smoothness component [36]. Spatial ran-
dom partition models in this direction are a growing research area, includingMarkov
random field (MRF) with the product partition model (PPM) [32], with DP [29, 47],
with Pitman-Yor process (PY)[21] and with mixture of finite mixtures (MFM) [13,
48]. Precisely, within the BNP framework, we focus on the class of Gibbs-type
random partitions [1, 9, 20, 35], motivated by their comprise between tractable pre-
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Table 1 Formulas of Vp(M),Wm(φ) and terms of the predictive probability for assigning current
cluster to either existing cluster or new cluster for DP, PY and MFM

DP PY MFM

Vp(M)
�(α)αM

�(α+p)
�(α+1)

∏M−1
m=1 (α+mδ)

�(α+p)

∑∞
l=1

�(γ l)l!
�(γ l+p)(l−m)! PL (·|λ)

Wm(φ) �(| Cm |) �(|Cm |−δ)
�(1−δ)

�(|Cm |+γ )
�(γ )

Existing cluster �(|C−Ao
m |+|Ao|)

�(|C−Ao
m |)

�(|C−Ao
m |+|Ao|−δ)

�(|C−Ao
m |−δ)

�(|C−Ao
m |+|Ao|+γ )

�(|C−Ao
m |+γ )

New cluster α�(|Ao|) (α + δM−Ao )
�(|Ao|−δ)
�(1−δ)

Vp(M−Ao+1)
Vp(M−Ao )

�(|Ao|+γ )
�(γ )

Note that the predictive probabilities are stated up to a proportionality constant

dictive rules and richness of the predictive structure, including important cases, such
as the DP [6], PY [33, 34], and MFM [25]. The Potts-Gibbs models induce a distri-
bution on the partition πp = {C1, . . . ,CM} of p pixels into M nonempty, mutually
exclusive, and exhaustive subsets C1, . . . ,CM such that ∪C∈πpC = {1, . . . , p}. The
model can be summarised as:

pr(πp) ∝ exp

⎛

⎝
∑

j∼k, j<k

υ jk1z j=zk

⎞

⎠

︸ ︷︷ ︸
Potts model

(

Vp(M)

M∏

m=1

Wm(φ)

)

︸ ︷︷ ︸
Gibbs-type random partition models

,

where z j ∈ {1, · · · , M}, j ∼ k means that j and k are neighbors, and 1z j=zk equals
to 1 if j and k in the same cluster and 0 otherwise. In the following, we assume
the spatial locations lie on a rectangular lattice with first-order neighbors and a
common coupling parameter υ for all neighbor pairs; a higher value of υ encourages
more spatial smoothness in the partition. We use the general notation φ to denote
the parameters of the Gibbs-type partition models, and focus our study on three
cases 1) DP with concentration parameter α > 0; 2) PY with discount parameter
δ ∈ [0, 1) and concentration parameter α > −δ; and 3) MFMwith parameter γ > 0
(larger values encouraging more equally sized clusters) and a distribution PL(·|λ)

with parameter λ related to the prior on the number of clusters. The {Vp(M) : p ≥
1, 1 ≤ M ≤ p} denotes the set of non-negative weights, which solves the backward
recurrence relation Vp(M) = (p − δM)Vp+1(M) + Vp+1(M + 1) with V1(1) = 1.
Table1 describes the Vp(M) and Wm(φ) for DP, PY and MFM models.

2.3 Shrinkage Prior

To identify relevant regions, we use heavy tailed priors for the unique values
(β∗

1 , . . . , β
∗
M) of

(
β(s1), . . . , β(sp)

)
. Specifically, a t-shrinkage prior is used, moti-

vated by its computational efficiency andnearly optimal contraction rate and selection
consistency [41]:
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σ 2 ∼ IG (aσ , bσ ) ,
(
β∗
m

) |σ 2 ∼ tν(sσ), for all m = 1, . . . , M,
(2)

where tν(sσ) denotes t-distributionwith degree of freedom ν and scale parameter sσ .
For posterior inference, the t-distribution (2) is rewritten as a hierarchical inverse-
gamma scaled Gaussian mixture,

σ 2 ∼ IG (aσ , bσ ) ,

η∗
m ∼ IG

(
aη, bη

)
,

(
β∗
m

) |σ 2, η∗
m ∼ N (0, η∗

mσ 2), for all m = 1, . . . , M,

where aη and bη are the shape and scaling parameter of the mixing distribution for
each η∗

m respectively with ν = 2aη and s = √
bη/aη.

3 Inference

We aim to infer the posterior distribution of the parameters based on the proposed
Potts-Gibbs SIR model:

yi | μ,β∗, πp, σ
2 ∼ N(wT

i μ + x∗T
i β∗, σ 2), for all i = 1, . . . , n,

μ | σ 2 ∼ N(mμ, σ 2�μ),

β∗ | η∗, σ 2 ∼ N(0M , σ 2�β∗),

σ 2 ∼ IG(aσ , bσ ),

η∗
m ∼ IG

(
aη, bη

)
, for all m = 1, . . . , M,

πp ∼ Potts-Gibbs(υ, φ),

where x∗
im = ∑p

j=1 xi j1( j ∈ Cm)/
√| Cm | represents the total value, e.g. volume in

themth region of the image,mμ = (mμ1, . . . ,mμq ), �μ = diag(cμ1 , . . . , cμq )
T , and

�β∗ = diag(η∗
1, . . . , η

∗
M
). Note that when defining x∗

im , we rescale by the square root
of cluster size , which is equivalent to rescaling the variance of β∗

m by the cluster
size, encouraging more shrinkage for larger regions.

We develop a Gibbs sampler to simulate from the posterior with a generalized
Swendsen-Wang (GSW) algorithm to draw samples from the Potts-Gibbs model.
Poor mixing can be seen in single-site Gibbs sampling [8] due to the high correlation
between the pixel labels. The SW algorithm [43] addresses this by forming nested
clusters of neighbouring pixels, then updating all of the labels within a nested cluster
to the same value. The generalisation of the technique for standard Potts models to
generalised Potts-partition models is called GSW [47]. At each step of the algorithm,
we proceed through the following steps:
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1. Sample the image partition πp given η∗ and the data (with β∗,μ, σ 2 marginal-
ized). GSW is used to update simultaneously nested groups of pixels and hence
improve the exploration of the posterior. The algorithm relies on the introduction
of auxiliary binary bond variables, where r jk = 1 if pixels j and k are bonded,
otherwise 0. The bondvariables define a partition of the pixels into nested clusters
A1, . . . , AO , where O denotes the number of nested clusters and each Ao ⊆ Cm

for some m = 1, . . . , M . For each neighbor pair j ∼ k for 1 ≤ j < k ≤ p,
we sample the bond variables as follows, r jk ∼ Ber{1 − exp(−υ jkζ jk1z j=zk )},
where we define ζ jk = κ exp{−τd(β̂ j , β̂k)}with β̂ j denoting the estimated coef-
ficient from univariate regression on the j th pixel and κ, τ are the tuning param-
eters of the GSW sampler. Notice that the algorithm reduces to single-site Gibbs
when κ = 0, and recovers classical SW when κ = 1 and τ = 0.
As we are dealing with non-conjugate priors, we update the cluster assignment
by extending Gibbs sampling with the addition of auxiliary parameters, which is
widely known as Algorithm 8 [28]. We denote by Ao the current nested cluster;
C−Ao
1 , . . . ,C−Ao

M the clusters without nested cluster Ao; M−Ao the number of
distinct clusters excluding Ao and h the number of temporary auxiliary variables.
For each nested cluster Ao, it is assigned to an existing clusterm = 1, . . . , M−Ao

or a new cluster m = M−Ao + 1, . . . , M−Ao + h with probability as follows,

pr(Ao ∈ C−Ao
m | · · · )

∝

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�(|C−Ao
m |+|Ao|−δ)

�(|C−Ao
m |−δ)

pr
(
y | π Ao→m

p , η∗)

∏
{( j,k)| j∈Ao,k∈C−Ao

m ,r jk=0} exp
{
υ jk(1 − ζ jk)

}
, for C−Ao

m ∈ π−Ao
p ,

1
h
Vp(M−Ao+1)
Vp(M−Ao )

�(|Ao|−δ)

�(1−δ)
pr

(
y | π Ao→M+1

p , η∗) , for new C−Ao
m ;

where pr
(
y | π Ao→m

p , η∗) and pr
(
y | π Ao→M+1

p , η∗) denote the marginal likeli-
hood of data obtained by moving Ao from its current cluster to existing clusters
or newly created cluster respectively. Before updating the cluster assignments,
we sample the nested clusters and compute the volume of each nested cluster for
all images, with computational cost O(np). When updating the cluster assign-
ments, the marginal likelihood dominates the computational cost, as it involves
inversion and determinants of (M + q) × (M + q) matrices and updating the
sufficient statistics for every nested cluster and every outer cluster allocation,
i.e. the cost is O([[M + q]3 + n[M + q]]OM).

2. Sample β∗,μ, σ 2 jointly given the partitionπp, η∗ and the data. Notationally, we
reformulate x̃i = (wT

i , x∗ T
i )T and β̃ = (μT ,β∗ T )T . We define X̃ be the matrix

with rows equal to x̃Ti . The corresponding full conditional for β̃ and σ 2 is

σ 2 | · · · ∼IG(âσ , b̂σ ),

β̃ | σ 2, · · · ∼N(m̂β̃ , σ 2�̂β̃),
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Fig. 1 Figures on the upper and bottom row showing the true and estimated coefficient matrix of
the simulated data sets for scenario 1 under each model

where �̂β̃ = (�−1
β̃

+ X̃
T
X̃)−1, m̂β̃ = �̂β̃(�−1

β̃
mβ̃ + X̃

T
y), and IG(âσ , b̂σ )

denotes the inverse-gamma distribution with updated shape âσ = aσ + n/2 and
scale b̂σ = bσ + [mT

β̃
�−1

β̃
mβ̃ + yT y − m̂T

β̃
�̂−1

β̃
m̂β̃]/2.

3. Sample η∗ given β∗. The corresponding full conditional for each η∗
m is an

inverse-gamma distribution with updated shape âη = aη + 1/2 and scale b̂η =
bη + (β∗

m)2/(2σ 2):

η∗
m | · · · ∼ IG(âη, b̂η), for m = 1, . . . , M.

4 Numerical Studies

We study through simulations the performance of the proposedmodel and compare it
with Ising-DP [19]. We consider 2D images in this simulation. The n = 300 images
are simulated on a two dimensional grid of size 10 × 10, with spatial locations s j =
(s j1, s j2) ∈ R2 for 1 ≤ s j1, s j2 ≤ 10. For simplicity’s sake, we include an intercept
but do not consider others covariates, wi . We concentrate on the two simulation
scenarioswith trueM = 2 andM = 5 as shown in Figs. 1 and 2. For each experiment,
we summarise the posterior of the clustering structure of the data sets by minimising
the posterior expected Variation of Information (VI) [45].
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Fig. 2 Figures on the upper and bottom row showing the true and estimated coefficient matrix of
the simulated data sets for scenario 2 under each model

The Potts-Gibbs models can detect correctly the cluster structure under scenario
1 (Fig. 1). The Potts-Gibbs models are also capable of capturing and identifying the
more complex cluster structure underlying the data for scenario 2 (Fig. 2) with the
ARI 0.621–0.830 (Table2). On the contrary, Ising-DP has failed terribly to recover
the cluster structure for scenario 2, as illustrated in Fig. 2. It is observed that under
the Potts-Gibbs models, most of the resultant clusters are spatially proximal, while
under Ising-DP, the clusters are dispersed throughout the image. By taking into
consideration spatial dependence in the random partition model via the Potts-Gibbs
models, the proposed models produce spatially aware clustering and thus improve
the predictions.

DP has a concentration parameter α, with larger values encouraging more new
clusters and a rich-get-richer property that favours allocation to larger clusters. The
PY has an additional discount parameter δ ∈ [0, 1) that helps tomitigate the rich-get-
richer property and phase transition of the Potts model. TheMFM has a parameter γ ,
with larger values encouraging more equal-sized clusters and helping to avoid phase
transition of the Potts model, as well as additional parameters λ which are related to
the prior on the number of clusters.
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Table 2 Mean, standard deviation (in parentheses) and highest posterior density (HPD) interval of
the posterior of adjusted Rand index (ARI), variation information (VI), mean squared error (MSE),
mean squared prediction error (MSPE), and number of clusters for each scenario under each model

Model Scenario Mean HPD (95%)

ARI Potts-DP 1 1.0 (0.004) (1.0, 1.0)

Potts-PY 1.0 (0.004) (1.0, 1.0)

Potts-MFM 0.999 (0.007) (1.0, 1.0)

Ising-DP 0.307 (0.079) (0.152, 0.464)

Potts-DP 2 0.621 (0.060) (0.472, 0.684)

Potts-PY 0.713 (0.050) (0.607, 0.818)

Potts-MFM 0.830(0.036) (0.756, 0.869)

Ising-DP 0.038 ( 0.021) (-0.001, 0.078)

VI Potts-DP 1 0.001 (0.010) (2.22e-16, 2.22e-16)

Potts-PY 0.001 (0.009) (2.220e-16,
2.220e-16)

Potts-MFM 0.001 (0.014) (2.220e-16,
2.220e-16)

Ising-DP 1.386 (0.154) (1.083, 1.680)

Potts-DP 2 1.160 (0.211) (0.902, 1.548)

Potts-PY 1.006 (0.147) (0.640, 1.299)

Potts-MFM 0.599 (0.133) (0.432, 0.866)

Ising-DP 3.990 (0.159) (3.691, 4.290)

MSE Potts-DP 1 1.33e-4 (5.59e-4) (3.97e-9, 2.67e-4)

Potts-PY 1.03e-4 (8.73e-5) (1.58e-7, 2.57e-4)

Potts-MFM 1.01e-4 (8.37e-5) (4.21e-7, 2.66e-4)

Ising-DP 0.807 (0.011) (0.790, 0.828)

Potts-DP 2 0.246 (0.064) (0.141, 0.374)

Potts-PY 0.157 (0.035) (0.094, 0.224)

Potts-MFM 0.093 (0.014) (0.079, 0.125)

Ising-DP 0.980 ( 0.025) (0.942, 1.020)

MSPE Potts-DP 1 4.215 (0.057) (4.152, 4.317)

Potts-PY 4.213 (0.052) (4.138, 4.311)

Potts-MFM 4.209 (0.052) (4.136, 4.314)

Ising-DP 145.912 (10.051) (129.142, 165.950)

Potts-DP 2 7.754 (2.653) (3.175, 13.356)

Potts-PY 0.868(0.168) (0.669, 1.189)

Potts-MFM 0.850 (0.122) (0.677, 1.108)

Ising-DP 3.641 (0.526) (2.766, 4.857)

Number of clusters Potts-DP 1 2.019 (0.138) (2.0, 2.0)

Potts-PY 2.015 (0.122) (2.0, 2.0)

Potts-MFM 2.007 (0.081) (2.0, 2.0)

Ising-DP 4.575 (1.340) (2.0, 7.0)

Potts-DP 2 6.722 (0.901) (5.0, 8.0)

Potts-PY 6.882 (1.090) (5.0, 9.0)

Potts-MFM 5.232 (0.475) (5.0, 6.0)

Ising-DP 15.542 (1.554) (13.0, 18.0)
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5 Conclusion

We have developed novel Bayesian scalar-on-image regression models to extract
interpretable features from the image by clustering and leveraging the spatial coor-
dinates of the pixels/voxels. To encourage groups representing spatially contiguous
regions, we incorporate the spatial information directly in the prior for the random
partition through Potts-Gibbs random partition models. We have shown the poten-
tial of Potts-Gibbs models in detecting the correct cluster structure on simulated
data sets. In our experiments, the hyperparameters of the Potts-Gibbs model were
determined via a simple grid search on selected combinations of hyperparameters.
However, future workwill consist of investigating the influence of the various param-
eters inherent to the model and guidelines and tools to determine hyperparameters.
The model will then be applied to real images, e.g. neuroimages. Motivated by
examining and identifying brain regions of interest in Alzheimer’s disease, we will
use MRI images obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (www.adni-info.org). The proposed SIR model will be extended
to classification problems through the GLM framework.
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